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Wind hazards cause tremendous destruction and threaten people’s safety and 

economical losses. To improve current provision toward wind load and strengthen 

buildings against wind forces, it’s vital to properly characterize wind loading on 

buildings in wind hazard. The turbulence created by the bluff body makes analytical 

modeling difficult. Therefore, engineers typically turn to wind tunnel tests. This thesis 

investigates the application of Artificial Neural Networks (ANN) to predict the wind 

pressure on low-rise buildings with protective parapets.  With existing experimental 

datasets conducted in BLWT, ANN models were trained to model non-linear 

relationship between inputs, such as tap coordinates and parapet height, and outputs, 

such as pressure coefficients. The developed model was used to predict pressure 

coefficients with unseen parapet height to cut down experimental cost.  
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Chapter 1: Introduction  

Wind hazards cause tremendous destruction and threaten people’s safety and 

economical losses. Because wind hazard occurs more frequently in smaller 

magnitude, it is often the dominant lateral load for structural design, in particular for 

low seismic zones.  

For wind hazards like tornados, thunderstorms, and tropical cyclones, the 

wind is highly turbulent and gusty due to the frictional interaction between the wind 

and the ground (Holmes, 2001). Generated by the frictional forces and the sharp 

corners where windward walls meet the roof, vortices are created along the windward 

edges of the roof. These vortices cause both strong uplifting forces which can damage 

roof components, and forces into the surface, which are additive to gravity loads. 

Architectural features such as parapets can mitigate the wind loading on the rooftop 

by shifting the vortices away from the roof surface.  

Because of the turbulence created by bluff bodies such as low-rise buildings, 

wind loading is difficult to model computationally or analytically. Therefore, 

engineers turn to wind tunnel tests, which is the primary source for the wind load 

provisions in ASCE7 (ASCE, 2016). Boundary layer wind tunnel (BLWT) testing is a 

common aerodynamic experiment method used to simulate the near-surface wind 

flow with the desired scaled velocity profile and turbulence. Inside a BLWT, air is 

forced through a tunnel using a set of fans, typically upwind of the tunnel. The floor 

is equipped with a fetch of barriers that exert drag force and retard wind speed near 

the ground. The fetch of barriers is called the surface roughness, and it creates height-
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varying wind speed and turbulence profile. The retardation effect of surface 

roughness decreases as height above the tunnel floor increases, eventually 

disappearing at the gradient height. The boundary layer with the target wind profile is 

created below the gradient height. To understand the behavior of a parapet-protected 

building in an extreme weather event, a scaled building model will be tested in 

BLWT by simulated natural hazard events.  

The experiments were conducted at the Natural Hazard Engineering Research 

Infrastructure of the University of Florida. The building model was instrumented with 

taps which measures the pressure at a certain location during the test section. 

Measurements for each instrumented tap were normalized into pressure coefficients 

𝐶𝑝. Based on normalized 𝐶𝑝 the wind loading on the full-scaled building model was 

determined. Because the BLWT tests are time-consuming and expensive to conduct, 

researchers are seeking alternatives such as machine learning to help expand existing 

experimental datasets. One of the most common models used in machine learning is 

the artificial neural network (ANN) which uncovers the underlying pattern of 

overserved data. The network models have superior computation speed and is mostly 

used to fit nonlinear data points. It’s perfect in the case where many experiments have 

been conducted and there are enough training data. 
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1.1 Objectives and Motivation 

The objectives of this study are to: (1) thoroughly analyze an existing dataset of 

wind pressure coefficients for a low-rise building with a parapet wall, (2) verify the 

adequacy of ASCE7 in predicting wind pressure coefficients for buildings with 

parapets, and (3) develop and apply ANN models that accurately predict/extend wind 

pressure coefficients to expand previously collected datasets.  

1.2 Overview of Thesis 

The thesis is organized into seven chapters that describe the approach and findings of 

this thesis.  

Chapter 2 contains mainly two large segments including aerodynamics related 

topics and ANN related topics. The first part includes the introduction to basic 

aerodynamic terms and existing knowledge about the wind flow over the flat-roofed 

low-rise building. It also contains parapets' effect on pressure distribution on low-rise 

buildings. The chapter also provides the approach for solving pressure on components 

and cladding (C&N) adapted by ASCE 7-16. The second part of the chapter 

introduces the basic concepts used in the development of ANN models. ANN 

network structures and the working mechanism behind-the-scene were introduced. 

Algorithms and evaluation approach of network performance were discussed in the 

chapter. 

Chapter 3 introduces the setup of the experiment inside of the wind tunnel and 

the composition of experimental datasets. The chapter presented and validated the 

configuration of Terraformer for proper terrain simulation. The building model was 
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also discussed including model scale selection, geometry, and tap distribution. It also 

discussed the approach to solve for pressure coefficients.  

Chapter 4 presented the discussion on experimental results. The pressure 

distribution of the building model was validated by existing knowledge and the wind 

-load provision from ASCE7-16. 

Chapter 5 focused on the development and validation of developed ANN 

models. The data division, network architecture and selected algorithms were 

described in detail along with termination criteria for model training.  

Chapter 6 provided validation of network models and demonstrated the 

performance of the network to predict coefficients accurately.  The performance was 

demonstrated through learning curves and linear regression between true value and 

prediction. The chapter also discussed the options of optimum parapet height to 

control the peak suction load on the rooftop. 

Chapter 7 summarize the research findings and presented the potential for 

further studies.  
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Chapter 2: Literature Review 

2.1 Wind Tunnel History 

Boundary layer wind tunnels (BLWTs) have been a major tool of simulating 

wind characteristics in wind engineering and related disciplines for years. Because of 

the turbulent nature of wind flow around bluff bodies, the pressure acting on 

structures fluctuates greatly. These fluctuations make predicting wind loading on 

buildings difficult. In structural engineering, the BLWT test has been used for 

decades to help characterize wind loading and develop wind loading provisions. 

Before BLWT became widespread, the best practice of coding officials to 

determine the wind loading was through a ‘quasi-steady’ assumption. This method 

allows peak pressures to be calculated as the product of mean pressure coefficient and 

gust wind speed. Peak pressure produced by this method tend to be conservative for 

large wind areas. Also, it is not possible to account for the effect of fluctuations. 

Later, researchers started to conduct aerodynamic tests in the wind tunnel with 

uniform wind flow. However, pressure variation in shear layers of uniform flow was 

remarkable and induced a lot of error.  It was not until 1932 a German researcher, 

Flachsbart, observed the relatively stable characteristics of boundary layer flow and 

started to study wind effect on the building. In 1965, Jensen revisited Flachsbart’s 

observation and constructed a small wind tunnel to generate boundary layers with 

fans and roughness elements on the floor inside the tunnel. He proposed Jensen's 

number, a ratio of building height to roughness length, and concluded it as an 

important parameter for modeling natural wind.  
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In the 1970s there were two typical boundary layer wind tunnels used. One 

type of tunnel was the closed-circuit design and the other type of tunnel was an open 

circuit with a fan installed downstream. As technology advanced, the most used 

BLWT today is open circuit type with fans upstream blowing air through the tunnel 

(Holmes, 2001). 
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2.2 Pressure Distribution on Low-rise Building 

Wind flow impacts building surfaces, generating pressure either positive 

(acting towards the surface) or negative (acting way from the surface). The direction 

and magnitude of pressure fluctuate due to the turbulent nature of approaching wind 

and unsteady flow generated by the bluff body surfaces. The three 3 main sources of 

pressure fluctuation include 1) natural turbulence in freestream flow 2) unsteady flow 

generated by building surface 3) fluctuating forces due to building’s motion.  Since 

the boundary layer simulated is relatively stable and the building model (in this study) 

is not aeroelastic, the effect of natural turbulence and movement of the building can 

be neglected in terms of turbulence magnitude. natural turbulence in freestream and 

unsteady flow generated by wind impacting with the building surface are the two 

sources of turbulence.  

  For a low-rise building with a surface normal to wind direction, the flow 

around the building follows the pattern indicated in Fig 2.2.1. As wind approaches the 

building, the flow gets separated from the bluff body contour at leading-edge corners. 

The separated region near the bluff body is defined as a free shear layer which is a 

thin layer of flow that has high shear and vorticity. These unstable thin shear layers 

would roll up forming vortices.  As vortices travel along model surfaces it will create 

a strong suction force on its ‘footprint’. The vortices are the major reason for pressure 

fluctuation. If the bluff body is long enough for the development of reattachment, 

vortices would roll along the surfaces and causing pressure variation as it travels.  

The pressure acting on the interior region of the windward wall is positive, 

and pressure decreases to zero and even becomes negative near separation zones 
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along three edges.  Pressure distribution on sidewalls have a generally similar pattern 

with higher suction along the roof edge and the magnitude drops as height decreases. 

After separated shear layer reattached to building contour along wind direction, the 

turbulent shear layers would circulate along the leeward walls creating negative 

pressures.  

 

Fig 2.2.1 Wind Flow Regimes on the surface of a low-rise building in 3D.  

Adapted from ‘Roof Uplift Mechanisms’ (Peterka, 1989)  

 

 

Fig 2.2.2 Wind Flow Regimes on the surface of a low-rise building in 2D.  

Adapted from ‘Wind Loading of Structures’ (Holmes, 2001) 
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When the wind direction is oblique to the building surfaces, different types of 

vortices are created shown in Fig 2.2.3, conical vortices, which are like those found 

on delta-wings of aircraft (Holmes, 2001). Suction loads under these vortices are the 

largest over low rise building with a low-sloped roof. Past studies on low rise 

building situated in an open terrain had suggested that roof corner suction would 

reach peak level at quartering wind (45°). On the roof where separation and 

reattachment both occur, pressure magnitude and direction vary greatly. Based on 

extensive study results, the pattern of roof pressures distribution is comprised of a 

heavily loaded up-wind corner and edges which in compacts with oblique wind and a 

lightly loaded interior area as shown in Fig 2.2.4. ASCE7-16 has adopted a scheme of 

pressure distribution on the roof based on Kopp’s research. It consists of four ‘L-

shaped’ corner zones, four edges, and two coincided interior rectangular zones with 

different pressure magnitude (Kopp et al., 2015a).  The details regarding distribution 

on the roof will be discussed in Chapter 2.4.  It’s of critical importance to design 

strong components and cladding for the corner and edges zones to resist uplift forces. 
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Fig 2.2.3 Conical vortices generated on the windward corner of a low-rise building.  

Adapted from ‘Wind Loading of Structures’ (Holmes, 2001) 

 

Fig 2.2.4 Typical Pressure Distribution on the rooftop of the low-rise building with a 

range of heights.  

Adapted from ‘WIND LOADING OF FLAT ROOFS WITH AND WITHOUT 

PARAPETS’ (Lythe and Surr, 1983) 
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2.3 Parapet Effect on Low-rise Building 

Since wind loading on the roof is essential to the design, the architectural 

details locating on the roof is of the same importance. As discussed in the previous 

section, separating shear layers and vortex shedding results in pressure fluctuation on 

a bluff body and conical vortices generates the highest suction on the up-wind corner. 

To mitigate local extreme pressure, the conical vortices must be interrupted and 

guided away from the roof surface by the parapet wall. 

Many types of research have examined the effect of the parapet on wind 

pressure distribution. It is generally recognized parapets could reduce the worst 

suction load by shifting vortex reattachment. However, experiments show that it’s not 

always helpful to have a parapet because a short parapet may increase the worst 

pressure on the roof (Stathopoulos, 1981; Kopp et al., 2005a; Huang et al., 2017). 

Stathopoulos concluded for parapet with relative height (ℎ 𝐻⁄ ) between 0.125 and 

0.25, the maximum local suction could be reduced up to 30% and the interior positive 

pressure could be increased by around 5% (Stathopoulos, 1981). Kopp concluded 

solid perimetric parapets with ℎ 𝐻⁄ > 0.25 generally reduces the mean and peak 

pressure by up to 50% in the corner region (Kopp et al., 2005a). He also mentioned 

conical vortices were detached from the roof surface in the corner region and the 

pressure distribution was nearly uniform with magnitude significantly reduced (Kopp 

et al., 2005a). Many researchers have conducted their test on a relatively small 

building model scale (1:50, 1:100) but not a lot on large scales. In 2017 a test was 

conducted to validate the mitigation effect of solid on a large-scale model. The 

building scale was 1:20 and the height to width ratio was 1:1. It’s concluded 
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reduction effect grows rapidly when ℎ 𝐻⁄  ranges between 0.01 and 0.15. The 

mitigation effect of the parapet was inhibited at ℎ 𝐻⁄ > 0.15. The result agreed with 

previous studies concluded that mean pressure variation became milder as height 

increased and the mitigation of extreme pressure was inhibited with a relative height 

greater than 0.15 (Huang et al., 2017).  

Based on the available literature, tall (ℎ 𝐻⁄ > 0.1) solid perimetric parapet 

does help mitigating peak suction load in corner and edge regions. Short parapets can 

worsen the situation. It’s of critical importance for structural designers to understand 

wind loads on building surfaces to perform safe design. 
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2.4 ASCE Approach for Pressure on a parapet-protected rooftop (Components & 

Cladding Loads) 

ASCE 7-16 Chapter 30 applies the directional procedure and envelope 

procedure to solve for design pressures with specific equations applicable to each 

component and cladding (C&C) surface. The external pressure coefficient factor 

(𝐺𝐶𝑝) provided in ASCE diagrams were developed based on wind tunnel testing 

measurements of prototype building conducted at the University of Western Ontario. 

(Kopp and Morrison, 2014). The tests were conducted for two roughness categories, 

B and C, simulating upwind terrain of urban and suburban to open and flat conditions. 

Factors that affect 𝐺𝐶𝑝 include the specific location on the building, the height above 

the ground, the relative location to boundaries (i.e. rooftop zones), and the geometry 

of the building. Because the approach wind direction is not known, factors are 

enveloped over all wind directions. The results were also normalized for 

directionality and exposure effects. Therefore, the value 𝐺𝐶𝑝 represents the upper 

bounds of the most severe values for any wind direction (ASCE7-16) 

Out of the six-part in chapter 30, the first part is applicable for a low-rise 

building (ℎ < 60𝑓𝑡) with a low slope roof. The design wind pressure is determined 

through equation as followed, 

𝑝 = 𝑞ℎ[(𝐺𝐶𝑝) − (𝐺𝐶𝑝𝑖)] 

Where 𝑞ℎ is the velocity pressure evaluated at mean roof height h; 𝐺𝐶𝑝 represents the 

external pressure coefficients given in diagrams based on different roof type; 𝐺𝐶𝑝𝑖 is 

the internal pressure coefficient. 𝑞ℎ is determined through the combination of basic 

wind speed and types of wind load parameters (i.e. 𝐾𝑑, 𝐾𝑧𝑡, 𝐾𝑒 , 𝐾𝑑, 𝑒𝑡𝑐. ). The wind 
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pressure on different types of C&C are corrected by 𝐺𝐶𝑝 factors from applicable 

diagrams. The 𝐺𝐶𝑝 factors are given for walls and types of roofs. Many diagrams 

were referred to in part 1 and 6 corresponds to the flat-roofed low-rise building. In 

Fig 2.4.1, the positive and negative wind pressure coefficients are determined by the 

effective wind area of the component located on sidewalls (Corner and Edges).  

The negative roof pressure diagram shown in Fig 2.4.2 was modified based on 

new findings of Kopp and Morrison (2016) who examined the effect of building 

height on spatial patterns and magnitudes of area-averaged pressure coefficients. 

They found the current edge zone size 𝑎 = 0.4ℎ in ASCE7-10 could not be made to 

work concerning interior zone pressure coefficients (Kopp and Morrison, 2016). 

Modifications were made to create a new pattern that has L-shaped corners (zone 3) 

with a width of 0.2h from the edge of the roof and length of 0.6h along both edges. In 

Fig 2.4.2, the positive and negative wind pressure coefficients are determined by the 

effective wind area of the component located on the rooftop. Based on the size of the 

rooftop, there’re 4 scenarios of roof zones on low-rise buildings shown in the Fig 

2.4.3. For the building model used in this research, both zone 2 and 3 exist along the 

long edge while only zone 3 exists along the short edge. The spatial pattern of 

pressure on the roof belongs to category (d). According to the effective wind area of 

1𝑓𝑡2, 𝐺𝐶𝑝 = −2.3 for Zone 2 and 𝐺𝐶𝑝 = −3.2 for zone 3.  
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Fig 2.4.1 External Pressure Coefficients for Enclosed Building-Wall  

Adapted from ‘Minimum Design Loads for Buildings and other Structures’, (ASCE, 

2016)  
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Fig 2.4.2 External Pressure Coefficients for Enclosed Building-Gable Roof  

Adapted from ‘Minimum Design Loads for Buildings and other Structures’ (ASCE, 

2016) 
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Fig 2.4.3 Diagram for Roof Zones regarding wind loads on components and cladding.  

Adapted from ‘Component and cladding pressures and zones for the roofs of low-rise 

buildings.’ (Kopp and Morrison, 2014) 
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Chapter 30 also divides a separate section to demonstrate wind loads on 

building appurtenances such as roof overhangs, parapets, and rooftop equipment. The 

wind pressure for parapets are represented by 𝑝𝑖 in the Fig 2.4.4.  

To solve for pressure distribution of parapet, the key is to find the pressure 

coefficients corresponding to the location of parapets on the rooftop. As noted in Fig 

2.4.1, coefficients should be read from Fig 2.4.1 and Fig 2.4.2 which corresponds to 

pressure coefficients in Pos/Neg wall and roof pressure zone. For interior regions of 

the parapet, the wind pressure coefficients are the same as the coefficient for adjacent 

roof regions.  For outer regions of the parapet, the wind pressure depends on the 

coefficients of different zones of the walls.  

 
Fig 2.4.4 Wind Loads on Parapet.  

Adapted from ‘Minimum Design Loads for Buildings and other Structures’(ASCE, 

2016)  
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2.5 Introduction to Neural Network 

2.5.1 Backgrounds 

When the analytical solution couldn’t be found to describe the pattern of 

numbers, there’s always a way to simply use data to construct an empirical solution 

(Yaser, 2012). Having the same objective as an analytical solution, an empirical 

solution seeks an unknown function which depends on unknown variables. The 

approach to uncover the underlying function of overserved data is machine learning. 

Having superior computation speed, computer models are developed to learn from 

data. One of the models commonly utilized to fit nonlinear data points is an artificial 

neural network (ANN). Same as neural networks inside the brain of intellectual 

animals, ANN could refine itself through training. There are two types of learning 

namely supervised and unsupervised. When a network is trained with data input that 

has corresponding correct output as guidance, it’s called supervised learning and vice 

versa (Barlow, 1989) The widest application of supervised learning is the neural 

network.  

Network is a symbolization of the unknown target function that yields the 

correct output (Schmidhuber, 2015). The structure is expected to be complex for its 

ability to unveil patterns that no analytical model could. Fig 2.5.1 is an example of a 

feed-forward neural network. The individual units that constructed the entire neural 

network is called a neuron. Arranged in columns, a series of parallel neurons form a 

layer. Each neuron of a layer is connected to all neurons in the next layer. Thinking 

the intermediate part as a black box, the network only consists of two layers, the input 



 

 

20 

 

layer, and the output layer. Information flows from the input (left) layer to output 

(right) layer through nodes and links.  

 

Fig 2.5.1 Architecture of a Feedforward Neural Network Comprised of 2 Hidden 

Layers.  

 

Node is a portal of receiving numerical data such as 𝑥𝑖 and 𝜃𝑗  as input for the 

next layer (Schmidhuber, 2015). The link connecting two nodes is assigned a weight 

based on the important contribution of the node. In each layer, a node of 1 is added to 

account for bias. For each neuron in each layer, the product of weight and node input 

from the previous layer are summed together. The product 𝑠 = 1 ∗ 𝑤1𝑗 + ∑ 𝑥𝑖 ∗ 𝑤𝑖𝑗 is 

then plugged into transfer function 𝜃(𝑠). The transfer function helps with reducing 

computation time expense by converting a large number into smaller values, and the 

range typically varies from -1 to 1 depending on the choice of the transfer function. 

Then the result of 𝜃(𝑠) becomes the input to the next following layer. At the far end 

of the network, 𝜃(𝑠) is reversibly transferred back into the same order of original 

input. By comparing the output to a true value, network performance can be evaluated 
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by percentage difference defined as in-sample-error. To modify weights an algorithm 

called backpropagation (BP) is introduced. Through the BP algorithm, weights in all 

layers are changed simultaneously and yield fresh output supposing closer to the true 

value (Dreyfus, 1962). After the network is done training, a fresh set of data is fed 

into the network for testing, and the out-of-sample error is expected to be small. One 

measure of a network’s ability to adapt properly to previously unseen data is 

Generalization (Yaser, 2012). It’s achieved when both in-sample-error and out-of-

sample error are minimized. It indicates network generalize well for in-sample data as 

well as out-of-sample data. After training is accomplished, the network should be able 

to categorize a fresh input based on the recognized pattern.  
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2.5.2 History of ANN’ application in Wind engineering 

BLWT testing has been popular for decades in wind engineering for its 

superior contribution to evaluating wind load. However, the time and financial 

expenses for conducting such tests remain relatively high. As technology advances, 

the power of intellectual machine learning should be incorporated into the traditional 

wind tunnel tests. Many researchers have tried to apply ANN to characterize wind 

loading on structures. Y. Chen (2002) focused on the prediction of mean and RMS 

pressure coefficients on gable roofs of low-rise buildings. The prediction accuracy of 

ANN models for fresh cornering wind angles was demonstrated by an average error 

of less than 2% (Chen et al., 2002). Facundo (2017) developed three computational 

models making use of three types of ANN to predict the wind pressure coefficients on 

surfaces of flat, gable and hip-roofed buildings. The maximum percentage error using 

FANNs for three types of roof is 2.3%, 3.2% and 4.2% accordingly (Facundo et al., 

2017).  
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2.5.3 Impact of Datasets on Performance 

The performance of a network depends on the size of the dataset. Based on the 

Hoeffding Inequality,  

𝑃[|𝑣 − 𝜇| > 𝜖] ≤ 2𝑒−2𝜀2𝑁 

Where 𝑣 is the observation from samples, 𝜇 is observation outside samples, 𝜖 is error 

tolerance, N is the number of data; |𝑣 − 𝜇| represents the difference between true 

value (𝑣) and generated output (𝜇). The inequality equation indicates the probability 

of making a bad prediction drops as the sample size (N) increases. Therefore, network 

performance is exponentially unlikely to drop below the threshold as the sample size 

increase. That’s why all available data were used for developing a good network. 

As stated previously, larger dataset contributes to better generalization performance. 

In the next graph error of two network models is plotted against the number of data 

points (N). The error curve of a simple model is shown in Fig 2.5.2 to the left. 𝐸𝑜𝑢𝑡 

and 𝐸𝑖𝑛 start high and gradually leveled out as N increase. A complex model is shown 

to the right. 𝐸𝑖𝑛 starts at zero and 𝐸𝑜𝑢𝑡 is infinity. As more data become available for 

the development of a complex model, the overall expected error drops gradually and 

remain at a lower level.  It’s concluded that a complex model yields a better model 

with conditions of large datasets.  
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Fig 2.5.2 Learning Curves of Different Complexity of ANN Models  
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2.5.4 Impact of Model Complexity on Performance 

A complex network doesn’t always guarantee good performance. The size of a 

dataset’s not the only parameter affecting network performance. Model complexity, 

in another word the number of effective neurons in each of the hidden layers, plays an 

important role. See Fig 2.5.3 for illustration. The horizontal variable, VC dimension, 

denotes the number of effective training parameters that best characterize target 

function. As model complexity increases, out-of-sample error drops at first until it 

hits local minima and starts to increase. With an appropriate model complexity, a 

perfect balance of in-sample and out-of-sample error exists at 𝑑∗
𝑉𝐶. At this ideal 

situation network performance could reach maximum with minimum calculation 

expanses.  

 

Fig 2.5.3 Target Function of 2 Example Models 

 

Take a linear target function for an example. A simple 1st order linear model 

(Fig 2.5.3, Left) could fit three data points with moderate gaps between points and fit 

line. A higher-order complex model (Fig 2.5.3, Right) fits 3 data points with a 

polynomial function by passing through each one of them. For the given example, the 
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number of data of N = 3 is not compatible with high model complexity. With 

acknowledge that target function being linear, the complex function would yield high 

𝐸𝑜𝑢𝑡 even 𝐸𝑖𝑛 is low. It can also be validated by error curves in Fig 2.5.4.  

 

 

Fig 2.8.2 Relationship between Network Errors and Model Complexity.  

Adapted from ‘Learning from Data’ (Yaser, 2012)  
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2.5.5 Overfitting and Validation 

Compared to the simple model, the generalization of the complex model is 

diminished as a tradeoff of low 𝐸𝑖𝑛. When a model is more complex than its 

necessary to represent target function, 𝐸𝑜𝑢𝑡 starts to increase and yielding an inferior 

hypothesis of the target function (Yaser, 2012). The phenomenon is called overfitting 

which’s an indication of the model starts to fit stochastic and deterministic noises in 

datasets. Overfitting occurs because, in the training process, the network keeps 

exploring and added an effective parameter 𝑑𝑉𝐶 to reach a global minimum of 𝐸𝑖𝑛. 

Although 𝐸𝑜𝑢𝑡 acts like an indicator for the network to stop incorporating extra 

parameters,  𝐸𝑜𝑢𝑡 won’t be available until the end of the training. Considering bias to 

be produced potentially, the test set must be uncontaminated, and testing is not 

initiated until training is complete. Therefore, the best way is to replace 𝐸𝑜𝑢𝑡 with 

similar error terms, that is obtained from another portion of the dataset. The newly 

introduced error term 𝐸𝑣𝑎𝑙 is obtained along with training through validation.  

Validation is achieved by tuning parameters (Weights and bias) of network 

with a portion of non-train data. The whole dataset is divided up into three portions 

accordingly for training, validation, and testing. A common division is 70-15-15 

which’s balanced between relatively large training sets and reasonable amounts of 

data for tuning and testing. The curve for expected  𝐸𝑣𝑎𝑙 can demonstrate the 

network’s performance and be used to identify 𝑑∗
𝑉𝐶 once 𝐸𝑣𝑎𝑙 starts to increase. 
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2.5.6 Logistic Regression 

The products of weight and input are combined linearly and defined as signal 

input 𝑆. The value of signal input is unbounded, and it can be taken as output directly 

for a model with a linear target function (Yaser, 2012). The algorithm used by this 

model is linear regression. In the case where target function yields bounded output, a 

logistic function 𝜃(𝑠) is applied to the signal input, and the output takes the form of 

probability. The algorithm is logistic regression and it has wide application in 

practice. The logistic function is usually monotonic increasing and bounded by a 

range of values. The most commonly used logistic function is sigmoid 𝜃(𝑠) =
𝑒𝑠

1+𝑒𝑠 

whose output is between 0 and 1. Another popular function is hyperbolic tangent 

𝜃(𝑠) =
𝑒𝑠−𝑒−𝑠

𝑒𝑠+𝑒−𝑠 that yields output between -1 and +1.  
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2.5.7 Error Measures and Gradient Descent 

The error measure 𝑒(ℎ(𝑥), 𝑦) used in logistic regression is based on 

likelihood. It indicates how likely the output 𝑦 will be predicted correctly by 

hypothesis ℎ(𝑥). The pointwise in-sample-error 𝐸𝑖𝑛 is summed together 𝐸𝑖𝑛(𝑤) =

1

𝑁
 ∑ 𝑒𝑛

𝑁
𝑛=1  given a set of weight 𝑤 in layer l. To tune, the weight vector gradient 

descent method was used by taking steps toward a negative gradient direction (Baird, 

1999). New weight vector at layer l is calculated as the following equation, 

𝑤(𝑡 + 1) = 𝑤(𝑡) − 𝜂∇𝐸𝑖𝑛(𝑤) 

Where t denotes training epoch and 𝑤 is weight vector at t. ∇𝐸𝑖𝑛 denotes the gradient 

of w in layer l. The size of the training step, 𝜂 , measures how large the step is for 𝑤 

to descent. The most effective gradient descent pattern initiates with relatively large 

step for speed and gradually become smaller as ∇𝐸𝑖𝑛 decrease (Schmidhuber, 2015). 

If 𝐸𝑖𝑛 can be monitored by a hilly surface, the gradient descent algorithm drives 

𝐸𝑖𝑛(𝑤) toward the bottom of a valley (Yaser, 2012). Considering not overshooting 

the global minimum of 𝐸𝑖𝑛, it takes a lot of rounds to go downhill with time-varying 

𝜂 that gets smaller as 𝐸𝑖𝑛 gets closer to the bottom. 

To compute the gradient, derivative of 𝐸𝑖𝑛 concerning 𝑤 of layer l must be 

solved as the followed equation,  

∇𝐸𝑖𝑛(𝑤) =
∂𝐸𝑖𝑛

∂𝑤(𝑙)
=

1

𝑁
∑

∂𝑒𝑛

∂𝑤(𝑙)

𝑁

𝑛=1

 

There’s no closed-form solution for the equation in ANN, and one way to solve is the 

numerical finite difference approach. It can be extremely time-consuming because the 

iteration is unceasing until 𝐸𝑖𝑛 reaches the global minimum. A more efficient method 
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is adopted and defined as Back Propagation (BP) which utilizes a set of chain rules to 

combat the difficulty of computation (Dreyfus, 1962). The BP algorithm takes a 

detour for calculation of partial derivative  
∂𝑒𝑛

∂𝑤(𝑙)
  by using a combination of 

sensitivity 𝛿(𝑙) and input from the previous layer 𝑥(𝑙−1). The formula below quantifies 

how e changes with 𝑠(𝑙),   

𝛿(𝑙) = 𝜃′(𝑠(𝑙)) × [𝑤(𝑙+1)𝛿(𝑙+1)] 1
𝑑(𝑙)

 

Where 𝛿(𝑙) denotes the sensitivity of layer l. 𝑠(𝑙) denotes input signal that goes into 

layer l in forward propagation. 𝜃′ is the derivative of transform function in layer l. 

For 𝜃 = tan−1 𝑠, 𝜃′(𝑠(𝑙)) = [1 − 𝑥(𝑙) × 𝑥(𝑙)]
1

𝑑(𝑙)
. Using the equation above, 

sensitivity for each layer can be solved for a single input data point. Then sensitivity 

for each layer is plug into the formula below for 
∂𝑒𝑛

∂𝑤(𝑙) 

∂𝑒𝑛

∂𝑤(𝑙)
= 𝑥(𝑙−1)(𝛿(𝑙))

𝑇
 

With sufficient calculation for gradients, the weight vectors are tuned accordingly for 

every data input. The running time is the order of the number of weights in the 

network since one forward and one backward propagation is run over a single data 

input (Schmidhuber, 2015).   
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2.5.8 Initializing and Termination Criteria 

The initial weight vector 𝑤(𝑙) was set at small random values such that 𝜃(𝑤𝑥) 

is close to zero. The reason is that it allows weight vectors to be tuned flexibly, and 

the effect of gradient descent is more notable with gradient moving toward either 

positive or negative direction.  

Since the target surface could have multiple local minima, stopping training 

only depending on the order of gradient can cause premature termination.  The best 

state for termination is when a continuous series of marginal error improvements are 

found and the number of iterations is bounded by a set max value. 
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Chapter 3: BLWT Experiment Setup 

3.1 Facility Setup 

3.1.1 Introduction of BLWT Facility 

The experiments were conducted in the Boundary Layer Wind Tunnel 

(BLWT) at the Natural Hazard Engineering Research Infrastructure of the University 

of Florida. The tunnel has a dimension of 6.1 m x 6.1 m x 31.75 m. The end of the 

tunnel is equipped with 8 Aerovent vaneaxial fans that can generate speeds up to 18 

m/s. During the test, fans were kept running at 1050 RPM corresponding to a wind 

speed of 14 m/s. 

Shown in Fig 3.1, the BLWT is equipped with the automated continuously 

adjustable terrain roughness field (the “Terraformer”). The model is mounted on a 1-

meter diameter turntable that could rotate 360° along the centerline for desired 

exposure to wind. Other instrumentation includes a Scanivalve pressure scanning 

system, which’s mounted under the turntable. The tunnel is also equipped with four 

turbulent flow instrument cobra probes that measure three components of velocity up 

to 2000 Hz. The probes are mounted on a transverse gantry to allow for positioning 

within the tunnel’s cross-section.  
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Fig 3.1 Auto-controlled Terraformer’s Configuration (Wide Edge; 20mm).  

Adapted from ‘Predicting Roof Pressures on a Low-Rise Structure From Freestream 

Turbulence Using Artificial Neural Networks’ (Fernández et al., 2018) 
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3.1.2 Terrain Simulation 

Upwind terrain condition was simulated by Terraformer which’s an automated 

roughness element grid composed of 1116 roughness elements that could rapidly 

change its orientation and height. The element has a plan dimension of 10 cm by 5 

cm. They are spaced 30 cm away from each other in a staggered arrangement. The 

system is fully automated controlled. They can be raised to 160 mm above ground 

and be rotated by 360° along the centerline. When the surface of the long dimension 

impacts wind, the arrangement is called the Wide Edge. Similarly, it’s called Short 

Edge when the short dimension impacts wind. For this study, open terrain was chosen 

to be modeled as a terrain condition in a full-scale model. The elements were 

configured to be 20 mm tall with the wide edge windward. 

Fang (1994) concluded that extreme pressure correlates with a few parameters 

including roughness distribution, eave height turbulence intensity, and eave height 

integral length scale (Fang and Sill, 1994) Roughness length (𝑍0) is related to surface 

roughness characteristics of upper terrain definition. The velocity profile of the 

boundary layer varies concerning height, and velocity fluctuates near the ground due 

to shear-generated turbulence. The turbulence length scales ( 𝐿𝑥) is a measure of the 

temporal lag of the fluctuating velocity inflow direction which is represented as a 

separation distance using Taylor’s hypothesis (Emes et al. 2018). To validate 

generated boundary layer characteristics of open terrain, roughness length and 

longitudinal integral length were determined for comparison with standard from 

ASCE7-16. The two parameters, 𝐿𝑥𝑎𝑛𝑑 𝑍0, are calculated with a 1:18 model scale. 

To solve for roughness length, equations, as followed, were used. 
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𝑢∗ = (𝑢′𝑤′̅̅ ̅̅ ̅̅ 2
+ 𝑣′𝑤′̅̅ ̅̅ ̅̅ 2

)
1

4⁄

 

𝑧0 = (𝑧 − 𝑑)𝑒
[
𝑈(𝑍)∗𝐾

𝑢∗
]
 

Where 𝑢∗ is shear (friction) velocity calculated from three components of velocity 

(𝑢, 𝑣, 𝑤); 𝑧0 is roughness length; 𝑧 is desired height and 𝑈(𝑍) is mean wind speed at 

height z; d is zero-plane displacement height; 𝐾 is von Karman’s constant. Roughness 

length (𝑧0) was calculated to be 1.59 mm. It corresponds to 0.03 m of roughness 

length in the full-scale model and lies within the range of surface roughness for 

exposure C in ASCE7-16.  

Based on longitudinal turbulence spectra, the longitudinal integral length scale 

(𝐿𝑥) was 1.06 m at height of 610 mm. It corresponds to 𝐿𝑥 of 18 m in the full-scale 

model at height of 11 m. The result of a longitudinal integral length of 18 m does not 

meet the standard of 110 m in ASCE/SEI 49-12. The discrepancy of the longitudinal 

length scale was due to insufficient turbulence simulation in BLWT. For a relatively 

large model scale like 1:18, a sacrifice of an integral length scale must be made as a 

tradeoff of pressure resolution.  
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3.2 Building Model Setup 

3.2.1 Selection of Model Scale 

Wind loads depend on a lot of parameters of which changing one could lead to 

a significantly different result. To better monitor building behavior in the atmospheric 

boundary layer, achieving the best match boundary layer in BLWT is critical. The 

building model also plays a key role in the overall accuracy of the simulation. BLWT 

having long test sections allows boundary to grow fully and become the best match of 

the atmospheric boundary layer at a particular scale (Kopp et al., 2005a). To have 

better tap resolution it’s common to have a larger scale. However, a larger geometry 

scale could lead to a mismatch in the integral scale. It’s commonly recognized by the 

wind engineering community that a balance should be achieved between large scale 

flow simulation and a larger building model. The balance should be constrained by 

two criteria, which are blockage of wind tunnel be less than 5% and the integral scale 

of turbulence be within a factor of two. Considering the objective of capturing 

detailed spatial pressure variation, a model scale of 1:18 was selected. At a model 

scale this large, it’s hard to maintain the proper boundary layer scaling within the 

wind tunnel.  
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3.2.1 Model Geometry 

The building model is shown in the Fig 3.2.1 and Fig 3.2.2. The building 

surfaces are made of clear polycarbonate plates which are rigid and impact resistant. 

It consists of two parts, the inner core, and outer surface panels. To form parapets, 

four stepper motors were installed at corners below wall panels. The outer wall can 

rise above the roof level with inner core remains at the same level (Whiteman et al., 

2017).  

 

Fig 3.2.1 Isometric view of Building Model (Left).  

Adapted from ‘Optimization In Wind Engineering Using Cyber-Physical Systems For 

The Design Of Parapet Walls’ (Whiteman et al., 2017)  
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Fig 3.2.2 Front View of Building Model inside BLWT.  

Adapted from ‘Optimization In Wind Engineering Using Cyber-Physical Systems For 

The Design Of Parapet Walls’ (Whiteman et al., 2017)  

 

To accommodate the size of the turntable, the length of the building model 

was limited to 40 inches.  To compare with previous studies, the length to width ratio 

of 3:2 was assigned to model. Therefore, the building model was assigned a plan 

dimension of 29.25 inches by 19.5 inches. By actuating outer walls, parapets of up to 

5 inches was formed with a thickness of 1 inch. The building model has a flat roof 

and a height of 26 inches with parapet raised fully above the roof. Based on 1:18 

scaled model dimensions, the full-scale dimension of the building was 44.5 feet by 

29.6 feet by 30 feet. The thickness of the parapet is 18 inches in the full-scale model 

which satisfies the ASCE standard. 
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3.3 Result Processing  

3.3.1 Data Resource 

The experiments data are publicly accessible through the Natural Hazard 

Engineering Research Infrastructure (NHERI) DesignSafe cyberinfrastructure web-

based research platform. Data output for each test configuration includes time-

stamped Scanivalve pressure tap readings, pitot pressure, atmospheric data, cobra 

probe data, boundary layer profile, etc. The experimental dataset comprised of 288 

data files in total. For each of the 6 parapet height, 24 data files were containing 

cumulative pressure information with the model rotated from 0° to 360 for every 15°.  

 

3.3.2 Tap Distribution 

The surface panels were instrumented with 512 pressure taps, out of which 

334 taps were located on the roof. The tap distribution for the model with a parapet of 

5 inches is shown in Fig 4.1.1. Surface 1, 2, 3 and 4 were the outer surface of walls 

around the perimeter of the building model. Surface 6, 7, 8 and 9 were the top section 

of the inner surface of walls. Surface 10 modeled by inner core represents roof. As 

indicated in the Fig 3.1.1, pressure taps were densely placed on the roof and loosely 

placed on wall panels. Around the corner of upwind edges, densely distributed taps 

monitored subtle pressure variation to capture the peak suction force. The pressure 

was measured by the acquisition system, Scanivalve ZOC33 pressure scanners. A 

total of 6 Scanivalve were used in test and each of them has 64 pressure inputs. Each 

of 64 inputs was connected to a corresponding pressure tap through Urethane tubing. 

Pressure for all taps were measured simultaneously and sampled at 625 Hz for 120 s.  
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This corresponds to pressure data collected at a wind speed of 40 m/s for 660 s 

assuming a velocity scale of 1/3.33. Pressure data digitally low-pass filtered at 200Hz 

and high-frequency components were blocked from being recorded into time history.  

 

Fig 3.1.1 Tap distribution on surface panels of the building model.  

 

Table 3.1 Details of Measurement configurations and data acquisition 
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3.4.2 Pressure Coefficient 

The pressure coefficient (𝐶𝑝) is commonly used to describe relative pressures 

throughout the flow field. It’s one of the similarity parameters that make it 

independent and dimensionless to represent quantitative characteristics of physical 

similarity. (Anderson, 2011) That’s the reason for choosing it to evaluate the effect of 

wind turbulence on a full-scale building through measurements from the scaled 

model.  𝐶𝑝 is computed in the following equation as the ratio of relative static 

pressure at designation height to dynamic pressure at eave height.   

𝐶𝑃 =
𝑃0 − 𝑃∞

1
2 𝜌∞ 𝑣∞

2
 

𝑣∞ = 𝑘𝑈𝐻 

Where 𝑃0 (𝑙𝑏 𝑖𝑛2⁄ ) is measured mean velocity pressure at the desired height. 𝑃∞ 

(𝑙𝑏 𝑖𝑛2⁄ ) is stagnation pressure at eave height in freestream. 𝜌∞(𝑘𝑔 𝑚3⁄ ) is air 

density. 𝑣∞ (𝑚 𝑠⁄ ) is mean velocity at eave height.  

To prevent disturbance due to embedment of pitot tube in freestream, mean 

eave height velocity ( 𝑣∞) was not measured directly at eave height. It was calculated 

indirectly by applying an empirical adjustment factor (k) to reference velocity (𝑈𝐻). 

Flow measurements were taken at the various height using an automated gantry 

system equipped with Cobra probes that detects 3 components of velocity (𝑢, 𝑣, 𝑤) 

and static pressure. Reference velocity was measured to be 15.4 m/s at a height of 

1.48 meters with a model removed from the tunnel. Imperial adjustment factors (𝑘) 

were calculated as 𝑘 = 𝑣1.48𝑚 𝑣𝑖⁄   Plotting measured velocity components at varies 

height yields the mean velocity profile. Air density (𝜌∞) was calculated from the air 
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temperature, barometric pressure, and relative humidity measured during each test 

(Fernández et al., 2018). 

Pressure time-history series were transformed into 𝐶𝑝 time-history series. 

Average, RMS, Min and Max values were solved to characterize 𝐶𝑝. To identify the 

Minimum pressure coefficient 𝐶𝑝,𝑀𝑖𝑛 and the Maximum pressure coefficient 𝐶𝑝,𝑀𝑎𝑥 

on the building model, Gumbel distribution was generated to model the distribution 

of the extreme value of 𝐶𝑝 from the time history series for each tap. A time series was 

truncated into N segments and the segmental minimum/maximum value was 

identified. Out of N identified minimum/maximum values, a distribution of extreme 

value was generated. The 78th percentile of each distribution for 𝐶𝑝,𝑀𝑖𝑛 and 𝐶𝑝,𝑀𝑎𝑥 

was used to determine the global extreme in the record.  
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Chapter 4:  Experiment Results and Discussion 
 

In chapter 4, the experiment result was validated by comparing the pressure 

distribution on the rooftop with/without parapet with pioneer researcher’s studies. In 

chapter 6.3, Furthermore, the envelope of pressure distribution on the rooftop was 

compared with ASCE 7-16 by comparing converted 𝐶𝑝to the codified values of 𝐺𝐶𝑝 

of the same building model.  The measured pressure coefficients were consistent with 

that from ASCE 7-16.   

4.1 Experimental Result Validation 

4.1.1 Pressure Distribution on Rooftop without Parapet 

As previous researchers have demonstrated for low rise buildings compacted 

with quartering wind, pressure distribution on the roof is comprised of highly loaded 

corners, highly loaded windward edges and lightly loaded interior areas. To validate 

the upwind characteristic’s effect on experiment results, the distribution pattern of 

pressure was checked for discrepancies. Based on measurements of nearby taps, 

𝐶𝑝,𝑀𝑖𝑛 for regions between taps were linearly interpolated and used to create contour 

maps. The contour map plotted at a wind angle of 45° and 0-inch parapets were 

shown in Fig 4.1.1. The pattern of pressure distribution agrees with those from 

previous studies. The experiment successfully described the behavior of airflow 

across the rooftop of a low-rise building. 
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Fig 4.1.1 The distribution of 𝐶𝑝,𝑀𝑖𝑛on roof of building model with 0” parapet 

4.1.2 Pressure Distribution on Rooftop with Parapet 

The pressure coefficients on roof surface protected by perimetric solid 

parapets were plotted below. Fig 4.1.2 to 4.1.6 shows 𝐶𝑝,𝑀𝑖𝑛 on the roof surface with 

1” to 5” of parapet height. The mitigation effect of parapet can be best observed by 

the trend of the vortex’s footprint. When conical vortices travel parallel along a 

surface, the separated shear layers can be very unstable and turbulent, and it will 

create strong suction forces on the nearby surface. From the figures, it can be 

observed that the dark red regions indicating high suction load shifted toward the 

bottom left corner as parapet height increase. The presence of parapet helped 

increasing 𝐶𝑝,𝑀𝑖𝑛 by deviating conical vortices away from the roof surface. As the 

parapet height increase, the 𝐶𝑝,𝑀𝑖𝑛 on the roof tap increase. The pattern was visibly 

changed for the case with 1” and 2” parapet, and it became milder and less obvious 

for a large area.  
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Fig 4.1.2 The distribution of 𝐶𝑝,𝑀𝑖𝑛on roof of building model with 1” parapet 

 

Fig 4.1.3 Distribution of 𝐶𝑝,𝑀𝑖𝑛 on roof of building model with 2” parapet 



 

 

46 

 

 

Fig 4.1.4 Distribution of 𝐶𝑝,𝑀𝑖𝑛 on roof of building model with 3” parapet 

 

Fig 4.1.5 Distribution of  𝐶𝑝,𝑀𝑖𝑛 on roof of building model with 4” parapet 
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Fig 4.1.6 Distribution of 𝐶𝑝,𝑀𝑖𝑛 on roof of building model with 5” parapet 
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4.1.3 Mitigation Effect of Parapet on Rooftop 

Parapet’s effect on the mitigation of roof pressure was further investigated 

magnitude wise by solving for change in 𝐶𝑝,𝑀𝑖𝑛.  Tap 132, 168 and 292 (Fig 4.1.7) 

selected from two windward edges and the interior area were evaluated for percentage 

reduction of peak suction. As shown in the Fig 4.1.8, increase of 𝐶𝑝,𝑀𝑖𝑛 by 5” parapet 

was up to 75% along the windward edge. As parapet height exceeds 3” the changing 

rate of 𝐶𝑝,𝑀𝑖𝑛 gradually decreased close to zero. The further increase of parapet height 

does not greatly affect the pressure pattern. The phenomenon agrees with Huang’s 

research that concluded the reduction of peak suction (increase of 𝐶𝑝,𝑀𝑖𝑛) grows 

rapidly for ℎ 𝐻⁄ < 0.15 and became milder as the relative height of the parapet 

exceeds the threshold (Huang et al., 2017). Despite the reduction of peak suction 

along windward edges, the interior peak suction was drastically increased by 85% as 

a trade-off.  Like taps near the windward edges and corner, the 𝐶𝑝,𝑀𝑖𝑛 of interior tap 

keeps decreasing as parapet become taller. Following the trend of these two patterns, 

an optimized parapet height would exist. At the optimized height, an objective 

function is minimized that factors in both decision variables of  𝐶𝑝. More detail about 

optimum parapet height is analyzed and discussed in detail in Chapter 6.2 as an 

application of ANN models.  
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Fig 4.1.7 Location of Selected Tap 132, 168 and 292 

 

Fig 4.1.8 Parapet’ effect on Minimum Pressure Coefficient of roof taps. 
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4.2 Experimental Result Validation by Comparison with ASCE  

In Chapter 4.1 the experimental results were validated by comparing pressure 

distribution of the rooftop and percentage change in 𝐶𝑝,𝑀𝑖𝑛 with that from other 

researcher’s conclusions. In this chapter, the 𝐶𝑝,𝑀𝑖𝑛 obtained from experiments were 

compared with the coefficients adopted in practical exercise from the current design 

code ASCE7-16. The experimental 𝐶𝑝,𝑀𝑖𝑛 were first converted into the same format 

used in ASCE that’s equivalent to 𝐺𝐶𝑝. Then based on the envelope of 𝐶𝑝,𝑀𝑖𝑛 from 

ASCE, the percentage difference in 𝐺𝐶𝑝 of a few representative taps were solved for 

comparison. The experimental results turned out to be mostly consistent with that 

from the ASCE. The small discrepancies in numerical values were due to inherent 

uncertainty and lack of large-scale turbulence. More details were discussed in Chapter 

4.2.3. 

4.2.1 Conversion of Pressure Coefficient 𝑪𝒑  

The 𝐺𝐶𝑝 factor used in ASCE7-16 was pressure coefficients corresponding to 

3-second gust wind speed at mean eave height. To compare coefficients with codified 

values, the result of wind tunnel test shall be converted into equivalent 𝐺𝐶𝑝. The 

equation below was developed in Kopp’s paper (Kopp et al., 2005a). 

(𝐺𝐶𝑝)𝑒𝑞 =
𝑞𝐻𝐶̂𝑝

𝑞10𝑚,3𝑠𝐾𝑍𝑡𝐾ℎ𝐾𝑑𝐼
= 𝐹𝑊𝑇𝐶̂𝑝 

Where (𝐺𝐶𝑝)𝑒𝑞 is the equivalent pressure coefficient corresponding to 3s gust wind 

speed, 𝑞𝐻 is mean velocity pressure at eave height, 𝑞10𝑚,3𝑠 is the 3-second gust 

velocity pressure at 10 m above ground, 𝐶̂𝑝 is pressure coefficients obtained from 
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wind tunnel test corresponds to 660s wind speed,  𝐾𝑍𝑡is the topographic factor, 𝐾ℎ is 

the terrain factor, 𝐾𝑑 is the directionality factor, 𝐼 represent the importance factor of 

the structure. 𝐾ℎ is determined with Table 26.10-1 from ASCE7-16 which equals 0.98 

at eave height for exposure category C.  Both 𝐾𝑍𝑡 and 𝐾𝑑 are assumed to be 1. The 

importance factor of an office is 1. 

The equation can be further broken down into,  

(𝐺𝐶𝑝)𝑒𝑞 =

1
2 𝜌∞ 𝑣ℎ,660𝑠

2 𝐶̂𝑝

1
2 𝜌∞ 𝑣10𝑚,3𝑠

2𝐾𝑍𝑡𝐾ℎ𝐾𝑑𝐼
= 𝐹𝑊𝑇𝐶̂𝑝 

The test duration at the model scale was 120s which corresponds to 660s at full scale. 

𝑣ℎ,660𝑠 is the mean wind velocity at eave height h over 660 seconds of test duration. 

𝑣10𝑚,3𝑠 is the 3-second gust velocity at 10m above ground.  The two velocities at 

different height and different duration can be related by the intermediate-term. The 3s 

gust velocity at 10m can be converted to mean velocity 𝑣10𝑚,660𝑠 at eave height h 

over 660s. The equation above can be further broken down into, 

(𝐺𝐶𝑝)𝑒𝑞 =
 𝑣ℎ,660𝑠

2 

 𝑣10𝑚,3𝑠
2

𝐶̂𝑝

𝐾𝑍𝑡𝐾ℎ𝐾𝑑𝐼
= (

𝑣10𝑚,660𝑠

𝑣10𝑚,3𝑠

𝑣ℎ,660𝑠

𝑣10𝑚,660𝑠
) (

𝐶̂𝑝

𝐾𝑍𝑡𝐾ℎ𝐾𝑑𝐼
) 

The ratio 
𝑣10𝑚,660𝑠

𝑣10𝑚,3𝑠
 was determined using the the Durst curve in Fig 4.2.1. From curve 

readings at gust duration of 3s and 660s,  
𝑉10𝑚,660𝑠

𝑉10𝑚,3600𝑠
= 1.05 and 

𝑉10𝑚,3𝑠
𝑉10𝑚,3600𝑠

= 1.52 were 

substituted into the equation that yields  
𝑣10𝑚,660𝑠

𝑣10𝑚,3𝑠
= 0.69. To solve for the other 

fraction inside the bracket, the mean velocity profile (Fig 4.2.2) was utilized which 

was constructed using flow measurements at different height with model removed. 

The profile was normalized by reference velocity 𝑈𝑟𝑒𝑓 of 15.3 m/s at 1.48 m. At the 
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same velocity scale, the velocity ratio 
𝑣ℎ,660𝑠

𝑣10𝑚,660𝑠
 at full scale equals velocity ratio 

𝑣508𝑚𝑚,660𝑠

𝑣560𝑚𝑚,660𝑠
 at model scale. The mean eave height velocity 𝑣508𝑚𝑚,660𝑠 equals 12.304 

m/s. The mean velocity at 560mm 𝑣560𝑚𝑚,660𝑠 was interpolated from velocity profile 

to be  𝑣1.48𝑚,660𝑠 ∗ 𝑈 𝑈𝑟𝑒𝑓 =⁄ 15.3 ∗ 0.82 = 12.55 𝑚/𝑠. The term 
𝑣ℎ,660𝑠

𝑣10𝑚,660𝑠
 was 

solved to be 0.98. Substitute all the previously obtained value into the equation yields 

a coefficient 𝐹𝑊𝑇 of 0.69. 

 
Fig 4.2.1. Durst curve.  

Adapted from ‘Minimum Design Loads for Buildings and other Structures’ (ASCE, 

2016)  
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Fig 4.2.2 Mean Wind Velocity Profile obtained from Cobra Probe Measurements.  

Adapted from ‘Optimal design of structures using cyber-physical wind tunnel 

experiments with mechatronic models’ (Whiteman et al., 2017) 

 

As described in Chapter 2.3, 𝐺𝐶𝑝 acting on building surfaces were obtained 

from ASCE 7-16 with applicable diagrams. The dependent variable is effective wind 

area which indicates 𝐺𝐶𝑝 are area-averaged coefficients. Components with a large 

surface area would be less likely to experience high local pressure and vice versa. 

Since the goal was to verify pressure distribution and magnitude with codified value, 

the effective wind area of the single tap was taken as 1 𝑓𝑡2. 

Two load cases, windward parapet (load case A) and leeward parapet (load 

case B), were considered to determine the pressure for parapet walls. Since the 1:18 

model has a small width (depth) to height ratio, the flow has been deflected far 

enough away from the roof that doesn’t reattach. Therefore, the inner section of the 

leeward parapet wall would never experience positive pressure but a suction with a 

lower magnitude. Because shear layers are closer to windward-edge than leeward-

edge, the suction near former is always higher than the latter. It’s conservative to 

assume peak suction coefficient for all inner parapet wall are equal.  



 

 

54 

 

The 𝐺𝐶𝑝 on windward parapet (p1) was determined to be 1. The 𝐺𝐶𝑝 on 

leeward parapet (p2&p3) equals -2.3 and -3.2 corresponding to zone 2 and 3. The 

𝐺𝐶𝑝 on Leeward suction load (p4) equals -1.1 and -1.4 for zone 2 and zone 3. These 

values are enveloped to eliminate wind directionality, and the negative values are the 

minimum pressure coefficients among all wind angles. The corresponding 𝐺𝐶𝑝 to 

each surface was plotted in the Fig 4.2.3.  

 
Fig 4.2.3 Envelop of pressure coefficients through ASCE7-16 on low-rise building 
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4.2.2 Discrepancy between Equivalent 𝑮𝑪𝒑and 𝑮𝑪𝒑 from ASCE7-16 

From experiment measurements of pressure on the low-rise building, the 

𝐶𝑝,𝑀𝑖𝑛 within a time series was obtained through Type 1 Gumbel distribution on each 

tap at 24 angles and 6 parapet heights. At the same parapet height, there’re 24 of 

𝐶𝑝,𝑀𝑖𝑛 for every single tap. Out of these 24 values, a global minimum value of 𝐶𝑝,𝑀𝑖𝑛 

was selected to represent the most severe condition possible, and the angles at which 

the minimum 𝐶𝑝,𝑀𝑖𝑛 were selected are not essentially the same. Then, the 𝐹𝑊𝑇 was 

factored into the 𝐶𝑝,𝑀𝑖𝑛 to obtain equivalent 𝐺𝐶𝑝. In Fig 4.2.4, a Voronoi diagram was 

used to plot the envelope of the minimum equivalent 𝐺𝐶𝑝 from BLWT experimental 

results. The diagram was constructed based on Delaunay triangulation for a set of 

points. The surface plane was partitioned into multiple small cells inside which a tap 

is located equally distanced to edges of the cell. The diagram was used to analyze  

𝐶𝑝,𝑀𝑖𝑛 of a region from spatially distributed taps. The envelope of equivalent 𝐺𝐶𝑝 on 

the roof is shown in the Fig 4.2.4.  



 

 

56 

 

 

Fig 4.2.4 Envelope of Equivalent 𝐺𝐶𝑝 on roof by Voronoi Diagram 
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4.2.3 Discussion on Identified Discrepancy 

The number of cells equals the number of roof taps. The minimum 𝐺𝐶𝑝 were 

obtained at parapet height of 0”. Due to the non-uniform distribution of roof taps, the 

Voronoi cells in regions with densely distributed taps were smaller in size and vice 

versa. The low resolution may result in an inaccurate presentation of pressure pattern 

near the bottom left corner.  The darker red regions were mostly along the four edges 

and the interior region was lightly colored. The pattern was then compared to that 

expected from using ASCE 7-16. By closely observing the interior region, it’s clear 

that 𝐺𝐶𝑝 is not uniform but rather increasing moving towards the center. The footprint 

of conical vortices is visible at four nearly symmetrical corners. The inner pressure 

distribution of inner parapets follows the pattern of the near roof edge. It’s consistent 

with parapet loading from ASCE 7-16.  

The exposed portion of leeward parapets experienced suction during the 

whole test, which was inconsistent with the ASCE. The scale of the building model 

may be contributed to the difference. The height to length ratio of the building model 

was 1:1 which means limited length for the shear layer’s reattachment.  The separated 

shear layer never reattaches to the roof surface before leaving the model boundaries.  

Small discrepancies were found in comparison to the min 𝐺𝐶𝑝 from ASCE magnitude 

wise. The minimum 𝐺𝐶𝑝 along edges and corners is -3.31 which is 3.4% lower than -

3.2 from ASCE. The minimum 𝐺𝐶𝑝 the interior region is -2.37 which is 3% lower 

than -2.3 from ASCE. There could be a list of reasons that possibly caused the 

difference. As discussed previously, the longitudinal integral length 𝐿𝑥 doesn’t meet 

the standard from ASCE/SEI 49-12.  The 𝐿𝑥  of the simulated terrain, the condition 
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was solved to be 18 m at eave height which was very low compared with the codified 

value of 110 m.   Another reason is the inherent uncertainty when using Gumbel 

distribution to estimate the minimum values. 
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4.3 Sheltering Effect of Parapet on the Rooftop 

Parapet’s mitigation effect is most visible on the building roof at 45° which 

causes the highest suction load among all angles. While most researchers have 

focused the wind effect at the most severe condition, the mitigation effect on the 

rooftop at non-oblique angles is seldomly mentioned. In this chapter, the reduction of 

𝐶𝑝,𝑀𝑖𝑛 were investigated for the relationship with parapet height. Besides, the 

pressure distribution over the surface panels were plotted by contour maps. When 

wind impacts the building surface at right angles, the pattern of roof pressure 

distribution becomes simpler due to the absence of conical vortices. The pressure 

distribution on the roof is generally uniform with a few minor variations. To 

investigate the effect of parapets on the roof at non-oblique angles, contour maps of 

𝐶𝑝,𝑀𝑖𝑛 on surfaces were plotted at 0° and 90° with 0”-5” parapet.  

4.3.1 Sheltering Effect at 0° wind (along the short dimension) 

Fig 4.3.1 to 4.3.6 shows 𝐶𝑝,𝑀𝑖𝑛 of all surfaces at an angle of 0° and parapet 

heights from 0” to 5”. As shown in the series of figures, the parapet lower than 4” 

doesn’t change the flow pattern enough to post a noticeable effect on the roof 

pressure. Even with taller parapets, most of the roof taps were exposed to turbulence 

flow and experienced high suction pressure.  Only the middle part of windward edges 

was sheltered by parapets for about 2” down the roof. The increase of 𝐶𝑝,𝑀𝑖𝑛 was 

around 18% which’s only one-fourth of that at the wind angle of 45°. The parapet is 

not so effective in this type of wind condition. The design is dominated by wind 

pressure at the wind angle of 45°.  
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Fig 4.3.1 Pressure distribution contour from experiment result at 0” parapet and 0° 

wind angle. 

 
Fig 4.3.2 Pressure distribution contour from experiment result at 1” parapet and 0° 

wind angle. 
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Fig 4.3.3 Pressure distribution contour from experiment result at 2” parapet and 0° 

wind angle. 

 
Fig 4.3.4 Pressure distribution contour from experiment result at 3” parapet and 0° 

wind angle. 
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Fig 4.3.5 Pressure distribution contour from experiment result at 4” parapet and 0° 

wind angle. 

 
Fig 4.3.6 Pressure distribution contour from experiment result at 5” parapet and 0° 

wind angle. 
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4.3.2 Sheltering Effect at 90° wind 

Similarly, the pattern for 𝐶𝑝,𝑀𝑖𝑛 were plotted and shown below in Fig 4.3.7 to 

4.3.12. The mitigation effect is more obvious when the building model is at 90° to the 

approaching flow. As parapet height increase, 𝐶𝑝,𝑀𝑖𝑛 increases near the roof region 

along the windward edge. The mitigation effect is most obvious at the parapet of 5”. 

At the taps right next to the windward edge, an increase of the 𝐶𝑝,𝑀𝑖𝑛 is 32% which is 

less than one-half of the increase at the wind angle of 45°. Despite the degree of 

mitigation effect at 90°, nearly 1/2 of the roof surface was sheltered by the windward 

parapet.  The sheltering effect is considerable compared to the building model that’s 

subjected to at 0° wind. 

 
Fig 4.3.7 Pressure distribution contour from experiment result at 0” parapet and 90° 

wind angle. 
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Fig 4.3.8 Pressure distribution contour from experiment result at 1” parapet and 90° 

wind angle. 

 
Fig 4.3.9 Pressure distribution contour from experiment result at 2” parapet and 90° 

wind angle. 
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Fig 4.3.10 Pressure distribution contour from experiment result at 3” parapet and 90° 

wind angle. 

 
Fig 4.3.11Pressure distribution contour from experiment result at 4” parapet and 90° 

wind angle. 
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Fig 4.3.12 Pressure distribution contour from experiment result at 5” parapet and 90° 

wind angle. 
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4.3.3 Discussion on Mitigation Effect of Parapet 

From the two cases investigated above, two different responses were observed 

on the roof of the same model due to different wind directions. In the first case where 

the long edge was facing the approaching wind, the parapet made subtle influences on 

the distribution pattern of the roof 𝐶𝑝,𝑀𝑖𝑛. Whereas in the other cases when the short 

edge was facing the wind, considerable changes on pattern of the roof 𝐶𝑝,𝑀𝑖𝑛 were 

observed. There’re two conclusions regarding the parapet's effect on the roof that can 

be made. The first one is that the taller the parapet, the better the sheltering effect is.   

The second one is that the sheltering effect of the parapet was related (negatively 

proportional) to the length of the windward edge. 

Tall parapets helped mitigated the roof wind loading. The reasoning of 

mitigation is demonstrated below. The parapet made separated shear layers to deviate 

away from the roof. As shown in Fig 4.3.13, the curvature of shear layers was 

lessened so that it reattaches further down the roof. The deviated shear layers can be 

described by a concave-down parabolic curve.  As parapet height starts to increase, 

the larger distance between the roof and shear layers resulted in the increase of 𝐶𝑝,𝑀𝑖𝑛 

near windward edges. It’s also worth noting the 𝐶𝑝,𝑀𝑖𝑛 of windward inner parapet 

also increased along with sheltered roof regions. Meanwhile, the 𝐶𝑝,𝑀𝑖𝑛 for upper 

regions of the leeward parapet was reduced because getting closer to the shear layers 

yields strong suction.   
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Fig 4.3.13 Curvature of Shear Layers on Building Models with (Right) and without 

(Left) Parapets. 

 

The response for roof 𝐶𝑝,𝑀𝑖𝑛 at 90° can be explained by the theory above 

whereas in the first case at the wind angle of 0° doesn’t seem to abide by the same 

concept. Although, parapet helped with alleviating shear layers in both two cases. The 

mitigation effect on the long edges is insignificant compared with than on the short 

edges. The mitigation effect seems to be negatively proportional to the length of the 

windward edge. Recall the wind regime on low-rising building in Fig 2.2.1, the width 

of the separation zone is non-uniform along the windward edge. It peaks at the center 

and decreases as it reaches the two ends. The shear layer near the center region is 

blocked by the parapet completely and must ride over the parapet. Whereas the shear 

layer near both ends could escape from the side. With the same amount of energy of 

approaching wind, it’s easier to ride over a parapet along a shorter edge than longer 

one. separation zone became more distributed along the longer edges.  
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Chapter 5:  Artificial Neural Network Setup 
 

ANNs have broad applications throughout many industries including wind 

engineering applications.  Artificial neural networks can learn and model any non-

linear relationship between inputs and outputs without complex statistics. The model 

could process a massive amount of overserved data and uncovers the underlying 

function. The network model provides a user with a ‘black-box’ system that’s used to 

conveniently predict outputs with given inputs.  

In this study, three models were developed to predict the wind pressure 

coefficients 𝐶𝑝 on the low-rise building. The fully trained model can be used to 

extend database. For example, the model can extrapolate 𝐶𝑝 on building model at 

different unseen parapet height and angle.   

5.1 Data Division 

Pressure time-history was obtained for taps on the roof, inner parapets, and 

outer walls. There’s a total of 48383 data points representing pressure coefficients on 

the roof. The data points are from measurements on 336 taps at 24 different angles 

and 6 parapet heights. On the inner parapet walls, the maximum number of exposed 

taps is 36. There’s a total of 2568 data points representing pressure coefficients at 24 

angles and 6 heights. On the wall surfaces, the maximum number of exposed tap is 

80. The total number of pressure coefficients for wall taps are 11664. The division of 

data for training, validation and testing was set to be random at a portion of 70-15-15 

accordingly. Using randomly selected data has a minor effect on the performance of a 

well-developed model.  
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5.2 Network Architecture and Selection of Parameters 

In a practical condition with unknown target function, the trends of 𝐸𝑖𝑛 and 𝐸𝑜𝑢𝑡 are 

unveiled and the best practice is using all available training data to develop complex 

networks and the model complexity should be pushed to the limit when out-of-sample 

error starts to increase. To decide the best architecture concerning costs and 

performance, multiple trial configurations for network architecture were tested for the 

generalizing ability of the ANN model. Based on the different behavior of structural 

components to wind load, 3 neural network models were developed separately for the 

roof, parapets, and wall surfaces. In this research, the structure of a four-layer feed-

forward network was employed with 1 input, 1 output, and 2 hidden layers. The 

neurons in each hidden layer were adjusted according to generalization performance. 

The detailed structures of proposed ANN models were specified in Table 5.1.  

Table 5.1 ANN Model Characteristics 
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Pressure coefficients on the building surface depend greatly on the location of 

the tap. The training parameters for both models are identical including x, y, z 

coordinates of tap, parapet height and wind angle. Because roof taps are on the same 

level, the z coordinates for 48383 yields a row of constant parameters. The row does 

not contribute to output’s convergence to the true value, and it was removed by 

preprocessing function implanted in MATLAB code before training occurs.  Many 

researchers include turbulence intensity as a training parameter because fluctuating 

and peak external pressures are highly dependent on the turbulence intensities 

(Holmes, 2001). However, it’s not selected as an input parameter as only one terrain 

roughness was simulated yielding the same turbulence intensity at eave height. There 

are four outputs namely Mean, RMS, Min and Max pressure coefficient. They were 

used to measure the general level of pressure fluctuations at taps.   
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5.3 BP Algorithm Selection 

BP algorithm can be categorized into seven parts: 1) Adaptive Momentum 2) 

Self-adaptive learning rate 3) Resilient BP 4) Conjugate Gradient 5) Quasi-Newton 6) 

Bayesian regularization 7) Levenberg Marquardt.  Table 5.2 is a portion of the BP 

algorithm available in MATLAB. 

Table 5.2 Types of Backpropagation Algorithm.  

  
Adapted from ‘Deep Learning Toolbox’, 2020, MATLAB Documentation. Copyright 

2020 The Mathworks, Lnc.  

 

 

In this study, Levenberg-Marquardt and Bayesian Regularization 

backpropagation were utilized for its ability to approach second-order training speed. 

Both LM and BR backpropagation utilizes Levenberg-Marquardt optimization to 

update the weight and bias values. Different than the LM-BP, the BR-BP minimize a 

combination of squared errors and weights and optimize the network generalization 

performance by determining the correct combination (MATLAB documentation). It’s 

proven in Pan's (2013) research on the comparison between different types of BP 

algorithm that BR is the preferred algorithm for its lowest mean absolute percentage 

error of 3.5% (Pan et al., 2013). Whereas BR obsesses the highest generalization 

ability, LM-BP is the fastest algorithm that produces MAPE within a tolerance range. 

For the generalization of the ANN model based on the measurement of roof taps, the 
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available data input for training is relatively large and the LM backpropagation was 

selected to increase training speed. For wall and parapet taps, LM-BP was first used 

to train the network and later it was switched to BR-BP for better performance.   

5.4 Termination Constraint 

Both LM-BP and BR-BP use the number of iteration and max number of 

validation checks as termination criteria.  As training terminates, the performance 

goal shall be infinitely close to 0 as the gradient is set to be below 10−7. Max's 

number of iterations was set at 2000 to avoid overfitting and excessive training 

duration, and the max fail of validation is set at 6. Other Marquardt adjustment related 

parameters were set at default. 
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5.5 Chapter Conclusion 

For each data subset of roof, parapet, and wall, 70% of data were randomly 

selected and fed into the raw network as a training guide. Coordinates of tap, the 

height of parapet, and wind angle were plug into the feedforward process as input. 

The output parameters were Mean, RMSE, Minimum, and Maximum of the 𝐶𝑝 time-

series of each tap. In the feedforward process, the product of weight and input were 

summed together and plugged into the sigmoid transfer function 𝜃 = tanh (∑ 𝑠𝑖) as 

input for the next layer. After the feedforward process propagates through layers of 

nodes and reaches the output layer, the output vector will be compared with the target 

vector. If the difference between two vectors is within the tolerance range, the 

training of network terminates followed by weights and bias on each link being 

retained for future use. Utilizing backpropagation, the network weights were tuned to 

reflect the true value of the corresponding output. The network mainly operates on 

one of the two BP-algorithms including LM and BR backpropagation. BR 

backpropagation takes a longer time to train and generally yields better performance 

than LM backpropagation.  The training terminates when validation error doesn’t 

improve for 6 consecutive epochs. The combination of tuned weights and bias were 

saved for future use. 
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Chapter 6:  Neural Network Results and Discussions 

6.1 Performance Evaluation of ANN Model 

6.1.1 Performance Evaluation by Linear Regression 

After the network finished tuning and tested with the test subset, the output 

vector ℎ(𝑥) was then being used to plot against the true value (𝑦). Linear regression 

was used to model the relationship between ANN outputs and BLWT outputs.  

RMSE, MEAN, and R2 were calculated to quantify the strength of the relationship as 

shown in following equations, 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − ℎ(𝑥𝑖))

2
𝑛

𝑖=1

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − ℎ(𝑥𝑖)|

𝑛

𝑖=1

 

𝑅2 = 1 −
∑ (𝑦𝑖 − ℎ(𝑥𝑖))

2𝑛
𝑖=1

∑ (𝑦𝑖 − ℎ(𝑥)̅̅ ̅̅ ̅̅ )
2𝑛

𝑖=1

 

Where 𝑦𝑖 is the BLWT result, ℎ(𝑥𝑖) is the ANN predicted result, ℎ(𝑥)̅̅ ̅̅ ̅̅  is the mean 

value of BLWT result, 𝑛 is the number of data points used in data subsets (train, 

validate and test).  

The linear regression plot for each subset were plotted and shown in Fig 6.1.1 

to 6.1.3. The relatively low RMSE and MAE means a very good agreement between 

observed results and predicted results. Therefore, a high degree of generalization is 

achieved. Also, the squared error for the training subset is the least among three 

subsets which demonstrated that model complexity is appropriate resulting in low in-
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sample error. The other two subsets also have relatively low squared error indicating 

the overfitting was prevented by cooperating with validation sets. Table 6.1 shows 

MAE, RMSE, R2 of each type of pressure coefficients for all three ANN models. In 

all three models, the 𝐶𝑝,𝑀𝑖𝑛 and 𝐶𝑝,𝑀𝑎𝑥 have larger MAE and RMSE compared to 

𝐶𝑝,𝑀𝑒𝑎𝑛, 𝐶𝑝,𝑅𝑀𝑆. The more spread-out data points are due to uncertainties generated 

when estimating the maximum and the minimum using Gumbel distribution. 

Table 6.1 Test Error for ANN models. 
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Fig 6.1.1 linear regression plots for training, validation and testing subsets of ANN 

model for the roof. 
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Fig 6.1.2 linear regression plots for training, validation and testing subsets of ANN 

model for parapets. 
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Fig 6.1.3 linear regression plots for training, validation and testing subsets of ANN 

model for walls. 
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6.1.2 Performance Evaluation by Learning Curve 

Another way to evaluate the generalization performance of the trained model 

is through observation of learning curves which reports the MSE at the best epoch. 

For each ANN model, learning curves were generated by the MATLAB toolbox 

which shows the mean squared error of training, validation, and testing at each epoch. 

From Fig 6.1.4 to 6.1.6, it’s observed that MSE decreases gradually at each training 

epoch, and three curves eventually land on a small value and remain stable as epoch 

further increases. The curves for training always have the lowest MSE than testing 

and validation. The relative distance between each curve is due to the randomness of 

data selection and data division. The ANN model trained on roof data has the best 

performance among the three models because of provided large datasets for the 

machine to learn from it. The same rule applies to the parapet and wall ANN models 

which have identical network structures.  

 

Fig 6.1.4 Learning Curves for ANN model developed with Roof data subsets. 
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Fig 6.1.5 Learning Curves for ANN model developed with Wall data subsets. 

 
Fig 6.1.6 Learning Curves for ANN model developed with Parapet data subsets. 
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6.1.3 Performance Evaluation by Pressure Distribution 

The generalization ability of the three networks were validated and presented 

in previous section by linear regression plots and learning curves. It’s shown that 

developed ANN models were able to capture the underlying target function and 

populate the 𝐶𝑝 values on the surfaces of the building model. To visibly evaluate the 

prediction performance of ANN models, the populated 𝐶𝑝 was plotted on the surfaces 

to form pressure contour plots. The Fig 6.1.7 to 6.1.12 shows the contour map of  

𝐶𝑝,𝑀𝑖𝑛 from the experiment result and ANN result side by side. The Fig 6.1.13 to 

6.1.18 shows the contour map of  𝐶𝑝,𝑀𝑎𝑥 from the experiment result and ANN result. 

The majority of these two maps are identical by following the same trend of wind 

effect on certain surfaces. From time to time, there’re a couple of roof taps that have 

slightly higher 𝐶𝑝,𝑀𝑖𝑛 than that of the contour plot from the experiment result.    

 
Fig 6.1.7 Pressure distribution contour of 𝐶𝑝,𝑀𝑖𝑛 from experiment result (Left) and 

ANN prediction (Right) at 0” parapet and 45° wind angle. 
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Fig 6.1.8 Pressure distribution contour of 𝐶𝑝,𝑀𝑖𝑛 from experiment result (Left) and 

ANN prediction (Right) at 1” parapet and 45° wind angle. 

 

 
Fig 6.1.9 Pressure distribution contour of 𝐶𝑝,𝑀𝑖𝑛 from experiment result (Left) and 

ANN prediction (Right) at 2” parapet and 45° wind angle. 
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Fig 6.1.10 Pressure distribution contour of 𝐶𝑝,𝑀𝑖𝑛 from experiment result (Left) and 

ANN prediction (Right) at 3” parapet and 45° wind angle. 

 

 
Fig 6.1.11 Pressure distribution contour of 𝐶𝑝,𝑀𝑖𝑛 from experiment result (Left) and 

ANN prediction (Right) at 4” parapet and 45° wind angle. 



 

 

85 

 

 
Fig 6.1.12 Pressure distribution contour of 𝐶𝑝,𝑀𝑖𝑛 from experiment result (Left) and 

ANN prediction (Right) at 5” parapet and 45° wind angle. 

 

 
Fig 6.1.13 Pressure distribution contour of 𝐶𝑝,𝑀𝑎𝑥 from experiment result (Left) and 

ANN prediction (Right) at 0” parapet and 285° wind angle. 
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Fig 6.1.14 Pressure distribution contour of 𝐶𝑝,𝑀𝑎𝑥 from experiment result (Left) and 

ANN prediction (Right) at 1” parapet and 285° wind angle. 

 

 
Fig 6.1.15 Pressure distribution contour of 𝐶𝑝,𝑀𝑎𝑥 from experiment result (Left) and 

ANN prediction (Right) at 2” parapet and 285° wind angle. 
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Fig 6.1.16 Pressure distribution contour of 𝐶𝑝,𝑀𝑎𝑥 from experiment result (Left) and 

ANN prediction (Right) at 3” parapet and 285° wind angle. 

 

 
Fig 6.1.17 Pressure distribution contour of 𝐶𝑝,𝑀𝑎𝑥 from experiment result (Left) and 

ANN prediction (Right) at 4” parapet and 285° wind angle. 
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Fig 6.1.18 Pressure distribution contour of 𝐶𝑝,𝑀𝑎𝑥 from experiment result (Left) and 

ANN prediction (Right) at 5” parapet and 285° wind angle. 
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6.2 Application of ANN Model 

Now that the generalization ability of ANN models was validated, the models 

were used to extrapolate values and unveil the relationship between parapet height 

and 𝐶𝑝. For each parapet height from 0” to 5” at every 0.5” increment, the 𝐶𝑝,𝑀𝑖𝑛 and 

𝐶𝑝,𝑀𝑎𝑥 were found on the rooftop from the predicted results that contain values for 24 

wind angles. In Fig 6.2.1, the scatter plot was created by plotting the Minima of 

𝐶𝑝,𝑀𝑖𝑛 along the horizontal axis and the Maxima of 𝐶𝑝,𝑀𝑎𝑥 along the vertical axis.  

 

Fig 6.2.1 Relationship between 𝐶𝑝,𝑀𝑖𝑛 and 𝐶𝑝,𝑀𝑎𝑥 at Various Parapet Height 

 

The horizontal axis was inverted for the right-hand side to represent the worst 

condition.  As discussed previously, change in parapet height has the opposite effect 

on the negative and positive pressure on the rooftop. In the case of multi-objective 

optimization, all options that result in the most favorable condition between two 

criteria are Pareto efficient. The objective of minimizing the negative effect was 

accomplished by determining the Pareto frontier that’s formed by connecting all 
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Pareto efficient points. There’s no single optimized height in the current problem 

settings. Based on the preference and objective of a designer, there’re generally three 

options which are either to provide stiffer uplift-resisting member or stronger member 

to resist gravity load or go with any of the intermediate options. Shown by the trend 

in Fig 6.2.1, moving from the bottom right corner to the upper left corner, the 

magnitude of 𝐶𝑝,𝑀𝑖𝑛 decrease as magnitude of 𝐶𝑝,𝑀𝑎𝑥 increase. As parapet height 

increase from 0” to 1.9”, the tradeoff between the 𝐶𝑝,𝑀𝑖𝑛  and the 𝐶𝑝,𝑀𝑎𝑥 can be 

observed, and the mitigation effect grows rapidly at the corner and edges. As parapet 

continues to increase from 1.9”, the parapet’ effect grows mildly and the magnitude 

of both 𝐶𝑝,𝑀𝑖𝑛 and 𝐶𝑝,𝑀𝑎𝑥 fluctuates within a small range. At parapet height range of 

3.3” to 3.6”, the magnitude of 𝐶𝑝,𝑀𝑖𝑛 reaches the global lowest value. As parapet 

continuous to increase, the magnitude of 𝐶𝑝,𝑀𝑖𝑛 started to increase which’s against the 

will of mitigate peak suction. 

Based on the observed result, two conclusions were made regarding parapet’s effect 

to the pressure coefficients on the rooftop.  

1. Relative parapet height between 0.16h to 0.18h works best for roof 

components sensitive to uplift forces. (i.e. shingles, etc.) 

2. Relative parapet height of 0~0.1h would interfere less with gravity load  
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6.3 Chapter Summary 

In this chapter, ANN models were validated and tested by corresponding data 

subsets. The learning curves and linear regression plots were used to present the 

generalization performance of developed models. From the perspective of wind 

engineering, the pressure distributions were presented by a series of contour maps 

which shows the predicted  𝐶𝑝,𝑀𝑖𝑛 on building surface panels. The contour maps were 

compared to those from experimental results. After validated the performance of 

ANN models, the models were used to extrapolate 𝐶𝑝,𝑀𝑖𝑛 and 𝐶𝑝,𝑀𝑎𝑥 at building 

models with unseen parapet height. Based on the observed relationship between 

𝐶𝑝,𝑀𝑖𝑛  and 𝐶𝑝,𝑀𝑎𝑥, a range of optimized heights were found to be effective at 

balancing negative and positive pressure on different regions of the rooftop.   
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Chapter 7:  Conclusions and Recommendations 

7.1 Conclusions 

The thesis is mainly comprised of two parts, one of which focused on 

developing and validate the experimental database obtained from series of BLWT 

tests, and the other part focused on developing the accurate computational model to 

extend the wind pressure database.  With BLWT experimental results, the thesis first 

investigated the wind loads on surfaces of the low-rise building protected by a solid 

perimetric parapet. At cornering wind angle, the 𝐶𝑝,𝑀𝑖𝑛 on the rooftop was 

determined at various parapet height. By observing the transition of the high suction 

region, the mitigation effect of the parapet was demonstrated through the pattern of 

pressure distribution on contour maps. The experimental result was further validated 

by comparing it with ASCE7-16. The experimental result of the pressure coefficient 

on building panels is mostly agreed with that from the ASCE7-16. 

In the second part of the thesis, the objective of using the computational 

model to expand aerodynamic databases to a larger variety of geometries was 

accomplished, and the practical feasibility was approved by extending the database 

with previously unseen parapet height. Based on the error measure from linear 

regression, the performance of the roof and wall model were proved to be excellent at 

predicting the Mean, RMS, Min and Max of pressure coefficients. There’s a relatively 

large error regarding the 𝐶𝑝,𝑀𝑖𝑛 and 𝐶𝑝,𝑀𝑎𝑥 of the parapet model. The parapet model 

has a mean averaged error of 17.7% regarding 𝐶𝑝,𝑀𝑎𝑥 and a mean averaged error of 

16.8% regarding 𝐶𝑝,𝑀𝑖𝑛. 
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With the well-developed ANN models, the 𝐶𝑝,𝑀𝑖𝑛 and 𝐶𝑝,𝑀𝑎𝑥 were predicted 

for intermediate parapet height from 0 to 5” at every 0.1” of increment. The Pareto 

frontier was developed to demonstrate all possible optimization options to adjust the 

tradeoff between positive and negative wind pressure. For roof C&C like flashing and 

shingles, that are sensitive to roof suction load, a relative parapet height of 0.16H to 

0.18H would help to mitigate the peak suction.  For any structures sitting on the roof 

surface that mostly bears gravity load, a relative parapet height of 0 to 0.1H would 

interfere less with the structure’ gravity load design. 

7.2 Future Studies 

1. Discover all related input parameters to improve generalization performance. 

2. Discover the potential of combining 3 different neural network models into 

one general model. 

3. Consider incorporating the top of the parapet into the study to completely 

capture the response of parapet to wind loads.  

4. Collect more experimental data for better accuracy at walls and parapets. 
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