
ABSTRACT

In this work, we address the synthesis of embedded software for sensor nodes in

two important, specialized contexts. In the first context, an optimization framework is

designed to automate the design space exploration of application-specific wireless

sensor networks in order to adjust configuration parameters for deriving a streamlined

overall implementation of the system. The framework is built around the particle swarm

optimization technique and adapted especially for the optimization of a line-crossing

detection application. 

The second synthesis context draws from the potential effectiveness of using

dataflow graphs for the implementation of DSP applications for sensor nodes to explore

a context switching mechanism facilitating concurrent execution of multiple dataflow

graphs on a single embedded processor. Our model for context switch implementation

uses compile-time information to optimize runtime scheduling. Simulation results in

both cases support the applicability of the adopted approaches for optimized operation

of application-specific sensor nodes.
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Chapter 1: Introduction

With the recent emergence of diverse applications for wireless sensor nodes, a

large amount of literature is addressing specific needs and features of those applications,

such as power consumption, latency, transmission protocols, network usage and others.

In order to demonstrate any developed sensor network applications on real hardware

platforms for the sensor nodes, users usually need to design experimental prototype

platforms for wireless sensor network systems by drawing from an increasing variety of

off-the-shelf hardware and software components. Such components are often

reconfigurable across a range of settings to allow users to tune the functionality and

associated implementation trade-offs. Separate efforts were put into trying to optimize

individual metrics in the context of specific projects. However, given the stated wireless

sensor network systems dependence on numerous inter-related parameters, the

associated design space is vast, and effective optimization in this space is challenging

due to the combinatorial growth of admissible system configurations and to the

complexity of interactions among component and system parameters. 

In the first part of this work, we introduce a system-level design methodology to

find efficient configurations for an application-specific sensor network system where

optimization of energy consumption is a primary implementation criterion. By

analyzing critical parameters from candidate off-the-shelf components that may be

employed in construction of the network, and integrating the associated parameters into

a comprehensive optimization framework, we automate the exploration of the design

space. The optimized configurations derived from our optimization framework can then

be applied to the actual hardware implementation of the targeted sensor network system.
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The optimization framework is implemented as a Java-based software tool, built

on the particle swarm optimization strategy, which is extended to meet the requirements

of our target application. Specifically, the framework is adapted and tested for the line

crossing detection application.

The second part of our work relates to another synthesis context for sensor

nodes. Motivated by the potential effectiveness of using dataflow graphs for the

implementation of DSP applications for sensor nodes, we introduce a context switching

mechanism and explore its applicability to dataflow programming in this perspective.

Considering the size, power, real-time operation, and other constraints faced by

embedded applications in DSP, the utility of specialized computational models such as

dataflow graphs has become a well-known fact. It draws mainly from their intuitive

specification mechanism for DSP and their ability to expose relevant application

structures and parallelism at compile time. This facilitates the exploitation of special

application characteristics and simplifies static scheduling techniques. Our model for

context switch implementation uses such compile-time information to optimize a

runtime scheduling operation that handles concurrent execution of multiple graphs.

The rest of this document is organized as follows: Chapter 2 details the design,

implementation, and simulation of the particle swarm optimization-based framework

for application-specific sensor networks, as adapted to the line crossing detection

application. Chapter 3 introduces the role of dataflow graphs in DSP, and describes the

proposed context switching model and its scheduling constituents. Algorithms,

implementation aspects, and application prototyping are also presented. Finally,

conclusions and future directions are listed in Chapter 4.
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Chapter 2: Optimization Framework for Application-Specific Sensor 

Networks

We describe in this chapter the design and implementation procedures of the

optimization framework for application-specific sensor networks. The chapter also

includes background information about the particle swarm optimization technique and

some related work in the areas of sensor network modeling and optimization.

2.1 Overview

Wireless sensor network (WSN) nodes generally combine four subsystems

under constraints of limited hardware resources, very small size, and low cost. These

subsystems are for computation, communication, sensing, and power [2][16][20]. Users

can design experimental prototype platforms for WSN systems by drawing from an

increasing variety of off-the-shelf hardware and software components. Such

components are often reconfigurable across a range of settings to allow users to tune the

functionality and associated implementation trade-offs. Such reconfigurable

components provide different parameters that must be carefully adjusted to derive

streamlined implementations for specific WSN applications. The design space

associated with the optimization of WSN configuration is vast due to the combinatorial

growth of admissible system configurations and the complexity of interactions among

component and system parameters. For efficient design space exploration in this

challenging context, we have developed a Java-based software tool for careful modeling

and extensive optimization of sensor network components along with their associated

configuration options.
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The optimization approach in our tool is based on a general strategy called

particle swarm optimization (PSO), which was introduced in [15] as a population-based,

optimization technique for simulating the social behavior of individuals. The PSO

strategy explores a problem space with an evolving set of candidate solutions, which are

referred to as particles. The set of particles under consideration at any given time is

called the swarm, and this swarm is "flown" through the -dimensional search space

through various manipulations to find an optimized solution.

In the context of our optimization framework, we have developed a generic PSO

package along with novel plug-ins to this package that provide customized features for

WSN-related optimization. Given a user defined sensor network, mutable and

immutable parameters for configuring components and system parameters in the

network, and application-specific models for evaluating the relevant design evaluation

metrics as a function of the network configuration, our optimization framework derives

an efficient WSN configuration that is optimized for minimum energy consumption.

Due to the accuracy of the evaluation methods employed in our optimization

framework, the effectiveness of the optimization approach, and thoroughness with

which configurations are managed, solutions derived from the framework can be

mapped efficiently into hardware/software implementations of complete, application-

specific WSN systems.

2.2 Related Work

Various research groups have built sensor node platform with interesting

combinations of features (e.g., see [1][9][16][18]). These approaches generally involve

D
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off-the-shelf components, and include detailed measurement of power consumption or

performance analysis from the constructed platforms. However, few such works are

integrated with strategies for system-level modeling and optimization. 

Akyildiz et al. [2] provide a comprehensive survey on applications, design

factors and communication architectures for wireless sensor networks, including

elaboration on the physical constraints on sensor nodes and protocols proposed in all

network layers.

Singh et al. [23] discuss system-level trade-offs related to energy costs of state-

of-art WSN technologies. An integrated, system-level model and energy trade-off

analysis is presented for application development in wireless networks. This work also

presents a system-level energy model that incorporates the energy consumption

associated with computation, storage, communication, and sensing. A model-based

integrated simulation tool called MILAN is introduced as well, which facilitates rapid,

multi-granular evaluation of energy consumption and performance for a large class of

systems. A major feature of MILAN is that it integrates a variety of different simulators

and design tools into a unified environment.

Jin et al. [13] discuss an approach to sensor network optimization using a genetic

algorithm. In this paper, the authors attempt to systematically cluster groups of WSN

nodes to exploit the advantages of small transmission distances. They also discuss how

clustering is a NP hard problem, and outline a method to determine an efficient selection

of cluster heads using a genetic algorithm approach.

The technique of particle swarm optimization (PSO) [15] has been the subject of

extensive research in recent years. Due to the simplicity of its implementation and the
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small number of parameters involved in its fine tuning, PSO has been used to solve

optimization problems in a wide variety of applications. A summary of the main

developments and applications pertaining to PSO can be found in [6].

Multi-objective optimization using PSO is addressed in [12] by implementing a

dynamic neighborhood version that optimizes one objective function while fixing the

other, and in [19] by studying weighted aggregation in addition to an approach that

exchanges information among multiple swarms.

For wireless sensor networks, the PSO approach has been adopted in [27] to

optimize clustering techniques. Another example is [25] where it is demonstrated that a

PSO-based approach converges faster than a GA-based approach in finding energy-

minimized WSN clusters by localizing cluster-head nodes. Veeramachaneni et al. [28]

describe a PSO-based strategy to dynamically configure sensor thresholds and their

related fusion rules in a biometric sensor network, while considering both accuracy and

time.

Our work differs from these approaches in that our method is not specific to a

particular WSN application or to a particular configuration problem such as clustering.

Our approach aims to provide a more general methodology and associated computer-

aided design tool for taking into account arbitrary combinations of WSN network

configuration parameters and their associated interactions. The trade-offs between one

set of possible configuration parameters and another with regards to the optimization

objectives are evaluated within the framework in an automated process.
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2.3 Optimization Framework Preliminary Design

Given some application specifications and architectural assumptions, the

optimization framework is expected to generate a set of system configurations that

implement the application optimally with respect to certain evaluation metrics. This is

possible by identifying two main components of our framework as shown in Figure 1: a

design space and an evolutionary space. 

2.3.1 Design Space

The design space takes the application specifications and the architectural

assumptions as input and identifies possible configurations for consideration in our

optimization. The possible configurations are composed of candidate components for

the different entities that constitute our system along with instantiated parameter sets. 

We consider the fact that some candidate components are to be fixed in our

system frame (immutable CCs), whereas others offer different variations that can be

potentially integrated after evaluation (mutable CCs).  

Also, regarding the parameters, some values are accepted as immutable because

of application constraints, designer choice, or hardware limitations, whereas other

parameters can assume various values from defined domains.

The mutable entities are encoded to constitute a representation specific to a

configuration instance. On the other hand, immutable CCs and parameters can be

directly sent as input to an evolutionary space subsystem, specifically to the scheduling

analyzer.



Synthesis of Embedded Software for Sensor Nodes                                                                            8    

2.3.2 Evolutionary Space

The evolutionary space is mainly an iterative system that considers a present

configuration (population) to implement our application. This implementation is then

evaluated by applying objective functions relative to our targeted metrics. Based on the

fitness of the solution, evolutionary techniques can be applied. Also, local heuristics can

be introduced such as a random or preset weighing of the metrics. Then the new

population thus obtained is evaluated, and the cycle repeats until the controller decides

on the configuration or set of configurations that will be output as its solution.

Figure 1: Preliminary optimization framework diagram.
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2.4 Line Crossing Application 

To illustrate the modeling and evaluation capabilities of our optimization

framework as well as the implementation of derived WSN configurations on our

prototype platform, we give an example of a WSN-based line crossing application.

2.4.1 Application Specification

The goal here is to have a system that can detect a moving object in the

proximity of the sensors. In the line crossing application, all the sensor nodes should be

placed in a linear network topology, so that it is also possible to determine when the

moving object crosses that line. 

2.4.2 Sensor Node Operation

Each node runs according to a TDMA schedule with the three operation modes

of transmission, reception, and idle status. The sensor node enables its associated

microphone sensor when it enters transmission mode and senses an acoustic signal from

the environment. The corresponding digital data is then sent to a microcontroller

through an A/D converter. A user-defined threshold is used to filter the sensed data.

Whenever the sensed data is above the threshold, the data will be encoded with a data

token from memory for transmission to the next node. More specifically, the data token

will be encoded with a header as well as a node ID to form a complete message for

transmission. The data token involved here is formatted with a separate bit for each

node. Hence, once a token arrives at the base station, it can easily be decoded to

determine whether a moving body has crossed the line of sensor nodes, and if so, which

nodes were closest to the line crossing event.
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In the reception mode, a sensor node needs to enable its transceiver and wait for

a message to arrive from the previous node in the sensor array. Upon receiving a

message, the node will decode it and compare its contents with the expected header and

node ID. If both comparisons match, the data token will be stored into memory, and the

node will wait for its next transmission slot according to the TDMA schedule.

When a sensor node enters the idle mode, the microcontroller powers down the

transceiver and sensor devices, and then it enters a low-power mode to save power

throughout the rest of the idle interval.

Figure 2 illustrates the operation of this WSN-based line crossing application, as

well as the associated TDMA operations.

Figure 2: A WSN-based line crossing application with associated TDMA operations.
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2.5 Optimization Framework Implementation

The optimization framework is built around the particle swarm optimization

technique, which is extended to meet the design requirements of the line crossing sensor

network application. Implementation aspects of the generic and application-specific

features are described in this section.

2.5.1 Particle Swarm Optimization

Particle swarm optimization (PSO) algorithm was introduced by Eberhart and

Kennedy [15] in 1995 as a population-based optimization technique simulating social

behavior of individuals. The algorithm explores a problem space with a set of

individuals, which are referred to as particles. The group of particles that are operated

on is called the swarm. Particles in the swarm are “flown” through the -dimensional

search space to find an optimized solution. Each particle in the swarm constitutes a

potential solution, and its multi-coordinate position, initialized to a random value, is

given at any iteration of the algorithm by Xi = (xi1, xi2, xi3,..., xiD), where  is the

particle's index. A particle’s best position achieved so far is also recorded as Pi = (pi1,

pi2, pi3,..., piD), as well as the dynamic velocity Vi = (vi1, vi2, vi3,..., viD), with which the

particle moves in the search space, influenced by the swarm’s global best solution and

the particle’s own best solution. At each iteration, the particle’s position is evaluated

with a fitness function that corresponds to the optimization objective rule of the

problem. The index of the particle that achieves the best fitness value in the swarm

becomes the global best , and the swarm keeps a record of the best fitness value thus

achieved. 

D

i

g
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The initial algorithm is studied and developed in [4][5[14][21], introducing

some variations, mainly an inertia weight  as a factor controlling the impact of the

previous velocity on the current, and a local best version comparing only neighboring

particles as an alternative to the global best.

2.5.2 Generic PSO Package

The PSO algorithm adopted in this work is given in Figure 3. 1 is the weight

attributed to the cognition component and 2 is the weight attributed to the social

component in the particle’s velocity update equation. In our exploration tool, the

algorithm is implemented as a generic optimization package using Java. In this package,

the swarm of particles is initialized with random particle positions and velocities, and

then iteratively operated on to explore the underlying design space until an exit

condition is satisfied. Specifically, the condition for exiting is that either a solution is

found having a cost function value that is within a pre-specified range, or a fixed

maximum number of iterations have been completed.

The particles have multi-dimensional coordinates, where the position, velocity,

and best position achieved so far are recorded for the particle on each of its dimensions.

The position values that a particle can take on at each coordinate are explicitly bound by

user-specified minimum and a maximum values. If during the optimization process, the

particle position attempts to take on a value that is outside this range, the value is

clamped to the corresponding limit. The same principle applies for the values of the

particle velocity on each coordinate.

An interfacing class is included to serve as a connection layer between an

application that uses PSO and the PSO package itself. The role of this interfacing class

ω

ϕ

ϕ
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is mainly to convert input information from the application-specific format into swarm

particle data, and to format swarm results to be displayed as output. The general

interaction among the swarm, the application, the inputs, and the outputs is shown in

Figure 4. 

Figure 3: Pseudocode of generic PSO-based search.

Figure 4: Flow of information in the PSO package implementation.
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The application-specific implementation part consists of the development of the

fitness evaluator (i.e., the mapping of candidate solutions into values of the relevant cost

function), and of the move algorithm for particles.

2.5.3 Application Fitness Evaluation

The fitness evaluator complies with the requirements of the line-crossing

application model described in section 2.4, with the cost function being a scalar

evaluation of energy models derived for the sensor network. In order for the framework

to find an effective application-specific sensor network configuration based on energy

consumption considerations, a node-level energy model is developed for data

acquisition, computation, and packet transmission, as well as a network-level energy

model that minimizes overall power consumption while maintaining application

functionality. It is implied here that the power strength of the signal received at a sensor

node still has to be greater than the specified threshold when evaluating transmission

energy at the adjacent node, for any separating distance being evaluated. We also take

into consideration time limitations for transitions between different node modes

(transmission, reception, and idle), and for transitions between the microcontroller

power modes when defining TDMA slot time. With all this in mind, we integrate

various energy models from individual WSN layers, such as the physical, data-link,

network, and application layers to consider a broad range of parameters that may affect

system-level energy consumption. Alternative system configurations can then be

evaluated by running simulations for estimating system-level energy consumption for a

selected schedule of transmission, reception, and idle sequences. The resulting approach
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to modeling helps us explore the design space of a sensor network application in a more

comprehensive way. 

The current implementation only considers a single objective, that of

minimizing energy consumption, therefore local heuristics need not be applied when

evaluating potential solutions’ fitness. 

2.5.4 Application Move Algorithm Implementation

The implementation of the move algorithm primarily updates the velocity and

position of each particle on its respective coordinates according to the equations given

in the algorithm of Figure 3, while constraining the velocity and position values to

remain within maximum and minimum values provided from the application input data.

An important feature added to the move algorithm is the handling of coordinates that

have discrete position values. The property of a coordinate having continuous or

discrete values is also retrieved from the formatted input. Discrete coordinates are

designed as references to indexed structures where the actual discrete values are stored

in increasing order. Particle positions on such coordinates in the swarm then represent

the associated indices, and are updated by the move algorithm such that velocity

increments or decrements occur in integer steps, moving to a higher or lower index. In

the fitness evaluation process, the discrete value stored at the index is retrieved and used

in the cost function.

2.5.5 WSN Application Representation in PSO

Mapping the application components to PSO elements requires other

application-specific additions to the generic PSO model, mainly the extension of the
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coordinate class model to include properties pertaining to the sensor network

application, and the extension of the generic particle model to also reflect a WSN-

related organization of the coordinates. In particular, a WSN particle's coordinates are a

representation of the sensor node properties and of the network parameters being

optimized. 

Each WSN-related coordinate acquires a component name, such as RADIO, and

a coordinate name, such as DATA_RATE or OUTPUT_POWER, which are two

parameters chosen to be optimized for a node's radio component. That way, the

complete set of relevant properties for a sensor node can be parsed from the application

input data, and each property stored in a particle’s coordinate. An example of mapping

the formatted input to the node representation as a set of PSO particle’s coordinates is

given in Figure 5.

Then, this group of WSN-related coordinates is replicated as many times as the

number of sensor nodes for a wireless sensor network application, and appended to the

Figure 5: Mapping of input to PSO particle’s coordinates.
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WSN particle's coordinate array. Figure 6 illustrates the general representation of a

WSN-related particle's format, which we use to store our optimization framework’s

mutable parameters. Here, we assume that we have N sensor nodes in the system, and M

mutable parameters for each node. 

With such a way of representing WSN-related mutable parameters, sensor nodes

in a WSN application can have numerous configurations, so that a detailed system-level

optimization for the entire system can be carried out through the framework, and the

resulting solution can be translated into a complete sensor network application by

implementation on the targeted hardware platforms.

To retrieve information from coordinates in this model, the WSN particle offers

methods to retrieve swarm data by providing a node's index to get a particular node

configuration, or a coordinate name to compare configuration values associated with the

same element in different network nodes.

The UML representation of our PSO implementation is offered in Appendix A.

Figure 6: Representation of mutable configurations in WSN-related particles.
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2.5.6 PSO Testing and Operation

To verify the basic functionality of our PSO implementation, we used the

Schaffer F6 benchmark:

This is a function that is well known for its highly nonlinear nature, and is

recognized as a fundamental benchmark for PSO techniques (e.g., see [7][22]). In our

tests, the two-dimensional coordinate positions were bound by the values -100 and

+100, while the velocity varied between -10 and +10. A solution could be found with

less than 1000 iterations with a high success rate. Figure 7 illustrates the current position

value versus iteration number for the Schaffer F6 benchmark from our PSO

implementation, as well as the convergence behavior that we observed.

f x y,( ) 0.5
x2 y2+( )sin( )

2
0.5–

1 0.001 x2 y2+( )+( )
2

------------------------------------------------------ 100 x y 100≤,≤–,+=

Figure 7: Convergence behavior of Schaffer’s F6 benchmark function.
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2.6 Optimization Framework Simulation Results

For evaluating WSN-related optimized configurations, we implemented the line-

crossing application described in section 2.4, and we conducted experiments to compare

energy consumption results associated with simulation of the PSO-based optimization

framework, and measurements from a constructed prototype platform. For the prototype

WSN testbed, we used an ultra-low power MSP430 microcontroller from Texas

Instruments [26] and a transceiver from LINX Technologies [17]. In the simulation and

in the measurement scenarios, we considered five critical parameters on each node:

supply voltage, ADC clock frequency, data rate, output power, and transmission

distance. These parameters were all treated as mutable for the purpose of optimization.

In addition, we employed in our experiments a set of immutable parameter values, as

listed in Table 1.

Table 1: Immutable parameter values.
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We compared the results from the simulation of the optimization framework and

measurement from the corresponding implementations on our WSN platform. For these

comparisons, we chose 20 particles with 1= 2 = 2.0 and = 0.95 when running the

PSO optimization algorithm for the experiment. The experimental energy consumption

values for the optimized configurations for the 5-node line-crossing application through

our optimization framework are shown in Figure 8, along with the simulation

estimations.

We conducted our test runs in the framework by varying the tightness of the

binding restriction around the target "optimum" value. That is, since our fitness function

measures the absolute offset from a pre-specified target value, we changed the range in

which a fitness value that is not exactly equal to the target will nonetheless be

considered as an acceptable solution, and trigger termination of the search.

ϕ ϕ ω

Figure 8: Energy consumption over the 5-node line crossing application with optimized 

configurations.
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We noted the number of iterations the program performed before reaching a

solution within the range of each exit bound imposed on the search. For each binding

constraint, 10 runs were performed, and the average number of iterations from these

runs is shown in Table 2.

Also, the ratio of the number of solutions found out of those 10 runs was

recorded when we conducted the tests for each of the binding constraints. Those values

are listed as percentages in Table 3.

According to the results in tables above, we observe that the algorithm either

converges at a very early stage or does not find a solution at all in 4000 iterations. This

observation shows that PSO can explore the design space with a high convergent speed

if the search engine does not fall into a local minima stage. To prevent our optimization

framework from falling into any local minima stage is part of our future research work.

However, the results for the rate of success confirm our expectation that a tighter

binding constraints around the target is achieved with a smaller percentage of successful

runs.

Table 2: Number of iterations to find the solution using various binding constraints.

Table 3: Percentage of runs that found a solution using various binding constraints.
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Chapter 3: Dataflow Context Switching

This chapter presents a preliminary effort in integrating synchronous dataflow

concepts with multi-tasking support across multiple graphs, by the development of a

context switching model that handles scheduling and controls concurrent execution of

multiple application graphs.

3.1 Dataflow Graphs in Digital Signal Processing 

Since dataflow graphs are a main component in the model we present, general

concepts related to dataflow graphs and their utility in digital signal processing (DSP)

are briefly reviewed here.

3.1.1 Dataflow Graphs

A dataflow graph is a directed multigraph [24]. Vertices in the graph, called

actors, represent computations, while edges, also called arcs, represent FIFO-queued

data values directed from one computation’s output to the input of another. This

representation captures data precedence between computations. The data values, usually

referred to as tokens, arrive at an actor’s input and are consumed by that actor, which

performs computations on them. This action is called firing of the actor. A certain

number of tokens is then produced on the actor’s output. 

3.1.2 Utility of Dataflow Graphs for DSP

Embedded applications in DSP face more limitations than general purpose

computation, thus emphasizing the need to exploit special application characteristics in

order to optimize the design and implementation for the specific set of constraints that
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must be satisfied [24]. Specialized computational models such as dataflow variants

expose relevant application structures and provide an intuitive specification mechanism

for DSP. Dataflow also has the potential to enable effective parallelism detection by the

compiler, and to simplify the static scheduling techniques because of compile time

predictability. 

In particular, when the application has no decision making at the task level, it

can be represented by a synchronous dataflow (SDF) graph. SDF is a special case of the

general dataflow model. With the SDF computational model, it is possible to check

deadlock conditions and to determine whether the implementation is possible using a

finite amount of memory, in exchange for the limited expressivity. Scheduling is also

simplified, as the sequence of actors firing can be determined statically (at compile

time) such that all precedence constraints are met and all the arcs’ buffers return to their

initial states. A set of algorithms that compile dataflow programs for embedded DSP

applications into efficient implementations, focusing on minimization of code size and

buffers memory, is given in [3].

3.2 Context Switching Model

Given that dataflow graphs have proven to be useful for DSP specification, and

that sensor network applications use in many instances a substantial amount of signal

processing, we draw on this fact to expand the usefulness of dataflow by using operating

systems capabilities.
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3.2.1 Motivation

Motivated by the potential effectiveness of a dataflow programming model for

implementing sensor network applications and by the fact that only one instance of

dataflow program can run on an embedded processor at a time, we propose the context

switching model for concurrent graph execution. The model's goal is to allow multiple

applications to be executed in an intermittent way by sharing resources, instead of

running them sequentially, which may violate real-time deadlines.

3.2.2 Model Theory

The dataflow context switch model is designed to handle concurrent runs of

multiple dataflow graphs and events servicing on a single embedded processor. By

collecting individual graph priorities, scheduling information, and resource usage at

compile time, the model allows a context switch operation to occur only at specific

switching points inserted statically. It is also at those switching points that polling for

selected events takes place, followed by a controlled servicing of those events.

3.3 Proposed Scheduling Operation

A key point in the model is to allow interrupting execution of an application

graph in order to start or resume execution of another one, and also service pending

events, all within an ordered structure defined at compile time. Consequently, we need

to determine an acceptable period to regulate context switching operations, and also a

global scheduler to overlook the execution sequence of graphs and event service

routines.
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3.3.1 Switching Points

Switching points are locations in the graph schedule where a possible switch to

another graph execution and events servicing can be performed. Those switching points

are separated by a maximum time interval of , the predefined switching period.  is

chosen such that the frequency of context switching operations does not cause a latency

overhead that violates time deadlines of individual graphs. Also,  cannot be larger

than the maximum time that pending graphs or events can wait for before acquiring the

processor. Once  is determined, each application graph schedule is then traversed,

and a switching point is inserted statically before each actor or group of actors whose

total execution time is less than . In the case where a single actor's execution time is

greater than the switch period, a switching point is inserted, and the actor is also

preceded by a timer that will set off asynchronously once a time equal to  has elapsed.

The timer is made to reset dynamically as long as the remaining actor time is greater

than the switch period. Whenever a timer sets off at runtime, the graph execution

schedule is interrupted and polling for events takes place. Figure 9 shows a graph with

inserted switching points and timers.

T T

T

T

T

T

Figure 9: Switching points and timers insertion.
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3.3.2 Events and Interrupts

Graph-related events or independent interrupts can arise while the application is

running. Some interrupts require immediate attention of the processor and have to be

serviced asynchronously. On the other hand, most application-generated events and

some other interrupts can be more or less delayed, depending on how critically they

affect the course of execution. In our model, we consider those events and interrupts

that can be delayed, and classify them according to priority levels. The highest priority

is attributed to the most urgent ones, whereas less critical events and interrupts are

assigned a lower priority. A smaller priority number depicts a higher priority level.

When events or interrupts occur during execution, they are stored in a FIFO queue

pertaining to their priority level. They will be serviced once a switching point is reached

or a timer expires in the execution schedule. However, in order to prevent other tasks

from waiting for an unaffordable time while events are being serviced, we restrict the

number of events and interrupts handled at any particular switching point to Ni, for

priority level i, and choose Ni > Nj for i < j; and we also assume that nesting of events is

not supported.

3.3.3 Application Graphs

Depending on specific factors, such as earliest deadline for example, graphs are

assigned one of several priority levels, while maintaining that graphs priority levels are

lower than those of events and interrupts. As for events and interrupts, FIFO queues

handle precedence order between graphs of equal priority levels and execution starts

with the queue having the highest priority. Each actor in the executing graph schedule
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sequence runs to completion as long as there is no timer scheduled to interrupt it. When

a switching point is reached in the schedule, that graph may be suspended by the global

scheduler. Therefore, a graph can be in one of the states presented in Figure 10. The

state of the graph can change dynamically. After a switching point, the interrupted graph

can resume execution, or another graph can be started, if any are in the ready state. On

return from a timer interruption, the suspended graph resumes execution of its current

actor.

3.3.4 Global Scheduler

Control is relayed to the global scheduler at a switching point, or at a timer

interruption if it is determined that events have taken place during graph execution. The

global scheduler checks the priority 0 events list first, and runs the corresponding events

service routines when needed, up to N0 of them. Then events from the priority 1 events

list are serviced, up to N1 of them, and so on. When events handling is complete, if an

actor has been interrupted by a timer, then this actor resumes execution. Otherwise, the

global scheduler selects a graph either from the list of graphs pending execution, or

Figure 10: Possible states of a graph.
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from the list of graphs ready for execution at the same or higher priority level. The list

of graphs is determined at compile time and they are dispatched starting with the highest

priority ones. Therefore, graphs of higher priority level can only be present in the ready

list if the dynamic increment of graph priority is supported. 

The information that the global scheduler needs at compile time is the

identification of application graphs, their priority levels, and the location of their

schedule execution code, in addition to the events supported, their respective priority

levels, and the routines that service each of them. An illustration of a global scheduler

operation is shown in Figure 11.

3.4 Algorithms

This section presents the algorithms developed for the dataflow context

switching theory presented above. Those algorithms are adopted in our current

implementation of the model.

Figure 11: Global scheduler operation.
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3.4.1 Insertion of Switching Points

The considerations for inserting switching points in a graph schedule have been

detailed in section 3.2.1. We list in Figure 12 a formal algorithm that, given a dataflow

graph schedule and a switching period , determines before which actors of that graph

a context switching operation can take place. Each actor is assumed to have an

execution time attribute related to the computation it performs. The algorithm also

specifies that a timer is to be started when the actor execution time is greater than .

The timer is restarted dynamically during the execution of long actors if the remaining

actor time when it sets off is still greater than . 

3.4.2 Static Graphs Interlacing

While the occurrence of events and interrupts is more likely to be determined at

runtime, deciding whether to resume the interrupted actor or to start execution of

another graph at a switching point can be achieved at compile time. This simplifies the

T

T

T

Figure 12: Switching points and timers insertion algorithm.
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role of the global scheduler at runtime since the sequence of actors' execution is known

statically, so it is only necessary to handle events and interrupts as described in section

3.2.2. When an alarm expires, control is also transferred to the event handling

procedure. The algorithm executed at switching points for statically defined graphs

transition is given in Figure 13.

3.4.3 Dynamic Graphs Interlacing

As an alternative to the static graphs interlacing approach, the global scheduler

can take control of dynamically selecting which graph can be scheduled to run next, at

the expense of somewhat more complex code. This scheme is particularly useful if

graph priorities or other considerations change at runtime, favoring the execution of one

actor over another. The global scheduler in this case needs to keep track of whether the

graph is ready, pending execution, or stopped, in addition to accounting for the variable

properties such as priority levels. The algorithm executed by the controller called at

switching points for the dynamically scheduled graphs transition approach is given in

Figure 14.

Figure 13: Switching point operation algorithm.
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3.5 Implementation

A simplified implementation of the static and dynamic scheduling models is

conducted to evaluate the operational applicability of the theory.

3.5.1 General Considerations

Our implementation utilizes the DIF and DIF-to-C packages capabilities for

dataflow graphs specification, application scheduling, and automated C-code

generation. The procedure for producing the overall code for each approach is detailed

below. As a general note, context switching code relies on C language libraries that deal

with events and interrupts in a low-level subroutine of a program. The main factor is to

save the stack environment of the current graph execution before switching to any other

code, then to effectively restore this environment on returning from the switch.

3.5.2 DIF and DIF-to-C Packages

Dataflow Interchange Format (DIF) is a language designed to represent a wide

variety of dataflow models for DSP systems [11]. Being a standard vendor-independent

language that fully captures essential modeling information of DSP applications, DIF

Figure 14: Global scheduler control algorithm.
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allows a comprehensive representation of both functional semantics and component

properties of mixed-grain dataflow graphs. The information captured by a DIF

specification of an application can be automatically converted to graph instances by the

DIF Front-end tool in the DIF package. The package, a Java-based software packages

developed by the DSPCAD group at the University of Maryland, also provides

implementations for dataflow-based analysis, scheduling and optimization algorithms.

Another interesting feature of DIF is the capability of porting DSP applications across

design tools with a high degree of automation. 

DIF-to-C is a software synthesis framework integrated into the DIF package that

automatically generates C-code programs implementing DIF specifications of dataflow

graphs [10]. C functions associated with actor computations are compiled with the

generated graph implementation, and user-defined scheduling and buffering strategies

are incorporated in the framework as well, to finally obtain an executable targeting

various possible embedded processing platforms. The design flow of the DIF-to-C

framework is illustrated in Figure 15.

3.5.3 Static Scheduling Model

The static schedule implementation aims at defining at compile time the

execution sequence of actors belonging to the different graphs under consideration. This

implies that resuming an interrupted graph or starting execution of another graph is a

statically-established decision. The only dynamic part is the servicing of events and

interrupts that occur at runtime. Application graphs are specified in DIF, and the

execution time of every actor is included as an attribute in DIF to be used by the context

switching scheduler. The first operation is to generate actors’ firing sequence for
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individual graphs using the DIF package. Each firing sequence then serves as input to

our java code that inserts switching points and timer locations between actors, as listed

in the algorithm of Figure 12. Finally, all firing sequences are merged into one schedule

where all the actors of all input graphs appear in addition to the switching points and

timers determined to precede individual actors or actor groups. At the same priority

level, graphs firing sequences are merged with the selection of the next actor determined

randomly. On the other hand, merged firing sequences of actors at lower priority levels

are appended after higher priority ones to ensure that the execution of those actors

complies with the graphs priority rule introduced in section 3.2. The static scheduling

model does not support any dynamic change of graph priority. 

Figure 15: Design flow of the DIF-to-C framework.
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An example of obtaining the merged schedule for two dataflow graphs of same

priority is given in Figure 16.

The current version of the DIF-to-C package does not support automatic code

generation for context switching. The work in this thesis represents a preliminary

investigation that can form the basis for future incorporation of such code generation

capability in DIF. In our experiments in this thesis, we use DIF-to-C to create the

respective C-code for the dataflow graphs specified in DIF, which produces them as

callable functions (not stand-alone applications), while the C-code for the computation

associated with individual actors is assumed to be provided. At this point, C-code for

graph transitions and event handling calls is inserted manually at the locations

determined by the obtained static schedule. Additional C-code is also implemented for

data structures, event support specifications, and a main function that initializes the

global application and makes the call to start running the schedule. The overall C-code

Figure 16: Example of statically merged schedule for two graphs G1 and G2.
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functions are then linked and compiled into an executable file that can run on the

embedded processor. 

Figure 17 illustrates the general static scheduling process, given two input

graphs G1 and G2.

Figure 17: Static scheduling implementation process.
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3.5.4 Dynamic Scheduling Model

In the dynamic scheduling implementation, we leave the selection of the next

actor to be executed at a switching point to be determined dynamically by the global

scheduler. In this scheme, the global scheduler is mainly a controller that is aware of any

runtime modification to graph priorities or other considerations. Thus it can adapt the

transitions among the different graphs to the dynamically changing application

requirements or available resources, at the expense of an increased complexity overhead

in the global scheduler code. A static schedule merging all graphs actors is not needed;

however, defining switching points and timers insertion in each firing sequence is still

required and carried out according to the algorithm in Figure 12. At any such

interruption, a simple call to the global scheduler is placed manually in the DIF-to-C-

generated graph implementations, since the automatic code generation for context

switching elements has not yet been added to the package capabilities. As in the static

scheduling model, data structures, event handling specifications, and the main function

are provided in separate implementations, and actor computations are also assumed to

be provided as external C functions. The global scheduler is implemented following the

algorithm in Figure 14. Similarly, the implementations are linked and compiled to create

an executable file that can run on the embedded processor. The overall sequence of

operations is depicted in Figure 18.



Synthesis of Embedded Software for Sensor Nodes                                                                            37    

3.6 Application Prototyping

The context switching model is tested with two DSP applications whose

dataflow models are taken from Ptolemy II, a Java-based component assembly

framework developed in the Department of Electrical Engineering and Computer

Sciences of the University of California at Berkeley [8]. The first application is the

Spectrum application that gives a simple spectral estimation of the product of two

Figure 18: Dynamic scheduling implementation process.
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sinusoids in noise. The second application is the Maximum Entropy Spectrum that

estimates three sinusoids in noise by three different techniques. DIF specification files

are created for the Spectrum and Maximum Entropy Spectrum applications,

respectively, which are then processed through our static and dynamic scheduling

models implementation. 

The illustration of the applications as provided in Ptolemy II is shown in

Appendix B, and the complete DIF specification for each is listed in Appendix C. The

output from the simulation of a statically-merged schedule of the two applications, with

delayed servicing of software and hardware events, demonstrated the expected

simulation sequence. Similarly, the simulation output of a dynamic schedule where the

global scheduler switches between the two applications and handles events dynamically

proved the model to be functional.
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Chapter 4: Conclusion and Future Directions

We have presented in this thesis two models addressing the synthesis of

embedded software for sensor nodes in specialized contexts. First, an optimization

framework was designed to automate design-space exploration for wireless sensor

networks’ parametrized configurations. The framework was implemented based on the

particle swarm optimization search technique and tested for the line crossing detection

application. Results of this optimization framework (optimized network configuration)

have been experimented with on a fully-functional sensor network prototype to verify

the efficacy of the optimization methodology. 

The second model was developed for a context switching mechanism that allows

concurrent execution of multiple dataflow graphs on a single embedded processor.

Static and dynamic scheduling approaches were implemented to test the functionality of

the model.

Simulation results in both synthesis contexts support the applicability of the

adopted approaches for optimized operation of application-specific sensor nodes. In the

PSO-based framework simulation runs, we were able to derive network configurations

that met our optimization objective of minimizing energy consumption. When mapped

to a hardware prototype implementing the line crossing application, those

configurations yielded energy consumption measurements that matched the simulation

results with a high degree of fidelity. Incorporation of additional system-level

optimization metrics, such as cost, latency, and throughput, within our optimization

framework constitute an important direction for further investigation. New models for

such metrics can possibly be incorporated in conjunction with more sophisticated multi-
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dimensional PSO strategies, so that our optimization framework can be more suitable to

solve multi-objective optimization problems for application-specific wireless sensor

network systems.

As for the context switching model that we introduced, it was demonstrated to

be operational at the cost of a small amount of memory overhead. Not only did the

model effectively use the information collected from the dataflow specifications at

compile time to optimize runtime scheduling, but also it had enough flexibility to handle

dynamically changing applications priority requirements. Additional effort can be

invested to include dynamically-changing memory usage considerations that may

impact the scheduling operation conducted by the global scheduler. Another useful

feature would be to extend the DIF-to-C package in order to automate the code-

generation of context switching C functions. Also, by considering additional test

applications, the model can be further refined and evaluated for potential use with DSP

applications on actual sensor nodes testbeds. 



Synthesis of Embedded Software for Sensor Nodes                                                                            41    

Appendix A: UML Diagrams of PSO Package
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Appendix B: Spectrum and Maximum Entropy Spectrum Applications

B.1 Spectrum Application from Ptolemy II
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B.2 Maximum Entropy Spectrum Application from Ptolemy II
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Appendix C: DIF Representations

C.1 Spectrum Application DIF Representation

sdf spectrum{ 
    topology { 
 nodes = INPUT, FFT, ABS, SCALE, DB; 
 edges = e1(INPUT, FFT), e2(FFT, ABS), e3(ABS, SCALE), e4(SCALE, DB); 
    } 
 
    interface { 
 outputs = out: DB; 
    } 
 
    production { 
        e1=1; e2=256; e3=1; e4=1; out = 256; 
    } 
 
    consumption { 
 e1=256; e2=1; e3=1; e4=1; 
    } 
 
    attribute datatype { 
        e1 = "double"; 
        e2 = "Complex"; 
        e3 = "double"; 
        e4 = "double"; 
        out = "double"; 
    } 
 
    actor INPUT { 
 computation = "randomInputGenerator"; 
 output: OUTPUT = e1; 
 executionTime = 660; 
    } 
 
    actor FFT { 
 computation = "fft"; 
 input: INPUT = e1; 
 order = 8; 
 output: OUTPUT = e2; 
 executionTime = 6620872; 
    } 
 
    actor ABS { 
 computation = "absoluteValue"; 
 input: INPUT = e2; 
 output: OUTPUT = e3; 
 executionTime = 279; 
    } 
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    actor SCALE { 
 computation = "scale"; 
 input: INPUT = e3; 
 order = 8; 
 output: OUTPUT = e4; 
 executionTime = 4197; 
    } 
 
    actor DB { 
 computation = "db"; 
 input: INPUT = e4; 
 min: PARAMETER = -100; 
 output: OUTPUT = out; 
 executionTime = 118; 
    } 
} 
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C.2 Maximum Entropy Spectrum DIF Representation

sdf MSE { 
    topology { 
 nodes = INPUT, AUTOCOR, LEVINSON, ARRAYELEMENT, REPEAT, 
ARRAYAPPEND, CHOP, FFT, ABS, SQUARE, MULDIV, DB; 
 edges = e1(INPUT, AUTOCOR),e2(AUTOCOR, LEVINSON),e3(LEVINSON, 
ARRAYELEMENT), e4(LEVINSON, ARRAYAPPEND), e6(ARRAYELEMENT, REPEAT), 
e7(REPEAT, MULDIV), e9(ARRAYAPPEND, CHOP), e10(CHOP, FFT), e11(FFT, 
ABS), e12(ABS, SQUARE), e13(SQUARE, MULDIV), e14(MULDIV, DB); 
    } 
 
    interface { 
 outputs = out: DB; 
    } 
     
    parameter {  
        myConstant : "double" = [-1.0];  
    }  
 
    production { 
 e1=256; e2=64; e3=33; e4=32; e6=1; e7=256; e9=33; e10=256; e11=256; 
e12=256; e13=256; e14=256; out = 256; 
    } 
 
    consumption { 
 e1=256; e2=64; e3=33; e4=32; e6=1; e7=256; e9=33; e10=256; e11=256; 
e12=256; e13=256; e14=256; 
    } 
 
    attribute datatype { 
     e1 = "double"; 
     e2 = "double"; 
     e3 = "double"; 
     e4 = "double"; 
     e6 = "double"; 
 e7 = "double"; 
 e9 = "double"; 
 e10 = "double"; 
 e11 = "Complex"; 
 e12 = "double"; 
 e13 = "double"; 
 e14 = "double"; 
 out = "double";      
    } 
     
    actor INPUT { 
 computation = "randomInputGenerator"; 
 output: OUTPUT = e1; 
 executionTime = 660; 
    } 
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    actor AUTOCOR { 
 computation = "autocorrelation"; 
 input: INPUT = e1; 
 numberOfInputs = 256; 
 numberOfLags = 32; 
 biased = 1; 
 symmetric = 0; 
 output: OUTPUT = e2; 
 executionTime = 2535953; 
    } 
     
    actor LEVINSON { 
 computation = "LevinsonDurbin"; 
 input: INPUT = e2; 
 autocorrelationValueLength = 64; 
 output1: OUTPUT = e3; 
 output2: OUTPUT = e4; 
 executionTime = 437643; 
    } 
 
    actor ARRAYELEMENT { 
 computation = "arrayElement"; 
 input: INPUT = e3; 
 index = 8; 
 output: OUTPUT = e6; 
 executionTime = 23; 
    } 
 
    actor REPEAT { 
 computation = "repeat"; 
 input: INPUT = e6; 
 repetitions = 256; 
 output: OUTPUT = e7; 
 executionTime = 8475; 
    } 
 
    actor ARRAYAPPEND { 
 computation = "arrayAppend"; 
 constant = myConstant; 
 constantLength = 1; 
 input: INPUT = e4;  
 output: OUTPUT = e9; 
 executionTime = 1155; 
    } 
 
    actor CHOP { 
 computation = "chop"; 
 input: INPUT = e9; 
 numberToRead = 9; 
 numberToWrite = 256; 
 offset = 0; 
 usePast = 0; 
 output: OUTPUT = e10; 
 executionTime = 10967; 
    } 
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    actor FFT { 
 computation = "fft"; 
 input: INPUT = e10; 
 order = 8; 
 output: OUTPUT = e11; 
 executionTime = 6620872; 
    } 
    
    actor ABS { 
 computation = "absoluteValue"; 
 input: INPUT = e11; 
 output: OUTPUT = e12; 
 executionTime = 279; 
    } 
 
    actor SQUARE { 
 computation = "square"; 
 input: INPUT = e12; 
 output: OUTPUT = e13; 
 executionTime = 64; 
    } 
 
    actor MULDIV { 
 computation = "mul_div"; 
 input1: INPUT = e7; 
 input2: INPUT = e13; 
 output: OUTPUT = e14; 
 executionTime = 141; 
    } 
 
    actor DB { 
 computation = "db"; 
 input: INPUT = e14;  
 min: PARAMETER = -100; 
 output: OUTPUT = out; 
 executionTime = 118; 
    }  
} 
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