
Time and Space Optimization for Processing Groups of
Multi-Dimensional Scientific Queries�

Suresh Aryangat, Henrique Andrade, Alan Sussman

Department of Computer Science
University of Maryland

College Park, MD 20742fsuresha,hcma,alsg@cs.umd.edu
Abstract

Data analysis applications in areas as diverse as remote
sensing and telepathology require operating on and pro-
cessing very large datasets. For such applications to exe-
cute efficiently, careful attention must be paid to the storage,
retrieval, and manipulation of the datasets. This paper ad-
dresses the optimizations performed by a high performance
database system that processes groups of data analysis re-
quests for these applications, which we call queries. The
system performs end-to-end processing of the requests, for-
mulated as PostgreSQL declarative queries. The queries
are converted into imperative descriptions, multiple imper-
ative descriptions are merged into a single execution plan,
the plan is optimized to decrease execution time via com-
mon compiler optimization techniques, and, finally, the plan
is optimized to decrease memory consumption. The last two
steps effectively reduce both the time and space to execute
query groups, as shown in the experimental results.

1 Introduction

Many applications are emerging that process very large
multi-dimensional datasets. One example of such an appli-
cation is Kronos, which is used by earth scientists to process
satellite images of the Earth. Another example is the Vir-
tual Microscope, which provides realistic digital emulation
of a high power light microscope. Many similar data analy-
sis applications display a common processing structure [2].
We have developed a scientific database system that exploits
this common processing structure and performs various op-
timizations geared towards reducing both the time to pro-�This research was supported by the National Science Foundation un-
der Grants #EIA-0121161, #ACI-9619020 (UC Subcontract #10152408),
and #ACI-9982087, Lawrence Livermore National Laboratoryunder Grant
#B517095, and NASA under Grants #NAG5-11994 and #NAG5-12652.

cess a single data analysis request (aquery) and to improve
database throughput. Queries from these applications are
not only expensive to compute, consuming large amounts
of I/O and computational resources, but also have very high
memory utilization requirements and often require execut-
ing user-defined operations that are not easily implemented
in commercial relational databases. In previous work, we
have leveraged data and computation reuse for queries in-
dividually submitted to the system over an extended period
of time. However, for a set of queries considered as a sin-
gle group, a global query plan that accommodates all the
queries can often be much more efficient than executing
each query separately, assuming that we can devise methods
for efficiently removing redundancies across queries, while
minimizing the use of memory resources.

The system accepts a declarative data analysis query,
specified in PostgreSQL, for a group of queries, and con-
verts it to an imperative form. The resulting program con-
tains one or more loops over multidimensional ranges of
some subset of the dataset attributes (e.g., latitude and lon-
gitude for remote sensing). Once in imperative form, the
system performs query plan transformations based on al-
gorithms commonly used by compilers to optimize the in-
termediate or low-level representations of program source
code. After performing theseexecution time reducingtrans-
formations, each original query is converted into a se-
quence of loops iterating on subsets of the original attribute
range(s). Because they came from a declarative query, the
loops have the property that changing their execution order
does not change the correctness of the results. The system
is therefore allowed to reorder the execution of the loops
to also optimizememory usage. Reducing memory utiliza-
tion is important because it affects the performance of the
system (e.g., by avoiding paging), and may also affect the
performance of other applications sharing the same proces-
sor and physical memory. In this paper, we describe the
time and space optimization techniques we have designed

1

and implemented for groups of scientific queries, and show
experimental results that quantify the benefits of the opti-
mizations.

2 Related Work

Many researchers have been working on support for sci-
entific databases. SEQUOIA 2000 [25] is one of the pi-
oneering projects in that arena. Commercial projects [10]
have also identified database requirements that are spe-
cific to scientific applications. Optimizing the execution of
query groups in relational databases has also attracted in-
terest [18]. Optimizing query processing for scientific ap-
plications using database technology has been the goal of
several researchers. Ferreira et al. [11, 12, 13, 14] have
done extensive research on using compiler and runtime
analysis to speed up the processing ofindividual scientific,
data-intensive queries. In particular, they have investigated
compiler optimization issues related to queries with spatio-
temporal predicates, similar to the ones we target [12].

Multi-query optimization has been investigated by sev-
eral researchers, mainly in relational databases [6, 9, 23,24,
26]. Similarly, in our previous work, we have devised op-
timization techniques that allow efficient handling of multi-
query workloads when user-defined operations are also part
of the query plan [2, 4]. For optimizing a group of queries,
on the other hand, a global query plan that accommodates
all the queries can be more profitable than creating indi-
vidual query plans and scheduling queries based on those
plans, especially if information at the algorithmic level for
each of the individual query plans is exposed. A similar
observation was the motivation for a study done by Kang
et al. [17] for relational operators, and also motivated our
earlier work on scientific data analysis queries [1].

3 Database Architectural Overview

The database architecture we have been developing en-
ables efficient handling of multi-query workloads where
user-definedoperations are also part of the query plan [2,
3]. The architecture builds on a data and computation reuse
model that can be employed to systematically expose reuse
sites in the query plan when these user-defined operations
are part of the queries.

In dealing with scientific data, the need to handle query
groups arises in many situations. In a data server con-
currently accessed by many clients, there can be multi-
ple queries awaiting execution or clients submitting mul-
tiple queries simultaneously. In such a scenario, an opti-
mized plan for executing the group of queries can result
in better resource allocation and scheduling decisions. The
type of queries we address are denoted as range-aggregation

R Sele
t(I; O;Mi)
foreach(r2 R) fO[SL(r)℄ = F(O[SL(r)℄; I1[SR1(r)℄; : : : ; In[SRn(r)℄)g

Figure 1. General Data Processing Loop.

queries (RAGs) [7]. A RAG query typically has both spa-
tial and temporal predicates, namely a multi-dimensional
bounding box in the underlying multi-dimensional attribute
space of the dataset. Only data elements whose associated
coordinates fall within the multidimensional box must be
retrieved and processed. Borrowing from a formalism pro-
posed by Ferreira [11], a RAG query can be specified in the
general loop format shown in Figure 1. ASelectfunction
identifies the sub-domain that intersects the query metadata
(bounding box)Mi for a queryqi. The sub-domain can
be defined in the input attribute space (dataset(s) to be pro-
cessed) or the output space (data product to be generated).
For simplicity, we view the input and output datasets as be-
ing composed of collections of multidimensional objects.
An object can be a single data element or a data chunk con-
taining multiple data elements. The objects whose elements
are updated in the loop are referred to asleft hand side, or
LHS, objects. The objects whose elements are only read in
the loop are calledright hand side, or RHS, objects.

During query processing, the domain denoted byR in
theforeachloop is traversed. Each pointr inR, and the cor-
respondingsubscript functionsSL(r);SR1(r); : : : ;SRn(r)
are used to access the input and output data elements for
the loop. In Figure 1, we assume that there aren RHS col-
lections of objects, denoted byI1; : : : ; In, contributing to
the computation for aLHS object. All n RHS collections
do not have to be different, since different subscript func-
tions can be used to access the same collection. In itera-
tion r of the loop, the value of an output elementO[SL(r)℄
is updated using the application-specific and user-defined
functionF . The functionF uses one or more of the valuesI1[SR1(r)℄; : : : ; In[SRn(r)℄, and may also use other scalar
values that are inputs to the function, to compute an aggre-
gate result value. The aggregation operations typically im-
plementgeneralized reductions[15], which must be com-
mutative and associative operations. A commutative and
associative aggregation operation produces the same output
value irrespective of the order in which the input elements
are processed. That is, the set of input data elements can
be divided into subsets. Temporary results can be computed
for each subset and a new intermediate result or the final
output can be generated by combining them.

We have employed PostgreSQL [22] as the declarative
query language used by clients to formulate queries. Post-
greSQL has language constructs for creating new data types

2

(CREATE TYPE) and new data processing routines, called
user-defined operations (CREATE FUNCTION). The only
part of the standard PostgreSQL implementation that we
employ is its parser, since all other data processing services
are handled within our database engine.

3.1 Kronos Queries

Kronos is an example of a remote sensing applica-
tion [16], and provides tools for geographical, meteoro-
logical, and environmental studies. Advanced sensors at-
tached to earth-orbiting satellites collect measurements,
from which a dynamic view of the planet’s surface can be
produced [16]. The raw data gathered by satellite sensors
can be post-processed to carry out studies ranging from
monitoring land cover dynamics to estimating biomass and
crop yield. Systems processing remotely sensed data often
wish to provide on-demand access to raw data and user-
specified data product generation [8]. Kronos processes
datasets composed of remotely sensed AVHRR GAC level
1B (Advanced Very High Resolution Radiometer – Global
Area Coverage) orbit data [21]. The volume of data accu-
mulated per day is about 1 GB. An AVHRR GAC dataset
consists of a set of Instantaneous Field of View (IFOV)
records organized into the scan lines of each satellite or-
bit. Each IFOV record contains the reflectance values for
5 spectral range channels. Each sensor reading is associ-
ated with a position (longitude and latitude) and the time
the reading was recorded. Data quality indicators are also
stored with the raw data. Kronos has been ported to our
database system, and Figure 2 shows three sample Post-
greSQL Kronos queries (in the black box) that specify mul-
tiple user-defined operations. In the figure, the spatio-
temporal bounding box and spatial-temporal resolution are
described by a pair of three-dimensional coordinates (lat-
itude, longitude, time) in the input dataset domain. The
user-defined operations are Retrieval (for accessing the raw
datasets), Correction (for cleaning up the raw sensor mea-
surements to remove atmospheric effects), Composite (for
aggregating the data), and Project (for cartographically pro-
jecting out the data product).

4 Time Optimization Techniques

Time optimization techniques consist of methods to re-
duce the time required to execute a query group submitted to
the database by removing redundant I/O operations and/or
redundant computations. An overview of our approach is
depicted in steps 2 to 5 in Figure 2.

After transforming the declarative queries into multiple
foreach loops, the first stage of the optimization employs
the bounding boxes for each query in the group to perform
loop fusion/splitting operations – merging and fusing the

bodies of loops representing queries that iterate at least par-
tially over the same domainR (e.g., loops for the first two
queries in step 2 of Figure 2 partially overlap. In step 3, we
see a loop for the overlapping region and three loops for the
non-overlapping regions). The goal of this phase is to ex-
pose opportunities for subsequent common subexpression
elimination and dead code elimination, as it merely reorga-
nizes the loops. Two distinct tasks are performed when a
new loop is incrementally integrated into the current query
group plan. First, the bounding box for the new loop is com-
pared against the iteration domains for all the loops already
in the query plan. The loop with the largest amount of mul-
tidimensional overlap is selected to incorporate the state-
ments from the body of the new loop (i.e, the new query
does not overlap with any of the existing loops, or the it-
eration domain for the new query is either partially/totally
subsumed by or partially/totally subsumes that of one of the
loops already in the query plan). Additional loops may be
generated and the process is recursively repeated for them.

In the second stage, after the loops for all the queries in
the group are added to the query plan, redundancies in the
loop bodies can be removed, employing straightforward op-
timizations – common subexpression elimination and dead
code elimination. Common subexpression elimination con-
sists of identifying computations and data retrieval opera-
tions that are performed multiple times in the loop body,
eliminating all but the first occurrence. The other occur-
rences become simple (and cheaper)copy operations as
seen in step 4 of Figure 2. Finally, the removal of redun-
dant expressions often causes the creation of useless code –
assignments that generatedead variablesthat are no longer
needed to compute the output results of a loop (e.g., T2 and
T3 are removed during step 5 of Figure 2).

Although similar to standard compiler optimization al-
gorithms, all of the algorithms were implemented to handle
an intermediate code representation we devised to represent
the query plan. We emphasize that we are not compiling C
or C++ code, but rather the query plan representation.

Experimental analysis of techniques for reducing group
execution time show that substantial decreases are indeed
observed (see Section 6). However, a side effect of these
techniques is that loops that are part of a single query may
not be sequentially executed. For example, in step 5 of
Figure 2 the first, second, fourth and fifth loops are part
of processing Query 1. During the execution of the third
loop, Query 1 buffers are allocated but not being used as
Query 3 is being computed. Unless loops are reordered, the
implication is that either more memory (in comparison to a
non-optimized plan) will be utilized for keeping the query
buffers available or more bookkeeping will be required to
keep track of the buffers for partially completed queries as
they are swapped to and from disk. The issue is further
complicated because when a query group is large, there are

3

����������� ��	���
����
QUERY1:
select *
from
Composite(Correction(Retrieval(AVHRR_DC), WaterVapor),MaxNDVI)
where
(lat>=0 and lat<=20) and (lon>=16 and lon<=65) and (day=1992/06) and
(deltalat=0.1 and deltalon=0.1);

QUERY2:
select *
from
Composite(Correction(Retrieval(AVHRR_DC), WaterVapor),MinCh1)
where
(lat>=15 and lat<=20) and (lon>=20 and lon<=55) and (day=1992/06) and
(deltalat=0.1 and deltalon=0.1);

QUERY3:
select *
from
Composite(Correction(Retrieval(AVHRR_DC), WaterVapor),MinCh1)
where
(lat>=15 and lat<=20) and (lon>=20 and lon<=55) and (day=1993/06) and
(deltalat=0.1 and deltalon=0.1);

1

for each point in bb: (0.0,16.0,199206) (20.0,65.0,199206) {
 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (15.0,20.0,199206) (20.0,55.0,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0,WaterVapor)
 O2 = Composite(T1, MinCh1)

}
for each point in bb: (15.0,20.0,199306) (20.0,55.0,199306) {
 T0 = Retrieval(I)
 T1 = Correction(T0,WaterVapor)
 O3 = Composite(T1, MinCh1)
}

�

������� ��	���
����
2

for each point in bb: (0.0,16.0,199206) (14.9,65.0,199206) {
 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)
}
for each point in bb: (15.0,20.0,199206) (20.0,55.0,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)
 T2 = Retrieval(I)
 T3 = Correction(T2, WaterVapor)
 O2 = Composite(T3, MinCh1)

}
for each point in bb: (15.0,20.0,199306) (20.0,55.0,199306) {
 T0 = Retrieval(I)
 T1 = Correction(T0,WaterVapor)
 O3 = Composite(T1, MinCh1)
}
for each point in bb: (15.0,55.1,199206) (20.0,65.0,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (15.0,16.0,199206) (20.0,19.9,199206) {

 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)

}

����� ���
 ��	���

3

for each point in bb: (0.0,16.0,199206) (14.9,65.0,199206) {
....

}
for each point in bb: (15.0,20.0,199206) (20.0,55.0,199206) {
 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)
 T2 = copy (T0)
 T3 = copy (T1)
 O2 = Composite(T3, MinCh1)
}
for each point in bb: (15.0,20.0,199306) (20.0,55.0,199306) {

}
for each point in bb: (15.0,55.1,199206) (20.0,65.0,199206) {

.....
}
for each point in bb: (15.0,16.0,199206) (20.0,19.9,199206) {

......
}

����� ��

�� 	����
��		��� ���
�������
4

for each point in bb: (0.0,16.0,199206) (14.9,65.0,199206) {
....

}
for each point in bb: (15.0,20.0,199206) (20.0,55.0,199206) {
 T0 = Retrieval(I)
 T1 = Correction(T0, WaterVapor)
 O1 = Composite(T1, MaxNDVI)
 O2 = Composite(T3, MinCh1)
}
for each point in bb: (15.0,20.0,199306) (20.0,55.0,199306) {

}
for each point in bb: (15.0,55.1,199206) (20.0,65.0,199206) {

.....
}
for each point in bb: (15.0,16.0,199206) (20.0,19.9,199206) {

......
}

����� ���� ���� ���
�������
5

for each point in bb: (15.0,20.0,199206) (20.0,55.0,199206) {
....
 O1 = Composite(T1, MaxNDVI)
 O2 = Composite(T3, MinCh1)

}
for each point in bb: (0.0,16.0,199206) (14.9,65.0,199206) {
....
 O1 = Composite(T1, MaxNDVI)
}
for each point in bb: (15.0,55.1,199206) (20.0,65.0,199206) {

....
 O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (15.0,16.0,199206) (20.0,19.9,199206) {

....
 O1 = Composite(T1, MaxNDVI)

}
for each point in bb: (15.0,20.0,199306) (20.0,55.0,199306) {

....
 O3 = Composite(T1, MinCh1)
}

����� ���
 ����������
6

Batch Execution

7

Figure 2. Simplified overview of the optimization process fo r three sample Kronos queries. From 1
to 2, PostgreSQL queries are transformed from a declarative representation to an imperative one; 3
to 5 are execution time decreasing steps; 6 is a memory usage d ecreasing step; and 7 is the group
execution. MaxNDVI and MinCh1 are different compositing methods and Water Vapordesignates an
atmospheric correction algorithm.

many possible loop orderings (and loop interdependencies),
so obtaining thebestordering is a computationally expen-
sive problem. In the next section, we show how we can
minimize this deleterious side effect to obtain the better ex-
ecution order shown in step 6 of Figure 2.

5 Space Optimization Techniques

Space optimization consists of methods employed to de-
crease memory utilization, by avoiding keeping in memory
query buffers that are not being manipulated by a given
loop. The optimization essentially consists of decreasing
the live ranges[20] of query buffers by reordering loops in

the query plan1 as seen in step 6 of Figure 2.
The loops resulting from applying the method described

in Section 4 can be executed in any order to produce cor-
rect results, because the user-defined operations are gener-
alized reductions. Each of the possible orderings can be
evaluated with respect to two metrics,maximum memory
usage(MMU) and average memory usage(AMU). MMU
captures spikes in memory utilization, while AMU captures
the amount of memory being utilizedcontinuouslyduring
the group processing. The order of execution of the loops
affects the allocation and deallocation of query buffers and,
hence, MMU and AMU. The loops require the use of one or

1We refer to the ordering generated by the time optimization techniques
described in Section 4 as thedefault order.

4

Loop Used Variables Bitmap
1 L1 = fv1 , v2g 1 1 0

2 L2 = fv1 , v2g 1 1 0

3 L3 = fv3g 0 0 1

4 L4 = fv1 , v2g 1 1 0

Table 1. Mapping loops in a query plan to
bitmaps.

more query buffers to hold intermediate aggregates and the
final results for the queries in the group. The query plan-
ner uses bothtemporary(the T variables in Figure 2) and
output(the O variables in Figure 2) query buffers. Output
query buffers are used to store the final results of queries to
be sent back to clients. Temporary query buffers are used to
store intermediate results. Buffer space for a query is allo-
cated for a given loop if it has not already been allocated by
a previous loop (i.e., it has not become live yet). Thus, the
first loop that is executed must allocate memory for all of
the queries that it partially or completely computes. Buffer
space for a query is deallocated after the last loop comput-
ing results for that query completes and the data product can
be returned to the client.

Finding thebestloop ordering is hard because of interde-
pendencies between loops and queries. Rather than show-
ing a formal definition of the problem (which can be found
in [5]), we illustrate it with an example. If there are three
queriesq1, q2, andq3 and a four loop query plan (i.e., loopsl1 : : : l4), suppose that the query plan generated after the
time optimizations are performed is the following: loopl1
computes results forq1 only, l2 for q2 only, l3 for q3 only,
and l4 computes partial results for all queries. Ifl1 is ex-
ecuted first, the live range forq1 buffers will end whenl4
finishes. Ifl4 is executed immediately afterl1, the length
of the live range forq1 buffers is minimized, but the dura-
tion of the live ranges forq2 andq3 buffers increases. Ifq1
buffers are much larger thanq2 andq3 buffers, or ifl1 can be
completed much faster thanl2 or l3, that reordering is supe-
rior to other orderings. This brief discussion highlights that
the size of query buffers (or variables), the size of the multi-
dimensional loop iteration space (or bounding box), and the
cost of executing the loop body (i.e., the cost of executing
each of the loop body operations) are all factors in obtaining
the best loop ordering.

To determine the order of the loops such that either the
MMU or AMU metrics are minimized, every possible loop
ordering has to be considered – a “brute force” approach.
The order computed by this method always yields the op-
timal ordering with respect to minimizing MMU or AMU,
but requires generatingn! orderings, wheren is the num-
ber of loops in the query plan. A branch-and-bound (bnb)

algorithm can significantly reduce the amount of time re-
quired to compute the optimal order. For some loop sets, it
may also be possible to divide the original set of loops into
two or more subsets that are independent with respect to the
variables they compute, by extracting the connected com-
ponents from a graph whose vertices represent loops and
edges represent variables. In our bnb implementation the
input loop set is preprocessed with a connected components
analysis and each loop subset resulting from this analysis
is submitted separately to the bnb algorithm. Despite such
improvements, the running time of this algorithm is still ex-
ponential in the number of loops in the worst case (and in
most of the cases that we tested experimentally). For this
reason, we do not describe the details of these approaches
more completely here, but refer the interested reader to [5].
In conclusion, heuristics are clearly necessary for largersets
(i.e.,n � 10) of loops.

5.1 Variable Grouping Heuristics

The variable grouping family of heuristics considers
each variable (query buffer) in turn and attempts to contigu-
ously group loops using that variable. In order to achieve
this goal, a bitmap representation for each loop in the query
plan is employed. For example, suppose the query plan em-
ploys fourforeachloops, which in turn, use three variables.
As seen in Table 1, the corresponding bitmap representation
requires three bits, one per variable in the query plan. Each
loop is represented by its own bitmap, i.e., if the variable
is used, its corresponding bit position is set to 1, otherwise
the bit position is set to 0. For now, we assume that the first
variablev1 in the query plan corresponds to the leftmost
bitmap position,v2 to the second leftmost position, and so
on. The intuition is that once the loopsusinga variablev are
grouped together, this variable live range will be decreased
as seen for the set of loops in the more elaborate example
depicted in Figure 3.

Once the input loop set is converted to a collection of
bitmaps, we must first determine the order to process the bit
positions (i.e., sort the live ranges by their cost) and thenor-
der the bitmaps to produce a loop execution order that min-
imizes either MMU or AMU. For example, based on the
optimized query plan depicted by Figure 3(b), suppose that
it is decided that thev7 related loops will be processed first,
i.e., in the orderl5, l2, andl1. Obtaining a loop order with
the shortest live ranges is straightforward. However, ob-
taining the order in which to process the bit positions, and
hence the variables, of the bitmaps representing the loops
is a complex problem. In addition to the exponential num-
ber of possibilities, a good solution also depends on several
criteria: the number of iterations performed by each loop,
the cost of executing the statements inside each loop, the
amount of memory associated with each query buffer (vari-

5

v1 v2 v3 v4 v5 v6 v7l1 0 0 0 0 0 0 1l2 0 0 0 0 0 1 1l3 0 0 0 1 1 0 0l4 0 0 1 0 0 0 0l5 0 0 1 0 0 1 1l6 0 1 0 0 0 0 0l7 0 1 0 1 1 0 0l8 1 1 0 1 1 0 0

(a) Bitmaps for theoriginal query plan
– default loop order. Boxes denote the
live ranges for each variable

v1 v2 v3 v4 v5 v6 v7l6 0 1 0 0 0 0 0l7 0 1 0 1 1 0 0l8 1 1 0 1 1 0 0l3 0 0 0 1 1 0 0l4 0 0 1 0 0 0 0l5 0 0 1 0 0 1 1l2 0 0 0 0 0 1 1l1 0 0 0 0 0 0 1

(b) Bitmaps for the query plan after be-
ing optimized for memory utilization

Figure 3. Decreasing query buffers live ranges

able), how many and which variables are processed by a
given loop, etc. Indeed, this order is extremely important in
determining whether the heuristic produces a memory effi-
cient group execution query plan. Note that fixing the order
for processing a variable may affect the order that will be
imposed on the processing of the other variables. These
multiple criteria give rise to several possible heuristics.

The first ordering method, called the “unused memory
potential” method (vghu), is based on the observation that
the cost to be minimized is the amount of unused memory
allocated during the execution of any individual loop. Con-
sequently, the ordering to be chosen is based on the amount
of unused memory that a variable can contribute, termed its
“unused memory potential”. It is defined as the product of
the variable’s size and the sum of the running times of all
loops that do not require that variable to be allocated.

The second method is to prioritize variables based solely
on their size (vghs). The reasoning behind this method is
that the unused memory cost function depends directly on
the size of the variables used by the loops and, therefore,
grouping loops together according to the size of the shared
variable may reduce the amount of unused memory in the
resulting loop execution order.

A different approach consists of applying a randomized
method, in which a pre-defined number of random orders
are evaluated by computing their MMU and/or AMU. The
bestof these orders is chosen for the actual plan. We refer
to this variation asvghr.

The fourth method is called “deterministic reordering”
(vghd), which iteratively reorders loops based ondecreas-
ing values for the unused memory cost function computed
for each loop bitmap. After loops have been thus reordered,
the heuristic is applied, yielding a new loop execution or-
der. The unused memory cost function for each bit vector is
then recomputed, resulting in a new bit position order. This

Type of Transition Workload W1 Workload W2
New Point-of-Interest 5% 65%

Spatial Movement 10% 35%

New Resolution 15% 0%

Temporal Movement 5% 0%

New Correction 25% 0%

New Compositing 25% 0%

New Compositing Level 15% 0%

Table 2. Transition probabilities – 2 workload
profiles.

process repeats until AMU or MMU does not decrease for
several iterations.

6 Performance Studies

We investigated the performance of the time and mem-
ory optimizing methods for actual Kronos queries (gener-
ated by a realistic workload model) and also for synthetic
loops, which allowed us to explore a larger portion of the
optimization space in a controlled fashion.

Our experiments were run on a 24-processor SunFire
6800 machine with 24 GB of main memory running Solaris
2.9. We used a single processor to execute the query groups.
A dataset containing one month of AVHRR data was used,
totaling about 30 GB. In order to create the queries that are
part of a group, we employed a variation of the Customer
Behavior Model Graph (CBMG) technique [19]. CBMGs
are utilized, for example, to study e-business applications
for website capacity planning. A CBMG is characterized
by a set ofn states, a set of transitions between states, and

6

Query Group Execution Time − AMU

Number of Queries in the Group

2 4 8 16 32

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

0
30
60
90

120
150
180
210
240
270
300
330
360
390 none

time

bnb

vghu

vghs

vghr

vghd

(a) Workload W1

Query Group Execution Time − AMU

Number of Queries in the Group

2 4 8 16 32

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

0
30
60
90

120
150
180
210
240
270
300
330
360
390
420
450
480 none

time

bnb

vghu

vghs

vghr

vghd

(b) Workload W2

Figure 4. Group execution time when optimizing average memo ry usage (AMU) for Kronos queries.
Noneindicates no optimizations performed and Timeindicates time optimizations only.

Query Group Execution Time − MMU

Number of Queries in the Group

2 4 8 16 32

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

0
30
60
90

120
150
180
210
240
270
300
330
360
390 none

time

bnb

vghu

vghs

vghr

vghd

(a) Workload W1

Query Group Execution Time − MMU

Number of Queries in the Group

2 4 8 16 32

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

0
30
60
90

120
150
180
210
240
270
300
330
360
390
420
450
480 none

time

bnb

vghu

vghs

vghr

vghd

(b) Workload W2

Figure 5. Group execution time when optimizing maximum memo ry usage (MMU) for Kronos queries.
Noneindicates no optimizations performed and Timeindicates time optimizations only.

by ann � n matrix of transition probabilities between then states. Kronos queries are defined as a 3-tuple:[spatio-
temporal bounding box and spatio-temporal resolution, cor-
rection method, compositing method℄. The spatio-temporal
bounding box specifies the spatial and temporal coordinates
for the data of interest. In our model, the first query (i.e.,
the initial state) in a group specifies a geographical region, a
set of temporal coordinates (a continuous period of days), a
resolution level (both vertical and horizontal), a correction
algorithm (from 3 possibilities), and a compositing opera-
tor (also from 3 different algorithms). Subsequent queries
(i.e., the other states) in the group are generated based on

the following operations: anew point of interest, spatial
movement, temporal movement, resolution increaseor de-
crease, applying a differentcorrection algorithm, or apply-
ing a differentcompositing operator. In our experiments,
we used the probabilities shown in Table 2 to generate mul-
tiple queries for two groups with different workload pro-
files. For each workload profile, we created groups of 2, 4,
8, 16, 24, and 32 queries. An unoptimized 2-query group
requires processing around 50 MB of input data and a 32-
query group requires around 800 MB, assuming no redun-
dancy in the queries. There are 16 available points of in-
terest, including Southern California, the Chesapeake Bay,

7

Average Memory Used

Number of Queries in the Group

2 4 8 16 32

A
M

U
 (

M
B

)

0
6

12
18
24
30
36
42
48
54
60
66
72
78
84
90
96

none

time

bnb

vghu

vghs

vghr

vghd

(a) Workload W1

Average Memory Used

Number of Queries in the Group

2 4 8 16 32

A
M

U
 (

M
B

)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180 none

time

bnb

vghu

vghs

vghr

vghd

(b) Workload W2

Figure 6. Average memory usage (AMU) for Kronos queries. None indicates no optimizations per-
formed and Timeindicates time optimizations only.

Maximum Memory Used

Number of Queries in the Group

2 4 8 16 32

M
M

U
 (

M
B

)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180 none

time

bnb

vghu

vghs

vghr

vghd

(a) Workload W1

Maximum Memory Used

Number of Queries in the Group

2 4 8 16 32

M
M

U
 (

M
B

)

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340 none

time

bnb

vghu

vghs

vghr

vghd

(b) Workload W2

Figure 7. Maximum memory usage (MMU) for Kronos queries. None indicates no optimizations
performed and Timeindicates time optimizations only.

the Amazon Forest, etc. The workload profile determines
whether queries after the first one in the group either re-
main near that point (moving around its neighborhood and
generating new data products, potentially using differentat-
mospheric correction and compositing algorithms) or move
to a different point. In the experiments, each query re-
turns a data product for a256 � 256 pixel window. We
have also produced results for larger queries –512 � 512
data products. The results from those queries are consistent
with the ones we show here, with the performance improve-
ments even larger in absolute terms. However, for the larger
data products we had to restrict the experiments to smaller

groups of up to 16 queries, because the memory footprint
exceeded 2 GB (the amount of addressable memory using
32-bit addresses available when utilizing gcc 2.95.3 in So-
laris).

We studied the impact of the proposed optimizations
varying the following quantities:

1. The number of queries in a group, from a 2-query
group to a 32-query group;

2. Execution time optimizations were either fully turned
on or off;

3. The memory optimization that was used –none, bnb,

8

vghu, vghs, vghr, vghd;

4. The workload profile for a group.

Workload W1 represents a profile with high probability
of reuse across the queries. In this workload profile, there
is high overlap in regions of interest across queries. This
is a consequence of assigning low probabilities to the New
Point-of-Interest and Spatial Movement transitions, as seen
in Table 2. Moreover, the probabilities of choosing new cor-
rection, compositing, and resolution values are low. Work-
load W2, on the other hand, describes a profile with the low-
est probability of data and computation reuse. The number
of loops in the query plans varied from 2 to 70 for Workload
W1 and from 3 to 110 for Workload W2.

The amount of time required to execute the queries in
the group (including the optimization phases) is shown in
Figures 4 and 5. The execution time for the time optimized
groups without memory optimization (time) is significantly
decreased (35% for W2 with 32 queries to 61% for W1 with
32 queries) from the unoptimized group (none), and the size
of the decrease correlates with the amount of redundancy
across the queries in the group. The execution time is not
significantly affected by any of the heuristics, compared to
the execution time of the time optimized loops. Nor is it
significantly affected by whether we are optimizing to de-
crease MMU or AMU.

A comparison of average and maximum memory usage
among the various memory optimization algorithms, as well
as the unoptimized version, is presented in Figures 6 and 7,
respectively. Thebnb algorithm was used to determine the
optimal loop ordering in groups only when the number of
loops resulting from the time optimizations was 8 or fewer,
due to its exponential running time. Thus the bar forbnb
is omitted for some configurations. The first item to note is
that when comparingnone (i.e., all optimizations are off)
vs. time (i.e., only time optimizations are on), the increase
in the amount of memory utilized is, in most cases, substan-
tial. For example, in Figure 6(b) there is an 11-fold increase
in AMU for the 32-query group, as a side effect of hav-
ing multiple queries active simultaneously, despite the de-
crease in execution time. That effect shows the importance
of reordering the loops. Indeed, for that same configura-
tion, after applying the heuristics AMU is only about twice
that of the unoptimized and slower plan. In these experi-
ments, there is no clear pattern in terms of which heuristic is
the best, butvghr seems to be slightly better for decreasing
AMU, while vghsseems to be better for decreasing MMU.

Experimental Results With Synthetic Loops

We studied the impact of the number of loops on the
performance of each loop ordering heuristic, as well as the
effect of loop inter-dependency, using synthetic generated
loop sets. The synthetic loops were randomly generated by

varying the number of loops (16 to 256), the total number
of variables (either 20 – we refer to this configuration as
dependent loop sets, or 40 – we refer to this configuration
as independent loop sets), minimum and maximum num-
ber of variables per loop (6 to 10), minimum and maximum
size of variables (10 to 100), and minimum and maximum
running time for a loop (10 to 100). It should be noted that
these loops do not correspond to actual queries, but repre-
sent possible outcomes from the time optimization phase.

For dependent loop sets, there is a 99% probability of
loop interdependency, i.e., multiple loops partially comput-
ing a variable. The independent loop sets correspond to an
86% probability of loop interdependency. The performance
results are shown in Figures 8 and 9. The optimal values
for these metrics could not be obtained because the amount
of time required to determine them via the bnb method was
too long. For dependent loop sets, the heuristics are able
to decrease AMU from that of the default loop order by up
to 25% for 16 loops, but are less effective for larger num-
bers of loops. As was observed for lower numbers of loops,
the best performer was the variable grouping heuristic us-
ing 100 randomized variable orders (vghr), which lowered
AMU by at least 20% for all numbers of loops tested. The
worst performance was observed for the variable grouping
heuristic with the unused variable potential method (vghu)
which still reduced average memory usage by 11%-15%.
For independent loop sets, the heuristics performed signif-
icantly better than for dependent loop sets. Thevghr, and
vghd heuristics performed similarly, reducing AMU by up
to 34%. Again,vghu yielded the worst performance but still
reduced average memory usage by 12%-20%. The perfor-
mance results for reduction of MMU show that the heuris-
tics are not effective for large numbers of dependent loop
sets. The reduction in maximum memory usage is closely
correlated to the number of loops in the input loop set for
both dependent and independent loop sets, and decreases
markedly as the number of loops increases. For dependent
loop sets, the heuristics are able to decrease MMU by 5%-
15% for 16 loops. This percentage quickly goes to 0 for
larger numbers of loops. For independent loop sets, the
heuristics are able to decrease MMU by 14%-28%, but this
percentage goes to near 0% for 256 loops.

The running times when optimizing the larger synthetic
input loop sets for average and maximum memory usage
are given in Figures 10 and 11. The running times for each
heuristic appear to be linearly correlated with the number
of loops in the input loop set. Optimizing independent loop
sets required more time than the dependent loop sets be-
cause the number of variables for independent loop sets was
twice that of the dependent loop sets. This result indicates
that the heuristics are also dependent on the total number of
variables used by all of the loops in the input loop set, in ad-
dition to the number of loops in this set. There do not appear

9

% Decrease From Default Order − AMU − Dependent Loop Sets

Number of Loops

16 32 64 128 256

P
e

rc
e

n
t

D
e

c
re

a
s
e

0

5

10

15

20

25

30

35

40 vghu

vghs

vghr

vghd

(a) Dependent Loop Sets

% Decrease From Default Order − AMU − Independent Loop Sets

Number of Loops

16 32 64 128 256

P
e

rc
e

n
t

D
e

c
re

a
s
e

0

5

10

15

20

25

30

35

40 vghu

vghs

vghr

vghd

(b) Independent Loop Sets

Figure 8. Percent decrease in average memory usage (AMU) for heuristics applied to the default
ordering of (a) dependent loop sets and (b) independent loop sets.

% Decrease From Default Order − MMU − Dependent Loop Sets

Number of Loops

16 32 64 128 256

P
e

rc
e

n
t

D
e

c
re

a
s
e

0

5

10

15

20

25

30

35

40 vghu

vghs

vghr

vghd

(a) Dependent Loop Sets

% Decrease From Default Order − MMU − Independent Loop Sets

Number of Loops

16 32 64 128 256

P
e

rc
e

n
t

D
e

c
re

a
s
e

0

5

10

15

20

25

30

35

40 vghu

vghs

vghr

vghd

(b) Independent Loop Sets

Figure 9. Percent decrease in maximum memory usage (MMU) for heuristics applied to the default
ordering of (a) dependent loop sets and (b) independent loop sets.

to be significant differences in running times when optimiz-
ing for average memory usage versus maximum memory
usage. The heuristics with the fastest running times are the
variable grouping heuristics using the unused memory po-
tential and variable size methods (vghu, vghs).

7 Conclusions and Future Work

We have presented various methods that are used to opti-
mize the execution of groups of range-aggregation queries,
which are common in scientific data analysis applications.
This work makes the following contributions: (1) A method
to reduce the time to compute results for query groups.
These optimizations are based on algorithms commonly

10

Memory Optimization Running Times − AMU

Number of Loops

16 32 64 128 256

R
u

n
n

in
g

 T
im

e
s
 (

s
)

.1

1

10

100 vghu

vghs

vghr

vghd

(a) Dependent Loop Sets

Memory Optimization Running Times − AMU

Number of Loops

16 32 64 128 256

R
u

n
n

in
g

 T
im

e
s
 (

s
)

.1

1

10

100 vghu

vghs

vghr

vghd

(b) Independent Loop Sets

Figure 10. Execution times in seconds when optimizing for av erage memory usage (AMU) for (a)
dependent loop sets and (b) independent loop sets.

Memory Optimization Running Times − MMU

Number of Loops

16 32 64 128 256

R
u

n
n

in
g

 T
im

e
s
 (

s
)

.1

1

10

100 vghu

vghs

vghr

vghd

(a) Dependent Loop Sets

Memory Optimization Running Times − MMU

Number of Loops

16 32 64 128 256

R
u

n
n

in
g

 T
im

e
s
 (

s
)

.1

1

10

100 vghu

vghs

vghr

vghd

(b) Independent Loop Sets

Figure 11. Execution times in seconds when optimizing for ma ximum memory usage (MMU) for (a)
dependent loop sets and (b) independent loop sets.

employed by compilers to reduce the execution time of
compiled code; (2) Methods for optimizing the memory
footprint for executing a group of queries. These optimiza-
tions were shown to improve the total query execution time
without significantly impacting the execution time of the
query.

This work opens up many opportunities for additional
research. It may be possible to improve the variable group-

ing heuristic further by devising a method to determine the
variable bit position order by utilizing the output of previ-
ous optimization attempts. In this way, the optimal loop or-
dering may be determined by iterating over some number of
variable bit position re-orderings and optimization attempts.
Additionally, a combination of systematic and heuristic pro-
cedures can be used to optimize loop ordering, for exam-
ple by partitioning large query groups with interdependent

11

loops and applying the branch-and-bound method on these
smaller groups. Furthermore, optimizations should be de-
signed to optimize memory hierarchy behavior. For exam-
ple, iteration over datasets can be ordered to improve cache
performance by increasing the spatial and temporal locality
of data accesses. Executing loops in parallel to make use of
parallel machines, both for individual loops and across inde-
pendent loops, will result in much faster absolute execution
times, but requires additional new optimization techniques.

References

[1] H. Andrade, S. Aryangat, T. Kurc, J. Saltz, and A. Sussman.
Efficient execution of multi-query data analysis batches us-
ing compiler optimization strategies. InProceedings of the
16th International Workshop on Languages and Compilers
for Parallel Computing (LCPC 2003), College Station, TX,
October 2003.

[2] H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Efficient ex-
ecution of multiple workloads in data analysis applications.
In Proceedings of the 2001 ACM/IEEE SC Conference (SC
2001), Denver, CO, November 2001.

[3] H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Exploiting
functional decomposition for efficient parallel processing of
multiple data analysis queries. Technical Report CS-TR-
4404 and UMIACS-TR-2002-84, University of Maryland,
October 2002. A shorter version appears in the Proceedings
of IPDPS 2003.

[4] H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Exploit-
ing functional decomposition for efficient parallel process-
ing of multiple data analysis queries. InProceedings of the
2003 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS 2003), Nice, France, April 2003.

[5] S. Aryangat. Optimizing the execution of data analysis
queries. Master’s thesis, Department of Computer Science,
University of Maryland, December 2003.

[6] U. S. Chakravarthy and J. Minker. Multiple query processing
in deductive databases using query graphs. InProceedings of
the 12th International Conference on Very Large Data Bases
Conference (VLDB 1986), pages 384–391, 1986.

[7] C. Chang. Parallel Aggregation on Multi-Dimensional Sci-
entific Datasets. PhD thesis, Department of Computer Sci-
ence, University of Maryland, April 2001.

[8] C. Chang, B. Moon, A. Acharya, C. Shock, A. Sussman,
and J. Saltz. Titan: a High-Performance Remote-Sensing
Database. InProceedings of the 13th International Confer-
ence on Data Engineering (ICDE 1997), 1997.

[9] F.-C. F. Chen and M. H. Dunham. Common subexpression
processing in multiple-query processing.IEEE Transactions
on Knowledge and Data Engineering, 10(3):493–499, 1998.

[10] J. M. Cheng, N. M. Mattos, D. D. Chamberlin, and L. G.
DeMichiel. Extending relational database technology for
new applications. IBM Systems Journal, 33(2):264–279,
1994.

[11] R. Ferreira. Compiler Techniques for Data Parallel Ap-
plications Using Very Large Multi-Dimensional Datasets.
PhD thesis, Department of Computer Science, University of
Maryland, September 2001.

[12] R. Ferreira, G. Agrawal, R. Jin, and J. Saltz. Compilingdata
intensive applications with spatial coordinates. InProceed-
ings of the 13th International Workshop on Languages and
Compilers for Parallel Computing (LCPC 2000), pages 339–
354, Yorktown Heights, NY, August 2000.

[13] R. Ferreira, G. Agrawal, and J. Saltz. Compiling object-
oriented data intensive applications. InProceedings of
the 2000 International Conference on Supercomputing (ICS
2000), pages 11–21, Santa Fe, NM, May 2000.

[14] R. Ferreira, J. Saltz, and G. Agrawal. Compiler and run-
time analysis for efficient communication in data intensive
applications. InProceedings of the 2001 IEEE Interna-
tional Conference on Parallel Architectures and Compilation
Techniques (PACT 2001), pages 231–242, Barcelona, Spain,
September 2001.

[15] High Performance Fortran Forum. High Performance
Fortran – language specification – version 2.0. Techni-
cal report, Rice University, January 1997. Available at
http://www.netlib.org/hpf.

[16] S. Kalluri, Z. Zhang, J. JáJá, D. Bader, N. E. Saleous,E. Ver-
mote, and J. R. G. Townshend. A hierarchical data archiving
and processing system to generate custom tailored products
from AVHRR data. In1999 IEEE International Geoscience
and Remote Sensing Symposium, pages 2374–2376, 1999.

[17] M. H. Kang, H. G. Dietz, and B. K. Bhargava. Multiple-
query optimization at algorithm-level.Data and Knowledge
Engineering, 14(1):57–75, 1994.

[18] M. Mehta, V. Soloviev, and D. J. DeWitt. Batch scheduling
in parallel database systems. InProceedings of the 9th In-
ternational Conference on Data Engineering (ICDE 1993),
Vienna, Austria, 1993.

[19] D. A. Menascé, V. A. F. Almeida, and L. W. Dowdy.Capac-
ity Planning and Performance Modeling. Prentice Hall PTR,
2000.

[20] S. S. Muchnick.Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann, San Francisco, CA, 1997.

[21] National Oceanic and Atmospheric Administration.NOAA
Polar Orbiter User’s Guide – November 1998 Revision.
compiled and edited by Katherine B. Kidwell.Available at
http://www2.ncdc.noaa.gov/ docs/podug/cover.htm.

[22] PostgreSQL 7.3.2 Developer’s Guide.
http://www.postgresql.org.

[23] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Effi-
cient and extensible algorithms for multi query optimization.
In Proceedings of the 2000 ACM International Conference
on Management of Data (SIGMOD 2000), pages 249–260,
2000.

[24] T. K. Sellis. Multiple-query optimization.ACM Transactions
on Database Systems, 13(1):23–52, 1988.

[25] M. Stonebraker. The SEQUOIA 2000 project.Data Engi-
neering, 16(1):24–28, 1993.

[26] K. L. Tan and H. Lu. Workload scheduling for multiple query
processing.Information Processing Letters, 55(5):251–257,
1995.

12

