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This thesis presents the development and validation of a forced oscillation test 

technique for the determination of Micro Air Vehicle (MAV) stability characteristics.  

The test setup utilizes a scotch yoke mechanism to oscillate a MAV along a single 

axis at a fixed amplitude and frequency.  The aerodynamic reaction forces to this 

sinusoidal perturbation are measured and converted into meaningful stability 

parameters.  The purpose of this research is to demonstrate that forced oscillation 

testing is an effective means of measuring the stability parameters of a MAV.  Initial 

tests show that the forced oscillation test process is returning results which match the 

expected trends.  Comparison of the results to an analytical model of blade flapping 

shows that the experimental results are of the proper magnitude.  It can be concluded 

from this research that forced oscillation testing is a feasible method for determining 

the stability parameters of MAVs. 
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Chapter 1: Introduction 

 
 

1.1 Background 

Recently there has been increasing interest in the development of hovering MAVs.  

The possible uses for hovering MAVs are limited only by the imagination, and many 

possible missions have already been proposed.  These MAV specific missions pose a 

wide array of specific challenges.  Often the prospective missions will include 

dynamic weather conditions, the presence of intricate obstacles and flight near or 

even potentially inside buildings.  MAVs must be designed not only to handle these 

tasks but also do it autonomously.  One of the most challenging aspects of MAV 

development is the design and implementation of autonomous or semi-autonomous 

flight control.  A key requirement for the effective design and implementation of 

closed loop controllers and control strategies is an accurate model of the vehicle’s 

dynamic response to control inputs and disturbances.  Because of the unique nature of 

hovering MAVs, construction of an accurate dynamic model poses some unique 

challenges beyond those affecting full size rotorcraft. 

Forced oscillation techniques have been widely used to determine 

aerodynamic stability derivatives for fixed wing vehicles in wind tunnel test facilities 

[1].  The predominant difference between those tests and the determination of 

stability derivatives for rotary wing vehicles is the time scale on which the new 

aerodynamic forces establish themselves following a perturbation in flight conditions.  

For fixed wing aircraft, the new forces on the aerodynamic surfaces and fuselage 

 1 
 



establish themselves very quickly.  For rotary wing aircraft there are similar changes 

in forces, but they occur on two different time scales.  The new forces on the rotor 

and fuselage occur rather quickly, similar to a fixed wing aircraft. However, the 

reaction of the rotor to perturbations in flight conditions occurs more slowly.  The 

concept behind stability derivatives assumes a constant coefficient system, which 

implies that the perturbation of forces occurs instantaneously. For rotary wing 

vehicles this is obviously not the case.  However, this type of analysis can still be 

used if the perturbation occurs relatively slowly compared to the time it takes for the 

new aerodynamic forces to establish themselves. Because the MAVs to be used in 

this study operate at very high rotor RPMs, the reaction of the rotor is much quicker 

than that of a full-scale helicopter. However, great care must still be taken throughout 

the test process to ensure that the reaction of the rotor occurs very quickly with 

respect to the change in flight conditions caused by the forced oscillation. 

Forced oscillation techniques can also be applied as a method of system 

identification, similar to the collection of flight test data.  For the case of forced 

oscillation testing instead of inducing perturbations to the flight conditions of the 

vehicle using control inputs, as is done in traditional flight testing, the perturbations 

are caused by the forced oscillation motion.  Analysis of forced oscillation testing in 

this manner uses Bode plots to represent the test results.  A Bode plot consists of the 

gain and phase of the vehicle response plotted as a function of frequency.  In this type 

of analysis it is not necessary to assume that the reaction of the rotor is instantaneous, 

because the phase delay of the response is considered.  These Bode plots can then be 

approximated by transfer functions which describe the dynamic response of the 
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vehicle.  Thus, there are two ways of analyzing the data recorded from a forced 

oscillation measurement, both of which will be considered herein. 

1.2 Motivation 

The primary motivation for the current research is to aid in the development of 

effective control systems for rotary wing MAVs.  Because of the specific demands of 

projected missions for MAVs, the design of a capable controller promises to be a 

difficult task.  In order to overcome the challenge of designing a controller for a 

mission capable MAV, the first step is to construct an adequate model of the flight 

dynamics of the proposed vehicle.   

The current design process for rotary wing MAVs consists of designing a 

vehicle with the aerodynamics and lifting strategy as the primary focus.  Once the 

vehicle is able to achieve flight, the designer is then faced with the issue of how to 

make it stable or at the very least flyable.  The advent of a technique which is capable 

of studying the stability characteristics of a vehicle or rotor concept before the 

challenging “first flight” could be a powerful tool to the designer of a rotary wing 

MAV.  In this case, the designer would have the ability to consider the stability 

parameters of the vehicle much earlier in the design process, thus reducing the risk of 

costly design changes forced by excessively unstable configurations. 

There are two techniques which are traditionally used for determining a 

dynamic model for a modern rotorcraft.  Neither of these techniques is currently 

capable of providing an accurate model for a rotary wing MAV.  The first traditional 

method is to analytically calculate the model directly from the vehicle equations of 

motion using finite difference approximations.  The second is to derive the model 
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from flight test data. Determining a vehicle’s stability parameters directly from the 

equations of motion is a particularly difficult task in the case of an MAV. This is 

predominantly due to the absence of solid information regarding the dynamics of 

flight at low Reynolds numbers. Outfitting MAVs with the necessary sensory 

equipment to derive the stability derivatives from flight tests is also challenging due 

to their limited payload capacity. This problem is further complicated by the fact that 

MAVs are often difficult to fly in a consistent manner even with open loop remote 

control, and thus performing the maneuvers required to collect appropriate flight test 

data becomes a difficult task. For these reasons there is great interest in the ability to 

determine the stability derivatives of MAVs using experimental techniques in ground 

test facilities. 

A technique which can experimentally achieve accurate system identification 

of a rotary wing MAV without the need for flight testing presents itself as an 

attractive tool in the process of MAV vehicle and control system design.  For this 

reason there is sufficient interest in the use of forced oscillation testing as an 

alternative to analytical calculations or flight testing. 

1.3 Objective 

The primary focus of this research is the development and validation of a forced 

oscillation test procedure for the system identification of rotary wing MAVs.  

Specifically this thesis focuses on the creation of a capable test stand as well as the 

implementation of the necessary hardware required to obtain the required data.  The 

data reduction process and analysis of the results are also addressed.   
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The current experimental setup consists of a test stand which is capable of 

producing a forced sinusoidal perturbation in the velocity of the vehicle along its X-

body axis, about a hovering flight condition.  This simple one degree of freedom 

perturbation was chosen in order to simplify the development and validation of the 

forced oscillation test procedure.  The simple perturbation in forward velocity was 

chosen to initially validate the test process for two reasons.  First, the response of the 

rotor to changes in forward velocity is one of the most important characteristics 

affecting the stability of a rotary wing vehicle in hover.  This rotor response is 

discussed in more detail in section 4.9.  Secondly, the mechanism needed to produce 

a perfect sinusoidal oscillation in velocity along the vehicle’s X-axis is relatively 

simple to design and implement.  If the forced oscillation test technique is proven to 

be effective for this simple case, it will justify the extension of the technique to other 

degrees of freedom. 

The perturbation in velocity along the vehicle’s X-axis is traditionally denoted 

u. The current design of the force balance can measure the aerodynamic X-force and 

pitching moment caused by this perturbation. From these measurements, Mu and Xu, 

the stability derivatives that describe the pitching moment response and X-force 

response, respectively, to a perturbation u, can be determined.  Similarly, Bode plots 

which describe the frequency response of X-force and pitching moment to a 

perturbation in forward velocity can be constructed.   

Three rotor systems have been considered for initial testing and validation.  

The first is a generic co-axial MAV without a lateral control system, based on the 

design of the University of Maryland's co-axial rotary wing MAV, MICOR [2], [3], 
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[4].  The second is a simple 11 inch diameter teetering rotor.  The final rotor system is 

an 11 inch diameter rotor with similar properties to the teetering rotor, only the rotor 

hub is rigid in nature.  The objective of this research is to use the three rotor systems 

described above to investigate the forced oscillation test procedure and validate the 

method as an accurate way to identify the stability parameters of a rotary wing MAV. 

1.4 Organization of Thesis 

Each of the following chapters is summarized below. 

1. Chapter 2: Literature Survey of System Identification Techniques for 

MAVs.  This chapter will give a summary of the previous research done in the 

area of system identification with potential applications to MAVs.  Special 

attention is paid to the use of forced oscillation testing for the determination of 

stability parameters of fixed wing aircraft.  This previous work on forced 

oscillation testing serves as the starting point for the forced oscillation testing 

of MAVs. 

2. Chapter 3:  Forced Oscillation Testing, Theoretical Background.  This 

chapter will discuss the theory necessary to implement a forced oscillation test 

procedure.  Forced oscillation testing will be considered from two 

perspectives, stability derivative analysis and Bode plot analysis.  The 

governing equations for reducing test data to meaningful values for each of 

these two perspectives will be developed and presented. 

3. Chapter 4: Forced Oscillation Testing: Experimental Setup.  This chapter 

will describe the current test setup, which has been developed for the forced 

oscillation testing of MAVs.  Each of the components utilized in the test step 
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is described and their individual contributions to the overall test process are 

discussed.  The example test rotors which have been fabricated for initial 

testing are also presented and the characteristics of each are discussed. 

4. Chapter 5:  Forced Oscillation Testing: Test Procedure and Data 

Reduction.  This chapter will present the procedure which is currently in use 

for the forced oscillation testing of MAVs.  The proper selection of each test 

parameter is described, and the necessary steps for data collection are listed.  

This chapter also discusses the reduction of test data into meaningful stability 

parameters using MATLAB. 

5. Chapter 6:  Validation of Forced Oscillation Test Process.  This chapter 

will discuss the initial tests which have been performed using the previously 

described test setup and procedure.  The goal of this chapter is to provide a 

validation of the test process.  Results from the testing of several example 

rotor systems are presented and the implications of the results are considered.  

Analysis of the initial test results is presented as a qualitative validation of the 

test process.  This chapter also details an analytical model of the flapping 

response of one of the example rotor systems.  This analytical model is then 

used to provide a quantitative validation to support the experimental results. 

6. Chapter 7:  Concluding Remarks.  This chapter presents a summary of the 

work done and results produced from this research.  Suggestions for future 

work in this area are also presented. 
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Chapter 2: Literature Survey of System Identification 

Techniques for MAVs 

 

 

2.1 Introduction 

There has been a lot of previous work concerning the system identification of 

aerospace vehicles, both fixed and rotary wing.  A variety of identification methods 

have been developed and validated, each with their own useful application.  In the 

case of MAVs however, many of these methods prove to be only marginally useful.  

The goal of system identification is to properly identify the response characteristics of 

the vehicle to either a control input or a change in flight condition.  The evolution of 

system identification and its applications to flight vehicles is described by Hamel and 

Jategaonkar [5].  System identification results can be applied in all phases of vehicle 

design, from initial estimates based on vehicle parameters, to final results found from 

flight tests of the finished product.  Another aspect is the ability to identify the 

contribution of individual vehicle components to the total system response.  For the 

case of a full scale rotorcraft there are four basic approaches to approximating the 

system parameters of the vehicle.  These approaches include: 

• The use of equations or charts to approximate vehicle stability 

• The use of finite difference approximations to model vehicle response 

• Flight testing of vehicle to obtain stability characteristics 
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• Forced oscillation testing on the ground   

A synopsis of these techniques is given below and a survey of the relevant literature 

is presented in detail in the following sections. 

The most basic approach to approximating a vehicle’s response characteristics 

is to use equations or charts which approximate the contributions of each vehicle 

component to the total vehicle stability response.  Using this method the stability 

characteristics of a vehicle can be predicted from concept through construction 

simply by knowing the values of the vehicle parameters.  This process can provide a 

simple estimate without the need for advanced analysis or the assistance of a digital 

computer. 

A more computationally complex method of determining the stability 

parameters of a rotorcraft is to use finite difference approximations to calculate the 

necessary characteristics directly from the vehicle equations of motion.  While this 

method requires more time and computing power, it has several advantages over the 

use of charts or approximation equations.  By developing sophisticated equations of 

motion to describe the vehicle and additional degrees of freedom, this method can 

account for more complicated vehicle configurations and designs than the previous 

approximation technique. 

If a completed flight worthy vehicle is available the system parameters can be 

identified directly from flight testing.  If adequate control inputs are applied and the 

vehicle response is measured the vehicle response characteristics can be identified.  

While this is a very useful technique, it is limited by the need for a completed flight 

test vehicle as well as the ability to collect sufficient flight test data. 
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A final method which in the past has been applied primarily to fixed wing 

aircraft is forced oscillation testing.  In this method a vehicle model is placed inside a 

wind tunnel and forced to oscillate.  The aerodynamic force response to this 

oscillation is measured and can then be reduced to give the stability characteristics of 

the vehicle.  While this method has its limitations as well, due to the small size of a 

MAV and the difficulty in utilizing the other techniques above, it is particularly 

applicable in the case of small scale rotorcraft testing. 

2.2 Estimation Charts 

The development of estimation charts stems from the use of historical information as 

well as analysis of simple helicopter theory to predict the stability characteristics of a 

helicopter based on the design values of its components.  For a traditional helicopter 

the primary contribution to the stability characteristics come from the main and tail 

rotors.  By differentiating the equations for the aerodynamic coefficients and flapping 

angles, charts can be prepared which predict the contribution of the rotors to the 

vehicle response.  Charts of this type have been developed by Amer and Gustafson 

[6].  A similar but slightly more modern adaptation of use of charts technique is 

described by Prouty [7].  In this case, rotor performance charts are used to predict the 

changes in rotor forces due to changes in flight conditions.   

The primary advantage of the methods described above is that they enable a 

designer to predict the stability characteristics of a vehicle long before any of the 

vehicle components have been constructed.  This method is also very simple to use 

when sufficient computing power is not available.  This type of estimation was used 

extensively before the advent of the modern computer.  Because of the increase in 
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digital computing technology, estimation charts are now an outdated means of vehicle 

parameter estimation.  These methods can still prove useful however for quick 

calculations or to check the output of more sophisticated estimations. 

Estimation charts and equations are also of very little use in the system 

identification of MAVs.  Even though the previously cited methods were designed to 

be applicable over a large range of helicopter sizes they are of little use at the MAV 

scale.  Because of the extreme discrepancy in size between an MAV and a full size 

rotorcraft, the physics which govern flight at the two different scales are quite 

different.  For this reason estimation charts and equations serve as little more than a 

qualitative look at or gross approximation of the expected rotor response of a rotary 

wing MAV. 

2.2 Finite Difference Approximations 

The current method primarily used to analytically identify vehicle system parameters 

is to calculate them directly from the equations of motion using finite difference 

approximations.  This is a very powerful numerical technique which has proven even 

more useful in recent years due to the advent of powerful digital computers.  A more 

detailed discussion of the theory behind finite difference approximations is given by 

Smith [8].  An additional survey of the development and application of finite-

difference techniques is provided by Schlager and Schneider [9].  The application of 

finite difference approximation to the development of aerodynamic databases is 

presented by Jateganokar and Thielecke [10].  An advantage of this technique is that 

equations of motion which include many degrees of freedom can be used.  This is an 

especially attractive capability when studying rotorcraft, which generally have many 
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coupled degrees of freedom.  Also, because the technique is not limited to a simple 

conventional single main rotor helicopter advanced configurations can be studied. 

 A general application of the use of finite difference approximations to the 

simulation of helicopter dynamics is provided by Webster et al. [11].  Because of the 

ability to consider many degrees of freedom and coupled equations, finite difference 

approximations have also been used to study more complicated aerodynamic 

phenomena.  Ballhaus and Goorjian have used the technique to study unsteady flow 

regimes [12].  The ability to analyze complicated models is especially useful in 

studying rotary wing dynamics.  A rotor design methodology which includes 

structural degrees of freedom is presented by Celi [13].  Another example is a study 

of helicopter flight dynamics including a wake model, preformed by Theodore and 

Celi [14].  

Although the use of finite difference approximations has proven to be an 

effective method for determining the stability characteristics of full size rotorcraft, 

they once again are not particularly useful at the MAV scale.  In order for the 

approximations to be accurate, an appropriate model of the aerodynamic forces acting 

on the vehicle must be constructed.  While the aerodynamics of a full size helicopter 

are well documented, this is not the case for rotary wing MAVs.  Once again, the 

physics governing flight at the MAV scale are quite different than those governing 

the flight of a full size rotorcraft.  Because an appropriate low Reynolds number 

aerodynamic model is not available, using the finite difference approximation method 

to determine the stability parameters of an MAV will only provide, at best, a general 

insight into the system identification of MAVs. 
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2.3 Flight Testing 

Of the currently available methods for system identification, flight testing has shown 

to be the most prominent for modern rotorcraft.  If a flight worthy prototype is 

available, properly conducted flight tests can accurately determine the system 

parameters of a vehicle over a large frequency range.  The ability of flight testing to 

provide the necessary data for high bandwidth control design is presented by Tischler 

[15].  The fundamental idea behind flight test based system identification is to use 

control inputs to perturb the vehicle about a steady state flight condition and measure 

the vehicle response.  From the response of the vehicle to a known input, the stability 

parameters of the vehicle can be determined.  There is extensive literature detailing 

flight test procedures as well as the collection and analysis of the resulting data.  The 

evolution of system identification flight testing to its current capability is discussed 

by Hamel and Jateganokar [5], [16]. The role of flight testing as applied to the 

parameter identification of rotorcraft is further discussed by Chen and Tischler [17].  

Tischler has also conducted additional research on available methods for system 

identification flight testing [18].  An instructional description of the application of 

system identification flight testing to rotary wing vehicles is provided by Tischler et 

al. [19].  

Much of the current research in system identification flight testing utilizes 

frequency domain analysis to extract the stability parameters of rotorcraft from flight 

test data.  An application of frequency domain modeling for the control of unmanned 

air vehicles (UAVs) is given by Theodore et al. [20].  Other researches have also 
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shown the ability to perform system identification in the time domain.  Time domain 

analysis for the control design of rotary wing UAVs is discussed by Shim et al. [21].  

Recent work has been conducted by Mettler et al. to determine the stability 

characteristics of small scale rotary wing vehicles [22], [23].  While this research 

does not yet display the capability to perform system identification flight testing for 

MAVs, the successful application to less than full scale rotorcraft is a promising 

result.  This research utilizes CIFER, a software package developed to extract vehicle 

stability parameters from flight test data.  CIFER was originally developed to assist in 

the system identification of full size helicopters but has proven to be a valuable tool 

in the identification of small scale rotary wing vehicles as well as UAVs.  The 

software package utilizes frequency domain, nonparametric analysis which has shown 

to be especially well suited in dealing with the rapid response and nonlinear 

characteristics of small scale rotorcraft.  Additional research on the system 

identification of small unmanned helicopters has also been preformed by Kim et al. 

[24].  Lee et al. have conducted research on small scale rotorcraft involving 

automated flight testing [25].   

System identification from flight test data has proven to be a useful too to the 

helicopter designer, but there are a few drawbacks which hinder its use in the case of 

rotary wing MAVs.  The primary drawback is that to be properly implemented the 

method requires numerous channels of flight data.  This requirement is detailed by 

Tischler et al. [19].  As additionally discussed by Mettler, this data must be of 

sufficient quality so that the results are not obscured by measurement noise [22].  

While this is not necessarily an issue for larger rotorcraft, it is most certainly a 
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concern in the case of MAVs.  The necessary instrumentation to deliver sufficient in-

flight measurements is readily available for full size aircraft, but fitting this hardware 

to a MAV is a challenge.  The payload of current MAVs is very limited [2].  For this 

reason the standard sensors must be reduced in size and weight while still delivering 

data of sufficient quality. 

The other issue which makes flight testing difficult to apply to MAVs is the 

need for complete flight worthy vehicles as a test platform.  Because of the rapid 

frequency response and generally unstable dynamics of bare airframe MAVs, it can 

be difficult to develop vehicles worthy of flight testing.  Also, flight testing does not 

allow for the testing of individual components such as rotor systems if they are not 

part of a completed flight vehicle. 

2.5 Forced Oscillation testing 

The use of forced oscillation testing has been well documented in literature for the 

system identification of fixed wing aircraft in wind tunnels.  A paper detailing a 

variety of different forced oscillation techniques and their applications is provided by 

Schuler et al. [1].  These techniques consist of using a mechanical mechanism to 

induce an oscillatory motion to a scaled vehicle model.  By placing the model in a 

wind tunnel and measuring the aerodynamic reaction forces caused by the induced 

oscillation, the stability parameters of the vehicle can be determined.  A summary of 

several more forced oscillation testing procedures is provided by von der Decken et 

al. [26].  An additional forced oscillation mechanism for the forced oscillation testing 

of stability derivatives in roll is given by Burt [27].  Orlick-Ruckemann et al. 

additionally address the technique for the application to unconventional 
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configurations [28].  One of the advantages of these procedures is that they are 

experimental methods similar to flight testing, but are preformed in a ground test 

facility.  For this reason a fully flight worthy vehicle is not required for testing.  

Models of early prototypes can be tested before a vehicle which is capable of piloted 

flight has been completed.   

 More recent research has also been conducted using forced oscillation testing.  

Alemdarogul et al. provide a more modern outlook on the capabilities of forced 

oscillation testing [29].  There has been significant research on the development of 

improved capabilities and mechanisms over those described in the historical 

references.   Hanff et al. describe the development of a large amplitude, high rate 

oscillation system [30].  A six degree of freedom simulation based on forced 

oscillation testing is discussed by Kalviste [31].  Progress has also been made for 

forced oscillation testing in the transonic regime as described by Piatak and Cleckner 

[32].  Additional research has been conducted involving the use of forced oscillation 

testing to measure unsteady aerodynamics.  Work in this area has been detailed by 

Kay [33] as well as by Murphy and Klein [34].  Lastly there have been several studies 

in recent years examining the validity of different aspects of forced oscillation testing.  

Uselton and Uselton have studied the validity of small amplitude forced oscillation 

techniques [35].  The validity of forced oscillation testing for the measurement of 

unsteady aerodynamic parameters has been researched by Murphy and Klein [36]. 

The primary shortcoming of forced oscillation testing is that the parameters 

which can be identified from each test are limited by the mechanism used to oscillate 

the vehicle model.  This limitation is discussed in more detail by Orlick-Ruckemann 

 16 
 



[37].  Often a separate apparatus is required to perturb the vehicle about each degree 

of freedom.  Also, the hardware used to measure the aerodynamic response forces can 

limit the possible results if the apparatus can not measure reaction forces and 

moments about each vehicle degree of freedom. 

Forced oscillation testing does however present itself as a useful tool for 

rotary wing MAV system identification.  Because of the small size of MAVs, scalled 

models are not required.  Rather, a full size version of the vehicle can be tested.  The 

other favorable characteristic of forced oscillation testing is that a flight worthy 

vehicle is not needed for testing.  Because of the rapid response and frequently 

unstable dynamics of rotary wing MAVs they can be difficult to fly without 

significant piloting skill or an implemented flight control system.  Since free flight is 

not required for forced oscillation testing, early prototype vehicles or rotor systems 

can be tested.  The results from these tests can then be used to suggest modifications 

to the vehicle or to design an appropriate flight control system to make the vehicle 

more stable prior to flight testing. 

2.6 Chapter Summary 

In summary, much research has been preformed previously in the field of system 

identification of rotary wing vehicles.  Unfortunately, many of the techniques which 

have previously been developed are not currently applicable for use on MAVs.  

Forced oscillation testing of fixed wing aircraft in wind tunnels has also been well 

documented.  It is possible that an extension of forced oscillation wind tunnel testing 

may prove to be a useful tool for the system identification of rotary wing MAVs. 
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 The following chapter will present the theoretical background for forced 

oscillation testing.  This background will be presented from two different 

perspectives, and the applications to the testing of MAVs will be discussed. 
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Chapter 3:  Forced Oscillation Testing, Theoretical Background  

 

3.1 Introduction 

Forced oscillation testing is essentially a simplified version of the standard system 

identification techniques used in flight testing.  For a given forced oscillation test a 

sinusoidal perturbation in one of the vehicles flight conditions is induced.  The 

aerodynamic reaction to this perturbation is then measured.  The relation of the output 

measurement to the input perturbation is then determined.  This is analogous to the 

techniques used in standard system identification, only the test case is greatly 

simplified.  Because only one flight condition is perturbed and both the input and the 

output are assumed to be purely sinusoidal, the analysis of the resulting data is far less 

complicated.   

 For the current research a simple one degree of freedom perturbation in 

velocity along the X-axis of the vehicle was chosen.  The reasons for this choice are 

discussed in detail in section 1.3.  Because only a single degree of freedom is 

considered in this research the analysis of the vehicle response is greatly simplified.  

In the following theoretical development please not that only motion along the X-axis 

is considered. 

3.2 Stability Derivative Approach 

As discussed previously, the use of stability derivative approximations has some 

limitations for the applications to rotary wing vehicles.  Namely the response of the 
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rotor system to perturbations is generally slower than the response of traditional 

aerodynamic surfaces.  For this reason, stability derivatives are generally a better 

approximation of the response of traditional aircraft than they are for rotorcraft.  

Because the theoretical development of stability derivatives assumes an instantaneous 

reaction, care must be taken to insure that perturbations in flight conditions can be 

considered slow with respect to the reaction of the rotor.  Figure 3.1 depicts the 

assumption made by stability derivative approximations as well as representative 

responses of a fixed wing aircraft and a rotorcraft. 
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Figure 3.1   Stability Derivative Assumed Response 

 
The theory utilized for the development of a stability derivative approximation 

assumes that the vehicle in question is initially in a trimmed flight condition.  The 

stability derivative equations then predict the change in forces that are induced by 
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changes to the trimmed condition.  The aerodynamic forces and moments acting on a 

vehicle while that vehicle is in trimmed flight can be expressed as a function of the 

flight parameters for that trim condition. Because the vehicle is in trimmed flight 

these flight parameters are considered constant.  For small perturbations in flight 

conditions about these constant values the new force acting on the vehicle along the 

X-body axis can be expressed as a combination of the force on the vehicle at trim, 

TX , and the change in that force due to the perturbation, X∆  

 0( , , , , , , , )TX X u v w p q r Xθ= + ∆…  (3.1) 

where u , v, and w are the trim values for vehicle velocity along each body axis and p, 

q, and r are the trim values of rotational rates about each of the axes.  Using a Taylor 

series expansion ∆X can be represented as the summation of the partial derivatives of 

X with respect to each flight condition, where these derivatives are calculated about 

the trim condition. Thus, ∆X can be expressed as 

 ...X X XX u v w
u v w

δ δ δ
δ δ δ

∆ = ∆ + ∆ + ∆ +  (3.2) 

where ∆u, ∆v, etc. are small perturbations to the trimmed flight conditions u , v, etc.  

The partial derivatives in the equation above are traditionally referred to as stability 

derivatives. Using a more concise notation, these stability derivatives are expressed as 

a force or moment component with a subscript indicating the variable with respect to 

which the component is being differentiated.  For example, X
u

δ
δ

 becomes the stability 

derivative Xu.  Using this new notation, the simplified expression for ∆X is 

  (3.3) u v w pX X u X v X w X p∆ = ∆ + ∆ + ∆ + ∆ +…
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In order to determine the stability derivatives of a vehicle experimentally, a forced 

sinusoidal oscillation can be used to impart a prescribed small perturbation to a steady 

flight condition.  By measuring the resulting change in aerodynamic force, the 

appropriate stability derivative can be determined.  For a prescribed sinusoidal 

oscillation in the X direction, position of the vehicle is given by   

 0( ) sin( )x t A tω=  (3.4) 

where A0 is the amplitude of the forced oscillation and ω is the prescribed angular 

frequency.  Differentiating and twice differentiating this equation yields the velocity 

and acceleration of the vehicle. These equations give us the perturbation values for 

velocity and acceleration of the vehicle along the X axis.  The perturbations are given 

as, 

 0

2
0

( ) cos( )

( ) cos( )

x t A t u

x t A t

ω ω

ω ω

= =

u

∆

= − =

�
�� �∆

A

 (3.5) 

The total force along the X axis, as measured by the force balance during a rotors-on 

test, can be represented as the sum of the aerodynamic force produced by the vehicle 

and the force produced by the inertia of the vehicle and the force balance itself. 

 T IF F F= +  (3.6) 

The purely aerodynamic forces can be separated from the total measured force 

response by subtracting the inertia forces from the total force measured by the force 

balance. 

 A TF F FI= −  (3.7) 
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Experimentally this is done by first running a tare test with the rotors off to determine 

the forces caused solely but the inertia of the vehicle FI and then running the test 

again with the rotors on to determine the total force response FT. 

Conventionally, the aerodynamic force acting on the vehicle can be 

represented by the sum of a constant term, a term proportional to the vehicle velocity, 

and a term proportional to the vehicle acceleration.  

 AF A Bu Cu= + + �  (3.8) 

The constant term A is dropped from the equation as the vehicle is operating about a 

trimmed hover condition and it is therefore assumed that before perturbations are 

introduced there are no forces acting on the vehicle. For the test case u and  are 

small perturbations about a trimmed hover condition, thus they are more accurately 

represented as ∆u and . 

u�

u∆ �

 AF A B u C u= + ∆ + ∆ �  (3.9) 

If only the component of FA that acts along the X-body axis, , is considered it 

becomes apparent that B is actually the stability derivative for force in the X direction 

due to a perturbation in u, X

XAF

u. Similarly, uC X= � .  While the derivative uX �  is not of 

particular interest from a dynamics point of view, it is retained throughout this 

analysis for thoroughness. The new notation for aerodynamic force along the X-body 

axis is now  

 
xA u uF X u X u= ∆ + ∆� �  (3.10) 

Inserting the expressions for u and u  from equation 3.5, as prescribed by the forced 

oscillation gives an equation for the aerodynamic force in the X direction due to a 

perturbation in X velocity. 

�
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 2
0 0cos( ) sin( )

xA u uF X A t X A tω ω ω= − � ω

T

 (3.11) 

Returning to equation 3.9, the aerodynamic force as measured by the force balance, 

the measured force response can be represented by a Fourier series approximation. 

 
xA S CF F F HH= + +  (3.12) 

where FS and FC are the first sine and cosine terms of the Fourier series expansion of 

the signal and HHT represents the higher harmonic terms.  The higher harmonic terms 

are dropped from the equation due to the assumption that the aerodynamic force 

response of the vehicle will stem directly from the perturbation to flight conditions 

imparted by the forced oscillation. Utilizing the dependence of FS and FC on the 

known forced oscillation frequency 

 sin( )S SF F tω=  (3.13) 

 cos( )C CF F tω=  (3.14) 

where SF  and CF  are the magnitudes of the in-phase and quadrature components of 

the first harmonic term of the Fourier series expansion respectively.  Setting 

equations 3.11 and 3.12 equal to each other and inserting equations 3.13 and 3.14 

yields, 

 2
0 0sin( ) cos( ) cos( ) sin( )

AX S C u uF F t F t X A t X A tω ω ω ω ω= + = − � ω  (3.15) 

 
Equating the sine and cosine terms from each side of the equation and solving for the 

stability derivatives yields 
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 (3.16) 

Thus, by measuring the in-phase and quadrature aerodynamic force response of the 

vehicle while specifying the parameters of the prescribed forced oscillation the 

stability derivatives Xu and uX �  can be obtained. 

Because the force balance is set up to measure both the force in the X 

direction and the pitching moment of the vehicle M, similar relations hold for the 

derivatives of pitching moment for perturbations in u, given as 

 0

2
0

C
u

S
u

M
M

A
M

M
A

ω

ω

=

=�

 (3.17) 

3.3 Bode Plot Representation Approach 

As stated in section 1.1, the aerodynamic force response data can also be represented 

in the form of gain and phase as a function of frequency.  This type of representation 

is more commonly know as a Bode plot.  Forced oscillation testing can also be used 

to construct a Bode plot of the vehicle response.  Essentially, each forced oscillation 

test is capable of providing one point on both the gain and phase portions of a Bode 

plot.  Thus, by performing forced oscillation tests over a range of frequencies a Bode 

plot of the vehicle response can be constructed point by point.  The development of 

the theory used to construct a Bode plot from the data follows a similar derivation to 

that used in the stability derivative representation.   
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Simple dynamics theory gives that for a sinusoidal input to a mechanical 

system, the steady state system response will occur at the same frequency, but may 

contain a certain amount of phase delay.  The input to the system is given by the 

velocity perturbation to the trimmed hover condition. 

 0( ) cos( )x t A tω ω=�  (3.18) 

The output of the system is the aerodynamic force in the X-direction, . 
XAF

 cos( )
AXF a tω ψ= −  (3.19) 

where a is the amplitude of the output, and ψ is the phase delay between the input and 

the output.  Returning to the Fourier series representation of the aerodynamic force 

reaction, we have already established  

 
xA S CF F F HHT= + +  (3.20) 

where 

 sin( )S SF F tω=  (3.21) 

and 

 cos( )C CF F tω=  (3.22) 

Converting from the in Fourier series representation to the equivalent magnitude and 

phase representation, the gain and phase of the output are given by 

 2
S Ca F F= + 2  (3.23) 

 1tan S

C

F
F

ψ −  
= 

 
  (3.24) 
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In order to construct a Bode plot of the results it is necessary to calculate the gain of 

the system.  The gain is simply the ratio of the output amplitude to the input 

amplitude, or 

 
0

output amplitude
input amplitude

a
Aω

=  (3.25) 

Inserting the expression for output amplitude from equation 3.23 the gain and phase 

points corresponding to the frequency of forced oscillation on the Bode plot of the 

system for a  given forcing frequency can be expressed as, 

 
2 2

0

gain S CF F
Aω
+

=  (3.26) 

 1phase tan S

C

F
F

−  
= 

 
  (3.27) 

3.4 Chapter Summary 

In this chapter the theoretical development of forced oscillation testing has been 

presented.  The equations necessary to convert the dynamic measurements from 

forced oscillation testing to stability derivatives have been given.  The extension of 

forced oscillation testing to the development of Bode plots has also been offered.  

This chapter presents the governing equations which will be used to analyze and 

validate forced oscillation testing as a useful tool in the testing of rotary wing MAVs. 

 The following chapter will detail the experimental setup currently being used 

to perform forced oscillation tests.  The capabilities of this setup stem directly from 

the experimental measurements needed to utilize the equations presented above. 
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Chapter 4: Forced Oscillation Testing: Experimental Setup 

 

4.1 Introduction 

In order for the test setup to be able to collect meaningful measurements it must 

satisfy several requirements.  These requirements are primarily imposed by the 

theoretical development outlined in chapter 3. 

• Sinusoidal velocity perturbation along the vehicle’s X-axis 

• Variable oscillation frequency and amplitude 

• Dynamic measurement of X-force and pitching moment 

• Real-time measurement of vehicle position 

• Synchronized acquisition of force and position data 

The current test setup consists of a scotch yoke mechanism capable of producing 

precise sinusoidal oscillations of variable amplitude and frequency.  A strain gauge 

force balance is used to measure X-force and pitching moment.  A linear position 

sensor is utilized to record the position of the vehicle.  The signals from both the 

force balance and the linear position sensor are recorded simultaneously using a 

digital data acquisition system. The current test setup is shown in figures 4.1 and 4.2.  
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Figure 4.1   Forced Oscillation Test Stand 
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Figure 4.2   Data Acquisition System 

 
The current setup is capable of producing forced sinusoidal oscillations at frequencies 

between 0 and 3 Hz.  The amplitude of forced oscillation is variable from .75 to 3.5 

inches in 1/4 inch increments. The specified forced sinusoidal oscillation as defined 

by the tolerances of the setup is accurate to within 0.03% in amplitude and frequency.  

4.2 Scotch Yoke Mechanism 

The scotch yoke mechanism consists of a rotating drive disk which induces a pure 

sinusoidal motion to a sliding platform by means of a pin protruding from the disc. 

This pin extends into a horizontal slot in the platform.  A simple scotch yoke 

mechanism similar to the one utilized in the forced oscillation test stand is shown in 

figure 4.3. 
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Figure 4.3   Scotch Yoke Mechanism 

 
The scotch yoke mechanism implemented on the test stand utilizes an 8 inch diameter 

drive disc made of Delrin.  There are holes drilled in the disc at half inch increments 

such that the position of the pin can be easily changed to select the amplitude of the 

sinusoidal motion.  The disc is supported and allowed to rotate by a 1 inch flange 

bearing which is mounted to the test stand frame.  The output shaft from the drive 

motor assembly passes through the bearing and is press fit to the drive disc.  The 

motor assembly is also bolted directly to the test stand frame.  The sliding platform is 

attached to the test stand frame by means of two Versa-Mount needle bearing guide 

blocks.  These guide blocks are mounted on parallel 12 mm width slide rails designed 

specifically for the guide blocks.  These slides constrain the platform to linear 

movement along the X-body axis of the subject vehicle.  The test stand frame is 

constructed of interlocking one inch square aluminum tubing.  Additional support has 
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been added to the frame structure in the form of one inch aluminum angle braces 

attached at each joint.   

4.3 Drive Motor Assembly 

The drive motor assembly consists of an Animatics SmartMotor SM2340D paired 

with a Carson Manufacturing Model 23EP016-LB 16:1 gear ratio low backlash 

planetary gear box.  When paired with the gearbox, the motor is capable of producing 

5.28 N-m of torque and can precisely turn the drive disc at a constant rate between 0 

and 280 rpm when no load is applied.  This corresponds to output frequencies of up to 

4.7 Hz.  When attached to the scotch yoke mechanism, the motor has shown the 

capability of maintaining a constant forcing frequency of up to 3 Hz.  The drive motor 

is controlled by a desktop computer running SmartMotor Interface version 2B105.  

Using a 2000 per revolution encoder feedback, the motor software is capable of 

holding the motor rpm at a constant rate to within .1%.  This software package is also 

capable of controlling more sophisticated motor commands, but for the initial test 

stand applications only constant velocity commands are required. 

4.4 Force Balance 

A two-degree of freedom strain gauge force balance, shown in figure 4.4 is mounted 

on the sliding platform. This force balance consists of a cantilevered steel beam with 

two full bridge strain gauge arrays mounted to the beam. The steel beam has a 

rectangular cross section of .125 by .5 inches.  This cross section has been reduced to 

.07 by .5 inches at the location of the upper strain gauge array to induce an increased 

strain level at that location.  The strain gauge arrays consist of 4 Measurements 
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Group, Inc. CEA-13-125UW-35 resistive strain gauges, all of which are mounted 

parallel to the beam such that optimal sensitivity is achieved for bending strain.  The 

upper and lower strain gauge arrays are located at .25 and 2.75 inches from the 

cantilevered base of the beam respectively.  Because the distance between the arrays 

is known, the signals from the two arrays can be used to calculate the force and 

moment acting at the tip of the beam.  These measurements correspond to the force 

along the X-body axis and the pitching moment for the vehicle being studied.  The 

total distance from the clamped end to the tip of the steel beam is 4.75 inches.  The 

vehicle under consideration is mounted at the tip of the beam using a rigid aluminum 

clamp. Because the deflections of the beam during testing are very small, less than 

0.1 mm, the assumption is made that the precise sinusoidal motion of the slide 

platform is perfectly transferred to the vehicle during testing. 
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Figure 4.4   Force and Moment Balance 

 

4.5 Signal Conditioner 

The strain gauges are excited and the signal from them is amplified using a Vishay 

Measurements Group 2311 signal-conditioning amplifier. This amplifier is capable of 

exciting the strain gauge arrays with between .7 and 15 volts, and the value of signal 

amplification can be set between 1 and 11,000.   The signal conditioner also has an 

analog low pass filter which can be set between 10 and 10,000 Hz in increments of 

power ten.  Because the response of the vehicle which is being tested occurs at the 
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frequency of forced oscillation the low pass filter is used to reduce the high frequency 

noise present in the unfiltered signals from the strain gauges. The cutoff frequency of 

this analog filter was set to 1000 Hz, as that was found to be the lowest filter setting 

which would not introduce any noticeable phase delay at the forcing frequency.  The 

strain gauges are excited using the 10 volt excitation setting on the signal conditioner.  

The gain of the amplifier was chosen to be 5000.  This value was selected to give the 

highest gain possible without causing unnecessary amplification of noise in the 

signal.  Because the aerodynamic component of the force signal is very small the 

largest feasible gain was selected so that the signal could be more easily measured.  

The gain value of 5000 was chosen by running several test cases with different gain 

settings and comparing the standard deviation of the first term Fourier series 

representation between subsequent tests.  A plot of this investigation is shown in 

figure 4.5.  From the figure a gain value of 5000 was selected as the largest gain 

without inducing a significant increase in the standard deviation of the results.   
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Figure 4.5   Investigation of Optimal Amplifier Gain Setting 

 

4.6 Position Sensor 

In order to properly analyze the results of a forced oscillation test, the aerodynamic 

response data must be time synchronized with the forced perturbation.  For this 

reason a linear position sensor is used to record the position of the linear slide during 

testing.  A Novotechnik TLH series linear position transducer with a 225 millimeter 

stroke is mounted parallel to the guide rails of the linear slide and is rigidly connected 

to the sliding platform.  This position sensor is excited by a computer power supply 

which produces a constant 12 volt excitation. 
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4.7 Data Acquisition System 

The two signals from the conditioned strain gauge outputs as well as the signal from 

the linear position sensor are fed into the data acquisition box via BNC cables.  The 

box is a National Instruments NI-SC-2435 connector block which utilizes SCC-FT01 

modules for all three signals. The output of the data acquisition box is fed into a 

Alienware laptop computer via a National Instruments DAQCard-6062E PC card.  

The analog data from the data acquisition box is digitally recorded using MATLAB.  

MATLAB utilizes a modified version of the program “mavdaq”, originally written by 

Aubrey Goodman to record the test data to a specified file location.  This program 

specifies the input channels, the sample rate, the length of the test and the file name 

under which to save to recorded data.  By recording the signals from the strain gauge 

arrays as well as the signal from the linear position sensor simultaneously, the 

resulting data contains a position signal that is time synchronized with the force 

signal.  This is of fundamental importance when performing data reduction in order to 

properly separate the stability derivatives from the force signals. 

 

4.8 Rotor Systems Under Consideration 

Three rotor systems have been considered in the initial analysis of the forced 

oscillation test stand.  These rotor systems are a generic co-axial rotor system 

modeled after MICOR, an 11 inch diameter teetering rotor and an 11 inch diameter 

rotor with a rigid hub.  Each of these rotor systems were chosen to validate the test 

process for a specific reason.  The generic co-axial rotor system was chosen as a 

representative of the type of rotor system currently in use on the most advanced rotary 
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wing MAV currently being developed at the University of Maryland.  The 11 inch 

diameter teetering rotor is also representative of the vehicles currently under 

development.  It was specifically chosen because of the simpler design and greater 

thrust produced when compared to the co-axial rotor system.  The response of this 

rotor will therefore be more easily measured.  A clearly measurable response is of 

course a desirable trait for the current research goals.  The rigid hub rotor was chosen 

as an example of a rotor which is capable of imparting a pitching moment response to 

the rotor shaft.  This capability was necessary in order to show the ability of the 

current test stand to measure both the X-force and pitching moment response of a 

vehicle.  The design and specifications of each of these rotor systems is given in the 

subsections below. 

4.8.1 Generic Co-axial 

The original rotor system tested was a generic co-axial MAV rotor system modeled 

after the University of Maryland’s co-axial rotary wing MAV, MICOR [2], [3].  This 

system consists of two Astro Flight Firefly coreless motors with integrated 4:1 

planetary gearboxes.  These motors drive two counter rotating 7.25 diameter freely 

teetering rotors.  These rotors utilize cambered rectangular planform carbon fiber 

blades with a chord of .615 inches.  The rotor separation is 2 inches and both rotors 

are set to a fixed collective pitch angle.  The upper rotor blades are set at 8 degrees 

collective pitch and the lower rotors are set at 12 degrees.  The speed of the rotors is 

controlled by using a variable voltage Sorensen HDP 15-20 DC power supply.  At 

normal operating conditions the tip Reynolds number for this rotor system is 

approximately 23,000.  Figure 4.6 depicts the generic co-axial rotor system. 
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Figure 4.6   Generic Co-axial Rotor System 

 

4.8.2 Teetering 

The second rotor system to be tested consists of a simple single main rotor.  This 

rotor system is portrayed in figure 4.7.  The rotor is powered directly by an AXI 2204 

Outrunner brushless motor.  This rotor has an overall diameter of 11 inches, and 

utilizes twisted cambered aluminum blades with a chord of .787 inches.  The blades 

have a fixed collective pitch of 16 degrees with -8 degrees of twist over the span of 

the blades.  The rotor is freely teetering, meaning that both blades are constrained to 

the same flapping angle, and the flapping hinge is not offset from the rotor shaft.  The 
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rotor hub is connected directly to the output shaft of the motor via a steel collar.  The 

motor is powered by a 12 volt constant voltage computer power supply.  The motor is 

controlled by a GWS STII Microprocessor Controlled Servo Tester, which provides a 

pulse output to the Castle Creations Phoenix-10 Brushless Speed Controller.  The 

motor speed is set by adjusting the servo tester to the desired setting.  At standard 

operating conditions the tip Reynolds number for this rotor system is approximately 

47,000. 

 

 

Figure 4.7   Single Teetering Rotor 

 

4.8.3 Rigid Hub 

The 11 inch diameter rigid rotor has identical properties to those listed for the 

teetering rotor.  The rigid configuration of this rotor is achieved by attaching a small 

aluminum plate to the top of the rotor hub.  This aluminum plate prevents any rotation 

about the flapping hinge and effectively transforms the teetering rotor into a rigid 
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hub.  Because this rotor system has no flapping hinge, the rotor is capable of inducing 

a pitching moment to the rotor shaft. 

4.9 Description of Blade Flapping Motion 

As described above, the current test stand is designed to produce a linear sinusoidal 

perturbation in the velocity of a test vehicle along the vehicle’s X-axis.  Because of 

the nature of MAVs, the dynamic characteristics are dominated by the rotor response.  

For that reason the current research focuses primarily on the response of the rotor 

systems to the perturbation induced by the forced oscillation motion. The perturbation 

in velocity along the X-axis of the test vehicle was chosen because it induces one of 

the primary aerodynamic responses for a rotary wing vehicle.  When a perturbation in 

the forward velocity of the vehicle occurs, it causes the rotor blade on the advancing 

side of the rotor disc to see an increase in relative velocity.  Similarly, the blade on 

the retreating half of the rotor disc sees a reduction in relative velocity.  This 

differential change in relative velocity causes increased lift over the advancing half of 

the rotor plane and decreased lift over the retreating portion.  This dissymmetry in lift 

causes the advancing blade to flap up and the retreating blade to flap down.  For a 

teetering rotor this flapping response acts 90 degrees out of phase with the variation 

in lift.  This 90 degree phase delay is such that an increase in forward velocity will 

cause the rotor blades to reach their maximum flapping angle over the front of the 

vehicle and a minimum angle over the rear.  This blade flapping response effectively 

causes a tilt back of the rotor plane away from the perturbation as shown in figure 4.8. 
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Figure 4.8   Blade Flapping Response to Perturbation in Forward Velocity 

 

The flapping response of the rotor to the perturbation in forward velocity changes the 

orientation of the tip path plane of the rotor.  For flight near hover conditions and for 

small changes in the orientation of the rotor plane the thrust vector produced by the 

rotor acts perpendicular to the rotor plane.  For this reason a change in the tilt of the 

rotor plane effectively changes the orientation of the thrust vector produced by the 

rotor.  Because there is now a component of the thrust vector acting along the X-axis 

of the vehicle, the perturbation in forward velocity has caused an aerodynamic force 

reaction in the X-direction.  Although a teetering rotor is not capable of exerting a 

pitching moment to the rotor shaft itself, if the vehicle as a whole is being considered, 

the offset of the rotor forces from the center of gravity of the vehicle will also cause a 

pitching moment.  The X-force and pitching moment reaction to a perturbation in 

forward velocity are depicted in figure 4.9. 
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Figure 4.9   X-Force and Pitching Moment Response 

 

For a perturbation in forward velocity near hover there is also an off axis flapping 

response of the rotor.  This additional rotor response is discussed in more detail by 

Padfield [38].  Because of non-uniform inflow effects caused by perturbations in 

velocity near hover the lateral flapping response can often be on the same order of 

magnitude as the expected longitudinal flapping response described above.  This off 

axis response is not measured by the current test stand.  The measurement of the 

longitudinal flapping response is not corrupted however by the lateral flapping 

component.  The current force balance has been designed to be insensitive to the 

force produced by the off-axis flapping and thus only measures the X-force response 

caused by longitudinal flapping. 

It should be noted that for the initial research entire vehicles were not tested.  

As a simplified case to vehicle testing, representative rotor systems were tested.  For 
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this reason the pitching moment response of the teetering rotor systems was not 

considered.  For non-teetering rotor systems however, it is possible for the rotor to 

exert a moment to the rotor shaft.  The rigid rotor described in sub-section 8.3 of this 

chapter is such a system.  For the rigid hub, the pitching moment response was 

measured as a means of demonstrating that the current force balance is capable of 

measuring both the X-force and the pitching moment response of the test rotor 

systems. 

4.10 Chapter Summary 

In summary, a test stand and the accompanying hardware has been developed and 

implemented.  This test stand is capable of producing the necessary motion needed to 

perform forced oscillation testing of a rotary wing MAV.  The necessary sensors and 

data acquisition hardware have also been integrated into the test setup, such that the 

required measurements can be recorded.  Three rotor systems which are 

representative of rotary wing MAVs have also been fabricated for use in initial testing 

of the forced oscillation technique.  Additionally, the flapping response characteristics 

of a teetering rotor have been presented.  This flapping response generates the X-

force reaction to perturbations which the current test setup has been designed to 

measure. 

 The next chapter presents the test procedure required to acquire a 

measurement of the stability parameters of a rotary wing MAV.   

 

 

 45 
 



Chapter 5:  Forced Oscillation Testing: Test Procedure and Data 
Reduction 
 

 

5.1 Introduction 

The standard forced oscillation test procedure consists of several steps.  These steps 

are outlined below and then discussed in more detail within the following sections.  

The result of one set of tests is the measurement of the force and moment response of 

the test vehicle at a specific forcing frequency.  This measurement gives either the 

value of the two corresponding stability derivatives of the vehicle, or one gain and 

phase point on each of the vehicle’s respective Bode plots.  The representation of this 

data is considered as an additional step to those outlined below and is summarized in 

the final section of the chapter.  The steps taken in the execution of a forced 

oscillation test are as follows. 

• Choose forcing frequency and amplitude 

• Determine the proper speed setting for the drive motor based on desired 

forcing frequency 

• Choose applicable sample rate based on input channels and forcing frequency 

• Determine length of test and proper name for data file 

• Run tare tests 

• Run rotors-on tests 

• Perform data reduction 
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From the outline of the test procedure it is clear that two types of test are needed to 

determine the stability parameters at each combination of test conditions.  These two 

tests are a tare test and a rotors-on test.  The need for the two tests arises from the fact 

that the final result is calculated from purely the aerodynamic reaction of the rotor 

system.  In order to separate the aerodynamic response from the inertia forces created 

by the oscillation motion the results of the tare test are subtracted from those for the 

rotors-on test.  This subtraction of inertia forces produces a measurement of the 

purely aerodynamic reaction of the rotor to the induced perturbation.    

5.2 Setup of Test Parameters 

Before an actual test can be run, the parameters which govern the test conditions must 

be chosen.  The methodology of determining each parameter is discussed in the 

following subsections.  The subsections are organized in such a manner as to follow 

the logical sequence of steps as the user would follow in preparation for testing.  The 

testing parameters which must be determined before testing are listed below. 

• Forcing frequency 

• Amplitude of forced oscillation 

• Drive motor setting 

• Sampling rate 

• File name for saved test data 

5.2.1 Forcing Frequency 

The first step in the test procedure is choosing the forcing frequency at which the test 

will be run.  In order to perform a stability derivative analysis, the frequency chosen 

 47 
 



is not significant so long as it is within the linear response range for the vehicle.  For 

Bode plot type analysis data is taken at incremental frequencies over the range of 

interest. Each point on the Bode plot represents one forcing frequency.  The choice of 

forcing frequency drives all of the remaining test parameters so it is the first thing to 

consider.  The next consideration is the amplitude of the force oscillation.  For most 

tests the largest available amplitude is chosen, i.e. 3.5 inches.  Smaller amplitude may 

be appropriate however for high frequency testing if the inertia loads caused by 

testing at large amplitudes are so large that they saturate the output of the signal 

conditioner.  The oscillation amplitude generally used for different forcing 

frequencies is depicted in table 5.1.  The appropriate oscillation amplitude for each 

frequency range was determined experimentally by selecting the amplitude that 

would cause the largest rotor response without saturating the signal conditioner. 

Oscillation Amplitude (in)Forcing Frequency (Hz)

1.52.1 – 2.2

12.3 – 2.5

21.7 – 2

2.51.3 – 1.6

3.5.4 – 1.2

 

Table 5.1   Oscillation Amplitude Setting 

 

5.2.2 Drive Motor Setting 

Once the proper frequency has been chosen and the test stand has been set to produce 

the desired amplitude of forced oscillation, the next step is to determine the proper 
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drive motor setting.  The drive motor is controlled by the motor control software.  

This software transmits a program to the motor which sets the constant rotational rate 

produced at the output shaft of the gearbox.  In order to set the motor to the proper 

rotational rate, the velocity input to the program must be changed to the proper value.  

This value is determined by multiplying the desired frequency at the output shaft by 

522066.  For quick reference table 5.2 was created which gives the motor settings 

over the applicable frequency range. 
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13051652.5
12529582.4
12007592.3
11485452.2
10963392.1
10441322
9919251.9
9397191.8
8875121.7
8353061.6
7830991.5
7308921.4
6786861.3
6264791.2
5742731.1
5220661
4698590.9
4176530.8
3654460.7
3132400.6
2610330.5
2088260.4
1566200.3
1044130.2

Motor SettingFrequency (Hz)

 

Table 5.2   Motor Setting to Achieve Desired Forcing Frequency 

 

5.2.3 Sampling Rate 

The next step in the test process is to determine the sampling rate for the data 

acquisition program.  Because of the methodology use during data reduction, each 

oscillation during testing must be recorded by a specific number of samples.  In other 

words, the number of samples which define one complete oscillation must be an 
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integer value.  The reasoning for this restriction will become clear in the description 

of the data reduction process.  The second restriction placed on the sample rate is the 

limited ability of the data acquisition system to acquire data.  For a standard test with 

the current setup there are three input channels, namely the two signals from the 

strain gauge arrays and the signal from the linear position sensor.  It was found that 

with these three channels as the inputs the data acquisition system is capable of 

acquiring data at just over 800 samples per second.  If another channel is added, the 

capability is reduced to just over 600 samples per second.  Because of the dynamic 

nature of the testing and the presence of high frequency noise in the measurements, it 

is desirable for the sample rate to be as close to the maximum value as possible.  To 

satisfy the first constraint, the sample rate divided by the forcing frequency must be 

an integer.  The second constraint is satisfied by choosing the sample rate closest to 

either 600 or 800 samples per second which satisfies the first condition. Table 5.3 

lists the sample rates used for each forcing frequency. 
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6008002.5
6008042.4
6218052.3
6058032.2
6098192.1
6008002
6088171.9
6038011.8
6128161.7
6008001.6
6008011.5
6098051.4
6118061.3
6008041.2
6058031.1
6008001
6038010.9
6008000.8
6028050.7
6008010.6
6008000.5
6008000.4
6008010.3
6008000.2

Sample Rate 
(4 channels)

Sample Rate 
(3 channels)

Frequency 
(Hz)

 
 

Table 5.3   Proper Sample Rate for Each Forcing Frequency 

 

5.2.4 File Organization 

Once the sample rate and motor setting are determined, the length of the test is 

chosen.  The standard length of a test is 180 seconds.  Other lengths may be used, but 

from analysis of test results it was determined that 180 seconds provides sufficient 

data without generating excessively large data files. From this information an 
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appropriate name for the data file corresponding to the current test can be created.  

This file name completes the necessary inputs to the data acquisition code, “mavdaq.”  

 For simplicity in organizing the resulting test data, and to maintain 

consistency throughout data reduction, the data files are named as follows.  The first 

few characters give a general description of the test case.  For instance 

“single_teetering” may be used to indicate the test of a single freely teetering main 

rotor.  The next few characters indicate the forcing frequency, oscillation amplitude 

and sampling rate.  For example, “14Hz_35in_609ps” would indicate a forcing 

frequency of 1.4 Hz, oscillation amplitude of 3.5 inches, and sampling rate of 609 

samples per second.  The final part of the name consists of which instance in the test 

series this set of data represents and the rotor conditions.  As an example, “tare4” 

would indicate the fourth tare test in the test series.  Similarly, “124_3” would 

indicate the third rotors-on test, where the rotor rpm was controlled by setting the 

servo motor controller to 124.  It is important that the last character of the file name is 

an integer indicating which test in a series of similar tests the data in the 

corresponding file represents.  The reasoning for this numbering scheme will become 

clear in the explanation of the data reduction methodology.  Combining each of the 

above inputs, an example file name would be 

“single_teetering_14Hz_35in_609ps_tare4.” 

5.3 Tare Testing 

Now that all of the necessary parameters have been determined, the inertia 

measurements from the tare tests can be collected.  For these tests the rotor is 

stationary and held in place by a small piece of tape.  This is done so that motions of 
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the non-spinning rotor do not corrupt the measurements.  Because the mass of the 

tape is very small, its contribution to the inertia measurements is considered 

negligible.  At this point, the drive motor is turned on, which starts the forced 

oscillation motion.  The corresponding signals from the strain gauge arrays and linear 

position sensor are recorded using the program “mavdaq” via MATLAB.  The inputs 

to this program are the input channels corresponding to the data signals, the sample 

rate, the length of the test in seconds, and the corresponding file name under which 

the data will be saved.  This procedure is then repeated until a sufficient number of 

tests have been recorded to determine the inertia forces caused by the forced 

oscillation. 

5.4 Rotors-on Testing 

Once the tare tests have been concluded, aerodynamic response data can be collected 

from the rotors-on tests.  A similar procedure to that used in running the tare tests is 

followed.  The only modification is that the rotor system under investigation is set to 

the desired operating conditions before starting the forced oscillation.  For the generic 

co-axial MAV, setting the rotor conditions is done by adjusting the voltage on the 

variable power supply to the desired level.  For the case of the single main rotor, the 

rotor speed is set by adjusting the servo tester to the desired setting, as indicated by 

the digital output on the front of the tester.  Once the rotor conditions have been set, 

the same procedure as used for the tare test is executed until sufficient data has been 

collected to determine the aerodynamic response of the rotor. 
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5.5 Data Reduction 

The final process in the test procedure is reduction of the raw data into useful values.  

This is done with the aid of MATLAB and the implementation of two computer codes 

written specifically for this application.  The primary concept behind the data 

reduction is to take all of the available test data for each test case and reduce it to one 

oscillation worth of averaged data for both the tare test and the rotors-on test.  This 

data is then used to compute either the applicable stability derivatives for that test 

case or points on a Bode plot corresponding to the given forcing frequency.  The 

correlation between the forced velocity perturbation and the resulting aerodynamic 

force reaction is also calculated as a means of evaluating the linearity of the 

relationship between the rotor reaction and the perturbation. 

5.5.1 Use of MATLAB Program “mavplotDZ” 

The first step in the data reduction process is the processing of the raw data by 

“mavplotDZ.”  This program is used as a function within the second program 

“mavavD,” but its use is more fundamental so it will be discussed first.  First, 

“mavplotDZ” loads two of the saved data files.  The first data file is a tare test and the 

second is a corresponding rotors-on test.  The inputs to the program are the names of 

the two files, and the length and sample rate of each.  The program processes each of 

the two files in exactly the same manner. The data reduction process will only be 

explained for one of the two files even though in actuality it is being carried out twice 

simultaneously.  Once the files are loaded, “mavplotDZ” calculates the length of one 

oscillation from the forcing frequency and the sample rate.  The data is now divided 

into sections, each of which is the length of one oscillation.  These sections are then 
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averaged together to give one oscillation worth of averaged data as shown in figure 

5.1.  This process is more commonly known as synchronous averaging.  By 

performing this average over a long test run, much of the random noise is removed 

from the signal. 
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Figure 5.1   Synchronous Averaging of Output Signal 

 

The signal from the linear position sensor is now used to shift the data.  This is done 

such that the single oscillation worth of data starts at the beginning of one forced 

oscillation, i.e. when x(t) = 0.  The function x(t) indicates the position of the slide 

platform with respect to time. The single oscillation of data ends one data point 

before x(t) returns to zero.  This shift is preformed by setting a checkpoint near the 

mean value of the position signal.  Next, “mavplotDZ” finds a point in time when the 

position signal crosses from above the checkpoint to below it.  Then a second point is 

determined which corresponds to the next point in time when the position signal 

crossed from below the checkpoint to above it.  The average of these two points in 

time gives the point in time which corresponds to the minimum value of the 
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sinusoidal position signal.  Using this time of minimum position, all of the signals are 

shifted backwards in time one quarter of the oscillation period.  This corresponds to 

aligning the signals such that the first data point in the single oscillation of data 

occurs when x(t) = 0.  This shift of the signal with respect to time is depicted in figure 

5.2. 
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Figure 5.2   Time Shift of Output Signal 

 

The discrete Fourier transform of each signal is now taken in order to determine the 

coefficients of the Fourier series approximation of the signal.  The use of the discrete 

Fourier transform and its applications is discussed in more detail by Ramirez [39].  

The first term of the Fourier series approximation is set to zero in order to remove the 

DC component of each signal.  At this time higher harmonic components can also be 

removed.  This process is equivalent to a digital low pass filter.  Because the analog 

low pas filter was limited to relatively high frequencies, above 1000 Hz, the data is 

generally filtered at 20 Hz at this time unless higher frequency noise is desired for 

some type of special analysis. The use of the discrete Fourier transform to digitally 

 57 
 



filter the output signal is depicted in figure 5.3. At this time “mavplotDZ” is capable 

of subtracting the tare case from the rotors-on case to determine the aerodynamic 

response.  This is generally not done however. For most cases it is more systematic to 

average whole set of test together using “mavavD” before subtracting the tare test. 
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Figure 5.3   Filtered Output Signal 

5.5.2 Use of MATLAB Program “mavavD” 

In order to process multiple tests for each frequency at once, the MATLAB program 

“mavavD” is employed.  This program cycles through set of tests taken for a certain 

condition.  The program then averages the results of “mavplotDZ” for these tests to 

give one result for the whole set of tests. This process is depicted in figure 5.4.  Once 

the results have been averaged “mavavD” uses these averaged results to determine 

either the appropriate stability derivative or the relevant points on a Bode plot.  This 

is done by first subtracting the tare case from the rotors-on case. This subtraction is 

preformed to remove the inertia contributions to the signal. Removing the inertia 

contribution leaves the average aerodynamic response from all of the tests at the 
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specified conditions.  This process is portrayed in figure 5.5.  The finite Fourier 

transform of the aerodynamic response is taken to determine the coefficients of the 

Fourier series approximation of the signal.  For calculation of both the stability 

derivatives and the points on the corresponding Bode plot, the higher harmonic terms 

of the Fourier series are dropped, as only the first harmonic term is of interest.  The 

first term approximation of a representative signal is shown in figure 5.6. 
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Figure 5.4   Averaging of Multiple Tests 
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Figure 5.5   Subtraction of Tare Test from Rotors-on Test 
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Figure 5.6   First Term Fourier Series Approximation of Signal 

 

The calibration matrix of the force balance is now applied to convert the signal from 

volts to Newtons and Newton-meters.  Recognizing the sine component of the first 

harmonic term as FOUT and the cosine component as FIN, equations 3.13 and 3.14 can 

be applied to deliver the appropriate results.  These results are returned as the output 

of “mavavD.” 

The program “mavavD” is also used to compute the correlation between the 

forced velocity perturbation and the aerodynamic force response of the vehicle.  The 

correlation between the two signals gives a measure of the linear relationship between 

the input velocity perturbation and the output force response, as discussed by Bendat 

and Piersol [40], [41].  This is similar to calculating the coherence for flight test data.  

Because the input is a simple sinusoid rather than a frequency sweep as in a standard 

flight test, the coherence of the two signals is nearly one for all cases and thus does 

not lend much insight into the dependence of the output on the input.  The correlation 
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of the two measurements is not a function of frequency, rather it considers the signal 

as a whole and is thus much more useful for the case when only one forcing 

frequency is present.  Unlike coherence however, a phase delay in the system can 

cause the correlation to be less than one, even if the system is linearly dependant.  For 

this reason, the phase delay in the force response must be removed before calculating 

the correlation of the two signals.  Once the correlation has been calculated it is also 

returned as an output of “mavavD” 

The final function of “mavavD” is to provide a visual check of the test data.  

The program plots the results from “mavplotDZ” for each of the tests in the set of 

tests at those conditions.  An example of this plot can be seen in figure 5.7.  From this 

type of plot it is easy to spot any individual tests which do not appear similar to the 

other tests in the set.  Rather than allowing these tests to be averaged in with the other 

data and possibly corrupting the results, they can be isolated from the group and 

analyzed individually to determine the cause of the errant results.  This technique can 

be used to spot an unexpected change in the test conditions or a failure in the 

equipment.  This step justifies the procedure of taking multiple tests for each test 

condition.  The same amount of data could be collected by running a single longer 

duration test, but if there was an error during testing there would be no way to tell 

until long after the tests were taken.  By taking several shorter duration tests the 

identification of peculiarities during testing is made much simpler. 
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Figure 5.7   Simultaneous Presentation of Multiple Tests 

 

5.6 Presentation of Results 

The final step in the test process is the presentation of the resulting data.  There are 

essentially three types of data that can be presented.  The first data type is the stability 

derivatives resulting from a single set of test conditions.  The second method of 

representing the data is by construction of a Bode plot from a series of tests over 

several forcing frequencies. The final piece of information which can be presented is 

the correlation between the input perturbation and the output rotor response.  Each of 

these representations of the test results are discussed in more detail in the sub-sections 

that follow. 

5.6.1 Stability Derivative Representation 

The presentation of a stability derivative measurement is by far the most basic way of 

portraying the result of a forced oscillation test.  A stability derivative can be 
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determined from a single set of tests rather than needing tests over a large frequency 

range to portray the results such as is required for Bode plot representation.  The 

stability derivative measured from a set of tests is simply presented as a value as 

defined by equations 3.16 and 3.17. 

5.6.2 Bode Plot Representation 

The representation of test data in Bode plot form is much more complicated than the 

stability derivative representation of a single test.  The relevant background 

information on the construction and use of Bode plots can be found in Roskam [42].  

The nature of a Bode plot requires the representation of the data over a large range of 

frequencies.  In order to construct a Bode plot from forced oscillation test data, a 

series of tested must be preformed over a range of forcing frequencies.  The results of 

each forced oscillation test can only be used to represent the response of the vehicle at 

one frequency.  This is indeed one of the shortcomings of forced oscillation testing.  

A Bode plot of the vehicle response is constructed one frequency point at a time.  The 

data at each frequency is found by selecting the desired forcing frequency and 

collecting the corresponding data.  That data is then converted to two points, one for 

the gain and one for the phase on the relevant Bode plot.  The calculation of these 

data points is carried out by applying equations 3.26 and 3.27 to the test results. 

5.6.3 Presentation of Correlation Measurements 

An additional result of testing beyond the response characteristics described above is 

the correlation measurement.  The correlation result returned from testing is a 

measure of the linearity of the relationship between the forced oscillation motion and 
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the output response of the vehicle.  Additional applications of correlation 

measurements and the relevant theory are given by Bendat and Piersol [40], [41].  In 

the current setup, the correlation measurement is used as a means of evaluating the 

quality of the measured response data.  A low correlation measurement indicates that 

there is significant noise in the measurement or that a non-linear region of the 

response has been encountered.  This correlation measurement is especially useful in 

conjunction with Bode plot of the response.  By observing the correlation of the 

measurements over the entire range of frequencies it is possible to note regions of the 

response where excessive nose or other non-linearities are present.  At that time 

additional investigation into measurements in the non-linear range can be conducted. 

5.7 Chapter Summary 

In summary, this chapter details the test procedure currently used in the collection of 

forced oscillation test data.  A step by step procedure is outlined such that the tests 

could be reconstructed by a user unfamiliar to the test setup.  The methodology used 

to reduce raw test data into useable measurements is also presented.  Finally, the 

conversion of individual results into a meaningful format is discussed. 

 The following chapter presents the initial testing and analysis preformed using 

the test setup and procedure outlined in chapters 4 and 5.  This analysis serves as the 

preliminary investigation into the currently developed forced oscillation technique as 

a valid method for measuring the stability parameters of a rotary wing MAV. 
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Chapter 6:  Validation of Forced Oscillation Test Process 

 

6.1 Introduction 

The primary focus of this chapter is to discuss how the forced oscillation test setup 

and procedures described in chapters 4 and 5 are validated. The following discussion 

will detail the test data collected and the accompanying analysis.  The motivation of 

this portion of the research is to provide a validation of the experimental technique.  

Observations of the experimental results are used to provide a qualitative validation 

based on the expected behavior of the test process.  The initial approach will focus on 

forced oscillation testing from a stability derivative perspective.  An extension of the 

test process to Bode plot representation will be then be discussed and the two 

different data representation methods will be compared.  Lastly, an analytical model 

of blade flapping response will be used to provide a quantitative validation to support 

the test results. 

It should be noted that for the initial analysis of the technique complete 

vehicles were not tested.  Rather, only rotor systems which are representative of 

current MAV designs were examined.  For most rotary wing vehicles near hover, the 

rotor response dominates the force and moment response to perturbations in flight 

condition.  This is especially true for the types of MAVs which are being tested at this 

time because they contain little or no aerodynamic surfaces besides the rotor.  For this 

reason, analysis of simple representative rotor systems is considered sufficient for the 

initial validation of the test process. 
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6.2 Analysis of Test Results, Stability Derivative Perspective 

The first section of analysis focuses on the theory used in conjunction with traditional 

forced oscillation techniques used to study fixed wing aircraft.  The theoretical 

development of this type of testing uses stability derivatives to represent the 

aerodynamic response of the vehicle.  While this theory is not necessarily applicable 

to rotorcraft, as previously discussed in section 3.2, it will still serve as a base point 

for validation of the technique.  The stability derivative Xu as determined from a 

forced oscillation test is given by equation 3.16 as 

 
0

C
u

F
X

Aω
=  (6.1) 

In equation 6.1, it should be noted at this time that Xu is not a function of A or ω, 

rather they are simply used to scale the magnitude of the output relative to the 

magnitude of the forced perturbation.  For this reason, the test process should ideally 

produce the same value for Xu regardless of the forcing frequency or the amplitude of 

the forced oscillation.  This concept is of course subject to several constraints, 

imposed both by the test setup and the theory.   

6.2.1 Constraints on Evaluation of Stability Derivatives 

The first constraint is a function of the equipment available to measure the 

aerodynamic response of the rotor.  The magnitude of the velocity perturbation 

induced by the forced oscillation is the product of the oscillation frequency and the 

amplitude of the forced oscillation.  The response of the rotor is in turn caused by this 

velocity perturbation.  In order to determine the stability derivative of the rotor, the 

response of the rotor must be large enough to be accurately measured by the force 
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balance.  If the combination of the forcing frequency and the amplitude of the forced 

oscillation is too small the response of the rotor will not be significant enough to be 

accurately measured.  Thus, for the forced oscillation test to effectively measure the 

stability derivatives of the rotor system the magnitude of the velocity perturbation 

must be sufficiently large. 

The second constraint is imposed by the theoretical assumptions made in the 

use of stability derivatives as a means to describe the response of the rotor to 

perturbations.  These assumptions are that the perturbation is a small change to the 

trimmed flight condition and that the perturbation motion is slow with respect to the 

response of the rotor.  For the current test setup the maximum attainable perturbation 

in forward velocity causes a rotor advance ratio of less than .05.  This change in flight 

condition is within the assumption of small perturbations about hover.  For this reason 

the more significant constraint imposed by theoretical assumptions is that the forcing 

frequency must be kept low with respect to the response of the rotor.   

6.2.2 Stability Derivative Measurement: Variation in Frequency 

The first technique used to validate the test process is to test whether the same value 

of Xu will be measured over a range of forcing frequencies and amplitudes.  The 

simple co-axial rotor system described in section 4.7.1 was tested at frequencies 

between .4 and 1.6 Hz, with an oscillation amplitude of 3.5 inches for all tests.  The 

results of those tests are shown in figure 6.1.   

It is clear from figure 6.1 that a consistent value for Xu was measured between 

.6 and 1.2 Hz.  Thus, the results exhibit the expected behavior based on stability 

derivative theory.  At forcing frequencies below .6 Hz the reaction of the rotor does 
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not produce a large enough aerodynamic force reaction to be sufficiently measured by 

the current force balance.  The insufficient force reaction causes the measured 

stability derivative Xu to be inconsistent from test to test and to differ from the 

consistent value measured at higher forcing frequencies.  This result is qualitatively 

supported by visual observations of the rotor response.  At low forcing frequencies 

there was little or no flapping response visible to the naked eye.   
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Figure 6.1   Xu vs. Forcing Frequency 

 

At forcing frequencies above 1.2 Hz the stability derivative Xu again varies from its 

consistent value.  This change is due to forcing frequencies which are too high with 

respect to the response time of the rotor system.  The theory which used to determine 

the stability derivative considers only the force response which is in phase with the 
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velocity perturbation.  For tests with forcing frequencies over 1.2 Hz the perturbation 

is either too fast for the rotor to respond at all, or there is a significant phase delay in 

the rotor response.  From the perspective of stability derivative analysis the forcing 

frequency is simply too high to allow for proper determination of the stability 

derivative.  Analysis of phase delay in the rotor response will be considered in more 

detail when using Bode plot representation of the data later in this section. 

6.2.3 Stability Derivative Measurement: Variation in Amplitude 

A similar set of measurements to those described above was taken for the 

measurement of Xu with forced oscillations of varying amplitudes.  Xu was measured 

for forced oscillation amplitudes between 1.5 and 3.5 inches at a forcing frequency of 

.8 Hz.  The results of those tests are depicted in figure 6.2. 
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Figure 6.2   Xu vs. Oscillation Amplitude 
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As expected, the value of Xu measured is consistent over a range of forced oscillation 

amplitudes.  At forced oscillation amplitudes below 2 inches however, the measured 

value of Xu varies from the consistent value measured at higher forcing frequencies.  

When the amplitude of the forced oscillation is below 2 inches the response of the 

rotor is once again too small to be accurately measured using the current force 

balance.  Similar to the case of small forcing frequencies, this result was also 

supported by qualitative visual observations.  When the amplitude of forced 

oscillation was below 2 inches little or no flapping response was visible to the naked 

eye. 

 

6.2.4 Stability Derivative Results: Co-Axial Rotor System 

The previous tests determined the value of Xu for the generic co-axial rotor system to 

be -.02372 N/m/s. Because the rotor system consists of two freely teetering rotors, the 

rotors can not induce a pitching moment to the rotor shaft.  The pitching moment 

reaction that this rotor system would impart on a vehicle is therefore determined 

solely by the fact that the pitching moment is taken about the center of gravity of the 

vehicle, and the aerodynamic reaction of the rotors acts through a point offset from 

the vehicle’s center of gravity.  While the force balance used for the test above is 

capable of simultaneously measuring force along the X-body axis of the rotor system 

and pitching moment, only the X-force reaction of the co-axial rotor system was 

considered for the reasons detailed above.  A rotor system with a rigid hub was 
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studied during the analysis of Bode plot representation of the data, and measurement 

of pitching moment is discussed in more detail at that time. 

 

6.2.5 Qualitative Validation: Change in Rotor Collective 

A way to further investigate the ability of the test apparatus to measure the stability 

derivatives of a vehicle is to vary the characteristics of the vehicle and observe the 

effects this change in vehicle parameters has on the measured stability derivatives.  

From this type of experiment it can be verified if the change in the measured stability 

derivatives matches the change predicted by a qualitative analysis of the change in 

vehicle properties.  To perform this comparison the stability derivative Xu of a single 

teetering rotor was measured over a range of different collective pitch settings.  This 

procedure was preformed while holding the rotor RPM at a constant value to simulate 

a change in the thrust needed to hover, while maintaining the same inertia properties 

of the rotor.  A plot of Xu vs. collective pitch angle is shown in figure 6.3.  For this 

test the forced oscillation frequency was 1 Hz, and the oscillation amplitude was 3.5 

inches. 

 

 72 
 



-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

0 2 4 6 8 10 12 14 16 1
Rotor Collective (deg)

X u
(N

/m
/s

)

8

 

Figure 6.3   Xu vs. Collective Pitch Angle 

 

It is apparent from the figure that as the collective pitch angle of the rotor increases, 

the stability derivative Xu increases in magnitude.  This trend can now be compared to 

a simple analytical prediction of the rotor response to verify that the increase in Xu is 

indeed the expected trend.  Prouty [7] provides a simple equation to predict the 

longitudinal tilt of the rotor disc for a change in forward speed.   

 1
0

8 2
3

sa θ λ
µ

∂
= −

∂
 (6.2) 

In equation 6.2, θ0 is the collective pitch setting of the rotor blades and µ is the 

advance ratio of the rotor.  This equation assumes that the inflow through the rotor 

disc λ is uniform.   
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The velocity perturbation imparted by the forced oscillation motion causes a 

sinusoidal variation in the advance ratio.  The amplitude of this variation in µ is 

determined by the amplitude of the velocity perturbation. 

 A
R
ωµ =

Ω
 (6.3) 

By utilizing one additional assumption it is possible predict the horizontal force 

caused by the tilt of the rotor plane in response to the forced oscillation motion.  For 

this simple analysis it is assumed that the thrust vector produced by the rotor is 

perpendicular to the rotor plane.  Utilizing the measured magnitude of this thrust 

vector, T, and applying the assumption described above, equation 6.2 can be 

rearranged to provide an estimate of the force in the X-direction caused by the forced 

oscillation motion. 

 0
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AF T
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ω
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
  (6.4) 

Dividing equation 6.4 by the amplitude of the forced velocity perturbation produces 

an expression for the stability derivative Xu. 
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Clearly equation 6.5 is an overly simplified approach to approximating the stability 

derivative Xu.  This equation is not useful as a means of producing a quantitatively 

accurate value.  This equation is however a meaningful way to predict the expected 

trend for Xu as the collective pitch of the rotor is changed.  It should also be noted that 

the results of equation 6.5 are similar to those predicted by the more comprehensive 

blade flapping model developed in section 6.5.  This similarity supports the 
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conclusion that equation 6.3 is sufficient for a qualitative analysis.  The values for Xu 

as predicted by equation 6.5, for the rotor conditions utilized during testing, are 

compared to the measured results in figure 6.4. 
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Figure 6.4   Change in Rotor Collective: Qualitative Comparison 

From figure 6.4 it is clear that although the results do not match quantitatively the 

measured results do follow the trend predicted by the analysis.  This simple analysis 

of the rotor response confirms that results from the forced oscillation test process are 

qualitatively valid. 

6.3 Analysis of Results, Bode Plot Perspective 

The remainder of the analysis focuses on representation of the X-force and pitching 

moment response of a single main rotor in Bode plot form.  The objective of this 

analysis is to determine if Bode plot representation is a more meaningful way of 
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representing the rotor response to perturbations.  Because the theoretical background 

of Bode plot representation considers the portions of the response of the rotor which 

are not necessarily in phase with the perturbation it is a more thorough analysis than 

studying only the in phase response, as is done for stability derivatives.  If there is 

little or no phase delay present in the rotor response then Bode plot representation 

may be unnecessary, but for some of the rotors tested this was not the case. 

6.3.1 Construction of Bode Plots 

Bode plots of the rotor response were constructed by testing the rotor systems over a 

range of forced oscillation frequencies.  Each unique test frequency results in a point 

on the gain and phase Bode plots corresponding to that frequency.  For low frequency 

tests the rotors were tested at the maximum forced oscillation amplitude of 3.5 in.  It 

should be noted that for the higher frequency tests smaller oscillation amplitudes were 

used in an effort to reduce the inertia loads imparted by the oscillation to within the 

measurable range of the force balance.  Similar to the measurement of stability 

derivatives the amplitude of forced oscillation is not relevant to the measured points 

on the Bode plot of the rotor response as long as the amplitude is within the range 

where the force response is linear.  The lower bound on this range is the condition 

that the perturbation in forward velocity must be large enough to induce a measurable 

rotor response.  The upper bound on the range is such that the perturbation in velocity 

is low enough that the corresponding inertia loads are within the measurable range of 

the test setup.  If the above assumption is indeed valid, the gain response of the 11 

inch diameter teetering rotor should not change if the oscillation amplitude is 

changed.  In order to check that the response is indeed consistent, the 11 inch 
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diameter teetering rotor was tested over a range of amplitudes at a forcing frequency 

of 1.8 Hz.  The results of this test are depicted in figure 6.5.   

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

Oscillation Amplitude (in)

R
es

po
ns

e 
M

ag
ni

tu
de

 (V
/m

/s
)

 

Figure 6.5   Change in Force Response for a Variation in Oscillation Amplitude 

 

It is clear from figure 6.5 that for oscillation amplitudes between 1.75 and 2.5 inches 

the response of the rotor is consistent.  At oscillation amplitudes above 2.5 inches the 

excessive inertia loads corrupt the data such that the measured response is no longer 

consistent.  Similar results were observed for changes in amplitude at other forcing 

frequencies.  These observations support the assumption that using smaller oscillation 

amplitudes at high forcing frequencies does not affect the integrity of the results.  The 

oscillation amplitude used for each range of forcing frequency is listed in table 6.1.  It 

was found from observation of the resulting test data that these combinations of 

forcing amplitude and frequency are within the range of linear response. 
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Oscillation Amplitude (in)Forcing Frequency (Hz)

1.52.1 – 2.2

12.3 – 2.5

21.7 – 2

2.51.3 – 1.6

3.5.4 – 1.2

 

Table 6.1   Selection of Oscillation Amplitude 

 

6.3.2 Teetering Rotor System 

The first rotor tested was the freely teetering 11 inch diameter rotor described 

previously in the test setup section.  A Bode plot of the X-force response of this rotor 

to perturbations in velocity along the X-body axis of the rotor system is shown in 

figure 6.6.  It should be noted that because this is a teetering rotor there is virtually no 

moment applied to the rotor shaft by the flapping response of the rotor.  For this 

reason only the X-force response was considered. 

From figure 6.6 it is clear that the measured gain of the rotor system is not 

consistent as the forcing frequency changes.  Rather, it appears that the X-force 

response increases as frequency increases.  For this reason we identify that a constant 

coefficient stability derivative is most likely not sufficient to represent the response of 

this rotor.  The Bode plot representation is still a useful representation however as it 

depicts the X-force response of as a function of frequency.  An additional observation 

can be made from the phase response of the rotor.  It is clear from the Bode plot that 

 78 
 



there is significant phase delay in the system.  This phase delay increases as the 

forcing frequency of the system increases.  For this rotor system the assumption of an 

instantaneous rotor response is most likely not sufficient.  For this reason the Bode 

plot representation is more useful than simply defining the response with a stability 

derivative approximation. 
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Figure 6.6   Bode Plot of Teetering Rotor X-Force Response 
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An additional consideration of the test results is the correlation between the measured 

aerodynamic response and the forced velocity perturbation.  As discussed in section 

5.6.3, the correlation between the input perturbation and the output aerodynamic 

reaction is a way to quantify the degree of linearity between the two signals.  In 

practice, the correlation measurement is a good way of assessing the strength of the 

reaction signal with respect to the noise present in the measurements.  A plot of 

correlation versus forcing frequency for the 11 inch teetering rotor is depicted in 

figure 6.7.  It should be noted that for these measurements the reaction signal has 

been low-pass filtered at 20 Hz. 
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Figure 6.7   Correlation vs. Frequency for 11" Teetering Rotor 
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From figure 6.7 it is clear that at low frequencies the correlation between the 

perturbation and the response is significantly less than one.  This indicates the 

presence of considerable noise in the measurement of the aerodynamic force reaction.  

This is however a reasonable result.  At low forcing frequencies the magnitude of the 

aerodynamic reaction force is relatively small, thus it is possible for noise in the 

system to be of large enough magnitude as to corrupt the signal.  At higher forcing 

frequencies the aerodynamic reaction is larger and more clearly defined.  Thus, the 

signal is less easily corrupted by small vibrations and other noise present during 

testing.  The reduction in the measured correlation at low forcing frequencies is clear 

from observations of the response signal at low frequencies.  Figure 6.8 depicts the 

aerodynamic response signal for the 11 inch teetering rotor for a forcing frequency of 

.6 Hz.  A similar plot of the response of the 11 inch teetering rotor at a forcing 

frequency of 1.8 Hz is depicted in figure 6.9. 
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Figure 6.8   Response Signal for 11" Teetering Rotor at .6 Hz 
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Figure 6.9   Response Signal for 11" Teetering Rotor at 1.8 Hz 

 

 

Comparison of figures 6.8 and 6.9 reveals why the correlation measurement for low 

forcing frequencies is significantly less than one.  The considerable noise in the 

response signal at a forcing frequency of .6 Hz reduces the correlation between the 

velocity perturbation and the reaction measurement to .8116.  From figure 6.9 it is 

clear that the response signal has much less distortion due to noise in the signal.  This 

corresponds to a higher correlation between the perturbation and the reaction signal, a 

value of .9987.  Correlation analysis suggests that for improved measurement of the 

rotor response at low frequencies it may be necessary to increase the magnitude of the 

rotor response.  This could be obtained utilizing larger oscillation amplitudes at low 

forcing frequencies.  Because the current test stand is limited to oscillations of 3.5 

inches in magnitude, these higher amplitude tests are outside the current testing 

capabilities.  The result is however still useful as a suggested improvement to the test 
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setup if the response of rotary wing MAVs at low frequencies is of considerable 

interest. 

 Analysis of the test results for the 11 inch diameter teetering rotor from a 

Bode plot perspective provides several useful observations.  The information that can 

be concluded from this analysis is as follows: 

• The gain portion of the Bode plots indicates that the response of the rotor is 

not consistent with changing frequency. 

• There is considerable phase delay in the rotor response at high forcing 

frequencies. 

• Because of an inconsistent response and considerable phase delay the 

approximation of the rotor response by a stability derivative may not be 

appropriate 

• The correlation between the input velocity perturbation and the output rotor 

response is considerably less than one at low forcing frequencies.   

6.3.3 Rigid Hub Rotor System 

The next rotor tested for Bode plot analysis was the 11 inch diameter rotor with a 

rigid hub.  Because the rotor is no longer a teetering configuration a moment can be 

applied to the rotor shaft by the response of the rotor to perturbations.  Because a 

pitching moment response to a perturbation in forward velocity is expected, Bode 

plots of both the pitching moment response and the X-force response were 

constructed.  These plots are shown in figures 6.10 and 6.11. 

From the gain portion of plots 6.10 and 6.11 it is clear that the pitching 

moment response of the rotor system is more consistent than the response of the 
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teetering rotor over the range of forcing frequencies tested. The X-force response is 

not as consistent as the pitching moment response, but it should be noted that the 

magnitude of this response is quite small.  For this reason, the gain response of the 

rigid rotor could be approximated more closely than the corresponding response of 

the teetering rotor by a constant coefficient stability derivative.  Observation of the 

phase plots reveals that the phase delay present in the response of this rigid hub rotor 

system is much smaller than that of the equivalent teetering rotor.  Because the 

orientation of the tip path plane of the rotor does not need time to establish itself, the 

rigid rotor responds more quickly to perturbations.  The rigid rotor has a more 

consistent gain response and less prominent phase delay than the equivalent teetering 

rotor.  For this reason the response of the rigid hub rotor system could be 

approximated more accurately by a stability derivative than the teetering rotor.  

Clearly, the Bode plot representation lends additional insight into the response of the 

rigid rotor, but a stability derivative representation might still be an acceptable 

simplification for certain applications. 
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Figure 6.10   Bode Plot of Rigid Rotor Pitching Moment Response 
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Figure 6.11   Bode Plot of Rigid Rotor X-Force Response 
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Similar to the analysis preformed for the 11 inch diameter teetering rotor, the 

correlation between the response of the rigid rotor and the forced velocity 

perturbation was also considered.  These correlation measurements are plotted versus 

forcing frequency in figure 6.12. 
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Figure 6.12   Correlation vs. Forcing Frequency for 11" Rigid Rotor 

 
 

From figure 6.12 it is clear that the correlation between the aerodynamic response and 

the velocity perturbation is nearly one over the entire range of forcing frequencies.  

This is significantly different than the result observed for the teetering rotor, where 

the correlation was considerably less than one for low forcing frequencies.  
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Additional insight into this discrepancy can be gained from observation of the 

aerodynamic response signal for the rigid rotor.  The response signal is depicted in 

figure 6.13 for a forcing frequency of .6 Hz. 
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Figure 6.13   Response Signal for 11" Rigid Rotor at .6 Hz. 

 
 

Comparison of figure 6.13 to the corresponding figure for the teetering rotor, figure 

6.8, reveals the reasoning for the difference in correlation measurements between the 

two rotors.  For the rigid rotor the magnitude of the noise when compared to the 

signal strength is significantly less than for the teetering rotor.  The primary reason 

for this discrepancy is that the magnitude of the rotor response is larger; reducing the 

amount the signal is corrupted by the noise.  Additionally, it is possible that the rigid 

configuration of the rotor system is less susceptible to vibrations of the test setup. 

 The Bode plots and correlation analysis for the 11 inch diameter rigid rotor 

provide several useful observations.  These conclusions are as follows: 
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• The pitching moment response of the rotor is fairly consistent over the range 

of forcing frequencies. 

• The phase delay of the response is fairly small, less than 30 degrees. 

• Because the gain response is consistent and the phase delay is small the 

response could potentially be approximated by a stability derivative. 

• The correlation between the aerodynamic response and the velocity 

perturbation is nearly one over the entire range of forcing frequencies. 

6.4 Comparison of Data Representation Techniques  

The various tests described in the previous sections provide a good basis of 

comparison between the techniques of representing the response of the rotor as a 

stability derivative or in Bode plot form.  It is clear from the analysis of Bode plot 

representation that the response of some rotors which could potentially be 

implemented on rotary wing MAVs can not be satisfactorily described using simple 

stability derivatives.  Because of the broader range of information depicted by Bode 

plots they are initially more useful as a means to represent the response of the rotor.  

Analysis of the Bode plots can also be utilized to determine if a simplified stability 

derivative approximation could be considered for the rotor system in question.  If it is 

indeed decided that a stability derivative approximation is sufficient, it is trivial to 

convert the gain plot of the rotor response to a constant stability derivative.  For these 

reasons, it is recommended that for initial tests of a vehicle or rotor system the 

response should be analyzed in Bode plot form. 
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6.5 Analytical Validation of Test Results 

The current test setup exhibits all of the expected results from a qualitative point of 

view.  Simple analysis of several example rotor systems suggests that the test process 

is a valid way of measuring the stability parameters of MAV scale rotor systems and 

potentially entire vehicles.  The analysis preformed thus far however lends little 

insight into the quantitative accuracy of the test results.  Development of an accurate 

quantitative prediction of the rotor response is a challenging task.  Inherent 

difficulties in analyzing the rotor response with traditional techniques were the 

motivation for the current research in the first place.  Ideally, results from forced 

oscillation testing of a flight worthy MAV would be compared to system 

identification results from flight test data.  Because system identification flight testing 

is not yet feasible for any of the available MAVs another comparison must be used.  

The following sections discuss a simple analytical approximation of the blade 

flapping response of the 11 inch diameter teetering rotor.  This approximation is then 

compared to results from forced oscillation testing. 

6.5.1 Numerical Analysis of Blade Flapping Motion 

The most feasible method for analytically predicting the response of a rotor system to 

perturbations is by analysis of the equations of motion for rotor blade flapping.  A 

model of the flapping response to changes in advance ratio was constructed from the 

differential equations for blade flapping motion.  These blade flapping equations are 

discussed in more detail by Leishman [43].  Additional analysis of simple blade 

flapping equations is covered by Chen [44], [45].  The most general equation for the 

flapping motion of a rotor blade with uniform mass distribution is given as 
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Where β is the flapping angle of the blade, Ib is the moment of inertia of the blade 

about the flapping hinge, and L is the incremental value of lift on the blade at radial 

location y.  L is given as force per unit length as shown below.   
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Ut and Up are the tangential and perpendicular velocity components at the blade 

section as given by 
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Inserting equations 6.7, 6.8 and 6.9 into equation 6.6 yields differential equations for 

blade flapping motion.  These differential equations can be numerically solved using 

MATLAB to give a time history of the blade flapping response to a change in µ.  The 

variation in µ as a function of time is sinusoidal in nature as defined by the forced 

oscillation motion.  In order to model the flapping motion of a teetering MAV scale 

rotor several modifications to the standard flapping equation are needed.  First, both 

blades of the teetering rotor are considered simultaneously. The flapping angle of 

blade two is the negative of the flapping angle of blade one, as constrained by the 

teetering hub.  Also, the lift generated by each blade is considered separately, as L1 

and L2 are the values of incremental lift on blades one and two respectively.  These 

modifications result in the new blade flapping equation below. 
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The second potential modification is a variation in the lift curve slope Clα with respect 

to radial location along the blade.  The intent of this change is to model the effect of 

change in the lifting properties of the blade due to Reynolds number variation over 

the blade span.  It should be noted that after studying several variations in the radial 

distribution of Clα it was determined that the shape of the distribution had little effect 

on the flapping response.  For that reason, the remainder of the analysis considers a 

constant value for Clα along the span of the blade.   

6.5.2 Comparison of Numerical Analysis to Experimental Data 

The differential equations for blade flapping described above were solved using 

MATLAB for a representative forced oscillation test.  A time history result for the 

blade flapping angle β, of a rotor with the same characteristics as the 11 inch diameter 

teetering rotor is shown in figure 6.14.  For this simulation the velocity perturbation is 

representative of a forced oscillation test with an amplitude of 3.5 inches at a forcing 

frequency of 1 Hz. 
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Figure 6.14   Flapping Angle vs. Time 

 

From figure 6.14 it can be determined that the amplitude of the longitudinal flapping 

angle is 0.4202 deg.  Similar simulations were preformed over a range of test 

conditions representative of the forced oscillation tests preformed on the 11 inch 

diameter teetering rotor.  The results of these simulations are listed in table 6.2.   
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0.75210.84032

0.75200.75611.8

0.75190.67201.6

0.75180.58791.4

0.75210.50421.2

0.75220.42021

β/Aω
(deg/(m/s))

Flapping Amplitude
(deg)

Forcing Frequency
(Hz)

 

Table 6.2   Flapping Response from Analytical Calculations 

 

From the table it is clear that the numerical analysis predicts a constant value for the 

longitudinal flapping per unit of velocity perturbation about hover.  By making the 

simple assumptions that the thrust vector of the rotor is perpendicular to the tip path 

plane of the rotor and the thrust produced by the rotor is constant, the predicted value 

for the longitudinal flapping angle can be used to estimate the expected force 

response of the rotor.  The predicted force response can then in turn be converted to 

Bode plot form as the expected gain of X-force per unit of perturbation in forward 

velocity.  This result is shown compared to the measured X-force response for the 11 

inch diameter teetering rotor system in figure 6.15. 
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Figure 6.15   Comparison of Analytical and Experimental Results 

 

From figure 6.15 it is clear that numerical analysis of the blade flapping equations of 

motion under predicts the flapping response.  While the results from numerical 

analysis do not match well with those determined experimentally, the results are well 

within the same order of magnitude.  This result suggests that the test technique is 

returning reasonable values for the force response of the rotor.  Once sufficient flight 

test data becomes available, a more thorough qualitative analysis will become 

possible. 
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6.6 Application of Results 

In sections 6.2 and 6.3 forced oscillation testing has been used to determine a few of 

the dynamic characteristics of example rotor systems for a hovering flight condition.  

In a scenario where an actual vehicle was being studied for stability and control 

analysis, the results would now be applied to a vehicle model.  This is fundamentally 

the same process that is used in system identification flight testing.  This technique 

involves developing a parameterized model of the vehicle from first-principles.  The 

parameters of this model are then identified by tuning the parameters of the model 

such that the model matches the response measured during flight testing.  This 

process is described in detail by Mettler [22].  The results from forced oscillation 

testing are essentially used in the same way.  The measured values for Mu and Xu 

would be applied to a model of the vehicle containing those parameters.  The 

development of such a model is outside the scope of the current research, but the 

construction and use of similar models is well documented. 

 The dynamic characteristics identified from forced oscillation testing could 

also be used in a more basic analysis of vehicle motion.  One such case is analysis of 

the longitudinal dynamics of the vehicle about hover.  Simplified, linearized 

equations of motion for the “fixed-stick” longitudinal dynamics of a full size 

helicopter are given below.  These equations may not necessarily capture the 

dynamics of a MAV, but they are most likely sufficient for an initial analysis. 
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From Equation 6.11 it is clear where the measured results from the forced oscillation 

testing, Mu and Xu, are applied.  These results are not necessarily useful however, 

without similar results for the parameters Mq and Xq.  As discussed previously, the 

ability to only determine a few vehicle parameters at once is a shortcoming of the 

forced oscillation technique.  If a forced oscillation test stand capable of determining 

the values of Mq and Xq were developed, a more comprehensive analysis of the 

longitudinal dynamics of a rotary wing MAV would be possible. 

 

6.7 Additional Observations 

Qualitative observations of the test process lend some additional insight into the 

response of the tested rotor systems to perturbations in forward velocity.  For the 

teetering rotor systems, both co-axial and single rotor, the longitudinal flapping 

response of the rotor is clearly visible to the naked eye.  This observation is quite 

useful in confirming that the tip path plane of the rotor system does indeed tilt back in 

response to the perturbation in forward velocity.  Observation of the flapping 

response of the rotor also supports the result of negligible change in the orientation of 

the tip path plane for forced oscillations where the combination of forcing frequency 

and amplitude is too small.   

An even more interesting visual observation is the out of plane flapping 

response of the rotor.  It is clear from watching the response of the rotor during 

testing that a perturbation in forward velocity does not induce a purely longitudinal 

flapping response.  Because of the teetering nature of the rotors in question and the 
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absence of any coning angle, the response should be purely longitudinal for uniform 

inflow.  As discussed in section 4.9 however, some lateral flapping is expected due to 

non-uniform inflow effects.  This effect is described in more detail by Padfield [38].  

For perturbations about a hover condition the lateral flapping response is potentially 

of the same order of magnitude as the longitudinal response.  This is indeed 

confirmed from observations of the rotor during testing.  Although it is outside the 

scope of the current research, this side force response could be quantified by using a 

variation of the current test setup.  By changing the orientation of the force balance by 

90 degrees, the side force and rolling moment response of the rotor systems could be 

measured.  

One final aspect of the test stand which must be considered is the interference 

of the stand itself with the wake of the rotor system or vehicle in question.  It is 

possible that portions of the test stand could cause the rotor to be in partial ground 

effect at different times during the forced oscillation tests.  For traditional rotor 

testing, such as thrust and torque a measurement of a hovering rotor, the rotor is 

inverted such that the flow through the rotor is in an upward direction.  This change 

in rotor orientation effectively serves to remove the possibility of the rotor being in a 

ground effect situation during testing.  The forced oscillation test stand used in this 

research was not originally designed to test inverted rotors.  Because the ultimate goal 

of forced oscillation testing is to test entire vehicles, it is important that the rotor 

downwash passes over the fuselage of the vehicle just as it would in an actual flight 

condition.  For this reason inverting the rotor is not reasonable.  It is still important 

however to ensure that the test stand is not unnecessarily interfering with the wake of 
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the rotor.  Because only rotor systems and not entire vehicles were tested for this 

initial research, it is possible to invert the rotors.  In order to determine if the rotor 

wake was being significantly affected by the test stand in the tests described above 

the 11 inch diameter teetering rotor was tested in an inverted orientation.  The results 

of this test for several different frequencies are compared to the initial test results in 

figure 6.16. 
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Figure 6.16   Inverted Rotor Comparison 

 

From figure 6.16 it is clear that the gain response for the inverted rotor is slightly less 

than that originally measured with the rotor in a standard orientation for all three 

forcing frequencies tested.  From this observation it can be concluded that there is 
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potentially some unwanted interaction between the rotor wake and the test stand.  It 

appears however that the interaction is small and does not affect the trend of the 

measured data.  It is still advisable however to test the rotor systems in an inverted 

orientation if possible.  If it is not possible to invert the rotor, additional steps could 

be necessary to increase the distance between the rotor and the main structure of the 

test stand.  By increasing the distance between the base of the test stand and the rotor 

it would be possible to eliminate the interaction of the rotor wake and the stand itself. 

6.8 Conclusions 

In conclusion, initial tests of representative small scale rotor systems have shown the 

ability of the forced oscillation test process to measure the stability characteristics of 

the rotor systems.  Qualitative analysis of the test results shows that the test process is 

returning the expected results.  Additional analysis of the different methods of 

representing the data shows that for some example rotor systems the representation of 

the rotor response by a stability derivative is not sufficiently accurate.  For the initial 

analysis of a rotor system it is much more comprehensive to first determine the Bode 

plot of the response and then simplify the representation to a stability derivative if 

appropriate.    

Comparison of the measured results to an analytical model shows that the test 

process is providing reasonable values from a quantitative point of view.  The 

experimental results do not closely match the analytical prediction but this is to be 

expected.  The analytical model does however confirm that the magnitude of the 

measured results is within the expected range.  The absence of a more accurate 
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analytical model to predict the rotor response is inherently one of the motivations for 

the development of the forced oscillation test process. 

 The following chapter will provide a summarization of the research project 

and present some concluding remarks.  Recommendations for future work on the 

subject are also offered. 
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Chapter 7:  Concluding Remarks 
 

 

7.1 Summary and Conclusions 

This thesis has presented a testing technique for measuring the stability parameters of 

rotary wing MAVs.  The technique uses a forced sinusoidal motion to induce a 

perturbation in flight conditions and measures the corresponding reaction of the 

vehicle. 

 The small scale of rotary wing MAVs make the development of an accurate 

dynamic model a challenging task.  Many of the standard methods for measuring the 

stability parameters of full size rotorcraft are not currently feasible for vehicles of this 

scale.  The potential uses for rotary wing MAVs often require autonomous control of 

the vehicle.  Development of effective autonomous controllers will be greatly aided 

by accurate dynamic models of the vehicles.  For that reason there is sufficient 

motivation to explore forced oscillation testing as an alternative way of determining 

MAV stability parameters experimentally.   

 The theoretical development of the forced oscillation technique utilizes a 

simple sinusoidal perturbation to vehicle flight conditions.  The corresponding 

response to this perturbation is also assumed to be sinusoidal in nature.  Because of 

these simplifying assumptions, the stability characteristics of the vehicle can be easily 

determined from a Fourier series approximation of the aerodynamic force response.  
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There are two different ways to present the stability characteristics, either by a 

constant coefficient stability derivative or by a Bode plot.   

 The current forced oscillation test setup utilizes a scotch yoke mechanism to 

impart a velocity perturbation along the X-axis of the vehicle under consideration.  

The corresponding X-force and pitching moment response is measured using a strain 

gauge force balance.  This force and moment response as well as a synchronized 

vehicle position measurement are recorded using a digital data acquisition system.  

The corresponding digital data files are analyzed using MATLAB and can be reduced 

to meaningful stability parameters.   

 Several representative rotor systems were tested as a means of validating the 

test procedure.  Initially analysis of the test results was considered from a stability 

derivative perspective.  It was shown that the measured stability derivatives of a 

simple co-axial rotor system qualitatively matched the expected results.  As a more 

thorough means of measuring the stability parameters of a MAV, Bode plots were 

formulated for two 11 inch diameter rotors.  From these plots it was shown that for 

the 11 inch teetering rotor stability derivative representation of the rotor response 

would most likely not be sufficient.  It was also shown however that the response of 

the rigid rotor could be approximated by a stability derivative more accurately.  In 

order to properly describe the response of the tested rotors it was concluded that first 

a Bode plot should be constructed and then the simplification to a stability derivative 

could be made if appropriate. 

 In order to quantitatively validate the measured results an analytical model of 

the blade flapping response was developed.  The comparison of this model to the 
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experimental measurements revealed that although the model did not closely match 

the measurements the two results are similar in magnitude.  This finding supports the 

conclusion that the test process is returning reasonable values for the stability 

parameters of the tested rotor systems. 

7.2 Recommendations for Future Work 

Due to the developmental nature of the current research many lessons have been 

learned regarding the application of forced oscillation testing to rotary wing MAVs.  

In order to efficiently continue with development of this technique as a useful tool for 

the testing of MAVs it is important to consider these lessons as future research 

progresses.  This section will serve to recommend future research as well as comment 

on other issues not covered in the previous sections of the document. 

Through several iterations of development, it has become clear that the most 

pivotal element in the test setup is the force balance.  Because of the relatively high 

inertial loads and comparatively small aerodynamic forces, the force balance must be 

designed to measure moderately large forces while remaining as sensitive as possible.  

Additionally, a six degree of freedom force balance would be preferable compared to 

the cantilevered beam currently in use.  This more sophisticated force balance would 

allow for determination of six rotor stability parameters simultaneously while the 

current balance is only capable of measuring two.  A primary concern for the design 

of an improved force balance is that it must remain relatively rigid as to not violate 

the assumption that the motion of the linear slide is perfectly transferred to the test 

vehicle.  Additionally, it should be noted that a balance which separates the individual 

forces and moments mechanically is preferred over one which separates coupled 
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forces and moments.  In order to separate coupled forces and moments, as is done for 

the current test setup, the assumption must be made that the force and moment 

response is synchronized.  This is of course not necessarily a valid assumption.  It is 

perfectly feasible that some of the force and moment responses could be nearly 

instantaneous while others exhibit considerable phase delay. 

A force balance designed to measure force in the X-direction while 

mechanically separating other force inputs was designed and implemented for the 

forced oscillation test stand.  This force balance consists of an aluminum frame with 

two vertical brass flexures.  These flexures allow an S-shaped displacement when a 

force is applied to the balance in the X-direction, but remain comparatively stiff in 

response to other forces and moments.  A thin beam load cell bonded to one of the 

flexures was used to measure the X-force.  While this force balance was quite capable 

of separating the X-force from other applied forces and moments and was relatively 

sensitive it was ultimately not effective.  It was found that unnecessarily high inertia 

loads caused by the force balance itself corrupted the measurement of the 

aerodynamic response forces.  After several attempts to modify the force balance it 

was determined that the cantilevered beam was a more effective means of measuring 

force in the X-direction. 

The forced oscillation test stand developed for initial testing and validation is 

designed to induce a velocity perturbation to the vehicle or rotor system along the X-

body axis of the vehicle.  This choice of perturbation was chosen because of the 

simplicity of the apparatus needed to induce a sinusoidal perturbation.  The simple 

mechanism design along with the important rotor flapping response induced by this 
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type of perturbation made it a logical choice for a development study.  Now that the 

technique has shown favorable results it is likely that there may be interest in 

developing additional forced oscillation test stands.  It is recommended that the first 

consideration should be the design of a test stand capable of producing sinusoidal 

variation in the pitch angle of the vehicle.  The pitching and rolling response of 

current MAV design concepts is of fundamental importance from a stability and 

control perspective.  A forced pitching oscillation test stand would allow for 

experimental analysis of these characteristics.  The use of stabilizer bars has proven 

fundamental in the design of MICOR [2].  A test stand capable of measuring the force 

and moment response to a pitching perturbation would allow for testing of stabilizer 

bars and other similar stability augmentation devices.  This type of test stand would 

also induce a forced oscillation motion that would create much smaller inertial loads 

while sufficiently applying the perturbation to flight conditions.  This advantage 

would allow a more sensitive force balance, which is a primary concern in the 

measurement of small reaction forces, as discussed above. 
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 Appendix A: MATLAB Program Code, “mavplotDZ” 
 

%Usage:  mavplotD(<filename 1>,<filename 2>,<sample rate>,<forcing 
%frequency>,<length of test>,<number of terms retained in FFT>) 
%Takes the data from each test run (1,2) and averages it for each 
%cycle Then uses the position data to reduce the force data to 
%exactly 1 oscillation where each data point is actually the average 
%force for that position over the entire test run.  Then takes the 
%two results and filters them using FFT.  Returns the magnitude and 
%phase of both the tare test and the rotors-on test.  Also returns 
%the filtered representation of those tests for use in the program 
%mavavD 
  
function [mf_off,mf_on,U_off,U_on,t] = 
mavplotDZ(filenameoff,filenameon,sampPERsec,freq,legnth,terms) 
  
datalegnth = sampPERsec*(1/freq); 
datalegnth = round(datalegnth); 
  
%load the saved data files 
eval(['load ',filenameoff]); 
data_off = obj.data; 
t_off = obj.t; 
clear obj.data obj.t 
  
  
eval(['load ',filenameon]); 
data_on = obj.data; 
t_on = obj.t; 
clear obj.data obj.t 
  
% average the data from the tare test 
sig1_off(datalegnth,1) = 0; 
sig2_off(datalegnth,1) = 0; 
sig3_off(datalegnth,1) = 0; 
  
for j = 1:legnth*freq 
    sig1_off = sig1_off + data_off([(j-1)*datalegnth+1:(j-
1)*datalegnth+datalegnth],1); 
    sig2_off = sig2_off + data_off([(j-1)*datalegnth+1:(j-
1)*datalegnth+datalegnth],2); 
    sig3_off = sig3_off + data_off([(j-1)*datalegnth+1:(j-
1)*datalegnth+datalegnth],3); 
end 
sig1AV_off = [sig1_off/(legnth*freq); sig1_off/(legnth*freq); 
sig1_off/(legnth*freq)]; 
sig2AV_off = [sig2_off/(legnth*freq); sig2_off/(legnth*freq); 
sig2_off/(legnth*freq)]; 
sig3AV_off = [sig3_off/(legnth*freq); sig3_off/(legnth*freq); 
sig3_off/(legnth*freq)]; 
  
time = t_off([1:datalegnth*3]); 
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maxpos_off = max(sig1AV_off); 
minpos_off = min(sig1AV_off); 
checkpoint_off = (maxpos_off+minpos_off)/2; 
  
k = 1; 
r = 1; 
  
% shift the data from the tare test such that x(0) = 0 
for m = 1:datalegnth*2-1 
    if (sig1AV_off(r) > checkpoint_off) & (sig1AV_off(r+1) < 
checkpoint_off) & (k ==1) 
        crosspoint1_off = m; 
        k = k + 1; 
    end 
    if (sig1AV_off(r) < checkpoint_off) & (sig1AV_off(r+1) > 
checkpoint_off) & (k==2) 
        crosspoint2_off = m; 
        k = k + 1; 
    end 
    r = r + 1; 
end 
  
start_off = (crosspoint1_off + crosspoint2_off)/2; 
start_off = round(start_off); 
  
sig1single_off = 
sig1AV_off([start_off+(round(datalegnth/4)):start_off+datalegnth+(ro
und(datalegnth/4))-1]); 
sig2single_off = 
sig2AV_off([start_off+(round(datalegnth/4)):start_off+datalegnth+(ro
und(datalegnth/4))-1]); 
sig3single_off = 
sig3AV_off([start_off+(round(datalegnth/4)):start_off+datalegnth+(ro
und(datalegnth/4))-1]); 
  
t = 0:(1/freq)/datalegnth:1/freq; 
  
% average the data from the rotors-on test 
sig1_on(datalegnth,1) = 0; 
sig2_on(datalegnth,1) = 0; 
sig3_on(datalegnth,1) = 0; 
  
for j = 1:legnth*freq 
    sig1_on = sig1_on + data_on([(j-1)*datalegnth+1:(j-
1)*datalegnth+datalegnth],1); 
    sig2_on = sig2_on + data_on([(j-1)*datalegnth+1:(j-
1)*datalegnth+datalegnth],2); 
    sig3_on = sig3_on + data_on([(j-1)*datalegnth+1:(j-
1)*datalegnth+datalegnth],3); 
end 
sig1AV_on = [sig1_on/(legnth*freq); sig1_on/(legnth*freq); 
sig1_on/(legnth*freq)]; 
sig2AV_on = [sig2_on/(legnth*freq); sig2_on/(legnth*freq); 
sig2_on/(legnth*freq)]; 
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sig3AV_on = [sig3_on/(legnth*freq); sig3_on/(legnth*freq); 
sig3_on/(legnth*freq)]; 
  
time = t_on([1:datalegnth*3]); 
  
  
maxpos_on = max(sig1AV_on); 
minpos_on = min(sig1AV_on); 
checkpoint_on = (maxpos_on+minpos_on)/2; 
  
k = 1; 
r = 1; 
  
% shift the rotors on test such that x(0) = 0 
for m = 1:datalegnth*2-1 
    if (sig1AV_on(r) > checkpoint_on) & (sig1AV_on(r+1) < 
checkpoint_on) & (k ==1) 
        crosspoint1_on = m; 
        k = k + 1; 
    end 
    if (sig1AV_on(r) < checkpoint_on) & (sig1AV_on(r+1) > 
checkpoint_on) & (k==2) 
        crosspoint2_on = m; 
        k = k + 1; 
    end 
    r = r + 1; 
end 
  
start_on = (crosspoint1_on + crosspoint2_on)/2; 
start_on = round(start_on); 
  
sig1single_on = 
sig1AV_on([(start_on+(round(datalegnth/4))):(start_on+datalegnth+(ro
und(datalegnth/4))-1)]); 
sig2single_on = 
sig2AV_on([(start_on+(round(datalegnth/4))):(start_on+datalegnth+(ro
und(datalegnth/4))-1)]); 
sig3single_on = 
sig3AV_on([(start_on+(round(datalegnth/4))):(start_on+datalegnth+(ro
und(datalegnth/4))-1)]); 
  
t = 0:(1/freq)/datalegnth:(1/freq)-((1/freq)/datalegnth); 
  
  
%lines below take the one oscillation worth of data and use the 
%fast Fourier transform to convert it into frequency based data.  we 
%then remove the terms corresponding to higher harmonics and invert 
%the Fourier transform to obtain the Fourier series approximation of 
%the signal with only the desired number of terms included. 
  
  
F2_off = fft(sig2single_off); 
F2_on = fft(sig2single_on); 
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F3_off = fft(sig3single_off); 
F3_on = fft(sig3single_on); 
  
T2_off = F2_off; 
T2_on = F2_on; 
  
T3_off = F3_off; 
T3_on = F3_on; 
  
  
%lines below plot the response in the frequency domain so we can see 
%what terms in the fourier series approximation contribute to the 
%response 
  
PT2_off = T2_off.*conj(T2_off)/datalegnth; 
PT3_off = T3_off.*conj(T3_off)/datalegnth; 
f = datalegnth*(0:(datalegnth/2))/datalegnth; 
  
  
sinpart2_off = imag(T2_off(2))*2/datalegnth; 
cospart2_off = real(T2_off(2))*2/datalegnth; 
sinpart2_on = imag(T2_on(2))*2/datalegnth; 
cospart2_on = real(T2_on(2))*2/datalegnth; 
  
sinpart3_off = imag(T3_off(2))*2/datalegnth; 
cospart3_off = real(T3_off(2))*2/datalegnth; 
sinpart3_on = imag(T3_on(2))*2/datalegnth; 
cospart3_on = real(T3_on(2))*2/datalegnth; 
  
  
mag2_off = (sinpart2_off^2 + cospart2_off^2)^.5; 
phase2_off = atan(cospart2_off/sinpart2_off); 
mag2_on = (sinpart2_on^2 + cospart2_on^2)^.5; 
phase2_on = atan(cospart2_on/sinpart2_on); 
  
mag3_off = (sinpart3_off^2 + cospart3_off^2)^.5; 
phase3_off = atan(cospart3_off/sinpart3_off); 
mag3_on = (sinpart3_on^2 + cospart3_on^2)^.5; 
phase3_on = atan(cospart3_on/sinpart3_on); 
  
  
mf_off = [mag2_off;phase2_off;mag3_off;phase3_off]; 
mf_on = [mag2_on;phase2_on;mag3_on;phase3_on]; 
  
%lines below use the FFT to filter the results by setting higher 
%frequency terms = 0 
  
T2_on(terms+2:datalegnth-terms) = 0; 
T2_off(terms+2:datalegnth-terms) = 0; 
  
T3_on(terms+2:datalegnth-terms) = 0; 
T3_off(terms+2:datalegnth-terms) = 0; 
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T2_on(1) = 0; 
T3_on(1) = 0; 
  
T2_off(1) = 0; 
T3_off(1) = 0; 
  
U2_on = ifft(T2_on); 
U2_off = ifft(T2_off); 
  
U3_on = ifft(T3_on); 
U3_off = ifft(T3_off); 
  
U_off = [U2_off U3_off]; 
U_on = [U2_on U3_on]; 
  
aero2_filt = U2_on - U2_off; 
aero3_filt = U3_on - U3_off; 
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Appendix B: MATLAB Program Code, “mavavD” 

 
% program calls saved data files for a tare test and a rotors on 
%test.  Then sends these files to mavplotDZ which returns an 
%averaged data set one oscillation length long.  This averaged data 
%is then used to find the magnitude and phase of the aerodynamic 
%component of the data.  Correlation between the aerodynamic data 
%and the forced velocity perturbation is also calculated.  Finally 
%the results are converted using the calibration values for the test 
%stand. 
  
clear all 
  
base_off = 'dan_tuesnight_13Hz_7in_806ps_tare';  %base name for tare 
%tests 
base_on = 'dan_tuesnight_13Hz_7in_806ps_124free';  %base name for 
%rotors-on tests 
sampPERsec = 806;   %rate at which the data in the files above was 
%taken 
freq = 1.3;  %frequency of the force oscillation for the tests above 
amp = 3.5;  %amplitude in inches of forced oscillation 
legnth = 180;  %legnth in seconds of above tests 
numtests = 1;  %number of tests taken   
freq_retained = 10;  %highest frequency content that is retained in 
%FFT 
terms = round(freq_retained/freq);  %number of terms in the final 
%FFT representation of the results 
  
  
TOP_cal = .011284;  %calibration factors to convert to N*m 
BOT_cal = .041837; 
  
  
for i = 1:numtests 
    n = i; 
    file_off = [base_off int2str(n)]; 
    file_on = [base_on int2str(n)]; 
    [magphase_off(:,n),magphase_on(:,n),U_off(:,:,n),U_on(:,:,n),t] 
= eval('mavplotDZ(file_off,file_on,sampPERsec,freq,legnth,terms)'); 
end 
  
%lines below average the results from each of the data files to give 
%one oscillations worth of data from all files combined 
  
mean_magphase_off = mean(magphase_off,2); 
mean_magphase_on = mean(magphase_on,2); 
  
mean_U_off = mean(U_off,3); 
mean_U_on = mean(U_on,3); 
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mean_aero = mean_U_on - mean_U_off;  %gives average aerodynamic 
%response 
  
%lines below plot all of the tare tests and all of the rotors-on 
%tests on one plot respectively so any outlying tests can be 
%observed 
  
figure 
hold on 
for b = 1:numtests 
    plot(t,U_off(:,1,b)) 
end 
figure 
hold on 
for b = 1:numtests 
    plot(t,U_on(:,1,b)) 
end 
  
datalegnth = sampPERsec*(1/freq);  %number of samples in one 
%oscillation of data 
datalegnth = round(datalegnth); 
  
%lines below take the fft of the aerodymanic data 
  
Faero1 = fft(mean_aero(:,1)); 
Faero2 = fft(mean_aero(:,2)); 
  
Taero1 = Faero1; 
Taero2 = Faero2; 
  
f = datalegnth*(0:(datalegnth/2))/datalegnth;  %vector of frequency 
%components in the fft 
  
%lines below find the sin and cosine components of the first term 
%approximation to each signal 
  
sinpart_aero1 = imag(Taero1(2))*2/datalegnth; 
cospart_aero1 = real(Taero1(2))*2/datalegnth; 
  
sinpart_aero2 = imag(Taero2(2))*2/datalegnth; 
cospart_aero2 = real(Taero2(2))*2/datalegnth; 
  
%lines below find the magnitude of the first term approximation 
  
mag_aero1 = (sinpart_aero1^2 + cospart_aero1^2)^.5; 
mag_aero2 = (sinpart_aero2^2 + cospart_aero2^2)^.5; 
  
%lines below find the phase of each first term approximation 
%relative to the forced velociy pertubation 
  
phase_aero1 = angle((Taero1(2))*2/datalegnth); 
if phase_aero1 > 0 
    phase_aero1 = phase_aero1 - pi; 
else 
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    phase_aero1 = phase_aero1 + pi; 
end 
  
phase_aero2 = angle((Taero2(2))*2/datalegnth); 
if phase_aero2 > 0 
    phase_aero2 = phase_aero2 - pi; 
else 
    phase_aero2 = phase_aero2 + pi; 
end 
  
  
Amp = 7*.0254/2;  %oscillation amplitude in meters 
omega = freq*2*pi;   
rad_per_samp = omega/sampPERsec; 
position_single = Amp*sin(omega*t); 
velocity_single = Amp*omega*cos(omega*t); 
acc_single = -Amp*omega^2*sin(omega*t); 
  
%lines below shift the aerodynamic responses so that they line up 
%with the forced velocity pertubation (phase delay is removed), thus 
%the correlation coefficient can be found without being affected by 
%the phase delay.  
  
mean_aero1_extend = [mean_aero(:,1); mean_aero(:,1); 
mean_aero(:,1)]; 
mean_aero2_extend = [mean_aero(:,2); mean_aero(:,2); 
mean_aero(:,2)]; 
  
shift1 = round(phase_aero1/rad_per_samp); 
shift2 = round(phase_aero2/rad_per_samp); 
  
shifted1 = mean_aero1_extend((datalegnth+1 - shift1):(2*datalegnth - 
shift1)); 
shifted2 = mean_aero2_extend((datalegnth+1 - shift2):(2*datalegnth - 
shift2)); 
  
%lines below find the correlation coefficient between the forced 
%velocity pertubation and the resulting aerodymanic response signal. 
  
corr1 = corrcoef(velocity_single,shifted1); 
corr2 = corrcoef(velocity_single,shifted2); 
  
corrvect = [corr1(2); corr2(2)]; 
  
%vector of results 
mf_aero = [freq; amp; mag_aero1; phase_aero1*180/pi; mag_aero2; 
phase_aero2*180/pi; corrvect]; 
  
%lines below use the calibration data to convert the above results 
%into meaningful units. 
  
TOP_mag = mf_aero(3)*TOP_cal/(amp*omega*.0254); 
BOT_mag = mf_aero(5)*BOT_cal/(amp*omega*.0254); 
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top_rotor_offset = .109982;  %distance from rotor center to top 
%strain gauge array in meters 
bot_rotor_offset = .173482;  %distance from rotor center to bottom 
%strain gauge array in meters 
  
moment = (TOP_mag - 
((BOT_mag*top_rotor_offset)/bot_rotor_offset))/(1 - 
(top_rotor_offset/bot_rotor_offset)); 
force = (BOT_mag - moment)/bot_rotor_offset; 
  
results = [moment; force]; 
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