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ABSTRACT

In this paper we present a new method for the evaluation of the probability of error of
uncoded frequency-hopped spread-spectrum multiple-access (FH/SSMA) communications. For
systems with binary FSK modulation the method provides an accurate approximation and a
tight upper bound to the bit error probability; for systems with M -ary FSK modulation it pro-
vides tight upper bounds to the symbol error probability. This method relies on the integration
of the product of the characteristic function of the envelope of the branch of the BFSK demo-
dulator, which carries the desired signal, and of the derivative of the characteristic function of
the envelope of the other branch; it can achieve any desirable acccuracy and the computational
effort required for its evaluation grows linearly with the number of interfering users. In the
M -ary case tight upper bounds based on the union bound and the results of the binary case are
derived.

The new method allows us to quantify accurately the effect of unequal power levels on
the other-user interference for the first time. Comparison of the multiple-access capability of
FH/SS systems as predicted by the bounds available in the literature and by the new method
indicates that FH/SS systems without error-control can support (at a given error rate) consider-
ably many more simultaneous users than previously thought when the relative received powers
of the users are not significantly different. This trend is amplified further for systems with
error-control. Our results indicate that the FH/SSMA systems also suffer from the near-far
problem although less seriously than the direct-sequence SSMA systems.

This research was supported in part by the Office of Naval Research under contract N00014-86-K-0013 and in part by the
Systems Research Center at the University of Maryland, College Park, through the National Science Foundation’s Engineering
Research Centers Program: NSF CDR 8803012,






1. Introduction and Problem Statement

Previous research on frequency-hopped spread-spectrum multiple-access systems
(FH/SSMA) has not provided exact results on the average probability of error, primarily
because of the difficulty to evaluate accurately the conditional probability of error given
that a number of interfering signals hit the desired signal. Due to the lack of accurate
expressions for the error probability, the effect of unequal power levels of the interfering
users--termed the near-far problem in the context of direct-sequence spread-spectrum
(DS/SS) systems--has not been studied. In this paper we remedy this situation by deriv-
ing accurate approximations and tight upper bounds on the bit (and symbol) error pro-
babilities of the FH/SSMA systems that take into consideration the effect of unequal
power levels of the interfering signals. In the following we present a brief review of the
existing results and identify the difficulties encountered in the evaluation of the error
probapbilities for the FH/SSMA systems.

In the performance of FH/SSMA and hybrid FH-DS/SSMA systems with M -ary
FSK modulation and noncoherent demodulation, P, (K'), the probability of a symbol
error given that K other users share the same channel with the user under consideration
(desired signal), plays a seminal role. This probability is evaluated as follows. If P, (k)
denotes the conditional probability of a symbol error when hits from k users occur, and
P, denotes the probability that any particular other user will hit a symbol of the

desired signal, then P, (K) is upper-bounded by
& (KY pk K-k
P.) < 3 () PRa-PO<* Po(k). )
k=0

In (1) P, (k) actually denotes the probability of error when k full hits occur. We say

that a full hit from an interfering signal occurs when the signal is present in the same



frequency bin (slot) for the entire duration of the particular M -ary symbol. Similarly a
partial hit occurs when the interfering signal is present in the same frequency bin for
part of the M-ary symbol's duration. The terms full and partial hits descril;ed above
have been used in the relevant literature to mean exclusively hits that occur at the level
of the frequency-hopping pattern. However, to evaluate the performance of FH/SSMA
systems accurately, one has to distinguish between two levels of hits: those occuring at
the frequency hopping level (on the frequency bins or slots used for frequency hopping)
and those occuring at the level of the M -ary FSK tones (used for modulating the data);
we name the former FFH hits and the latter tone hits. The probability of an FH hit

(full or partial) for an AWGN or a nonselective fading channel and random memoryless

N,

hopping patterns is given by [Geraniotis & Pursley, 1982] P, = |1+ 1 —1-, where
L
N, is the number of M-ary FSK symbols per dwell time and ¢ is the number of fre-

quencies available for hopping. Therefore, (1) provides an upper bound since it is

assumed that all the FH hits (occuring with probability P, ) are full FH hits.

In the existing literature hard bounds and approximations on P, (k) have been
obtained. Specifically, in [Geraniotis & Pursley, 1982] the conditional probability of
error given that k users cause full FH hits, was upper-bounded by 1 due to the difficulty
of obtaining more accurate estimates of its value; that is, it was assumed that all (FH)
hits result in symbol errors. Later in [Geraniotis, 1985] and [Geraniotis, 1986] a
Gaussian-approximation technique was proposed for evaluating P, (k) of coherent and
noncoherent hybrid FH-DS/SSMA systems. If the number of chips per bit NV is set to 1,
these results provide approximations to P, (k) for FH/SSMA systems. For coherent sys-
tems the accuracf of the Gaussian-approximation technique was checked via a more

accurate characteristic-function technique. However, for noncoherent systems the



accuracy of the Gaussian-approximation technique was never validated by more accurate

results due to the lack of any.

It is advantageous to distinguish between full FH hits and partial FH hits (see
[Geraniotis, 1985]). In this case we can write
K K—kj

K-k k-
PK)= % % [,{f] [ 0’ ]P;"’Pf’ @-P R Pk k) ()

kf =0 k, =0

where k; and k, denote the number of users causing full FH hits and partial FH hits,
respectively, Pf and Pp denote the corresponding probabilities of full and partial FH
hits, P, = P; + P,, and P, (k;, k,) denotes the probability of symbol error condi-
tioned on the occurence of k, full hits and k, partial hits. The probabilities of full and
partial FH hits from a typical interfering user employing a random memoryless

frequency-hopping pattern are given by [Geraniotis, 1985] the expressions

2

q

Py = [1— 1 ]—1— and P, = 2 —;~, respectively. If P, (k,, k, ) could be computed
8
exactly, (2) would provide an expression for the exact probability of error of MFSK

FH/SSMA systems given K interferers.

In [Geraniotis, 1985} and [Geraniotis, 1986] P, (k; ,k,) has been evaluated via the
aforementioned Gaussian-approximation technique. Again for noncoherent systems the
accuracy of the results was not validated due to the lack of a more accurate computa-
tional technique.

In the following sections we derive ezact expressions (arbitrarily accurate approxi-
mations) for P,(k) and P,(k; k,) of binary FSK FH/SSMA systems, tight upper
bounds for these quantities for M -ary FSK FH/SSMA systems, and Gaussian approzima-

tions to them for both binary and M -ary FH/SSMA systems. In particular, binary FSK



FH/SSMA systems are treated in Section 2 and M-ary FSK FH/SSMA systems are
treated in Section 3. Numerical results are presented in Section 4 and conclusions are

drawn in Section 5.

Both the exact expressions and the approximations that we develop in the following
sections take into account the other-user interference in an accurate way. In particular,
the (possibly different) received power levels of the interfering users (which depend in
their transmitting powers and their distances from the receiver under consideration)

enter in these expressions.

Before proceeding with the derivations of accurate expressions and approximations
for P, (k) and P, (k; , k,) we need to provide an accurate characterization of the other-
user interference. In particular, we distinguish between hits at the frequency-hopping
pattern level (FH hits) and hits at the level of the frequency tones used by the M -ary
FSK modulation scheme (tone hits) and derive the probabilities of occurence of these
different events.

Under the assumption that all FH hits (hits at the frequency-hopping pattern
level) during the reception of an M -ary FSK symbol are full hits, we can write the
interference due to the k-th interfering signal which is present at the output of the
matched filter of the in-phase component of the m-th branch (m =1, 2,..., M) of the

noncoherent MFSK demodulator as [Geraniotis and Pursley, 1982]:

L3 =4/ f} 8bg*) m)IR (7 ) + R y(my)] cos( 03 +ay -B). ®)

In (3) P, is the power of the k-th signal, T, the M -ary symbol duration, 7; its delay
(modT,), b{¥) = m'€ {1,2,---, M} the information symbol of the k-th user, 0'&":)

the phase corresponding to the frequency tone /m' carrying the information symbol



and a;, B the hopping phase and dehopping phase (see [Geraniotis and Pursley, 1982))
for the k-th transmitter and the receiver under consideration, respectively. The func-
tion 6 is defined as &u ,v) = 1for u = v and O for ¥ 5 v. The functions Ry and R v
denote the continuous partial autocorrelation functions of the shaping waveform (¢)

(time limited in {0, T, ]) and they are defined as

T
Ryn=[ "Wt -ndt and R (r) = R ,(T,-n.

For a rectangular shaping waveform R ,(7) = 7, R (1) = T, -7 and (3) becomes

Py
L% = - T 8(b {*) .m)cos(e,g’wm,, —ﬂ]. (4)
We assume that bo(k) takes values in {1, 2, - - -, M} with equal probability, that the

delay 7 mod T, is uniformly distributed in [0, T, ], the phase angles are uniformly dis-

tributed in [0, 27], and that they are mutually independent random variables. Thus for

the M -ary FSK system (3) results in a full tone hit with probability _]t_/f [the probabil-

ity that the Kroencker & in (3) equals 1] and in no tone hit with probability 1—%.

Finally, the interference present at the quadrature component of the m -th branch of the
noncoherent MFSK demodulator can be obtained from (3) or (4) if we replace cos(-) by
sin(-).

More accurately, since the k -th interfering signal causes both full and partial FH

hits during the reception of a particular M -ary symbol we have

Py

L&) = — T 8(b &) ,m)R y(ry) cos(o;{wm,, -;3] (52)

or



P
L5 =/ =5 To00" m)R y(ry) cos( 08 +ay -p) (5)

when a partial FH hit occurs, and

L% = 4 /f;L ] [6[b_(f),m]Rw(r,, Jcos [9,(""')-{-ak—ﬂ]
+5(b0("),m]R‘,,(rk)cos[0rff') +a,,—,3]} (6)

when a full FH hit occurs. In (5a)-(5b) and (6) bff) = m' is the previous symbol and

'

bo(") = m'' is the current symbol of the k-th interfering user, whereas the rest of the
quantities are as defined in the previous paragraph. Therefore, a partial FH hit causes

a partial tone hit [to the particular (m -th) branch of the MFSK receiver] with proba-

bility -IM and no tone hits with probability I—LM. On the other hand, a full FH hit

causes a full tone hit with probability —]\%’ a partial tone hit with probability

———2(M;1) and no tone hits with probability

(M-1)®
o

We close the description of the model for the other-user interference in FH/SSMA
systems by mentioning that the cumulative interference at the output of the matched
filters of each branch of the demodulator is additive and that all the random variables
(data bits, phases, time delays) involved in the interference terms due to different users

are mutually independent.



2. Error Probability for Binary FSK FH/SSMA Systems

The starting point for our derivation of exact expressions for P,(k) and
P,(k; , k,) in this case is the work of [Lord, 1954] for circulary symmetric Gaussian ran-

dom variables and the application of that to multiple-tone jamming of binary FSK sys-

tems by [Bird, 1985]. Befc}é usi7g the/results/of th}aé twoyﬁpers/fzﬁ" our}rﬁposywe

need }d chapacterize aca(lra.tyty th%th%ﬁse/inte;(ere‘@ i)a/F/H}S/SM}a/syst/em/s:

3

Let B, and R , denote the outputs of the envelope detectors of the two branches

(m =1,2) of the binary FSK system. Then the error probability becomes

P, = .;_ (Pr{R,>R |1} + Pr{R,>R,|2}] = Pr{R,>R,|1} (7)

e

since it is assumed that the AWGN has the same spectral density in the channels of
both branches and each one of the interfering users hits the two branches with equal
probability, so that the conditional error probabilities (conditioned on messages 1 or 2

being transmitted) are equal. We can write
oo
Pr{R,<R,| 1}=f0 Pr{R ,<R,=ry1} p(r,| 1)dr, (8)

where p (ro | 1) is the pdf of R, given that message m ==1 is transmitted and the con-
ditional probability Pr {R <R ,| R ,==r,, 1} is given (see [Lord, 1954]) because of circu-

lar symmetry by
[e o]
Pr{R,<R,|Ry=r, 1} = r2f0 ®,(u)J(rou)du, (9)

where ®,(u ) is the characteristic function of R, and the Bessel function J,(z) is given

by

Ji(z)= 71; j;”éos(z sin6-0) d 9. (10)



Upon substitution from (9) into (8) we obtain

Pr{R,<R;|1}= [ q>1(u)[fo r2J1(r2u)p(r2|1)dr2]du. ()

From the definition of the characteristic function of circularly symmetric random vari-

ables [Lord, 1954] we have that the characteristic function of R , is given by

®y(u) = [ Jo(rau)p(ry|1)dr, (12)
where
Jo(z) = % j;ﬁcos(x sinf)d 6. (13)

Since J(r) = -Jq (z),

dd,(u) 00
dzuu = — j;) r2J1 (rzu)p("z' 1)dr2’ (14)

and (11) becomes

do
S8al) 4,

Pr(R,<R;|1)=-[ &(u) -

(15)

The result of (15) is quite general and is applicable to all BFSK systems with possi-

bly different interference present at the two branches.

In [Bird, 1985] it is shown that, if the outputs of the matched filters of the in-phase

components of the two branches of the BFSK demodulator are

N,
Z,y=8cC08p + 33 a,;C08; + N, (16a)
i =1
and
N, 7
Zc,2= 3] 8 COSYy; + N g (16b)
Jj=1

then



ulo? N,
®,(u) =exp|- 2 Jolsu) TT Jo(a,iu) (17a)
i=1
and
u?o? N,
Py(u) = exp| - Jolag u) (17b)
ji=1

In (18) and (17) s denotes the amplitude of the desired signal at the output of the corre-
lator (assumed to be present at branch m =1), a,; and a,; the amplitudes of the ¢-th
and j-th interfering signals present at branches 1 and 2, respectively, 7., and V2,5 their
phases which are uniformly distributed in [0,27] and mutually independent, and n, |,
n, o the in-phase components of the AWGN., The outputs of the quadrature com-
ponents I, , and [, ;, can be obtained from (16a)-(16b) by replacing all the cos(:)’ s by
sin()’ s. The quantities o, and o7 denote the variances of the AWGN present at the
two branches. Finally, N, and N, denote the number of interfering signals present at

the two branches.
Let us rewrite {(17a) and (17b) in the form

2, 2

®y(u) = exp[— 7 ] Jolsu) y(u) (182)

2, 2

®,(u) = exp [— ] @y(u) (18Db)
where @,(u ) and ®,(u ) denote the characteristic functions of the other-user interference

terms and consist of products of J (') functions. Consequently (15) becomes

dsz(u) du

0 2, 52 _ _
Pr {R1<R2|1}=_’; exp[— il—?‘—"’—uz] Jo(su) &,(u) [022ud>2(u)— ”

(19)
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2.1. Exact Expression for the Case of Full Hits

Let us assume now that there are n groups of interfering users with K,- users in
the 1-th group (1 < ¢ < n) all having received power P;. We will use the machinery
presented above to evaluate the probability of error given that K; of the total K;
interfering users of group 1 (1 < 1 < n) cause full hits. For simplicity we assume that
a rectangular shaping waveform is employed so that we can use (4). Notice the similar-
ity of (4) for m = 1, 2 to a typical term of (16a) and (16b).

We first derive the result for two groups of users and then extend it to the general
case (n > 2). Suppose now that k, out of the K, interfering users hit branch 1 and

K~k , hit branch 2; similarly k, out of the K , interfering users hit branch 1 and K-k,
R - . . Kl -K Kz -Ko s
hit branch 2. The probability of this event is k 2 ay 2 " °, The conditional
1 2
characteristic functions ®,(u | k,,k) and ®,(u | k .k ;) take the form
= k k
@, (u |k k)= Jgla,u) " Jlau)? (20a)
and

O, (u | kyky) = Jofa,u )K’_‘:1 Jo(au )KHQ, (20b)

P; .
where a; = ry T,i =1, 2. Then we can show that

- _ — dd, (u | k. k
D, (u | kikg) = & (u | kikg) [022“ &, (u | kykg) - 2 dl vk 2) (21a)
= Jola,u )k‘ Jo(aqu )k"' [azquo(a LU )K‘_kl Jola pu )KTI‘2
+ (K -k ,)ayJ (a u)lo(a, u )K,—k,-l - Jolagu )K'ﬂ:2
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+ (Kg—k 2)G 2J1(G Py Y o(aqu )K'fk'fl cJolaqu )Kl—kl ]

N K, g Ko | 2 B Jy(a,u) g Ji(aqu)
oleat) olea) [%u U kl)alJo(alu) T (Kyky)a, Jolagu) |
(21b)
We now define
- - - d®
@, q(u) = &y(u) [0'22" oy(u) - -—-(ZE—U‘)‘ } {22a)

K.Y k. X (K, «x, =
0[k11]2 12 [k:]2 2"I"x,z(““"vkz)

and obtain that

Kia, J K J
16y Jy(a u) 282 1(02“)+ 2 ] (23)

_— K K
$,o(u) = Jolau) Jolazu) 2‘: 2 Jo(a,u) 2 Jolau) 72t
old, o\*1

For n groups of users, with K; users from group 1 causing full hits, (23) general-

izes to

B, o) = TT Jolau) (24)

i =1

2 2 Jo(a;u)+02u

i=1

[" Kia; Jy(a;u) 2}

N,T
In (19) and (24) 0} = 0f = —;)—— where N is the spectral density of the AWGN and

/ P
T is the duration of a data bit, and § = —23T, where P, is the power of the

desired signal. Furthermore, if in (18) and (24) we replace u by ———u—P-—— we obtain
2T
2

o0 2 n _ K|
Pc(Kl’K%"'iKr}):j;) eXD[—-z—E—buTﬁ;]Jo(u)‘HJo(ai")
s =1
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n - J a: u
2 [t } 1(—s )+ u du,
i=1 2 Jo(@u) 2E, /N,
(25)
where @; = A / P—’ fort =1,2,...,n,and E; = P, T is the energy per bit of the
0

desired signal.

Equation (25) provides an exact expression for the conditional error probability
given that K; users cause full hits from the s1-th group (1 < ¢ < n) of users with
received power P;. >To compute the infinite integral in (25) we need to truncate it and
thus (25) actually provides an approximation whose accuracy improves at the expense of
increasing computational effort. Nevertheless, the computational effort grows linearly

with n the number of groups of users with identical recieved power; actually it grows

n
linearly with 37 K.

i=1
If we relax the assumption that the shaping waveform is rectangular, we should use
(3) instead of (4). This implies that the delay 7, of each interfering user is now involved
in all computations. The derivation of the new results is facilitated if we realize that a;
(and @;) is now replaced by a; [R 4(7) + R‘b(r)]/T and expectations with respect to
r~U [0, T ] should be evaluated. Due to the independence assumptions these expecta-
tions can pass inside the products and the terms raised in the various powers. The final

result is still provided by (25) if we replace J(a; u ) and J,(@; u ) by

E,{J0 [E,- Rw(r)-'-R’b(T)u]} and E,{J1 [?i,- R¢(T)+R¢(T)u] } (26)

T T

respectively.
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Finally, to obtain the total probability of a bit error (BER) we must average the

conditional error probability with respect to the distribution of full hits:

_ 1 1?2 Rn
P(K,K,....K,)= % ¥ " % pK,K, ... ,K,)P.(K,K,,...,K,),
K,=0 K ;=0 K, =0
(27)
where
n }—(_‘ K 7 _
p (K Ks . K)) =TI {[1{ ] Py (1-P, ) 7K } (28)
i=1 '
Equations (26), (27), and (28) can be combined to give the final result
o u? n R
PR, .. . K)=] e p[ U ]Jo(u)n 1Py +Py To@ ) |
i=1
" I_(i a; Py Jy(a; u) + u d
1 2(1-Py +P; Jo(T; u )] 2B /N,
(29)

Notice that, as was discussed above in connection with equation (25), the computa-

tional effort for the final expression about the error probability of FH/SSMA cited in

n
(29) still grows linearly with 21_\7,-, where n is the number of groups of users with
1 =1

identical powers and K; the number of users with the same power in the i -th group.
2.2 Exact Expression for the Case of Full and Partial Hits

Suppose now that of the K; users, K; ; users cause full hits and K; , users cause
partial hits. We are interested in evaluating the overall probability of a bit error in this

case. As in (27), we now write
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o _ K, RI"KI./ K, K,-K, ,
P (K K, ..., K))= Y >y by p(KL,,K,'p,...,K,,,f,KM,)
K1J=0 Klpao K,.'/=0 K",=0

PoKy Ky, o Kny K, ,)

(30)

where

1 =1

n ) K ) (R-K K, K R
i 0y ' ' KI_KI 8y
p(K,; . K,p, .., K,; K;,)=TI [K,',f [ K, if ]Pf 1Py (1-Py) g K,

P

(31)

and P,(K,; . K,,,..., K, s .Ky,) the conditional probability of error given the

number of users who cause full and partial hits, will be computed next.

Suppose that from the K; , users of the i-th group causing full FH hits, K,
cause full tone hits to branch 1 (of the BFSK demodulator), K,-ff' cause partial tone hits
to both branches, and K; ; —K;ff —K,-t,’ cause full tone hits to branch 2. Then since the

probabilities of occurence of these events are 1/4, 1/2, and 1/4, respectively, the compo-~

site event occurs with probability

K, K, ; -K;' K.y K, f K. -K'[-K.f
g JoR L 1 1 : (322)
K; N K; N 4 2 4

Notice that when a partial FH hit occurs, there are two possible outcomes: (i) that
the interference present at branch 1 is of the form (5a) for m = 1, while the interference
present at branch 2 is of the form (5b) for m = 2, or (ii) the interference at branch 1 is
as in (5b) and at branch 2 is as in (5a). These two cases occur with equal probability.
Under the assumption that the shaping waveform is such that R‘(,(‘r) = R (T -7) (which

is trivially satisfled for a rectangular shaping waveform) and since the delay 7 for each
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interfering user is uniformly distributed in [0, T], and so is T - T; » the interference
terms of (5a) and (5b) take the same values with equal probability (have identical statis-
tics). Therefore, we do not distinguish between the aforementioned cases (i) and (ii), and

consider case (i) only.

Also suppose that from the K; ,p users of the t-th group who cause partial FH hits,

K,

i p cause partial tone hits with interference of the form (5a) to branch 1 and the

remaining K; " K,-',p cause partial tone hits of the form (5a) to branch 2. This event

occurs with probability

K;, _K
, o v 32b
[K,-., ] (s20)

since the individual cases have each probability 1/2. Indeed, we ought to have dis-
tinguished between the cases that the interference present at branch 1 (or branch 2)
takes the form (5a) or (5b). However, since as discussed above, the interference terms in
(5a) and (5b) take the same values with equal probability (have identical statistics), we

consider (5a) only.

Under all the above assumptions the conditional characteristic functions of the

interference present at branches 1 and 2 due to the i-th group of interfering users

become
KI Kl:/’ Ki,,P ,
@, (v | K g Kip D)= Jolaiu) 11 Jo[aiRw(Tj)“ 'Hjo[aiR¢(Tl )U) (33a)
and
_ Y .,
@, (u | K Kip D=Joayu) " "/ "/'Hjo(aiRw(”j)“]' II Jo(aiRw(Tk )u),
- j=1 k=1

(33b)
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where K, ; = (K,-,/ ,K;ff ,K,-tf' ) K, ( ; p,K,-fp], and 7 is the vector of the
delays of all the interfering uses involved.

d 32,‘

Next we compute 31‘2,,- = <—bl',- [02211 <_1>2,,-- ], where the argument of the &’

s is (Kg,; AKG » D), and take the expectation with respect to all the mutually independent

time delays involved in (33a) and (33b) to obtain after several manipulations

— _Kx'! K,:/'
Q0:(u | K p K )= Jola;u s Ko [Er{Jo[aiRw(T)“)Jo(aiRw(T)“] }]

- K'.,
E,{Jo(a,-R,,,(r)u]}}
E, Jo[a,'Rd,(r)u]Jl(a,-Rw(r)u]}

; Er{ Jo(aiR¢(r)u]JO(a;R¢(T)u] }

E,{J,(a,-R,,,(r)u]}
E,{Jo(a,-Rw(r)u]}

Ji(a; u)
+ (K ; -K; K;/)'m -

-

ofu +K;'; a

+ (Kt P _Ki ’,p )ai

(34)

Subsequently, we average (34) with respect to the distribution of (32a)-(32b) to obtain

_ K., (Kis ) K., -K, a/_Kf of K, -K'-K.j
e e T !

K,:/=0 i,/ K,,]I =0
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K, 7 Ki P 1 Kl:’ 1 Ks.? _Kl’.P -
K,?=O K,'I’P -E. -2_ ‘q,l,Z,l' (u | Kl',f ;K;' P )

= [_;.Jo(a,- u) + %E,{ Jo[a;R¢(r)u]J0[a;R¢(T)u]}]K"/ [E,{ Jo(a,'R,p(T)u) }}

Ly + %Er{fo[aiRsb(T)"]Jl[“iRw(f)"]}

K, ,

: 02211 +Ki,f a;
%Jo(a,- u)+ %ET{JO[aiRw(r)u]Jo(a,-R,p(T)u]}

K., o E,{Jl(aiR¢(r)u]}
2 E,{JO(R,,,(T)u]}

Equation (35) can be easily generalized to the case that n groups of users with

+ (35)

[K,-J K, ] users each (of received power P;, i =1,2, . . ., n) are interfering with the

desired signal’ s reception. The result is

[o0} 2
Pe (Kl,f rKl,p) oo ;Kn,j rKn,p ) = L exP[—EE:‘T\,‘:] JO(" )Ql(u)duv (36)
where
n 1 1 K'J K, ,

@y (u) = L@ u)t=EQ Jo| @R n)u| o[ @ R y(7) ELJo|%R
1 (u :'I=11[2 ol@; u > {o(a w(ru] o(a ¢(Tu]}] [ {o(a ,[,(r)u]}}

. %Jl(a,-u)+§E,{Jo(a,-R‘b(r)u)Jl(aRq,(r)u]}

SiK @

i _;_JO(-G—‘_u)_*__;.E,{JO[ER‘(,(T)u]Jo(aiR¢(T)u]}'. |

-
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K3 E,{J,(m.p(r)u]} )
+ > 2BV, | (87)
E,{Jo[a}Rw(r)u]}
Finally, in order to obtain P, [K,,Kz, ..., K, ] we combine (31), (32), and (37). The
result is
= _ 0 2 _
P, (KJQ ..., K, ) = exp[~2—E:i7N;] Jo(u )@ (u)du, (38)
where
3,)=118 1-P, +P, | L@ u)+LElJ.(a R ALY
1) ‘r=11{ s Py [2 o 4 )+ { o[ %R ynu)Jo(a .,,(r)u]}}
k—l
+ P, E,{JO(E}R,I,(T)u]}:'}
R %JI(E,-u)+—;—E,{JO[E,-R.,,(r)u]JI(E,-Rw(T)u)} +P, -%-E,{J,(E,-R,AT)u]}
YK
2 1-Py +P; -;-Jo(a,.u)+%E,{ JO[E,-Rlb(r)u]JO(E}Rw(T)u]} +P,E,{Jo(a,- R¢(T)u}
L
(39)

U
+ ———
2Ey /N, ]
Notice that in comparing (39) to (29) we observe the required computational effort

n
still grows linearly with Y7 K, ; however, (39) takes longer to compute due to the more

i=1
complicated expressions involved.

2.3. Approximations

In order to derive convenient approximations to (26) for the case of full hits and to

(38)-(39) for the case of full and partial hits we use the results of (Geraniotis, 1986] for
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noncoherent hybrid FH-DS/SSMA systems. In particular, we set the signature sequences
employed to be equal to 1 for all time instants, and the number of chips per bit N to be

equal to 1 in order that we obtain an equivalent FH/SSMA system {rom the hybrid sys-

tem.
For binary FSK with noncoherent demodulation and full hits only the result is
-1 ' -
P, [KI,KL,,...,K,, ]=-;—exp —i— [%g:—] +[-1n—2—¢i+m—:—]ié1]{ia’.2 , (40)

T .
and Fc can be obtained from (27), (28), and (40). In (40) m, = _Tl_z'-!;) R‘f (r)d T and

!

T
1 .
my, = —T—2J; R¢,(T)R W7 d 7, they take the values 1/3 and 1/6, respectively, for a rec-

tangular shaping waveform.

Notice that the computational effort required for evaluating P, (K ,K,, ..., K,)

n
from (40) via (27) and (28) grows linearly with J] K.

i =1

When both full and partial hits are accounted for, we have

P,[Kl,,,K,,,,...,K,,,,,K,,_,)=
1 ' -
1 1 [(2E ) » my My my 2
= — - = -4+ 1K —K; : 41
1| () 25 e | ”

Finally, P, can be obtained from (30), (31), and (41).

Notice that the computational effort required for evaluating Fc (I_(-I,I—{-m Ce Kn)

n
from (41) via (30) and (31) grows linearly with T K;?.

=1
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3. Error Probability for M -ary FSK FH/SSMA Systems

Unfortunately the technique used in Sections 1.1 and 1.2 above cannot be extended

to systems employing M -ary FSK modulation with noncoherent demodulation to pro-

vide accurate approximations. However, tight upper bounds to
M

PC(M)(KI,KQ,..-,K,;], Pe( )(Kl,f rKl,p:--°1Kn,/ 'Kn,p]' and

PC(M)(I?I,I—(}, ..., K, ) for the M-ary case can be obtained from the corresponding

exact expressions for the binary case using the union bound. In particular, we have

n

Tk, i}
PM(R K, .. K, ) Sa-P)™ P+ M-1)P5y (KK, ... K, )

where PC(M) denotes the error probability of a MFSK system in AWGN (no other-user

interference) and Fe M (-XI,Km C e, ]?,, ) denotes the probability of deciding in favor

of a any particular M-ary FSK symbol different than the one transmitted by the user
under consideration, when there is at least one interfering signal present [i.e., the event
“0": (K,=0,K,=0, ..., K,=0) of no users causing FH hits is excluded from the
averaging with respect to the distribution of hits; that is why the superscript O (comple-
ment of the event “0”) is used in (42)]; for the case of full hits this is given by a modified

version of (29):

K,
l—Ph +Ph [I—EM—+’AE/I—JO(E' u )] }

o 2 n
PO (K,K, ... K )= ——_|J

é K;a, Py J (G u) u
3 =1

2 . *3E, /N,
M l—Ph +Ph l—ﬁﬁ-ﬁ.]o(aiu)



Table 1

Bit Error Probability of an Uncoded BFSK FH/SSMA System

(g =100,N, =10,n =2, K, =2, P, =5 K,=2P,=1.)
Exact Gaussian Approx.
Ey /N, Upper Bound

Full/Partial  Full Hits Full/Partial _Full Hits
8 2.88 3.01 (x 1072 2.71 2.78 (x 107%) 6.37 x 1072
10 1.03 1.19 (x 107%) 0.88 0.95 (x 107%) 4.65 x 1072
12 0.69 0.79 (x 1072) 0.51 0.58 (x 1072 4.34 x 1072
14 0.52 0.69 (x 107%) 0.44 0.51 (x 107%) 4.33 x 1072
16 0.45 0.63 (x 1072) 0.41 0.48 (x 1072) 4.33 x 1072

Table 2
Bit Error Probability of an Uncoded BFSK FH/SSMA System

(g =100, Ny =10,n =2, K, =5 P, =5 K,=5P,=1.)

Exact Gaussian Approx.
E, /N, Upper Bound
Full/Partial  Full Hits Full/Partial Full Hits
8 3.98 4.29 (x 107%) 3.56 3.72 (x 107%) 1.24x107!
10 2.06 2.44 (x 107%) 1.69 1.87 (x 107%) 1.08 x 107!
12 1.52 1.93 (x 107%) 1.23 1.41 (x 1072 1.05 x 107}
14 1.31 1.72 (x 107%) 1.11 1.28 (x 107%) 1.05 x 107}

16 1.16 1.58 (x 107%) 1.04 1.21 (x 1072 1.05 x 107}



Table 3
Bit Error Probability of an Uncoded BFSK FH/SSMA System

(¢ =100,Ny, =100n =2, K,=5 P, =25,K,=5 P,=.5)

Exact Gaussian Approx.
E, /N, Upper Bound
Full/Partial _ Full Hits Full/Partial Full Hits
8 3.02 3.21 (x 107%) 2.91 3.00 (x 107%) 1.24x107
10 1.01 1.19 (x 107%) 0.99 1.08 (x 107%) 1.08 x 107!
12 0.44 0.58 (x 107%) 0.52 0.60 (x 107%) 1.05 x 107!
14 0.23 0.33 (x 107%) 0.40 0.47 (x 107%) 1.05 x 107!
16 0.13 0.19 (x 1079 0.34 0.40 (x 107%) 1.05 x 107!
Table 4

Bit Error Probability of an Uncoded BFSK FH/SSMA System

(¢ =100,N;, =10,n =3, K,=5 P, = .25, K=5 P,= .5 K;=5 P;=1.)

Exact Gaussian Approx.
Ey /N, Upper Bound
Full/Partial Full Hits Full/Partial Full Hits
8 4.26 4.62 (x 107%) 4.02 4.01 (x 107%) 1.71x107"
10 2.25 2.67 (x 107%) 1.98 2.09 (x 107%) 1.56 x 107}
12 1.63 2.06 (x 107%) 1.43 1.58 (x 1072%) 1.53 x 107!
14 1.37 1.80 (x 107%) 1.25 1.39 (x 1079 1.53 x 107!

16 1.22 1.64 (x 107%) 1.16 1.29 (x 107%) 1.53 x 107"



Table 5
Bit Error Probability of an Uncoded BFSK FH/SSMA System

(g =100,N, =100n =1,K,=4,P,=1.)

Exact Gaussian Approx.
Ey /Ny Upper Bound
Full/Partial  Full Hits Full/Partial Full Hits
8 3.14 3.30 (x 107%) 2.87 2.95 (x 1072 6.37x1072
10 1.34 1.54 (x 107%) 1.06 1.15 (x 1079 4.65 x 1072
12 0.96 1.21 (x 107%) 0.69 0.79 (x 1073 4.34 x 1072
14 0.89 1.17 (x 1072) 0.64 0.73 (x 107%) 4.33 x 1072
16 0.84 1.15 (x 107%) 0.61 0.71 (x 1073) 4.33 x 1072
Table 6
Bit Error Probability of an Uncoded BFSK FH/SSMA System
(¢g =100, Ny, =10,n =1, K, =4, P, =2.)
Exact Gaussian Approx.
Ey /N, Upper Bound
Full/Partial  Full Hits Full/Partial  Full Hits
8 3.85 3.95 (x 107%) 3.26 3.35 (x 1072 6.37x1072
10 2.17 2.32 (x 107 1.49 1.590 (x 107%) 4.65 x 1072
12 1.91 2.09 (x 107%) 1.15 1.28 (x 107%) 4.34 x 1072
14 1.90 2.09 (x 1072) 1.11 1.23 (x 1079 4.33 x 1072
16 1.89 2.09 (x 107%) 1.09 1.21 (x 1072) 4.33 x 1072



Table 7

Symbol Error Probability of an Uncoded MFSK FH/SSMA System

(M =32,¢g =100, N, =10,n =2, K, =2, P, =5K,=2P,=1.)

Union Bound

Gaussian Approx.

Ey, /Ny E,/Ng Upper Bound
F/P Hits F Hits F/P Hits F Hits
2.00 8.99 2.96 3.12 (x 107 1.14 1.14 (x 107Y) 4.52 x 107!
3.00 9.99 1.07 1.22 (x 107 0.52 0.52 (x 107Y) 3.43x 107!
4.00 10.99 3.03 4.47 (x 107%) 1.80 1.81 (x 107%) 2.39 x 107!
5.00 11.99 0.69 2.05 (x 107%) 0.45 0.46 (x 107%) 1.52 x 107!
6.00 12.99 0.18 1.48 (x 107%) 0.82 0.85 (x 107%) 0.92 x 107!
Table 8

Symbol Error Probability of an Uncoded MFSK FH/SSMA System

(M =32, ¢ =100, N, =10,n =2, K,=5 P, =5 K,=5 P,=1.)

Union Bound

Gaussian Approx.

Ey, /Ny E,/N, Upper Bound
F/P Hits _F Hits F/P Hits _F Hits
2.00 8.99 2.99 3.37 (x 107 1.17 1.17 (x 107Y) 4.87x107!
3.00 9.99 1.10 1.47  (x 107}) 0.54 054 (x 107 3.85x 107}
4.00 10.99 0.32 068  (x107%) 1.95 1.98 (x 107%) 2.87 x 107}
5.00 11.99 0.88 430 (x107%) 0.54 0.55 (x 107%) 2.06 x 107!
8.00 12.99 0.35 360 (x107%) 1.17 125  (x107%) 1.50 x 107!



Table 9
Symbol Error Probability of an Uncoded MFSK FH/SSMA System

(M =32,9g =100, N, =10,n =2, K, =5 P, =25 K, =5 P,=15)

Union Bound Gaussian Approx.
Ey, /Ny, E,/N, Upper Bound
F/P Hits F Hits F/P Hits F Hits
2.00 8.99 2.96 3.14 (x 107 1.15 1.15 (x 1071 4.87 x 107!
3.00 9.99 1.07 1.22 (x 107 0.52 0.52 (x 107 3.85 x 107!
4.00 10.99 2.00 420 (x107%) 1.81 1.83 (x 1072 2.87 x 107!
5.00 11.99 0.63 1.57 (x 107%) 0.45 0.46 (x 107%) 2.06 x 107!
6.00 12.99 1.12 8.08 (x 107%) 0.77 0.79 (x 1073) 1.50 x 107!
Table 10

Symbol Error Probability of an Uncoded MFSK FH/SSMA System

(M =32,¢q =100, N, =10,n =2, K,=10,P,= 5 K, =10, P, =1.)

Union Bound Gaussian Approx.
Ey/No E,;/N, Upper Bound
F/P Hits F Hits F/P Hits F Hits
2.00 8.99 3.04 3.80 (x107) 1.21 1.22 (x 107Y) 5.41x107!
3.00 9.99 1.14 1.88 (x107%) 0.58 0.58 (x 107H) 4.49 x 107
4.00 10.99 0.36 1.08 (x 107 0.22 0.23 (x 107 3.62x 107"
5.00 11.99 1.22 8.05 (x 1079 0.68 072  (x 1079 2.89 x 107}

6.00 12.99 0.65 714  (x107%) 0.18 020 (x107%) 239 x107



Table 11

Symbol Error Probability of an Uncoded MFSK FH/SSMA System

(M =32,¢g =100,N, =10,n =1, K,=4P,=1.)

Union Bound Gaussian Approx.
Ey, /Ny E,/N, Upper Bound
F/P Hits F Hits F/P Hits F Hits
8 14.99 0.16 2.27 (x 107%) 0.43 0.51 (x 107 4.72 x 1072
10 16.99 0.14 2.24 (x107%) 0.45 0.58 (x 107%) 4.33 x 1072
12 18.99 0.13 2.22 (x 1072) 0.91 0.13 (x 107%) 4.33 x 1072
14 20.99 0.12 2.20 (x 1072) 0.35 0.50 (x 1079) 4.33 x 1072
16 22.99 0.11 2.19 (x 1072 0.19 0.28 (x 107%) 4.33 x 1072
Table 12

Symbol Error Probability of an Uncoded MFSK FH/SSMA System

(M =32,9g =100,N, =10,n =1,K,=4P,=2)

Union Bound Gaussian Approx.
Ey /Ny E,/N, Upper Bound
F/P Hits F Hits F/P Hits F Hits
8 14.99 0.50 4.21 (x 107%) 0.45 0.54 (x 107%) 4.72x1072
10 16.99 0.50 4.24 (x 107%) 0.16 0.20 (x 107%) 433 x 1072
12 18.99 0.50 425 (x107%) 0.71 0.89 (x 107%) 4.33 x 1072
14 20.99 0.49 425 (x 1079 0.41 0.52 (x 107%) 4.33 x 1072
16 22.99 0.49 425 (x 107 0.28 0.37 (x 107%) 4.33 x 1072



Table 13a
Maximum Number of Interfering Users Tolerated at a Codeword Error Probability
of P by a Reed-Solomon Coded BFSK FH/SS System

(¢ =100, N, = 10, E; /N, = 16 dB; all interfering users have relative power P, )

P, =1 P,=5

Pg RS Code Py Gauss Exact Gauss Exact Bound

F/P F/P F F/P F/P F

100® (32, 16) errors  .026 260 251 201 36 38 30 2
10 (32, 16) eras. .058 436 398 326 77 72 61 5
10% (32, 8)errors  .039 222 207 168 39 34 28 3
100% (32, 8) eras. .105 551 479 406 116 95 82 9
107 (32, 16) errors  .0146 183 185 145 20 23 18 1
107 (32, 16) eras.  .0402 342 320 259 54 53 44 . 3
100 (32, 8) errors  .0244 143 134 110 22 20 16 1

10 (32, 8) eras. 0826 439 389 325 88 74 63 7



Table 13b
Maximum Number of Interfering Users Tolerated at a Codeword Error Probability
of Pp by a Reed-Solomon Coded BFSK FH/SS System

(¢ =100, N, = 10, E, /N, = 16 dB; all interfering users have relative power P, )

P,=1. P, =2

Pg RS Code P, Gauss Exact Gauss Exact Bound

F/P FP F F/P F/P F

10 (32, 16) errors  .026 16 11 8 9 5 4 2
10 (32, 16) eras. .058 37 26 21 21 12 11 5
10°® (32, 8) errors .039 20 14 12 12 7 7 3
10° (32, 8) eras. .105 63 44 38 39 24 23 9
10°° (32, 16) errors  .0146 8 6 4 5 3 2 1
10° (32, 16) eras.  .0402 25 17 14 14 8 7 3
10°® (32, 8)errors  .0244 11 8 7 7 4 4 1

10°° (32, 8) eras. .0826 47 34 29 30 18 17 7



Table 13¢
Maximum Number of Interfering Users Tolerated at a Codeword Error Probability
of Pp by a Reed-Solomon Coded BFSK FH/SS System

(¢ =100, N, = 10, E;, /N, = 16 dB; all interfering users have relative power P )

P, =4 P, =10.

Pg RS Code Py Gauss Exact Gauss Exact Bound

F/P F/P F F/P F/P F

10°%® (32, 16) errors  .026 6 4 4 5 4 4 2
100® (32, 16) eras. .058 16 10 11 12 9 10 5
10 (32, 8)errors  .039 9 6 6 7 5 6 3
10 (32, 8) eras. .105 20 18 21 24 17 20 9
10 (32, 16) errors  .0146 3 2 2 3 2 2 1
10° (32, 16) eras.  .0402 10 7 7 8 6 7 3
10°° (32, 8) errors  .0244 5 3 3 4 3 3 1

10°° (32, 8) eras. .0826 22 14 15 18 13 15 7



Table 14a
Maximum Number of Interfering Users Tolerated at a Codeword Error Probability
of Pp by a Reed-Solomon Coded BFSK FH/SS System
(g =100, N, =10, Ey /N, =16 dB)

(half of the interfering users have relative power P, and the other half have P )

p1=.5,P2=1 P1=1,P2=2

Pg RS Code Py Gauss Exact Gauss Exact Bound
F F/P F F F/P F
10 (32, 18) errors  .026 19 18 15 10 7 6 2
10 (32, 16) eras. 058 44 40 33 25 17 16 5
10°® (32, 8) errors .039 23 21 17 14 10 9 3
10 (32, 8) eras. 105 73 62 54 44 31 29 9
10°% (32, 16) errors  .0146 11 11 8 5 4 3 1
10°® (32, 16) eras.  .0402 30 28 23 17 11 10 3
10 (32, 8) errors  .0244 13 12 10 8 5 5 1

10°% (32, 8) eras. .0826 55 47 41 33 24 21 7



Maximum Number of Interfering Users Tolerated at a Codeword Error Probability

Table 14b

of Pp by a Reed-Solomon Coded BFSK FH/SS System

(¢ =100, Ny =10, E; /N, =16 dB)

(one third of the interfering users have relative power 1—51, one third have Fz» and one

third have P )

P=1,P,=5 P,=1 P,=5 P,=1, P,—
Pg RS Code Py Gauss Exact Gauss Exact Bound
F F/P F F F/P F
10 (32, 16) errors  .026 29 26 22 14 11 8 2
10°® (32, 16) eras. .058 65 59 47 32 24 20 5
10 (32, 8)errors  .039 34 30 25 17 14 11 3
100 (32, 8) eras. 105 104 89 77 55 41 38 9
107 (32, 16) errors  .0146 17 16 11 8 5 5 1
10°° (32, 16) eras.  .0402 44 41 32 22 17 14 3
10 (32, 8)errors  .0244 20 17 14 10 8 7 1
10° (32, 8) eras. .0826 79 68 59 41 32 29 7



Table 15
Maximum Number of Interfering Users Tolerated at a Codeword Error
Probability of Pr by a Reed-Solomon Coded MFSK FH/SS System

(M =32, ¢ =100, N, = 2, E; /N, = 16 dB; all interfering users have relative power P )

P, =5 P, =1. P,=2.

Pg RS Code P, Union B. Union B. Union B.  Bound

F/P F F/P F F/P F

10® (32, 16) errors .13 1208 204 186 17 34 9 9
10 (32, 16) eras. 20 1587 317 356 38 77 20 22
10° (32,8)errors  .184 1428 212 210 25 51 13 14
10° (32, 8) eras. 524 1897 400 487 69 138 36 490
10 (32, 16)errors .0728 912 149 111 7 19 5 5
10 (32, 16) eras.  .201 1463 259 264 26 53 13 14
10 (32, 8)errors  .122 1169 157 139 15 32 8 8

107 (32, 8) eras. .413 1736 344 400 54 108 28 35



Table 16

Maximum Number of Interfering Users Tolerated at a Codeword Error

Probability of Pz by a Reed-Solomon Coded MFSK FH/SS System

(half of the interfering users have relative power P, and the other half have Pz)

(M =32 ¢ =100, N, =2, E;,/N,=16 dB)

(one third of the interfering users have relative power P,, one third have P,, and one third have P,

P,=5P,=1. P,=1P,=2. P,=5P,—1. P,=2.
Pg RS Code P, Union B. Union B. Union B. Bound
F/P F F/P F F/P F
107%  (32,16) err. 13 303 35 59 11 89 17 9
107%  (32,16) eras. .29 543 75 131 26 194 40 22
10° (32,8) err. 194 347 49 83 17 123 26 14
102 (32,8) eras. 524 739 129 221 48 320 71 49
107 (32,16) err.  .0728 193 19 33 6 50 10 5
10°° (32,16) eras.  .201 419 53 92 18 137 28 14
10°  (32,8) err. 122 239 31 53 11 79 17 8
10°°  (32,8) eras. 413 621 103 175 37 254 56 35
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" SR o
~TI-Pyy= - exp

u? J u d
_—— (4 )————du.
i= 2F, /Ny | "% '2E,/N, (43)
where E, denotes the energy of each M -ary symbol. Equation (43) was obtained by fol-

lowing similar steps as for the derivation of (29); the main difference lies in that: (i)

n K, -K
instead of TT k|2 7 ( we used
1

§==1

n K; Y (K;-k; . k, ) k' 9 K, -k -k,
()0 )] (3] (4)

where k; denotes the number of the interfering users--out of the K; uses causing full FH
hits from a total of ]—{_,' in the 7-th group--that cause full tone hits only to the branch of
the MFSK demodulator carrying the desired signal and k,-' denotes the number of
users--again out of the K; ones--causing full tone hits to the particular branch of the
MFSK demodulator that we compare to the branch carrying the desired signal; and (ii)
in averaging (25) with respect to the distribution (44) we excluded the event

(K,=0,K,=0, ..., K,=0); this resulted in subtracting the last term in (43). This last

YK E
term can be put in the simpler form - (1 - Py )™ %exp[—zj\jv ] by using the fact
0

(refer to (7, pp. 717, 6.63.4])

foooexp(—u ) Jo(au Yudy = —;-exp[—aTzl (45)

for any ¢ > 0. Finally, by combining (42) and (43) we obtain the result
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n

_ pay4
11"')Kn]S(1—Ph)'=l

(:UI
&
—_
~|

00 2 n K;
+HM-1) [ exp[——2-E-3‘7N_]Jo(u )1 [1~P,, +P, [1—%+-§4—J0(a,. u )] J
8 0 1

i=1
K&}thl('d}u)

M{1-P,+P, | 1- 2+ 2 7 (&
[ h + h[l M+MJo(a,u)]

. u
X +2E’8/N0 du.

1=1

(46)

We can also obtain an equation that provides P, y (K'I,Kz, ..., K, ) for the

case of full hits and partial hits. This is derived in a similar way as in (38)-(39). Instead

of (32a) {(binary case), we now use

[ ) s (™ ) ) ()

rrt
4 ] K. -K' K. -K';

1-——

IYE (47a)

where K,-,f is the number of users in the 7-th group, out of the total K; that cause full
FH hits; out of them, K,-'J users cause full tone hits to the branch of the MFSK demo-
dulation that carries the desired signal, Kitf" users cause full tone hits to the other
branch of the MFSK demodulator, that we compare the desired branch with, K,-',/' users
cause partial tone hits to both branches, and the remaining
K ; - Ki',f - K,-'_f' - il_f" users cause no tone hits to either of the two branches

under consideration. Similarly, instead of (32b) we now use

! | t P K', _K‘: _Kl’nP’
Kip ) [ K -Kiy ’ P (47b)
K; P K_i P

where K; , is the number of users in the :-th group, out of the total K;, that cause
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partial FH hits; out of them K; f, users cause partial tone hits to the branch that carries
the desired signal, K; :,I users cause partial tone hits to the branch compared with the
’

: P r s 4 s
desired one, and the remaining K; , ~ K; , - K; , users cause no tone hits to either of

the two branches under consideration.

The expression for P—C(M )(ITI,I?W C, K,, ) is now given by

F,‘M’[XI,ITQ, ...k, ] —@a-P, )E’?‘.

p_ M |- L.
¢ 2 2N,

2

+ (M—l)'fo exp[—ﬁv—;] Jo(u)®; (u)du, (48)

where & (u ) takes the form

_ n
®(u) = TTA (u:P; P, R R M7 )5

i=1

P, [1\; J (T u )+%E,{JO[E;RV,(T)1¢)11[@ R¢(T)u] } ]+P,, ﬁE,{ Jl[a,-Rw(r)u}

2

YK, o

=1

A(u:P; P, R R, MT)

u
A o

where
A (u 'Pf ,Pp ,R w,R w,M;a-" )=1—Ph

+P; [1-?‘#%%@ u )+X/I2_2_ET{ JO(E,- R ¢(r)u] JO[E,- R ,j,(‘r)u) }

+P, [1—%+—:7E,{ JO(E,- R ,,,(f)u) } } (50)

We can also use the results of (Geraniotis, 1986] for hybrid FH-DS/SSMA systems

with M -ary FSK modulation in the same way we did for binary FSK systems in Section
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1.3 above. The result which corresponds to (40) is

M-1fM-1 m -1
P,‘M)[Kl,Kz, ..., K, ]: > [ ](—1) “exp  m 2E,
mel L ™ m +1 2(m +1) N,

my mé, ] N =2
|+t 2K~a-
M M2 = | Bhat }

(51)
and the result which corresponds to (41) is

Pe(M)(KL, K, o K, Ky, )=

MafM-1),_;ym+1 2F, ™
| el 5

= m +1 2(m +1)

n m m' m
t X [T}+ ; ]K,-,, +—CK; , }5"2

i=1(
(52)

Then the error probabilities P,(M)(ITI,Rz, ..., K, ) can be obtained from (27), (28),

and (51) for the case of full hits and from (30), (31), and (52) for the case of full and par-

tial hits.

The computational effort required to evaluate PC(M)(I?,,Km ..., K, ) grows

n n
linearly with ) K; when (46) or (48)-(50) is used, with HK when (51) is used, and

t=1 i=1

n
with T K;? when (52) is used.

f=1
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4. Numerical Results

(i) Uncoded Binary FSK Case

We start the presentation of numerical results with binary FSK FH/SSMA systems.
Tables 1-6 illustrate the different expressions of the probability of error of these systems
for different numbers of interfering users and relative power levels with respect to the
receiveq power of the user under consideration. In all tables ¢ denotes the number of
frequencies available for hopping, N, the number of bits per dwell-time (hop), n the
number of groups of interfering users with the same relative power, X,- the number of
users (all with relative power P;) in the ¢-th group, and E; /N, the bit signal-to-noise

ratio.

In each table there are two columns of data under the headings ”"Exact” and
" Gaussian Approximation”; they refer to the cases that full/partial hits and full hits
only were taken into consideration in deriving the expression for the probability of error
of the BFSK FH/SSMA system, which relies on the integration of the characteristic
functions of the interference in the two branches of the BFSK demodulator, and in
deriving the approximation based on the Central Limit Theorem. The expressions for
full/partial hits are provided by equations (38)-(39) for the exact error probability, and
by (30), (31), and (41) for the Gaussian approximation. The expressions for full hits only
are provided by equations (29)--which serves as a tight upper bound for the error
probability--and by (27), (28), and (40) for the Gaussian approximation. All these
expressions take into consideration the different power levels of the interfering users. The
infinite integrals involved in the “exact’ expressions were truncated to finite integrals
from O to 35 and a 700-point Simpson rule was employed; these values are sufficient for

limiting the truncation and integration error to 107° or less for the range of Ey /N, of
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interest [i.e., 8 - 16 dB]. Finally, the last column of each table provides the hard upper
bound on the error probability obtained in {1] for FH/SSMA systems in AWGN and also
used in (6] for FH/SSMA systems in partial-band noise jamming; this upper 'bound is
insensitive to the power levels of the interfering users; it assumes that hits from other

users cause errors with probability 1. It takes the form
P, < P.*-P)F + [1—(1—P;. ) ] (53)

where M = 2 in the binary case, PC(M) is the error probability for an MFSK FH/SS sys-

tem in AWGN (and no other-user interference), P, is the probability of a hit defined in

n
Section 1, and K = 33 K; is the total number of interfering users.
i=1

Tables 1 to 4 show that, as the number of interfering users with relative power
smaller than 1 increases, the difference between the hard upper bound and the exact
expressions for the error probability becomes unacceptably large, filnally reaching a
difference of two orders of magnitude in the last entry of Table 3. However, the
difference between the expressions based on the Gaussian approximation and the exact
expressions remains relatively small over a wider range of values of the power levels and
number of interfering users. By contrast, in Tables 5 and 6, where the relative powers of
the interfering users are larger than or equal to 1, the difference between the hard upper
bound and the exact expressions remains within narrower limits; the same holds true for
the expressions based on the Gaussian approximation, which in this case provide slightly

more optimistic results.
(ii) Uncoded M -ary FSK Case

In Tables 7 to 12 we illustrate the performance of M -ary FSK FH/SSMA systems.

The notation is similar to that used in Tables 1 to 6 for binary FSK systems; the



27

difference lies in M, which denotes the number of frequency tones used for the MFSK
modulation, in E, /N, = log,M E, /N, being the symbol signal-to-noise ratio, and in

N, (which replaces /NV; ) as the number of M-ary symbols per dwell-time.

In each table we now present results about the probability of error in three groups
of columns; The first group is under the heading ‘“Union Bound” and has two columns:
the first which is based on equations (48), (49), and (50) provides a tight upper bound on
the error probability by taking into account both full and partial hits; the second which
is based on equation (46) assumes that the interfering users cause only full hits thus pro-
viding a less tight upper bound on the exact probability of error. The second group,
under the heading " Gaussian Approximation,” also has two columns: the first refers to
equations (30),(31), and (52) which are valid for the case of full and partial hits; the
second refers to equations (27), (28), and (51), which are also valid for the case of full
hits only. The expressions used for generating the results of these two columns take into
consideration the different power levels of the interfering users. The infinite integrals
involved in the aforementioned union bounds were truncated to finite integrals from 0 to
80 and a 1600-point Simpson rule was employed; these values are sufficient for limiting
the truncation and integration error to 10~ or less for the range of E, /N, of interest
(i.e., 2 - 16 dB)--recall that the effective signal-to-noise ratio is now log,M  times larger.
Finally, the third group contains only one column and provides the hard upper bound of

(53) (see (1] and [6}), as applied to the M -ary FSK case (M > 2).

Tables 7 to 10, which are characterized by low bit signal-to-noise ratios, establish
that, as the number of interfering users with relative power levels smaller than 1
increases, the difference between the upper bound of (53) and the tighter union bound

widens to unacceptable levels, worse than those of the corresponding binary case. By
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contrast, the Gaussian approximation remains within restricted deviations from the
union bound. These results parallel the corresponding results of Tables 1 to 4 for the
binary case. By contrast, in Tables 11 and 12 where the bit signal-to-noise ré.tios take
larger values and the interfering users have relative powers 1 or 2, the upper bound of
(53), although sometimes 10 times larger than the tighter union bound for full/partial
hits, is much closer to that than the Gaussian approximation which appears to be unac-
ceptably optimistic.

(iii) Multiple-Access Capability of Coded FH/SS and The Near-Far Prob-
lem

The last four tables, T'ables 13 to 16, provide the multiple-access capability of the
BFSK and 32-ary FSK FH/SSMA systems, respectively, which employ Reed-Solomon
error-control coding; that is the maximum number of interfering FH/SS signals with
fixed relative power (with respect to the desired signal) that can be tolerated in the
vicinity of the receiver at an error probability Pg. In all these tables the first column
gives the desired value of PE, the codeword error probability (or the packet error proba-
bility if one codeword per packet is used) and the second column provides the total
number of symbols per codeword, the number of information symbols per codeword of

the RS code, and the type of decoding: errors or erasures decoding.

In Tables 13a - 13c and 14a - 14b the third column provides P, , the bit error pro-
bability of the uncoded system that corresponds to the particular Pg of the coded
system--here we upperbounded the symbol error probability of the uncoded system by 5
times its bit error probability (5P, ) since 5 BFSK symbols are transmitted in each
Reed-Solomon symbol. The remaining 7 columns of Table 13a provide the multiple-

access capability as predicted by the Gaussian (full/partial hits) approximation, the
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exact error probability of (38)-(39) [full and partial hits] and of (29) [full hits only], and
the upper bound of (53) for two distinct values of the relative powers: P, = .1, and .5
(all the interfering users have the same relative power). This is repeated in Tébles 13b
for P, = 1. and 2. and in Table 13c for P, = 4 and 10. As indicated by the results for
Pl =1 the upper bound is considerably pessimistic with respect to the exact value of
the multiple-access capability--almost 5 times smaller for most cases, whereas the Gaus-
sian approximation, although optimistic, is up to 30% larger than the exact value. For
P, = 2 the exact value is almost 3 times larger than the bound and less than 2 times
smaller than the Gaussian approximation. Regarding the near-far problem, we observe
that the multiple-access capability of the BFSK decreases considerably as the relative
power of the interfering users increases from .1 to .5 and then to 1, 2, 4 and 10. Simi-
larly, in Tables 14a and 14b we provide the multiple-access capability when the interfer-
ing users have two (in Table 14a) and three (in Table 14b) distinct relative power levels:
specifically, results for (PI,P_2)=(.5,1.) and (1.,2.) are presented in Table 14a and
results for (P,,P,P,) = (.1,.5,1.) and (.5,1.,2.) are presented in Table 14b. Again the

near-far problem of FH/SSMA becomes evident from these results.

In Table 15 the third column gives P, , the symbol error probability of the uncoded
system that corresponds to the particular Pg of the coded system; the remaining 7
columns provide the multiple-access capability as determined by the union bound of
(48), (49), and (50) [for full and partial hits| and (46) [for full hits only], and the upper
bound of (53) for three different relative power levels .5, 1, and 2 (all interfering users
have the same relative power level). These results indicate that the upper bound gives
very pessimistic results, which can be 120 times smaller (for the parameters considered)

than those obtained from the more accurate union bound. The Gaussian approximation
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was not included here because it gives overly optimistic results. Again the near-far prob-
lem manifests itself in that the multiple-access capability decreases considerably when
the relative power of the interfering users increases from .5 to 1 and then to 2. rIn Table
16 we show the multiple-access capability for the situations that the interfering users
have two or three distinct relative power levels, in particular for the cases that
(P,,P;)=(5,1.)and (1.,2.) and (P, P,P,) = (.5,1..2.). Again the near-far problem

manifests itself in these cases.
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5. Conclusions

In this paper we presented a method for the accurate evaluation of the probability
of error in uncoded binary and M-ary FSK FH/SSMA systems. In the binaryv case we
provided the exact expression (an arbitrarily accurate approximation) for the bit error
probability of the FH/SSMA system based on the evaluation of the characteristic func-
tions of the envelopes of the two branches of the BFSK demodulator; both full and par-
tial hits were taken into consideration. Furthermore, a tight upper bound on the exact
express'ion for the error probability was developed by considering full hits only. Both
the exact expression and the tight upper bound based on full hits take into consideration
the different power levels of the interfering users. We can improve their accuracy at will,
while the required computational effort remains linear in the number of interfering sig-
nals. In addition to these results, the Central Limit Theorem (CLT) was used to provide
two approximations to the error probability: one for the case of full hits only, and one
for the case of full and partial hits; these approximations maintain the desirable feature
of taking into consideration the power levels of the interfering users, while at the same

time being easier to compute.

We established that the upper bound on the error probabilty of BFSK FH/SSMA
systems developed in [1] and widely used in the literature becomes unacceptably loose,
when compared to the exact results as the number of interfering users with relative
powers smaller than or equal to 1 increases. By contrast, the approximations based on
the CLT, termed Gaussian approximations, remain tight--relatively close to the exact
results--for a wide range of numbers and power levels of interfering users. This implies
that the multi-access capability of the FH/SSMA systems is in fact larger than originally

believed based on the use of the aforementioned upper bound. We also showed that the
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multiple-access capability of Reed-Solomon coded FH/SSMA systems is considerably

larger than it was thought previously.

Similar results were obtained for the M -ary FSK case. In this case, tight upper
bounds on the exact error probability were derived based on the union upper bound and
the exact results for full hits or full/partial hits of the binary case. In addition, the CLT
was applied so as to provide easy to compute approximations. Both the union bound
and the Gaussian approximation take into consideration the different power levels of the
interfering users.

In the M -ary case we showed that the upper bound of [1] is unacceptably loose
(even looser than in the binary case) for a wide range of relative power levels of the
interfering users, whereas the Gaussian approximation maintains satisfactory accuracy
for low bit signal-to-noise ratios; however, for higher bit signal-to-noise ratios the Gaus-
sian approximation gives very optimistic results. Our results indicate that the multiple-
access capability of M-ary FSK FH/SSMA systems is much larger than originally
thought when the relative power levels of the interfering signals are this trend is
amplified further when error-control coding is used, as shown for Reed-Solomon coded

FH/SSMA systems.

Our results indicated that the multiple-access capability of binary and M -ary FSK
FH/SSMA systems decreases considerably as the relative power of the interfering users
increases. Therefore the near-far problem, which has been observed, quantified, and
dealt with in direct-sequence (DS) SSMA systems, is also present in FH/SSMA systems,

though it appears to be less serious, and should be further investigated.
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