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Managing scarce resources plays a significant role in hospital operations.  

Effective use of resources (e.g., operating rooms, specialized doctors, etc.) allows 

hospitals to efficiently provide high-quality care to patients.  In this dissertation, 

we study how hospitals manage scarce resources to identify systematic ways in 

which quality of care and efficiency might be improved.  We study four different 

types of hospital resources: post-operative beds, specialist surgeons, resident 

physicians, and patient information.  For each resource type, we show how better 

utilization could increase the quality of care delivered by the hospital or increase 

the efficiency of the system.  We show that as post-operative bed utilization 

increases the discharge rate increases as well, meaning that bed shortages impact 

physician decision making.  Further, we show that patients discharged on days 

with high bed utilization are significantly more likely to be readmitted to the 

hospital within 72 hours, which implies that poor bed management can lead to 



  

worse health outcomes for surgical patients.  We also study how quality of care 

differs between night and day arrival in trauma centers.  Based on a large national 

dataset, we conclude that a lack of specialized resources at hospitals during the off 

hours leads to significantly worse patient outcomes, including higher mortality 

and longer lengths of stay.  Further, we exploit a natural experiment to determine 

the impact that residents have on efficiency in an academic emergency 

department.  Using regression analysis, queueing models, and simulation, we find 

that when residents are present in the emergency department, treatment times are 

lowered significantly, especially among high severity patients.  Finally, we show 

two novel uses of medical data to predict patient outcomes.  We develop models 

to predict which patients will require an ICU bed after being transferred from 

outside hospitals to an internal medicine unit, using only five commonly 

measured medical characteristics of the patient.  We also develop a model using 

MRI data to classify whether or not prostate cancer is present in an image.  
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CHAPTER 1: INTRODUCTION 

 

The dramatic rise in healthcare costs is an increasingly important political 

and economic issue facing the United States today.  Spending on healthcare 

increased by more than 200% between 1990 and 2007 (Keehan et al., 2008).  The 

Congressional Budget Office projects total healthcare spending will rise from 

16.5% of GDP in 2009 to 26% by 2035 (Keehan et al. 2008).  According to the 

Office of Management and Budget, there is as much as $800 billion a year in 

wasteful medical spending that does not contribute to better health outcomes 

(Orszag, 2009).  Finding a way to slow the growth of medical costs while 

providing high-quality care is an urgent issue facing operations researchers today. 

Growth in healthcare spending threatens to cause massive government 

budget deficits and significant increases in labor costs.  Therefore, identifying 

systematic sources of inefficiency and studying ways to improve operations has 

been a focus of healthcare researchers.  Interest in the area has been rising over 

the last decade.  In 2012, the New York Times published 460 articles on healthcare 

costs, compared to 252 in 2000.  The need to control healthcare costs has been 

recognized by government officials, the media, and academics alike.   

The academic community has been at the forefront of the growing trend of 

research into healthcare costs and efficiency.  From the growth of existing 

journals, such as Health Care Management Science to the introduction of new 

journals, such as IIE Transactions on Healthcare Systems Engineering, to new 

conferences, to new degree programs in healthcare management and analytics, 

healthcare has emerged as a significant research area.   
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Researchers have used a variety of different methods to address efficiency 

issues in hospitals.  Researchers have used traditional operations research 

methods, such as queueing theory (Green, 2006) and optimization (Chan, et al. 

201) to help improve efficiency and outcomes.  Others have taken traditional 

operations management techniques, such as newsvendor models, and applied 

them to healthcare problems (Green et al. 2010).  Recently, data mining and 

analytics techniques have been applied to large-scale data sets to identify types of 

inefficiencies, and to predict patients’ costs and outcomes (Bertsimas et al. 2008). 

 Healthcare costs have also been an issue addressed by the federal 

government.  The highest profile effort to reduce costs was the 2010 Patient 

Protection and Affordable Care Act (H.R. 1-111-148, §2702, 124 Stat. 119, 318-

319, 2010).  While much of the bill focused on expanding access to care, there 

were provisions, such as requiring insurance coverage of preventative care and a 

slow movement away from a fee-for-service model, enacted with the goal of 

lowering healthcare costs.  Additionally, as part of the 2009 stimulus (American 

Recovery and Reinvestment Act), $25.9 billion dollars were appropriated for the 

promotion and expansion of health information technology (HIT), such as 

electronic medical records  (H.R. 1--111th Congress: American Recovery and 

Reinvestment Act, 2009). 

In Chapters 2 and 3 of this dissertation, we discuss how poor management 

of post-operative beds leads to poor patient outcomes, and inefficient care 

delivery.  In order to perform surgery, there are surgical resources required, 

including an operating room, an anesthesia team, and nurses, and a down-stream 
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recovery bed available for the patient.  If there is no post-operative bed available, 

the surgery must be postponed or cancelled, which is undesirable for the surgeon, 

hospital, and patient.  We show that as post-operative utilization rises and beds 

become scarce, the discharge rate of patients in the surgical recovery ward 

increases significantly.  This increase in discharge rate then leads to a 

significantly higher readmission rate for patients who are discharged on days with 

high utilization.  We show how to improve bed management and scheduling of 

surgeries.  This leads to increased throughput and improves the quality of 

outcomes for patients. 

 In Chapter 4, we show that the time of day that a patient arrives at a 

trauma department affects the quality of care the patient will receive.  Hospitals 

are less busy overnight.  This should lead to a shorter waiting time for the patient, 

and better outcomes, as trauma care is typically time sensitive.  However, staffing 

levels differ between night and day.  Typically, there are fewer specialists at the 

hospital overnight, especially at smaller hospitals.  This means that patients 

treated overnight often receive care from less specialized doctors.  On average, 

patients receive care more promptly overnight.  We show that patients who arrive 

overnight have significantly worse outcomes than patients arriving during the day.  

The biggest difference in outcomes is at small hospitals and among patients with 

more complex injuries.  Based on the differences in outcomes, we conclude that 

resource management has a significant impact on the quality of care that patients 

receive.  Specifically, the lack of specialized resources available at the hospital 

overnight leads to higher patient mortality and longer lengths of stay. 
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 Academic hospitals have the dual mandate of treating patients while also 

educating the next generation of physicians.  This is handled by having resident 

physicians (doctors in their first three to six years out of medical school) treat 

patients while being supervised by more experienced attending physicians.  This 

presents interesting tradeoffs for hospitals.  On one hand, residents treat patients 

directly and provide care.  However, they also require supervision from attending 

physicians, which reduces the amount of time that attending physicians can spend 

treating patients.  There are also concerns about the quality of care delivered by 

residents.  In Chapters 5 and 6, we present research work that determines the 

effect residents have on efficiency in the emergency department of a large 

academic hospital.  We show that residents help to increase throughput and 

decrease treatment times, especially when treating patients determined by the 

triage nurse to be high severity.  This is especially important in the emergency 

department setting because prompt treatment is essential for many patients.  

Lowering treatment times help to decrease waiting times as well. 

 In Chapter 7, we discuss a long-range triage tool developed with internal 

medicine doctors at the University of Maryland Medical Center (UMMC).  

Doctors at UMMC noticed that patients arriving by inter-hospital transfer were in 

worse medical condition and more likely to require a stay in the intensive care 

unit (ICU) or die than patients arriving via the emergency room or by 

appointment.  The doctors at UMMC did not completely trust the assessments 

given by the referring doctors.  We develop a tool to predict patient risk using 

objective factors such as blood pressure, heart rate, and blood levels.  This tool 
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will help UMMC doctors determine which patients to accept and to anticipate 

what level of care patients will require.  

In Chapter 8, we examine how MRI data can be used to diagnose and 

locate prostate cancer.  Using MRI data from prostates, we develop three 

classification algorithms.  We show that MRI data can be used to predict which 

prostates have cancer.  In addition, we predict where in the prostate cancer will 

occur.  In Chapter 9, we summarize the results of our research and present 

directions for future research. 
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CHAPTER 2: EXAMINING THE DISCHARGE DECISIONS OF 

SURGEONS 

2.1 Introduction 

Given that the structure of the healthcare system in the United States 

rewards the volume of specialty services provided, surgical volume tends to be 

the primary driver of hospital revenues and profits in most large hospitals.  

Profits from surgical services are used to cross-subsidize less profitable, but 

vital parts of hospital operations.  Surgeons derive a large portion of their 

personal income from the surgeries they perform, and they make more money 

by doing more surgeries.  Therefore, surgeons and hospitals want to ensure that 

as many surgeries as possible are performed on a daily basis.  

While an operating room is needed to perform surgery, a downstream bed is 

required for the patient to recover.  Immediately following surgery, patients 

move to the post-anesthesia care unit (PACU) where they spend time (one or 

more hours) recovering from the anesthesia.  These patients might then require 

time in a specialty unit (one or more days), such as an intensive care unit (ICU), 

an intermediate care (IMC) unit, or an acute care unit.  As a patient’s condition 

improves, he/she transitions to other hospital units where care is tailored to meet 

his/her changing needs. 

If the hospital does not have sufficient downstream bed capacity on the day 

of surgery, surgical cases are either cancelled or delayed, thereby creating 

problems for hospital staff and patients.  It is in the surgeon’s interest and the 

hospital’s interest to ensure that there is capacity available on days when the 
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surgeon is scheduled to perform surgeries.  There is already some evidence in 

the literature to suggest that there are more discharges on days when the 

surgeons have scheduled surgeries (Price et al. 2007). Because the operating 

schedule typically does not take into account the future occupancy of the 

hospital, surgeons could ensure bed availability by adjusting the length of stay 

for their patients.  For example, if the hospital’s post-operative beds are full on a 

given day, a surgeon might discharge patients earlier, in order to make room for 

the surgeries scheduled on that day. An early discharge from the ICU may result 

in a patient returning to the ICU after moving to a step-down unit because the 

patient was not ready for the lower level of care.  An early discharge of a patient 

from the ICU can also lead to an increase in the stress and workload of the 

individuals who staff the downstream bed units because they are caring for 

sicker patients who require more intensive care.  Similarly, an early discharge 

from the hospital can lead to the patient being readmitted to the hospital.  An 

early discharge may also lead to a worse overall health outcome for the patient.  

Therefore, it makes sense to examine the issue of early discharges carefully. 

In this chapter, we examine a year’s worth of discharge data from 2007 to 

determine whether the availability of recovery beds has any effect on the 

discharge rates.  We hypothesize that as utilization increases, discharge 

rates increase. The data set was obtained from a large, academic, tertiary-care 

medical center located in the United States, with over 300 post-operative beds. 

Many different types of surgeries are performed at this hospital, ranging from 
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plastic surgery to brain surgery.  With the exception of cardiac surgery patients, 

patients exiting an operating room require a brief stay in the PACU prior to 

either being discharged home or transferred to an inpatient unit.  The destination 

unit can be designated by level of care (ICU, IMC, acute), specialty (cardiac 

care, neuro care), or both.  Lack of bed availability in these inpatient 

(downstream) units can lead to patient flow bottlenecks in the PACU.  This can 

result in an inability to move patients out of the surgical arena, which increases 

the likelihood that surgical cases scheduled later in the day will have to be 

postponed.  We focus our research on the effect of ICU utilization on discharge 

rates. 

In Section 2.2, we review the literature on patient length of stay. In Section 

2.3, we examine the data set and the methods used in our analysis. In Section 

2.4, we propose survival analysis methods to determine if downstream bed 

availability influences the discharge rate for patients.  Our results are presented 

in Section 2.4.  Additional modeling is described in Section 2.5. In Section 2.6, 

we discuss the implications of our results and give our conclusions. 

2.2 Background 

Several papers in the healthcare literature have focused on the problem of 

detecting and explaining day of week variations in length of stay and the volume 

of discharges.  In addition, researchers have shown a relationship between 

medical decision making (discharge and admittance) and utilization.  For 

example, Singer et al. (1983) and Strauss et al. (1986) discuss the rationing of 
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intensive care unit beds to maintain the flow of post-operative patients in a 

hospital. Singer et al. study a situation where there was a lack of beds due to a 

nurse shortage.  In this case, they find that utilization was increased, admissions 

decreased, and average patient severity was higher.  Strauss et al. study normal 

operations in an ICU, and conclude that when bed utilization is high, there is an 

increased discharge rate, using standard t-tests.   The main difference between 

our work and theirs is that, while their work only examines patients and 

utilization at the time of discharge, our work observes each patient for their 

entire stay in the hospital.  By doing this, we are able to build survival curves, 

determine a variety of effects on discharge rates, and control for other 

confounding variables.  Price et al. (2007) use data mining methods and survival 

analysis to predict cardiac ICU availability a few days in advance.  They develop 

and test their model on historic length of stay data, and find evidence that the 

availability predictions are systematically worse on days with an above-average 

volume of scheduled cases.  This work implies that external factors, such as the 

surgical schedule, impact the treatment of individual patients in predictable 

ways. 

There has also been work examining how utilization concerns affect the 

ability of surgeons to perform surgery.  McManus et al. (2003) discover that a 

decrease in bed availability was caused by scheduled admissions and not 

emergency arrivals.   They find the variability in the hospital census caused by 

the scheduled cases is much larger than the variability caused by emergency 

admissions.  Thus, patient flow can be improved by considering system-wide 
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efficiency when making scheduling decisions.  

Locker and Mason (2005) validate the use of survival analysis techniques 

for modeling length of stay in a medical setting.  We use similar methods to 

explain variation in discharge practices.  Millard et al. (2001) examine bed 

occupancy levels in geriatric wards.  We consider occupancy levels in post-

operative beds.   

While there has been research on predicting the length of stay for a 

patient, and modeling utilization over time, we are not aware of any work that 

examines the interaction between these two processes.  In this chapter, we 

address how utilization levels affect discharge rate and length of stay.  In 

particular, we find that utilization has a significant effect on discharge rates.  

Examining utilization could help to improve predictions of a patient’s length of 

stay.  Furthermore, it may be that an increased discharge rate at high utilization 

levels leads to higher hospital readmission rates (see Section 2.6). 

2.3 Data and Methodology 

The hospital provided surgical discharge data from the 2007 fiscal year 

(July 1
st
 2006 to June 30

th
 2007).  During this year, there were no major 

changes in operating room procedures or scheduling.  The information 

included patient age, surgical severity level, and the surgical specialty 

group which performed the surgery.  In addition, we were provided 

information on the date and time of the surgery, and the dates when the 

patient was admitted to the recovery ward and discharged.  The data 



 

11 

 

contained information on 7,808 patients, of whom 6,470 were admitted for 

at least one day (i.e., one overnight stay).  These 6,470 inpatients stayed a 

total of 35,478 days in the hospital (this gives us 35,478 observations for 

our modeling effort).  From this data set, we derived the number of 

recovery beds that were utilized at the start of any day in the ward.   

 An initial examination of the data indicated that there might be an increase 

in the discharge rate when utilization is high.  We examined how the average 

discharge rate varied with changes in downstream bed utilization.  Figure 2-1 

shows a bar chart with the average discharge rates for different ranges of 

downstream bed utilization.  The Pearson correlation is small (r = .004), but, as 

utilization increases above 93%, the discharge rate also increases.  We do not 

initially see a strong correlation between utilization and discharge for a number of 

reasons.  Discharge rates are affected by numerous factors (e.g., age, severity, 

surgery type, and health of the patient), and there is a strong cyclical nature to 

utilization patterns which confounds the relationship between utilization and 

discharge rates.  Looking at the aggregate correlation number masks variation due 

to patient-specific characteristics.  While the discharge rate is not monotonically 

increasing, we do see an upward trend in the discharge rate as utilization 

increases.  There is some noise, but the chart shows a positive correlation between 

discharge rate and utilization. While this chart does not prove that there is a 

relationship between utilization and discharge rate, it does motivate further 

exploration. 
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We study the relationship between downstream bed utilization and the rate 

at which patients are discharged using survival analysis.  Survival analysis is a 

branch of statistics that deals with modeling time to event data. In our case, we 

are interested in modeling the time a patient spends in the recovery ward before 

being discharged.  Traditional statistical methods do not handle survival data well 

because there is autocorrelation in the response variable among each subject.  If 

the event (i.e., discharge in our case) happens on the N
th

 day for a given patient, 

the event could not have happened on any of the previous N-1 days, inducing 

correlation into the sequence of observations on the same individual.  Traditional 

statistical models assume independence among the observations which can lead to 

inefficiencies and bias in the model estimates.    However, survival analysis 

methods are able to take the correlation into account and give statistically valid 

results. 

The most common model used for survival analysis is the Cox 

proportional hazards model (Cox, 1972).  The Cox model estimates the rate at 

which an event will occur as a function of given predictor variables.  This rate is 

called the hazard function.  We are interested in how long patients spend in the 

hospital before being discharged. In particular, we are interested in what effect 

downstream bed utilization has on the hazard function.  One drawback of the Cox 

model is that it assumes that the time until an event occurs is continuous.  In our 

data set, time is discrete.  While this is not a large problem   all data are discrete at 

some level   assuming continuity is not correct. More importantly, the Cox model 

assumes that all predictor variables have the same value for the entire length of 
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each observation.  The Cox model cannot handle variables that vary with time, 

such as bed utilization. Our variables of interest change over time, so this is a 

serious modeling obstacle.  Because the Cox model cannot handle variables that 

change from day to day, we need to use a different model. 

Singer and Willet (1993) showed how to handle discrete time survival 

data.  When each time interval has the same length, a modified logistic regression 

model can be used to estimate the hazard function.  Because this model handles 

discrete time data, the hazard function now measures the probability of an event 

occurring in a given time period, instead of the rate at which events occur.  

Logistic regression is used to estimate the odds that an event occurs during any 

given time period.  The dependent variable in the Cox model, time until discharge 

occurs, is transformed into one observation for each day that the patient was in the 

hospital.  Because we now have an observation for each day, we can handle 

variables that change from day to day.  

We want to determine if increased utilization of recovery beds increases 

the discharge rate.  First, we must define a suitable measure for increased 

utilization.  We define two different measures for our data: a dichotomous 

measure that is 1 when utilization is above a certain threshold, and a continuous 

measure which counts the number of filled beds.   

To test the conjecture that higher recovery bed utilization leads to a higher 

discharge rate, we define a variable, denoted by FULL, that equals 1 when 

utilization is over a certain threshold and 0 otherwise. To test the sensitivity of 

our model to the choice of the threshold, we varied the threshold from 80% 
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utilization to 95% utilization. In addition to a dichotomous variable, we also 

investigate the incremental impact of each available bed using a discrete 

variable, denoted by BEDS, that measures the total number of full recovery beds 

on a specific day.  We predict that an increase in BEDS will lead to an increase in 

the discharge rate. 

 While patients are moved to different ICUs based on surgery type, there is 

some flexibility in the assignment of patients to ICUs.  We use the total number of 

beds that are full as our utilization measure, instead of the number of beds in use 

in each unit.  While not all of the ICUs are completely interchangeable, there is 

enough flexibility in where any one specific patient will be placed for our 

measure to make sense.  Each ICU is much smaller than the entire ward and has 

less than 20 beds, often less than 10 beds.  The number of beds in use in a surgical 

line’s specific ICU captures less information than the utilization of the entire ward 

in general.  In addition, each specific ICU’s staffing levels are more volatile than 

the aggregate staffing level, and each individual patient might be assigned to any 

of several specific ICUs depending on his/her characteristics.  For example, a 

patient undergoing orthopedic surgery might be placed in the trauma surgery’s 

ICU if the orthopedic ICU is full.   Furthermore, the overall utilization and the 

utilization of each specific ICU are highly correlated.  By aggregating overall 

utilization, we are able to account for the flexibility in which ICU the patients is 

assigned to, and capture more information about the utilization of the whole ICU 

(i.e., how full is the ICU?).  As a result, we feel that overall utilization is a better 

measure than measuring individual ICU utilization. 
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 We transformed our length-of-stay data into observations that can be 

tested using the Singer-Willett model by creating a variable denoted by 

DISCHARGE that equals 1 if a patient was discharged on a given day, and 0 

otherwise.  We control for the urgency of the surgery and sickness level of the 

patients with a variable, denoted by ELECTIVE,  that is 1 if the surgery was 

elective and 0 otherwise.  For each day, we calculated DISCHARGE, FULL, 

BEDS, as well as recorded the patient’s age, surgical line, and severity level.  

Table 2-1 summarizes the variables used in our models. 

2.4 Analysis and Results 

 Using the data set of 35,478 observations, we constructed three different 

Singer-Willett regression models to determine whether a decreased supply of 

recovery beds increases the probability that a patient will be discharged.  One 

model tests the range where FULL has a statistically significant effect.  A second 

model extends the first model by including controls variables for each surgical 

group.  A third model uses the continuous variable, BEDS, instead of FULL.  By 

using a continuous variable to measure utilization instead of a threshold, the third 

model measures the impact of each additional occupied bed.  

In the first model, we regressed the DISCHARGE on AGE, ELECTIVE, 

FULL,and 59 daily dummy variables.  This model is given by 

  

        DISCHARGE = AGE + ELECTIVE + FULL + D1 + D2 + ….+ D59 + ε. 
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In order to investigate the sensitivity of our results to the choice of the threshold 

for FULL, we varied the threshold between 80% and 95% bed utilization.  Below 

90% utilization there was no effect for FULL.  There was only one day in our 

sample where utilization at the start of the day was above 96%, so the sample size 

was too small to perform any meaningful analysis.  We ran the same test at each 

level, and recorded the magnitude of the coefficient for FULL and the standard 

error for the estimate.  Table 2-2 shows these results.  Figure 2-2 shows how the 

magnitude of the coefficient for FULL varies as the threshold increases.  On the x-

axis, we show the threshold above which FULL is defined to be 1.  The y-axis 

gives the magnitude of the coefficient for FULL in the regression models.  The 

dashed lines show one standard deviation above and below the estimate for each 

point.  The dip at 0.94 is not statistically different than the point at 0.93.  The 

graph stops at 0.94 because the sample size decreases dramatically past 94% 

utilization, the estimates grow extremely noisy, and the standard errors become 

very large.  We found statistically significant coefficients (p < .05) for FULL 

when the threshold is above 91.5%.  Ten percent of days had 91.5% utilization or 

higher, so days in the highest decile of utilization had an increased discharge rate.  

Table 2-3 shows the output from the regression model, when the threshold for 

FULL is 93%. 

We see statistically significant coefficients on FULL when the threshold is 

above 91.5%.  This implies that, when there is high utilization in the recovery 

ward, and hence a chance that some surgeries will have to be rescheduled, the 

probability that each patient will be discharged increases.  The coefficient for 
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FULL is also large enough to have an observable impact on discharge practices.  

Figure 2-3 shows the magnitude of this effect for a typical patient (45 year old, 

elective surgery).  The graph plots the percent of patients remaining in the 

hospital versus the number of days in the recovery wing.  The circles are for 

patients when FULL is 1, while the squares are for the same patients when FULL 

is 0.  The distance between the two curves is the number of patients who would be 

discharged when there is high recovery bed utilization but would be in the 

hospital when utilization is low.  The area between the two curves is the total 

number of bed days freed up by the effect of FULL.  The maximum difference 

between the curves is more than 15 beds out of the 320 in the recovery ward.  

Almost 48% of patients in a recovery ward that is not full (utilization < 93%) will 

be in the hospital after six days, compared to only 43% in a ward that is full 

(utilization > 93%). 

In the next model, we control for the surgical group performing the 

surgery.  There is some information captured in the surgical line variable that is 

not contained in ELECTIVE.  A patient undergoing elective brain surgery might 

be expected to spend longer in the recovery ward than a plastic surgery patient 

undergoing a non-elective procedure.  We add a dummy variable for each 

different surgical line to the previous regression model.  For example, the variable 

CARDIAC SURGERY is defined to be 1 if the patient underwent cardiac surgery 

and 0 otherwise.  This model is given by 

 

 DISCHARGE = AGE + ELECTIVE + FULL + CARDIAC SURGERY + 

CARDIOLOGY + … + DONOR SERVICE + D1 + D2 + …. + D59 + ε. 
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The results from this model are given in Table 2-4.  Again, FULL has a 

statistically significant coefficient, with a p-value below .01.  FULL has a 

statistically significant coefficient regardless of model specification.  Adding 

surgical group control variables had little effect on the magnitude or statistical 

significance of the FULL parameter.  This shows that the variable FULL has an 

underlying effect on discharge rate, and is not an artifact of the specific statistical 

model. 

Our third model uses a continuous variable to capture the effect of 

decreasing recovery bed supply on discharge decisions.  Instead of using FULL in 

our model, we use BEDS.  By treating the data in this way, we now are examining 

whether each additional filled post-operative bed increases the discharge hazard, 

instead of there being some threshold above which the discharge rate increases.  

This model is given by 

 

 DISCHARGE = AGE + ELECTIVE + BEDS + CARDIAC SURGERY +               

CARDIOLOGY + … + DONOR SERVICE + D1 + D2 + ….+ D59 + ε. 

 

 The results from this model are given in Table 2-5.  The coefficient for 

BEDS is positive and statistically significant, with a p-value of .02.  The 

magnitude of the coefficient is smaller than the coefficients for FULL in models 1 

and 2.  This is because the range of BEDS is in the hundreds, while FULL can 

only be 0 or 1.  When accounting for the range of BEDS, the total magnitude of 
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the effect is similar to the magnitude of the effect for FULL.  This shows that as 

recovery beds fill up, and supply becomes tight, the probability of discharge 

increases, regardless of how it is measured.   

2.5 Additional Modeling 

While we have shown that discharges happen at a higher rate when the 

ICU is full, there is a concern about the cyclical nature of utilization.  In Figure 2-

4, we see that the ICU tends to fill up over the course of the week and empty out 

over the weekend.   Therefore, FULL has a value of one mostly on Thursday and 

Friday, and a value of zero mostly on Saturday through Wednesday.  It could be 

that, instead of patients being discharged faster because the ICU is full, they are 

more likely to be discharged on Friday.  Because FULL is more likely to have a 

value of one on Friday, we would attribute the increase in discharge rate to FULL 

rather than the day of the week.  In other words, it could be that the effect of 

FULL is confounded by the day of the week.  To account for this, we add a 

dummy variable for each day of the week.  If there are more discharges on Friday, 

the dummy variable will capture this situation.   

The hospital is not always staffed to full capacity, so the limiting factor in 

space available for patients is not always the number of physical beds, but the 

number of staffed beds.  To account for differences in staffing levels, we define a 

new variable, denoted by FULL2, that is 1 when the number of beds in use is 

more than 97% of the most beds ever used on that day of the week.   We chose a 

threshold of 97% because this represents the 10% of days with highest utilization.  
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We also examine whether or not surgical volume has an effect on the 

discharge rate.  If there are more surgeries on a given day, more space will be 

needed for those incoming patients, and there might be more discharges.  We 

include two variables in our model, denoted by TODAY and TOMORROW, that 

measure the number of surgeries scheduled for the current day and the next day, 

respectively.  By including both the supply of beds (utilization) and the demand 

for beds (number of surgeries) in our model, we hope to determine what effect 

each variable has on the discharge rate.  When supply is low (high utilization), the 

discharge rate increases, but we also want to look at how the demand for beds 

(number of surgeries) impacts discharge rate.  If there is an average number of 

beds available, but a large number is needed due to high surgical volume, then the 

discharge rate might be increased to make room for incoming patients.  This 

model is given by: 

 

DISCHARGE = AGE + ELECTIVE + BEDS + FULL2 + TODAY + 

TOMORROW + MONDAY + TUESDAY + … + SUNDAY + D1 + D2 + …. + 

D59 + ε. 

 

The results of this model are given in Table 2-6.  First, we observe that the 

coefficient for FULL2 has a positive sign and is statistically significant (p = .041).  

After controlling for staffing levels, day of week, and surgical schedule, patients 

are still discharged at a higher rate when the ICU is fuller.  Second, the 

coefficients for TODAY and TOMORROW are both positive and statistically 

significant.  This shows that doctors take both the state of the ICU and the future 

surgical schedule into account when making discharge decisions.  Third, none of 
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the day of week variables have a statistically significant effect on the discharge 

rate.  Patients are not more or less likely to be discharged on any given day, after 

controlling for other variables in the model.     

We use two measures of model fit: pseudo R-squared and Aikake 

Information Criterion (AIC).   Pseudo R-squared is analogous to the standard R-

squared used in linear regression.  AIC measures the amount of information lost 

by a model, with lower numbers being better.  While the model in Table 2-6 has a 

better model fit (both in terms of pseudo R-squared and AIC), the improvement in 

both values (over the model in Table 2-5) is very small. Controlling for additional 

factors such as day of the week, staffing levels, and surgical volume does not 

explain much of the variability in discharge decisions beyond what is captured by 

the model in Table 2-5. 

2.6 Discussion and Conclusions 

The results of our models suggest that surgeons discharge patients, when 

needed, to ensure that their surgeries will not be cancelled due to a lack of 

recovery beds.  We have shown that surgeons discharge patients earlier when 

there are relatively few downstream beds available. This effect is observable and 

statistically significant, regardless of model specification. This discharge practice 

is a source of artificial variability and should be taken into account when 

predicting patient length of stay and hospital bed capacity.  Because the surgical 

schedule depends on the availability of recovery beds, these practices should 

also be taken into account when generating the surgical schedule.  In essence, 

the scheduler’s job is easier because the system can adjust to make more beds 
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available via early discharge, when necessary.  This should not be interpreted 

as an invitation to over-schedule surgeries, but rather a recognition that the bed 

management system is robust enough to adjust to occasional imbalances with 

respect to scheduled arrivals and expected discharges. 

While this chapter argues that scarcity in the supply for beds increases the 

discharge rate, Price (2009) has shown that an increase in the demand for beds has 

a similar, smaller effect.  By looking at a similar data set, Price showed that on 

days when there were more surgeries scheduled, there were more patients 

discharged.  This demand-side argument nicely complements our supply-side 

argument that, as supply decreases, the discharge rate increases.  Price makes the 

analogous demand-side argument that as demand increases, so does the discharge 

rate. 

When researchers attempt to model and understand the flow of patients 

through a hospital, they typically do not take into account how physicians make 

decisions.  Most people believe that the decision to discharge a patient is made 

independently of the state of the system (e.g., the surgeon's upcoming surgeries 

or the current number of patients in the ICU).  Our research shows that surgeons 

discharge patients early, based on the impact to their future surgical schedule.  

This adds a dimension to any study or model that seeks to improve the flow of 

patients through the hospital.  There are many papers in the open literature that 

use linear and integer programming techniques to improve surgery scheduling 

(Belien and Demeulemeester 2007, Blake et al. 2002).  By omitting the effect of 

a physician’s discharge practices on the patient length of stay, researchers have 
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overlooked an important factor that may affect hospital utilization. 

While we have shown the effect of bed supply on discharge rate, we have 

not shown that this is a public health concern.  It could be that, instead of 

discharging patients early when the recovery ward is full, surgeons otherwise 

keep patients an extra day or two to make sure they are fully recovered before 

being discharged.   Our work cannot determine which of these two explanations is 

more accurate.  In future work, we want to examine the outcomes of patients who 

were discharged early from a full recovery ward and determine whether or not 

these patients were more likely to be readmitted to the hospital. 

Policymakers are increasingly concerned with issues related to the cost 

and quality of healthcare.  Keeping patients longer in the ICU will increase costs.  

Discharging patients before they are ready to be discharged might lead to 

incomplete recovery.  Furthermore, being discharged too soon increases the 

stress on the downstream units and may raise the risk of readmission to the ICU 

both of which could raise cost and decrease quality.  Future work could look into 

the effects of discharge practices on readmission rates.  For example, we would 

like to track individual physicians and monitor their decisions, as well as track 

the health outcomes of patients discharged from a recovery ward that is full, and 

compare the outcomes with patients discharged from a less-than-full ward. 
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Figure 2-1:  Bar chart of discharge rate for different bed utilization ranges. 
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Figure 2-2 Effect of FULL vs. the bed utilization rate. 

The y-axis gives the magnitude of the coefficient for FULL given that 

FULL is defined to be 1 at any bed utilization rate greater than X.  Dashed 

lines show one standard error.  We find statistically significant effects 

when the threshold is above 91.5% utilization. 
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Figure 2-3: Survival Rate vs. Time in Hospital with FULL = 1 and FULL = 0  
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Figure 2-4: Average utilization of beds on each day of the week 
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Table 2-1: Descriptions of the response and predictor variables 

Variable Name Description Range 

DISCHARGE The dependent variable.  It is 0 for every day 

that the patient remains in the hospital, and 1 

on the day that the patient is discharged.  For 

each observation of Discharge, the six 

variables below are calculated. 

[0,1] 

AGE The age, in years, of the patient on the day of 

the surgery. 

[1,96] 

ELECTIVE A dummy variable that is 1 if the surgery was 

classified as elective and 0 if it was not. 

[0,1] 

BEDS A time-dependent variable that measures the 

number of recovery beds filled at the start of 

each day.  This variable changes over the 

course of each patient’s stay in the hospital.  

[120,320] 

FULL A time-dependent dummy variable that is 

defined to be 1 on days when the number of 

filled beds is above a certain threshold, and 0 

otherwise.  It can change over the course of a 

patient’s stay. 

[0,1] 

D1, D2, …., D59 Dummy variables for each day.  DN is defined 

to be 1 if it is the patient’s N
th 

day in the 

hospital, and 0 otherwise.  There are 59 

variables because the longest stay in our data 

set was 60 days.  One must be omitted to 

avoid multicollinearity. 

[0,1] 

CARDIOLOGY,  

…, DONOR 

SERVICE 

Dummy variables for each service line.  They 

are defined to be 1 if the surgery was 

performed by that surgical line, and 0 

otherwise.  There are 23 different service lines 

in our data set. 

[0,1] 
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Table 2-2: Effect of the threshold definition on the magnitude and significance of 

the FULL parameter 

 

Utilization 
Threshold 
for FULL 

Magnitude of 
the FULL 
coefficient 

Std. Error z value p-value 

0.8 0.0295 0.038 0.776316 0.44 

0.83 0.00632 0.038 0.166316 0.86 

0.86 -0.00078 0.038 -0.02053 0.98 

0.89 0.0147 0.042 0.35 0.72 

0.9 0.014 0.042 0.333333 0.74 

0.91 0.0474 0.045 1.053333 0.29 

0.915 0.0849 0.0415 2.045783 0.061 

0.92 0.121 0.0499 2.42485 0.024 

0.93 0.144 0.054 2.666667 0.0199 

0.94 0.104 0.059 1.762712 0.078 

 

 

Table 2-3: Utilization threshold survival model  

(AIC = 32619, pseudo R-squared = .3393) 
 

 Estimate Std. Error z value p-value 

AGE -9.43E-03 6.60E-04 -14.299 < 2e-16 

ELECTIVE 4.33E-01 7.68E-02 5.634 1.76E-08 

FULL 1.24E-01 5.35E-02 2.327 0.019967 

D1 -9.93E-01 8.40E-02 -11.831 < 2e-16 

D2 -1.33E+00 8.73E-02 -15.197 < 2e-16 

D3 -1.60E+00 9.11E-02 -17.56 < 2e-16 

. 

. 

. 
 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
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Table 2-4: Utilization threshold model with surgical group control  

(AIC = 32619, pseudo R-squared = .3623) 
 

 Estimate Std. Error z value p-value 

AGE -9.39E-03 8.15E-04 -11.529 < 2e-16 

ELECTIVE 4.04E-01 7.81E-02 5.171 2.33E-07 

FULL 1.45E-01 5.49E-02 2.63 0.008527 

D1 -7.76E-01 1.04E-01 -7.466 8.28E-14 

D2 -9.53E-01 1.06E-01 -8.965 < 2e-16 

D3 -1.15E+00 1.10E-01 -10.506 < 2e-16 

. 

. 

. 
 

. 

. 

. 
 

. 

. 

. 
 

. 

. 

. 
 

. 

. 

. 
 

CARDIOLOGY -7.46E-01 4.81E-01 -1.553 0.120539 

CARDIAC 
SURGERY 

-8.73E-01 8.21E-02 -10.642 < 2e-16 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
 

DONOR 
SERVICE 

2.03E+00 1.16E+00 1.747 0.080553 

 

 

Table 2-5: Continuous utilization model 

(AIC = 32619,   pseudo R-squared = .3393) 
 

 Estimate Std. Error z value p-value 

AGE -9.43E-03 6.60E-04 -14.291 < 2e-16 

ELECTIVE 4.34E-01 7.68E-02 5.65 1.61E-08 

BEDS 6.73E-04 2.89E-04 2.33 0.01979 

D1 -1.16E+00 1.12E-01 -10.329 < 2e-16 

D2 -1.49E+00 1.15E-01 -12.958 < 2e-16 

D3 -1.76E+00 1.17E-01 -15.01 < 2e-16 

. 

. 

. 
 

. 

. 

. 
 

. 

. 

. 
 

. 

. 

. 
 

. 

. 

. 
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Table 2-6: Day of week and surgical schedule model results  

(AIC = 32202, pseudo R-squared = .3496) 

 

 

Estimate Std. Error z value p-value 

AGE -9.71E-03 6.64E-04 -14.628 < 2e-16 

ELECTIVE 4.11E-01 7.73E-02 5.32 1.04E-07 

FULL2 1.23E-01 6.05E-02 2.037 0.04165 

TODAY 5.55E-03 2.01E-03 2.761 0.00576 

TOMORROW 4.55E-03 2.26E-03 2.018 0.04363 

BEDS -2.32E-03 3.94E-04 -5.897 3.69E-09 

SATURDAY -1.57E+01 8.83E+02 -0.018 0.98581 

SUNDAY -1.52E+01 8.83E+02 -0.017 0.98631 

MONDAY -1.51E+01 8.83E+02 -0.017 0.98636 

TUESDAY -1.48E+01 8.83E+02 -0.017 0.98665 

WEDNESDAY -1.49E+01 8.83E+02 -0.017 0.98658 

THURSDAY -1.45E+01 8.83E+02 -0.016 0.9869 

FRIDAY -1.48E+01 8.83E+02 -0.017 0.98663 

D1 1.39E+01 8.83E+02 0.016 0.98743 

D2 1.36E+01 8.83E+02 0.015 0.98769 

D3 1.34E+01 8.83E+02 0.015 0.98788 

. 

. 

. 

 

. 

. 

. 

 

. 

. 

. 

 

. 

. 

. 

 

. 

. 

. 
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CHAPTER 3: THE IMPACT OF HOSPITAL UTILIZATION ON 

PATIENT READMISSION RATE 

3.1 Introduction 

In Chapter 2, we showed that both higher post-operative bed utilization and 

higher demand for beds (more incoming surgeries) lead to increases in the 

discharge rate.  We offered two explanations for this increase: either patients 

were being held longer than needed when beds were available, or they were 

being discharged early when beds were needed for incoming patients.  While the 

discharge rate was increased by higher utilization, no determination between 

these two explanations could be made. 

In this chapter, we examine how the utilization of beds on the post-

operative path at the time of discharge affects the readmission rate among 

surgery patients.  By looking at readmission rates, we try to determine which of 

the two explanations for the higher discharge rate is applicable.  If patients are 

discharged too soon when utilization is high, we would expect to see an increase 

in the readmission rate.   A patient who is still recovering will be more likely to 

return to the hospital than one who is ready to be discharged.  However, if 

patients are simply being held longer until space is needed, we should not see any 

effect on readmissions.  Figure 3-1 illustrates the hypothesis that we test in this 

chapter.  We are confident in the direction of the causal arrows, because 

utilization precedes readmissions.  When patients are readmitted to the hospital, 

they are not sent back to the post-operative unit, so they do not affect the 

utilization rate.  Instead, they are either treated in the emergency department, or 
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in a bed elsewhere in the hospital.  In this chapter, we examine surgical data from 

a large urban teaching hospital in the United States.   

In Section 3.2, we review the relevant literature with respect to hospital 

readmission.  In Section 3.3, we describe our data, explain the methodology, and 

present our results.  In Section 3.4, we mention the limitations of our work.  In 

Section 3.5, we discuss the implication of our results and provide conclusions. 

3.2  Literature Review 

 Our work focuses on studying post-operative readmission.  We seek to 

show a connection between decreased length of stay due to early discharge and 

increased likelihood of readmission.  While some studies have shown a 

relationship between length of stay and readmission, others have found no 

evidence for such a link.  Hasan (2001) provides a short survey of work studying 

hospital readmissions.  He concludes that while premature discharge has been 

proposed as a cause for readmission, no causal link has been shown.  We focus 

on the effect of length of stay on readmission in this section for two reasons.  

First, we are not aware of any papers that study the effect of utilization on 

readmission.  Secondly, we hypothesize that high utilization causes a decrease in 

length of stay. 

 As already mentioned, the literature is split on whether or not length of 

stay has an effect on readmission rate.  It seems that length of stay does not have 

an effect on readmission rate, unless the length of stay is artificially shortened.  

Bohmer et al. (2002) study the readmission rate after coronary bypass surgery 

and find that there is no relationship between length of stay and readmission rate.  
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However, they show that cost savings from shorter stays are offset by increased 

use of post-acute services.  Cowper et. al (2007) find that patients discharged 

early after coronary bypass graft surgeries do not have a higher readmission rate, 

and have an average cumulative savings of over $6,000.  Delaney et al. (2001) 

observe that patients selected for a “fast track” discharge protocol are no more 

likely to be readmitted.  These patients have shorter lengths of stay and lower 

costs, and, in addition, are not any more likely to be readmitted. 

 However, there is evidence that early discharge leads to higher rates of 

readmission.  Niehaus et al. (2008) conclude that patients discharged because of 

bed shortages in psychiatric hospitals are significantly more likely to be 

readmitted.  Campbell et al. (2008) use length of stay as a significant predictor of 

readmission after discharge from an intensive care unit.  Hwang et al. (2003) find 

that patients who disregard medical advice and leave the hospital early are 

significantly more likely to be readmitted within 15 days.  Dobson et al. (2011) 

propose a model of ICU bumping.  They model physicians’ decisions on which 

patients to discharge early when bed space in the ICU is limited.  They find that 

the surgical schedule influences physicians’ decisions to bump patients.  They 

conclude that under some circumstances it is optimal, in terms of throughput, for 

surgeons to discharge patients before it would be medically advisable. 

3.3 Data and Analysis 

We were provided surgical data by a large urban east coast U.S. academic 

hospital on every surgery patient during the first half of 2007 (January 1, 2007 to 

June 1, 2007).  During that time period, there were no major changes in 
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operating room procedures or scheduling.  The dataset contains information 

on patient age, surgical schedule type (emergency vs. elective), and the 

surgical specialty group that performed the surgery.  Our data contains a 

total of 5,265 (adult) patients admitted as inpatients.    We also have 

available the date and time of the surgery, the dates when the patient was 

admitted to and discharged from the hospital, and the dates when the 

patient was readmitted, if any.  Using this dataset, we calculated the 

number of post-operative beds that were utilized at the start of each day 

during the fiscal year.  The hospital has a dedicated post-operative unit that 

has surgical ICU beds, acute care beds, and intermediate care beds.   

 We focus our analysis on differences in readmission rates within 72 hours 

because we expect the effect that utilization has on readmission to be most 

prominent in the first few days.  The 72-hour cutoff is important because a 

patient readmitted within 72 hours of discharge must be treated as part of 

inpatient services and billed as one claim, thereby reducing the amount the 

hospital makes from the procedure.  If a patient is discharged before he/she is 

ready to be sent home, we expect that he/she will be more likely to be readmitted 

sooner rather than later.  While an early discharge might lead to more 

complications down the road, it might also lead to more complications in the 

short term.  We will examine readmission rates in every time frame up to 30 days 

after discharge, but our main focus is on rates within 72 hours.  In this study, we 

only address readmission after discharge from the hospital, not “bounce backs” 

when patients move back to an ICU from a step-down unit.   
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We examine how the percent of patients who were readmitted within 72 

hours varies with changes in bed utilization upon discharge.  When utilization 

was high (above 94%), 16.7% of patients were readmitted within 72 hours, 

compared to just 10% of those discharged when utilization was below 94%.  A 

chi-square test comparing these two rates found that they were statistically 

different (p < .0001).  After 30 days, 55% of patients discharged from a full 

(utilization >94%) post-operative unit were readmitted, while only 50% were 

readmitted of those discharged when utilization was lower.  We initially choose 

94% as the cutoff for high utilization because previous work (Anderson et al. 

(2012)) found an increased discharge rate when utilization crossed that threshold.  

Table 3-1 shows the average readmission rates within 72 hours for different 

ranges of downstream bed utilization.  As utilization increases, the readmission 

rate increases, especially at the highest range of utilization.  Figure 3-2 shows the 

relationship between discharge rate and readmission.  As utilization increases, 

the discharge rate (shown by triangles) and the readmission rate (shown by 

squares) both increase.  The discharge rate shown here is the percent of patients 

discharged each day. 

We construct four logistic regression models to study the relationship 

between readmission rate and occupancy level at the time of discharge.  We use a 

dichotomous dependent variable, i.e., whether or not a patient is readmitted 

within 72 hours of discharge from the hospital.  To determine if increased 

utilization of post-operative beds at the time of discharge increases the 

readmission rate, we need to define a suitable measure for increased utilization.  
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We use two different variables: an indicator variable (called FULL) that is 1 if 

utilization is above a certain threshold when the patient is discharged and 0 

otherwise, and a continuous variable (called BEDS) that gives the number of 

filled beds when the patient was discharged.  We use four models because we 

have two different utilization metrics (continuous and discrete), and we examine 

readmission in the entire post-operative ward as well as just in the trauma 

surgical line.  Using these four models allows us to study the relationship 

between utilization and readmission rates in more depth.  Table 3-2 summarizes 

the variables used in our models. 

In our first model (Model 1), we regress readmission within 72 hours on 

FULL.  We control for the patient’s age, race, gender, and the type of surgery.  

By controlling for other determinants of readmission, we are able to isolate the 

effect of being discharged from a full unit. We are confident that our control 

variables are relevant, not only practically but also statistically.  Each variable 

lowers the Akaike Information Criterion (AIC) (see Akaike, 1974)) when added 

to the model, and is included in the final model when a stepwise model selection 

procedure is run.  The equation for this logistic regression model is given by 

 

logit(READMISSION72) = AGE + BLACK + ASIAN + HISPANIC + FULL + 

ELECTIVE + TRANSPLANT + TRAUMA + … + NEURO + MALE + ε . 

 

The baseline case, in which all dummy variables are 0, is a white, female patient 

in the general surgery line.  The results from this model are presented in Table 3-

3.  We do not exclude any insignificant predictors since our sample size is very 
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large and our overall goal is to measure the varying degrees of relationship 

between response and predictors. The effect of FULL is statistically significant at 

the 1% level and indicates that a patient discharged from a full unit is more likely 

to be readmitted within 72 hours.  When FULL is 1, it increases the odds by a 

factor of 2.341.  This implies that for a baseline patient of average age (i.e., 46 

years), the probability of readmission increases from 10% to 20%.    

We observe expected results from the control variables.  For example, 

trauma and transplant patients are significantly more likely to be readmitted 

compared to the (baseline) general surgery patients.  On the other hand, elective 

patients are less likely to be readmitted pointing to the lesser severity of elected 

surgeries.  We control for a patient’s demographics (age, race and gender).  We 

find that male patients are more likely to be readmitted and that readmissions are 

significantly higher for black patients.   

 The second model (Model 2) tests readmission within 72 hours, using the 

continuous utilization variable, BEDS.  We regress the readmission variable on 

the number of beds in use at the time of discharge (BEDS).  This model allows us 

to quantify the effect of each additional occupied bed on the likelihood of 

readmission, as opposed to the effect of crossing a particular threshold.  The 

hypothesized regression equation is given by: 

 

logit(READMISSION72) = AGE + BLACK + ASIAN + HISPANIC + BEDS 

+MALE +ELECTIVE +  TRANSPLANT + TRAUMA + … + NEURO + ε. 
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In this regression, BEDS measures the number of utilized beds at the time 

the patient was discharged. The results of this model are given in Table 3-4.  The 

effect of BEDS is positive and significant at the 1% level. This tells us that an 

increase in utilization at discharge leads to an increased readmission rate.  The 

magnitude of the BEDS coefficient (.00797) is smaller than that of FULL in the 

previous model (.851) because the range of BEDS is over 100.  Each additional 

bed in use at the time of discharge increases the odds of readmission by a factor of 

1.008.     Table 3-5 shows the effect of increasing the number of beds in use at the 

time of discharge on the odds of readmission, and on the probability that a 

baseline patient will be readmitted.  The probability of readmission is calculated 

at the mean age of a patient and with all dummy variables set to 0 (i.e., a 46-year 

old, white female patient in general surgery). 

To further investigate the effect over time, we construct six additional 

models (all similar to Model 1), with readmission within 5, 10, 15, 20, 25, and 30 

days as the dependent variable.  For example, if a patient was readmitted after 13 

days, the indicator variable would have a value of 0 for 5 and 10 days and a value 

of 1 for the other day variables.  We recorded the magnitude of the coefficient of 

FULL for each model.  In Figure 3-3, we show the magnitude of the coefficient of 

FULL as the definition of readmission changes.  The error bars for each point 

show one standard error above and below each value.  The utilization at discharge 

has the strongest effect on readmission within 72 hours, and it slowly diminishes 

over time.  Patients who are discharged too soon are more likely to be readmitted 

quickly, instead of later in the month.  



 

40 

 

Next, we were interested in determining the effect when only one surgical 

line is considered.  By isolating the surgical line, we can more precisely measure 

the effect of utilization.  Concentrating on one surgical line only allows us to 

eliminate any variation between the discharge procedures of different surgical 

lines, the differences in case severity, and the potential for future complications.  

The trauma surgery line is one of the largest units in our dataset, and has patients 

who are similar demographically to the general surgery population at the hospital.  

The percentage of each racial group is nearly the same as the percentage in the 

general population.  The mean and median ages for trauma patients are both 

within one year of the mean and median ages in the general population, as well.  

There are 248 patients admitted as inpatients after having trauma surgery.  Of 

those, 18% were readmitted within 72 hours.  The results are given in Tables 3-6 

and 3-7. 

Table 3-6 shows that high utilization upon discharge has a statistically 

significant effect on readmission rates within 72 hours.  While FULL is 

statistically significant, its p-value is lower compared to Model 1 (Table 3-3). The 

reason is the reduced sample size (since we are only focusing on a single surgical 

line, the sample size is reduced by 95%), which reduces the power of the test.   

However, the magnitude of the odds ratio is increased dramatically (from 2.3 in 

the first model to over 25).  This implies that for a baseline patient (a 46-year-old, 

white female) the probability of readmission increases by 63% (from 10% to 

73%) – compare this to an increase of only 10% (10% to 20%) when averaging 

over all surgical lines (Model 1).    The insight from this analysis is that the 
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impact of utilization on readmission changes from one surgical line to another. 

We observe a much stronger effect for trauma patients because surgeries in this 

line are typically more severe and, thus, more sensitive to variations in length of 

stay and thoroughness of treatment.  Lower acuity patients might be less sensitive 

to premature discharge, and, therefore, exhibit less of an increased risk for 

readmission. 

The same conclusions hold when measuring utilization on a continuous 

scale (BEDS; see Table 3-7). In fact, we can see that the odds ratio of BEDS is 

1.027, which is more than three times larger than its effect in Model 2 (which 

averages over all surgical lines).  In other words, regardless of how utilization is 

measured, increased utilization at the time of discharge increases the readmission 

rate for trauma surgery patients. 

 Finally, we use survival analysis to determine what affects the rate at 

which patients return to the hospital after being discharged.  While logistic 

regression estimates the probability that a patient will be readmitted in a certain 

time frame, survival analysis models the fraction of patients who have been 

readmitted over time.  In this model, our dependent variable is whether or not the 

patient was readmitted on a given day.  We create one observation for each day, 

for each patient, until the patient is readmitted, up to 30 days.  If the patient is 

readmitted on that day, the variable is 1, if he/she is not, it is 0.  A patient who is 

readmitted on the 10
th

 day after discharge will have nine observations where the 

dependent variable is 0.  For the 10
th

 observation, the dependent variable will be 

1, because the patient was readmitted on that day.  We also create 30 dummy 
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variables to account for the baseline hazard on each day (D1, D2, … , D30).  DN 

is 1 on the N
th 

day after discharge, and 0 otherwise.  In the first observation, D1 is 

1, and the remaining DN variables are 0.  In the 10
th

 observation, D10 is 1, the 

remaining DN variables are 0.  When FULL is 1, the odds that a patient will be 

readmitted on any given day increase by a factor of 1.32.  This means that when a 

patient was discharged from a highly utilized unit, the patient is readmitted at a 

higher rate.  FULL has a larger effect on the odds of readmission than age, race, 

or gender.  Figure 3-4 shows the percent of each type of patient who is readmitted 

as a function of time.   

Patients discharged when the post-operative unit was full are more likely 

to return the first day, and the gap grows as the month progresses.  These results 

are similar to the logistic regression models, in that patients dismissed from a full 

unit are more likely to return, and that the effect is visible immediately.  In this 

model, the effect that utilization has on readmission rates is statistically 

significant throughout the entire month.  When compared to the logistic 

regression models, we see a stronger effect later in the month in this model.  The 

difference between the two models comes from a restriction of the survival 

analysis model.  Survival analysis assumes that the effect of each variable is 

constant over time.  However, by varying the readmission window in the logistic 

regression models, we can examine how the effect changes over time.  The 

survival analysis model gives the effect of FULL averaged over the entire month.  

The coefficients on the DN variables are decreasing with time.  This means that as 

the month progresses, patients are less likely to be readmitted.  While many 
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readmissions that occur after 72 hours are unavoidable, it is still interesting to 

note that the effect of utilization at time of discharge has a lingering effect on 

readmission rates that lasts up to 30 days. 

3.4 Limitations 

 While our results shed new light on hospital readmissions, one should use 

caution in generalizing from them.  Since our data pertain to one particular 

hospital only, our results don’t immediately generalize to all hospitals.  While we 

suspect that similar phenomena occur at other hospitals, since incentives in other 

U.S. hospitals are essentially the same, our study can only address one hospital.  

In addition, we also have very little data on patient acuity levels. We only have 

information on whether or not the surgery was elective or emergency.  While this 

captures some of the variance in patient severity, we cannot control for all aspects 

of patient acuity levels.  Also, we do not have the cause for patient readmission, 

which would allow us to examine in more depth the effect that ICU utilization has 

on readmission.  While our main result holds, more detailed data would allow us 

to measure the effect of utilization more precisely. 

3.5 Discussion  

 In previous work, Anderson et al. (2012) show that the discharge rate of 

patients in the post-operative unit increased when utilization was high.  In this 

chapter, we show that these patients are more likely to be readmitted within 72 

hours than patients discharged when utilization is lower.  This effect prevails 

regardless of the utilization measurement or the chosen timeframe for 
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readmission.  Our results indicate that an additional day of recovery would help 

some patients who are being discharged when there are few available beds 

The systematic early discharge of patients is problematic because 

readmissions are costly and could lead to an inefficient use of healthcare 

resources.  In addition, early discharge with readmission is a potential public 

relations problem for a hospital.  We propose four solutions for lowering 

readmission rates.  A first solution is to add more flexibility to the post-operative 

path for patients.  While there is a standard post-operative ICU for each service 

line, there might be other beds in the hospital that would be able to take a patient 

and allow the patient to recover more fully.  Making it easier to match patients 

with beds might help to reduce readmission rates.  A second solution would be the 

creation of a discharge checklist with objective criteria.  Patients must satisfy the 

criteria before they can be discharged.  This checklist can be used at all times, or 

only when the unit is operating at high levels of utilization.  By standardizing the 

discharge process, it becomes more likely that each patient is fully ready to be 

transitioned out of the hospital at the time of discharge.  Third, the hospital might 

consider using transition coaches, especially for patients at high risk of 

readmission.  Hiring social workers to check on patients and to coach them on 

treatment and rehabilitation has been shown to lower the readmission rate 

(Coleman et al., 2006).   A fourth solution would be to align a surgeon’s 

compensation with a patient’s health outcome.  Currently, surgeons are paid for 

performing surgeries and having high operating room utilizations.  By 
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incorporating readmission rate into the compensation formula, we might impact 

the discharge decision process in a way that would lower the readmission rate. 

 Our work has identified a class of patients for whom the readmission rate 

is shown to be demonstrably higher.  Patients discharged from a highly utilized 

unit are more likely to be readmitted to the hospital after surgery.  Because the 

discharge rate increases when utilization is high, extra time in the post-operative 

unit for these patients might help lower the probability that they are readmitted.   

 In future work, we plan to address questions on the total length of stay for 

each type of patient.  For example, do patients who are discharged from a highly 

utilized unit come back and stay longer than those who are discharged under 

normal circumstances?  What effect do these early discharges and extra 

readmissions have on the overall efficiency of the hospital?  In terms of 

throughput, there is a tradeoff to be considered when deciding to discharge a 

patient a day early.  By discharging a patient early, a bed is freed up to allow a 

surgery to be performed.  However, this discharged patient is now more likely to 

be readmitted.  If the patient comes back, he/she might cause future surgeries to 

be postponed.  There is a delicate tradeoff between rushing to discharge patients, 

which comes with the risk of higher readmission rates, and taking the time to treat 

patients fully in order to lower future readmission rates.   
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Figure 3-1: Theoretical Model of Hypothesis 

 

 

 

 
Figure 3-2: Readmission and discharge rates vs. post-operative utilization 

High utilization 

causes higher 

discharge rate 

High discharge rate means some 

patients are discharged before the 
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lead to more 
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Figure 3-3: Effect of the definition of readmission on the effect of FULL 
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Figure 3-4: Readmission rates for patients discharged when full and not full 
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Table 3-1: Readmission rates for different utilization ranges 

 

Utilization Number of Patients Number Readmitted Percent Readmitted 

<75    911   82   9.0 

75-82.5  1124 117 10.4 

82.5-90 1795 183 10.2 

90-92   625   66 10.6 

92-94   528   67 12.7 

>94   282   47 16.7 

 

 

 

Table 3-2: Descriptions of the response and explanatory variables 

Variable Name Description Range 

READMISSION72 A dummy variable that is 1 if the patient is readmitted 

within 72 hours of discharge, and 0 otherwise. 

0,1 

FULL A dummy variable that is 1 if the unit was above 94% 

utilization when the patient was discharged, and 0 

otherwise. 

0,1 

BEDS The number of beds in use when the patient was 

discharged. 

225, …, 323 

AGE The age, in years, of the patient on the day of the surgery. 12, …, 107 

ELECTIVE A dummy variable that is 1 if the surgery is elective, and 

0 if the surgery is urgent. 

0,1 

BLACK, ASIAN, 

HISPANIC 

Dummy variables that indicate the race of each patient.  

There are four races including white, so we use three 

indicator variables. 

0,1 

TRANSPLANT, 

TRAUMA,…, 

NEURO 

Dummy variables that indicate which service line 

performed the surgery on the patient.  There are 10 

different service lines in our dataset, so we use nine 

indicator variables. 

0,1 

MALE A dummy variable that indicates the gender of our patient.  

There are two genders, so we use one indicator variable. 

0,1 
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Table 3-3: Model 1 results (AIC: 1978.6) 

Variable Odds Ratio 95% Confidence Interval p-value 

(Intercept) 0.088 [0.055 , 0.14] <.001 

FULL 2.341 [1.54 , 3.556] <.001 

BLACK 1.359 [1.055 , 1.748] 0.016 

HISP 0.969 [0.449 , 2.084] 0.946 

ASIAN 1.222 [0.344 , 4.335] 0.534 

AGE 0.992 [0.984 , 0.998] 0.023 

MALE 1.649 [1.279 , 2.126] <.001 

ELECTIVE 0.812 [0.639 , 1.029] 0.086 

TRANS 9.772 [6.97 , 13.7] <.001 

NEURO 0.901 [0.54 , 1.502] 0.77 

PLASTIC 1.029 [0.456 , 2.319] 0.791 

GYNO 0.586 [0.309 , 1.11] 0.134 

URO 5.447 [1.922 , 15.436] 0.001 

OPTH 1.745 [0.98 , 3.105] 0.043 

CARDIAC 1.545 [0.486 , 4.914] 0.334 

TRAUMA 2.249 [1.361 , 3.716] 0.001 

THORACIC 0.301 [0.089 , 1.009] 0.095 
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Table 3-4: Model 2 results (AIC: 1982.1) 

Variable Odds Ratio 95% Confidence Interval p-value 

(Intercept) 0.011 [0.002 , 0.044] <.001 

BEDS 1.008 [1.003 , 1.012] 0.001 

BLACK 1.332 [1.035 , 1.714] 0.025 

HISP 0.984 [0.461 , 2.1] 0.913 

ASIAN 1.324 [0.373 , 4.69] 0.452 

AGE 0.991 [0.983 , 0.998] 0.015 

MALE 1.664 [1.29 , 2.145] <.001 

ELECTIVE 0.828 [0.653 , 1.051] 0.121 

TRANS 9.790 [6.979 , 13.733] <.001 

NEURO 0.883 [0.529 , 1.472] 0.713 

PLASTIC 1.053 [0.468 , 2.367] 0.748 

GYNO 0.609 [0.322 , 1.15] 0.166 

URO 6.057 [2.185 , 16.785] <.001 

OPTH 1.669 [0.938 , 2.97] 0.061 

CARDIAC 1.624 [0.511 , 5.159] 0.293 

TRAUMA 2.220 [1.343 , 3.665] 0.001 

THORACIC 0.298 [0.088 , 0.998] 0.091 

 

 

 

   Table 3-5: Effect of increasing utilization on readmission 

Number of 

Beds  

Factor by which 

Odds are Increased 

Percent 

Readmitted 

225 1.00   8.6 

250 1.22 10.4 

275 1.49 12.4 

300 1.82 14.7 

325 2.22 17.4 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3-6: Trauma Surgery Model – Discrete Variable (AIC: 98.4) 
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Variable Odds Ratio 95% Confidence Interval p-value 

(Intercept) 1.030 [0.189 , 5.591] 0.945 

FULL 25.411 [1.085 , 594.979] 0.043 

BLACK 8.234 [2.427 , 27.929] <.001 

HISP 5.655 [0.154 , 206.926] 0.305 

AGE 0.943 [0.911 , 0.976] 0.001 

MALE 0.782 [0.243 , 2.506] 0.658 

ELECTIVE 0.580 [0.182 , 1.843] 0.381 

 

 

 

 Table 3-7: Trauma Surgery Model – Continuous Variable (AIC: 186) 

Variable Odds 

Ratio 

95% Confidence Interval p-value 

(Intercept) 0.002 [0 , 0.857] 0.064 

BEDS 1.027 [1.002 , 1.052] 0.047 

BLACK 7.525 [2.276 , 24.872] 0.001 

HISP 3.069 [0.085 , 109.748] 0.502 

AGE 0.934 [0.899 , 0.968] <.001 

MALE 0.556 [0.16 , 1.926] 0.355 

ELECTIVE 0.565 [0.178 , 1.784] 0.356 
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CHAPTER 4: DIFFERENCES IN TREATMENT QUALITY FOR 

TRAUMA PATIENTS BASED ON HOSPITAL ARRIVAL TIME 

4.1 Introduction 

The ability of hospitals to consistently deliver high quality care is a matter 

of significant concern.  At hospitals in the United States, patients receive only 

about 54% of recommended care (McGlynn et al. 2003), and service quality 

varies considerably (Vandamme and Leunis 1993, Lam 2010).  Finding ways to 

improve the quality and consistency of care delivered by healthcare systems is an 

important task facing the medical community.  A critical step is to identify factors 

that lead to variations in the quality of care.  

Until now, most studies have been focused on the differences in the 

quality of care across different types hospitals (e.g., academic hospitals and larger 

hospitals with higher volume tend to provide better quality service (Theokary and 

Ren 2011).  Most hospital quality measures are aggregated at the hospital-year 

level, such as the HospitalCompare program (Centers for Medicaid and Medicare 

Services 2013) from the US Department of Health and Human Services or the 

hospital rankings published by the U.S. News & World Report (U.S. News & 

World Report 2012). While these quality rankings are useful in highlighting 

cross-hospital quality variation, within-hospital quality variation has not been 

studied extensively.  For any hospital that aims at providing consistent, high-

quality care, within-hospital variation in quality is an important concern. Within-

hospital variation also presents a clear managerial challenge to hospitals. More 
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specifically, systematic variations in quality indicate opportunities for a hospital 

to improve its quality of service.  

In this chapter, we study the differences in treatment quality that trauma 

patients receive based on their arrival time at the emergency department.  Using 

data from a large national database, we use regression analysis to determine the 

differences in treatment quality based on arrival time.  We create a data set 

matching patients who arrive during the daytime to patients with the same injury 

severity and primary diagnosis who arrived off-hours.  Trauma from unintentional 

injury is the leading cause of death among Americans age 1 to 44, and the fifth 

leading cause of death overall, with 121,902 deaths in 2008 (CDC 2008).  

Therefore, improving the quality and efficiency of trauma care is of national 

importance.  Additionally, trauma care has a relatively short treatment cycle and 

clear quality metrics.  These make it ideal to examine quality variation and 

consequences by focusing on quantifiable clinical outcomes. 

 In Section 4.2, we examine the relevant literature and develop our 

hypotheses.  In Section 4.3, we describe the data set in detail.  In Section 4.4, we 

present our empirical analysis and discuss our main results.  In Section 4.5, we 

rule out alternative explanations of the observed differences between night and 

day and provide further statistical robustness checks.  In Section 4.6, we discuss 

the implications of our findings and provide conclusions. 
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4.2 Literature Review and Hypothesis Development 

4.2.1 Variations in the Quality of Care 

The healthcare industry has been striving to consistently deliver quality 

care.   Hospitals have tried many initiatives to increase the quality of healthcare, 

such as implementing checklists and guidelines for care (Downs and Black 1998, 

Gawande 2009).  These efforts yield mixed results.  Checklists have been shown 

to significantly lower the rates of preventable errors and to improve the quality of 

care delivered in hospitals.  There are also nationwide quality transparency 

programs from both government agencies and practitioners, such as HHS’ 

HospitalCompare, the U.S. News ranking of best hospitals, and the Leap Frog 

Group.  

One limitation of these quality measures is that they are often constructed 

based on annually aggregated data and do not reflect how service quality varies 

within a hospital. Consequently, most existing academic research based on these 

quality measures has tried to examine cross-hospital quality variation using fixed 

hospital characteristics, such as size, volume, ownership, or teaching status, with 

the goal of improving the overall performance of low-quality hospitals. For 

example, Keeler et al. (1992) and Hughes et al. (1987) find that larger, urban 

hospitals deliver higher quality care than their smaller, rural counterparts, while  

McClellan and Staiger (2000) show that not-for-profit hospitals deliver a slightly 

higher quality of care than do for-profit hospitals.    

Our study examines the quality of care issue from a different perspective 

by analyzing a systematic variation in quality over which hospitals have control: 
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namely, the differences between daytime and “off-hours” hospital staffing and 

resource availability. In so doing, we contribute to an emerging stream of research 

focusing on within-hospital quality variation. For example, Kc and Terwiesch 

(2009) examines how workload variation affects service rates and outcomes in 

cardiothoracic surgery. Several studies have analyzed treatment quality variation 

in hospitals based on the time of day and the day of the week. These studies (e.g., 

Magid et al. (2005), Saposnik et al. (2007), Bell and Redelmeier (2001), and 

Reeves et al. (2009)) show that patients outside of the emergency department 

have worse outcomes when they arrive off-hours, either at night or on the 

weekends. Specifically, Bell and Redelmeier (2001) find that risk-adjusted 

mortality rates for patients who arrive at the hospital on the weekends are 

significantly higher. Saposnik et al. (2007) also find increased mortality risk 

among patients who have strokes on the weekend. And recent work by Egol et al. 

(2011) reveals that mortality rates for trauma patients are higher at night, with 

larger off-hours/daytime variations at lower level trauma centers.   

Although such work has begun to shed light on the issue of time-related 

within-hospital quality variation, they stop at reporting the difference in care 

quality and fail to reveal what causes the variation in quality of care. Additionally, 

most time-related studies use a black-box approach to focus on mortality, which 

makes it difficult to provide a comprehensive analysis on the off-hours/daytime 

quality difference. Our study aims to fill these gaps in the existing literature by 

presenting a comprehensive examination of how the timing of patient arrival 

affects the quality of care received and the outcome of treatment. More 
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importantly, we try to uncover the mechanisms driving this quality variation, 

rooting our analysis in the literature on how resource availability affects quality of 

care and developing testable hypotheses for the causes of the quality variation.  

Empirically, we advance existing research by using various approaches for 

more rigorous tests, including fixed effects models, diagnosis matching, as well as 

sub-category analysis. In so doing, we hope to contribute to a more 

comprehensive and fundamental understanding of the time effect in care quality 

variation. 

 Below we provide a theoretical foundation and a possible explanation for 

off-hours/daytime differences in quality of care from a resource management 

perspective, and derive testable hypotheses. 

4.2.2 Possible Causes of the Variation in Care Quality between Daytime and Off-

hours 

There are many factors that lead to differences in the quality of care that 

hospitals offer.  For example, hospitals with higher volume tend to provide higher 

quality care (Dudley et al. 2000).  It has also been shown that, on average, 

academic hospitals and not-for-profit hospitals provide higher quality care than 

their nonacademic or for-profit counterparts (Jha et al. 2005).   

Scholars in operations management have identified resource availability as 

one important factor that leads to quality variation in hospitals. One stream of 

research examines the impact of resource strain. Kc and Terwiesch (2011) show 

that when the ICU is full, patients are discharged at a higher rate, who are then 

readmitted at a higher rate. Anderson et al. (2011, 2012) uncover a similar effect 
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when studying post-operative discharge and readmission rates. Cardoen et al. 

(2009) summarize the effects that operating room availability can have on patient 

care, with too few staffed ORs potentially leading to long patient waiting times 

and poorer clinical outcomes. Miro et al. (1999) show that overcrowding in 

emergency departments decreases the quality of care delivered, and Trzeciak and 

Rivers (2003) also discuss how overcrowded emergency departments offer lower 

quality care. These studies all concur on the basic premise that as strain on 

hospital resources (doctors, nurses, operating rooms) increases, the quality of the 

treatment provided declines. 

Given the importance of resource availability in delivering consistent, 

high-quality care, the operations management literature has highlighted the 

critical role of resource management (Roth et al. 1995). A shortage of ICU beds 

can have a negative impact on those patients who are denied an ICU bed (Chan et 

al. 2012). Similarly, Price et al. (2011) show that shortages in downstream bed 

availability can affect post-operative care. Dobson et al. (2011) find that reserving 

capacity for urgent patients can help providers deliver higher quality of care 

overall. Soteriou et al. (1999) develop and present a method for optimal resource 

allocation to increase the perceived and actual quality of a healthcare delivery 

system.  

However, operating room availability and waiting time before surgery are 

not the only determinants of quality of care. Recent work has discussed the 

importance of scheduling specialists optimally and the problems that improper 

utilization can lead to, such as high costs, long wait times, and lowered quality of 
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care (Vissers et al. (2010), de Kreuk et al. (2004), Day et al. (2012)). It has also 

been shown that increasing specialization in hospitals leads to higher quality care 

at a lower cost (Eastaugh (2001), Hyer et al. (2008), Capkun et al. (2008), Barro 

et al. (2005)).   

Even though specialization has been shown to be beneficial, there are 

reasons to believe that hospitals tend to reduce the level of specialization at off-

hours. As a result, the question of how to staff service systems with varying 

arrival rates and different classes of patients has been well studied in the queueing 

theory literature. Pinker and Shumsky (2000) claim that “it is a well-known fact 

from the study of queues that, all things being equal, staffing flexible servers is 

more efficient than using specialists when customers are heterogeneous in the 

skills they require.” This claim is further examined by Chevalier and Tabrodon 

(2003). Shumsky and Pinker (2003) also study the optimal number of specialists 

and generalists to have on staff at a call center, based on the arrival rate of 

patients and the difference in service quality offered by specialists and generalists. 

They find that as volume decreases, the optimal percentage of specialists 

decreases as well.   

Trauma wards are a similar environment to those discussed in the studies 

mentioned above; arrival rates vary throughout the day and night, and many 

different injury types are treated. During off-hours, then, when arrival rates are 

lower, we would expect to see fewer specialty surgeons and fewer specialized 

resources available in a trauma ward. Diette et al. (2001) show that patients 

treated by specialists are more likely to receive high-quality care than those 
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treated by general practitioners. Therefore, the lack of specialized workers (e.g., 

surgeons and nurses) will lead to a lower quality of care being delivered during 

off-hours and a higher rate of complications during surgery.  

This provides a more complete picture of the impact of arrival time on 

health outcomes. Shorter waiting times typically lead to shorter ICU stays and 

lower mortality (Casaletto and Gatt 2003), while more lower quality care typically 

lead to longer length of stay and higher mortality (Haynes et al. 2009), so there is 

a conflict and it is not immediately clear which effect will dominate. 

Nevertheless, we propose the following hypothesis:  

H1: Other things being equal, patients arriving during off-hours will 

receive lower quality care, and have worse outcomes, as measured by a) higher 

surgical complication rates, b) longer lengths of ICU stay, and c) higher mortality 

rates. 

 We hypothesize that a lack of specialized resources will cause hospitals to 

deliver lower quality care during off-hours.  Because volume goes down during 

off-hours, we expect the availability of specialized surgeons, nurses, and other 

resources to decrease as well.  This should result in lower quality service. 

Furthermore, the reduction of specialized resources should be more prominent 

among hospitals that are more resource-constrained (Keeler et al. 1992).   Large 

hospitals have consistent demand, even at night, which should result in a smaller 

difference in the quality of resources available between daytime and off-hours 

than at smaller hospitals where there is a much lower off-hour arrival rate.  

Furthermore, while they vary by state, there are certain standards that trauma 
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centers must meet in order to be certified as a high level trauma center.  These 

restrictions often include having certain surgical staff in the hospital at all times, 

and having access to diagnostic and life support services.  These restrictions 

guarantee that higher level trauma centers will have quality resources available 

during off-hours, while lower level trauma centers may not.  Therefore, we expect 

to see greater increases (from day to off-hours) in complication rates, length of 

ICU stay, and mortality at smaller (measured by number of beds) and less 

sophisticated (lower trauma center level) hospitals.  We also construct a more 

direct measure of resource strain based on the number of visits to the hospital per 

surgeon employed, providing a good proxy for the surgeons’ workload. This 

suggests a second hypothesis: 

H2:  Hospitals that have fewer beds, level trauma centers, and more visits 

per surgeon will experience greater differences in quality of care between day 

and off-hours. 

As a further test of whether resource constraints cause quality variation, 

we look at variation in outcomes based on surgery complexity.  Not all surgeries 

are equally complex or require equal surgical specialization.  Biondo et al. (2010) 

showed that in emergency surgeries, proper specialization can significantly 

improve outcomes and reduce mortality.  Similarly, Chowdhury et al. (2007) 

showed that surgical specialization leads to better patient outcome and is a 

stronger determinant than hospital quality.  This implies that a significant factor in 

determining quality of care is the proper specialization of the treating physician, 

when specialization is required.  
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If a lack of high quality resources is the main determinant of the difference 

in outcomes between daytime and off-hours, we would expect that if a patient’s 

injury is straightforward to treat and does not require specialized resources, there 

should be little significant difference in the observed outcomes.  However, if a 

patient has a complex injury that would be best treated by a specialized surgeon, 

we expect the outcome to be significantly better during the day, because those 

specialized resources are present during the daytime but not during off-hours. 

H3: Patients with more complex injuries will experience greater 

differences in quality of care than patients with injuries that are relatively simple 

to treat. 

4.3 Data 

We use data from the National Trauma Data Bank (NTDB) version 7.2, 

which is the largest available aggregation of US trauma data. The research dataset 

includes all patients admitted at 570 trauma centers nationwide between 2002 and 

2006, with treatment and outcome measures on over 1.5 million patients. The 

database contains demographic information on the patients, details of their 

treatment, injury type and severity, and payment, as well as information on the 

size, type, region, and trauma level of the hospital where the patient was treated. 

We restrict our focus to only those patients for whom we have complete 

information about age, arrival time in the emergency department (ED), injury 

severity score (ISS), mortality, and length of ICU stay.    After excluding patients 

with significant missing data, and those who did not arrive at the hospital directly, 

we are left with a sample of 660,937 patients from 477 different hospitals. We 
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only include direct arrivals to the hospital, excluding inter-hospital transfer 

patients.  Patients who arrive via transfer have already been treated and have 

likely been stabilized.  Therefore, the arrival time at the new hospital is not 

informative or a primary determinant of quality of care, so we exclude these 

patients from the study.  The major variables that we use in the study are defined 

in Table 4-1. In Table 4-2, we provide summary statistics for each variable.  

Tables 4-3 and 4-4 provide summary statistics by arrival time and by hospital 

certification level. 

Corresponding to the first four hypotheses, we choose four measures of 

quality of care: time to surgery, complication rate, length of ICU stay, and 

mortality. These quality metrics have been justified in the literature (Thomas et al. 

1997; Dimick et al. 2003; and Thomas et al. 1993) and have all been shown to be 

key measures of the quality of care that a hospital provides. Time to surgery 

(Hours to Procedure) is measured as the number of hours between the patient’s 

arrival at the emergency department and the first surgery that the patient receives. 

Occurrence of a recorded complication (Complication) is a dichotomous variable; 

if a patient has a complication recorded during his/her surgery, the variable is 1, 

and it is 0 otherwise. We measure length of ICU stay (ICU LOS) as the number of 

days that the patient spends in the ICU. Finally, mortality is recorded as 1 if the 

patient dies in the hospital, and 0 if the patient is discharged alive. 
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4.4 Empirical Analysis 

4.4.1 Empirical Models  

Since our goal is to examine the difference in quality of care between day 

and night, we adopt the following model to test H1-H3: 

Qik = 1 *T1ik  +  2*T2ik + γ*Zik + ∑   
   
    Di +εik  , 

where i is the trauma center index and k is the patient index. Q is the quality 

measure, which varies depending on the specific hypothesis we test (e.g., length 

of stay, mortality). We measure the night effect in two time slots. T1 is the time 

dummy for late night (6:00 PM to 12:00 AM), and T2 is the time dummy for early 

morning (12:00 AM to 6 AM). Z represents a group of control variables for the 

heterogeneity in patient mix, including injury severity scale (ISS) score of the 

patient, as well as the patient’s comorbidity index, primary ICD-9 diagnosis code, 

age, race, and gender.  

To control for the unobserved heterogeneity across the trauma centers, we 

include the fixed effect, D, for each trauma center (the intercept is omitted to 

avoid perfect multicollinearity). Robust standard errors are used to control for 

potential heteroskedasticity in the sample. We further cluster the standard errors at 

the facility level to account for possible correlations in the standard errors within 

the same trauma center.  While there are potential sources of endogeneity, 

particularly due to differences in the composition of the patient populations 

arriving during the daytime and off-hours, we report these initial results because 

they expand upon the initial findings by Egol et al. (2011) and motivate further 

investigation.  In Section 4.5, we test alternative explanations and try to control 
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specifically for this unobserved heterogeneity.  Unless otherwise noted, every 

model that we test also uses hospital fixed-effects. 

4.4.2  Findings 

4.4.2.1 Quality of Surgery:   

To test Hypothesis 1a, we regress whether or not patients had a 

complication during surgery, taking into account their arrival time and 

demographic characteristics.  

Logit(Complication)ik = β1 * Early AM ik + β2 * Night ik + β3 *Age ik + Β4 * 

Gender ik + β5 *Race ik + β6 * log(ISS) ik +  β7 * Facility ik + 

β8 * Year + ∑      
 
 +  ε ik,                                                         

Since the dependent variable is binary, we apply a logit model. The 

baseline results are given in the column 1 of Table 4-5. After controlling for 

severity and demographics, we find that a patient arriving at night (or in the early 

morning) has, respectively, a 4.8% (or 9.3%) higher odds (e
.0467

 = 1.048, e
.0887

 = 

1.093) of incurring a complication than do patients arriving during the daytime.  

The probability of death increases from 5.0% for a typical patient arriving during 

the daytime to 5.2% for patients arriving at night and to 5.5% for patients arriving 

in the early AM (e 
-2.996

 = .05,  e 
-2.996 + .0467

 = .0524, e
-2.996 + .0887

 = .0546). After 

including the fixed effect dummies, in column 2, the above findings are 

essentially unchanged.  

As another measure of surgery quality, we examine whether patients 

require multiple surgeries, which is a common outcome of an incomplete or 

unsuccessful initial surgery. For this analysis, we only include patients with at 
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least one procedure.  These results are shown in column 3 of Table 4-5. We find 

that the odds of a patient arriving during the early morning (or night) requiring 

multiple surgeries are 18.2% (or 3.8%) higher than for patients arriving during the 

day (raising the probability for a typical patient from 81.4% for daytime arrivals 

to 83.8% for early AM arrivals and 82.0% for night arrivals). Taken together, the 

higher complication rate during off-hours and the fact that daytime surgeries lead 

to fewer subsequent surgeries imply that the quality of treatment, especially in 

surgery, is lower during off-hours than during the day. 

4.4.2.2 Length of Stay 

We next examine the relationship between arrival time and the length of 

time a patient spends in the ICU, in order to test Hypothesis 1b, using OLS with 

hospital fixed effects.  

Log(ICU LOS)ik = β1 * Early AM ik + β2 * Night ik + β3 *Age ik + Β4 * Gender ik + 

β5 *Race ik  + β6 * log(ISS) ik + β7 * Facility ik +β8 * Year ik  + 

∑      
 
 +  ε ik ,                                                                                                               

These results are shown in columns 4 and 5 of Table 4-5. The data  show 

that patients who arrive at the ED in the early morning or at night have ICU stays 

that are 16.6% and 10.0% longer (e
0.154

 = 1.166, e
0.0949

 = 1.100), respectively, than 

patients who arrive during the day, after controlling for demographics, hospital 

characteristics, and the patient’s severity. This means that not only do patients 

who arrive at the ED at night or in the early morning have higher complication 

rates, but they also have longer recovery times after their treatment, after 
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controlling for the severity of their injuries. This implies the care these patients 

receive is of lower quality than the care delivered during the day.   

We conduct further analysis to ensure that the above finding is not simply 

an artifact of the way hospitals calculate length of stay. It is possible that some 

hospitals calculate based on calendar days instead of full 24-hour periods, so 

patients who arrive just before midnight would have an extra day added to their 

length of stay. However, we also find that patients who arrive at night or in the 

early morning are both significantly more likely to be sent to the ICU in the first 

place, suggesting that our findings are not driven by the way length of stay is 

calculated. Because patients are more likely to require any time in the ICU at all, 

we find it likely that they also spend, on average, more time in the ICU as well. 

4.4.2.2 Mortality 

We use the following logistic regression model to examine the effect of 

patient arrival time on mortality: 

logit(Mortality ik)= β1 * Early AM ik + β2 * Night ik + β3 *Age ik + Β4 * Gender 

ik + β5 * Race ik.              .     + β6 * log(ISS) ik +  β7 * Facility ik 

+ β8 * Year ik    + ∑      
 
 +  ε ik ,       

The regression results are reported in Table 4-6. Using the baseline model 

(Column 1), we find that the coefficients of Night and Early AM are .116 and 

.112, respectively. They are both statistically significant at the .001 level. These 

coefficients imply that after controlling for patient characteristics, the odds of 

death for patients who arrive between 6 PM and midnight and those who arrive 

between midnight and 6 AM increase by 12.3% and 11.9% respectively, when 
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compared to patients arriving during the day.  This raises the odds of death for a 

typical patient from 5.0% for daytime arrivals to 5.6% for both nighttime and 

early AM arrivals (e
-2.995

 = .05,   e
-2.995+.112

 = .0559, e
-2.995+.116

 = .0561). These 

results are consistent with the fixed effects model given in the column 2. 

4.4.3  Further Analysis and Mechanism Discovery 

In the above analysis, we find a significant difference in the quality of care 

delivered during off-hours and the quality of care delivered during the day, which 

supports H1. As discussed in Section 2, we suspect that one main cause of the 

lower treatment quality during off-hours is a reduced breadth of resources 

available. In this section, we further examine whether this is the case and how the 

difference is affected by resource availability. We first utilize several proxies for 

the resource variable across hospitals (H2), and then leverage the difference in 

resource requirements across clinical conditions (H3).  

4.4.3.1 Comparing the day and off-hours difference among hospitals 

First, according to Hoetker (2007), we stratify our sample based on the 

level of the trauma center at which the patient was treated. Level I trauma centers 

are defined as those possessing a full range of specialists and equipment available 

24 hours a day. Level II centers are required to have all essential personnel 

available 24 hours a day, but not required to have every specialty staffed at all 

times. Level III and IV centers are not required to have all specialties fully 

available. Because of these restrictions, we expect the differences in outcomes to 

be larger at lower-level trauma centers, as they are the most resource-constrained.  
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Consistent with our prediction, we see that the off-hours/daytime 

difference in mortality rates is greatest at the hospitals with the most visits per 

surgeon and smallest at the hospitals with the fewest visits per surgeon. At level I 

trauma centers, the average difference in the odds of mortality between daytime 

and off-hours is 10.6%; at level II centers, it is 14.3%; and at level III/IV centers, 

the difference rises to 22.3% (e
(.0928+.110)/2

 = 1.106, e
(.138+.130)/2

 = 1.143, e
(.231+.171)/2

 

= 1.226).  This raises the probability of death for a typical patient from an average 

of 5.7% to 6.3% at level I centers, from an average of 4.7% to 5.4% at level II 

centers, and from an average of 2.7% to 3.3% at level III/IV centers.  These 

differences are further confirmed by the logistic regression estimations based on 

each level of trauma centers, as reported in Table 4-7.  As before, these models 

include hospital level fixed effects, in addition to the patient level control 

variables. 

Next, as hypothesized in H2, we suspect that the off-hours/daytime 

difference in resources available would be greater at smaller, less sophisticated 

hospitals, due to reduced use of specialists (Pinker and Shumsky 2000). We first 

segment our sample based on the size of the hospital, measured by the number of 

beds in the hospital. We then construct the relative load that the surgeons and 

hospital face and the strain that the patient flow puts on their resources, based on 

the number of visits to the hospital per number of trauma surgeons employed by 

the hospital. For each index, sub-sample regressions are conducted using the top 

and bottom quartile observations based on the above indices. As presented in 

Table 4-8, the quality difference is greater for hospitals with number of beds in 
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the bottom quartile, compared to those in the top quartile (column 1 vs. column 

2). More interestingly, as resource strain increases (hospitals moving from bottom 

quartile by visits per surgeon to top quartile), the increase in mortality in early 

AM becomes much more significant (column 3 vs. column 4). These findings are 

consistent with our conjecture that resource-constrained trauma centers 

experience a quality drop-off in the early morning/night.  Again, these models 

include hospital level fixed effects, in addition to the patient level control 

variables. 

4.4.3.2 Comparing the day and off-hours difference based on complexity of injury 

 In this section, we exploit another way to test whether resource availability 

leads to the difference in care quality. Because complex injuries are more likely to 

require specialized resources, the difference in quality of care these patients 

receive during off-hours and during the daytime should be larger, while it should 

be smaller for those patients who have simpler injuries (we thank the AE and one 

anonymous reviewer for this suggestion). To test whether the complexity of a 

patient’s injury is associated with the time variation in quality of care, we first 

sought the expertise of emergency healthcare workers, who in discussions with 

our research team identified broken femurs as a good example of a low-

complexity injury and spinal column/neck injuries as a good example of a high-

complexity injury type. While the levels of complexity are different, these two 

injury types have similar levels of severity and reasonably similar overall 

mortality rates (5% for femur injuries and 8% for neck/spine injuries), making 

them ideal for comparison. In addition, the sample size of each population is large 
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enough for meaningful analysis.  We then compare the differences in observed 

outcomes between patients with broken femurs and those who suffered spinal 

column and neck injuries.  

While broken femurs are a serious injury with a 5% mortality rate, 

treatment is relatively straightforward and an emergency room doctor or 

generalist trauma surgeon would be qualified to treat such an injury. Rarely would 

a specialist be called in to treat a patient with a broken femur, regardless of time 

of day. Because of this, we would expect to see very little difference in treatment 

quality between the daytime and off-hours.  Indeed, regression of mortality on 

arrival time among patients with broken femurs shows that there is no statistically 

significant difference in treatment quality between daytime and off-hours (see 

column 1 of Table 4-9).    

Regarding neck and spine injuries, on the other hand, we would anticipate 

a large difference in treatment quality between daytime and off-hours. This is due 

to the fact that the neck contains crucial components of several major physical 

systems, making these injuries far more complex than broken femurs. 

Specifically, the neck contains the carotid artery and the jugular vein, which carry 

blood to and from the brain, the spinal cord, which connects the nervous system to 

the brain, and the esophagus and trachea, which carry food and air from the mouth 

into the body. The neck also contains salivary glands, thyroid glands, and lymph 

nodes, all of which play important roles in the human body. Injury to the neck or 

spine can cause damage to any or all of these organs. Because of the high level of 

complexity spinal and neck injuries present, they are often treated by specialists, 
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who may not be present in the hospital overnight. When we regress mortality on 

arrival times, then, we do see a very strong effect. The odds of mortality for 

patients are 16.0% higher for those arriving at night, and 17.0% higher for those 

arriving in the early AM than for patients arriving during the daytime.  In both 

cases, this raises the probability of death from 5.0% for patients arriving during 

the daytime to 5.8% for patients arriving at night or in the early AM). These 

results are reported in column 2 of Table 4-9. Therefore, we see that the effect of 

arrival time on mortality is strongly dependent on the complexity of the case. 

Patients who would typically see a specialist during the day receive much lower 

quality care when they arrive during off-hours.   

More generally, we compare the differences in outcomes for all patients 

that we consider to have highly complex injuries to those for patients with 

relatively simple injuries.  We classify any patient with an injury to the brain, 

heart, or spinal cord as complex.  Patients with broken bones in the hips, legs, or 

arms are classified as simple patients.  We see that the mortality rate is 

significantly higher for complex patients off-hours than during the daytime; 

however there is no difference for simple patients.  These results are shown in 

Table 4-10 (columns 3 and 4).  

4.4 Alternative Explanations and Robustness Checks 

 There are a few possible alternative explanations for the observed results. 

The first is that the difference in mortality is a consequence of doctors being more 

tired during off-hours, as suggested by Egol et al. (2011). This may help to 

explain some of the differences that we see between “night” and “early morning” 
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time periods: quality is typically worst in the early morning, and this difference 

might be driven by disruptions in doctors’ circadian rhythms. However, we find 

this to be an unconvincing explanation for the overall difference in quality 

between off-hours and daytime care. While fatigue may play a small part in this 

difference, if it were the whole explanation, then we would observe a uniform 

effect across all hospitals and across patient types. But no such uniform effect 

exists, and it is unlikely that doctors at level I trauma centers are somehow better 

at functioning at 3 AM than doctors at level IV trauma centers. However, the 

quality variation trends we identify do fit the pattern predicted when considering 

resource shortages as a cause of the difference in outcomes. 

 A second possible explanation is that there is some unobserved difference 

between the population of patients that arrives during off-hours and those who 

arrive during the day. We address this possibility in three different ways.  First, 

we add in control variables for each of the 250 most common ICD-9 diagnosis 

codes.  Each patient has between 1 and 10 diagnoses, depending on the extent of 

his/her injuries.  For each patient, we record whether or not he was diagnosed 

with any of the 250 most common ICD-9 codes.  By controlling for specific 

diagnoses, we are able isolate the effect of differing staffing levels between night 

and day from the differences in patient case mix.  Also, injury severity and 

comorbidity index may influence mortality in a non-linear manner.  To account 

for this, we treat them as categorical variables, including a dummy variable for 

each possible ISS and comorbidity index score.  After controlling for specific 
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diagnosis, and the exact severity and comorbidity index, we see that there is still a 

significant increase in mortality off-hours (shown in column 1 of Table 4-10).   

 Second, we compare the patients arriving between 3:00 PM and 5:00 PM 

to those who arrive between 8:00 PM and 10:00 PM.  We chose these time 

intervals to give a buffer on either side of the traditional 7:00 PM shift for 

differing hospital procedures.  However, our results are robust to specific time 

choices.  These patients are similar in terms of severity (average ISS = 11.2 vs. 

11.4, average comorbidity index = 0.15 vs. 0.18), giving us similar patient 

cohorts.  The only major difference is arrival time and hospital resource 

availability.  We see that patients arriving shortly after shift change (between 8:00 

PM and 10:00 PM) have 10.7% higher odds of death than a similar patient 

arriving just before shift change (3:00 PM to 5:00 PM).  This raises the 

probability of death from 6.0% to 6.6%. These results are shown in Column 2 of 

Table 4-10.  We also examined similar subsets of patients around the morning 

shift change, but patients arriving between 3:00 AM and 5:00 AM are 

significantly different in terms of severity and demographics from patients 

arriving between 8:00 and 10:00 AM; this comparison is, therefore, less useful. 

 Third, we match patients who arrive during the daytime to patients who 

arrive off-hours based on their primary diagnosis ICD-9 code.  For each patient 

who arrives during the day, we take the patient arriving off-hours who has the 

closest severity score to the daytime arrival patient among those who also have 

the same primary diagnosis.  In the overwhelming majority of cases, we are able 

to match patients who have the same primary injury and exactly the same severity 
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score.  The average difference in ISS is less than 1 point, meaning that the 

matching does a good job of finding patients of similar severity.  The resulting 

dataset consists only of patients who arrived during the day, and patients who 

match them exactly on primary diagnosis and are very close (or exactly the same) 

with respect to severity who arrive off-hours.  By doing this, we can further 

isolate the effect of arrival time from the differences in patient populations.  We 

are comparing virtually identical populations now in terms of diagnoses and 

injury severity. However, we cannot be certain that we have controlled for all 

external factors. When we regress mortality on arrival time in this sample, we get 

results consistent with our previous analysis (shown in column 5 of Table 4-10).  

These results further tell us that the differences in mortality rates are due to 

hospital factors and not to the differences in the patient population.   While the 

effect size is somewhat smaller in the matched sample, we still have a consistent 

effect that is strongly statistically significant.   

A fourth possible explanation is that, instead of the quality and specificity 

of resources being lower at night, there is overall a general lack of resources 

available, and, therefore, patients must wait longer to be treated.  To test this, we 

look to find evidence that patients who are treated off-hours have longer waiting 

times or are less likely to receive care in the first hour of arriving to the hospital.  

The regression model that we test, using OLS with hospital fixed effects, is: 

Hours to Procedure ik = β1 * Early AM ik + β2 * Night ik + β3 *Age ik + Β4 * 

Gender ik + β5 *Race ik + β6 * log(ISS) ik +  β7 * Facility ik + 

β8 * Year + ∑      
 
 + ε ik  
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where Early AM and Night are dummy variables indicating whether the patient 

arrived during the early morning or night, ISS is the patient’s Injury Severity 

Score, and Trauma Level is a categorical variable indicating the level of trauma 

center at which the patient was treated.  While a hospital’s trauma level can 

change from year to year, this is a relatively rare event. These infrequent changes 

are reflected in our data. 

The above model is estimated using OLS, and the results are shown in 

Table 4-11. Column 1 reports the baseline model. We see that the coefficients for 

the early AM and night dummy variables are negative and significant at the p 

<0.001 level. This means that patients arriving during the night and early morning 

periods have shorter waiting times for surgery than patients arriving during the 

daytime. Specifically, if a patient arrives between 6 PM and 12 AM, the expected 

waiting time is 14 minutes shorter (-.236 * 60 = -14) than for similar patients who 

arrive during the day; if a patient arrives between 12 AM and 6 AM, the expected 

waiting time is 8 minutes shorter (-.126* 60 = -8). The column 2 results in Table 

4-11 report the model with fixed effect dummies added for each individual 

hospital. The results are essentially the same.   

As an alternative measure, we test the probability that the patient receives 

surgery within one hour of arriving at the hospital. This is an important metric in 

trauma care, where prompt treatment is usually essential. We see that the odds 

that a patient arriving at night (or during the early morning) will have surgery in 

the first hour after arriving at a hospital are on average 21.2% (or 21.9%) higher 

than for patients arriving during the day (raising the probability for an average 



 

77 

 

patient from 21.2% during the daytime to 24.6% at night or 24.7% in the early 

AM), after controlling for patient and hospital characteristics (shown in column 3 

of Table 4-11). Taken together, these results show that patients receive care more 

promptly during off-hours than do comparable patients who arrive during the day.  

The fact that patients are treated faster off-hours than they are during the daytime 

rejects the alternative explanation, and, in fact, strengthens our previous results.  

Patients who arrive off-hours have worse outcomes, even though they have 

shorter waiting times.  This means that it is not a general lack of resources that 

causes the decrease in outcome quality. 

 While the NTDB is generally a high-quality dataset, there are some 

missing data, and it is possible that the treatment of this missing data may affect 

our results. In our regressions, we assumed that data were missing completely at 

random, and any observation from a continuous variable with missing data was 

simply removed. Missing data from categorical variables are treated as a separate 

category. To examine whether this assumption biases our results or not, we then 

imputed the values of any missing continuous variable and estimated the time 

effect again, using linear imputation for missing values. These results are 

presented in column 3 of Table 4-6. We find that the impact of replacing missing 

variables with their imputed values is negligible and the effect of arrival time on 

mortality is still strongly present.   

Similarly, one may question whether the relationship between severity and 

mortality is truly log-linear. Using the Box-Cox transform of the injury severity 
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score instead of the logged severity (shown in column 4 of Table 4-6) does not 

dramatically change the earlier findings. 

We are also aware that the sample size changes across various regressions. 

The samples used in the analyses dealing with procedures (time to procedure, 

complication rate, likelihood of multiple surgeries) include only patients who 

received surgical treatment. There are also some small variations in the sample 

size between the fixed effects models, as some observations are dropped due to 

some individual facilities being perfect predictors. One final robustness check 

utilized a constant sample across all regressions. The results, reported in Table 4-

12, remain much the same, both in magnitude and statistical significance. This 

gives us further confidence that the findings are robust. 

4.6 Discussion 

In this study, we explore the fluctuation of healthcare quality with respect to 

patient arrival time from a resource availability perspective. Using a large 

collection of national trauma injury data, we find that patients are treated more 

promptly during off-hours than during the day. However, off-hours patients face 

significantly higher mortality rates, longer ICU stays, higher surgery complication 

rates, and an increased risk of needing multiple surgeries. Considered side by 

side, these two findings suggest that patients arriving during the day have better 

outcomes not because more care is available, but because the quality of care that 

they receive is better.  We then design various tests to uncover the mechanism 

that drives the deterioration of care quality. We find that the fluctuation is much 

larger at smaller hospitals, at lower level trauma centers, and with more complex 
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injuries. All these are consistent with our theoretical explanation that the low 

availability of high-quality, specialized resources (surgeons, nursing staff, lab 

availability, etc.) causes worse clinical outcomes.  

The above empirical findings are further corroborated by our discussions with 

medical professionals working in major hospitals. Take, for example, a patient 

who comes to the hospital during off-hours needing a specialized surgery. At a 

large, sophisticated hospital, this patient is likely to be seen by a specialized 

surgeon, an operating room is likely to be available, and the patient should receive 

the appropriate level of care. If the patient requires specialized lab tests, or 

especially intensive care, there is a higher chance that the required resources are 

available during the day than off-hours. During the day, an appropriately 

specialized surgeon will likely be on duty, as well; however, it is also more likely 

that all of the operating rooms are full, thus increasing the average wait time for 

the patient.   

Now consider this same patient arriving at a smaller, lower level trauma 

center. If he arrives at night, there might only be a general trauma surgeon 

available. This surgeon can perform the surgery, but the likelihood that he will 

make a mistake, resulting in a complication, rises. He also might perform a 

temporary “patch” surgery to stabilize the patient until a specialist is available. 

Since this patient will have received inferior care, he will have a higher mortality 

rate and will spend more time in the ICU recovering. He will also be more likely 

to need multiple operations, either to fix problems arising from the complications 

or because the first surgery did not address all of his needs. 
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We find an interesting tradeoff between daytime and off-hours. If the patient 

arrives during the day, all of the operating rooms are more likely to be full, thus 

increasing the average waiting time for the patient. Still, our results, based on 

clinical outcomes, clearly suggest that higher quality care is worth the wait. 

Consistent with work in the service operations management literature regarding 

the tradeoffs between hiring generalist and specialist workers (Pinker and 

Shumsky, 2000), during the off-hours, when arrival rates are lower, there are 

fewer specialized resources available. Therefore, while the hospital is less busy 

off-hours, the quality and variety of resources available are also much less than 

during the day. A patient arriving at night or in the early morning will get more 

prompt treatment, but will get less specialized and sometimes lower quality 

service. These mechanisms are sufficient to explain the differences that we see in 

the promptness of care that patients receive as well as the differences that we see 

in patient outcomes. 

This study extends the clinical literature on the effect of timing on quality of 

care (Magid et al. (2005), Saposnik et al. (2007), Bell and Redelmeier (2001), 

Reeves et al. (2009), Egol et al. (2011)) in several important ways. These earlier 

studies do little to explain the cause or to discuss the operational implications of 

their findings. In this chapter, we develop specific hypotheses grounded in the 

operations management literature about the causes for quality variation across 

time and identify specific classes of patients who will be more likely to receive 

lower quality care during off-hours. While the above-mentioned studies focus on 

a single outcome measure (mostly mortality rate), we provide a comprehensive 
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examination of several imp-ortant operational and quality measures (e.g., waiting 

time to surgery, ICU length of stay, surgical complication rate, and likelihood of 

multiple surgeries). The significant improvement in both scope and depth in our 

study helps uncover the mechanisms that cause the quality difference. 

Methodologically, we also advance the rigor of analysis in several ways. Our 

empirical approach controls for unobserved hospital-specific factors by using 

fixed effects models, and we also better control for patient heterogeneity by 

diagnosis matching.   

Our study has its limitations, e.g., the quality of data from the NTDB and our 

lack of direct observation of resource allocation. While the NTDB is a well-

maintained data set, response bias ought to be a concern when dealing with any 

voluntary sample. The possible effects of patient mix on the quality of outcomes 

is another potential concern. Further, although we have had discussions with 

emergency and trauma physicians who have confirmed that staffing levels are 

typically lower overnight, it would be desirable to obtain direct quantitative 

observations. In the future, we would like to measure how resource availability 

and patient volume impact quality of care in the context of specific hospitals.  

Finally, there is still some remaining question as to whether the differences in 

outcomes are driven by resource availability or if it is simply unobserved 

heterogeneity in the patient population.  The patients who arrive off-hours tend to 

have more severe and extensive injuries which result in higher mortality rates.  

While we control for much of the difference in patient population (age, gender, 
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race, severity, exact diagnosis, comorbidities, etc), it is possible that there are 

further underlying differences in the patient populations that we cannot observe.   

In summary, this work explores one important source of within-hospital 

variation in quality of care, the time of day of patient arrival.  We show that there 

are systematic ways in which hospital quality of care is affected.  Roughly half of 

patients arrive off-hours, and half during the daytime.  The average daytime 

mortality rate is 4.9%, and we calculated an increase in the odds ratio of death of 

approximately 10% for off-hours arrivals, increasing the mortality rate from 4.9% 

to 5.4%.  Together, these facts indicate that about 4.5% of all deaths in our sample 

occurred due to the differences in quality of care between daytime and off-hours.  

This translates to approximately 8,100 extra deaths every year at hospitals that 

report to the NTDB.  Furthermore, the average patient spends 2.0 days in the ICU, 

and we find an average increase of 13.8% (exp ((.163 + .097)/2) = 1.138) in the 

length of ICU stay for patients arriving off-hours.  This translates to an estimated 

67,000 extra patient-days in the ICU for the hospitals in our sample over the five 

years studied.  At an average of $19,642 per day for an ICU stay (Dasta et al. 

2005), this translates to an additional economic cost of $1.3 billion.  These 

findings hold practical implications for trauma centers: namely, the drop-off in 

quality at night and in the early morning could be mitigated by increasing off-

hours staffing levels and making an effort to have specialized resources available 

round the clock. Advances in telemedicine may offer some relatively inexpensive 

opportunities in this regard. We hope that this work will lead to more research on 
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applying operations management knowledge to reduce healthcare quality 

fluctuation. 
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Table 4-1: Summary of the variables 

Variable Description 

Age The patient’s age, in years 

Gender The patient’s gender 

ISS The injury severity score of the patient 

Comobidity The patient’s Deyo-Charlson comorbidity index score 

Trauma Level 

The level of the trauma center at which the patient was treated, 

used as a categorical variable 

 

Early AM 

A dummy variable that is 1 if the patient arrived between 

midnight and 6 AM, and 0 otherwise 

 

Night 
A dummy variable that is 1 if the patient arrived between 6 PM 

and midnight, and 0 otherwise 

Mortality A dummy variable that is 1 if the patient died, and 0 otherwise 

ICU LOS The number of days the patient spent in the Intensive Care Unit 

Complication 

A dummy variable that is 1 if the patient had a recorded 

complication during surgery 

 

Hours To 

Procedure 
The number of hours the patient had to wait until surgery 

Facility 

The identification key for the hospital at which the patient was 

treated, used as a categorical variable 

 

Procedure 

A dummy variable that is 1 if the patient had a surgery, and 0 

otherwise 

 

Multiple 

A dummy variable that is 1 if the patient required multiple 

surgical procedures, and 0 otherwise 

 

Prompt 

A dummy variable that is 1 if the patient received treatment 

within 1 hour of arrival, and 0 otherwise 

 

Year of 

Discharge 
The year that the patient was discharged from the hospital 
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Table 4-2: Summary Statistics 

Variable Mean Std. Dev. Min Max 

Age 44.8 20.3 18 89 

Male .65 .48 0 1 

ISS 10.2 10.0 0 75 

Comorbidity .14 .63 0 14 

Early AM .19 .39 0 1 

Night .30 .48 0 1 

Mortality .05 .22 0 1 

ICU LOS 1.32 5.16 0 300 

Complication .06 .23 0 1 

Hours To Procedure 3.51 2.27 0 6 

Procedure .70 .46 0 1 

Multiple .78 .41 0 1 

Prompt .37 .47 0 1 

 

 

Table 4-3: Summary statistics by arrival time 

(Early AM: midnight –  6 AM; Daytime: 6 AM – 6 PM; Night: 6 PM – midnight) 

Time of Day Average  

ISS 

Mortality Average 

Days in ICU 

Percent Having 

Surgery 

Average Age 

Early AM 10.72 5.377% 1.41 71.4% 36.1 

Daytime 9.92 4.917% 1.27 70.2% 48.7 

Night 10.25 5.389% 1.36 69.7% 43.4 

---------------- -------------- ------------------- --------------- -------------------------- ------------------- 

Time of Day Number of 

Patients 

Percent Surgery 

within 1 hour 

Percent with 

ICU Stays 

Percent of Surgeries 

with Complications 

Average Hours 

to Surgery 

Early AM 138304 20.9% 26.0% 5.6% 3.44 

Daytime 384550 17.0% 21.2% 5.4% 4.09 

Night 221487 20.0% 23.6% 5.6% 3.67 

 

 

 

Table 4-4: Summary Statistics by Hospital Level 

 Number of Hospitals Number of Patients 

Treated 

Average 

Surgeons 

Average Visits 

Per Surgeon 

Average 

Beds 

Level 1 175 424510 21.5 112.83 454.5 

Level 2 188 260241 18.7 74.025 299.2 

Level 3-5 97 27805 12.3 23.305 129.9 
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Table 4-5: Surgery outcome: complications, multiple surgeries, and length of stay 

 

  Fixed Effects   Fixed Effects 

 Complication Complication Multiple Log (ICU LOS) Log (ICU LOS) 

 (1) (2) (3) (4) (5) 

Early AM 0.0887*** 0.0953*** 0.167*** 0.154*** 0.163*** 

 
(0.0174) (0.0219) (0.0118) (0.00779) (0.0141) 

Night 0.0467*** 0.0329* 0.0377*** 0.0949*** 0.0917*** 

 
(0.0144) (0.0179) (0.00875) (0.00642) (0.00965) 

Age 0.0109*** 0.0129*** -0.0161*** -0.00179*** 0.000198 

 
(0.00034) (0.00068) (0.000202) (0.000154) (0.000529) 

Log(ISS) 1.305*** 1.313*** 0.436*** 0.990*** 0.982*** 

 
(0.0107) (0.0303) (0.00374) (0.00288) (0.0276) 

Comorbid 0.170*** 0.148*** 0.144*** 0.117*** 0.0801*** 

 
(0.00664) (0.014) (0.00613) (0.00491) (0.0104) 

Black 0.115** 0.136** 0.113*** -0.0756*** -0.154*** 

 
(0.0562) (0.0659) (0.0436) (0.021) (0.0326) 

Hispanic 0.175*** 0.0261 -0.588*** -0.128*** -0.125*** 

 
(0.0585) (0.0648) (0.0444) (0.0214) (0.0304) 

Other -0.123* -0.130* 0.110** -0.0394* -0.0905*** 

 
(0.0631) (0.0784) (0.0478) (0.0201) (0.0273) 

White -0.00087 0.0603 -0.153*** 0.261*** 0.229*** 

 
(0.0544) (0.0612) (0.0423) (0.00594) (0.0139) 

Male 0.113*** 0.111*** 0.228*** 1.110** -5.869*** 

 
(0.014) (0.0219) (0.00798) (0.503) (0.0836) 

Level II -0.268*** 

 

-0.282*** -0.196*** 

 

 
(0.014) 

 

(0.008) (0.00597) 

 Level III -0.177*** 

 

-1.058*** -0.538*** 

 

 
(0.0414) 

 

(0.0183) (0.0131) 

 Level IV 0.113 

 

-0.654*** -1.175*** 

 

 
(0.172) 

 

(0.0961) (0.0361) 

 Level NA 0.0119 

 

-0.726*** -0.706*** 

 

 
(0.0373) 

 

(0.0195) (0.0117) 

 Constant -4.922*** 

 

2.294*** -6.236*** 

 

 
(1.146) 

 

(0.13) (0.503) 

 Observations 366,813 344,497 472,431 660,937 660,937 

Pseudo R2 .1379 .1907 .0726 0.185 0.717 

Clustered robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 4-6: Outcome Results: Mortality 

 

 Mortality 

Fixed 

Effects 

Missing 

Imputed 

ISS Box-Cox 

Transformation 

  Mortality Mortality Mortality 

 (1) (2) (3) (4) 

Early AM 0.112*** 0.118*** 0.107*** 0.115*** 

 (0.0165) (0.0202) (0.0160) (0.0169) 

Night 0.116*** 0.113*** 0.110*** 0.116*** 

 (0.0136) (0.0154) (0.0132) (0.0139) 

Age 0.0201*** 0.0213*** 0.0191*** 0.0211*** 

 (0.000339) (0.00085) (0.000327) (0.000345) 

Log(ISS) 1.991*** 2.039*** 1.862*** 1.274*** 

 (0.0142) (0.0596) (0.0129) (0.00759) 

Comorbid 0.0852*** 0.0888*** 0.0746*** 0.0891*** 

 (0.00791) (0.0136) (0.00779) (0.00801) 

Black 0.344*** 0.370*** 0.355*** 0.361*** 

 (0.0448) (0.109) (0.0436) (0.0459) 

Hispanic 0.0793* 0.100 0.0701 0.0888* 

 (0.0465) (0.105) (0.0453) (0.0477) 

Other -0.0580 0.0666 -0.0625 -0.0219 

 (0.0528) (0.118) (0.0998) (0.104) 

White -0.174*** 0.0166 -0.0234 -0.0471 

 (0.0430) (0.107) (0.0512) (0.0540) 

Male 0.261*** 0.244*** 0.272*** -0.166*** 

 (0.0136) (0.0283) (0.0132) (0.0441) 

Level II -0.0323**  -0.0494*** -0.0264** 

 (0.0129)  (0.0126) (0.0132) 

Level III -0.173***  -0.175*** -0.166*** 

 (0.0412)  (0.0396) (0.0419) 

Level IV -0.862***  -0.764*** -0.842*** 

 (0.202)  (0.187) (0.203) 

Level NA -0.231***  -0.260*** -0.242*** 

 (0.0344)  (0.0334) (0.0351) 

Constant -9.860***  -7.595*** -9.060*** 

 (0.150)  (1.398) (0.150) 

Observations 660,921 656,424 680,489 660,921 

  Pseudo R
2
 .2538 .2056 .2346 .2670 

Clustered robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 4-7: Mortality regressions by level of trauma center 

 

  Level I Level II Level III/IV 

 

Trauma Center Trauma Center Trauma Center 

  (1) (2) (3) 

Early AM 0.0928*** 0.138*** 0.231** 

 

(0.0205) (0.0300) (0.108) 

Night 0.110*** 0.130*** 0.171* 

 

(0.0173) (0.0236) (0.0880) 

Age 0.0201*** 0.0204*** 0.0152*** 

 

(0.000434) (0.000584) (0.00213) 

Log(ISS) 1.975*** 2.004*** 1.667*** 

 

(0.0183) (0.0246) (0.0893) 

Comorbid 0.0542*** 0.134*** 0.0369 

 

(0.0105) (0.0126) (0.0480) 

Black 0.387*** 0.213*** 0.585 

 
(0.0554) (0.0795) (0.442) 

Hispanic 0.111* 0.0215 0.548 

 
(0.0581) (0.0798) (0.449) 

Other 0.0581 -0.196** -0.213 

 
(0.0671) (0.0888) (0.523) 

White -0.165*** -0.188** -0.0379 

 
(0.0536) (0.0741) (0.429) 

Male 0.240*** 0.286*** 0.291*** 

 
(0.0173) (0.0236) (0.0890) 

Constant -9.893*** -8.436*** -8.077*** 

 

(0.191) (0.847) (0.788) 

    Observations 374,577 235,515 23,851 

Pseudo R
2
 .2535 .2472 .1845 

Clustered robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 4-8: Mortality by hospital size and resource strain (number of beds, and 

number of visits per surgeon) 

 

  

Top Quartile By 

Number of Beds 

Bottom Quartile By 

Number of Beds 

Bottom Quartile 

by Visits Per 

Surgeon 

Top Quartile by 

Visits Per Surgeon 

 

Mortality Mortality Mortality Mortality 

  (1) (2)  (3)  (4)  

Early AM 0.120*** 0.164*** 0.0541 0.135*** 

 

(0.0346) (0.0500) (0.0438) (0.0403) 

Night 0.121*** 0.146*** 0.0729** 0.0849** 

 

(0.0286) (0.0393) (0.0349) (0.0338) 

Age 0.0227*** 0.0227*** 0.0235*** 0.0208*** 

 

(0.000688) (0.000942) (0.000885) (0.000855) 

Log(ISS) 2.064*** 2.364*** 2.077*** 2.117*** 

 

(0.0211) (0.0303) (0.0387) (0.0376) 

Comorbid 0.0901*** 0.130*** 0.0398 0.0794*** 

 

(0.0134) (0.0188) (0.0263) (0.0239) 

Black 0.321*** 0.257 0.218 0.332*** 

 
(0.0990) (0.161) (0.139) (0.109) 

Hispanic -0.123 -0.0245 -0.157 -0.104 

 
(0.109) (0.162) (0.146) (0.112) 

Other 0.150 0.0443 -0.230 -0.0682 

 
(0.118) (0.168) (0.179) (0.130) 

White -0.272*** -0.237 -0.238* -0.228** 

 
(0.0969) (0.153) (0.134) (0.105) 

Male 0.254*** 0.294*** 0.261*** 0.366*** 

 
(0.0283) (0.0382) (0.0344) (0.0342) 

Constant -590.9*** -11.10*** -10.45*** -9.206*** 

 

(0.268) (0.201) (0.381) (0.174) 

     Observations 165,028 129,047 95,470 94,203 

Pseudo R
2
 .2690 .2877 .2360 .2544 

Clustered robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 4-9: Comparison of mortality rate between spine and femur patients  
 

 

Mortality 

Femurs 

Mortality  

Spines 

 

(1) (2) 

Early AM 0.0146 0.148*** 

 

(0.0891) (0.0283) 

Night -0.0296 0.157*** 

 

(0.0634) (0.0222) 

Comorbid 0.195*** 0.0943*** 

 

(0.0233) (0.0129) 

Log(ISS) 2.238*** 2.551*** 

 

(0.0575) (0.0260) 

Age 0.0372*** 0.0343*** 

 

(0.00190) (0.000592) 

Black -0.000920 0.414*** 

 (0.271) (0.0784) 

Hispanic -0.108 0.159* 

 (0.287) (0.0818) 

Other 0.594 -0.219 

 (0.552) (0.216) 

White -0.315 0.228*** 

 (0.323) (0.0885) 

Male 0.277*** 0.218*** 

 

(0.0621) (0.0214) 

Constant -11.34*** -12.22*** 

 

(0.357) (0.125) 

Observations 31,714 154,868 

Pseudo R
2
 .1427 .2340 

Clustered robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 4-10: Further robustness checks 

 

 Variables 
(All) 

(1) 

(Shift 

Change) 

(2) 

(Simple) 

(3) 

(Complex) 

(4) 

(Matching) 

(5) 

Age 0.0245*** 0.0254*** 0.0345*** 0.0258*** 0.0247*** 

 

-0.00047 -0.00102 -0.00105 -0.00046 (0.000564) 

Early AM 0.0479** 
 

-0.0182 0.0897*** 0.0644** 

 

-0.0216 
 

-0.0473 -0.0197 (0.0326) 

Night 0.0568*** 0.102*** 0.00207 0.0802*** 0.0789*** 

 

-0.0177 -0.0342 -0.036 -0.0169 (0.0259) 

ISS 1 -2.672*** -2.474*** -6.533*** -3.998*** -0.798*** 

… -0.115 -0.254 -0.59 -1.171 (0.297) 

ISS 66 3.147*** 3.071*** -0.271 3.979*** 4.479*** 

 

-0.207 -0.479 -0.323 -1.076 (0.357) 

Comorbidity 

Index 1 
0.0907* 0.169* 0.274*** 0.0967* 

0.0723 

… -0.0465 -0.0955 -0.0899 -0.0514 (0.0558) 

Comorbidity 

Index 12 
1.539 1.851** 3.609*** 1.521*** 

1.998 

 

-1.294 -0.817 -1.096 -0.573 (1.358) 

Black 0.304*** 0.0391 0.0815 0.374*** 0.498*** 

 

-0.0591 -0.141 -0.125 -0.0589 (0.0769) 

Hispanic -0.0563 -0.253* -0.181 0.0505 0.192** 

 

-0.062 -0.147 -0.13 -0.0614 (0.0802) 

Other 0.101 -0.152 0.274 -0.209 0.339** 

 

-0.127 -0.29 -0.242 -0.137 (0.170) 

Asian 0.11 0.0321 0.0224 0.297*** 0.235*** 

 

-0.0697 -0.16 -0.149 -0.0655 (0.0899) 

White -0.00568 -0.218 -0.111 0.0644 0.116 

 

-0.0565 -0.136 -0.117 -0.0559 (0.0732) 

Male 0.255*** 0.277*** 0.131*** 0.188*** 0.263*** 

 

-0.0181 -0.0396 -0.0359 -0.0181 (0.0220) 

Diagnosis 1 0.240*** 0.274*** 0.227*** 0.191***  

… -0.0278 -0.0612 -0.0522 -0.0185  

Diagnosis 250 -0.183 -0.162 -0.133 -0.343**  

 

-0.154 -0.316 -0.106 -0.149  

Constant -1.705*** -3.131*** 0.205 -3.232*** -2.934*** 

 

-0.661 -0.283 -0.244 -1.073 (0.747) 

Observations 448,977 97,247 125,046 236,352 236,783 

Clustered robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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 Table 4-11: Waiting time 

 
 

 

 

Fixed Effects  

 

Hours to 

Procedure 

Hours to 

Procedure 

Prompt 

 

(1) (2) (3) 

Early AM -0.126*** -0.0958*** .192*** 

 

(0.0111) (0.0162) (0.00906) 

Night -0.236*** -0.253*** 0.198*** 

 

(0.00898) (0.0260) (0.00750) 

Age 0.0170*** 0.0131*** -0.0201*** 

 

(0.000217) (0.000693) (0.000177) 

Log(ISS) 0.0710*** -0.0180 0.0514*** 

 

(0.00415) (0.0186) (0.00347) 

Comorbid -0.0877*** 0.0730*** 0.0772*** 

 

(0.00557) (0.0122) (0.00454) 

Black -0.0237 0.0555 .00662*** 

 

(0.0366) (0.0390) (0.0325) 

Hispanic 0.891*** 0.0545 -.848** 

 

(0.0379) (0.0387) (0.0343) 

Other -0.431*** 0.0425 -0.234*** 

 

(0.0395) (0.108) (0.0352) 

White -0.0272 0.140*** -0.0854*** 

 

(0.0356) (0.0314) (0.0317) 

Male -0.253*** -0.223*** 0.242*** 

 

(0.00861) (0.0152) (0.0317) 

Constant 1.826*** 

 

1.616 

 

(0.0374) 

 

(1.351) 

Observations 314,844 314,844 314,844 

Pseudo R
2
 0.058 0.796 .0374 

Regression Type Logistic Logistic Logistic 

Clustered robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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 Table 4-12: Constant sample results 

 

  

   
Fixed Effects 

 

 
Mortality 

Hours to 

Procedure Prompt 

Hours to 

Procedure 

Fixed Effects 

Mortality 

   (1) (2)  (3)  (4)  (5)  

Early AM 0.0847*** -0.111*** 0.153*** -0.0993*** 0.0842*** 

 
(0.0223) (0.0103) (0.00971) (0.0181) (0.0233) 

Night 0.0825*** -0.239*** 0.161*** -0.259*** 0.0858*** 

 
(0.0180) (0.00833) (0.00814) (0.0250) (0.0184) 

Age 0.0236*** 0.0177*** -0.0140*** 0.0139*** 0.0246*** 

 
(0.000460) (0.000199) (0.000199) (0.000740) (0.000966) 

Comorbid 0.106*** -0.0872*** 0.0655*** 0.0696*** 0.0944*** 

 
(0.00907) (0.00506) (0.00489) (0.0126) (0.0157) 

Log(ISS) 2.021*** 0.0223*** 0.0255*** -0.0547*** 2.064*** 

 
(0.0187) (0.00390) (0.00395) (0.0190) (0.0704) 

Black 0.320*** -0.0220 0.0484 0.0847* 0.203** 

 
(0.0672) (0.0343) (0.0322) (0.0451) (0.0868) 

Hispanic -0.110 0.892*** -0.821*** 0.0751* -0.0304 

 
(0.0714) (0.0356) (0.0342) (0.0426) (0.0913) 

Other 0.0226 -0.366*** 0.317*** 0.125 -0.0727 

 
(0.0749) (0.0371) (0.0349) (0.182) (0.0878) 

White -0.197*** 0.0136 -0.0515 0.159*** -0.129 

 
(0.0652) (0.0333) (0.0314) (0.0398) (0.0863) 

Male 0.255*** -0.278*** 0.239*** -0.241*** 0.235*** 

 
(0.0181) (0.00798) (0.00788) (0.0147) (0.0331) 

Level II -0.0313* 0.116*** -0.133*** 

  
 

(0.0173) (0.00775) (0.00755) 

  Level III -0.260*** 0.279*** -0.455*** 

  
 

(0.0596) (0.0202) (0.0217) 

  Level IV -0.517 1.759*** -2.095*** 

  
 

(0.347) (0.0665) (0.191) 

  Level NA -0.200*** 0.797*** -0.989*** 

  
 

(0.0534) (0.0213) (0.0274) 

  Constant -10.17*** 1.840*** 1.188 

  
 

(0.185) (0.0350) (1.3664) 

  Observations 366,823 366,823 366,823 366,823 366,826 

Pseudo R
2  .2584 0.059  .0669 0.797  .2519 

Regression Type Logistic OLS Logistic OLS Logistic 

Clustered robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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CHAPTER 5: THE IMPACT OF RESIDENTS ON EMERGENCY 

DEPARTMENT EFFICIENCY 

 

5.1  Introduction 

 One possible source of inefficiency in hospitals is the residency teaching 

model in hospital emergency departments (EDs).  After medical students 

complete medical school, they become doctors.  New doctors must spend three to 

six years as a resident, treating patients under the supervision of attending 

physicians.  Residents have two roles in the hospital: doctor and student.  They 

treat patients as doctors and are observed and taught by senior attending 

physicians.  Attending physicians teach residents and treat patients. 

These dual roles — doctors who are also students, and doctors who are 

also teachers — obscure the effect that the residency model has on hospital 

efficiency.  Because they treat patients, the use of residents should help to lower 

treatment and waiting times for patients.  However, the time that attending 

physicians spend teaching and supervising residents takes away from the time 

they can devote to the direct treatment of patients.  In this chapter, we study the 

tradeoff between the time residents spend treating patients on the one hand, and 

the time they take from attending physicians on the other hand.  In Section 5.2, we 

review the relevant literature.  In Section 5.3, we discuss the data.  In Sections 5.4 

and 5.5, we present our analysis and discuss the results.  In Section 5.6, we 

discuss the limitations of the work and conclusions are presented in Section 5.7. 
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5.2 Literature Review 

Operations management can help hospitals improve efficiency and 

consequently provide better service and increase profit (O’Neill and Dexter, 

2005; Sarkis and Talluri, 2002; Swisher and Jacobson, 2002).  Hollingsworth 

gives a summary of much of the literature examining hospital efficiency 

(Hollingsworth, 2003).  In this study, we use ED length of stay (LOS) as the 

primary measure.  LOS is a commonly used ED efficiency metric (Chan and 

Kass, 1999; Fineberg and Stewart, 1977).   

We focus on how residents impact efficiency in the ED.  This is an 

important question in the medical community which has serious policy and 

operational implications.  Medicare reimbursement rates consider the direct and 

indirect costs of training residents (Rosko, 1996).  Medicare assumes that having 

residents present significantly increases the cost of care, and, thus, increases 

reimbursement rates to hospitals that train residents.  It has been argued that 

Medicare reimbursement rates overcompensate for the costs of training residents 

(Anderson and Lave, 1986; Custer and Wilke, 1991; Rogowski and Newhouse, 

1992; Welch, 1987).  The effect residents have on hospital efficiency is an 

indirect cost (or benefit) to the hospital and should be considered when setting 

Medicare reimbursement rates. 

There are two competing hypotheses about the effect of residents on 

efficiency.  One claim is that the presence of residents increases faculty staffing 

requirements, as attending physicians are required to spend time supervising and 

instructing the residents (DeBehnke, 2001).  On the other hand, Knickman et al. 
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(1992)  argue that teaching and treatment can occur simultaneously, meaning that 

residents can help to improve throughput.  

Some recent empirical work has tried to quantify the effects that residents 

have on efficiency in the hospital, but the literature is inconclusive.  Harvey et al. 

(2008) review ED patient waiting times, time until an admission decision was 

made, and total ED length of stay during periods when residents were on strike 

versus times of normal resident staffing patterns at a hospital in New Zealand. 

They find that without residents, the ED has higher throughput and the length of 

stay is reduced, meaning that residents slow down treatment.  However, the total 

number of hours worked per week by doctors at the hospital during the strike 

decreased only 10 hours, from 236 to 226.  This means that some of the work 

that residents would have done was performed by more senior doctors during the 

strike period.  Similarly, Salazar et al. (2001) observe the effects of a resident 

strike on quality and throughput in an ED at a large teaching hospital.  They find 

that replacing residents with staff physicians leads to an increase in throughput 

and in quality of care.  Lammers et al. (2003) examine the effect of adding 

residents to an ED at a community hospital, and find that there is a weak, 

positive correlation between ED patient length of stay and the presence of 

residents, meaning that residents had a detrimental effect on ED efficiency.  The 

authors note that, in addition to supervising residents, attending physicians saw 

all patients, repeated parts or all of the examinations, reviewed medical histories, 

and were present for procedures.   

Other work has shown that residents have a more positive effect on 
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hospital operations.  Theokary et al. (2011) study the effects that residents have 

on service quality at teaching hospitals.  They conclude that residents help to 

increase the quality of service, especially in small to medium-sized hospitals.  

Blake and Carter (1996) find that patient waiting times are affected by the 

amount of time attending physicians spend teaching residents and the amount of 

time that residents spend treating patients.  After the introduction of residents to 

an anesthesiology ward, Eappen et al. (2004) found no significant adverse 

effects, either economically or on patient outcomes.  Offner et al. (2003) study 

the addition of residents to a trauma care center and conclude that residents 

improve efficiency while having no effect on the quality of care.  The added 

residents perform surgeries and contribute to the direct treatment of patients. 

Huckman et al. (2005) study how cohort turnover affects hospital 

operations.  They find that the influx of new residents coupled with the 

graduation of the most experienced residents lead, not surprisingly, to longer 

treatment times and lower throughput.  Dowd et al. (2005) study the efficiency of 

residents as they gain experience.  They find that as residents become more 

experienced they become more autonomous, are able to provide more care, thus 

helping to increase throughput. 

 The literature has identified a clear efficiency tradeoff presented by 

residents.  They provide care to patients, but also require attention from attending 

physicians.  Residents seem to provide a net benefit when they are allowed to 

provide significant amounts of care to patients.  However, when they are mainly 

being taught by attending physicians, their presence decreases throughput. 
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5.3 Data  

We were motivated by the inconclusive literature to further study the 

effect that residents have on efficiency in the ED.  We observed a natural 

experiment at the University of Maryland Medical Center (UMMC), in which the 

residents were required to go to a research seminar every Wednesday morning, 

and thus were absent from the ED during this time period.  Residents were present 

in the ED at all other times.  Typically there are two attending physicians on duty, 

one senior resident, one first year resident, and two more residents of intermediate 

experience.  There were no other changes made to the ED staffing to compensate 

for the absence of the residents.  No other doctors were assigned to the ED and no 

additional staff were hired to replace the absent residents.  We discussed how 

resident presence affects operations in the ED with physicians from UMMC.  

They said that when residents are present in the ED, attending physicians perform 

in a managerial role, supervising care and instructing the residents, and almost all 

of the hands-on care to patients is provided by the residents.  However, when 

residents are absent, attending physicians become the primary provider of hands-

on care.  The physicians also said that there are no other changes in their 

peripheral duties (paperwork, charting, etc.).  The only change between 

Wednesday morning and the rest of the week is that when the residents are absent, 

the attendings switch from a supervisory role to one of actively providing care.   

By comparing treatment times of patients on Wednesday mornings (when 

there were no residents) to the rest of the week (when residents were present), we 

can make inferences about the effect that residents have on treatment times (and 
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consequently throughput), assuming patients who arrive on Wednesday mornings 

are similar to patients from the rest of the week.  Because residents do almost all 

of the hands-on patient care, we assume that every patient is treated by a resident 

unless they are first treated when residents are absent.   

While treatment times are not the only measure of efficiency, we do not 

have sufficient outcome data to measure quality of care.  We use the difference in 

average treatment times between Wednesday mornings and other times of the 

week to measure the impact that residents have on possible ED throughput.  The 

patients who arrived at the ED during the seminars on Wednesday mornings were 

similar in severity to the patients seen throughout the rest of the week.  A 

Kolmogorov-Smirnov test comparing the distributions of patient severity between 

Wednesday mornings and the rest of the week fails to reject the hypothesis that 

the distributions are the same (p = .206).  On Wednesday mornings, 74% of 

patients required labs and 67% required radiology tests, compared with 76% and 

63% during the rest of the week, respectively.  The arrival rate of patients was 

similar, as well.  Figure 5-1 shows a plot of the arrival rates of patients for 

different days of the week.  

We analyzed patient who visited the UMMC ED between October 1, 2009 

and January 31, 2010.  For each patient, we were given information about 

treatment characteristics and severity information.  From this data, we derived 

metrics describing the state of the ED, including congestion, and whether or not 

residents were present.  We only analyze patients who were treated in the ED; 

patients who leave the waiting room before being seen and those who were routed 
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to the ambulatory zone by the triage nurse were excluded.  The ambulatory zone 

was designed to provide a faster service for less severe patients.  These patients 

are seen once, treated, discharged quickly, and typically not seen by residents.  

Our final data set had 7,935 patients.  Table 5-1 gives a summary of the variables 

that we were given.  Each variable is integer-valued. 

 

5.4 Analysis 

 First, we analyzed the two distributions of treatment times ─ for patients 

treated by residents and for those not treated by residents. We define treatment 

time as the time from when a patient is first placed in a bed to when he is either 

discharged or admitted to the hospital.  The distributions of treatment when 

residents are present and absent are shown in Figure 5-2.   A Kolmogorov-

Smirnov test comparing the two distributions shows with a p-value of .023 that 

the distributions are different.  We see that the treatment times when residents 

were absent tend to be slightly higher than those when residents were present.  

The median treatment time for a patient treated by residents is 6.15 hours, while 

the median treatment time for those not treated by a resident is 7.11 hours.  The 

standard deviation of treatment times when residents were present was 6.54 hours, 

compared to 7.35 when residents were absent.  An F test showed these two 

variances to be different at the 1% confidence level (p = .0078). 

Based on this comparison between the two treatment time distributions, we 

construct regression models to test what effect residents have on treatment times 

in the ED.  We regress the natural log of treatment times on the state of the ED 
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(number of people waiting for treatment, weekday vs. weekend), patient 

characteristics (severity score, labs and radiology tests needed), and if residents 

were present.  Because the treatment times are so heavily skewed, we take the log 

transform for both distributions when doing the analysis.  The hypothesized 

regression equation is: 

 

ln(Treatment Time) = β0 + β1 * NoRes + β2 * Line + β3 * Labs + β4 * NumLabs +  

β5 * Rad + β6 * NumRad + β7 * Weekend + β8 * Admit + β9 * Sev1 + β10 * Sev2 

+β11 * Sev3 + β12 * Sev4 + β13 * Sev5 + ε , 

 

where SevX are dummy variables that are 1 if the patient is of severity X, and 0 

otherwise.  The baseline patient, when all dummies are 0, is a patient treated by 

residents during the week, of NA severity, with no lab or radiology tests needed. 

Table 5-2 shows the results of this regression.  

 These results provide insights into factors affecting the length of stay of 

patients in the ED.  Importantly, we see according to this model that the absence 

of residents increases treatment times by 7.8% (exp (.075) ≈ 1.078).  A patient not 

treated by residents will, on average, have 7.8% longer treatment times than a 

patient who is treated by residents, all else equal.  This effect is strong and 

statistically significant.  This is evidence that contradicts our original conjecture 

that residents will slow down treatment in the ED and have a negative effect on 

efficiency. 
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We also see that having lab or radiology tests greatly increases the 

treatment time, by 40% (exp (.335) ≈ 1.40) or 16% (exp (.148) ≈ 1.16), 

respectively.  Each additional lab or radiology test has only a minor (though 

highly statistically significant) incremental impact on the treatment time; since 

tests are typically run in parallel, we did not expect a large effect from the number 

of tests.  As expected, low severity patients (severity 4-5) have much shorter 

treatment times than do high severity patients.  Similarly, patients who are 

admitted to the hospital after their time in the ED stay 9.2% (exp (.088) ≈ 1.092) 

longer in the ED than those who are discharged and sent home.  Patients who are 

eventually admitted are typically higher severity cases, regardless of the triage 

score and will take longer to treat.  Though the model also found that patients 

with severity 1 tend to have shorter treatment times, this result is statistically 

insignificant and likely due to the fact that only 29 patients received this severity 

score.  We also see that the more patients there are in the waiting room, i.e., the 

more congested the ED is, the longer treatment takes.  This increase in treatment 

time could arise from resource shortages or increased demands on healthcare 

workers.   

Next, we examined how residents affect treatment times for different types 

of patients.  For example, residents might play different roles in treating high 

severity patients and low severity patients.  We split the data set into two groups, 

high severity and low severity, and ran the regressions on both groups.  We 

include patients with no severity score (severity NA) in the high severity group, 

although their exclusion does not significantly alter the results.  Looking at just 
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high severity patients (severity 1-3 and NA), we see that residents have a similar 

effect.  The results of the regression on high severity patients are given in Table 5-

3.  Again, we see that residents decrease the treatment time of patients by 7.6% 

(exp (.073) ≈ 1.076) and that this effect is again statistically significant.  The rest 

of the results are similar.  Lab and radiology tests, being admitted upon discharge, 

and congestion all lengthen treatment time. 

 However, when looking at low severity patients in Table 5-4, we do not 

see the same effect.  When we run the same regression on the low severity 

patients (triage score 4-5), the coefficient for NoRes is not statistically significant 

(p = .562).  Therefore, unlike in predictions across the entire patient population or 

for just high severity patients, where the presence of residents reduces treatment 

times, residents have no statistically significant effect on treatment times of low 

severity patients.  Patients being admitted upon discharge and radiology tests 

being performed also lost statistical significance in this regression; because only 

33 low-severity patients were admitted after treatment, this variable losing 

significance is not surprising. In this regression model, the baseline patient is the 

same as in the previous models, except he has a severity score of 5, because no 

patients with NA severity are included in this population. The distributions of 

treatment times, split by resident presence, are shown in Figure 5-3. 

The difference in the effects that residents have on high severity patients 

and low severity patients is interesting.  While residents have a strong effect on 

lowering treatment times for high severity patients, they have no significant effect 

on low severity patients.  It may be that there is more work to be done on high 
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severity patients, so having extra healthcare workers around is advantageous.  

However, on low severity cases, where treatment is fairly routine, the time taken 

by residents for instruction is enough to outweigh the extra work that they do.   

 We also examine the treatment times of patients who begin treatment 

during the hours of 7:00 a.m. to 1:00 p.m. (the hours of the Wednesday seminar).  

By looking at just these patients, we are able to limit time-of-day effects on 

patient types, or on the state of the hospital.  If lab tests come back slower in the 

afternoon because there is more demand from elsewhere in the hospital, this 

might show up as patients being treated faster when residents are present.  By 

examining just patients treated in the morning, we are better able to isolate the 

effect that residents have on treatment times.  In other words, there might be some 

difference in the hospital operations between the mornings and the rest of the day.  

By only including patients who arrived in the morning in the analysis, we are 

better able to isolate the effect that residents have on treatment times. We ran the 

regression again on this restricted data set to see if the effect holds when looking 

just at these “morning” patients.  Because there are now a smaller number of 

observations, instead of separating the patients into the five severity dummies, we 

group them into high and low severity.  The baseline patient is the same as in the 

first model, except he is a low severity patient in this model.  Table 5-5 shows 

these results.  The treatment time distributions are also given in Figure 5-3.  

 Again, we see that residents have a strong effect.  In this model, treatment 

times are 7.0% (exp(.068) ≈ 1.070) longer when residents are absent.  The rest of 

the control variables have effects similar to those in the original model.  Lab and 
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radiology tests significantly slow down treatment and higher severity patients take 

longer to treat.  Congestion again has a small effect in increasing treatment times.  

This model gives us further evidence that residents do reduce treatment times.  

We have now seen statistically significant evidence across a variety of models 

that residents lower treatment times, especially among high severity patients. 

5.5 Survival Analysis 

 We first analyzed the two distributions of treatment times ─ for patients 

treated by residents and for those not treated by residents. We define treatment 

time as the time from when a patient is first placed in a bed to when he is either 

discharged or admitted to the hospital.  The distributions of treatment when 

residents are present and absent are shown in Figure 5-2.   A Kolmogorov-

Smirnov test comparing the two distributions shows with a p-value of .023 that 

the distributions are different.  We see that the treatment times when residents 

were absent tend to be slightly higher than those when residents were present.  

The median treatment time for a patient treated by residents is 6.15 hours, while 

the median treatment time for those not treated by a resident is 7.11 hours.  The 

standard deviation of treatment times when residents were present was 6.54 hours, 

compared to 7.35 when residents were absent.  An F test showed these two 

variances to be different at the 1% confidence level (p = .0078). 

Based on this comparison between the two treatment time distributions, we 

construct regression models to test what effect residents have on treatment times 

in the ED.  We regress the natural log of treatment times on the state of the ED 

(number of people waiting for treatment, weekday vs. weekend), patient 
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characteristics (severity score, labs and radiology tests needed), and if residents 

were present.  Because the treatment times are so heavily skewed, we take the log 

transform for both distributions when doing the analysis.  The hypothesized 

regression equation is: 

 

ln(Treatment Time) = β0 + β1 * NoRes + β2 * Line + β3 * Labs + β4 * NumLabs +  

β5 * Rad + β6 * NumRad + β7 * Weekend + β8 * Admit + β9 * Sev1 + β10 * Sev2 

+β11 * Sev3 + β12 * Sev4 + β13 * Sev5 + ε , 

 

where SevX are dummy variables that are 1 if the patient is of severity X, and 0 

otherwise.  The baseline patient, when all dummies are 0, is a patient treated by 

residents during the week, of NA severity, with no lab or radiology tests needed. 

Table 5-2 shows the results of this regression.  

 These results provide insights into factors affecting the length of stay of 

patients in the ED.  Importantly, we see according to this model that the absence 

of residents increases treatment times by 7.8% (exp (.075) ≈ 1.078).  A patient not 

treated by residents will, on average, have 7.8% longer treatment times than a 

patient who is treated by residents, all else equal.  This effect is strong and 

statistically significant.  This is evidence that contradicts our original conjecture 

that residents will slow down treatment in the ED and have a negative effect on 

efficiency. 

We also see that having lab or radiology tests greatly increases the 

treatment time, by 40% (exp (.335) ≈ 1.40) or 16% (exp (.148) ≈ 1.16), 
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respectively.  Each additional lab or radiology test has only a minor (though 

highly statistically significant) incremental impact on the treatment time; since 

tests are typically run in parallel, we did not expect a large effect from the number 

of tests.  As expected, low severity patients (severity 4-5) have much shorter 

treatment times than do high severity patients.  Similarly, patients who are 

admitted to the hospital after their time in the ED stay 9.2% (exp (.088) ≈ 1.092) 

longer in the ED than those who are discharged and sent home.  Patients who are 

eventually admitted are typically higher severity cases, regardless of the triage 

score and will take longer to treat.  Though the model also found that patients 

with severity 1 tend to have shorter treatment times, this result is statistically 

insignificant and likely due to the fact that only 29 patients received this severity 

score.  We also see that the more patients there are in the waiting room, i.e., the 

more congested the ED is, the longer treatment takes.  This increase in treatment 

time could arise from resource shortages or increased demands on healthcare 

workers.   

Next, we examined how residents affect treatment times for different types 

of patients.  For example, residents might play different roles in treating high 

severity patients and low severity patients.  We split the data set into two groups, 

high severity and low severity, and ran the regressions on both groups.  We 

include patients with no severity score (severity NA) in the high severity group, 

although their exclusion does not significantly alter the results.  Looking at just 

high severity patients (severity 1-3 and NA), we see that residents have a similar 

effect.  The results of the regression on high severity patients are given in Table 5-
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3.  Again, we see that residents decrease the treatment time of patients by 7.6% 

(exp (.073) ≈ 1.076) and that this effect is again statistically significant.  The rest 

of the results are similar.  Lab and radiology tests, being admitted upon discharge, 

and congestion all lengthen treatment time. 

 However, when looking at low severity patients in Table 5-4, we do not 

see the same effect.  When we run the same regression on the low severity 

patients (triage score 4-5), the coefficient for NoRes is not statistically significant 

(p = .562).  Therefore, unlike in predictions across the entire patient population or 

for just high severity patients, where the presence of residents reduces treatment 

times, residents have no statistically significant effect on treatment times of low 

severity patients.  Patients being admitted upon discharge and radiology tests 

being performed also lost statistical significance in this regression; because only 

33 low-severity patients were admitted after treatment, this variable losing 

significance is not surprising. In this regression model, the baseline patient is the 

same as in the previous models, except he has a severity score of 5, because no 

patients with NA severity are included in this population. The distributions of 

treatment times, split by resident presence, are shown in Figure 5-3. 

The difference in the effects that residents have on high severity patients 

and low severity patients is interesting.  While residents have a strong effect on 

lowering treatment times for high severity patients, they have no significant effect 

on low severity patients.  It may be that there is more work to be done on high 

severity patients, so having extra healthcare workers around is advantageous.  
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However, on low severity cases, where treatment is fairly routine, the time taken 

by residents for instruction is enough to outweigh the extra work that they do.   

 We also examine the treatment times of patients who begin treatment 

during the hours of 7:00 a.m. to 1:00 p.m. (the hours of the Wednesday seminar).  

By looking at just these patients, we are able to limit time-of-day effects on 

patient types, or on the state of the hospital.  If lab tests come back slower in the 

afternoon because there is more demand from elsewhere in the hospital, this 

might show up as patients being treated faster when residents are present.  By 

examining just patients treated in the morning, we are better able to isolate the 

effect that residents have on treatment times.  In other words, there might be some 

difference in the hospital operations between the mornings and the rest of the day.  

By only including patients who arrived in the morning in the analysis, we are 

better able to isolate the effect that residents have on treatment times. We ran the 

regression again on this restricted data set to see if the effect holds when looking 

just at these “morning” patients.  Because there are now a smaller number of 

observations, instead of separating the patients into the five severity dummies, we 

group them into high and low severity.  The baseline patient is the same as in the 

first model, except he is a low severity patient in this model.  Table 5-5 shows 

these results.  The treatment time distributions are also given in Figure 5-3.  

 Again, we see that residents have a strong effect.  In this model, treatment 

times are 7.0% (exp(.068) ≈ 1.070) longer when residents are absent.  The rest of 

the control variables have effects similar to those in the original model.  Lab and 

radiology tests significantly slow down treatment and higher severity patients take 
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longer to treat.  Congestion again has a small effect in increasing treatment times.  

This model gives us further evidence that residents do reduce treatment times.  

We have now seen statistically significant evidence across a variety of models 

that residents lower treatment times, especially among high severity patients. 

5.6 Discussion 

 We have shown that residents decreased treatment times at the UMMC 

ED, and that effect is particularly pronounced when treating high severity 

patients.  This is fortunate, because the main reason that residents are in the ED is 

to learn how to treat patients, and they learn more when working on more 

complex, higher severity cases.  This indicates that the best use of residents, both 

for ED efficiency and for the education of residents, is to have them treat high 

severity cases.   

 With new Accreditation Council of Graduate Medical Education rules 

restricting residents’ maximum weekly working hours to 80, it is becoming more 

important to prioritize the cases on which residents work (Philibert, 2002).  Our 

work suggests that residents be assigned to the highest acuity cases in the ED, as 

residents both learn more from these cases and contribute more to the efficiency 

of the hospital.   

After the conclusion of our study, changes in patient routing decisions at 

UMMC have taken this approach to patient care in the ED.  They have started to 

route more of the lowest severity cases to an ambulatory zone.  Because there are 

typically no residents in the ambulatory zone, this has the effect of raising the 

severity level of the patients seen by residents, so that they are, on average, 
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treating higher acuity patients.  Our results sometimes conflict with those in other 

papers in the literature.  We propose three explanations.  First, many of the other 

hospitals studied replaced residents either with nurses or with more senior 

physicians.  Our work is the only one that has a true ceteris paribus experiment, 

in which residents are removed from the ED and no other changes are made.  In 

the other papers, there are either staffing changes or effects are measured over the 

course of several years, where other changes in hospital conditions could impact 

the results.  Second, we believe residents have a greater effect on treatment times 

on patients with more severe problems; in these cases, more things can be done in 

parallel.  Third, residents at UMMC play an active role in treating patients and are 

somewhat autonomous.  By having residents provide substantial amounts of care, 

they help to increase throughput enough to offset the time that attending 

physicians must spend supervising and teaching them.  Variation in patient 

severity mixes between hospitals could also play a role. 

5.7 Limitations and External Validity  

 The data imposed a few limitations on this study.  We only have data from 

one department at one hospital over the course of four months.  We also do not 

have outcome data on the patients or any way to measure quality of care.  We 

suspect that our results are applicable to other EDs across the U.S. where 

residents play a similar role, but we cannot assert this with certainty.  Discussions 

with ED physicians lead us to believe that our results should be applicable to 

other hospitals, especially large, urban teaching hospitals like UMMC. Though it 

would have been best to have similar data from multiple hospitals, the unique 
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nature of the natural experiment observed at UMMC prevents us from performing 

the same sort of analysis at multiple hospitals.  Whether our findings hold up for 

other departments in the same hospital and other hospitals is an open question.  

We believe that the impact the residents have on treatment times is a function of 

how much hands-on care they provide to patients.  When they are allowed to 

contribute, especially autonomously (i.e., more experienced residents), they can 

significantly increase throughput.   

5.8 Conclusions and Future Work 

 In this work, we have shown that residents can help to reduce emergency 

department treatment times.  This occurs when the work residents do treating 

patients outweighs the time attending physicians spend teaching them, an effect 

that is pronounced when residents are treating high severity patients.  Other 

studies have found that residents impair efficiency, but we have shown that, in 

some cases, residents can help to reduce treatment times.  We suggest, that to 

maximize efficiency in an ED, residents should be allowed to provide as much 

hands-on care as they are capable of, especially to high-severity patients.  In 

future work, we hope to examine similar data from other major hospitals that have 

residents in the ED.  With more detailed data, we could examine how residents 

affect treatment times in greater detail.  For example, if we knew which residents 

treated which patients, we could study the difference in effect between younger 

and more experienced residents.   
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Figure 5-1: Arrival rates by day of week and time of day 

 

 

                 
 

 

Figure 5-2: Treatment times for patients treated based on resident presence 
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Figure 5-3: Treatment times for patients based on resident presence for high 

severity, low severity, and morning patients 
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Table 5-1: Variable descriptions 

 

Variable Description Range 

NoRes Dummy variable that is 1 for all patients first treated on 

Wednesday mornings (when residents are absent) 

[0,1] 

Line The number of patients in the waiting room, used as a 

measure of congestion 

[0,28] 

Admit Dummy variable that is 1 if the patient was admitted as an 

inpatient upon being discharged from the ED and 0 if he/she 

was sent home. 

[0,1] 

Numlab The number of lab tests the patient had [0,97] 

Labs Dummy variable that is 1 if the patient had any labs at all [0,1] 

Numrad Number of radiology tests the patient had [0,19] 

Rad Dummy variable that is 1 if the patient had any radiology tests 

at all 

[0,1] 

Weekend Dummy variable that is 1 if the patient arrived on Saturday or 

Sunday 

[0,1] 

Night Dummy variable that is 1 if the patient arrived during the 

night shift (11 p.m. to 7 a.m.) 

[0,1] 

Severity The severity score given to the patient by the triage nurse, 

with 1 being the most severe.  Patients arriving by ambulance, 

or otherwise not receiving a score are given NA.   

[1,5] or NA 

Treatment 

Time 

The time, in hours, from first being placed in a bed until the 

patient is either discharged or admitted to the hospital 

[0.15,23] 

 

 

Table 5-2: Regression results on all patients  

(Adjusted R2 = .5355, N = 7935) 

 

Variable Coefficient Std. Error t-value p-value 

(Intercept) 5.002 0.020 247.475 <.001 

NoRes 0.075 0.034 2.242 0.025 

Line 0.010 0.002 5.455 <.001 

Admit 0.088 0.015 5.819 <.001 

NumLab 0.032 0.001 35.847 <.001 

Labs 0.335 0.018 18.716 <.001 

NumRad 0.057 0.004 13.509 <.001 

Rad 0.148 0.016 9.376 <.001 

Weekend -0.044 0.013 -3.311 <.001 

Sev1 -0.148 0.096 -1.544 0.123 

Sev2 0.048 0.017 2.730 0.006 

Sev3 0.031 0.015 2.080 0.038 

Sev4 -0.178 0.032 -5.511 <.001 

Sev5 -0.543 0.090 -6.001 <.001 
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Table 5-3: Regression results on high severity patients  

(Adjusted R2 = .5133, N = 7549) 

 

Variable Coefficient Std. Error t-value p-value 

(Intercept) 5.027 0.020 245.581 <.001 

NoRes 0.073 0.034 2.138 0.033 

Line 0.009 0.002 4.784 <.001 

Admit 0.090 0.015 5.955 <.001 

Numlab 0.032 0.001 35.832 <.001 

Labs 0.316 0.018 17.242 <.001 

Numrad 0.056 0.004 13.331 <.001 

Rad 0.143 0.016 8.881 <.001 

Weekend -0.055 0.014 -4.010 <.001 

Sev1 -0.146 0.095 -1.528 0.126 

Sev2 0.049 0.017 2.828 0.005 

Sev3 0.029 0.015 1.987 0.047 

 

 

Table 5-4: Low severity patients results  

(Adjusted  R2 = .5737, N = 341) 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Variable Coefficient Std. Error t-value p-value 

(Intercept) 4.234 0.104 40.558 <.001 

NoRes 0.110 0.189 0.581 0.562 

Line 0.041 0.011 3.711 <.001 

Admit 0.010 0.127 0.081 0.935 

Numlab 0.035 0.007 4.899 <.001 

Labs 0.553 0.087 6.324 <.001 

Numrad 0.133 0.037 3.610 <.001 

Rad 0.144 0.093 1.559 0.120 

Weekend 0.135 0.062 2.183 0.030 

Sev4 0.281 0.099 2.834 0.005 
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Table 5-5: Morning only results  

(Adjusted R2 = .5712, N = 1768) 

 

Variable Coefficient Std. Error t-value p-value 

(Intercept) 4.630 0.055 84.908 <.001 

NoRes 0.068 0.034 2.008 0.045 

Line 0.023 0.006 3.792 <.001 

Admit 0.146 0.031 4.669 <.001 

Numlab 0.030 0.002 15.628 <.001 

Labs 0.328 0.038 8.750 <.001 

Numrad 0.054 0.009 5.901 <.001 

Rad 0.188 0.033 5.763 <.001 

HighSev 0.345 0.054 6.359 <.001 

 

 

Table 5-6: Survival analysis results 

 

Variable Coefficient Standard Error z-value p-value 

NoRes -0.2505 0.0860 -2.9140 0.0036 

Numlab 0.0037 0.0055 0.6680 0.5044 

Numrad -0.0358 0.0254 -1.4090 0.1587 

Labs -0.6133 0.1067 -5.7490 0.0000 

Rad -0.2198 0.0905 -2.4290 0.0152 

Line 0.0327 0.0104 3.1310 0.0017 

Sev1 0.6403 0.4540 1.4100 0.1585 

Sev2 -0.0447 0.1023 -0.4370 0.6622 

Sev3 -0.1140 0.0836 -1.3640 0.1725 

Sev4 -0.0320 0.1932 -0.1660 0.8685 

Sev5 0.6317 0.5864 1.0770 0.2814 
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CHAPTER 6: SIMULATING THE EFFECT OF RESIDENTS ON 

THE EMERGENCY DEPARTMENT 

6.1  Introduction 

 In this chapter, we use a simulation approach to determine the effect of 

residents on emergency department (ED) efficiency.  Instead of building 

statistical models of treatment times, we designed and implemented a model to 

directly simulate the ED.  A simulation model allows flexibility in designing 

experiments and greater exploration of the mechanism through which residents 

impact efficiency.  It also allows us to measure the effect on throughput and 

average waiting time, instead of simply examining treatment times.  In Section 

6.2, we review the relevant literature.  In Section 6.3, we discuss our data and 

provide a detailed description of the simulation model.  Validation of the model is 

given in Section 6.4.  In Section 6.5, we discuss the results and implications.  The 

conclusions are presented in Section 6.6. 

6.2 Literature Review 

In this section, we discuss studies about the effects of residents on ED 

efficiency.  The resident education model creates a dual role for attending 

physicians in the ED, because a resident’s role includes both treating patients and 

learning medicine. Thus, the resident care model can affect patient throughput 

because of the additional time spent on instruction.  

Recent research has found that residents do decrease efficiency in 

hospital settings.  In one study, researchers aim to review ED patient waiting 

times, time until an admission decision was made, and total ED length of stay 
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during periods when residents were on strike versus times of normal resident 

staffing patterns (Harvey et al., 2008). They find that without residents, the ED 

had higher throughput and the length of stay was reduced.  Lammers et al. (2008) 

examine the effect of adding residents to an ED at a community hospital.  They 

conclude that there is a weak, positive correlation between ED patient length of 

stay and the presence of residents.  Dowd et al. (2008) study the efficiency of 

residents as they gain experience.  They find that as residents become more 

experienced they increase their throughput.  Salazar et al. (2008) observe the 

effects of a resident strike on quality and throughput in an ED at a large teaching 

hospital.  They determine that replacing residents with staff physicians leads to 

an increase in throughput and in quality of care.  

Other studies, however, show that residents have no negative effects on 

throughput or treatment times.  Eappen et al. (2004) look at the introduction of 

anesthesiology residents to surgical wards.  They find no significant adverse 

economic or health effects.  Offner et al. (2003) study the addition of residents to 

a trauma care center and conclude that residents improve efficiency while having 

no effect on the quality of care.   

Methodologically, our work relies on simulation modeling and queueing 

theory.  These methods are used extensively in the hospital operations 

management literature.  Jun et al. (1999), Fone et al. (2003), Jacobson et al. 

(2006), and Brailsford et al. (2009) provide surveys of simulation models used in 

healthcare research.  Simulation has a wide variety of applications in healthcare, 

such as modeling patient flow (Ceglowski et al. 2007), optimizing resource 



 

120 

 

allocation (Lehaney and Hlupic 1995), and evaluating surgery scheduling 

strategies (Dexter et al. 2000). 

Queueing theory is another technique widely used in the hospital 

operations management literature.  Green (2006) and Fomundam and Herrmann 

(2007) provide surveys of applications of queueing theory to healthcare problems.  

For example, queueing theory has been used in the emergency department to 

determine appropriate staffing levels in order to reduce the proportion of patients 

who leave without being seen (Green et al. 2006) and to assist in bed management 

planning (Gorunescu et al. 2002). 

6.3 Data and Simulation Model 

We were motivated by the inconclusive literature to study whether 

residents help or hurt efficiency in the ED.  At the UMMC, every Wednesday 

morning there was a seminar that the residents had to attend, so they were not 

present in the ED.  Because of this, patients who were treated on Wednesday 

mornings were not seen by a resident, but only by attending physicians.  This 

observation (residents present vs. not) suggests a natural experiment to determine 

what effect removing residents would have during other parts of the week.  We 

designed a simulation model to exploit this natural experiment.  

Because there are no changes in staffing levels in the ED on Wednesday 

morning other than the presence or absence of residents, the differences in 

treatment times for similar patients can be attributed entirely to the presence or 

absence of residents.  Typically, there are two attending physicians on duty and 

four or five residents in the ED.  When the residents are present, they do almost 
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all of the “hands-on” treatment of patients, while the attending physicians play a 

managerial/supervisory role.  When the residents are present, they are 

simultaneously treating patients and receiving instruction from the attending 

physicians.  The attending physicians oversee the care and teach the residents.  

Therefore, our simulation model assumes that when residents are present they 

treat every patient who arrives.  When the residents are absent, due to the seminar, 

the attending physician’s role shifts from supervisory to active care-providing.  As 

a consequence, they now spend their time treating patients, rather than 

supervising and teaching residents.  The changes in treatment times that we see 

when residents are not present are a result of this shift.  This assumption was 

motivated by conversations with ED physicians at the UMMC.   

To attribute treatment time changes on Wednesday morning to staffing 

levels, we must verify that Wednesday morning is similar to the rest of the week 

in terms of arrival rates and patient severity.  To do this, we compare the patients 

who arrive on Wednesday morning (when residents are absent) to those who 

arrive at all other times of the week (when residents are present).  Figure 6-1 

shows the historical arrival rates over the course of the week.  There is a wide 

range of arrival rates for Wednesday morning. In general, there are more arrivals 

than on weekend mornings and fewer than on Monday or Tuesday mornings. In 

addition, morning arrival rates are higher than overnight rates and lower than 

afternoon rates. So, Wednesday morning arrival rates are not atypical in any way. 

Furthermore, the patient population mirrors that of the rest of the week, in terms 

of severity and admission rate.  We compared the two patient populations (those 
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treated when residents were present and those treated when they were absent).  

We found that when residents were absent, 47%, 50%, and 3% of patients were of 

high, medium, and low severity, respectively, while those numbers were 45%, 

51%, and 4% when residents were present.  A chi-square test fails to reject (p = 

.81) the hypothesis that the underlying severity distribution is the same between 

the two patient populations.  Similarly, the proportion of patients needing lab tests 

(72.4% vs. 75.8%) is not provably different (p = .22) between the two 

populations.  The fact that the two patient populations are so similar gives us 

further confidence that the differences that we observe in treatment times between 

the two populations is caused by the presence or absence of residents, and not by 

other factors.   

Therefore, we are fortunate to have a representative sample of patients not 

treated by residents on Wednesday morning, which enables us to quantify the 

effect of having residents work in the ED. 

Based on historical arrival and severity data, we built a simulation model 

of the ED.  Figure 6-2 shows a flow diagram of the ED simulation.  We use this 

model to determine the effect of residents not just on treatment times for patients, 

but on the ED system as a whole.  By building a simulation model, we can show 

how the presence of residents in the ED affects waiting times, throughput, and 

total time in the system.  Moreover, the ED is a complex system with many 

interdependent parts.  Because of this complexity, we felt that a simulation model 

would be more appropriate than other types of models (e.g., queueing models).  

Building a simulation model also allows us to easily experiment with the system 
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to see how changing parameters of the system would affect performance.  We 

implemented the simulation using SimPy, a discrete-event simulation language 

for Python. 

The effect that residents have on treatment times is handled implicitly by 

the simulation.  As discussed previously, we assume that every patient treated 

when residents are present is treated by a resident, while those treated when 

residents are absent are not.  We do not model the specific movements of 

individual physicians through the ED or every doctor-patient interaction.  Instead, 

we take a higher-level view of the ED and simply simulate patient flow.    

For this study, we used historical data from the UMMC ED. The UMMC 

ED is divided into separate sections that treat adult medical patients, pediatric 

patients and psychiatric patients.  There is a separate area outside the ED for 

patients with significant trauma.  The main adult ED, the site for the prospective 

data collection, sees approximately 50,000 primarily adult medical and urgent 

care patients annually.   

We build our model from the UMMC patient database data from October 

1, 2009 to January 31, 2010 that contained data from the adult medical and 

psychiatric areas.  The patient identities were masked.  There were almost 17,000 

patient visits during these four months and each record contained information 

about the patient’s triage score, treatment process, and when and why they left the 

ED.   
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6.3.1 Patient Creation 

Patients enter the simulation model according to a nonhomogeneous 

Poisson process, with the arrival rate based both on time of day and day of the 

week, drawn from the historical arrival data.  After each patient is generated, 

he/she is seen by the triage nurse.  At the triage station, the patient is assigned a 

severity score from 1 (highest) to 5 (lowest), and held for a random amount of 

time based on historical average triage times.  A small number of patients are not 

given a severity score.  These correspond to patients brought in via ambulance 

and with extremely high severity.  In addition to the severity score, the simulation 

determines the amount of lab work the patient needs and whether or not the 

patient will eventually be admitted to an inpatient ward, based on the severity 

score.   

We chose these three attributes (severity, labs, and admission) because 

they were the most important in determining the treatment time that a patient 

required and the most medically relevant.  Higher severity patients take, on 

average, longer to treat.  A high-severity patient will require more intensive care 

and will be held longer in the treatment bed.  Similarly, a patient who is admitted 

to the hospital from the ED is likely to be held longer.  Patients who are admitted 

have more severe and complex problems than those who are not.  Finally, the 

number of labs that a patient needs directly affects the treatment time.  Lab work 

takes time to process, which causes the patient to stay longer. 

6.3.2 Patient Selection 
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Once a patient is discharged and a bed becomes free, the physician must 

select a patient from the waiting room.  While we might expect the patients to be 

selected strictly according to severity, the historical data confirms that this is not 

the case.  Based on the historical data, we found that the number of times that a 

patient was passed over lowered his future chances of being selected for 

treatment.  This means that a severity 2 patient who has been passed over a few 

times might be less likely to be picked than a newly arrived severity 3 patient, 

even though the patient is in a higher severity class.   

There is no deterministic rule for how patients are selected, so we 

constructed a discrete choice model, using logistic regression, to model how 

patients were selected.  Patients were split into 4 severity categories: high 

(severity score of 1 or 2), medium (score of 3), low (score of 4 or 5) and N/A (no 

score given).  Within each of the severity categories, we split the patients again 4 

ways, based on how many times they had been passed over in the selection 

process: never, once, 2-3 times, and 4+ times, giving us 16 different patient 

categories.  The probability that each patient would be chosen from a waiting 

room with one patient of each type is shown in Figure 6-3.  We see that high 

severity patients are much more likely to be chosen than low severity patients, but 

also the more times a patient has been passed over the less likely he/she is to be 

selected. 

This presented us with a discrete choice problem.  Each time a bed 

becomes free, triage nurse must select one and only one patient from the waiting 

room.  Each time a patient is selected, in the historical data, we note which patient 
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type is selected, and how many of each type are still in the waiting room.  

Typically, this class of problems is solved using multinomial logistic regression.  

However, this approach requires on the order of  2
N 

terms in a choice set with N 

alternatives.  In our case, this would require estimating more than 65,000 terms, 

which is computationally prohibitive.  Instead, from the constructed dataset, we 

built a series of logistic regression models (see Hilbe, 2009) that measure the 

probability of each type of patient being selected given the distribution of patients 

in the waiting room.  The probabilities from these regressions were used to choose 

which type of patient would be selected next in the simulation model.  These 

sequential logistic regression models approximate what multinomial logistic 

regression does. 

Because patients sometimes leave the waiting room before being treated, 

our simulation must take abandonment into account.  From the historical data, we 

know the probability that a patient of a given severity will still be in the waiting 

room based on the number of hours he/she has been waiting.  After a patient is 

selected from the waiting room to be treated, we determine if he/she is still in the 

waiting room.  If the patient is absent, another patient is selected from the 

remaining patients in the waiting room.  Once a patient has been selected and is 

still present, he/she is assigned to a treatment bed and held until treatment is over.  

The probability that a patient of each severity class is still in the waiting room is 

plotted in Figure 6-4.  The curves are not smoothly decreasing because the sample 

size becomes very small as waiting times increase.  Very few patients wait over 

six hours to be seen, and the data only record whether or not the patient was 
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present when selected, not the exact time that they left the waiting room.  We only 

know when patients who have left without being seen are called to be placed in a 

bed.   

6.3.3 Treatment Time 

Once in the treatment bed, the patient remains there for a length of time 

drawn from empirical distributions.  We used empirical distributions because they 

were able to capture the long tails of treatment times better than kernel densities.  

When possible, we categorized each patient by a number of binary splits.  The 

first split was based on whether or not the ED was congested (defined as more 

than 4 patients in the waiting room).  Second, we split the patients based on 

whether or not they were eventually admitted to the inpatient ward, as admitted 

patients and discharged patients have different ED length of stays and different 

service needs.  Third, we split the patients based on the amount of lab work they 

needed, their severity level, and whether or not they were seen by a resident.  

However, due to data sparseness issues, we were not able to make every split.  For 

example, there were very few low severity patients with no lab tests who were 

admitted to the inpatient ward.  The length of treatment time for each patient was 

drawn from the empirical distribution for that patient’s category.  

Once the treatment time had elapsed, the patient left the simulation (either 

via discharge or admittance to the inpatient ward), and the bed was held shortly 

while being prepared for a new patient.  Once the bed has been cleaned, a new 

patient is called back, and the cycle repeats.  Because one of the parameters that 

determine treatment time is whether or not the patient is treated by a resident, we 
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can run experiments with our simulation by varying that parameter for groups of 

patients.  In Section 5, we present these experiments. 

By measuring treatment times based on the treatment and ED 

characteristics (labs, severity, congestion, admission to the hospital), we are able 

to control for possible confounding of the effect of residents, enabling us to 

isolate the effect that residents have on ED efficiency.  For instance, whenever a 

simulated low-severity patient with no lab tests enters the ED during an 

uncongested time with residents present and is later discharged, we draw 

treatment times for that patient from an empirical distribution of all similar 

patients in the historical ED data who were treated when the ED was uncongested 

and when residents were present (all times except Wednesday mornings). If we 

were simulating the same patient, except without residents present, we would 

draw treatment times from an empirical distribution of all similar patients who 

were treated when the ED was uncongested and when residents were not present 

(Wednesday mornings). 

6.4 Validation 

 After building the simulation model, we tested it to make sure that it was a 

valid replication of the system we were simulating.  We did this by comparing the 

similarity of the outputted data from our model with the observed performance of 

the ED.  While validating the model, we mirror the actual system, with residents 

present all week except for Wednesday mornings.  We compared statistics from 

the simulation regarding patients per bed per day, the rate at which patients 

abandoned the waiting room before being seen, time spent until placed in a bed, 
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and total time in system with those from the historical database.  These are 

metrics often used to evaluate ED performance and efficiency.  By demonstrating 

that the data generated for these metrics were statistically similar to the data from 

the historical database, we were able to confirm that we have a valid simulation 

model. 

 We chose the above-mentioned comparison metrics because they describe 

the overall performance of the ED.   We simulated 20 years of data to compare to 

the historical values.  From the simulated data, we calculated the mean and 

standard deviation for each of the performance metrics.  Table 6-1 illustrates the 

similarities between the simulation model and the historical data.  None of the 

metrics were provably different from the historical values.   

 We used a Kolmogorov-Smirnov (K-S) test to test the similarity of the 

total time in system distributions from the simulation and the historical data.  The 

K-S statistic for two samples measures the difference between the empirical 

cumulative distribution functions (ECDFs) of the two samples. The ECDFs are 

step functions that approximate the underlying distributions from which the 

samples are drawn.  We find the maximum vertical distance between the two 

ECDF curves, and compare it to the expected difference if the two samples were 

drawn from the same population.  If they are farther apart than what would 

happen in 95% of cases, we can say with 95% confidence that the two samples 

were drawn from different distributions. 

 The K-S test statistic for the total time in system metric was .0075, 

meaning that the farthest distance between the two distributions was 0.75%.  This 
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translates to a p-value of .513, meaning that we cannot reject the null hypothesis 

that the simulation output and the historical data have the same length of stay 

distribution.  Our time in system distribution matches the historical data almost 

perfectly, and the other performance metrics are similar to the historical data at 

the means.  Noting that simulations by their very nature simplify a complex 

system and, therefore, cannot perfectly replicate that system’s performance, we 

felt comfortable with the model validation results.   

 

6.5 Experiments and Results 

 In our first experiment, to determine the effect that residents have on ED 

efficiency, we varied the proportion of patients seen by residents from 0 to 1, in 

increments of 0.1, and observed the changes in efficiency metrics, such as 

throughput and average waiting time.  From one run to the next, the only change 

in the system is the percent of patients seen by a resident.  In this experiment, 

residents see each patient with the same probability, regardless of patient severity.  

Because treatment by a resident is a parameter in the simulation, we randomly 

select whether a patient is treated by a resident when that patient enters the ED.  

We ran 20 years’ worth of simulations for each level of resident presence and 

recorded the performance metrics from these simulations.  These experiments test 

the hypothesis that the addition of residents to the ED slows down doctor 

performance and harms system efficiency.  

We found strong linear trends in the relationship between the patient-

based characteristics and the presence of residents.  For example, we saw 
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decreases of over 16% in total time (from 11.5 to 9.5 hours) for both high- and 

low-severity patients when residents were added.  Additionally, we saw decreases 

in the time to get patients into a bed of 23% for high-severity patients and 20% for 

low-severity patients.  Figure 6-5 shows the relationship between the total time in 

the ED for patients and the percent of patients treated by residents. 

We also observed increases in system-wide efficiency.  We measured total 

throughput in terms of patients treated per bed per day and found that having 

residents treat patients helped improve throughput.  In particular, we found a 6% 

increase in total throughput (from 2.26 patients per bed per day to 2.38) when 

resident presence was increased from 0 to 100%.  Figure 6-6 shows a plot of 

patient throughput versus resident presence.  

The third performance metric we monitored was time to first bed.  Again, 

we found that increasing the fraction of patients seen by a resident helped to 

improve system performance.  This is especially important in an ED because 

patient welfare often depends on how quickly they can be seen and treated by a 

doctor.  Figure 6-7 shows the effect of increasing the percent of patients seen by a 

resident on time to first bed.  The addition of residents lowers average waiting 

times by 35% (from 92 minutes to 60). 

In our second experiment, we independently varied both the percentage of 

high- and low-severity patients seen by residents.  Because the residents’ main 

purpose in the ED is to learn, and because the high-severity cases are the most 

instructive, we fixed the fraction of high severity patients seen by residents 

always at or above one half.  We simulated 20 years with 121 different patient 
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mixes, varying the fraction of high severity patients seen from .5 to 1 (in 

increments of 0.05), and of low severity patients between 0 and 1 (in increments 

of 0.1).  

We found that the driving factor in increasing efficiency was the fraction 

of high-severity patients seen.  This effect is illustrated in Figure 6-8, a contour 

plot of total time in system for all patients vs. the percent of each type of patients 

seen by residents.  The contour lines are all nearly vertical, which shows that the 

driving factor is percent of high severity patients seen.  The reasons are threefold: 

the majority (75%) of patients in the UMMC ED are high severity, residents have 

a much bigger effect on the service time for high-severity patients than for low-

severity ones (5.3% vs. 1.9%), and high-severity patients take about twice as long 

to treat (8 hours vs. 4 hours), so a similar percent reduction in their service time 

will more heavily influence the average total time in system.  We hypothesize that 

residents increase treatment speed for high-severity patients more than low-

severity patients because more complex care is required and there are more 

chances for work to be done in parallel with attending physicians on high-severity 

patients.  On the other hand, with lower severity patients, the complexity of 

treatment is lower, and there are fewer chances for work to be done in parallel, so 

the treatment times are not reduced as much. 

 The effect of residents on throughput is similar.  The percent of high 

severity patients seen by a resident has a strong effect on throughput, while the 

percent of low severity patients seen has no detectible effect on throughput.  

Figure 6-9 shows a contour plot of throughput vs. resident presence.  Raising the 
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percent of high severity patients treated by a resident from 50 to 100 increases 

throughput by 2.7%.  The contour lines are essentially vertical, meaning that 

changing the percent of low severity patients treated by a resident has no effect on 

throughput.  Again, this may be because high severity patients take longer to treat, 

are a higher fraction of the ED patient population, and because residents have a 

larger effect on their service times. 

 In our third experiment, we tested the effect of resident presence on 

efficiency when treating a variety of patient populations, to see the effects of 

residents in medical centers that are similar to UMMC but that have different 

patient characteristics.  We generated two additional patient populations, one with 

a predominantly high-severity patient population (90% high severity), and one 

with a predominantly low-severity population (50% high severity).  All other 

treatment and patient attributes were held the same.  We then looked at the effect 

of having residents present on efficiency.   

 We saw that, regardless of patient mix, residents still have a positive effect 

on system efficiency.  Figures 6-10 and 6-11 show the effect residents have on 

total time in the ED and waiting time, respectively.  In both patient populations, 

residents have positive effects on efficiency.  The total time in system effect is 

about the same for both populations, reducing average time from 12.3 hours to 

10.5 hours in the more severe population, and from 7.2 hours to 6.1 hours in the 

less severe population.  The lines for the two populations are essentially parallel, 

meaning that the effect is the same in both patient populations.  In both 

populations, total time in system is reduced by about 15%. 
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 Residents also had an effect on waiting time in both populations.  Figure 

6-9 shows a graph of time to first bed vs. resident presence for the more and less 

severe populations.  In this case, residents had a much more significant effect on 

first bed time in the more severe population than in the less severe population.  

This may be because more severe patients take longer to treat, and, therefore, they 

increase the stress on the system.   This leads to longer queues and more variation 

in waiting time.  This means that a similar reduction in processing time has a 

greater impact on waiting times in the high severity population than in the low 

severity population. 

6.6 A Related Queueing Model 

 In addition to the simulation, we also used queueing theory to model the 

flow of patients through the ED.  Specifically, we chose to use an M/G/k queue to 

represent the system, with each bed being treated as a server.  This requires a few 

simplifying assumptions.  First, we assume that patients arrive according to a 

Poisson process with a fixed arrival rate.  Second, we assume that all patients who 

enter the queue will wait until they are served (no abandonment).  Third, we 

assume that patients are treated in the order in which they arrive (first come, first 

served).  We analyzed the queue with two different service time distributions.  

The first was the empirical distribution for patients treated on Wednesday 

mornings, when residents were absent.  The second distribution was the empirical 

distribution for all patients treated during the mornings of the other weekdays 

(when residents were present), excluding weekends.  These simplifying 
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assumptions make the model tractable and allow us to estimate the average 

waiting times and queue lengths for the system with and without residents.   

 No closed-form solution to the M/G/k queue exists, so we use the 

approximations derived by Nozaki and Ross (1978), which take into account the 

first two moments of the service time distributions.   An average of 2.94 patients 

arrived at the ED per hour and there are 27 beds in the ED.  The mean treatment 

time of patients when residents were absent was 8.22 hours and the mean squared 

treatment time was 121.65 hours.  When residents were present, the mean 

treatment time was 7.9 hours and the mean squared treatment time was 103.6 

hours.  The queueing model reports that the average waiting time of patients when 

residents are present is 55 minutes, compared to 135 minutes when residents are 

absent.  So, when residents are present, we observe a 59% reduction in waiting 

time.  The residents have a similar effect of the average number of patients in the 

waiting room (average queue length).  If residents were always present, the 

average queue length would be 2.7, compared to 6.6 if residents were always 

absent, again a reduction of about 59%.   

The waiting times predicted by the queueing model are lower than the 

historical averages, as a result of the simplifying assumptions.  The queueing 

model has less variability than the real system, so it will have fewer occurrences 

of high congestion, which leads to lower average waiting times.  While the 

waiting times are smaller, the effect that residents have on waiting times is a 59% 

reduction in the queueing model compared to 35% in the simulation.  Although 

the queueing model cannot address all of the questions that the simulation can, 
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with respect to time to first bed, the two models at least point in the same 

direction.  This serves to enhance our confidence in the simulation model. 

6.7 Conclusions 

 A common hypothesis in the medical community is that residents slow 

down treatment in EDs and have a negative impact on system efficiency, 

compared to just attending physicians.  In this chapter, we have shown that, to the 

contrary, residents have a positive effect on throughput and treatment times.  In 

particular, we found that, when treating high severity patients, residents help to 

decrease waiting times, decrease treatment times, and increase throughput.  While 

efficiency might not be a main concern in deciding which patients are seen by 

residents, we would recommend that they see as many high severity patients as is 

feasible.  This fits with the mission of the ED residency program. Furthermore, 

since residents cannot work as many hours per week as in the past, it is important 

for them to use their time wisely and productively.  The main contribution of this 

chapter is to provide evidence refuting the hypothesis that residents slow down 

progress in the ED and that they have a negative effect on efficiency.   
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Figure 6-1: Arrival Rates by Day of Week 

 

 

 

 

 

  

Figure 6-2: Flow diagram of simulation 
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Figure 6-3: Probability each patient type is chosen from the waiting room 
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Figure 6-4:  Percent remaining vs. time until called back 
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Figure 6-5:  Total time in system (in hours) vs. resident presence 

 

 

 

Figure 6-6: Throughput (in patients per bed per day) vs. resident presence 
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       Figure 6-7: Average time to first bed (in minutes) vs. resident presence 

 

 

 
Figure 6-8: Total time in system (in seconds) vs. resident presence 
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Figure 6-9: Contour plot of throughput (in patients per bed per day) vs. resident 

presence 

 

 

 

 

 
Figure 6-10: Total time in system (in hours) vs. resident presence for different 

patient severity mixes 
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Figure 6-11: Time to first bed (in minutes) vs. resident presence for different 

patient severity mixes 
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Table 6-1: Comparison of simulated means with historical means for key ED 

efficiency metrics 

 

 Metric 

Historical 

Mean Simulation Mean 

 

p-value 

Patients per bed per day 2.38 2.39 .4413 

Abandonment rate (in percent) 8.02 7.76 .4611 

Time to first bed placement (in minutes) 80.32  81.12  .8650 

Total time in system (in minutes) 550.15 549.28 .9134 
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CHAPTER 7: LONG DISTANCE TRIAGE 

7.1  Introduction 

Inter-hospital transfer (IHT) patients tend to be among the highest acuity 

patients in the UMMC internal medicine department.  Anecdotally, doctors 

noticed that these patients were much more likely to suffer an adverse event 

(either transfer to the ICU within 48 hours of admission or death) than similar 

patients admitted through the emergency department (ED).  While there are 

decision support tools to assist assigning the correct triage level to ED patients in 

person, there are no such tools for over-the-phone triage prior to patient transfer.  

It would be useful to have a clinical prediction tool to identify high-risk patients 

prior to arrival. We show that high-risk patients can be identified reasonably well 

using just four features (shown in Table 7-1).  A patient with any of the four risk 

criteria is significantly more likely to suffer an adverse event.  By dichotomizing 

each variable, we provide a simple tool (called HALT) that can be used by 

physicians to assess the severity of IHT patients.  We extend this work by 

building classifiers that consider the continuous variables. 

7.2  Preliminary Analysis 

First, we looked at every subset of features from the HALT tool to 

measure its predictive ability.  For example, the AT tool uses Anemia and 

Tachycardia but not Hypertension or Leukocytosis.  Second, we constructed three 

statistical classifiers using the continuous data.  We used logistic regression, naïve 

Bayes classification, and a combination of the two (called Max).  Naïve Bayes 
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classification is a commonly used classification technique.  It calculates the 

likelihood that a given observation came from each category based on the 

distributions of the independent variables of the observed data.  The combination 

tool (Max) classified a patient as high risk if either the logistic regression model 

or the naïve Bayes model found the patient to be high risk.  The continuous tools 

have fewer observations because some data were missing.  The classification 

results from each model are shown in Table 7-2.  This table gives the number of 

patients of each type correctly identified, the number of Type I errors (false 

positive) and Type II errors (false negative), the sensitivity (percent of high-risk 

patients correctly identified), and specificity (percent of low-risk patients 

correctly identified) for each tool.  Using the results in Table 7-2, we see that the 

naïve Bayes and logistic regression classifiers strictly dominate the HALT tool in 

every dimension.  They have a higher percentage of patients correctly identified, 

and fewer Type I and Type II errors.  We observe that the four individual features 

(H,A,L,T) do not perform well individually, but do much better when combined.  

This means that each feature uses different information about a patient, and 

complements the others well. 

7.3 Error Costs 

 For UMMC, committing a Type II error is worse than a Type I error.  It is 

worse to incorrectly classify a very sick patient as low risk than to incorrectly 

classify a relatively healthy patient as high risk.   To illustrate this, we assign 

different costs to each error, ranging from equal costs to a Type II error being 100 

times worse than a Type I error (shown in Table 7-3 in ascending cost order at a 
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5:1 ratio).  The higher the relative cost of Type II error, the more the system 

rewards methods that aggressively classify patients as high risk.  We see that, 

regardless of the cost structure, the naïve Bayes and logistic regression classifiers 

have lower costs than the HALT tool.  

7.4 Varying the Threshold 

We construct the receiver operating curves (ROC) for the naïve Bayes and 

logistic regression models.  ROC plots show the tradeoff between detecting high 

risk cases and committing a Type I error.  Changing the threshold for high risk is 

equivalent to moving along the x-axis.  A lower threshold means that more 

patients are classified as high risk, which implies a move to the right along the x-

axis.  The vertical distance above the 45-degree line gives the improvement of the 

model over random guessing. In Figure 7-1, both models correctly identify about 

50% of patients who eventually have an adverse event, while only classifying 

10% patients without an adverse event as high risk.  However, after that point, the 

curve flattens out.  In order to correctly identify 80% of patients with adverse 

events as high risk, we must incorrectly label 50% of patients without a negative 

outcome as high risk as well. 

7.5  Implementation 

 The logistic regression results dominate the HALT tool in every 

dimension.  We constructed a combination tool, similar to Max, that classifies a 

patient as high risk if either HALT or the logistic regression model classifies that 

patient as high risk.  This tool has the best sensitivity of any tool we tested 
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(correctly detecting 67% of all high-risk patients).  However, it gives more false 

positives (sensitivity of 78%).  The two-by-two tables for each tool are given in 

Table 7-4.  The rows show if the model classifies the patient as high risk or not, 

while the columns show whether or not the patient had an adverse event.  A zero 

denotes no adverse event occurred the model classified the patient as low risk.  A 

one denotes an adverse event or the model classified the patient as high risk.  For 

example, with the HALT tool, 128 patients were classified as high risk but did not 

suffer an adverse event.  The number of observations differs between the tools 

because there were missing data.  When data are missing, the tools using 

continuous data (logit and the combination tool) cannot estimate the risk of the 

patient, while the HALT tool just assumes that any missing value is in the low-

risk range.   

To generate the logistic regression tool, we fit the following model: 

Adverse Event = β1  MAP  + β2 HGB  + β3  WBC  + β4  Pulse + ε 

where MAP is the patient’s mean arterial pressure, HGB is the patient’s 

hemoglobin count, WBC is the patient’s white blood count, and Pulse is the 

patient’s pulse.   

The logistic regression model is easy to construct with a calculator or a 

spreadsheet program.  The equation for the probability that a patient is going to 

experience an adverse event is given by: 

  

 

                                                                   . 
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After fitting the model, we generated the probability of an adverse event for each 

patient.  We wanted the logistic regression model to classify patients as high risk 

at the same rate as the HALT tool.  To do this, we sorted the patients according to 

their predicted probabilities of an adverse event.  The HALT tool classifies 14.5% 

of patients as high risk.  The highest 14.5% of patients had a predicted probability 

of greater than 0.13 for an adverse event.  This means that a patient with a 13% 

chance or higher of an adverse event, given by the logistic regression tool, would 

be classified as high risk.  

 Consider a patient with MAP = 82, Pulse = 94, WBC =18, and HGB = 

10.4.  This patient meets none of the HALT criteria, thereby producing a HALT 

score of 0.  Using our logistic regression equation, the probability an adverse 

event for this patient is  

 

                                                                            . 

This probability exceeds the threshold of 0.13.  We would classify this patient as 

high risk using either the logistic regression model or the combination model.  

7.6  Extending With Age 

 We also included that patient’s age as a predictor of mortality or 

admission to the ICU.  As a result, we were able to achieve marginal 

improvements in predictive accuracy.  Including age as a continuous variable had 

no effect on the predictive power of the tool, but creating a dichotomous variable 

for elderly patients (defined as at least 80 years old), we were able to achieve 

small improvements.  We included the dichotomous age variable in the logistic 
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regression, and estimated the probabilities of an adverse event for each patient 

based on the extended regression model.  We then classified each patient as either 

high or low risk, using the same procedure described in Section 5.   Table 7-5 

shows the results of this classification.   

 When compared with the original logistic regression model, the extended 

model performs slightly better.  The sensitivity of the model increases from 

52.2% to 53.7%, while the specificity increases from 87.7% to 88.0%.  This 

translates to a decrease in “cost” of between 3.3% (1:1 ratio) and 6.7% (100:1 

ratio).  Including patient age in the model yields a small, but positive increase on 

the predictive power of the HALT tool. 

7.7  Conclusions 

 In this chapter, we show that basic medical information can be used to 

predict which IHT patients will require higher levels of care.  This information 

can be used when making admission decisions, as well as when planning staffing 

levels.  Having accurate information about the severity of incoming patients 

before they arrive at the hospital will help decision makers better match supply 

with demand. 
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Figure 7-1: ROC plots for Naïve Bayes (Red) and Logistic Regression (Blue) 
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Table 7-1: Independent variables  

 

Feature Description 

Hypertension Measured by mean arterial pressure.  Considered high if > 65 mmHg. 

Anemia Measured by hemoglobin.  Considered low if < 7 g/dL. 

Leukocytosis Measured by white blood cell count.  Considered high if > 20,000 cells/mcL. 

Tachycardia Measured by pulse.  Considered high if > 100 beats per minute. 

 

 

Table 7-2: Classification results 

 

Tool True + True - False + False - Sensitivity Specificity 

Logistic 

Regression 

24 465 65 22 

0.5217 0.8774 

Naïve Bayes 24 468 62 22 0.5217 0.8830 

Max 27 450 80 19 0.5870 0.8491 

H 7 1051 12 88 0.0737 0.9887 

A 5 1051 12 90 0.0526 0.9887 

HA 12 1039 24 83 0.1263 0.9774 

L 19 1034 29 76 0.2000 0.9727 

HL 24 1022 41 71 0.2526 0.9614 

AL 24 1022 41 71 0.2526 0.9614 

HAL 29 1010 53 66 0.3053 0.9501 

T 17 985 78 78 0.1789 0.9266 

AT 19 974 89 76 0.2000 0.9163 

HT 23 973 90 72 0.2421 0.9153 

HAT 25 962 101 70 0.2632 0.9050 

LT 33 958 105 62 0.3474 0.9012 

ALT 35 947 116 60 0.3684 0.8909 

HLT 37 946 117 58 0.3895 0.8899 

HALT 39 935 128 56 0.4105 0.8796 
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Table 7-3: Error costs for each tool 

 

Tool Cost 

1:1 

Cost 

3:1 

Cost 

5:1 

Cost 

10:1 

Cost 

20:1 

Cost 

50:1 

Cost 

100:1 

Naïve Bayes  0.1458 0.2222 0.2986 0.4896 0.8715 2.0174 3.9271 

Max 0.1719 0.2378 0.3038 0.4688 0.7986 1.7882 3.4375 

Logistic 

Regression 0.1510 0.2274 0.3038 0.4948 0.8767 2.0226 3.9323 

HAL 0.1028 0.2168 0.3307 0.6157 1.1857 2.8955 5.7453 

HL 0.0967 0.2193 0.3420 0.6485 1.2617 3.1010 6.1667 

AL 0.0967 0.2193 0.3420 0.6485 1.2617 3.1010 6.1667 

HLT 0.1511 0.2513 0.3515 0.6019 1.1028 2.6054 5.1097 

HALT 0.1589 0.2556 0.3523 0.5941 1.0777 2.5285 4.9465 

L 0.0907 0.2219 0.3532 0.6813 1.3377 3.3066 6.5881 

LT 0.1442 0.2513 0.3584 0.6261 1.1615 2.7677 5.4447 

ALT 0.1520 0.2556 0.3592 0.6183 1.1364 2.6908 5.2815 

HA 0.0924 0.2358 0.3791 0.7375 1.4542 3.6045 7.1883 

HT 0.1399 0.2642 0.3886 0.6995 1.3212 3.1865 6.2953 

HAT 0.1477 0.2686 0.3895 0.6917 1.2962 3.1097 6.1321 

H 0.0864 0.2383 0.3903 0.7703 1.5302 3.8100 7.6097 

A 0.0881 0.2435 0.3990 0.7876 1.5648 3.8964 7.7824 

T 0.1347 0.2694 0.4041 0.7409 1.4145 3.4352 6.8031 

AT 0.1425 0.2737 0.4050 0.7332 1.3895 3.3584 6.6399 
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Table 7-4: Two-by-two tables for three prediction tools (HALT, logistic 

regression, and the combination tool).   

 

 Actual 

0 

Actual 

1 

  Actual 

0 

Actual  

1 

  Actual 

0 

Actual 

1 

HALT 0 935 56  Logit 0 465 22  (Logit + HALT) 

0 

414 15 

HALT 1 128 39  Logit 1 65 24  (Logit + HALT) 

1 

116 31 

 

 

 

 

 

Table 7-5: HALT Confusion Matrix With Age 

 

 

 Actual 0 Actual  1 

Extended Logit 0 434 19 

Extended Logit 1 59 22 
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CHAPTER 8: DETECTING PROSTATE CANCER USING MRI 

DATA 

8.1  Introduction 

 Prostate cancer is widely prevalent and hard to diagnose.  The National 

Cancer Institute estimates that 16% of men born today will be diagnosed with 

prostate cancer in their lifetime (Howlader et al. 2012).  Currently, the two main 

methods for diagnosing prostate cancer are a prostate specific antigen (PSA) test 

and a biopsy.  Both of these methods have serious drawbacks.  Although it has 

some predictive power, a PSA test can be unreliable with a high error rate 

(Hoffman et al. 2002).  While a biopsy is more accurate, it is expensive and 

highly invasive with negative side effects (Cooper et al. 2004).  Since a biopsy is 

conducted randomly within the prostate gland, it can result in a significant 

number of misses in cancer diagnosis, as well. We propose a new method for 

classifying patient risk using Magnetic Resonance Imaging (MRI) data.   An MRI 

is being used more frequently to evaluate the prostate, because of its effectiveness 

in assessing both the anatomy and the physiology of the prostate tissue.  

The widespread use of biopsies is an expensive and possibly inefficient 

use of resources.  Biopsies are roughly three times as expensive as MRIs, costing 

an average of $2,100, compared to $700 for an MRI.  Better pre-biopsy 

information about which patients have the highest risk for cancer will allow 

hospitals to direct diagnostic resources to those patients for whom they will do the 

most good.  If giving each patient an MRI first can reduce the number of biopsies 

by a third, using MRIs as a screening method would reduce overall costs while 
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simultaneously reducing the number of men who suffer side-effects from 

biopsies.  Having better information about patient risk will allow hospitals to 

more efficiently allocate diagnostic resources, and will allow patients to make 

better informed decisions about whether or not to undergo a biopsy. 

Our data was collected from multi-parametric images generated from 

Dynamic Contrast Enhanced (DCE)-MRI, which provides vascular permeability, 

Diffusion Weighted (DW)-MRI, which provides microstructural cell density, and 

Magnetic Resonance Spectroscopic Imaging (MRSI), which provides metabolic 

signatures of malignancy. Data from patients who had radical prostatectomy were 

analyzed.  After radical prostatectomy, the prostate specimen was fixed in 

formalin. Axial sections (3mm) from the specimen were made using a prostate 

slicer. Digital images of both the slice specimens and the pathologic slides were 

obtained.  Each prostate was subdivided into octants.  This resulted in 223 octants 

(one was missing) that were examined. Histology information for these octants 

was given by an experienced radiologist using Gleason scores.  Sample images 

are shown in Figure 8-1. 

A Gleason score (Gleason 1977) is used as a measure of the severity of 

prostate cancer.  In our data set, scores range from 0 to 8, with 0 indicating no 

cancer cell identified, 1 to 3 indicating indolent (slow developing) disease, and 4 

to 8 indicating a tumor.  In Figure 8-2, we show the distribution of Gleason scores 

in our data set.  There are 223 Gleason scores corresponding to the severity of the 

cancer in each prostate octant in the data set.  Since a portion of the population 

with elevated PSA but indolent disease receives unnecessary over-treatment, and 



 

157 

 

a portion of the population may benefit from early and accurate detection of 

extremely aggressive prostate cancer, it would be beneficial to distinguish 

between aggressive cancer and indolent disease.  Therefore, a Gleason score of 5 

or higher designates aggressive cancer, and a score below 5 indicates indolent 

disease or no cancer.   

8.2  Literature Review 

 While prostate cancer diagnostic methods are improving, no true “gold 

standard” test exists yet.  The current standard diagnostic test, measuring prostate-

specific antigen (PSA) levels in the blood has a high false positive rate, and can 

be quite inaccurate.  Welch and Albertsen (2009) find that the introduction of the 

PSA test as a standard diagnostic tool has led to hundreds of thousands of false 

diagnoses and excess treatments.  Because of the high false-positive rate of PSA 

tests, medical guidelines are conflicted as to whether or not PSA tests should be 

used regularly to screen for cancer (Cooper et al. 2004).    

 Another commonly used method for diagnosing prostate cancer is the 

digital prostate exam.  Digital exams may add value to the standard PSA test, but 

still suffer from high false positive and false negative rates (Akdas et al. 2008).   

Furthermore, the results of digital exams can vary from physician to physician 

(Smith and Catalona 1995).  

 Currently, biopsies are the most accurate method for diagnosing prostate 

cancer.  However they also are the most expensive, invasive, and have the highest 

likelihood of causing moderate or severe side effects (Catalona et al. 1994).  

Because of the cost, pain, and side effects of biopsies, other methods are sought to 
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diagnose prostate cancer, or to identify high risk patients who should undergo 

biopsy to confirm the diagnosis.  Recently, MRIs have been used as a method for 

identifying patients with a high risk of prostate cancer.  Preliminary studies have 

found that MRIs can be used to identify high risk patients (Amsellem-Ouazana et 

al. 2005, and Padhani et al. 2000).    

8.3  Analysis 

 First, we use logistic regression to predict whether or not the prostate slice 

has cancer.  We use four features: apparent diffusion coefficient, which measures 

the magnitude of diffusion (the magnitude of diffusion of the prostate tumors is 

lower than the normal gland), volume transfer constant (K
trans

), which reflects 

blood flow and vessel permeability, conventional average of T2 values, and 

spectroscopy scores. These features are taken from the multi-parametric MRI 

images and are used as input variables to predict the probability that each slice has 

cancer.  Because our data set is relatively small, we use leave-one-out cross-

validation to separate the data set into a training set and a test set.  This method 

yields good results, with 64.6% accuracy, and an area under the ROC curve 

(AUC) of 0.66.  AUC is one common measure of the predictive power of a model.  

It is equivalent to the probability that a randomly chosen positive observation will 

be ranked higher than a randomly chosen negative observation (Fawcett 1977).  

The confusion matrix and ROC curve for the logistic regression method are given 

in Table 8-1 and Figure 8-3, respectively.   

 Second, we use K-Nearest-Neighbor (KNN) to classify the data.  A 

distance matrix is generated using Euclidean distances on the four input features.  

http://europepmc.org/search/?page=1&query=AUTH:%22Amsellem-Ouazana+D%22
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For each observation in our data set, the outcomes for the five most similar 

observations are then recorded.  If three or more of the five nearest neighbors 

have a Gleason score of five or higher, the observation is classified as high risk.  

If three or more have a Gleason score below five, the observation is recorded as 

low risk.  This method has a predictive accuracy of 74%.  The confusion matrix 

for KNN is given in Table 8-2.  Table 8-3 gives the breakdown by number of 

neighbors with cancer.  Furthermore, among the 62 observations classified as 

being the highest risk (four or five neighbors being cancerous), 55 observations 

are cancerous.  In addition to performing well overall, KNN does a good job of 

identifying very high risk slices.   

 Third, we ran the initial logistic regression model discussed earlier, again 

using leave-one-out cross-validation, but augmenting the data with the number of 

cancerous neighbors from KNN.  This augmented logistic regression model 

outperforms both the original logistic regression model and KNN, in terms of 

predictive accuracy and in terms of AUC.  Predictive accuracy is 77%, and the 

area under the ROC curve is 0.85.  The ROC curve for each model is given in 

Figure 8-4, and the confusion matrix for this method is given in Table 8-4.  This 

model performs particularly well on the highest risk patients.  Looking at the 

ROC curve, we see that it requires a false positive rate of 6% to identify 46% of 

true positives.  This is important because this method could be used in 

conjunction with a PSA test to determine which patients might require a biopsy to 

definitively diagnose and locate the cancer.   



 

160 

 

 Finally, we examined how our method performed on classifying just the 

highest severity cases of cancer.  Because of the low mortality rates of prostate 

cancer and the side effects of treatment, many people choose to treat only the 

most aggressive cancers.  For these reasons, we retrained the previous models 

with the objective of identifying observations with a Gleason score of 7 or 8.  The 

augmented logistic regression model is very good at identifying very high severity 

cancer, especially when compared to the basic logistic regression model.  The 

augmented logistic regression model has a predictive accuracy of 82%, and an 

AUC of 0.86, compared to 58% accuracy, and an AUC of 0.65 for the basic 

logistic regression model.  The ROC curves are given in Figure 8-5, and the 

confusion matrices are given in Tables 8-5 and 8-6.  We see that the augmented 

method has a very low false negative rate, misclassifying only five patients who 

have cancer with a Gleason score of 7 or 8. 

8.4  Conclusions 

 The results from the three models show that MRIs could be used as 

predictive tools to assess patient risk.  Using logistic regression and nearest-

neighbor classification, we can accurately assess the risk that a patient has 

prostate cancer.  This information can then be used to determine whether or not a 

patient should undergo further diagnostic tests, such as a biopsy.  Because an MRI 

is not invasive, has few side effects, and is relatively inexpensive, it can be a 

useful tool in preventing an unnecessary biopsy from being performed. An MRI 

can lower the overall testing cost and reduce the number of side effects caused by 

a biopsy, while helping to identify and diagnose a patient who has cancer.  In 
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addition, our method can be used to direct where in the prostate a biopsy should 

be done.  By targeting only suspicious areas for biopsy, our method could 

improve biopsy accuracy and protect healthy areas of the prostate from the 

damage associated with a biopsy.  Furthermore, Hoffman et al. (2002) found that 

PSA scores have an area under the ROC curve of 0.67, significantly worse than 

that of the proposed augmented logistic regression method.  This means that our 

method has the potential to improve diagnostic ability, while minimizing side 

effects.   

This work shows, as a proof of concept, that MRIs can be used to detect 

prostate cancer with reasonably good accuracy. This work employs simple data 

mining techniques on a small dataset, but still yields good accuracy.  Essentially, 

we show that computer-generated features pulled from the MRI images contain 

significant information that can be used to detect prostate cancer.  

In future work, we hope to incorporate MRI images from healthy patients 

into the data set.  This would give us a sample that is more representative of the 

overall population.  We also hope to incorporate the result from a PSA test into 

our model, in order to further increase the power of our test.  A model that uses 

both MRI and PSA data should be able to accurately diagnose prostate cancer, 

reduce the number of unnecessary biopsies done, and increase the number of high 

severity cancers that are treated.   
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Figure 8-1: Multi-parametric imaging of prostate cancer:  

Examples of five types of MRIs are shown, and corresponding spectra from the 

tumor showing low citrate and high choline.  Histology and images showing 

cancer as marked by the arrow. 

 

 
 

Figure 8-2: Histogram of Gleason Scores 
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Figure 8-3: ROC Curve for Logistic Regression Model 
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Figure 8-4: ROC curves for the logistic regression model (LR), the KNN model 

(KNN), and the augmented logistic regression model (ALR) 
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Figure 8-5: ROC curve for high severity cancer for the logistic regression model 

(LR) and the augmented logistic regression model (ALR) 
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Table 8-1: Confusion matrix for the logistic regression model 

 Gleason Score 

 0 – 4 5 – 8 

Predicted Healthy 59 34 

Predicted Cancer 45 85 

 

 

Table 8-2: Confusion matrix for the KNN model 

 Gleason Score 

 0 – 4 5 – 8 

Predicted Healthy 78 25 

Predicted Cancer 26 94 

 

 

Table 8-3: Breakdown in outcomes by number of cancerous neighbors 

 Gleason Score 

Neighbors with Cancer 0 – 4 5 – 8 

0 11 0 

1 26 4 

2 33 20 

3 27 40 

4 7 32 

5 0 23 

 

 

Table 8-4: Confusion matrix for the augmented logistic regression model 

 Gleason Score 

 0 – 4 5 – 8 

Predicted Healthy 79 22 

Predicted Cancer 25 97 

 

Table 8-5: Confusion matrix for high severity cancer for the augmented logistic 

regression model 

 Gleason Score 

 0 – 4 5 – 8 

Predicted Healthy 151   5 

Predicted Cancer     36 31 

 

 

Table 8-6: Confusion matrix for high severity cancer for the basic logistic 

regression model 

 Gleason Score 

 0 – 4 5 – 8 

Predicted Healthy 108 14 

Predicted Cancer      79 22 
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CHAPTER 9: CONCLUSIONS AND FUTURE WORK 

 

 The research presented in this dissertation contributes to the literature on 

healthcare operations management in two key ways.  First, we show that 

operational constraints and resource availability, such as staffing levels and bed 

utilization, impact medical decision making and the quality of care received by 

patients.  This is important managerially, because it shows that operations 

management decisions cannot be made separately from medical decisions, but 

that the system must be viewed as a whole.   

The decisions made, for example, about how to schedule surgeries have 

system-wide effects that must be taken into account.  When surgeries with long 

lengths of stay are scheduled early in the week, recovery beds fill up, which lead 

to early discharges and a higher readmission rate.  If the whole system were taken 

into account when surgeries were scheduled, we would be able to improve quality 

of care and throughput.   

 Similarly, we see how operations constraints impact patient outcomes 

when we examine how the quality of care hospitals provide changes over the 

course of a day.  A lack of specialized resources available overnight leads to 

worse outcomes for patients.  We show that operations management decisions, 

i.e., staffing levels and resource allocation, affect hospital efficiency and the 

quality of care delivered.  Operations management as a discipline studies how 

processes can be made more efficient through intelligent allocation of resources.  

In this dissertation, we extended this to show that in addition in improving 
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efficiency, operations management can also help hospitals improve the quality of 

care that they deliver as well. 

 The second main contribution is showing novel ways for medical data to 

be used in predicting patient risk.  We built predictive models to address two 

problems faced by clinicians.  The first problem we address is predicting which 

intra-hospital transfer patients will require an ICU bed, or die, within the first 48 

hours of transfer.  This work will allow our partner hospital prepare for incoming 

patients and deliver the appropriate quantity of care.  The second model we built 

uses MRI data to diagnose prostate cancer.  Our work shows that MRIs can be 

competitive with traditionally used diagnostic measures, but minimizes side-

effects and costs. 

 These predictive models are important, because they demonstrate two 

ways that data can be used to predict medical outcomes.  As healthcare 

information technology systems improve, there will be an explosion in the amount 

of medical data available to researchers.  The ability to extract medically relevant 

information from these new data sources will help to improve medical practice.  

Having better advance information on patients should help doctors make better 

decisions while treating patients. 

 The growth of newly available data sources makes predictive modeling an 

attractive arena for future work.  Electronic medical records, health insurance 

claims data, and large national databases all offer data that can be mined for 

medically relevant information.  New algorithms to analyze new emerging 

medical data sources need to be developed an implemented.  For example, models 
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using either insurance claims data or electronic medical records could be built to 

predict which patients are at risk of negative outcomes like diabetes or heart 

disease that are potentially preventable.  These data are available, and should have 

the richness of information needed to predict these negative outcomes.  If the 

predictive models are good enough, this information could be used by clinicians 

to intervene.  
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