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Reporting subscores is a prevalent practice in standardized tests to provide 

diagnostic information for learning and instruction. Previous research has developed 

various methods for reporting subscores (e.g. de la Torre & Patz, 2005; Wainer et al., 

2001; Wang, Chen, & Cheng, 2004; Yao & Boughton, 2007; Yen, 1987). However, 

the existing methods are not suitable for reporting subscores for a test with innovative 

item types, such as double-coded items and paired stimuli. This study proposes a two-

parameter doubly testlet model with internal restrictions on the item difficulties (2PL-

DT-MIRID) to report subscores for a test with double-coded items embedded in 

paired-testlets. The proposed model is based on a doubly-testlet model proposed by 

Jiao and Lissitz (2014) and the MIRID (Butter, De Boeck, & Verhelst, 1998). The 

proposed model has four major advantages in reporting subscores— (a) it reports 

subscores for a test with double-coded items in complex scenario structures, (b) it 

reports subscores designed for content clustering, which is more common than 



 

  

subscores based on construct dimensionality in standardized tests, (c) it is 

computationally less challenging than the Multidimensional Item Response Theory 

(MIRT) models when estimating subscores, (d) it can be used to conduct Item 

Response Theory (IRT) based number-correct scoring (NCS, Yen, 1984a).  

A simulation study is conducted to evaluate the model parameter recovery, 

subscore estimation and subscore reliability. The simulation study manipulates three 

factors: (a) the magnitude of testlet effect variation, (b) the correlation between testlet 

effects for the dual testlets and (c) the percentage of double-coded items in the test. 

Further, the study compares the proposed model with other underspecified models in 

terms of model parameter estimation and model fit.  

The result of the simulation study has shown that the proposed 2PL-DT-

MIRID yields more accurate model parameter and subscore estimates, in general, 

when the testlet effect variation is small, the dual testlets are weakly correlated and 

there are more double-coded items in a test. Across the study conditions, the proposed 

model outperforms other competing models in model parameter estimation. The 

reliability yielded from models ignoring dual testlets are spuriously inflated, the 2PL-

DTMIRID produces higher overall score reliability and subscore reliability than 

models ignoring double-coded items, in most study conditions. In terms of model fit, 

none of the model fit indices investigated in this study (i.e. AIC, BIC and DIC) can 

achieve satisfactory rates of identifying the proposed true model as the best fitting 

model.  
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Chapter 1: Introduction  

Background 

In the past decade, the newly developed educational standards have put 

considerable emphases on acquiring higher-order cognitive skills (Krathwohl, 2002). 

Take the Next Generation Science Standards (NGSS) developed in 2015 as an 

example, they integrate three dimensions in science learning— (a) core idea, (b) 

crosscutting and (c) practice. The NGSS require students to demonstrate their 

proficiency in complex cognitive reasoning, specifically, in analyzing, evaluating and 

finalizing a solution to science problems through experiments. In alignment with 

instructional objectives, large-scale assessments also focus on evaluating higher-order 

cognitive skills in authentic contexts. For example, the test specification of the 

redesigned SATâ requires students to demonstrate their ability to “apply knowledge 

and skills to solve problems situated in science, social studies, and career-related 

contexts” (College Board, 2015).  

The assessments designed to measure higher-order thinking skills often 

involve innovative items embedded in real-life scenarios. For example, a test item 

mimics real-life problem-solving processes by asking students to read a passage and 

listen to an audio clip before synthesizing the information from both stimuli and 

providing an answer. Essentially, this test requires students to synthesize information 

from multiple sources. Simultaneously, tasks in a test require students’ knowledge 

from multiple sub-content domains. If a math test is intended to measure the four 

arithmetic operations, such a test may be composed of an item that requires students 
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to use knowledge in both addition and subtraction to answer the item. This item is 

referred to as a double-coded item, as it contributes to two subdomain scores. 

Parshall, Spray, Kalohn, and Davey (2002) have defined innovative items as 

items that improve existing measures for better measurement and/or expanding 

measurement to new areas. Compared with a single-coded traditional item only 

assessing one content domain, the double-coded items nested within paired testlets 

are innovative for measuring content areas that require higher-order cognitive skills. 

Although these innovative items are advantageous in assessing proficiency and 

growth authentically, they impose challenges in psychometric analyses, especially in 

scoring students’ overall performance and performance in each targeted sub-content 

domain. Although many types of innovative items have been developed and used in 

assessments, standard Item Response Theory (IRT) models are still used for 

psychometric analysis in practice.  

An IRT model may not fit well with item response data from such double-

coded innovative items with paired stimuli, due to the violation of its assumptions— 

local independence and unidimensionality. Local independence means that an 

examinee’s response to one item does not relate to his/her responses to any other 

items in the test given his/her ability. This assumption is likely to be violated in tests 

consisting of testlets. A testlet refers to a bundle of items based on the same stimulus 

(Rosenbaum, 1988; Wainer & Kiely, 1987). When using testlets, responses to items 

in the same testlet are likely to be dependent due to the use of a common stimulus, 

given the person and item parameters. Ignoring the item clustering effect in a testlet 

will result in overestimated test reliability and underestimated item discrimination 
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parameters. (e.g. Chen & Thissen, 1997; Jiao, Wang, & Kamata, 2005; Sireci, 

Thissen, & Wainer, 1991; Wainer, 1995; Wainer, Bradlow, & Wang, 2007; Wainer & 

Lukhele, 1997; Wainer & Wang, 2000; Yen, 1993).  

The use of double-coded items, on the other hand, may violate the uni-

dimensionality assumption in the application of a standard IRT model that assumes 

only one latent trait is assessed in the test. Compared to a multidimensional IRT 

(MIRT) model, fitting a unidimensional IRT (UIRT) model to response data from a 

multidimensional test will lead to less accurate estimates for the overall and sub-

domain abilities, especially when the correlation between sub-domain abilities is high 

(Yao & Boughton, 2007).  

Previous studies have investigated methods to accommodate testlet effects 

resulting from item clustering. One method is to treat dichotomous items clustered 

within the same stimulus as a “super item” and score the “super item” using 

polytomous IRT models. Instead of using the actual item response pattern, such a 

method estimates an examinee’s ability using only the number of items answered 

correctly among all items in the “super item” (Wang & Wilson, 2005). Hence, 

treating items in a testlet as a “super item” results in loss of information and 

consequently undermines measurement precision. Another method models the item 

clustering effect directly by adding another parameter in a standard IRT model to 

separate the latent ability and the person-specific contextual effect for items in a 

testlet (e.g. Bradlow, Wainer, & Wang, 1999; Du, 1998; Jiao et al, 2005; Wang, 

Bradlow, & Wainer, 2002; Wang & Wilson, 2005). Extending this conceptualization, 

a non-compensatory doubly testlet model (Jiao & Lissitz, 2014; Jiao, Lissitz & Zhan, 
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2017) was proposed to accommodate complex dual local item dependence (LID) for 

items embedded in multiple contexts such as paired passages. 

Subscore reporting for a test with double-coded items is challenging. Studies 

have explored methods for estimating sub-domain ability using IRT models, mostly 

for simple structure tests where items are fully nested within latent traits (e.g. de la 

Torre & Patz, 2005; de la Torre & Song, 2009; Gibbons & Hedeker, 1992; Sinharay, 

2010; Wainer et al., 2001; Wang, Chen, & Cheng, 2004; Yao & Boughton, 2007; 

Yen,1987). Among these studies, Feinberg and Wainer (2014) conducted a study to 

evaluate the added-value of subscores specifically for tests with overlapping items 

using a MIRT model. Using a MIRT model to report subscores in the presence of 

double-coded items is computationally challenging, since the number of person 

ability parameters needing to be estimated increases drastically when the number of 

subdomains increases. Another challenge of using MIRT models is that since item 

difficulty parameters in the MIRT model cannot be decomposed for different 

subdomains, item parameters from MIRT models cannot be used in IRT-based 

number-correct scoring (NCS; Yen, 1984a). The NCS is widely used in large-scale 

assessments as the scores it yields are more interpretable than IRT pattern scores — 

the IRT-based number-correct scores are the same for students who answer the same 

number of items correctly in a test. 

In addition, for subscores in alignment with content dimensionality instead of 

construct dimensionality, the use of MIRT is often hard to justify. In educational 

tests, subscores are often reported in alignment with either content structure of the test 

(more often justified by substantive or cognitive framework, thus more often 
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preferred by the users of the test scores) or the construct structure of the test to offer 

insights for different aspects of the students’ general proficiency or performance. A 

test content dimension represents a unique content domain of a test, such as algebra 

or geometry in a mathematics test. Whereas a construct dimension means an 

unobserved/latent attribute used to describe observable behaviors measured by the 

test, such as listening/reading/speaking/writing ability measured in a language test 

(Crocker & Algina, 2008). Based on the structure for content and construct, tests can 

be categorized into four categories— (a) tests with unidimensional content and 

unidimensional construct, for example, a unit assessment on addition for a math class 

assess one content (i.e. addition) and only one construct (i.e. math/arithmetic 

operation); (b) tests with multidimensional content and unidimensional construct, for 

instance, the NAEP mathematics assessment is a unidimensional test (Carlson, 1993; 

Carlson & Jirele, 1992; Kaplan, 1995; Muthén, 1991; Rock, 1991) consisting of 

content sub-domains on number properties and operations, measurement, geometry, 

data analysis and probability, and algebra; (c) multidimensional content, 

multidimensional construct, a good example is a scenario-based medical licensure test 

that mimics the diagnosis process with “fake” standardized patients assessing various 

content domains and skills; and (d) tests with unidimensional content and 

multidimensional construct which is relatively rare in real-world assessment scenario. 

In an UIRT framework, all items load on one latent trait. The MIRT model, on the 

other hand, assumes a structure where different clusters of items load onto different 

latent traits. As the latent trait is unobservable, it is consistent with the concept of 

construct from a test development perspective. When the test is multidimensional in 
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content but unidimensional in construct, the use of a MIRT model for content 

multidimensionality may not be proper. In the case where the test is unidimensional 

in construct, subscores reported based on content multidimensionality will still 

provide beneficial diagnostic information for future instruction and learning. For such 

a case, the use of a unidimensional IRT model is more appropriate. Comparing to 

unidimensional IRT approaches, the use of MIRT is overfitting and may bring other 

potential problems such as lower measurement precision due to the increasing 

number of model parameters given the same amount of information. 

Models accounting for testlet effects and estimating subdomain scores were 

researched and developed, respectively. No research has investigated how to estimate 

subscores for tests with double-coded items embedded in paired testlets (i.e., a set of 

items based on information from two item stems. The item stimuli can be reading 

passages in a reading test, or graphs and/or tables in a math or science test.). The 

current study is intended to develop a model to report subscores for such a test and 

evaluate the proposed models from various perspectives.  

Purpose of the Study 

This study proposes a two-parameter doubly testlet model with internal 

restrictions on item difficulties (2PL-DT-MIRID). The proposed model (a) 

accommodates complex testlet effects due to paired stimuli within multiple contexts 

and (b) decomposes an item difficulty parameter to difficulties that are component -

specific at item level and are content domain-specific in estimating subscores. Instead 

of modeling content domain scores as multidimensional, as in MIRT models for 

examinees’ domain ability estimation, the proposed model reports scores for each 
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content domain by decomposing item parameters, especially the item difficulty 

parameters, into domain-specific item difficulties for subscore estimation within a 

UIRT modeling framework. This formulation is consistent with the situation where 

subscores represent content multidimensionality. The item parameters of the proposed 

model can also be used to estimate examinees’ domain abilities using IRT-based NCS 

(Yen, 1984a). 

A Monte Carlo simulation study is conducted to evaluate the proposed model 

in modeling item responses from an arithmetic test. In this simulation study, 

dichotomous item responses are generated based on the proposed 2PL-DT-MIRID to 

mimic an arithmetic test with double-coded items embedded in multiple contexts. The 

simulated item responses to double-coded items embedded in paired testlets are 

scored by (a) the proposed 2PL-DT-MIRID, (b) the testlet MIRID (c) the MIRID 

(Butter, De Boeck, & Verhelst, 1998), (d) a two-parameter doubly testlet model (2PL-

DTM; Jiao & Lissitz, 2014; Jiao et al. 2017), (e) the unidimensional two-parameter 

logistic (2PL) IRT model, and (f) the IRT-based NCS using model parameters from 

the proposed model. The performance of the proposed model is evaluated in 

comparison with the other scoring methods in terms of parameter estimation accuracy 

and reliability of the estimated subscores and the total scores.  

This study addresses the following three research questions.  

1. How well can the parameters of the proposed 2PL-DT-MIRID be 

recovered across different study conditions? In other words, how do the 

manipulated factors (i.e. the magnitude of the testlet effect represented by 

the standard deviation of testlet effects, the correlation between the testlet 
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effects of the two testlets and the percentage of double-coded items in the 

test) impact the model parameter recovery for the proposed model? 

2. How do ignoring the dual testlet effects, ignoring the testlet effect and/or 

ignoring the effect of the double-coded items impact the model parameters 

recovery, the subscores estimation accuracy, and the overall score and 

subscore reliability?  

3. Which model fit index is more capable of identifying the true model 

across different study conditions? 

Significance of the Study 

Since the adoption of the No Child Left Behind (NCLB) Act in 2001, the 

reporting of subdomain test scores for diagnosis to address specific instructional goals 

has been encouraged. As such, reporting subscores in addition to the summative test 

scores has become increasingly prevalent in educational assessment. This advocacy is 

rooted in the main advantage of subscores—their capability of providing diagnostic 

information for learning and instruction (Sinharay, Puhan, & Haberman, 2011). For 

example, a summative mathematic score is usually reported along with domain 

scores, such as number sense, algebra, geometry and data analysis, to improve 

learning and instruction. 

The emphasis of academic content knowledge and non-cognitive skills in 

educational standards requires task-based and context-based items to make 

assessment authentic. Although research has indicated that double-coded items cannot 

help to increase the added-value of subscores (e.g., Feinberg & Wainer, 2014), the 

use of such items is inevitable, as they are effective in assessing complex cognitive 
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skills and intertwined knowledge network embedded in real world problem-solving. 

For example, SATÒ reports two section scores, two cross-test scores, three test scores 

and 7 subscores, in addition to the test total score. Among the subscores, some scores 

are obtained based on double-coded items. 

The current practice in subscore reporting is that a double-coded item is 

treated as a single-coded item and counted twice for two subscore computation, one 

for each subscore. The estimation of one sub-content domain score is contaminated 

with information from the other sub-content domain. The proposed 2PL-DT-MIRID 

decomposes item difficulty for the double-coded items into domain-specific ones, 

hence, the estimation of domain ability is purified. This model is formulated to 

accommodate tests targeting multidimensional content areas but unidimensional 

constructs where the use of MIRT is hard to justify.  In addition, the model 

parameters calibrated from the proposed model can be used not only in pattern 

scoring, but also in IRT-based NCS. It is more flexible than MIRT models where 

IRT-based NC domain scores cannot be estimated using the item parameter estimates 

from a MIRT model. 

Overview of the Dissertation 

This dissertation contains five chapters. The first chapter describes the 

problem to be investigated in this dissertation research. In Chapter 2, previous studies 

on testlet IRT models, psychometric models used for subscore reporting, and the 

MIRID are reviewed and summarized to scaffold for the proposal of the non-

compensatory 2PL-DT-MIRID. Specifically, reviewing studies on item clustering 

effects and subscore reporting (a) presents the development of available methods of 
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reporting subscores for tests containing testlets, and (b) justifies the necessity of the 

proposed model based on the limitation of the available ones. Further, the synthesis of 

studies on testlet models and the MIRID lays a theoretical foundation for the 

formulation of the proposed model. Chapter 3 first presents the formulation of the 

proposed model, then outlines the simulation study investigating model parameter 

recovery and model selection issues. Information related to simulation conditions (i.e. 

fixed factors and manipulated factors), data generation, model identification and 

estimation, methods for summarizing the results, and model evaluation criteria is 

presented. Simulation conditions are justified by both theoretical evidence and results 

from pilot studies. Chapter 4 summarizes the study results in terms of parameter 

estimation, score reliability and model selection. Key findings are highlighted with 

tables and figures in this section. Results of the simulation study are further discussed 

and synthesized in comparison and contrast with previous investigations on relevant 

topics in the last chapter. A summary of contribution and limitation of this study 

concludes Chapter 5 and this dissertation. 
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Chapter 2: Theoretical Framework 
This chapter reviews and synthesizes previous studies to present the 

inspiration, motivation, and theoretical framework for the proposed model. Literature 

reviewed is categorized into three focused topics in this chapter – (a) IRT models and 

testlet response theory (TRT) models for local item dependence, (b) methods and 

models developed for subscore reporting, and (c) the MIRID. The first section of this 

literature review introduces IRT models, their assumptions and the development of 

TRT models based on the IRT models. In the second section, the methods and models 

used for subscore reporting are discussed, including the advantages and disadvantages 

of the available methods. As the MIRID is an important component in the proposed 

model, the model formulation, parameter estimation and the application of the MIRID 

are introduced in detail in the third section.  

Item Response Theory and Testlet Response Theory Models 

Item Response Theory Models 

Classical Test Theory (CTT) and Item Response Theory (IRT) are two widely 

used measurement theories in measuring test performance (in CTT) or latent trait (in 

IRT) and instrument development. The CTT defines an examinee’s observed score as 

the sum of his/her true score and error score. The error score is attributable to random 

and systematic mechanisms. The CTT is carried out with weak assumptions— (a) an 

examinee’s error score does not correlate to the his/her true score, (b) the error scores 

for an examinee on parallel forms are not correlated and (c) the average error score in 

a population of examinees is 0 (Hambleton & Jones, 1993). In CTT, an examinee’s 



 

 12 
 

true score is defined as the expected value of the observed scores across parallel 

forms where tests measure the same construct with equal size of measurement error.  

IRT is a family of statistical models with logit or probit link functions, which 

characterizes the relationship between an examinee’s performance on an item and 

his/her latent ability on the targeted construct/content measured by items in the test 

(Hambleton & Jones, 1993). In an IRT model, the probability for an examinee 

obtaining a correct answer to an item is modeled as a mathematical function of the 

examinee’s latent ability and item characteristics, such as item difficulty and item 

discrimination. Given that the selected IRT model reflects the true relation between 

the item responses and the latent ability, item statistics and person abilities yielded 

from the IRT model are invariant by directly modeling the relative standing of 

examinee’s ability and item difficulty at the same time. Invariant parameter 

estimation of an IRT model is a big advantage compared with CTT. In CTT, the 

estimates of the true scores are entirely dependent on the test, that is, the estimates are 

inconsistent across tests; and item statistics (e.g., item difficulty and item 

discrimination) are sample dependent.  

A variety of IRT models have been developed for fitting different types of 

item responses to different types of items. The choice of an appropriate IRT model 

depends on (a) whether item responses are dichotomous or polytomous, (b) if the 

response categories are ordered, (c) how many abilities contribute to the performance 

on an item, and (d) the relationship between the item responses and the underlying 

ability(ies) (Hambleton & Jones, 1993). Since the functional form of the proposed 

2PL-DT-MIRID is based on a unidimensional IRT model for dichotomously scored 



 

 13 
 

item responses, commonly used unidimensional dichotomous IRT models are briefly 

introduced as follows.  

The one-parameter logistic (1PL) IRT model was developed based on the 

framework of the generalized linear regression model with parameters interpreted in 

the context of measurement (e.g., Andrich, 2004; Linacre, 2005). Mathematically, as 

presented in Equation 1, the probability of examinee ! obtaining a correct answer to 

item ", denoted as #$%('$% = 1), is a logistic function of the difference between the 

examinee !’s latent ability, denoted as +%, item difficulty, denoted as ,$, and item 

discrimination, denoted as -. Item difficulty is the point on the ability scale where the 

probability of getting the item correct is 50% for IRT models with no upper or lower 

asymptotes. The 1PL IRT model assumes that all items differ only in terms of item 

difficulty while equally discriminating for all examinees.  

  #$%.'$% = 1/+%, -, ,$1 =
1

1 + exp6−-.+% − ,$18
. (1) 

The Rasch model (Rasch, 1960) is also frequently used in test operational 

practice. It is very similar to the 1PL IRT model, except that the Rasch model 

constrains item discrimination to be 1 for all items in the test.  

A two-parameter logistic (2PL) IRT model was proposed by Birnbaum (1968) 

to allow items to differ on item discrimination in addition to difficulty. The 2PL IRT 

model proposed is presented in Equation 2, where the item discrimination parameter 

is denoted as -$.   

 #$%.'$% = 1/+%, -$, ,$1 =
1

1 + exp6−-$.+% − ,$18
, (2) 

Conceptually, an item with higher discrimination power will have a steeper 

slope on the Item Characteristic Curve (ICC), an S-shaped curve depicting the 
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probabilities of obtaining a correct answer along the latent ability scale. When item 

discrimination is higher, examinees with abilities closer to item difficulty are better 

separated into different ability levels (Hambleton, Swaminathan, & Rogers, 1991). In 

other words, the higher the discrimination power, the more informative the item. The 

item discrimination is denoted as -$ that is defined by the slope of ICC at the 

inflection point. Although the theoretical range of the item discrimination parameter 

is from negative infinity to positive infinity, negative item discrimination is 

considered as a red flag for a “bad” item. The flagged items are usually discarded 

after analyzing item responses from field tests. This is because, when item 

discrimination is negative, examinees with higher abilities will have lower 

probabilities of getting an item correct. A common range of item discrimination in 

testing practice is (0, 2) (Hambleton et al, 1991).  

For computational simplicity, Birnbaum (1968) used a scaling parameter 

9	(9 ≈ 1.7) to minimize the difference between the logistic ogive and the normal 

ogive (Camilli, 1994). See Equation 3. 

 #$%.'$% = 1/+%, -$, ,$1 =
1

1 + exp6−9-$.+% − ,$18
. (3) 

The ICCs for the Rasch model, the 1PL and the 2PL IRT models have a lower 

asymptote of 0, which means that the probability of answering the item correctly will 

asymptotically approach to 0 as the person ability approaches negative infinity. Thus, 

these models ignore the possibility of obtaining a correct answer only by chance or 

other plausible factors, such as pre-knowledge. Birnbaum’s (1968) three-parameter 

logistic (3PL) IRT model incorporates a pseudo-guessing parameter to increase the 
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lower asymptote of the ICC allowing random guessing effect. The 3PL IRT model is 

presented as in Equation 4.  

  #$%.'$% = 1/+%, -$, ,$, >$1 = >$ +
1 − >$

1 + exp6−-$.+% − ,$18
, (4) 

where >$ represents the lower asymptote for the "th item.  

There are three underlying assumptions for an IRT model. These assumptions 

guarantee accurate parameter estimation and the valid inferences obtained from an 

IRT model by addressing (a) the model data fit, (b) dimensionality and (c) local 

independence. 

Model data fit. The ICC specified based on the functional form of the IRT 

model should reflect the true relation between the observed item response and the 

latent person ability. First, the specified IRT model (a) should have a functional form 

that is monotonically increasing to describe the intrinsic relationship between latent 

ability and the probability of obtaining a correct answer— the higher the ability, the 

higher the probability of getting an item correct. Second, the model should include an 

appropriate number of item parameters that present the relations between item 

responses and the item characteristics, for example, a 3PL IRT model may be used for 

multiple-choice items where it is possible to get a correct answer by random guessing.  

Dimensionality. The person ability parameter(s) in an IRT model 

demonstrate(s) the dimension(s) on which examines are measured by items in the 

tests. The UIRT model, as its name suggested, models the situation where an item 

only measures one underlying ability. In other words, only one latent trait underlies 

the item response (Hambleton et al., 1991). Yet, research has shown that the uni-

dimensionality assumption is often challenged in real-world assessment scenarios 
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(Ackerman, 1994; Nandakumar, 1994; Reckase, 1985). In some cases, the number of 

dimensions of the ability is underestimated (Reckase & Hirsh, 1991).  

Test multidimensionality could be either planned and/or unintended. The most 

common motivation for designing a multidimensional test is content clustering. For 

example, a test on science may test students’ knowledge in many sub-content 

domains, such as physics, chemistry and biology, etc. In other cases, 

multidimensional trait may also entail multidimensionality of a test. One example is a 

language test that assesses four skills of language proficiency— listening, speaking, 

reading and writing. On the other hand, unintended multidimensionality can be 

induced by test speediness (Lu & Sireci, 2007), passage dependency (e.g. Bradlow et 

al., 1999; Hartig & Höhler, 2009), and/or item format (Yao & Schwarz, 2006).  

A planned multidimensional test can have a simple structure or a complex 

structure. A simple structure refers to the situation where each of the items in the test 

only contributes to one latent trait, and the test assesses more than one latent trait (e.g. 

Lee & Brossman, 2012; Reckase, 2009). In other words, a simple structure test is a 

multidimensional test consisting of two or more unidimensional sub-tests (Wang et 

al., 2006). As items are fully nested within the ability dimensions, such structure is 

also referred to as between-item multidimensionality (e.g., Adams, Wilson & Wang, 

1997; Hartig & Höhler, 2008; te Marvelde, Glas, Van Landeghem, & Van Damme, 

2006). A complex structure, also referred to as within-item structure, allows items in 

a multidimensional test to load on more than one latent trait (e.g. Lee & Brossman, 

2012; Reckase, 2009). Diagram representations of a simple structure and a complex 

structure are presented in Figure 1. In Figure 1, items 3 and 4 in the complex structure 
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test load on both latent traits in the model, whereas all items in the simple structure 

measure only one latent trait.  

 

Figure 1. Examples of a simple structure model (left) and a complex structure model 
(right)  

Multidimensional IRT (MIRT) models have been developed to model item 

responses based on items assessing more than one dimension of abilities (e.g., 

Reckase, 1997, 2009). The application of the MIRT models will be discussed together 

with other methods used for subscore reporting later in this chapter. As the current 

study focuses on reporting subscores by decomposing item difficulties, the uni-

dimensionality of the latent trait is assumed in the proposed model.  

Local independence. The assumption of local independence in an IRT model 

consists of two facets—(a) local person independence (LPI) and (b) local item 

independence (LII, Reckase, 2009, p. 13). LPI is achieved when item responses to a 

specific item are uncorrelated after controlling for the persons’ abilities. 

Mathematically, the LPI can be expressed as  
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  #(' = ?|A) = BC(D$%|+%)

E

%FG

, (5) 

where the probability of a group of H examinees with ability vector A obtaining a 

specific response pattern ? on item ", is the product of the probability of each person 

with an ability parameter of +% getting a response of D$% on item ". This assumption is 

often violated due to person clustering due to factors such as cluster sampling, group 

intervention and problem-solving strategies. (e.g. Jiao, Kamata, Wang, & Jin, 2012).  

As the current study does not involve LPI, this paper will not discuss LPI in further 

details.  

The LII describes the situation where an examinee’s response to one item does 

not relate to his/her response to another item after controlling for his/her latent ability. 

LII is described mathematically as in Equation 5— the probability of getting a 

specific response pattern on a test with I items for person ! with ability +% is the 

product of the probability of answering each item in the test correctly.  

  #.' = ?/+%1 = BC.D$%/+%1.	
J

$FG

 (6) 

When evaluating local independence of an IRT model, it is necessary that 

both LII and LPI are satisfied.  

Yen (1993) identified 10 causes for LID— (a) external assistance/interference, 

(b) speededness, (c) fatigue, (d) practice, (e) item or response format, (f) passage 

dependence, (g) item chaining, (h) explanation of previous answer, (i) scoring rubrics 

or rater clustering and (j) content, knowledge and abilities clustering. This study 

focuses on modeling LID caused by passage dependence, that is, item clustering 
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effect introduced by the use of common stimuli, such as reading passage, graph 

and/or tables.  

Consequences of ignoring LID. Previous research has identified three major 

problems of ignoring LID in the use of an IRT model—(a) biased item and person 

parameter estimation, (b) inflated reliability estimation, and (c) equating errors.  

First, biased estimates of item and person parameters are induced by LID. 

Chen and Thissen (1997) found biased item discrimination parameter estimates with 

the presence of LID, but their study did not conclude on the direction of the biased 

item parameters. Ackerman (1987) and Reese (1995) both found that the item 

discrimination parameters were over-estimated in the presence of LID. On the other 

hand, Bradlow et al. (1999) and Wainer et al. (2000) discovered that the item 

discrimination parameters were underestimated when ignoring the item clustering 

effect caused by testlets. They also showed that the discrepancy between the item 

discrimination estimates yielded from the underspecified models and those from the 

true model was larger when LID is larger. The seemingly contradictory conclusion on 

the direction of bias in item discrimination estimates is attributable to the difference 

in formulating LID in data generation. Item discrimination indicates the correlation 

between item response and person ability. In studies by Bradlow et al. (1999) and 

Wainer et al. (2000), LID is modeled by adding a person specific testlet effect to a 

standard IRT model, the true item discrimination is a measure of the correlation 

between the item responses and the combination of ability and testlet effect. Ignoring 

testlet effect naively assumes the variance in item responses is due to person ability 

solely. Consequently, the “true” response-ability correlation is undermined, and so is 
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item discrimination (Bradlow et. al., 1999). Whereas in Ackerman (1987) and Reese 

(1995), LID is simulated directly by correlating item responses, which lowers the 

total noise contained in the item responses. Consequently, item discrimination is 

overestimated in such studies. When ignoring LID, item difficulty estimates were 

found attenuated towards the mean (Ackerman, 1987; Bradlow et al., 1999; Reese, 

1995) and the pseudo-guessing parameters are underestimated (Reese, 1995). Yet, the 

bias in item difficulty and the pseudo-guessing parameter estimates are not as 

“alarming” (Reese, 1995, p. 10) as those in item discrimination parameter estimates. 

Further, Ackerman (1987) and Reese (1995) also indicated that ability estimates tend 

to be biased at the lower and upper ends of the latent ability scale as LID increases. 

Specifically, the lower abilities are underestimated, and the higher abilities are 

overestimated when ignoring LID.  

In the IRT framework, item and test information are used as an index for 

measurement precision of an item and a test, respectively. Information, standard error 

of measurement (SEM) and reliability are conditional on the latent ability level in 

IRT. The information of an item ", at ability level +, is defined in Equation 7 where 

the probability of getting the item right is denoted as #K(+),  the probability of 

obtaining an incorrect answer, denoted as L$(+), and #$′(+) is the derivative of #K(+).  

 I$(+) =
(#$′(+))N

#$(+)L$(+)
. (7) 

For example, if the relation between the latent ability, denoted as +, and the 

item response to item " is modeled by Rasch model, the item information is the 

product of the probability of answering the item correctly, denoted as #$(+), and that 

of providing an incorrect answer, denoted as L$(+). That is,  
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 I$(+) = #$(+)L$(+). (8) 

The test information at a latent ability level is the sum of all item information 

at that latent ability. The SEM at a specific ability level + is the inverse of the square 

root of the item information at ability level +.	Conceptually, higher information leads 

to lower SEM and higher precision of the measurement. Reliability indicates 

measurement precision. In other words, reliability represents to what extent the 

measurement is without error. Therefore, as the SEM increases the reliability 

decreases. As the information can be conceptualized as an index evaluating how well 

the item distinguishes students with high and low abilities, the changes in information 

and reliability are in the same direction.  

Studies have shown evidence that item and test information are inflated when 

LID is present (Ip, 2000; Thissen, Steinberg, & Mooney, 1989; Reese, 1995; Wainer 

& Wang, 2001). The SEM is also found to be underestimated when LID is present but 

ignored (Wainer, 1995; Wainer & Thissen, 1996). Consistently, studies have also 

observed that reliability is overestimated when ignoring LID (Sireci, Thissen, & 

Wainer, 1991; Wainer, 1995; Wainer & Lukhele, 1997; Wainer & Thissen, 1996, 

Yen, 1993; Zenisky, Hambleton, & Sireci, 2002).  

In addition, Yen (1984b) found substantial unsystematic errors in equating test 

forms when LID is present. As equating is not the focus of the current study, the 

impact of LID on test equating will not be discussed in detail.  

Testlet Response Theory Models 

Rosenbaum (1988, p. 349) proposed the concept of item bundle as “a small 

group of multiple choice items that share a common reading passage or graph, or a 
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small group of matching items that share distractors”. Wainer and Kiely (1987) 

discussed the use of a testlet in the context of Computer Adaptive Testing (CAT), 

where items related to the same content area are developed as a unit and arranged 

hierarchically or linearly with predetermined paths for students with different 

abilities. Although these concepts were discussed for different test scenarios, they 

were both proposed for modeling the effect of item clustering—the violation of LII 

assumption (Rosenbaum, 1988; Wainer & Kiely, 1987) and accommodating the 

contextual effect (Wainer & Kiely, 1987). In general, the impact of LID due to 

testlets is not negligible (e.g., Ferrara, Huynh, & Baghi, 1997; Ferrara, Huynh, & 

Michaels, 1999; Lee, 2004; Sireci et al., 1991; Thissen et al., 1989). In this study, a 

testlet refers to a cluster of items that are nested within the same item stimuli. Due to 

the common stimuli, a student’s responses to all items in the cluster are more likely to 

be impacted by the same content or context, a construct or content irrelevant factor, 

which may introduce noise in estimating the latent ability.  

As described in Chapter 1, the authentic and scenario-based assessments have 

led to the popularity of testlets in large-scale standardized assessment. For example, 

reading ability is often assessed by asking students to answer a group of multiple-

choice items based on a passage. The same format is also common in a math test 

where students are required to solve a series of computational questions with 

information given in a table or a graph to demonstrate their mastery of relevant math 

concepts. In the presence of a testlet, using a basic IRT model is problematic. Some 

psychometric models were developed to address the insufficiency of basic IRT 

models in modeling item responses yielded from a test with testlets.  
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Bradlow et al. (1999) proposed a Bayesian random effects model for testlets 

by adding a random effects parameter to the standard 2PL IRT model to account for 

dependence among items that are nested within the same testlet. The baseline model 

they used in their study is a probit version of the logit 2PL IPT model. The 

mathematical formulation is presented as in Equation 9.  

 
where 

O$% = -$(+% − ,$ − P%Q($))) + R$% , 

S = 	 T
1		, O$% > 0
0		, O$% ≤ 0

. (9) 

In Equation 9, P%Q($) represents the person specific testlet effect for person ! 

on item " nested in testlet X. It is assumed that P%Q($) follows a normal distribution 

with a mean of 0 and a variance of YZ
N. The sum of P%Q($) across all people equals to 0. 

The dependency of the items is accommodated in this formulation as the testlet effect 

for person ! is assumed to be the same for all items in the same testlet. Such a testlet 

response model can also be formulated as a logistic model. In Equation 10, the 

probability of answering an item correctly is a function of person !’s ability, denoted 

as +%; item discrimination -$, item difficulty ,$ and the testlet effect, denoted as P%Q($). 

In this model, item discrimination for each item is considered to be the same for the 

general ability and the testlet effect. 

 #$%.'$% = 1/+%, -$, ,$1 =
1

1 + exp6−-$.+% − ,$ − P%Q($)18
. (10) 

The model proposed in Bradlow et al. (1999) has been extended to a three-

parameter logistic testlet model (Du, 1998; Wainer, Bradlow, & Du, 2000; Wang, 

Bradlow, & Wainer, 2002) by adding the pseudo-guessing parameter. The 3 PL 

Testlet Response Theory (TRT) model is presented in Equation 11.  
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 #$%.'$% = 1/+%, -$, ,$, >$1 = >$ +
1 − >$

1 + exp6−-.+% − ,$ − P%Q($)18
, (11) 

where >$ represents the probability of obtaining a correct response to item " by 

chance. Other parameters are interpreted the same as in the 2PL TRT model.   

Wang and Wilson (2005) proposed the Rasch model based TRT model for the 

situation where examinees have no random chance of obtaining the right answer for 

an item (i.e. >$ = 0) and the items are equally discriminant with item discrimination 

being 1 (i.e. -$ = 1). Wang and Wilson (2005) consider the Rasch TRT model as a 

special case of the multidimensional random coefficients multinomial logit model. To 

model the testlet effect, this model incorporated new dimensions for testlets in 

addition to the general ability dimension. In other words, all items load on the general 

factor (i.e. general ability), items clustered within a testlet load on an additional factor 

specifically for the testlet to account for the testlet effect. The Rasch TRT model is 

presented in Equation 12.  

 #$%.'$% = 1/+%, ,$1 =
1

1 + exp6−.+% − ,$ − P%Q($)18
. (12) 

From the perspective of multilevel modeling, Jiao, Wang and Kamata (2005) 

proposed a three-level one-parameter logistic testlet model in which item effects are 

modeled at level-1, item clustering effects are modeled at level-2, and person effects 

are modeled at level-3. Such a model is presented in Equation 13.  

 
 

[$\% = log	(
C$\%

1 − C$\%
). 

(13) 
At level 1: [$\% = à\% + G̀\%'G$\% + ⋯ + (̀cdG)\%'(cdG)$\% , 

At level 2: e

à\% = Paa% + fa\%

G̀\% = PG\a

…
(̀cdG)\% = P(cdG)\a

, 
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At level 3: e

Paa% = haaa + iaa%

PGa% = hGaa

…
P(cdG)a% = h(cdG)aa

, 

where C$\%  is the probability that person ! responds to item " in testlet O correctly, with 

" = 1,… , j − 1 (the j\k item is the reference item), ! = 1, … , l and O = 1, . . m	; [$\% is 

the logit of C$\% ; and at Level 1, Xo$\%  (p = 1,… , j − 1) represents the p\k dummy 

coded variable for person ! , with value 1 when p = " and 0 when 	p ≠ "	. For item " 

in testlet O; the coefficient à\% is the intercept which represents the effect of the 

reference item, and ò\%  is the coefficient associated with  Xo$\% , which represents the 

effect of the p\k item relative to the reference item; at Level 2, fa\% is a random 

component of à\%  and is distributed as r	(iaa%, Ys
N), indicating the person-item 

cluster interaction for person ! and testlet O, the random effect fa\% , is analogous to 

P$Q($)in Bradlow et al. (1999); at level-3, Paa%  is decomposed to the average person 

ability and the person-specific effect iaa%; the person effect follows a normal 

distribution with a mean of 0 and standard deviation of Yt
N. 

Alternative methods applied the conceptualization of a bi-factor model in the 

context of a testlet IRT model allowing the item discrimination parameters to be 

different for testlet and general ability dimensions to allow more flexibility and 

generality (Li, Bolt, & Fu, 2006; Tao, Xu, Shi, & Jiao, 2013). For example, Li et al. 

(2006) proposed a more generalized model (see in Equation 14),  

 
C$%.'$% = 1/+%, -$G, -$N, ,, P%Q($)1

=
1

1 + exp6−.-$G+% − ,$ + -$NP%Q($)18
, (14) 
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where -$G and -$N are item discrimination parameters for the general ability +% and 

testlet effect P%Q($), respectively. Allowing item discrimination to differ for ability and 

testlet-ability interaction provides a more flexible modeling approach in modeling the 

relation between item responses and items nested within testlets. This model assumes 

that both person ability +% and testlet effect P%Q($) follow a standard normal 

distribution and are independent of each other.  

Recently, a non-compensatory doubly testlet model (Jiao & Lissitz, 2014; Jiao 

et al., 2017) was proposed to accommodate complex dual LID for items embedded in 

multiple contexts such as paired passages based on a state reading test. The 2PL-

DTM (Jiao & Lissitz, 2014; Jiao et al., 2017) is presented as follows.  

 

#.f$% = 11 = u
1

1 + exp v−-$.+% − ,$ + P%Qw($)1x
y

∗ u
1

1 + exp v−-$.+% − ,$ + P%Q{($)1x
y , 

(15) 

where the probability of obtaining a correct answer for an item embedded in paired 

contexts correct is a function of the examinee’s ability, denoted as +%, item 

difficulty,	,$, item discrimination, -$ , and testlet effects from each stimulus, denoted 

as P%Qw($) and P%Q{($), respectively. The non-compensatory relation indicates the 

necessity of mastering both testlets content to answer an item embedded in multiple 

contexts correctly. However, their model does not estimate subdomain abilities in 

tests with double-coded items in paired passages. The proposed model is based on the 

2PL IRT model and the non-compensatory doubly testlet model (Jiao & Lissitz, 

2014) described in this section.  
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Subscore Reporting  

Test scoring is to provide a numeric summary of an examinee’s performance 

on the test by summarizing his/her response to each individual item in the test 

(Thissen & Wainer, 2001). In modern measurement theory, an examinee’s responses 

to items in a test are considered as indicators of his/her underlying trait or traits. In 

addition to a summative score, subscores are also reported in many tests. A subscore 

is also referred to as a domain score, an objective score, a skill score, subscale score 

or a diagnostic score. It indicates examinees’ levels of mastery or proficiency in a 

sub-category of the holistic trait assessed in the test based on a subset of items in the 

test. A subscore serves two major functions in the learning-assessment dynamics— 

first, it indicates an examinee’s strength and weaknesses; second, it helps examinees 

to work harder on the area(s) that he/she performed poorly and to make progress in 

future learning (e.g., Boughton, Yao, & Lewis, 2006; Thissen & Edwards, 2005; Yen, 

1987). 

Promoted by educational policy such as NCLB, reporting subscores to assist 

instruction and learning is increasingly prevalent in various testing programs. For 

example, a standard SATâ test (i.e. a SATâ test excluding the optional Essay test) 

reports 15 scale scores to each examinee, including 1 total score, 2 section scores, 2 

cross section scores, 3 test scores and 7 subscores. Another example is a state writing 

portfolio test that reports subscores on planning, drafting, revising, editing, structure, 

ideas and language use. This section reviews literature on psychometric approaches 

for reporting subscores— from CTT based methods to UIRT methods, then to MIRT 

approaches. This section will briefly discuss each of the methods first, then highlight 
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the advantages and disadvantages of these methods by summarizing comparison 

studies of these methods. The reviewed studies have used a variety of terminologies 

to refer to the concept of a subscore, including subscale ability, objective 

score/ability, subdomain ability, ability dimension, dimensional ability and 

dimensional latent trait. In this section, the word “subscore” will be used consistently 

to avoid confusion on terminology.   

Classical Test Theory Based Approaches for Subscore Reporting 

Raw subscore. A raw subscore is also called a CTT-based number-correct 

subscore. As its name suggests, a raw subscore is obtained by summing up the coded 

outcomes across a subset of items that are designed to assess students’ proficiency in 

a sub-content domain based on test specification. For example, an 8th grade state math 

test with nationally-aligned standards has 4 sub-content areas—algebra, geometry, 

data and number/computation (Embretson & Yang, 2013). In this test, each item 

assesses only one sub-content area. If raw subscores are computed from such a test, 

four raw subscores would be reported. Each subscore is the sum of the item scores 

across all items assessing the same sub-domain area. 

Kelley’s univariate regression. Kelley’s univariate regression method 

(Kelley, 1947) is a regression-based method for estimating scores. It uses the group 

mean, the observed score and the reliability of the score to predict the true score. 

Kelley’s equation is presented in Equation 16.  

 	|} = ~' + (1 − ~)�, (16) 

where  |̂ , the predicted true score, is regressed on the observed score, denoted as ' 

and the mean score of the group, weighted by ~ , the score reliability, and 1 − ~, 
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respectively. Conceptually, this method estimates the true score as a composite of the 

reliable part of the observed score and a complement proportion of the group mean to 

remove the unreliable part of the observed score. As the reliability of the test 

increases, the predicted true score is pulled towards the observed score; if test scores 

are not reliable at all (i.e. ~ = 0), the predicted true score is the average score across 

the group of examinees. This method assumes that each item contributes to only one 

content area. Kelley’s equation can be easily applied to subscore reporting for a test 

(Skorupski & Carvajal, 2010).  

Haberman (2008) proposed three variations of Kelley’s original method to 

predict a true subscore using the observed subscore, observed total score and a 

weighted average of the observed subscores and the observed total score. Research 

found that, the weighted average of the observed subscore and the total score is a 

better predictor of the true subscore (Feinberg, 2012; Haberman, 2008; Puhan, 

Sinharay, Haberman, & Larkin, 2010).  

Yen’s Objective Performance Index (OPI). Yen’s OPI (1987) is proposed 

to stabilize the estimates of the subscores. This method estimates an examinee’s 

performance on an objective area with information of his/her overall performance on 

a test using Bayesian estimation with a beta prior incorporating IRT item and person 

parameters to obtain OPI as the mean of the posterior distribution. In Yen (1987), a 

subscore is referred to as an objective score. Yen’s OPI (1987) is presented as 

follows.  

 
 

where 

mÅ = Ç%mÉ
Ñ + .1 − Ç%1

ÖÜ

EÜ
,  

Ç% =
EÜ

∗

EÜ
∗áEÜ

 and mÉ
Ñ =

G

EÜ
∑ #$%(+â)

EÜ

$FG . 
(17) 
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Like Kelley’s method, the OPI can be expressed as a weighted sum of the 

estimated proportion-correct score, denoted as mâ%, across I items for objective ! given 

estimated overall ability +É
Ñ , and the observed proportion-correct score, that is, the 

quotient of observed score for objective !, denoted as D%, and the number of items 

assessing objective !, denoted as H%. The weight Ç% is calculated as the ratio of 

theoretical number of items in the objective, denoted as H%
∗ and the sum of the 

theoretical number of items and the observed number of items in the objective.  The 

theoretical number of items is derived based on the distribution of prior information 

(e.g., grade in school or test scores from another test) and item response function.  

Wainer et al.’s augmented subscore. Wainer et al. (2001) proposed an 

approach to estimate a CTT-based subscore with information from other subscores. 

This method is a multivariate version of Kelley’s univariate regression method 

(Kelley, 1947). The mathematical formulation of Wainer et al.’s augmented subscore 

is presented in Equation 18.  

 
where 

äã = ?å + ç(? − ?å),	 
ç = é\tsèéêëí

dG 	. (18) 

In Equation 18, äã is a vector of the predicted subscores for a test, ?å is a vector 

of means for all subsets of items, ? is a vector of observed scores. ç is a matrix of 

reliability-based regression coefficients which is obtained by multiplying covariance 

matrix of the true scores and the inverse of the covariance matrix of the observed 

scores. The population covariance matrix of the true scores and the observed scores, 

denoted as é\tsè  and éêëí can be estimated as sample covariance matrices, ì\tsè  and 

ìêëí. î\tsè
ïïñ  is the óó′ element in ì\tsè , and îêëí

ïïñ  is the óó′ element in ìêëí. When ó ≠

óñ, î\tsè
ïïñ = îêëí

ïïñ . Since CTT assumes that error scores are not correlated with true 
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scores, the covariance of two true scores should be equal to the covariance of the two 

observed scores.  When ó = óñ, î\tsè
ïïñ = iï îêëí

ïïñ , where iï is the reliability for the ó\k  

subset of items. Cronbach’s alpha as the lower bound of reliability is normally used in 

the computation, that is, iï = ò. 

Kelley’s regression method (1947), Yen’s OPI (1987) and Wainer et al.’s 

(2001) augmented subscore method are all augmented subscores as they all used 

auxiliary information to estimate subscores in addition to an examinee’s performance 

on the subset of items for the targeted subscore. Kelley’s regression model uses the 

group average, OPI uses the IRT estimated person overall ability and Wainer et al.’s 

method uses an examinee’s performance on other subsets of items. The intention of 

augmentation is to reduce the standard error (SE) of the estimated subscores, hence, 

to make the estimated subscores more reliable.  

Reporting Subscores with Unidimensional Item Response Theory 

The non-augmented methods to report subscores using UIRT models conduct 

separate item parameter calibration for each subset of items in a test and estimate 

latent subscores using calibrated item parameters. Another approach is to calibrate 

item parameters for all items in the test concurrently, then score examinees based on 

their responses to the subset of items assessing the same sub-domain. When 

conducting concurrent calibration, the item parameter estimation for one subset of 

items used ancillary information from other items in the test, therefore, each method 

is also an augmented method (Bock, Thissen and Zimowski, 1997).  

Wainer et al.’s augmented subscore estimation with IRT theta score. 

Wainer et al. (2001) has proposed a method to estimate augmented subscores with 
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information from other subscores. The application of such a method to the IRT theta 

score is very similar to its use with the CTT-based subscore. The application of 

Wainer et al.’s (2001) method in UIRT is a multi-stage special case of a MIRT 

model, where each score is considered as a dimension. In other words, each item 

loads on only one subscale. Such structure is also referred to as independent 

clustering (Thissen & Edward, 2005). Wainer et al.’s subscore augmentation with 

IRT theta scores follows 4 stages—1) calibrating item parameters, 2) estimating IRT 

subscale theta scores, 3) calculating reliabilities at each theta level and the observed 

score covariance matrix of the IRT theta scores 4) regressing the estimated “true” IRT 

theta score on all subscale scores. The UIRT theta scores can be maximum likelihood 

estimates (MLE), maximum a posteriori (MAP) or expected a posteriori (EAP). 

When using MLE, the theta subscale estimates can be directly used in Wainer et al.’s 

augmentation as described in the CTT observed subscore reporting procedure. 

However, MAP and EAP are already reduced to the population mean in estimation 

(Thissen & Orlando, 2001). The amount of MAP and EAP shrinking to the 

population mean is related to the information of a given response pattern. 

Specifically, less information leads the MAP or EAP estimates to shrink more 

towards the mean, and vice versa. A correction needs to be made to use MAP and 

EAP in Wainer et al.’s augmentation (see in Equation 19). Assuming the SEs for all 

MAP estimates and EAP estimates are constant, the adjusted MAP or EAP is 

calculated as dividing the estimated MAP or EAP by the reliability of subscale ó. The 

reliability of subscale ó is denoted as ~ï in Equation 19. The reliability of subscale ó 

is calculated as the ratio of the variance of the MAP or EAP estimates for the subscale 
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to the sum of the variance of the MAP or EAP estimates and the average SE for MAP 

estimates or EAP estimates. The corrected MAP or EAP, denoted as ôö#(+õ) and 

úö#(+õ) respectively in Equation 19 can be plugged into Equation 18 to compute the 

augmented IRT subscores.  

 
 

where 

ôö#(+õ)	ùi	úö#(+õ) =
ôö#(+èí\)	ùi	úö#	(+èí\)

~ï
, 

~ï =
Yûü†(°¢£§)	êt	•ü†	(°¢£§)	

N

Yûü†(°¢£§)	êt	•ü†	(°¢£§)	
N + Yè

N¶¶¶ . 
(19) 

Reporting Subscores with multidimensional Item Response Theory 

MIRT models. MIRT models were developed as a realization of the 

complicated construct structure in assessment (Reckase, 2009). Like UIRT, MIRT 

models the probability of obtaining a correct answer to an item as a function of 

person’s ability and item characteristics, such as item discrimination and item 

difficulty. The difference is that a MIRT model assumes that more than one 

underlying construct affects the examinee’s performance to an item/test (Reckase, 

2009, p. 59). Based on the relationship between latent traits and item responses, 

MIRT model can be compensatory or non-compensatory. In a compensatory model, 

an examinee’s overall ability is modeled in the form of a weighted sum of 

dimensional abilities. Therefore, having a high ability in one dimension can 

compensate for deficiency on another dimension (Reckase,1997). As an example, a 

2PL compensatory logistic MIRT model (Reckase, 1985; 1997) can be formulated as  

 #.f$% = 1/ß®, X$, A©1 =
™(ß®A©áQ´)

1 + ™(ß®A©áQ´)
, (20) 

where the probability of getting item " correct is a function of X$, the item difficulty 

related scalar, ß®, a vector of item discrimination parameters, and A©, a vector of 
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abilities for person !. The exponent can also be written using parameters that are 

commonly used in UIRT model— ∑ -$c.+%c − ,$c1	E
cFG , where -$c  and +%c are the 

j\kelement of ß® and A©, respectively for an item with H dimensions; X$ =

− ∑ -$c,$c	E
cFG .  

In a non-compensatory MIRT model, the overall probability is computed 

through a multiplication procedure, which requires an examinee to have high abilities 

(i.e., above certain levels for each dimension) on all dimensions to be able to answer 

the item correctly. In other words, having a low ability on one of the dimensions will 

necessarily have a negative impact on the probability of obtaining a correct answer 

regardless of abilities of other dimensions. The non-compensatory MIRT model was 

formulated by Sympson (1978) and Whitely (1980) as follows.  

 #.f$% = 1/+%1 = >$ + (1 − >$) B
™G.¨≠´Æ.°ÜÆdë´Æ1

1 + ™G.¨≠´Æ.°ÜÆdë´Æ1
	

E

cFG

,	 (21) 

where the probability of getting item " correct is calculated as the product of the logit 

for each dimension. Figure 2 presents the item characteristic surface for the 2PL 

compensatory logistic MIRT model (on the left) and the item characteristic surface of 

a 3PL non-compensatory IRT model (on the right). The lower asymptote for the 3PL 

non-compensatory IRT model is 0.068 meaning the probability of getting an item 

correct is above 0 when the examinee’s ability is very low.  
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Figure 2. Item characteristic surfaces for a compensatory 2PL MIRT model and a 
non-compensatory 3PL MIRT model  
 

According to Figure 2, in the compensatory 2PL model, the probability of 

getting an item correctly can be high when the ability on the first dimension, denoted 

as +Gin Figure 2, is high, and even when the ability on the second dimension, denoted 

as +Nin Figure 2, is relatively low. This means that the high ability on one dimension 

can compensate for the low ability on the other, whereas the probability of obtaining 

a correct answer in the non-compensatory model, requires high abilities on both 

dimensions.  

Report subscores using MIRT models. As shown in Figure 1, latent traits 

are correlated in a multidimensional test with a simple or complex structure. 

Therefore, MIRT models are also augmented in that the estimation of one latent trait 

“borrows” information from other latent traits. Like augmentation in the CTT and 

UIRT framework, the augmentation in MIRT models increases measurement 

precision when estimating subscale abilities. Wang et al. (2004) conducted two 
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empirical data analyses, one with dichotomous responses to a science test with 5 

subscales and the other with Likert-scale response data to a teacher personality 

inventory with 10 subscales. They compared the performance of the multidimensional 

approach (i.e. a multidimensional random coefficients multinomial logit model; 

Adam et al, 1997) and the unidimensional approach where subscores (i.e. subscale 

person abilities) are estimated based on subtests. Their results showed that the 

multidimensional approach improves the measurement precision in both analyses in 

terms of the subscore reliability and the number of items needed for achieving the 

same test reliability. The significant improvement of the measurement precision of 

the multidimensional approach comparing to the unidimensional approach happens 

when the length of the subtest is short, the correlation between subscales (i.e. 

dimensional latent trait) is high and the number of subscales is large (p.125). Similar 

results were also found in adaptive tests. Segall (1996) found that the 

multidimensional adaptive test achieved comparable measurement precision with 

approximately 30% fewer items than what were needed for a unidimensional adaptive 

test. Luecht (1996) also found that the multidimensional adaptive approach requires 

25% to 40% fewer items than the unidimensional adaptive approach in a licensing 

context. In addition, de la Torre and Patz (2005) proposed the use of hierarchical 

Bayesian estimation for estimating parameters in a MIRT model (i.e. a 3PL 

compensatory MIRT model; Reckase, 1996). They conducted a simulation study to 

evaluate how the number of subscales/latent traits (i.e. 2 and 5), the length of subtests 

(i.e. 10, 30 and 50 items) and the correlation between subscales/latent traits (i.e. 0, 

0.4, 0.7 and 0.9) influence on the precision of MIRT parameter estimates. Their study 
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compared hierarchical Bayesian subscore estimates with those yielded from the 

unidimensional approach in terms of the correlation between the estimated and the 

true abilities, and the ratio of the mean squared error (MSE) of the MIRT ability 

estimates to that of the UIRT ability estimates. The results indicated that the 

hierarchical Bayesian estimation of subscores using a MIRT model is more efficient 

across all conditions than the unidimensional EAP estimates which considers only 

one subscore at a time in scoring. Such advantage in estimation efficiency is larger 

when subtests are short and the correlation between subscales is high (de la Torre & 

Patz, 2005).  

In addition to reporting subscores using a dichotomous MIRT model, 

polytomous MIRT models are also developed for estimating subscores for test items 

scored with partial credit scores. de la Torre (2008) developed a Generalized Partial 

Credit (GPC) MIRT model as an extension of the unidimensional GPC model 

(Muraki, 1992). A simulation study was conducted to evaluate the performance of the 

GPC MIRT model using the hierarchical Bayesian estimation by manipulating the 

number of score categories (i.e. 2, 3 and 4), the number of tests in the test battery (i.e. 

2 and 5), the length of the (sub)test (i.e. 5,10 and 20 items) and the correlation 

between subscales/ abilities (i.e. 0, 0.4, 0.7 and 0.9). Similar to findings in de la Torre 

and Patz (2005), the accuracy of the subscale ability estimates from the GPC MIRT 

model is greatly improved when the correlation between latent traits is high. In 

addition, the stability of the estimates (assessed by posterior variance) is higher when 

there are more score categories, more items in a subtest, more subtests and higher 

correlation between subscales/latent traits. de la Torre (2008) also found that better 
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estimates of the correlation between subscales/latent traits could be obtained with 

longer tests and higher correlation. The use of the GPC MIRT model is also 

demonstrated with a real data analysis from a multidimensional test battery with math 

subtests and science subtests. 

Yao and Boughton (2007) used the Bayesian estimation in BMIRT to estimate 

subscores (i.e. subscale scores) with a 3PL compensatory MIRT model (Reckase, 

1997) and a 2PL partial credit MIRT model (Yao & Schwarz, 2006) for a mixed 

format test. In this study, the authors manipulated sample size (i.e. 1000, 3000 and 

6000 examinees) and the correlation between subscales/latent traits (i.e. 0, 0.1, 0.3, 

0.5, 0.7 and 0.9). The Bayesian estimates yielded from the BMIRT software is 

compared with (a) the percentage correct on number-correct subscores, (b) the OPI 

subscores (Yen, 1987), (c) the maximum likelihood MIRT subscores and (d) the 

Bayesian UIRT subscores with the criteria of the subscore estimation accuracy and 

the classification accuracy. Yao and Boughton (2007) have concluded that (a) the 

BMIRT estimation is the most accurate method in terms of both subscore recovery 

and classification accuracy rates, (b) the maximum likelihood MIRT and UIRT 

subscores are comparable to that of the BMIRT using Bayesian estimation when the 

correlation between subscales/latent traits are low, (c) the OPI, as an augmented 

method, yielded similar results to the BMIRT estimates in terms of both ability 

parameter recovery and classification accuracy when correlations are high.  

Studies mentioned above can only report subscores for a test. de la Torre and 

Song (2009) proposed the higher-order IRT (HO-IRT) model to estimate the 

summative score (i.e. overall ability) and the subscore (i.e. domain abilities) at the 
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same time. A diagram is presented in Figure 3 to demonstrate the model structure, 

+G, +N and +Ø are domain-specific abilities (i.e. subscores); +∞ is a single higher-order 

ability or general ability (i.e. the summative score) to account for the correlation 

between the domain-specific abilities. The rate of the overall ability attributable to a 

specific domain score, denoted as ±°≤
, is fixed for all examinees. In the context of 

MIRT, ±°≤
 and -$Q	are normally constrained to be positive to indicate positive 

correlations between the domain-specific ability (i.e. subscore) and the general ability 

(i.e. summative score), and those between item score and domain specific ability (i.e. 

subscore), respectively. When there are only two subdomains in a test, ±°w
 is 

constrained to be equal to ±°{
 to avoid scale indeterminacy. de la Torre and Song 

(2009) conducted a simulation study to examine the performance of the HO-IRT 

model where they manipulated the number of subtests (i.e. 2 and 5), the number of 

items in each subtest (i.e. 10, 20 and 30), the correlation between subscale/ 

subdomain abilities (i.e. 0, 0.4, 0.7 and 0.9) and sample size (i.e. 1000, 2000 and 

4000). The subscores and summative scores yielded from the HO-IRT model were 

compared with the estimates based on a conventional UIRT (CU-IRT) approach. 

Judging by the variance of the posterior distribution, the summative score estimates 

yielded from the CU-IRT approach is more precise than that yielded from the HO-

IRT model across all levels of latent trait correlation. In terms of the subscores, the 

improvement of HO-IRT estimates from the CU-IRT estimates is negligible when the 

correlation between subscales\latent traits is low and when test is long enough. When 

there are more subtests and the correlations between the subscales\latent traits are 
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high, the HO-IRT model estimates are found to be more precise than the estimates 

yielded from the CU-IRT model.  

 

Figure 3. Factor structure of HO-IRT model (de la Torre & Song, 2009) 

The bi-factor model (Gibbons & Hedeker, 1992) as a special case of 

hierarchical and higher-order factor model typically assumes orthogonality between 

the content domains related factors. Only a couple of studies investigating the use of 

the bi-factor MIRT model in subscore reporting were found in the literature. DeMars 

(2005) compared a bi-factor MIRT model, a two-factor model (i.e. simple structure 

MIRT model), Wainer et al.’s (2001) augmentation on UIRT estimates and 

unaugmented UIRT estimates in a simulation study based on parameters estimated 

from real datasets from two tests. Results indicated that the unaugmented UIRT 

method has the largest bias and root mean squared error (RMSE), two MIRT methods 

yielded comparable bias and RMSE, on one test higher than that of the augmented 

UIRT estimates, on the other test lower. It is concluded that there is no clear winner 
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among the bi-factor method, two-factor model and the augmented UIRT approach, 

but they are all preferred over unaugmented UIRT method. Md Desa (2012) proposed 

a bi-factor confirmatory compensatory model and a bi-factor confirmatory partially 

compensatory MIRT models to enhance subscore reliability and classification 

accuracy with the Bayesian estimation.  

Reporting Subscores for Tests with Complex Structure. Very few studies 

have discussed reporting subscores for tests with complex structure. Boughton et al. 

(2006) investigated the use of a MIRT approach to report subscores for a test with 

complex structure. In the simulation study, they have manipulated sample size, the 

correlation between subscales, the number of items contributing to each subscale and 

the number of items with complex structure. Their study concluded that as the 

correlation between latent traits increased, the error in parameter estimation also 

increased for all subscales with complex structure items, yet that decreased for 

subscales consisting of only simple structure items.  

Feinberg and Wainer (2014) conducted a simulation study to investigate under 

what circumstances MIRT estimated subscores have added-value to the holistic test 

score. They manipulated the number of unique items in a subscale (i.e. 5, 10, 20, 30 

40 and 50), the correlation between subscales (i.e. 0, 0.3, 0.7 and 0.9), the percentages 

of overlapping items (i.e. 11 levels ranging from 0% to 100%, evenly spaced) and 

their loadings on each subscale (i.e. complex structure—both loadings drawn from 

the same distribution as the loadings for the unique items; semi-complex structure—

one loading drawn from the same distribution as for unique items, and the other 

drawn from a distribution with a smaller mean and standard deviation, and moderate 
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structure— both loadings drawn from a distribution with a smaller mean and standard 

deviation). The estimated MIRT subscores (i.e. domain abilities) are assessed by (a) 

reliability and (2) score orthogonality. They concluded that the removal of 

overlapping items will always improve the added value of the subscores, though the 

inclusion of such items increases the reliability of the subscores.  

Both of these studies were conducted with complex structure items loading on 

two construct dimensions. In many cases, subscores are designed based on content 

specification in a test blue print rather than the construct multidimensional structure. 

The MIRT model outlines a structure where a cluster of items loads on more than one 

latent traits. Since latent traits are not observable, they represent constructs. However, 

when subscores are designed based on content specification, items assessing the same 

content domain may not load on the same latent traits as what MIRT has suggested. 

In fact, the test itself may be unidimensional (e.g., the NAEP math test). Therefore, 

the use of MIRT models for reporting content-based subscores is questionable. In this 

study, a double-coded item refers to an item that measures knowledge from two sub-

content domains. Since an item does not necessarily measure two latent traits (i.e. 

construct dimensions) when it tests two sub-content domains, a UIRT approach is 

adopted. Subscores are reported based on item difficulty decomposition for different 

content domains.  

Method Comparison and Summary 

Current methods for reporting subscores or estimating subscale abilities have 

been reviewed in the previous sections. To emphasize the advantages and/or 

disadvantages of these methods, this section synthesizes studies comparing these 
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methods. This synthesis is based on the comparison framework in Longabach (2015) 

where comparisons are categorized into CTT methods vs. IRT methods, MIRT 

methods vs. UIRT methods, and unaugmented methods vs. augmented methods. 

CTT vs. IRT methods. Unaugmented CTT subscores in comparison studies, 

including the standardized number of correct scores in Luecht (2003), the percent 

correct on subscales (Dwyer, Boughton, Yao, Steffen, & Lewis, 2006; Yao & 

Boughton, 2007) and the proportion correct score in Shin (2007), are all variations of 

the number-correct raw subscores. They generally performed worse than augmented 

CTT methods, IRT methods and MIRT methods in terms of parameter estimation 

accuracy (Dwyer et al., 2006; Luecht, 2003; Yao & Boughton, 2007) and reliability 

(Haberman & Sinharay, 2010) Luecht, 2003; Shin, 2007). For augmented CTT 

subscores, Yen’s OPI (1987) performs as well as MIRT models when the 

subscales/latent traits correlated strongly (Yao & Boughton, 2007); Wainer et al.’s 

(2001) CTT-based augmentation yielded better reliability for subscores than OPI 

(Shin, 2007). DeMars (2005) found that the unaugmented UIRT method had the 

largest bias and RMSE when compared with the MIRT approaches and Wainer et 

al.’s augmentation of the UIRT theta scores (2001). Thissen and Orlando (2001) 

concluded that the IRT scoring method produces scores that are linearly related to the 

underlying latent traits, which makes it more useful than the sum scores or the 

number-correct raw scores when investigating the relationship between test scores 

and external variables. General advantages of IRT methods including flexibility in 

scaling and high precision in scoring have been summarized when introducing the 

IRT model. One thing should be kept in mind is that the key premise for IRT methods 
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producing more accurate ability estimates and better reliability in subscore reporting 

is the data meets the assumptions for the IRT model.  

UIRT vs. MIRT methods. A number of comparison studies between the 

UIRT and MIRT approaches were conducted when proposing new estimation 

methods for MIRT models (de la Torre & Patz, 2005; Wang et al., 2004; Yao & 

Boughton, 2007) or when proposing newly-developed MIRT models (de la Torre, 

2008; de la Torre & Song, 2009). Most of these studies were reviewed in detail 

previously when discussing applications of MIRT models in subscore reporting. The 

findings of these studies are largely consistent. These studies found that the MIRT 

approaches yielded more precise and reliable estimates when (a) the correlation 

between subscales/latent traits are high (Boughton, et al., 2006; de la Torre & Patz, 

2005; Wang et al., 2004; Yao & Boughton, 2007), (b) there are more 

subtests/subscales (Wang et al., 2004; de la Torre & Song, 2009) and (c) the subtest is 

short (de la Torre, 2008; de la Torre & Patz, 2005; de la Torre, Song, & Hong, 2011; 

Wang et al., 2004). In the study by de la Torre and Song (2009), the HO-IRT method 

was found to perform better than the CU-IRT method in optimal conditions. 

However, when evaluating the overall ability estimates yielded from the HO-IRT and 

the CU-IRT, results showed that the correlation between the true and estimated 

abilities are nearly identical for both methods when the subdomain abilities are 

correlated, and the CU-IRT estimates have smaller posterior variance across all levels 

of correlation between latent traits, hence is more precise.  

Some comparison studies concur with de la Torre and Song (2009) in that the 

MIRT approaches produce similar estimates with UIRT approaches for estimating 
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subscores (e.g., DeMars, 2005; de la Torre & Song, 2009; Dwyer et al., 2006; 

Gessaroli, 2004). For example, Gessaroli (2004) and Dwyer et al. (2006) both found 

that MIRT approach yielded similar estimates with the augmented methods involving 

correlational structure, such as Wainer et al.’s augmentation with UIRT theta scores. 

Further, some studies pointed out that MIRT approaches produce estimates that are 

not so different from UIRT estimates while being computationally challenging 

(Longabach, 2015). For instance, Luecht (2003) compared the number of correct 

score, UIRT estimates with item parameters calibrated using subtest data (UIRT-S), 

UIRT estimates with item parameters calibrated using the total test data (UIRT-T) 

and MIRT estimates. The UIRT-T approach was selected after the analysis for its 

calibration efficiency. The MIRT model was not selected because “the complexity of 

using a multidimensional model is hard to be justified” (Luecht, 2003, p. 14). 

Haberman and Sinharay (2010) have also suggested that testing programs with 

limited time for data analysis may not favor MIRT. In addition to the computational 

complexity, the interpretation of MIRT estimates is challenging.  

Unaugmented vs. Augmented Methods. Augmented methods for subscore 

reporting referred to the methods that incorporate information from sources other than 

the target subscore. Kelley’s regression method used information from the group 

mean, Yen’s OPI (1987) stabilizes estimates of objective abilities with total scores 

and Wainer et al.’s (2001) augmentation “borrows” information from other subscores. 

In addition, estimating subscores using UIRT item parameters calibrated with data 

from the whole test is also an augmentation method (Bock et al., 1997). When 

calibrate item parameters using all data, the collateral test information is used since 
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responses to items in other objective scores also contributed to the parameter 

estimation of items that belong to the targeted domain score. As introduced, the 

MIRT model is also an augmentation, as the correlation between latent traits allowed 

information from subscales to be utilized when estimating subscale scores. Studies 

have shown that the augmentation methods improved the subscore estimation 

precision and reliability (e.g., Dwyer et al, 2006; Wainer et al., 2001; Puhan et al., 

2010; Sinharay, 2010; Skorupski & Carvajal, 2010; Skorupski, 2008). Yet, 

augmented subscores can be highly correlated in many situations. For example, 

Stone, Ye, Zhu and Lane (2009) conducted a real data analysis with data of a large-

scale mathematics test. They compared Yen’s OPI (1987), Wainer et al.’s (2001) 

augmentation, MIRT methods and unaugmented UIRT. Their study found that all 

three augmented methods yielded more precise subscores than the unaugmented 

UIRT method. Before estimating subscores, Stone et al. (2009) conducted an 

exploratory factor analysis and determined that the test is unidimensional. Therefore, 

subscores were designed in terms of content clustering. Under this situation, they 

found that the subscores are highly correlated for all three augmented methods (e.g., 

the subscores based on Wainer et al.’s (2001) method are almost perfectly correlated), 

whereas the correlations for the unaugmented IRT subscores are much lower.  

 Skorupski (2008), Stone et al. (2009) and de la Torre et al. (2011) have all 

stated that the purpose of reporting subscores should determine the methods used to 

estimate the subscores. For example, when subscores are used primarily as diagnostic 

information which informs future learning and instruction, MIRT approaches can be 

appropriate as it incorporates as much information as possible and considers the 
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relation between subscale performance (de la Torre & Patz, 2005). However, when 

subscores are used to make high-stakes decisions such as graduation or admission, the 

justification of augmented subscores are limited by the complexity in the meaning of 

the score. Therefore, reliable subscores without integrating any ancillary information 

would be more appropriate to use for a high-stake test (Longabach, 2015).  

In the current study, the proposed model is based on the UIRT framework 

where only one underlying latent trait is assumed to have an impact on the item 

responses. The adoption of the UIRT framework echoes the goal of reporting 

subscores formed for content dimensionality. In addition, the intended application of 

the proposed model is to a single test, rather than a test battery. Like Stone et al. 

(2009) have discussed, content clustering in a test is difficult to be justified as 

construct multidimensionality. When content dimensionality underlies the subscores, 

it makes sense to use UIRT where the difference among subscores for different 

content domains within an examinee is only attributable to the item characteristics for 

items in that content, as indicators of content difficulty; the difference across 

examinees for the same subscore is only attributable to examinees’ latent abilities.  

As it follows the UIRT framework, the proposed model is computationally 

less challenging than the MIRT model. At the same time, the meaning of the 

subscores is clearer in interpretation.  

To model responses to the double-coded items, reporting subscores with the 

proposed model requires all item parameters to be calibrated in a single calibration 

using item response data from the whole test. Hence, the proposed model is 

augmented in a way that is very similar with that described in Bock et al. (1997). 
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Only the item parameters related to the reported subscore in a double-coded item will 

be used for scoring. The problem of obtaining highly correlated augmented subscores 

is not the key concern in this study. As the model to report subscores for sub-content 

domains and the test is assumed to be unidimensional, the correlation between 

subscores represents how knowledge/contents covered in each of the subscores relate 

rather than being a representation of examinees’ abilities on different constructs.  

The Model with Restrictions on Item Difficulty (MIRID)  

This section summarizes literature on the MIRID. This synthesis on the 

MIRID is laying a theoretical basis for the proposal of the 2PL-DT-MIRID. To do so, 

this section first introduces the background of the MIRID model, outlines model 

formulation, discusses the relationship between the logistic linear test model (LLTM; 

Fischer, 1973, 1983) and the MIRID, describes relevant extensions based on the 

dichotomous Rasch MIRID and finally summarizes the estimation methods and 

software.  

Background of the Model with Restrictions on Item Difficulty (MIRID) 

A traditional IRT modeling approach considers the relationship between 

ability/latent trait on a construct and item responses as summative. Such a modeling 

approach ignores the cognitive or behavior process underlying the causal sequence of 

item responses. Since the advancement in cognitive psychology and promotion of 

reporting diagnostic scores in educational assessment, componential models were 

developed to recognize intermediate cognitive processes as well as the final item 
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responses and to explain final responses based on intermediate responses (e.g. Butter 

et al. 1998; Huang, 2011; Li, 2017).  

In a descriptive framework, the person ability in the Rasch model can be 

considered as an intercept and the item indicator as a predictor, so that each item has 

a specific effect (Wilson & De Boeck, 2004). Built upon the descriptive perspective, 

the LLTM (Fischer, 1973, 1983) was developed as an explanatory model, where the 

item properties are modeled as the predictors. The LLTM models the item difficulty 

as a linear composite of component difficulties and the component weights (Fischer, 

1973, 1983). In LLTM, the item parameters to be estimated are the component 

difficulty and the intercept in the linear combination. The component weights, that is, 

to what extent the component difficulty contributes to the linear composite of item 

difficulty is known. Such a formulation provides a more parsimonious approach to 

modeling item effects, but imposes additional assumptions (Wilson & De Boeck, 

2004). 

The MIRID model was originally proposed by Butter et al. (1998) based on 

Butter (1994) and De Boeck (1991). The MIRID is proposed to model item responses 

to an item family that consists of a number of component items (i.e. subtasks) and a 

composite item (i.e. composite task). Essentially, the goal of MIRID is to investigate 

how different components impact on one’s performance on the composite task by 

decomposing the composite item difficulty into a linear combination of component 

difficulties. In the MIRID, the values of component weights are no longer assumed to 

be known a priori. Instead, the component weights, the component difficulties and the 

intercept are all to be estimated. This is made possible by modeling responses to 
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subtasks along with the composite task. In other words, by estimating difficulties for 

component items with item responses to subtasks, the composite difficulty is 

expressed in terms of component difficulties. With the inclusion of component items, 

the MIRID can be applied to model psychological constructs and cognitive constructs 

in educational assessment. In the psychological measurement setting, for example, 

Lee (2011) demonstrated the use of the MIRID and its extensions to measure the 

complexity of guilt, based on subtasks on norm violation, worrying and restitution. 

Butter et al. (1988) presented an application of MIRID in an educational 

measurement setting with a spelling test where a student needs to master two rules to 

be able to produce correct spelling of the plural form of a given noun. In this 

example, the MIRID showed its great capability of providing diagnostics information 

for learning.  

Rasch MIRID Model 

The MIRID was proposed as a Rasch family model for dichotomous response 

data (Butter et al., 1988). As introduced previously, two types of items are needed to 

use the MIRID—the component item and the composite item. A composite item 

contains tasks that can be decomposed to different kinds of subtasks. A component 

item can be an item that contains a generic subtask result from the composite task 

decomposition and it is specifically related to the composite task under study (Butter 

et al, 1998), or it can be a single operation (Li, 2017). Imagine a hypothetical 

arithmetic test that consists of arithmetic problems on addition and subtraction. A 

composite item is a problem measuring both arithmetic operations, the two 

component items for this composite item should be one on addition and the other on 
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subtraction. Table 1 presents the structure of such a test in the case where there are 

two composite items. In Table 1, a “1” indicates that the arithmetic problem involves 

that component, a “0” indicates that the arithmetic problem does not contain that 

component. Items 1 and 2 are component items of composite item 3; items 4 and 5 

are components of composite item 6. In measuring a psychological construct, items in 

an item family can also be nested within a situation.  

Table 1 
An Arithmetic Test with Two Item Families 

  Component 1 (Addition) Component 2 (Subtraction) 

Item Family 1 
Item 1 1 0 
Item 2 0 1 
Item 3 1 1 

Item Family2 
Item 4 0 1 
Item 5 1 0 
Item 6 1 1 

 
For a test with I item families each with ≥ components taken by l examinees, 

the probability of person !	(! = 1 … l) answering the j\k(j = 1 … ≥) component in 

the "\k	(" = 1 … I) item family correctly, denoted as #.'%$c = 1/+$), can be 

formulated as follows. 

 #.'%$c = 1/+%) =
exp.+% − $̀c1

1 + exp	(+% − $̀c)
,	 (22) 

where the person ability is denoted as +$; the component item difficulty is denoted as 

$̀c  for component j in item family ".  

For a composite item, j = 0. The probability of answering a composite in 

item family " correctly can be modeled as  

 #.'%$c = 1/+$) =
exp(+$ − ∑ Yc $̀c − |¥

cFG )

1 + exp	(+$ − ∑ Yc $̀c − |¥
cFG )

, (23) 
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where the item difficulty of the composite task is a weighted sum of the component 

difficulty, denoted as ∑ Yc $̀c
¥
cFG , and a scaling intercept, denoted as |. In Equation 

23, component difficulty $̀c  is weighted by Yc for component j.  

For the arithmetic test in the example presented previously, the item family 

"	(" = 1, 2) with 2 component items and one composite item, the item difficulties for 

the six tasks can also be represented in the matrix form as  

 

⎝

⎜
⎜
⎛

πGa

πGG

πGN

πNa

πNG

πNN⎠

⎟
⎟
⎞

=

⎝

⎜⎜
⎛

YG YN 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 YG YN 1
0 0 0 1 0
0 0 1 0 0⎠

⎟⎟
⎞

⎝

⎜
⎛

G̀G

G̀N

ǸG

ǸN

| ⎠

⎟
⎞

, (24) 

where π$c ≡ $̀c	(" = 1 …I, j = 1 … ≥) and π$a ≡ $̀a. Note that the model is not 

identified in this example. The degree of freedom for the Rasch model is I(≥ + 1) −

1,	and degree of freedom of the MIRID is I≥ + ≥. As a dichotomous Rasch MIRID is 

a restricted Rasch model, the MIRID is only identified when the degree of freedom of 

the MIRID is larger than that of the Rasch model. That is, I − ≥ − 1 > 0. When I −

≥ − 1 = 0, MIRID is simply another parameterization of the Rasch model. In the 

case where I − ≥ − 1 < 0, the model is overparameterized, therefore, not identified. 

In the example of two item families each with two component items and one 

composite item, I − ≥ − 1 = −1. The Model is not identified. The model would be 

identified if more item families were added to the test. 

MIRID vs. LLTM  

Since research has indicated that LLTM and MIRID are similar and 

equivalent with the same model constraints (Bechger, Verstralen, & Verhelst, 2002; 
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Butter et al., 1998; Maris & Bechger, 2004), it is critical to compare and contrast 

these models. As described previously, the LLTM is a componential model where the 

item properties are used to explain the difference between items with respect to their 

impact on the probability of obtaining a correct answer for an item (Wilson & De 

Boeck, 2004). The reason that the LLTM is considered as an explanatory model is 

that the item difficulty in the Rasch model is decomposed to a weighted sum of the 

item properties. In other words, the item difficulty for an item has been explained by 

the decomposition. The item difficulty decomposition in the LLTM can be 

represented as in Equation 25.  

 π$
ñ = ø c̀p$c

¥

cFa

, (25) 

where p$c  is the value of item " on property j, β¡ represents the component difficulty 

for property j. When j = 0, with p$a = 1, βa is the item intercept.  

There are a few things that the MIRID and LLTM share in common. First, 

both models decompose item difficulty into a linear composite. Second, in the linear 

composite for the composite item difficulty for MIRID and the item difficulty in 

LLTM, no error term has been included. This means that both models assume that the 

prediction of the item difficulty is perfect. 

Contrasting the LLTM and the MIRID, they have three major differences. 

First, p$c  is a constant in LLTM. That is, the Q-matrix for I item and ≥ components is 

known a priori. In the MIRID, all parameters in the linear composite item difficulty, 

including, $̀c , Yc and |, are estimated. Second, since the LLTM uses a known Q-

matrix, it does not need component items in the test. On the other hand, the MIRID 

requires component items to estimate composite item difficulty. Third, in the LLTM, 
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p$c  is an indicator showing if the j\k item property is needed. In the case where p$c  is 

not restricted to take on the value of 0 or 1, it indicates how many times or to what 

extent the item property is needed (Butter et al., 1998). The weights are item and 

component specific. Whereas in the MIRID, the weight σ¡ is not item specific, which 

means that the component difficulty for component j is weighted the same for all 

composite items that involve component j. But the component difficulty for 

component j can be different in different item families.  

Since the goal of the proposed model is to report subscores for a test with 

double-coded items, the key part in modeling is to understand and investigate to what 

extent the content knowledge in each domain is needed in solving the composite 

question. In reality, the Q-matrix in the LLTM is unknown. Specifically, which 

components contribute to the composite is known, but the extent to which the 

component difficulty contributes to the composite difficulty is unknown. Therefore, 

the LLTM is not a good candidate for modeling double-coded items in the current 

study. On the other hand, the MIRID estimates both the component weights and the 

item-family specific component difficulties (Note that the property/component 

difficulty in LLTM is not item specific.). The structure of MIRID enables the same 

component to have different component item difficulties in different component 

items. In the example of an arithmetic test on addition and subtraction, assuming item 

family A measures one-digit addition and subtraction, and item family B measures 

two-digit addition and subtraction. Two components, one in A and one in B, both 

measure addition, and their item difficulty would be expected to be different. 
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Therefore, the MIRID, rather than LLTM is selected as the basis for modeling 

double-coded items in the current study.  

Extensions of the MIRID 

After the initial proposal of the binary Rasch MIRID (Butter et al., 1998), 

extensions of the MIRID have been developed to generalize the use of the MIRID to 

a broader range of testing data. For example, the Rasch MIRID was extended to 

model polytomous data based on the graded response model (Samejima, 1968) and 

the partial credit model (Masters, 1982) using cumulative logit and adjacent-category 

logit, respectively (Lee & Wilson, 2009; Wang & Jin, 2010b). A multilevel, two-

parameter, random weight extension was proposed to model (a) ability variation with 

level-2 predictors, (b) item-component interaction by using random weights and (c) 

item discrimination power difference among items by incorporating item 

discrimination parameters (Wang & Jin, 2010a); Lee (2011) and Lee and Wilson 

(2017) have generalized the MIRID with random item effect and multidimensionality; 

Li (2017) has proposed a model based approach to detect differential item functioning 

with the MIRID.  

Since the extensions of the MIRID are not the focus of this study, they will 

not be described in a great detail. The proposed model is a two-parameter doubly-

testlet MIRID that is based on the level-1 model of the extended MIRID proposed by 

Wang and Jin (2010a) where the item discrimination or the slope parameter is added 

into the original binary Rasch MIRID. The level-1 model for a composite item of 

Wang and Jin (2010a) is presented in a consistent form with the Rasch MIRID 

(Equation 24) in Equation 26.  



 

 56 
 

 #.'%$c = 1/+$) =
exp(ò$c+$ − ∑ Yc $̀c

ñ − |′¥
cFG )

1 + exp	(ò$c+$ − ∑ Yc $̀c
ñ − |′¥

cFG )
, (26) 

where ò$c  is the slope parameter for component j in item family ",	 $̀c
ñ  is the item 

difficulty parameter applied to the ò$c+$  scale. An alternative way to formulate Wang 

and Jin (2010a)’s level-1 model in a standard IRT representation is as follows.  

 #.'%$c = 1/+$) =
exp(-K¡(+$ − ∑ Yc $̀c − |¥

cFG ))

1 + exp	(-K¡(+$ − ∑ Yc $̀c − |¥
cFG ))

, (27) 

where -$c = ò$c , $̀c =
√´Æ

ƒ

≈´Æ
 and | =

∆ƒ

≈´Æ
.  

The reason for choosing the two-parameter MIRID for the proposed model is 

to demonstrate its capability of reporting subscores using IRT-based NCS. The IRT-

based NCS is to score examinees’ performance using a test characteristic curve 

(TCC) based on the item parameters calibrated. The scoring proceeds with finding the 

point on the theta scale that corresponds to the number-correct score on TCC. Thus, 

latent ability scores obtained from IRT-based NCS are the same for examinees with 

the same sum score. Since the number correct score is the sufficient statistic for the 

Rasch model, the IRT-based NCS method will yield ability estimates that are 

identical to those of the IRT pattern scores in the Rasch model. The IRT-based NCS 

scores are only different from the IRT pattern scores when item discrimination 

parameters differ for different items. To demonstrate the use of the IRT-based NCS, 

the two-parameter MIRID was selected for the proposed model.  

The IRT-based number-correct scores are favored by some testing programs 

because in mapping the sum scores to the logit scale using TCC, IRT-based number-

correct scores can be compared directly across test forms. In other words, the test-

dependent sum scores are transformed to test-independent logit scores in the IRT-
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based NCS. In addition, the IRT-based number-correct scores are easier to interpret 

than the IRT scores. 

Model Estimation 

Butter et al. (1988) described a likelihood-based approach to estimate 

parameters in the MIRID. Specifically, the conditional maximum likelihood 

estimation (CMLE) method was used when proposing the MIRID. When the 

component difficulty, $̀c , and the component weights, Yc are both estimated, the 

model is not linear anymore (Maris & Bechger, 2004), and the likelihood 

conditioning on score «$(«$ = ∑ ∑ '$%c
¥
cFa

»
%FG ) is not an exponential family likelihood 

(Anderson, 1980). The first partial derivatives and the second partial derivatives are 

derived in Butter et al. (1988) based on the conditional likelihood function. The 

Newton-Raphson estimation was used to estimate the parameters interactively.  

When developing extensions of the Rasch MIRID, the marginal maximum 

likelihood estimation (MMLE) is used to estimate parameters in some of the 

extensions of the MIRID (e.g. Wang & Jin, 2010a, 2010b; Smits & De Boeck, 2003). 

In general, MMLE is to integrate out the latent trait and estimate the item parameters 

using derivatives. Person parameters are then estimated based on the item parameters. 

Li (2017) described detailed procedures of estimating parameters in a Rasch MIRID 

with MMLE (p. 36-38). The Markov chain Monte Carlo (MCMC) was used in 

estimating parameters in more complex extensions of the MIRID model, such as the 

random item MIRID (Lee, 2011; Lee & Wilson, 2017), the multidimensional 

extension of the MIRID (Lee, 2011), and the multilevel cross-classified random effect 

MIRID (Huang, 2011).  
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Computer software. After Butter et al. (1988) proposed the dichotomous 

Rasch MIRID, Smits, De Boeck, & Verhelst (2003) developed the MIRID CML to 

implement CMLE for estimating parameters in the Rasch MIRID and One Parameter 

Logistic Model (OPLM) MIRID. The MIRID CML program uses the CMLE 

approach and the Davidson-Fletcher-Powell technique (Bunday, 1984) or the 

Newton-Raphson optimization technique (Bunday, 1984; Gill, Murray, & Wright, 

1981) to estimate item parameters and their SEs. Person parameters and their SEs 

were obtained by a weighted maximum likelihood (Warm, 1989), subsequently. 

Smits et al. (2003) compared the estimates yielded from the MIRID CML and those 

from the SAS NLMIXED which uses MMLE. They found that the item parameter 

estimates are comparable, yet there were some differences in person parameter 

estimates. Smits et al. (2003) concluded that the MIRID CML supplemented with 

weighted maximum likelihood (Warm, 1989) should be preferred when individual 

ability estimates are required. The MIRID CML is less time consuming than the SAS 

NLMIXED, but the SAS NLMIXED is more flexible in estimating other extensions 

of the MIRID. Detailed instruction of using the MIRID CML and SAS NLMIXED to 

estimate parameters in the MIRID and in its extensions can be found in Smits, et al. 

(2003), Simts and De Boeck (2003) and Wang and Jin (2010a, 2010b).  

Lee (2011), Lee and Wilson (2012) and Huang (2011) used MCMC 

algorithms to estimate parameters in complex MIRID extensions. They all used 

WinBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2003). Lee (2011) used the 

R2WinBUGS (Sturtz, Ligges, & Gelman, 2005) to achieve efficacy in summarizing 

the results in simulation studies.  
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Since the Rasch MIRID is a restricted version of the Rasch model, the 

structures of the Rasch MIRID and its straightforward extensions are similar to 

standard IRT models in many ways. Likelihood methods are first adopted. As the 

extension gets more complex, the Bayesian estimation is more preferred since it is a 

modern computer-intensive technique that simplifies the parameter estimation 

problem (Baker, 1998; De Boeck & Wilson, 2004; Gelman, Carlin, Stern, & Rubin, 

2004; Tanner, 1996; Zeger & Karim, 1991).  

Summary  

This chapter reviewed literature on (a) IRT and TRT, (b) methods on subscore 

reporting and (c) the MIRID. The review of literature on IRT and TRT demonstrated 

the advantages of using modern measurement theory in modeling item response data, 

discussed the impact of item clustering effect resulting from using common stimuli 

and presented methods developed to partitioning the testlet effect and the latent trait, 

especially the TRT model for paired stimuli. Further, the methods for subscore 

reporting are also reviewed and compared. While summarizing the subscore reporting 

methods, limitations of the current methods in estimating content-based subscores for 

tests with innovative item types are presented. Subsequently, the literature on the 

MIRID was synthesized to justify the usage of the two-parameter extension of the 

MIRID for reporting content-based subscores for a test with double-coded items.  

In the following chapter, the 2PL-DT-MIRID is presented. Following the 

introduction of the proposed model, a simulation study was designed to evaluate the 

performance of the proposed model across various optimal and sub-optimal 

conditions by manipulating factors that may have an impact on the accuracy and the 
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reliability of the estimated subscores. In addition, the procedures of reporting 

subscores using the IRT-based NCS using the proposed model is also demonstrated 

using the simulated datasets in Chapter 3.  
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Chapter 3: Method 

In this chapter, the proposed model is first specified. A Monte Carlo 

simulation study is conducted to (a) evaluate the performance of the proposed model 

in terms of recovery of true model parameters, estimation of sub-content domain 

scores and score reliability across various study conditions, (b) compare the proposed 

model with other models that ignore the innovative item types in modeling item 

responses, and (3) highlight the use of the proposed model in IRT-based NCS. This 

chapter introduces the detailed technical procedures of the simulation study, including 

simulation conditions, data generation, model formulation (including all models 

compared in this study), model identification, model parameter estimation and model 

evaluation criteria. 

A Non-Compensatory Two-Parameter Doubly Testlet MIRID  

Double-coded items and scenario-based testlets are prevalent in authentic 

assessment of higher-order cognitive skills in large-scale assessment, such as SATâ 

and PARCC. In addition, since many subscores are designed according to content 

clustering in test specification rather than construct multidimensionality, the current 

methods for reporting subscores are limited for estimating sub-content domain scores 

for tests with double-coded items embedded in multiple context. The MIRID, on the 

other hand, carries out a UIRT approach where it assumes only one latent construct 

underlies an examinee’s performance on an item. Further, the decomposition of item 

difficulty of a composite item in the MIRID sets up an applicable basis for (a) 

estimating content-based subscores, and (b) modeling item parameters for double-
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coded items. Moreover, the MIRID model assumes that each composite item is the 

combination of corresponding component items. Such requirement coincides with the 

current educational assessment practice where content or skills are measured 

individually and jointly at different levels of difficulty. An example of an item family 

for arithmetic operation is presented as follows to demonstrate the structure of the 

component and composite item.   

 

Figure 4 Example of an item family in the MIRID 

In this example, one component item measures addition, the other measures 

subtraction. The composite item assesses the combination of addition and subtraction 

but with different numbers. With the benefit of the MIRID and the doubly testlet 

model developed by Jiao and Lissitz (2014), this study proposes a non-compensatory 

2PL-DT-MIRID. The proposed model can estimate sub-content domain scores using 

both pattern scoring and IRT-based NCS. 

The proposed non-compensatory 2PL-DT-MIRID for a double-coded item 

based on information from 2 testlets XG and XN is formulated as follows.  

 
P.X Ka = 11 =

exp v-$a v+% + P%Qw(´)
− ∑ Yc $̀c − |¥

cFG xx

1 + exp v-$a v+% + P%Qw(´)
− ∑ Yc $̀c − |¥

cFG xx

∗
exp.-$a.+% + P%Q{($) − ∑ Yc $̀c − |¥

cFG 11

1 + exp.-$a.+% + P%Q{($) − ∑ Yc $̀c − |¥
cFG 11

. 

(28) 
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For double-coded item "	(" = 1. . I) with ≥	components embedded in the 

context of two testlets, the probability of person !	(! = 1 … l) answering composite 

item "	(" = 1 … I) correctly is denoted as #.'%$a = 1/+%).	The item specific 

discrimination parameter is denoted as -$a, item difficulty is decomposed into a 

weighted sum of the component item difficulty, denoted as $̀c  for component j	. The 

component weights are denoted as Yc, and the composite intercept is denoted as |. 

The model assumes that an examinee needs to master content in both testlets to be 

able to obtain a high probability of answering this item correctly. In other words, 

mastering one testlet does not compensate for a non-mastery or partial mastery of the 

other testlet. The non-compensatory relation is modeled by taking the product of the 

probability of answering such an item correctly considering only one of the testlet 

effects, denoted as P%Qw(´)
, and that considering only the other testlet effect, denoted as 

P%Q{(´)
. The non-compensatory relation is particularly true for items nested within 

paired-testlets since the items are designed to require knowledge from both testlets to 

assess students’ ability to synthesize information and apply the synthetic knowledge 

to solving problems. Extensions of the proposed model can model item responses 

from items that measure more than two content domains (e.g. triple-coded items) or 

items based on more than two testlets. Yet, these extensions will not be evaluated in 

the current study. The current study focuses on evaluating the performance of the 

proposed model to pave out a basic functional form for future extensions.  
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Simulation Conditions  

This simulation study is based on dichotomous item response data for an 

arithmetic test measuring 4 arithmetic operations (i.e. addition, subtraction, 

multiplication and division). Four subscores will be reported — one for each 

arithmetic operation. Two scenario-based testlets are built in this test, each with 10 

items. Each testlet is constructed around a graph/plot/table on a given data scenario 

which requires examinees to conduct arithmetic operation(s) based on available 

information in the graph/plot/table. For example, a histogram depicting the frequency 

of students in a school for each ethnicity can be accompanied by questions like “What 

is the total number of students in this school?” (addition), “what is the proportion of 

White students in the school?” (division) and “what is the proportion of White and 

Asian students in the school?” (addition and division), etc. In addition to the two 

testlets, a set of another 10 items require information from both testlets, which is 

referred to paired-testlets in this study. In total, the test contains 30 items. It is 

assumed that all general abilities are independent from testlet effects, and testlet 

effects for the two testlets are correlated. 

Manipulated Factors 

To evaluate the proposed model across various study conditions, this 

simulation study manipulates 3 factors—(a) the magnitude of the testlet effect 

represented by the standard deviation (SD) of testlet effects (0.5, 1), (b) the 

correlation between the testlet effects of the dual testlets (0.2, 0.5, 0.8), and (c) the 

percentage of double-coded items in the test (20%, 40%, 60%). Table 2 summarizes 

the manipulated factors and their manipulated levels.  
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Table 2.  
Manipulated Factors 

Manipulated Factors Level 1 Level 2 Level 3 
SD of Testlet Effects 0.5 1 N/A 

Correlation between Testlet Effects 
of the Dual Testlets 0.2 0.5 0.8 

Percentage of Double-Coded Items 20% 40% 60% 

The choice of the manipulated factors and the levels of manipulation are 

justified as follows.  

Magnitude of testlet effects. The SD of the testlet effect parameters is an 

indicator of the magnitude of testlet effects in the current study. In Bradlow et al. 

(1999), they have altered the variance of the testlet effects, YZ
N, at 0.5, 1, 2 to achieve 

the ratio of the testlet effect variance to the sum of item difficulty variance and the 

testlet variance (i.e. ÀÃ
{

ÀÃ
{áÀÕ

{	
) of G

Ø
,	 G

N
,	 N

Ø
. Wang and Wilson (2007) explored the 

performance of the Rasch testlet model at four evenly spaced testlet variances from 0 

to 1(i.e. 0.25, 0.5, 0.75 and 1). Jiao et al. (2005) and Xie (2014) have compared model 

recovery with the SD of the testlet effects at 0, 0.5, 1 and 1.5. These studies have 

found a consistent pattern that as the variation of the testlet effects increases, the 

model parameter recovery is less accurate. In the investigation of the 2PL-DTM, Jiao 

et al. (2017) fixed the SD of testlet effect at 0.5.  

Bradlow et al. (1999) found that the variance of testlet effect in a released 

SAT test is 0.11. Wang and Wilson (2005) conducted a real data analysis with the 

2001 English test of the Basic Competence Tests for Journal High School Students in 

Taiwan and obtained testlet effect variance ranging from 0.007 to 2.09. According to 

previous findings, the SD of testlet effects in the current study are manipulated at 0.5 

and 1, to represent small to moderate variation in testlet effects which are the 
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magnitude of the testlet effects often observed in real data analyses. The SD of testlet 

effects is the same for both testlets in this simulation study.  

Correlation between testlet effects of the two testlets. As the paired testlets 

are based on information of the two testlets, it is reasonable to assume that the testlet 

effects for the first two testlets are correlated. Such correlation is manipulated at 0.2, 

0.5 and 0.8 in this study to represent weak, moderate and strong correlation between 

the two paired testlets. The levels of manipulation are adopted from Jiao et al. (2017) 

for investigating the 2PL-DTM, since the proposed model also models paired testlets. 

Jiao et al. (2017) found a weak relation between the accuracy of parameter estimation 

and the correlation between paired testlet effects. However, since they only presented 

results from one replication for each study condition, the parameter recovery was 

judged by only bias, absolute bias, 95% credible interval capture rate. The stability of 

item and person parameter estimates were not assessed. The current study investigates 

the impact of the correlation between paired testlet effects on the model parameter 

recovery in terms of both estimation accuracy and the stability of the estimates.  

Percentage of double-coded items. The percentage of double-coded items 

varies at 20%, 40% and 60% across study conditions. The levels of manipulation are 

to examine the capability of the proposed model in modeling item responses for tests 

with small, medium and large numbers of double-coded items. As the test involves 

testlets, double-coded items and their components, the percentage of double-coded 

items is selected to match with a specific structure of the test. The test structures are 

selected to ensure (a) a balanced assessment of all four arithmetic operations, (b) both 

double-coded items and their corresponding components are nested within the same 
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cluster of items (i.e. testlet or paired testlet), and (c) each testlet contains the same 

number of double-coded and single-coded items. Three simple test blueprints are 

developed to indicate the targeted arithmetic operation(s) for each item for tests 

consisted of 20%, 40% and 60% of double-coded items, respectively. The three 

simple test blueprints are presented in Table 3, jointly.  
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Table 3.  
Test Structures for Tests with 20%, 40% and 60% of Double-Coded Item  

Item Testlet 

20% Double-Coded 
Item 

40% Double-Coded 
Item 

60% Double-Coded 
Item 

Arithmetic 
Operation(s) 

Arithmetic 
Operation(s) 

Arithmetic 
Operation(s) 

1 1 A (1) A (1) A (1) 
2 1 A (2) A (2) S (2) 
3 1 S (3) S (3) M (3) 
4 1 S S (4) D (4) 
5 1 M (5)  M (5) A (1) & S (2) 
6 1 M M (6) A (1) & M (3) 
7 1 D A (1) & S (3) A (1) & D (4) 
8 1 D A (2) & S (4) S (2) & M (3) 
9 1 A (1) & S (3) A (1) & M (5) S (2) & D (4) 
10 1 A (2) & M (5) A (2) & M (6) M (3) & D (4) 
11 2 A (11) A (11) A (11) 
12 2 A A (12) S (12) 
13 2 S (13) S (13) M (13) 
14 2 S S (14) D (14) 
15 2 M (15)  D (15) A (11) & S (12) 
16 2 M D (16) A (11) & M (13) 
17 2 D (17) A (11) & D (15) A (11) & D (14) 
18 2 D A (12) & D (16) S (12) & M (13) 
19 2 A (11) & D (17) S (13) & D (15) S (12) & D (14) 
20 2 S (13) & M (15) S (14) & D (16) M (13) & D (14) 
21 1 & 2 A S (21) A (21) 
22 1 & 2 A S (22) S (22) 
23 1 & 2 S (23) M (23) M (23) 
24 1 & 2 S M (24) D (24) 
25 1 & 2 M (25) D (25) A (21) & S (22) 
26 1 & 2 M D (26) A (21) & M (23) 
27 1 & 2 D (27) S (21) & M (23) A (21) & D (24) 
28 1 & 2 D (28) S (22) & M (24) S (22) & M (23) 
29 1 & 2 S (23) & D (27) M (23) & D (25) S (22) & D (24) 
30 1 & 2 M (25) & D (28) M (24) & D (26) M (23) & D (24) 

Note:1. A stands for addition, S stands for subtraction; M stands for multiplication, D 
stands for division. 
2. For double-coded items, the number in the parenthesis for each targeted arithmetic 
operation indicates the source of the component item difficulty (i.e. the position of the 
component items). For component items, the number in the parenthesis indicates its 
position in the test. Standalone items have no parenthesis.  
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In the test with 20% of double-coded items, each testlet contains two single-

coded items for each arithmetic operation. The test contains all possible combinations 

of double-coded items for the four operations, where each combination was tested 

with one item. In the test with 40% of double-coded items, each of all possible 

combinations is assessed by two items. The single-coded items are selected based on 

the double-coded items assigned to that testlet. In a test with 60% of double-coded 

items, each testlet has four single-coded items one for each arithmetic operation and 

each of all possible combinations is assessed by 6 double-coded items. By fully 

crossing levels of all manipulated factors, this simulation study contains 18 study 

conditions in total. Table 4 presents all 18 study conditions.  
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Table 4.  
Simulation Conditions 

Condition SD of Testlet 
Effect 

Correlation 
between Testlet 
Effects of Two 

Testlets 

Percentage of 
Double-Coded 

Items 

1 0.5 0.2 20% 
2 0.5 0.2 40% 
3 0.5 0.2 60% 
4 0.5 0.5 20% 
5 0.5 0.5 40% 
6 0.5 0.5 60% 
7 0.5 0.8 20% 
8 0.5 0.8 40% 
9 0.5 0.8 60% 
10 1 0.2 20% 
11 1 0.2 40% 
12 1 0.2 60% 
13 1 0.5 20% 
14 1 0.5 40% 
15 1 0.5 60% 
16 1 0.8 20% 
17 1 0.8 40% 
18 1 0.8 60% 
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Fixed Factors 

To conduct fair comparisons across the 18 conditions in Table 4, other factors 

are fixed in the simulation study. The study is based on a test that contains three 

clusters of items, each with 10 items. As indicated in Table 3, the first 10 items 

belong to the first testlet, items 11 to 20 belong to the second testlet, and the last 10 

items are based on information from both the first and the second testlet.  

For all items, item discrimination is generated from a lognormal distribution 

with a mean of 0 and standard deviation of 0.5; item difficulties for single-coded 

items (i.e. stand-alone or component items) are generated from a normal distribution 

with a mean of 0 and standard deviation of 1. For the double-coded items, the 

component weights are generated from a uniform distribution with a minimum of 0 

and a maximum of 1 to ensure that generated weights are between 0 and 1. Following 

Butter et al. (1998), the intercept parameter in the composite of the item difficulty is 

set at 0.5. 

The person ability parameters and testlet effects are generated from a 

multivariate normal distribution with a mean vector of 0s, a variance of 1 for person 

ability, variances for testlets to the manipulated value, and the covariance depending 

on the manipulated testlet variance and the correlation between the paired testlets. 

The person abilities are independent of the testlet effects. Item responses are 

generated by comparing the calculated probability of obtaining a correct answer and a 

randomly generated value from a uniform distribution with a minimum of 0 and a 

maximum of 1. If the calculated probability is larger, then the simulated item 

response is 1. Otherwise, the item response is 0. 
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This study fixes the sample size to 1000. Normally, it is recommended that a 

sample size over 500 is appropriate for the Rasch model (Hambleton & Jones, 1993) 

and 1000 to stabilize item parameter estimates in a 2PL model. Simulation studies 

evaluating testlet models based on a 2PL IRT framework normally use sample sizes 

of 1000 or more (e.g. Bradlow et al., 1999; Jiao et al., 2005). Jiao et al. (2017) fixed 

the sample size at 2000 and have obtained reasonably accurate estimates for the 

proposed 2PL-DTM based on a state reading test with paired stimuli. From the 

perspective of the MIRID, although Butter et al. (1998) suggested that the parameter 

recovery accuracy was much improved for the dataset that contains 3000 examinees 

compared to that with 300 examinees, Wang and Jin (2010a) have successfully 

recovered the model parameters in a 2PL multilevel random weights MIRID with 

response data from 1000 examinees on 10 item families, each with 3 component 

items and 1 composite item.  

A pilot study was conducted to compare the average bias of each type of 

model parameters (i.e. item discrimination, item difficulty, task weights, intercept and 

overall ability parameters) with a sample size of 1000 and 2000 across other study 

conditions with 1 dataset from each condition. A t-test has found no significant 

difference in terms of the average bias for model parameters estimated with datasets 

containing 1000 examinees and that with 2000 examinees (O≠ë$≠í = −0.983, p—“K—” =

0.326; Oëë$≠í = −0.782,Cëë$≠í = 0.434; OÀë$≠í = −0.629, CÀë$≠í = 0.531; O∆ë$≠í =

0.631, 	C∆ë$≠í = 0.532;-HX	O°ë$≠í = 0.729, 	C°ë$≠í = 0.466). Therefore, the sample 

size is fixed at 1000 examinees in this study.  
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Each simulation condition is replicated for 30 times. Harwell, Stone, Hsu and 

Kirisci (1996) have investigated the number of replications needed in a Monte Carlo 

study with IRT models and recommended a minimum of 25 replications to maintain 

stable and small standard error for detecting an effect with a small effect size (i.e. 

[N = 0.02) (p. 111). Xie (2014) has shown that 30 replications are sufficient to obtain 

stable SEs for item difficulty estimates via a post hoc analysis using a multilevel 

cross-classified testlet model. A similar analysis was conducted to examine if 30 

replications are sufficient to obtain stable estimates with the proposed model. In the 

pilot study, the proposed model and other competing models were fitted to 50 

replicated datasets in the condition where the SD of the testlet effect is 0.5, the 

correlation between dual-testlet effects is 0.8, and there is 20% of double-coded 

items.  Figure 5 shows the changes in the average bias, SEs and RMSEs for each type 

of parameters have reached stability at the 30th replication for the proposed 2PL-DT-

MIRID. Parameters in other competing models (i.e. 2PL-DTM, 2PL-TMIRID, 2PL-

MIRID, 2PL model) have also achieved stable estimates with fewer than 30 

replications based on the average bias, SEs and RMSEs.  
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Figure 5. Bias, SE, RMSE for parameters as number of replication increases 

The item and person ability parameters used to generate item responses are 

constant across replications within a condition. Doing so, the randomness in 

generating item responses within a study condition lies in comparing the randomly 

generated values from the uniform distribution with the calculated probability. 

Data Generation 

Data Generating Models 

Test structures in Table 3 contain 6 types of items— (a) double-coded items in 

a paired-testlet, (b) component items in a paired-testlet, (c) double-coded items in a 
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single testlet, (d) component items in a single testlet, (e) stand-alone items (i.e. a 

single-coded item that does not serve as a component item for any double-coded 

item) in a paired-testlet and (f) stand-alone items in a single testlet.  

For double-coded items in a paired testlet, the proposed model in Equation 28 

should be used. For the j\k component of item "	in paired testlets, the probability of 

obtaining a correct answer is modeled using the 2PL-DTM proposed by Jiao and 

Lissitz (2014) and Jiao et al. (2017). The item subscript " for such component item 

takes on the same value as in the double-coded/composite item that the component 

item contributes to. Another way to understand the subscript is that the double-coded 

item and its corresponding component items can be considered as an item family. The 

subscript "	is an item family indicator. Equation 29 presents the Jiao and Lissitz 

(2014) model with subscripts adapted for the composite-component situation.  

 
P.X K¡ = 11 =

exp v-$c v+% + P%Qw(´)
− $̀cxx

1 + exp v-$c v+% + P%Qw(´)
− $̀cxx

∗
exp.-$c.+% + P%Q{($) − $̀c11

1 + exp.-$c.+% + P%Q{($) − $̀c11
. 

(29) 

For a double-coded item " with ≥	components in a single testlet— for 

example, testlet XG, the probability person of !	(! = 1. . . l) obtaining the correct 

answer is modeled as follows:  

 P.X Ka = 11 =
exp v-$a v+% + P%Qw(´)

− ∑ Yc $̀c − |¥
cFG xx

1 + exp v-$a v+% + P%Qw(´)
− ∑ Yc $̀c − |¥

cFG xx
.	 (30) 

For a component j of item " in a single testlet, for example testlet XG, the 

probability of obtaining a correct answer is modeled with a regular two-parameter 

testlet model (2PL-TM) that is presented as follows:  
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 P.X K¡ = 11 =
exp v-$c v+% + P%Qw(´)

− $̀cxx

1 + exp v-$c v+% + P%Qw(´)
− $̀cxx

. (31) 

A stand-alone test item is treated as a special case of a composite item where 

there is only one component, and the component difficulty is weighted by 1. The 

reason of making the stand-alone as a special case of a composite item is for the 

convenience of looping in data generation and data estimation. The probability for 

answering a stand-alone item impacted by both testlets correctly can be represented as  

 

P.X Ka = 11 =
exp v-$a v+% + P%Qw(´)

− YG $̀Gxx

1 + exp v-$a v+% + P%Qw(´)
− YG $̀Gxx

∗
exp v-$a v+% + P%Q{(´)

− YG $̀Gxx

1 + exp v-$a v+% + P%Q{(´)
− YG $̀Gxx

, 

(32) 

where YG = 1.  

Similarly, the probability of obtaining a correct answer for a stand-alone item 

nested in testlet XG is modeled as  

 P.X Ka = 11 =
exp v-$a v+% + P%Qw(´)

− $̀Gxx

1 + exp v-$a v+% + P%Qw(´)
− $̀Gxx

. (33) 

Table 5 presents true models (i.e. data simulating models) for different types 

of items in the designed test. Appendix A summarizes the data generating models for 

all items in a test with 20% double-coded items for demonstration. Based on models 

in Table 5, dichotomous item responses are generated using R.  
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Table 5.  
Data Simulating Models 

Item Type Testlet Type Model 

Double-Coded Paired-Testlet Proposed 2PL-DT-MIRID 
(Equation 28) 

Component Paired-Testlet 2PL-DTM 
(Equation 29) 

Double-Coded Single 2PL-T-MIRID 
(Equation 30) 

Component Single 2PL-TM 
(Equation 31) 

Standalone Paired-Testlet 

A special case of 2PL-DT-MIRID 
with only one component; the 

component difficulty is weighted 
by 1. (Equation 32) 

Standalone Single 

A special case of 2PL-T-MIRID 
with only one component, the 

component difficulty is weighted 
by 1. (Equation 33) 

Subscores are not model parameters in data generating models. The subscores 

(i.e. subdomain ability) are computed by using the generated item discrimination 

parameters, the item difficulty parameters for the content domain, the weights for the 

content domain, the testlet parameters and the item responses. For example, the 

calculation of subscore of addition uses item responses to items that assess addition 

and true item parameters for those items. For a double-coded item that assesses 

addition and another arithmetic operation, only the weight and the component item 

difficulty for addition is used. The empirical true subscores are the averages of the 

computed subscores across replications within each condition. 

Model 

Model Comparison  

To evaluate the consequences of ignoring the double-coded item and/or the 

effect of the paired testlets, this simulation study also compares model parameters and 



 

 79 
 

sub-content domain ability estimates for scenarios where underspecified models are 

used to model item responses for complex innovative item types. Specifically, for 

each dataset in each condition, the true models are first used to estimate model 

parameters and sub-content domain scores, then the underspecified models are 

applied to estimate model parameters and subscores. When estimating subscores, item 

parameters used are those obtained by using different competing models in model 

parameter estimation. Estimated subscores are compared across the following 

competing models.  

Comparison model 1: true models. Subscores are estimated using the data 

generating models as presented in Table 5.  

Table 6. 
Models Used for Ignoring Paired-Testlet Effect 

Item Type Testlet Type Model 

Double-Coded Paired-Testlet 2PL-T-MIRID 
(Equation 30) 

Component Paired-Testlet 2PL-TM 
(Equation 31) 

Double-Coded Single 2PL-T-MIRID 
(Equation 30) 

Component Single 2PL-TM 
(Equation 31) 

Standalone Paired-Testlet 

A special case of 2PL-T-MIRID 
with only one component, the 

component difficulty is weighted 
by 1. (Equation 33) 

Standalone Single 

A special case of 2PL-T-MIRID 
with only one component, the 

component difficulty is weighted 
by 1. (Equation 33) 

Comparison model 2: ignoring the effect of paired testlet. Ignoring the 

effect of the paired testlets, the double-coded items embedded in paired testlet is fitted 

with a 2PL-T-MIRID, the component items in the paired testlet is modeled by a 2PL-

TM, and the stand-alone item in the paired testlet is modeled by the special case of 
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2PL-T-MIRID. In other words, items belonging to the paired testlet are now 

considered nested within a third testlet. Table 6 presents the models used to estimate 

domain scores in comparison model set 2 where the effect of paired testlet is ignored.  

Comparison model 3: ignoring the testlet effect. Testlet effects are 

completely ignored in this scenario. Regardless of testlet membership, all double-

coded items are modeled with 2PL-MIRID and the stand-alone items are fitted with 

the 2PL model. 

Item responses to component items are modeled with the 2PL adapted for the 

composite-component situation (See Equation 34). Table 7 presents models used in 

comparison model set 3.  

 

 #.'%$c = 1/+$) =
exp(aK¡(+$ − $̀c))

1 + exp	(aK¡(+$ − $̀c))
. (34) 

 
Table 7.  
Model Used in Ignoring Testlet Effects 

Item Type Testlet Type Model 

Double-Coded Paired-Testlet 2PL-MIRID 
(Equation 27) 

Component Paired-Testlet 2PL in MIRID 
(Equation 34) 

Double-Coded Single 2PL-MIRID 
(Equation 27) 

Component Single 2PL in MIRID 
(Equation 34) 

Standalone Paired-Testlet 2PL 
(Equation 2) 

Standalone Single 2PL 
(Equation 2) 

Comparison model 4: ignoring double-coded items. The double-coded 

items are treated as single-coded items in this scenario. In other words, all items in 

the test are single-coded. Therefore, items in the paired testlet are modeled using Jiao 
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and Lissitz (2014), items in the single testlet are modeled with a simple 2PL-testlet 

model (Bradlow et al., 1999). Table 8 presents models used for scenario 4.  

Table 8.  
Model Used in Ignoring Double-Coded Item 

Item Type Testlet Type Model 

Double-Coded Paired-Testlet 2PL-DTM 
(Equation 15) 

Component Paired-Testlet 2PL-DTM 
(Equation 15) 

Double-Coded Single 2PL-TM 
(Equation 10) 

Component Single 2PL-TM 
(Equation 10) 

Standalone Paired-Testlet 2PL-DTM  
(Equation 15) 

Standalone Single 2PL-TM  
(Equation 10) 

Comparison Model 5: ignoring double-coded items and testlet effects. The 

double-coded items are treated as single-coded items, and the testlet effects are 

ignored in this model set. In other words, all items in the test are fitted with a 2PL 

model. Table 9 presents models used for comparison model set 5.  

Table 9.  
Model Used in Ignoring Double-Coded Item Structure and Testlet Effect 

Item Type Testlet Type Model 

Double-Coded Paired-Testlet 2PL 
(Equation 2) 

Component Paired-Testlet 2PL 
(Equation 2) 

Double-Coded Single 2PL 
(Equation 2) 

Component Single 2PL 
(Equation 2) 

Standalone Paired-Testlet 2PL  
(Equation 2) 

Standalone Single 2PL  
(Equation 2) 

In comparison model sets 1 to 5, the subscores are estimated following a two-

step procedure. First, the item parameters are estimated for all items in a single 
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calibration. The overall ability parameters are estimated. Then, the four sub-content 

domain scores are estimated for each examinee using the item parameters calibrated 

from the first step, the estimated testlet effects and based on item responses for the 

subset of items targeting on the sub-content domain. When including the double-

coded items, only the item difficulties for that specific sub-content domain are used 

for estimating subscores. 

Comparison model 6: IRT-based NCS. As described previously, the 

proposed model can be used to report subscores using IRT-based NCS. The IRT-

based NCS subscores are estimated with the following steps.  

(a) Calibrate item parameters using the data generating model.  

(b) Formulate the TCC for each subtest consisting of items testing on a specific 

arithmetic operation. The testlet effects are integrated out in the computation 

of the test characteristic function. For double-coded items, only difficulties for 

that arithmetic operation are used in formulating the TCC.  

(c) Calculate the sum subscores for each student on each sub-content domain.  

(d) Solve the TCC for sub-content domain ability for each examinee.  

Model Identification 

The interaction between person ability and item difficulty in an IRT model 

leads to scale indeterminacy if no constraint is applied. A common approach to set the 

scale for (+% − ,$) is to constrain the mean of person abilities or the item difficulties 

to be 0. The current study involves decomposition of the item difficulty parameters 

for the double-coded items. Specifically, the item difficulty for a double-coded item is 

a weighted sum of the component difficulties. Therefore, constraining the mean of 
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item difficulties to be 0 in the current study is not straightforward. Hence, the mean of 

the person abilities is constrained to be 0. For model identification, the person ability 

parameters are assumed from a standard normal distribution in Bayesian estimation.  

Model Parameter Estimation 

The current study uses the Bayesian estimation method to estimate model 

parameters for the proposed model and other models used in the comparison 

scenarios. Specifically, the MCMC algorithm is applied to parameter estimation. Due 

to the popularity of the Bayesian estimation method, many software programs are 

developed for models with various specifications. Commonly used Bayesian software 

include but are not limited to Stan (Carpenter et al., 2016), JAGS (Plummers, 2017), 

WinBUGS (Spiegelhalter et al., 2003) and OpenBUGS (Spiegelhalter, Thomas, Best 

& Lunn, 2004). In this study, JAGS is used for model parameter estimation.  

In using the Bayesian estimation method, priors must be specified for each 

estimated parameter. In this study, the prior for the person abilities is a standard 

normal distribution with a mean of 0 and standard deviation of 1 (i.e., +%~	r(0, 1)) 

for scale identification; the prior for the component item difficulties is a normal 

distribution with a mean of 0 and variance of 2 (i.e. βK¡~r(0, 2)), as such flat prior 

will have less influence on the results and allow data to be weighed more in 

estimating model parameters; the prior for the component weights is specified as a 

uniform distribution with a minimum of 0 and a maximum of 1(i.e. Yc~(0,1)); the 

prior for the intercept is a standard normal distribution (i.e. |~r(0, 1)); and the item 

discrimination parameters have a prior of lognormal distribution with a mean of 0 and 

a variance of 0.5 (i.e. -$c~⁄ù€Hùi‹-›	(0, 0.5)), since the reasonable values of item 
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discrimination parameters are within the range of (0, 2) and larger values of item 

discriminations within this range are desired. A multivariate normal distribution is 

assumed for the testlet effects. The mean vector contains 0s and the variance and 

covariance matrix follows an inverse Wishart distribution, with 1s set as the priors for 

the variances and 0s for the covariances (i.e. P%Q§($)~ôfir	(fl, ‡) where fl	~ ·0
0
‚, 

Σ~	WdG	(Â, Ê) in which Á = 2 and Ë = ·1 0
0 1

‚. As the conjugate prior for the 

multivariate normal distribution, the inverse Wishart distribution is used as a hyper-

prior to integrate out the unknown covariance matrix in the prior so as to estimate the 

variance-covariance matrix for the multivariate normal distribution of testlet effects 

as in the posterior distribution.  

In estimating model parameters using the MCMC algorithm, unknown 

parameters are drawn from the posterior distributions via Gibbs sampler. To sample 

parameters for the proposed model, suppose A is a vector of abilities for all l 

examinees taking the test, A = .+G, +N, … , +»1; let È be a vector of component 

difficulties, where È = ( G̀G, G̀N, … , J̀¥), let Í be a vector of component weights, in 

this case, we have 4 components in the test— Í = (YG, YN, YØ, YÎ); Ï is a vector of 

testlet effects where Ï = (PGQw($), PGQ{($), … , P»Q{($); the variance and covariance 

matrix of the testlet effect is denoted as ÍÏ
Ì; ß is a vector of item discrimination 

parameters where ß = (-GG, -GN,… , -J¥), and | is the intercept in the item difficulty 

composite. Hence, Ó (i.e. Ó = (A, È, ß, Í, Ï, ÍÏ
Ì, |)) determines item responses to 

items in the test. Through Gibbs sampler, ÓÔ is updated to ÓÔá. After the change of 

the parameters is minimal and stable, and chains with different starting values mixing 
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well, convergence has been achieved. The estimates are obtained by averaging the 

values of Ó after convergence has been reached for each estimated parameter. In this 

study, convergence was checked by observing the diagnostic plots based on results 

from JAGS, such as traceplot, quantile plots, etc. In addition, the Gelman-Rubin 

convergence statistic , as modified by Brooks and Gelman (1998), was also 

calculated. Values of  less than 1.1 indicate convergence (Brooks & Gelman, 

1998). 

A pilot study was conducted using datasets generated for a test with 20% 

double-coded items, testlet effect standard deviation of 0.5, a correlation of 0.8 

between testlet effects for the first and second testlets. The MCMC estimation method 

in JAGS ran two chains with 20,000 iterations for burn-in for the true models. Since 

the R package R2JAGS has been used to implement MCMC estimation in JAGS, R 

functions have been developed to estimate parameters for the proposed model and 

other competing models.  

Analysis 

Parameter Recovery Accuracy 

The parameter recovery accuracy is evaluated for item parameters (i.e. item 

discrimination, component difficulties, component weights, composite intercept) and 

person parameters (i.e. testlet effect and person ability parameters) by comparing the 

estimates to the true model parameters, if the parameters appear in the proposed 

model or in other comparison models. Bias, SE and RMSE are used as indicators of 

model parameter recovery accuracy. These indices were selected because they 

R̂

R̂
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address different perspectives of parameter estimation accuracy. Used together, they 

provide comprehensive assessment of model parameter recovery.  

Bias. Bias is an index for systematic error. The equation for calculating bias 

for parameter Ò is presented in Equation 35. The difference between the parameter 

estimate and the value of the true parameter are averaged across replications, N. In 

other words, bias is an average of how much the parameter estimate deviates from the 

true value of the parameter.   

 Bias.Òı1 =
∑ (Òıt − Ò)ˆ

˜FG

N
. (35) 

Standard error (SE). The SE is an index assessing random error in 

estimation. The equation for SE is presented in Equation 36. It is a measure of how 

much the parameter estimate deviates from the average of parameter estimates across 

all replications. The estimated parameter in replication › (› = 1,2,… , r) or i (i =

1,2,… , r) is denoted as Òı˘ or Òıt.  

 SE(ξ) = ˝
1

r
ø(Òıt −

∑ Òı̆˛
˘FG

r
)N

˛

tFG

. (36) 

Root mean squared error (RMSE). The RMSE is a measure of total error in 

parameter estimation. The RMSE is defined in Equation 37. The calculation of RMSE 

captures both the bias and the variability of the parameters.   

 ˇôîú(Ò) = ˝
1

r
ø(Òıt − Ò)N

˛

tFG

. (37) 

The bias, SEs and RMSEs are averaged across ability parameters, testlet 

variance, item difficulty parameters, item discrimination parameters and weights 

respectively when investigating the impact of manipulated factors on parameter 
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recovery. For example, in a study condition where there are 1000 examinees, the bias, 

SEs and RMSEs for the 1000 ability estimates are averaged and reported. 

To evaluate the impact of the manipulated factors on the bias, SE and RMSE, 

this study conducts analysis of variance (ANOVA) for the bias, SEs and RMSEs 

obtained based on Equation 35, 36 and 37, respectively. The purpose of ANOVA is to 

compare parameter recovery across study conditions and across comparison model 

sets for statistical inferences. In ANOVA, the alpha level is set at 0.05 for statistically 

significant difference. For statistically significant factors, the partial eta square, 

denoted as [!N, is reported as effect size measure. The partial eta square is defined in 

Equation 38, where the sum of squares of the investigated factor is divided by the 

total variance of the dependent variable after the effects of other independent 

variables and interactions have been partialled out (Cohen, 1965). There is no rule of 

thumb for what is defined as small, medium and large effects when using eta squared 

(Richardson, 2011). The recommended values in Cohen (1969) is selected as criteria 

in this study— [!N = 0.01 for small effect, [!N = 0.06	 for medium effect and	[!N =

0.14 for large effect.  

 [!N =
îî(ö)

îî(ö) + îî(Ç"Oℎ"H)
. (38) 

The ANOVA is not conducted for task weights (i.e. Yc	(j = 1,2,3,4)), 

intercept (i.e. |), testlet variances (i.e. fiöˇZw
 and fiöˇZ{

) and the correlation between 

the dual testlets (i.e. ~ZwZ{
), because the sample size is insufficient to assess 

assumptions or to have enough power for the analysis. The ANOVA is only 

conducted for the bias, SE, and RMSE of the item discrimination parameters (i.e. 

-$, " = 1,2,… ,30), the item difficulty parameters (i.e. ,$, " = 1,2,… ,30), the overall 
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ability parameters (i.e. +%, ! = 1,2,… ,1000) and the subcores (i.e. 

+%ü, +%#, +%û	-HX	+%$, ! = 1,2,… ,1000). The manipulated factors (i.e. testlet effect 

SD, correlation between testlet effects of the paired testlets and the percentage of 

double-coded items) are treated as fixed effects in the ANOVA. Since all competing 

models are fitted to each of the generated response dataset, the models are treated as 

repeated measures in the ANOVA design.  

Whether the sphericity assumption, normality assumption and homogeneity 

assumption are met with these data are assessed. When the sphericity assumption is 

violated, a Huynh-Feldt adjustment is applied to the degrees of freedom to adjust for 

inflated Type I error in the F test. Although the normality assumption is checked for 

ANOVA, no adjustment is made. This is because studies have found that the impact 

of non-normality on the Type I error rate is minimal in an F-test (Glass, Peckham & 

Sanders, 1972). The plausibility of the homogeneity assumption is checked for error 

measures of all parameters using the Levene’s test. For a parameter that has the same 

number of parameters in each study condition (i.e. 30 item discrimination parameters 

in each condition, 1000 overall ability parameters in each study condition and 4*1000 

subscores in each condition), ANOVA was conducted even if the homogeneity 

assumption is not met. This is because the impact of the violation of homogeneity 

assumption is minimal when the sample sizes are equal (Hinkle, Wiersma, & Jurs, 

1998). However, the situation for item difficulty is different. As the estimates of 

composite item difficulty contain estimation errors from task weights and the 

intercept in addition to those from the item component parameters, the error measures 

(i.e. bias, SE and RMSE) for item difficulty are only summarized for single-coded 
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items. Since the percentage of double-coded items is manipulated and the total 

number of items remains the same, the number of bias, SEs and RMSEs for item 

difficulty parameters are not identical across study conditions, i.e. the equal sample 

size across cell is not satisfied. Hence, ANOVA results of item difficulty are only 

reported for the error measures that meet the homogeneity assumption.  

Significant effects with at least a small effect size are summarized and 

reported. Pairwise comparison is planned to be conducted for a main effect when the 

following three conditions are met simultaneously: (a) the main effect is significant, 

(b) the main effect has at least a small effect, and (c) it does not have statistically 

significant interaction with other factors. This is because multiple comparisons 

generalize differences between levels of a main effect at the all-sample level (i.e. 

across all study conditions), but when the significant interaction effect is present, the 

impact of the main effect differs at different levels of the other effect(s). This study is 

not only interested in the effect of a factor across all study conditions; more 

importantly, it investigates how factors behave in different conditions. Therefore, 

multiple comparisons are not conducted for significant main effects when interaction 

effects are significant. The Dunn-Sidak procedure, which is more powerful than the 

Bonferroni procedure, is used to adjust for family-wise Type I error in the multiple 

comparison procedures for the within factor. 

Score Reliability 

The reliability was defined in the CTT framework by Lord and Novick (1968, 

p.61)— the reliability for test scores equals to one minus the ratio of error score 

variance to the total score variance.  
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 ρ&&ƒ = 1 −
Yè

N

Y'
N . (39) 

In the IRT framework, reliability is not defined as a one-number index for a 

test score. Instead, reliability is calculated conditioning on person ability using IRT 

(Sireci, Thissen, & Wainer, 1991). In the current study, reliability is conditioned on 

the testlet effects for the two testlets as well as the person ability. When the true 

models are used, the marginal reliability, defined in Equation 40, is calculated using 

the expectation value of the measurement error variance obtained by integrating out 

the person ability and testlet effects.  
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Based on Equation 40, the marginal reliability for the test score and the four 

sub-content domain scores are calculated and compared across study conditions and 

across scenarios. Item information was derived for the proposed model based on the 

definition of test information in Equation 7. The derivation of test information is 

presented in Appendix B. R functions are developed to calculate the test score 

reliability for overall ability and subscores. Subscore reliabilities are calculated based 

on the subscores estimated in JAGS using estimated model parameters. 

Model Selection 

To select the best fitting model for the generated data, three model fit indices 

are calculated, including deviance information criterion (DIC; Spiegelhalter, Best, 
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Carlin, & van der Linden, 2002), Akaike information criterion (AIC; Akaike, 1973) 

and Bayesian information criterion (BIC; Schwartz, 1978).  

Deviance information criterion. The DIC is an index for assessing model fit 

with Bayesian posterior estimates. It measures the model adequacy and penalizes 

additional complex terms added in the model (Spiegelhalter, 2002). Equation 41 

represents the mathematical formulation of DIC.  

 9I) = 9(Ò)¶¶¶¶¶¶ + C$ = 9.Ò ̅1 + 2C$ ,  (41) 

where 9(Ò)¶¶¶¶¶¶ is the posterior mean deviance; C$ = 9(Ò)¶¶¶¶¶¶ − 9.Ò ̅1, and 9.Ò ̅1 is the 

deviance at the posterior estimates of the parameter. Since larger values of DIC 

indicate worse model fit, C$  is the number of effective parameters in the model. The 

DIC index is requested directly from the JAGS in estimating model parameters. 

Akaike information criterion. The AIC is calculated as in Equation 42. 

 öI) = −2›H⁄ + 2#, (42) 

where ›H⁄ is the log likelihood and # is the number of parameters to be estimated. 

Smaller AIC value is desired in model comparison. The larger the log likelihood is, 

the smaller the AIC value is. Like DIC, AIC penalizes models with more parameters.  

Bayesian information criterion. The BIC is another likelihood-based model 

fit index (see in Equation 43).  

 +I) = −2›H⁄ + ln(r) ∙ #. (43) 

In the calculation of BIC, the number of parameters, denoted as #, is weighted 

by the natural log of the number of observations in the data, denoted as ln(r). 

Therefore, BIC imposes a more severe penalty for complex models than AIC or DIC 

does. 
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All of these indices consist of two elements— the deviance of the model fit 

and the penalty term for model complexity. Among these three indices, BIC penalizes 

the more parameterized model the most.  

For each replication within each condition, the three indices are calculated for 

each comparison model set. Comparison of the model fit is conducted using the 

proportion selecting the true model as the best fitting model with three model fit 

indices within each study condition.  
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Chapter 4: Results 

The simulation study evaluates the proposed model in terms of (a) model 

parameter and subscore estimation accuracy, (b) score reliability and (c) model 

selection, in comparison with other under specified models described in Chapter 3. 

The comparison of models is carried out at different levels of the manipulated 

factors— (a) the testlet effect SD (0.5, 1), (b) the correlation between the testlet 

effects of the paired testlets (shorted as dual testlets correlation, 0.2, 0.5, 0.8) and (c) 

the percentage of double-coded items (20%, 40%, 60%). As described in Chapter 3, 

models that are used for items in a test could be different based on the item structure 

and testlet structure. For simplicity and clarity in the result summary, the name of the 

model that is used for a double-coded item requiring information from the paired 

testlets in each model set is used to identify the model set. Table 10 presents the 

model names used to represent each model set.  

Table 10.  
Model Sets and Their Abbreviated Names 

Comparing Model Set Name Used in Result Summary 
True Model Set DT-MIRID 

Models ignoring dual-testlet structure T-MIRID 
Models ignoring all testlet effects MIRID 

Models ignoring double-coded item structure DTM 
Models ignoring testlet effects and the double-

coded item 2PL 

Number-correct scoring NCS 

Since parameters in the data generating model are not always in other 

underspecified models, parameter estimates are compared among models that contain 

the parameter being compared. Table 11 presents models being compared for 

different model parameters and subscores.  
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Table 11. 
Comparing Models for Different Model Parameters and Subscores  

Parameter DT-MIRID T-MIRID MIRID DTM 2PL NCS 
-$ P P P P P  
,$ P P P P P  
Yc P P P    
| P P P    

fiöˇZ P P  P   
~ZwZ{

 P   P   
+% P P P P P P 

+%ü	(Subscore of 
Addition) 

P P P P P P 

+%#	(Subscore of 
Subtraction) 

P P P P P P 

+%û	(Subscore of 
Multiplication) 

P P P P P P 

+%$	(Subscore of 
Division) 

P P P P P P 

All model parameters in each comparing model are converged in all study 

conditions. Parameter estimates in the DT-MIRID converged after the first 100,000 

iterations. Model parameter estimates in the T-MIRID, the MIRID and the 2PL are 

converged after the first 5,000 iterations. The convergence for the model parameters 

in DTM has been achieved after the first 350,000 iterations. Samples before 

convergence are discarded as burn-in iterations. For all models, model parameter 

inferences are based on another 10,000 iterations after burn-in for each of the two 

chains. The chains of the DT-MIRID are thinned by 10, those of the DTM by 15, and 

chains of other models by 1. 

The first section of this chapter presents the evaluation of parameter 

estimation accuracy. In the ANOVA, significant effects with at least small effect sizes 

on the bias, SE and RMSE are presented. Higher-order significant interactions are 

primarily explained as they are more meaningful for understanding how manipulated 

factors and model structure impact parameter estimates. As the lower-order 
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significant interactions overly generalize patterns found in significant higher-order 

interactions, they are not elaborated when higher-order interactions are statistically 

significant. However, this study does not explain significant four-way interactions. 

for two reasons—(a) since there are four factors in the ANOVA, a significant four-

way interaction means that patterns are different in each study condition, and (b) the 

four-way interaction is too complicated to be interpreted in a meaningful way. 

Although not explained in detail, the four-way interaction is still included in the 

ANOVA design. The error variances in the F-test is based on the full ANOVA model. 

For parameters that are not assessed by ANOVA, key findings based on the marginal 

difference of factors are presented for each error measure. Bias, SEs and RMSEs for 

each model under each study condition are tabulated in Appendix C. The second 

section compares the score reliability yielded from different competing models across 

study conditions and provide possible explanation for the differences in the patterns 

observed for the reliabilities across study conditions. The third section presents results 

on model fit indices.  

Parameter Estimation 

Item Discrimination  

Bias. The significant effects on bias of -ã$ with at least a small effect size are 

tabulated in Table 12. The three-way interaction among model, testlet effect SD and 

the dual testlet correlation is statistically significant with a small effect size ([!N =

0.037). Figure 6 shows that the variability of mean bias of -ã$ at various levels of dual 

testlet correlation is larger when the testlet effect SD is 1 for all models. In addition, 
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when testlet effect variability is large, the magnitude of the bias for -ã$ is always the 

smallest when the dual testlets are less correlated, across all models. Whereas in the 

situation where the testlet effect SD is 0.5, the smallest bias of -ã$ is obtained when 

the dual testlets correlation is 0.5 for DT-MIRID and DTM and when the dual testlets 

correlation is 0.2 for T-MIRID, MIRID and 2PL. The three-way interaction effect 

among model, testlet effect SD and the percentage of double-coded items (see in 

Figure 7) is also significant with a small effect size ([!N = 0.011). For DT-MIRID, T-

MIRID, MIRID and 2PL, the magnitude of bias of -ã$ is the smallest when there are 

60% of double-coded items in the test, at the lower level of testlet effect SD; whereas 

the bias of -ã$ is the smallest when 40% of double-coded items are in the test, at the 

higher level of testlet effect SD. For DTM, the bias for -ã$ is always the smallest when 

there are 20% of double-coded items regardless of the testlet effect SD. This is 

because the DTM ignores the double-coded item structure, so the impact on the bias 

on -ã$ estimated by DTM is the smallest when there are fewer double-coded items in 

the test.  

  
Figure 6. Significant three-way interaction on bias of -ã$—model* dual testlets 
correlation* testlet effect SD 
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Figure 7. Significant three-way interaction on bias of -ã$—model* percentage of 
double-coded items* testlet effect SD  
Table 12.  
ANOVA Results of Significant Effects on the Bias of -ã$ 
Source  . Value C-value [!N 
Within (Huyhn-Feldt Adjustment)    
model 1255.617 <0.001 0.706 
model * testlet.sd 41.412 <0.001 0.074 
model * dbcorr 24.427 <0.001 0.086 
model * testlet.sd * dbcorr 9.94 <0.001 0.037 
model* testlet.sd*percent_dbcd 2.887 0.042 0.011 
Between       
testlet.sd 132.477 <0.001 0.202 
dbcorr 3.933 0.02 0.015 
testlet.sd * dbcorr 3.627 0.027 0.014 

Note: The testlet effect SD is shorted as “testlet.sd”. The dual testlets correlation is 
abbreviated as “dbcorr”. The percentage of double-coded items is abbreviated as 
“percent_dbcd”. 

In addition to the significant three-way interactions, three two-way 

interactions have significant effects on the bias of -ã$. The two-way interaction effects 

between model and testlet effect SD ([!N = 0.074) and that between model and dual 

testlet correlation ([!N = 0.086) are of medium effect size. The two-way interaction 

between testlet effect SD and dual testlet correlation is statistically significant with a 

small effect size ([!N = 0.014). In terms of main effects, the main effects of model 

([!N = 0.706), testlet effect SD ([!N = 0.202), and dual testlets correlation ([!N =
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0.015) are statistically significant with large, large, and small effect on bias of -ã$, 

respectively.  

Because not all items in the test require information from the paired testlets, 

an investigation is conducted at the item level for the bias of -ã$. Such investigation 

reveals that -ã$ for items that require information from the paired testlets are positively 

biased in a much larger magnitude when the paired testlets are ignored, as compared 

to items nested within a single testlet. This pattern is consistent across study 

conditions. Figure 8 presents the bias of -ã$ in condition 10, where the testlet effect is 

1, the dual testlets correlation is 0.2 and there are 20% of double-coded items. (Study 

condition 10 is chosen for demonstration is because this condition has produced 

relatively small bias and RMSEs of -ã$ when estimated with the proposed model). In 

Figure 8, the orange, grey and light blue bars respectively representing the bias of -ã$ 

yielded from the T-MIRID, the MIRID and the 2PL are much longer than the dark 

blue and yellow bars that represent the bias from DT-MIRID and DTM, for items 21-

30. Moreover, the bias of -ã$ yielded from models ignoring dual testlets are always 

positive for items 21-30, whereas the -ã$ based on DT-MIRID and DTM for those 

items are negatively biased.  



 

 99 
 

 

Figure 8. Bias of -ã$ for Condition 10 

SE. Significant effects on the SE of -ã$ are presented in Table 13. The three-

way interaction among model, dual testlet correlation and double-coded items is 

statistically significant with a small effect size ([!N = 0.015). This three-way 

interaction is presented in Figure 9. For the proposed model, the variability among 

SEs obtained at different levels of dual testlet correlation remains stable across levels 

of percentage of double-coded items, and the largest SE of -ã$ is always obtained 

when the dual testlet correlation is small, across levels of the percentage of double-

coded items. For models ignoring the double-coded structure (i.e. DTM and 2PL), the 

variability among SEs of -ã$ obtained at levels of dual testlet correlation changes more 

when the percentage of double-coded items varies. Models ignoring dual testlets (i.e. 

T-MIRID, MIRID and 2PL) obtained smallest SE of -ã$ when the dual testlet 

correlation is 0.5 in a test with 20% of double-coded items. As the percentage of 

double-coded items increases, the smallest SE of -ã$ yields when the dual testlets are 

less correlated for T-MIRID, MIRID and 2PL.  
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Table 13. 
ANOVA Results of Significant Effects on the SE of -ã$ 
Source  . Value C-value [!N 
Within (Huyhn-Feldt Adjustment)    
model 321.232 <0.001 0.381 
model * dbcorr 13.231 <0.001 0.048 
model * percent_dbcd 6.457 <0.001 0.024 
model * dbcorr * percent_dbcd 2.053 0.043 0.015 

Note: The testlet effect SD is shorted as “testlet.sd”. The dual testlets correlation is 
abbreviated as “dbcorr”. The percentage of double-coded items is abbreviated as 
“percent_dbcd”. 
 

 

  
Figure 9. Significant three-way interactions on SE of -ã$— model* dual testlets 
correlation* percentage of double-coded items 

In addition, the results of ANOVA show that the two-way interaction effect 

between model and dual testlet correlation ([!N = 0.048) and that between model and 

percentage of double-coded items ([!N = 0.024) are statistically significant, each with 

a small effect size. In addition, the main effect of model is significant on the SE of -ã$ 
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with a large effect size (	[!N = 0.381). An item-level investigation is conducted for 

the SE of -ã$, but it finds no difference between items nested within a single testlet 

and items require information from two testlets.  

RMSE. Significant effects on the RMSE of -ã$ identified in ANOVA are 

presented in Table 14. The three-way interaction among model, testlet effect SD and 

dual testlet correlation is statistically significant with a small effect ([!N = 0.023). 

Figure 10 depicts this three-way interaction effect on RMSE of -ã$. For the DT-

MIRID, the variability among RMSEs of -ã$ obtained at levels of dual testlet 

correlation remains stable when the testlet effect SD changes. When the testlet effect 

SD is small, the DT-MIRID obtains smaller RMSE of -ã$ when the dual testlet 

correlation is 0.5; when the testlet effect variability is large, the smallest RMSE of -ã$ 

is obtained with less correlated dual testlet effects (dual testlet correlation=0.2). For 

models ignoring dual testlet structure (i.e. T-MIRID, MIRID and 2PL), when the 

testlet effect variability is smaller (i.e. testlet effect SD=0.5), the RMSEs of -ã$ are 

similar across levels of dual testlets correlation, yet the variability increases when the 

testlet effect SD becomes larger. This means that the impact of the dual testlets 

correlation on the RMSEs of -ã$ produced by T-MIRID, MIRID and 2PL is small 

when the testlet effect SD is small, and the impact is large when the testlet effect is 

large. For DTM that ignores double-coded items, the variability among RMSEs of -ã$ 

at levels of the dual testlet correlation is larger when the testlet effect SD is smaller. 

Moreover, when testlet effect SD is small, the RMSEs produced by different models 

are more similar than those produced when the testlet effect SD is large, meaning 
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model mis-specification leads to more error in -ã$ when the testlet effect varability is 

large. 

  
Figure 10. Significant three-way interaction effect on RMSE of -ã$—model* dual 
testlets correlation* testlet effect SD 
 
Table 14 
ANOVA Results of Significant Effects on the RMSE of -ã$ 
Source  . Value C-value [!N 
Within (Huyhn-Feldt Adjustment)    
model 265.131 <0.001 0.337 
model * testlet.sd 100.102 <0.001 0.161 
model * dbcorr 3.791 0.015 0.014 
model * testlet.sd * dbcorr 6.019 0.001 0.023 
Between       
testlet.sd 47.173 <0.001 0.083 
dbcorr 12.065 <0.001 0.044 
testlet.sd * dbcorr 9.108 <0.001 0.034 

Note: The testlet effect SD is shorted as “testlet.sd”. The dual testlets correlation is 
abbreviated as “dbcorr”. The percentage of double-coded items is abbreviated as 
“percent_dbcd”. 
 

Besides, the interaction effect between model and testlet effect SD (η0N =

0.161), that between model and dual testlet correlation (η0N = 0.014), and that 

between testlet effect SD and the dual testlet correlation (η0N = 0.034) have 

significant impact on on RMSE of -ã$, with large, small and small effect sizes, 

repectively. The results of ANOVA also identify that the main effects of model (η0N =
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0.337), testlet effect SD ( η0N = 0.083) and dual testlets correlation (η0N = 0.044) are 

significant effects on the RMSE of -ã$ with large, medium and small effect sizes, 

respectively.  

Similar to the pattern identified in the bias of -ã$, the RMSE of -ã$ is also much 

larger for an item that requires information from the paired testlets when the dual 

testlet structure is ignored, compared with items nested within a single testlet. Figure 

11 shows the RMSE of -ã$ for each item in condition 10. (Item 1-10 are nested within 

the first testlet, item 10-21 are nested within the second testlet, and item 21-30 are for 

paired-testlets.) 

 
Figure 11. RMSE of -ã$ for Condition 10  

Item Difficulty  

Due to the issue of unequal cell sample size for item difficulty described in 

Chapter 3, an evaluation of the homogeneity assumption is used as a screener to 

decide if ANOVA is to be conducted for error measures of item difficulty parameters. 

As a result, ANOVA was conducted for the bias and the RMSE of ,â$, but not for SEs. 
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The results for SEs of ,â$ are summarized by analyzing marginal means of the error 

measures for each manipulated factor. 

Bias. Based on the ANOVA results, the effect of model is statistically 

significant (.(1.114, 340.819) = 84.727, C < 0.001) on the bias of ,â$ with large 

effect size (	[!N = 0.217). Figure 12 shows the average bias of ,â$ across all simulation 

conditions for each model. The average bias for ,â$ produced by the proposed model is 

the smallest among the competing models. The results from the pairwise comparison 

show significant mean differences of bias for ,â$ among almost all pairs of compared 

models, except the difference between bias of ,â$ obtained by DTMIRID and those by 

DTM, and the difference between bias of ,â$ obtained by T-MIRID and those obtained 

by 2PL. This indicates that ignoring the double-coded item structure does not have a 

significant impact on the bias of ,â$ for single-coded items.  

 

Figure 12. Significant main effect on the bias of ,â$ 

As observed in bias of -ã$, the ,â$’s for items that require information from dual 

testlets are also positively biased in a much larger magnitude when the dual testlet 

structure is ignored, comparing with items nested within a single testlet. Figure 13 

presents the bias of ,â$ for all items in condition 10.  
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Figure 13. Bias of ,â$ for Condition 10  

SE. Judging from the marginal averages, the average of SE for ,â$ decreases 

when the variability of testlet effects increases, the dual testlets are highly correlated, 

and there are more double-coded items in the test (See in Figure 14). Smaller SEs of 

item difficulty are associated with models ignoring dual testlet structure (i.e. T-

MIRID, MIRID and 2PL). 

  

  
Figure 14. Marginal average of SE of ,â$ 
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The impact of the manipulated factors on the SE of ,â$ for estimates obtained 

by each model is depicted in Figure 15. The pattern found in the marginal averages of 

SEs at the levels of testlet effect SD and that found at different levels of dual testlet 

correlation are consistent across models— the difference between the average of SEs 

for ,â$ at different levels of testlet effect SD and that at different levels of dual testlet 

correlation is smaller for DT-MIRID and DTM than those for other models. For 

models ignoring dual testlet structure (i.e. T-MIRID, MIRID and 2PL), smaller SE of 

,â$ is obtained when the percentage of double-coded items is higher. The reversed 

pattern is observed for estimates yielded by DT-MIRID and DTM— the higher the 

percentage of double-coded items, the higher the average SE of ,â$. 

 

  
Figure 15. Mean plots of SEs of ,â$  
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RMSE. The ANOVA results suggest that the main effect of model is the only 

effect that is statistically significant (.(1.111, 340.036) = 81.874,C < 0.001). The 

effect of model on the RMSE of ,â$ is large ([!N = 0.211). Pairwise comparisons are 

conducted to locate the difference between means of RMSEs for ,â$ yielded from pairs 

of the models. The results of the pairwise comparisons show that the RMSE of ,â$ 

yielded from the T-MIRID, MIRID and 2PL are very similar. The marginal averages 

of RMSEs of ,â$ have been presented in Figure 16. The smallest average RMSE of ,â$ 

is obtained by DT-MIRID. Models accommodating dual testlets (i.e. DT-MIRID and 

DTM) yield smaller average RMSEs for ,â$, compared to models ignoring dual testlets 

structure. 

 
Figure 16 Significant main effect of RMSE of ,â$ 

The item-level investigation of RMSE of ,â$ has shown that the RMSE for 

items that require information from the paired testlets are much larger than that for 

items that are embedded in a single testlet, when the dual testlet structure is ignored. 

(See pattern in Figure 17) 
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Figure 17. RMSE of ,â$ for Condition 10  

Task Weights  

As indicated in Table 10, three models accommodate the double-coded item 

structure—the DT-MIRID, the T-MIRID and the MIRID. Hence, task weight 

estimates, denoted as Yãc, produced by DT-MIRID, T-MIRID and MIRID are 

compared.  

Bias. In order to understand the influence of the manipulated factors on Yãc 

estimated by different models, the mean plots are generated based on the average of 

bias for Yãc at all levels of each manipulated factor for each model (See Figure 18). 

Small average bias of Yãc is obtained when the variability of testlet effect is large and 

the dual testlets are highly correlated. Yet, the Yãc estimated by DT-MIRID is less 

impacted by the change of testlet effect variability as the difference between the 

averages of bias of Yãc at different levels of testlet effect SD is much smaller than that 

produced by models ignoring dual testlet structure (i.e. T-MIRID and MIRID). 

Besides, the bias of Yãc produced by the DT-MIRID is negative and more stable than 

those produced by T-MIRID and those produced by MIRID when the dual testlets are 
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weakly or moderately correlated. When DT-MIRID is used to obtain the Yãc, the 

smallest bias is obtained when there are 60% of double-coded items. For T-MIRID 

and MIRID, the lowest bias of Yãc is obtained when only 20% of double-coded items 

are in the test. Whereas, the lowest average bias of Yãc is obtained when there are 60% 

double-coded items in the test for DT-MIRID.  

 

  
Figure 18. Mean plots of bias for Yãc  

SE. Generally speaking, the DT-MIRID, T-MIRID and MIRID yield very 

similar SEs of Yãc across study conditions. The smallest average SE for Yãc across all 

study conditions is produced by the MIRID. In addition, when the variability of testlet 

effects is larger, the study obtains smaller SEs of Yãc. Moreover, small SEs of Yãc are 

obtained when the correlation between testlet effects from the dual testlets is 0.5 for 

all three models. Small average SE of Yãc also tends to be associated with a higher 
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percentage of double-coded items. Figure 19 presents the mean plots of SE of Yãc for 

manipulated factors.  

 

  
Figure 19. Mean plots of SE for Yãc  

RMSE. For the DT-MIRID, a smaller average of RMSEs for Yãc is obtained 

when the testlet effect SD is larger. Whereas in TMIRID and MIRID, the pattern is 

reversed—smaller means of RMSEs for Yãc	 is associated with smaller testlet effect 

SD. This indicates that there is more error in the task weight estimates for models 

ignoring dual testlets than that for DT-MIRID when the testlet effect SD is large. The 

smallest average RMSEs of Yãc are produced when the dual testlets correlation is 0.2 

for all models. The average of RMSEs of Yãc yielded from DT-MIRID is less sensitive 

to the change of dual testlet correlation. In terms of the percentage of double-coded 

items, the largest mean of RMSEs of Yãc is always obtained when there are 60% of 
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double-coded items for the three models, indicating weight estimates tend to contain 

more error with a test that contains a large proportion of double-coded items. Figure 

20 presents the mean plots of RMSE for Yãc at levels of the manipulated factors for 

each model.  

 

  
Figure 20. Mean plots of RMSE for Yãc  

Intercept 

The same as that for task weight, the intercept (denoted as |) is only included 

in a model where the double-coded item structure is correctly specified. Therefore, |̂ 

estimated using DT-MIRID, T-MIRID and MIRID are compared in this study.  

Bias. The mean plots of the bias for |̂ is generated for all manipulated factors 

with each model (See in Figure 21). When the variability of the testlet SD is 0.5, the 

intercept estimate is positively biased; and when the testlet SD is 1, the intercept 
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estimate is negatively biased. Comparing with T-MIRID and MIRID, the DT-MIRID 

yields the smallest difference between the bias of |̂ obtained at the lower level of 

testlet effect SD and that obtained at the higher level of testlet effect SD. Similarly, 

bias of |̂ produced by DT-MIRID are less impacted by the magnitude of dual testlet 

correlation. The smallest absolute average bias of |̂ is obtained for all the three 

models when the dual testlet correlation is 0.2. It also shows that |̂ is less biased when 

there are more double-coded items.  

 

  
Figure 21. Mean plots of bias for |̂  

SE. The SEs of |̂ does not differ much across study conditions and across 

competing models. They range from 0.022 to 0.010. In general, smaller SEs of the 

intercept estimate are identified when the testlet effect SD is larger, the dual testlets 

are less correlated, and the test contains more double-coded items. These patterns are 
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consistent across competing models. The SE of |̂ produced by the DT-MIRID is the 

least sensitive among the three models toward the change of testlet effect SD but is 

more impacted by the change of dual testlet correlation.  

 

  
Figure 22. Mean plots of SE for |̂  

RMSE. Small averages of RMSEs of |̂ is obtained when the testlet effect SD 

is 1 for DT-MIRID and T-MIRID. Whereas MIRID, which ignores all testlet 

structure, produces the smallest average of RMSEs of |̂ when the variability of testlet 

effect is small. In terms of RMSEs of |̂ at different levels of percentage of double-

coded items, the DT-MIRID produces the most stable estimates when the percentage 

of double-coded item changes. In addition, the RMSEs of |̂ yielded from the three 

models are very similar when the dual testlets correlation is 0.2. In other words, the 
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impact of ignoring dual testlet structure is minimal on the estimated intercept when 

the dual testlets are less correlated.  

 

  
Figure 23. Mean plots of RMSE for |̂  

Testlet Effect Variance 

The testlet effect variances of the first and the second testlets in the test 

structure is compared among the DT-MIRID, the T-MIRID and the DTM. As 

described in Chapter 3, the testlet effect variances (denoted as fiöˇZ) are generated to 

be equal for the two testlets.  

Bias. At all study conditions, models accommodating the dual testlet structure 

(i.e. DT-MIRID and DTM) overestimate testlet variance, whereas the model ignoring 

the dual testlet structure underestimates testlet variance. The bias of fiöˇZ
1  obtained 

by DT-MIRID and the DTM are more stable than those obtained by T-MIRID when 
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the true testlet effect variance changes. Moreover, the fiöˇZ
1  deviates more from the 

true value when the dual testlets are highly correlated, for all three models. The bias 

of fiöˇZ
1  yielded from the T-MIRID is more stable than that from the DT-MIRID and 

the DTM to the change in the percentage of double-coded items.  

 

  
Figure 24. Mean plots of bias for fiöˇZ

1   

SE. The T-MIRID produces the smallest SEs of fiöˇZ
1  for all study 

conditions. Besides, the average of SEs for fiöˇZ
1  yielded from the T-MIRID is less 

impacted by the change of the manipulated factors than those from the DT-MIRID 

and DTM. For all models, large average of SEs for fiöˇZ
1  is always produced when 

the testlet effect variability is large and when there are 60% of double-coded items.  
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Figure 25. Mean plots of SE for fiöˇZ

1   

RMSE. In spite of the model used in estimating the testlet effect variances, 

the average RMSEs of fiöˇZ
1  is always the largest when the dual testlets correlation is 

0.8 and the true testlet effect variance is 1. The average of RMSEs of fiöˇZ
1  is more 

stable for estimates produced by DT-MIRID and DTM when the true testlet effect 

variability changes. Whereas the average of RMSEs for fiöˇZ
1  produced by T-MIRID 

increases dramatically when the true testlet effect variability increases. The average 

of RMSEs for fiöˇZ
1  estimated by DTM, which ignores the double-coded item 

structure, is more impacted by the change in the percentage of double-coded items. 

The DTM produces larger average of RMSEs for fiöˇZ
1 , when the test contains more 

double-coded items.  
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Figure 26. Mean plots of RMSE for fiöˇZ

1   

Correlation between Testlet Effects of Dual Testlets 

The correlation between the dual testlets (denoted as ~ZwZ{
) is only estimated 

in DT-MIRID and DTM. Therefore, the error measures of ~ãZwZ{
 are compared 

between DT-MIRID and DTM at levels of the manipulated factors.  

Bias. For the estimates produced by both DT-MIRID and DTM, smaller 

values of bias for ~ãZwZ{
 are obtained when the true testlet effect SD is larger and the 

true correlation between testlet effects for the dual testlets is larger. That is, when the 

true testlet effect variability is larger and the dual testlets are highly correlated, the 

~ãZwZ{
 is estimated with less bias. In addition, the fact that DTM does not model the 
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double-coded items leads to more biased ~ãZwZ{
, especially in a test that contains larger 

proportion of double-coded items. 

 

  
 Figure 27. Mean plots of bias for ~ãZwZ{

  

SE. In most of the study conditions, the SE of ~ãZwZ{
 is larger for ~ãZwZ{

 

estimated by DT-MIRID. Similar to what have been found in the bias of ~ãZwZ{
, the 

SEs of ~ãZwZ{
  tend to be smaller when the true testlet effect SD is larger and the testlet 

effects from the dual testlets are more correlated. For DTM, the SE of ~ãZwZ{
 is not 

heavily impacted by the percentage of double-coded items in the test. Whereas the 

SEs of ~ãZwZ{
 from the DT-MIRID is less stable across replications when the 

percentage of double-coded items changes—more double-coded in the test leads to 

more stable estimation of ~ãZwZ{
.  
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 Figure 28. Mean plots of SE for ~ãZwZ{

 for manipulated factors  

RMSE. In terms of the total error in ~ãZwZ{
, the RMSE showed consistent 

patterns with what have been found in bias and SEs— (a) the DT-MIRID produces 

less total error than the DTM in estimating ~ãZwZ{
; (b) the larger the testlet effect 

variability is, the smaller the RMSEs for ~ãZwZ{
 are; (c) the larger the true dual testlets 

correlation is, the more accurate the estimates of ~ZwZ{
 are; and (d) the impact of 

ignoring the double-coded item structure on the RMSE of ~ãZwZ{
 is more severe in 

conditions where there are more double-coded items.  
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 Figure 29. Mean plots of RMSE for ~ãZwZ{

  

Overall Ability 

Bias. The ANOVA results indicate that no effect on the bias of +â% is 

statistically significant with at least a small effect size. This is due to the fact that the 

mean of the overall ability estimates is constrained to be 0 in estimation to set the 

scale for the relative location between the ability and the item difficult. The bias of +â% 

is, therefore, centered around 0.  

The SD of the bias for +â% is calculated for each study condition (See in 

Appendix D). Across all study conditions, the NCS yields the largest SD of bias for  

+â%, whereas the SDs of bias for +â% from pattern scoring models are very similar. The 

SD of bias for +â% increases as the testlet effect SD increases and as the dual testlet 
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correlation decreases. The SD of bias for +â% estimated using NCS is also less stable 

when the testlet effect SD or the dual testlets correlation changes, comparing with 

patterns scoring models.  

  
Figure 30. Mean plot of the SD of bias for +â%  

SE. The significant effects identified by ANOVA are tabulated in Table 15.  

Based on the results, the significant three-way interaction effect among model, testlet 

effect SD and dual testlets correlation has a small effect size ([!N = 0.011). Figure 31 

presents this three-way interaction. Two observations are made— (a) the variability 

among the averages of SEs for +â% at different levels of dual testlets correlation is 

generally smaller when the testlet effect SD is small for all models, meaning that the 

SE of +â% tends to be more stable towards the change of dual testlets correlation when 

the testlet effect SD is small, and (b) the NCS produces the largest SE when the dual 

testlets correlation is large in spite of the testlet effect SD, whereas the pattern scoring 

models yield smaller SE of +â% when the dual testlets correlation is at 0.8.  
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Table 15 
ANOVA Results of Significant Effects on the SE of +â% 
Source  . Value C-value [!N 
Within (Huyhn-Feldt Adjustment)    
model 152534.616 <0.001 0.895 
model * testlet.sd 636.709 <0.001 0.034 
model * dbcorr 1060.767 <0.001 0.106 
model * testlet.sd * dbcorr 100.136 <0.001 0.011 
Between     
testlet.sd 2337.776 <0.001 0.115 
dbcorr 120.696 <0.001 0.013 

Note: The testlet effect SD is shorted as “testlet.sd”. The dual testlets correlation is 
abbreviated as “dbcorr”. The percentage of double-coded items is abbreviated as 
“percent_dbcd”. 

  
Figure 31. Significant three-way interaction effects on the SE of +â%— model*dual 
testlets correlation*testlet effect SD 

Moreover, the interaction effect between model and testlet effect SD has a 

small effect on the SEs of +â% (	[!N = 0.034). The two-way interaction between model 

and dual testlet correlation has a large effect on the SEs of +â% ([!N = 0.106). In 

addition, the ANOVA also indicates that the main effect of model ([!N = 0.895), 

testlet effect SD ([!N = 0.115) and the dual testlets correlation ([!N = 0.013) have 

large, large and small effects on the SEs of +â%, respectively. 

RMSE. According to the ANOVA results in Table 16, the interaction effect 

between model and testlet effect SD (	[!N = 0.028), and that between model and dual 
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testlet correlation ([!N = 0.03) both have small effects on the RMSE of +â%. Trends 

found in these two interactions are similar (see in Figure 32)— (a) both interactions 

are ordinal; (b) the RMSE of +â% estimated by NCS are more inflated by the increase 

of testlet effect SD and by the increase of dual testlets correlation; and (c) among 

pattern scoring models, models accommodating dual testlet structure (i.e. DT-MIRID 

and DTM) are less impacted by the change of testlet effect SD and the dual testlets 

correlation.  

Table 16 
ANOVA Results of Significant Effects on the RMSE of +â% 
Source  . Value C-value [!N 
Within (Huyhn-Feldt Adjustment)    
model 11010.803 <0.001 0.380 
model * testlet.sd 518.667 <0.001 0.028 
model * dbcorr 274.686 <0.001 0.03 
Between     
testlet.sd 1698.735 <0.001 0.086 
dbcorr 101.548 <0.001 0.011 

Note: The testlet effect SD is shorted as “testlet.sd”. The dual testlets correlation is 
abbreviated as “dbcorr”. The percentage of double-coded items is abbreviated as 
“percent_dbcd”. 
 

  
Figure 32. Significant two-way interaction effects on RMSE of +â% 



 

 124 
 

In addition, the main effect of model ([!N = 0.380), testlet effect SD ([!N =

0.086) and dual testlet correlation ([!N = 0.011) are significant on the RMSEs of +â% 

with large, medium and small effect, respectively.  

Subscore of Multiplication (as an Example of Subscores) 

The test that this simulation study is based on contains 4 subscores – subscore 

of addition, subscore of subtraction, subscore of multiplication and subscore of 

division. Although these subscores represent students’ latent ability in different 

content domains, the actual content and the difference among content domains are not 

the focus of this study. As described in Chapter 3, the test blueprint is designed to 

ensure balanced assessment of the 4 subdomains, the subscore structures are designed 

to be as similar as possible. Hence, the ANOVA results of the 4 subscores have little 

difference. That is, the significant effects with at least a small effect size identified in 

each of the subscores are largely consistent across the 4 subscores. The pattern in 

marginal averages and interactions are also very similar. Therefore, this section 

presents only the subscore estimation accuracy for the subscore of multiplication as 

an example. The subscore of multiplication is selected as an example because its 

significant effects are also common in other subscores. There are a few effects that 

are not significant for error measures of subscore for multiplication but significant for 

error measures of other subscores. Since these effects are not commonly observed 

significant effects across subscores, they will be briefly summarized after the 

ANOVA results of subscore for multiplication. The ANOVA results for other 

subscores are in Appendix E.  
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Bias. According to the results of ANOVA, the model has a significant effect 

on the bias of +â%û, with a small effect size (.(1.039,18689.001) = 627.4, C <

0.001, [!N = 0.034). Figure 33 shows small marginal means of bias for +â%û are 

obtained when 2PL or the pattern scoring models that accommodate the dual testlet 

structure are used in estimating the subscore of multiplication. All Pairwise 

comparison demonstrated significant mean bias difference for +â%û, except those 

between T-MIRID and NCS, and those between MIRID and NCS. 

 
Figure 33 Significant main effect on the bias of +â%û 

The less informative prior was assumed for +â%û with a normal distribution 

with a mean of 0 a variance of 4. The mean bias of +â%û is close to 0 for all conditions. 

The SDs of bias for +â%û is calculated for each study condition and for each model 

(See in Appendix D). The examination of SDs of bias for +â%û has shown that when 

the variability of the true testlet effects is large, the SD of bias for +â%û tends to be 

larger. In addition, the SD of the bias for +â%û is much larger for estimates by NCS 

than those estimated by pattern scoring models. These patterns on the SDs of bias for 

subscore estimates are identical across subscores. 
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SE. The ANOVA results (see in Table 17) show that the three-way interaction 

effect among model, testlet effect SD and dual testlets correlation is significant with a 

small effect ([!N = 0.016). The models ignoring dual testlet structure (i.e. T-MIRID, 

MIRID and 2PL) are impacted more heavily by the change in dual testlet correlation 

when testlet effect increases, whereas the SE of +â%û remains stable for DT-MIRID, 

DTM and NCS at different levels of the dual testlet correlation and when the testlet 

effect SD changes (See in Figure 34). The three-way interaction among model, testlet 

effect SD and percentage of double-coded items has a significant impact on the SE of 

+â%û with small effect size ([!N = 0.023). Figure 35 demonstrates that the means of 

SEs for +â%û are less variable at different levels of dual testlet correlations when testlet 

effect is low, whereas much lower SEs of +â%û are produced for a test with 60% of 

double-coded items at high level of testlet effect SD for all models, and especially for 

the NCS estimates. The interaction among model, dual testlets correlation and the 

percentage of double-coded items are statistically significant with a medium effect 

size ([!N = 0.094). Such interaction is depicted in Figure 36, where the impact of dual 

testlet correlation on the SE of +â%û increases as the percentage of double-coded items 

increases. The SEs of +â%û at different levels of dual testlet correlation yielded from 

NCS are most sensitive to the change of dual testlet correlation when there are 40% 

of double-coded items in the test. The three-way interaction among testlet effect SD, 

dual testlets correlation and the percentage of double-coded items is also statistically 

significant with a small effect size ([!N = 0.033). Figure 37 shows that the average of 

SE for +â%û is the smallest when the test contains 60% of double-coded items across 

different levels of testlet effect SD and different levels dual testlets correlation. The 
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variability of the averages of SE for +â%û at different levels of percentage of double-

coded items is smaller when the testlet effect SD is smaller, meaning that the stability 

of +â%û across replications is more impacted by the percentage of double-coded items 

when the testlet effect variability is large. In addition, when testlet effect SD is small, 

the SE of +â%û is more impacted by the percentage of double-coded items as the dual 

testlet correlation increases— the +â%û is the most stable across replications while the 

testlet effect SD is small and the paired testlets are weakly correlated. When the 

testlet effect SD is large and the dual testlet correlation is 0.2, the +â%û are more stable 

when there are 20% or 40% double-coded items; when the dual testlet correlation 

increases, the +â%û starts to contain much more random error at 40% of double-coded 

items.  

Table 17.  
ANOVA Results of Significant Effects on the SE of +â%û  
Source  . Value C-value [!N 
Within (Huyhn-Feldt Adjustment)    
model 104972.09 <0.001 0.854 
model * testlet.sd 255.214 <0.001 0.014 
model * dbcorr 382.93 <0.001 0.041 
model * percent_dbcd 890.948 <0.001 0.09 
model * testlet.sd * dbcorr 144.395 <0.001 0.016 
model * testlet.sd * percent_dbcd 208.599 <0.001 0.023 
model * dbcorr * percent_dbcd 465.741 <0.001 0.094 
model * testlet.sd *dbcorr * percent_dbcd 181.004 <0.001 0.039 
Between    
testlet.sd 949.02 <0.001 0.05 
percent_dbcd 935.988 <0.001 0.094 
dbcorr *percent_dbcd 145.417 <0.001 0.031 
testlet.sd * dbcorr * percent_dbcd 154.178 <0.001 0.033 

Note: The testlet effect SD is shorted as “testlet.sd”. The dual testlets correlation is 
abbreviated as “dbcorr”. The percentage of double-coded items is abbreviated as 
“percent_dbcd”. 
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Figure 34. Significant three-way interaction effects on the SE of +â%û—model*dual 
testlets correlation* testlet effect SD 

  
Figure 35. Significant three-way interaction effects on the SE of +â%û—
model*percentage of double-coded items* testlet effect SD 
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Figure 36. Significant three-way interaction effects on the SE of +â%û— model*dual 
testlets correlation* percentage of double-coded items  
 

  
Figure 37. Significant three-way interaction effects on the SE of +â%û—dual testlet 
correlation*percentage of double-coded items* testlet effect SD 

In addition, the four two-way interactions have significant effects on the SE of 

+â%û — the interaction between model and testlet effect SD with a small effect size 

([!N = 0.014), the interaction between model and dual testlet correlation with a small 
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effect size ([!N = 0.041), the interaction between model and the percentage of double-

coded items with a medium effect size ([!N = 0.090), and the interaction between 

dual testlet correlation and the percentage of double-coded items with a small effect 

size ([!N = 0.031). Besides, model, testlet effect SD and the percentage of double-

coded items are significant effects on the SE of +â%û. A large effect is found for model 

on the SE of +â%û ([!N = 0.854). The main effect of testlet effect SD ([!N = 0.050) and 

the percentage of double-coded items ([!N = 0.094) have small and medium effect 

size, repectively. The four-way interaction among model and all three manipulated 

factors is significant on the SE of +â%û with a small effect size ([!N = 0.039).  

RMSE. The ANOVA results are shown in Table 18. The three-way 

interaction among model, testlet effect SD and dual testlets correlation is a significant 

effect on the RMSE of +â%û with a small effect size ([!N = 0.010). As Figure 38 

presents, while the RMSEs of +â%û at different levels of dual testlet correlation 

become more similar for pattern scoring models while the testlet effect SD increases, 

NCS produces RMSEs of +â%û that are more diverged at levels of dual testlets 

correlation as the testlet effect variability increases. Moreover, the three-way 

interaction among model, dual testlets correlation and the percentage of double-coded 

items also significantly impacts the RMSEs of +â%û with a small effect size ([!N =

0.018). Figure 39 shows that pattern scoring models yield RMSEs of +â%û that are less 

variable to the change in dual testlet correlation when a test contains 60% of double-

coded items, while the variability of means of RMSEs for +â%û at levels of dual testlet 

correlation inflates when the percentage of double-coded items increases.  
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Figure 38. Significant three-way interaction effect on the RMSE of +â%û— model* 
testlet effect SD* dual testlets correlation 
 

 

  
Figure 39. Significant three-way interaction effect on the RMSE of +â%û— model* 
dual testlets correlation* percentage of double-coded items 

In addition, the two-way interaction effects between model and testlet effect 

SD ([!N = 0.027), between model and dual testlet correlation ([!N = 0.030), and 

between model and percentage of double-coded items ([!N = 0.022) are significant 
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with small effect sizes. The main effects of model, testlet effect SD and percentage of 

double-coded items are significant on the RMSE of +â%û. The effect sizes for the 

model is large ([!N = 0.611). The main effect of the testlet SD ([!N = 0.042) and that 

of the percentage of double-coded items ([!N = 0.020) have small effect sizes.  

Table 18  
ANOVA results of Significant Effects on the RMSE of +â%û  
Source  . Value C-value [!N 
Within (Huyhn-Feldt Adjustment)    
model 28201.339 <0.001 0.611 
model * testlet.sd 497.527 <0.001 0.027 
model * dbcorr 273.606 <0.001 0.03 
model * percent_dbcd 205.912 <0.001 0.022 
model * testlet.sd * dbcorr 93.922 <0.001 0.01 
model * dbcorr * percent_dbcd 81.319 <0.001 0.018 
Between     
testlet.sd 795.869 <0.001 0.042 
percent_dbcd 181.824 <0.001 0.02 

Note: The testlet effect SD is shorted as “testlet.sd”. The dual testlets correlation is 
abbreviated as “dbcorr”. The percentage of double-coded items is abbreviated as 
“percent_dbcd”. 

In addition to the significant effects commonly observed in all subscores, a 

few unique significant effects for certain subscores are identified. The main effect of 

dual testlet correlation on the SE of +â%$ is significant with a small effect size ([!N =

0.016), the main effect of dual testlet correlation on the RMSE of +â%#	is significant 

with a small effect size ([!N = 0.012). The interaction effect between model and 

percentage of double-coded items on the bias of +â%ü is statistically significant with a 

small effect size ([!N = 0.013). The interaction between the testlet effect SD and the 

percentage of double-coded items has a small effect on the SE of +â%ü ([!N = 0.010) 

and the SE of +â%# ([!N = 0.013). The four-way interaction effect on the RMSE of +â%$ 
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among the model and the three manipulated factors is significant with a small effect 

size ([!N = 0.019). 

Reliability 

Overall Reliability 

The results for the overall score reliability are summarized in Figure 40 (the 

overall score reliability and the subscore reliability for each study condition are 

tabulated in Appendix F). The overall reliability is calculated based on the overall 

ability parameters that are estimated using each of the comparison models.  

Across all study conditions, NCS yields the highest reliability, followed by T-

MIRID, MIRID and 2PL. NCS ability estimates are obtained by mapping the sum 

scores onto the TCC that is produced by integrating out the dual testlet effects. The T-

MIRID ignores the dual testlet structure by assuming that the last 10 items belong to a 

third testlet and that the testlet effects from these three testlets are independent. The 

MIRID and 2PL ignore testlet structure by assuming LII, where a student’s response 

to one item is not related to his/her response to another item after controlling for 

ability. Previous investigations have found that reliability is over estimated in the 

situation where LID is present but ignored (Sireci, Thissen, & Wainer, 1991; Wainer, 

1995; Wainer & Lukhele, 1997; Wainer & Thissen, 1996, Yen, 1993; Zenisky, 

Hambleton, & Sireci, 2002). Specifically, literature has suggested that ignoring item 

dependency inflates test information (Ip, 2000; Thissen, Steinberg, & Mooney, 1989; 

Reese, 1995; Wainer & Wang, 2001) and underestimates the SEM (Wainer, 1995; 

Wainer & Thissen, 1996). Results from the current study agree with previous studies. 
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Further, the current study shows that when testlet effects from different testlets 

correlate, ignoring the correlation between dual testlet effects will also result in 

spurious inflation of reliability estimates.  

In addition, the reliability yielded from DTM decreases as the percentage of 

double-coded items increases. This is because DTM ignores the double-coded 

structure, therefore its ability estimates contain more error when there are more 

double-coded items. Whereas the reliability from the DTMIRID increases when the 

test contains more double-coded items. This phenomenon is consistent with what has 

been found in literature— large number of composite items (i.e. double-coded items 

in this study) will increase the accuracy of task weights estimates (Butter et al., 1998; 

Huang, 2011; Li, 2017). As a result, the estimation of ability parameters also contains 

less error. Even in MIRT framework, the use of double-coded items increases the 

score reliability estimates (Feinberg & Wainer, 2014). 

Comparing the reliability produced by DT-MIRID and DTM, ignoring 

double-coded item structure reduces the overall score reliability, especially when 

there are more double-coded items in the test. The reliability of the overall ability 

estimates produced by the proposed model is higher when the dual testlets are less 

correlated and when the testlet effect SD is large. 

 



 

 135 
 

 

 Dual Testlets Correlation= 0.2 Dual Testlets Correlation = 0.5 Dual Testlets Correlation=0.8 

Testlet 
Effect 

SD=0.5 

   

Testlet 
Effect 
SD=1 

   
Figure 40. Reliability for overall score under each simulation condition for each model 
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Subscore Reliability 

Since the subscore reliability is based on a subset of items from the test, the 

reliability for subscores is generally lower than the reliability of the overall score. The 

pattern found in subscore reliability is consistent across subscores. Therefore, this 

section only presents the reliability of subscore for subtraction as an example. 

Reliabilities for other subscores can be found in Appendix F.  

Figure 41 presents the reliability for subscore of subtraction at each simulation 

condition for each model. Similar to patterns that have been identified in reliability 

for overall scores, the reliabilities produced by NCS, the T-MIRID, the MIRID and 

the 2PL are spuriously inflated. Reliabilities obtained from the proposed model are 

higher when the testlet effect SD is large and the correlation between dual testlet 

effects is small. That is, the subscore reliability tends to be large when testlet effects 

from dual testlets are less dependent, and the testlet effect variability is large. In 

addition, ignoring double-coded structure results in lower subscore reliability.  

For subscore reliability, higher reliability tends to be obtained when there are 

60% of double-coded items in the test. This pattern is true for all models, even for 

estimates yielded from DTM which should be penalized more when the percentage of 

double-coded items is high, in some conditions (e.g. testlet effect SD=0.5, dual 

testlets correlation=0.2). Although this pattern is also found in the overall score 

reliability based on estimates yielded from the DT-MIRID, the two may be due to 

different reasons—the subscore reliability is estimated with more items, if the 

percentage of double-coded items is high, whereas the test length is constant for all 
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levels of percentage of double-coded items in estimating overall score reliability. 

Take subscore of subtraction as an example. (Information for items included in 

subscore of subtraction is presented in Table 19.) There are 12 items for the subscore 

of subtraction when there are 40% and 60% of double-coded items, yet only 9 items 

when there are 20% of double-coded items. Item information for other subscores can 

be found in Appendix G. This means that when investigating the impact of the 

percentage of double-coded items on the subscore reliability, there are two impacts 

that are inseparable—(a) the impact of the number of items in the subscore, and (b) 

the impact of the parameter estimation for the component difficulty, task weight and 

intercept for the composite item.  
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 Dual Testlets Correlation= 0.2 Dual Testlets Correlation = 0.5 Dual Testlets Correlation=0.8 

Testlet 
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Figure 41. Subscore reliability for subscore of subtraction under each simulation condition for each model 
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Table 19  
 Information for Items in Subscore of Subtraction 

 20% of Double-coded Items 40% of Double-coded Items 60% of Double-coded Items 

Position in 
subscore 

Position in 
Test 

Composite 
Item 

Item 
Difficulty 

Used 

Position in 
Test 

Composite 
Item 

Item 
difficulty 

Used 

Position in 
Test 

Composite 
Item 

Item 
Difficult 

Used 
1 3 no 3 3 no 3 2 no 2 
2 4 no 4 4 no 4 5 yes 2 
3 9 yes 3 7 yes 3 8 yes 2 
4 13 no 13 8 yes 4 9 yes 2 
5 14 no 14 13 no 13 12 no 12 
6 20 yes 13 14 no 14 15 yes 12 
7 23 no 23 19 yes 13 18 yes 12 
8 24 no 24 20 yes 14 19 yes 12 
9 29 yes 23 21 no 21 22 no 22 
10    22 no 22 25 yes 22 
11    27 yes 21 28 yes 22 
12    28 yes 22 29 yes 22 

Note: 1. For component items, numbers in “Item Difficulty Used” are positions of the items in the test. For a composite item, the 
number in column 4, 7 and 10 is the position of the component item that assesses subtraction.  
2. The scale of shades indicates which testlet the item belongs to, under the true condition. The lightest shade indicates the first testlet, 
the medium shade indicates the second testlet and the darkest indicates items for the dual testlets. 
 



 

 140 
 

Model Fit 

As described in Chapter 3, the proportion of identifying the true model as the 

best fitting model using AIC, BIC and DIC under each study condition is used as 

criterion to evaluate the model fit indices. However, none of the three indices 

identifies the true model as the best fitting model for any replication in 16 out of 18 

study conditions. Therefore, the proportion of identifying each model as the best 

fitting model under each condition is summarized in this section. Table 20 presents 

the percentage of identifying each model as the best fitting model for all study 

conditions.  

The AIC and BIC have identified same model as the best fitting model in all 

study conditions. The AIC and BIC consistently identify the T-MIRID as the best 

fitting model for almost all study conditions, except that they choose DTM as the best 

fitting model in the conditions where the testlet effect SD is 0.5 and there are 60% of 

double-coded items and the dual testlets correlation is 0.2 or 0.5. The DIC favors the 

2PL, followed by the MIRID for most study conditions. The proposed model was 

selected as the best fitting model only by DIC and only in the conditions with the 

testlet effect SD being 1, the dual testlets correlation being 0.2, and there being 20% 

or 60% of double-coded items.   

The model index was calculated based on the item and overall ability 

parameter estimation; it does not assess the data-model fit in estimating subscores. In 

estimating model parameters, there are two pairs of models that are theoretically very 

similar in terms of overall fit—(a) DTMIRID and DTM, and (b) MIRID and 2PL. 
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The difference between models within each pair is that the simpler model does not 

decompose composite item difficulty, while the more complex model does. Such 

difference has little impact on the data-model fit, but the more complex model is 

penalized more as it contains more parameters. That is why the DIC struggles 

(judging from the percentages of being identified as the best fitting model) between 

MIRID and 2PL and between the DT-MIRID and the DTM in identifying the best 

fitting models. However, these extra parameters in the more complex model are 

necessary in subscore reporting. Hence, model fit index cannot be used as the sole 

criterion in model selection.  

In summary, the AIC and BIC fail to identify the proposed model as the best 

fitting model for all study conditions, and DIC is only able to identify the proposed 

model as the best fitting model when the testlet effect variability is large and the dual 

testlets correlation is small. This indicates that these model fit indices are limited in 

empirical evaluation of data-model fit for the proposed model. In addition, since one 

of the main purpose of the proposed model is to report subscores, sacrificing model 

fit by including the necessary parameters for subscore estimation has many gains. In 

other words, model fit indices should not be emphasized in evaluating model 

performance, especially in terms of subscore reporting for the proposed method.  
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Table 20 
Proportion of Identifying Each Model as the Best Fitting Model  

Conditions AIC BIC DIC 

!"#$ %$&$' 

% 
Double
-coded 
Items 

DT-
MIR
ID  

T-
MIR
ID 

MIR
ID 

DT
M 2PL 

DT-
MIR
ID  

T-
MIR
ID 

MIR
ID 

DT
M 2PL 

DT-
MIR
ID  

T-
MIR
ID 

MIR
ID 

DT
M 2PL 

0.5 

0.2 
20% 0 1 0 0 0 0 1 0 0 0 0 0 0.43 0 0.57 
40% 0 1 0 0 0 0 1 0 0 0 0 0 0.67 0 0.33 
60% 0 0.03 0 0.97 0 0 0.03 0 0.97 0 0 0 0 0 1 

0.5 
20% 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 
40% 0 1 0 0 0 0 1 0 0 0 0 0 0.43 0 0.57 
60% 0 0.17 0 0.83 0 0 0.17 0 0.83 0 0 0 0 0 1 

0.8 
20% 0 1 0 0 0 0 1 0 0 0 0 0 0.5 0 0.50 
40% 0 1 0 0 0 0 1 0 0 0 0 0 0.53 0 0.47 
60% 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 

1 

0.2 
20% 0 1 0 0 0 0 1 0 0 0 0.60 0 0 0.40 0 
40% 0 1 0 0 0 0 1 0 0 0 0.43 0 0 0.57 0 
60% 0.13 0.80 0 0.07 0 0.13 0.80 0 0.07 0 0.53 0 0 0.43 0.03 

0.5 
20% 0 1 0 0 0 0 1 0 0 0 0 0 0.63 0 0.37 
40% 0 1 0 0 0 0 1 0 0 0 0.07 0 0.03 0.03 0.87 
60% 0.07 0.90 0 0.03 0 0.07 0.90 0 0.03 0 0 0 0.03 0.07 0.90 

0.8 
20% 0 1 0 0 0 0 1 0 0 0 0 0 0.50 0 0.50 
40% 0 1 0 0 0 0 1 0 0 0 0 0 0.23 0 0.77 
60% 0 0.63 0 0.37 0 0 0.67 0 0.33 0 0 0 0 0 1 

Note: The grey shading indicates the highest proportion identified among models by each model fit index under each study condition.  
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Chapter 5: Discussion 

This study proposes the 2PL-DT-MIRID to model complex testlet structure 

where correct item responses require information from paired testlets and to report 

content-based subscores by decomposing composite item difficulty into content-

specific component difficulties. A simulation study is conducted to investigate the 

performance of the proposed model in comparison with other underspecified models. 

In addition, overall and subdomain abilities are also estimated using NCS. Overall 

number-correct scores and subscores are compared with those from pattern scoring. 

The impact of testlet effect SD, dual testlets correlation and the percentage of double-

coded items are evaluated together with the impact from mis-specification in model 

structure. The model performance is assessed by parameter estimation accuracy, score 

reliability and model selection. The findings from this study are compared with 

findings from previous investigations and summarized in a systematic way in the 

hope that this study will serve as a reference for future exploration.  

The Simulation Results 

Based on the results presented in Chapter 4, this section summarizes the 

findings from four perspectives— (a) the impact of ignoring dual testlet or/and 

double-coded items on model parameter recovery and subscore estimation, (b) the 

impact of the manipulated factors on item and overall ability parameter recovery and 

subscore estimation, (c) the implications on the score reliabilities, and (d) the 

implications on the effectiveness of different model selection indices.  
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Impact of Ignoring Dual Testlets or/and Double-Coded Items 

The data generating model outperforms other underspecified models (i.e. the 

T-MIRID, the MIRID, the DTM and the 2PL) in terms of model parameter 

estimation. The proposed model has, on average, the smallest bias, SE and RMSE for 

item discrimination parameters, the smallest bias and RMSE for item difficulty 

parameters, and the smallest RMSE for task weights, tau, correlation between testlet 

effects for the paired testlets. The proposed model and the DTM performed equally 

well on overall ability parameter recovery. Although the DTM produces the smallest 

SE and RMSE on average, the difference between the average SE and RMSE 

produced by the DTM and those by the proposed model is to the third decimal places 

and the direction of the difference varies for different study conditions.  

In subscore estimation, however, the T-MIRID and the MIRID perform the 

best, followed by the proposed DT-MIRID. The performance of the DTM and the 

2PL is much worse than models that properly accommodate double-coded items (i.e. 

T-MIRID, MIRID and DT-MIRID). The NCS is the worst in terms of score 

estimation among the six methods by yielding the largest bias, SE and RMSE.  

Based on the study results, ignoring the dual testlet structure has a major 

impact on item parameter recovery. Previous studies have concluded that not 

modeling the dependency among items due to testlets while it exists results in 

underestimated item discrimination (Bradlow et al., 1999; Wainer et al., 2000) and 

shrinking variance of item difficulties (Ackerman, 1987; Bradlow et al., 1999; Reese, 

1995). Jiao et al. (2017) found that ignoring dual testlets will result in negatively 

biased !"# averaging across all items, but they also found that !"# and $%# for items that 
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require information from both testlets are over estimated in much larger magnitude 

when the dual testlets are not accommodated, as comparing to the bias of  !"# and $%# 

for items nested within a single testlet. The current study observes the same pattern, 

where !"# and $%# for items that require information from dual testlets are estimated 

with larger positive bias and larger RMSEs than those for items in a single testlet. 

Since one-third of the items in the current study are based on dual testlets whereas 

only one-seventh of the total items in Jiao et al. (2017) are based on paired-testlets, 

the average bias for !"# in the current study is influenced more by the large positive 

bias found in items based on dual testlets when ignoring dual testlets for all study 

conditions. In addition, ignoring dual testlet structure also leads to more error in the 

estimation of task weights and the intercepts.  

The impact of ignoring testlet effects from dual testlets on the overall ability 

parameter estimation is also different from the impact of ignoring testlet effects that 

are not correlated between testlets. The literature suggests that the ability estimates 

are more spread-out than the true parameters (Ackerman, 1987; Reese, 1995). In our 

study, the theta distributions are attenuated towards the mean for all models across all 

study conditions. When ignoring the dual testlets, the ability estimates are less 

attenuated to the mean than ability estimates yielded from the DT-MIRID and the 

DTM do.  

Ignoring double-coded items has a major impact on the estimation of 

subscores. Such impact is consistent on all four subscores and it is entirely 

anticipated. The double-coded items are designed to assess two arithmetic operations 

in one item. The DTM and the 2PL will count the double-coded item twice, once for 
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estimating each subscore. Therefore, errors are introduced by including students’ 

ability for the off-target subdomain in the on-target subscore. Although the NCS 

subscores contain even more error, the errors contained in the NCS subscores are 

mainly due to ignoring response pattern; in other words, the NCS weights each item 

equally in estimating the logit scores when some items should contribute more to 

students’ scores.  

Impact of Manipulated Factors  

The testlet effect SD has significant impact on almost all model parameters 

and all subscores. Judging from the SE and the RMSE, the larger the testlet effect SD, 

the more accurate the item discrimination estimates, the testlet variance estimates and 

the dual testlets correlation estimates. Bradlow et al. (1999) found that the impact of 

ignoring testlet effects for a single testlet (as opposed to dual testlets where testlet 

effects correlate) is larger on item parameters, when the testlet effect variability 

increases. The current study also finds that the impact of ignoring dual testlets on 

item discrimination and testlet effect variance is more severe when the testlet SD is 

larger. In terms of the overall ability and subscores, smaller testlet effect SD results in 

less total error in estimation. 

Jiao et al. (2017) found that a smaller correlation between testlet effects from 

the dual testlets associates with larger bias in testlet variance estimates. However, the 

average bias in Jiao et al. (2017) was calculated across the variances across all testlets 

including independent testlets and the two testlets that are correlated. When only 

looking at the two testlets that are correlated, as in the current study, their findings 

agree with the current study—smaller correlation between dual testlets leads to 



 

 147 
 

smaller positive bias. Nevertheless, different from Jiao et al. (2017), the current study 

finds that larger dual testlet correlation improves the recovery of the correlation 

between testlet effects from the dual testlets, judging from the bias, SE and RMSE. 

For the overall ability parameters, less error is obtained when the dual testlets are less 

correlated. On the items side, the item discrimination estimates, task weights and the 

intercept obtained in conditions where the dual testlets are less correlated contain less 

error, according to RMSE. In practice, high correlation between dual testlets should 

be rare. Since the goal of adopting dual testlets in a test is to assess students’ ability in 

synthesizing information from different sources, if the dual testlets provide similar 

information, there is little gain in using dual testlets in a test.  

The percentage of double-coded items has little impact on the model 

parameter estimation, but it influences the subscore estimation. According to the bias, 

SE and RMSE, large percentage of double-coded items increases the accuracy of 

subscore estimation. The reason is that having more double-coded items in the tests 

means that each component item difficulty is used more frequently in double-coded 

items. This is essentially to test and to retest students’ ability on the same 

knowledge/skill. Therefore, the estimated subscores are more accurate. Although 

including more double-coded items can improve subscore estimation accuracy, 

having too many double-coded items is neither efficient in content coverage nor 

economical in developing high quality items. To decide on the percentage of double-

coded items, test developers should balance among adequacy in content coverage, 

assessment on integrated skills, and accuracy in reported subscores.  
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Score Reliability  

Based on the results, three major findings are summarized on score reliability. 

First, ignoring dual testlets naively inflates the reliability as the correlation between 

item responses and the ability estimates increases due to the failure in separating the 

ability from the testlet effect. Second, ignoring the double-coded items will 

negatively impact the score reliability based on the model parameter estimates, 

because subdomain abilities are contaminated by information from other domains. 

And third, high percentage of double-coded items increases the score reliability by 

providing consistent subdomain estimates with more frequent use of component item 

difficulties.  

As previously discussed, the variance of the overall ability estimates shrinks 

for the proposed model. One caveat in calculating score reliability is that the 

attenuation of the ability towards the mean reduces the reliability estimates. This is 

why the reliability of the NCS scores with a variance closer to 1 are much higher than 

that calculated by using the DT-MIRID, even though they use the same estimated 

item parameters.  

Model Selection  

This study evaluates model fit using three commonly used model fit indices— 

AIC, BIC and DIC. Result shows that AIC and BIC fail to identify the proposed 

model as the best fitting model in all study conditions, and the DIC only identifies the 

proposed model as the best fitting model when the testlet effect SD is 1, the dual 

testlet correlation is 0.2 and there are 20% or 60% of double-coded items in the test. 

On one hand, these three indices are ineffective in identifying the model fit 
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improvement from ignoring dual testlet effects to accommodating the dual testlets 

and from ignoring double-coded items to modeling the double-coded items explicitly 

in the model. On the other hand, since decomposing item difficulty is necessary for 

subscore reporting, the fact that the commonly used fit index in Bayesian estimation 

cannot identify the true model may not jeopardize the utility of the proposed model. 

A new model fit index that assesses the overall model fit including the fit in model 

parameter estimation and the fit in subscore estimation can be developed for reporting 

subscores with the proposed model. In addition, other model fit indices can be 

compared in a more comprehensive study for investigating model selection for the 

proposed method.  

Limitations and Future Investigations  

Like every study, certain limitations remain in the current study. This study 

simulates response data for a test containing two testlets, each with 10 items and an 

additional set of items, 21-30 requiring information from both testlets. Although such 

a design was adopted for a focused investigation on the dual testlets structure and the 

double-coded items, it is not the most realistic in practice. In a real testing scenario, a 

test often contains single-coded items that are not nested within testlets and testlets 

that do not correlate with other testlets. The average error measures reported in the 

current study magnified the impact of double-coded items and the dual testlet 

comparing to what would have presented in a real testing scenario. Future studies 

may consider including single-coded items that do not belong to any testlets and 

independent testlets to the test structure to assess the impact of double-coded items 
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and that of the dual testlets from a more realistic perspective. Results based on a more 

realistic test design may have more immediate implication to test operations. 

The current study only investigated the impact of testlet effect SD, dual testlet 

correlation and the percentage of double-coded items. Such exploration is far from 

enough for validating the use of such model in a large-scale test. Factors such as 

sample size, test length and number of items in a testlet could also be added in future 

exploration.  

In addition to limitations in the study design, a caveat in the method should 

also be mentioned. From calculating the empirical true subscores to estimate model 

parameters and to subscore estimation, the complexity in the procedures may 

introduce more random error in the final subscore estimates. Future investigation 

could compare subscores produced using procedures in the current study with 

subscores yielded using other methods, such as MIRT to make relative statement of 

the subscore estimation accuracy.  

Although there are limitations, the contributions of this study are notable. This 

study is motivated by innovative item types in the test where a single test item 

contributes to two subscores and the dual testlets are embedded in the test to assess 

students’ ability on information synthesis. The DT-MIRID proposed in this study 

explicitly accommodates the dual testlet structure and the double-coded items in the 

model structure for providing accurate estimates on the overall score and subscores. 

The DT-MIRID estimates subscores from a new perspective— decomposing item 

difficulty parameters into component difficulties that are content domain specific. 

Different from MIRT, the proposed method is more versatile in that it can be used to 
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produce both pattern scores and number-correct scores. Consequence of ignoring 

complex testlet and item structures are modeled and assessed under study conditions 

that vary in terms of testlet effect SD, dual testlets correlation and percentage of 

double-coded items. Results of this study show that parameter estimation accuracy for 

item parameters, overall ability parameters, and subscores are all improved by 

accommodating complex testlet and item structure in innovative item types. 
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Appendix A Data Generating Models for the Test with 20% of Double-Coded Items 
Item Testlet Arithmetic 

Operation(s) Item Type Data Generating Models 

1 1 A Component, Single Testlet P"X$%& = 1) =
exp -./0 -12 + 4256(8) − ;/0<<

1 + exp -./0 -12 + 4256(8) − ;/0<<
 

2 1 A Component, Single Testlet Same as item 1 
3 1 S Component, Single Testlet Same as item 1 

4 1 S Standalone, Single Testlet P"X$%= = 1) =
exp -./= -12 + 4256(8) − ;/><<

1 + exp -./= -12 + 4256(8) − ;/><<
 

5 1 M Component, Single Testlet Same as item 1 
6 1 M Standalone, Single Testlet Same as item 4 
7 1 D Standalone, Single Testlet Same as item 4 
8 1 D Standalone, Single Testlet Same as item 4 

9 1 A (1) & S (3) Double-Coded Single 
Testlet P"X$%= = 1) =

exp -./= -12 + 4256(8) − ∑ @0;/0 − AB
0C> <<

1 + exp -./= -12 + 4256(8) − ∑ @0;/0 − AB
0C> <<

 

10 1 A (2) & M (5) Double-Coded Single 
Testlet Same as in item 9 

11 2 A Component, Single Testlet P"X$%& = 1) =
exp -./0 -12 + 425D(8) − ;/0<<

1 + exp -./0 -12 + 425D(8) − ;/0<<
 

12 2 A Standalone, Single Testlet P"X$%= = 1) =
exp -./= -12 + 425D(8) − ;/><<

1 + exp -./= -12 + 425D(8) − ;/><<
 

13 2 S Component, Single Testlet Same as item 11 
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14 2 S Standalone, Single Testlet Same as item 12 
15 2 M Component, Single Testlet Same as item 11 
16 2 M Standalone, Single Testlet Same as item 12 
17 2 D Component, Single Testlet Same as item 11 
18 2 D Standalone, Single Testlet Same as item 12 

19 2 A (11) & D (17) Double-Coded Single 
Testlet P"X$%= = 1) =

exp -./= -12 + 425D(8) − ∑ @0;/0 − AB
0C> <<

1 + exp -./= -12 + 425D(8) − ∑ @0;/0 − AB
0C> <<

 

20 2 S (13) & M (15) Double-Coded Single 
Testlet Same as item 19 

21 1 & 2 A Standalone, Paired Testlet 

P"X$%= = 1) =
exp -./= -12 + 4256(8) − ;/><<

1 + exp -./= -12 + 4256(8) − ;/><<

∗
exp -./= -12 + 425D(8) − ;/><<

1 + exp -./= -12 + 425D(8) − ;/><<
 

22 1 & 2 A Standalone, Paired Testlet Same as item 21 

23 1 & 2 S Component, Paired Testlet 
P"X$%& = 1) =

exp -./0 -12 + 4256(8) − ;/0<<
1 + exp -./0 -12 + 4256(8) − ;/0<<

∗ exp"./0"12 + 425D(/) − ;/0))
1 + exp"./0"12 + 425D(/) − ;/0))

 

24 1 & 2 S Standalone, Paired Testlet Same as item 21 
25 1 & 2 M Component, Paired Testlet Same as item23 
26 1 & 2 M Standalone, Paired Testlet Same as item 21 
27 1 & 2 D Component, Paired Testlet Same as item23 
28 1 & 2 D Component, Paired Testlet Same as item23 



 

 154 
 

29 1 & 2 S (23) & D (27) Double-Coded, Paired 
Testlet 

P"X$%= = 1) =
exp -./= -12 + 4256(8) − ∑ @0;/0 − AB

0C> <<
1 + exp -./= -12 + 4256(8) − ∑ @0;/0 − AB

0C> <<

∗ exp"./="12 + 425D(/) − ∑ @0;/0 − AB
0C> ))

1 + exp"./="12 + 425D(/) − ∑ @0;/0 − AB
0C> )) 

30 1 & 2 M (25) & D (28) Double-Coded, Paired 
Testlet Same as item 29 
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Appendix B Derivation of Item Information for 2PL-DT-MIRID 
 
For 2PL-DT- MIRID, Define  

⎩
⎪
⎨

⎪
⎧%&'1 = exp	(/01(23 + 5367(8) −;<=>0= − ?))

=

=@A

%&'1 = exp	(/01(23 + 536B(8) −;<=>0= − ?))
=

=@A

 , 

 
then  

⎩
⎨

⎧ CD23E =
expA

(1 + expA)
	

expF
(1 + expF)

GD23E = 1 − CD23E =
1 + expA + expF 	

(1 + expA)(1 + expF) 	

 . 

 
The definition of item information is  

HD23E =
ICJD23EK

F

CD23EGD23E
 . 

 
In the case of 2PL-DT-MIRID,  
CJD23E

=
−expAexpFD(1 + expA)(1 + expF)E

J
+ (expAexpF)JD(1 + expA)(1 + expF)E

D(1 + expA)(1 + expF)E
F

=
expAexpFJ + expA′expF + expAJ expFF + expAF expF′

D(1 + expA)(1 + expF)E
F

=
/01expAexpF(2 + expA + expF)

D(1 + expA)(1 + expF)E
F

=
/01expAexpF I

1
1 + expA

+ 1
1 + expF

K

(1 + expA)(1 + expF)
 

 

. 

 Therefore, 



 

 156 
 

HD23E =
ICJD23EK

F

CD23EGD23E
		

=

/01F expAFexpFF I
1

1 + expA
+ 1
1 + expF

K
F

(1 + expA)F(1 + expF)F
expAexpF(1 + expA + expF)
(1 + expA)F(1 + expF)F

=
/01F expAexpF I

1
1 + expA

+ 1
1 + expF

K
F

1 + expA + expF
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Appendix C Bias, SE and RMSE for Each Model Parameter and Subscores 
Table 21 
Bias for Item Discrimination Parameter under Each Study Condition 

Manipulated Factors Bias 

Testlet Effect 
SD 

Dual Testlets 
Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL 

0.5 

0.2 
20% -0.177 0.157 0.191 -0.140 0.199 
40% -0.098 0.134 0.167 -0.169 0.163 
60% -0.096 0.128 0.160 -0.174 0.168 

0.5 
20% -0.081 0.146 0.178 -0.098 0.185 
40% -0.147 0.160 0.198 -0.160 0.198 
60% -0.088 0.136 0.174 -0.084 0.200 

0.8 
20% -0.150 0.170 0.212 -0.141 0.215 
40% -0.223 0.171 0.218 -0.195 0.226 
60% -0.145 0.137 0.183 -0.223 0.181 

1 

0.2 
20% -0.022 0.278 0.267 -0.036 0.266 
40% 0.000 0.265 0.259 -0.080 0.253 
60% 0.031 0.289 0.313 -0.130 0.309 

0.5 
20% -0.085 0.361 0.378 -0.109 0.375 
40% -0.026 0.343 0.357 -0.121 0.351 
60% 0.007 0.375 0.397 -0.125 0.397 

0.8 
20% -0.169 0.455 0.489 -0.146 0.490 
40% -0.085 0.417 0.449 -0.098 0.443 
60% -0.148 0.483 0.529 -0.168 0.534 
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Table 22 
SE for Item Discrimination Parameter under Each Study Condition 

Manipulated Factors SE 

Testlet Effect 
SD 

Dual Testlets 
Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL 

0.5 

0.2 
20% 0.094 0.125 0.124 0.098 0.128 
40% 0.088 0.104 0.104 0.081 0.106 
60% 0.111 0.099 0.099 0.084 0.107 

0.5 
20% 0.085 0.108 0.107 0.085 0.111 
40% 0.082 0.107 0.107 0.082 0.113 
60% 0.081 0.102 0.102 0.088 0.114 

0.8 
20% 0.078 0.107 0.107 0.080 0.111 
40% 0.080 0.111 0.112 0.086 0.124 
60% 0.078 0.101 0.102 0.075 0.110 

1 

0.2 
20% 0.099 0.119 0.110 0.096 0.112 
40% 0.094 0.112 0.106 0.094 0.108 
60% 0.091 0.098 0.095 0.080 0.102 

0.5 
20% 0.088 0.112 0.112 0.087 0.113 
40% 0.090 0.113 0.109 0.086 0.112 
60% 0.099 0.117 0.113 0.099 0.120 

0.8 
20% 0.084 0.123 0.119 0.084 0.123 
40% 0.084 0.119 0.114 0.083 0.117 
60% 0.109 0.126 0.125 0.085 0.134 
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Table 23 
RMSE for Item Discrimination Parameter under Each Study Condition 

Manipulated Factors RMSE 

Testlet Effect 
SD 

Dual Testlets 
Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL 

0.5 

0.2 
20% 0.206 0.243 0.260 0.179 0.269 
40% 0.135 0.202 0.220 0.189 0.218 
60% 0.159 0.234 0.251 0.195 0.217 

0.5 
20% 0.123 0.223 0.241 0.134 0.229 
40% 0.169 0.214 0.238 0.181 0.240 
60% 0.138 0.240 0.254 0.123 0.245 

0.8 
20% 0.170 0.219 0.249 0.163 0.253 
40% 0.237 0.223 0.256 0.215 0.268 
60% 0.166 0.194 0.224 0.235 0.223 

1 

0.2 
20% 0.102 0.309 0.309 0.104 0.308 
40% 0.097 0.293 0.286 0.126 0.282 
60% 0.099 0.312 0.334 0.154 0.331 

0.5 
20% 0.124 0.381 0.398 0.141 0.395 
40% 0.095 0.365 0.377 0.149 0.371 
60% 0.102 0.397 0.417 0.161 0.418 

0.8 
20% 0.190 0.473 0.505 0.169 0.506 
40% 0.120 0.435 0.464 0.132 0.459 
60% 0.190 0.514 0.554 0.192 0.552 
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Table 24 
Bias for Item Difficulty Parameter under Each Study Condition 

Manipulated Factors Bias 

Testlet Effect 
SD 

Dual Testlets 
Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL 

0.5 

0.2 
20% 0.011 0.288 0.276 0.007 0.277 
40% -0.003 0.313 0.302 -0.007 0.293 
60% -0.077 0.245 0.236 -0.009 0.245 

0.5 
20% -0.007 0.218 0.206 -0.007 0.256 
40% -0.001 0.304 0.289 -0.013 0.283 
60% -0.073 0.197 0.186 -0.009 0.197 

0.8 
20% -0.006 0.302 0.286 -0.008 0.295 
40% 0.000 0.244 0.231 -0.019 0.232 
60% -0.026 0.340 0.322 -0.016 0.340 

1 

0.2 
20% 0.004 0.277 0.269 0.005 0.273 
40% 0.003 0.299 0.288 -0.002 0.311 
60% 0.010 0.225 0.205 0.003 0.225 

0.5 
20% -0.005 0.259 0.249 -0.011 0.249 
40% -0.003 0.277 0.265 -0.013 0.251 
60% -0.011 0.193 0.190 -0.025 0.193 

0.8 
20% 0.005 0.248 0.236 -0.002 0.239 
40% -0.012 0.227 0.216 -0.013 0.240 
60% 0.049 0.245 0.231 -0.035 0.245 
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Table 25 
SE for Item Difficulty Parameter under Each Study Condition 

Manipulated Factors SE 

Testlet Effect 
SD 

Dual Testlets 
Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL 

0.5 

0.2 
20% 0.106 0.102 0.097 0.106 0.099 
40% 0.105 0.097 0.095 0.117 0.098 
60% 0.138 0.078 0.076 0.113 0.078 

0.5 
20% 0.108 0.103 0.098 0.114 0.097 
40% 0.099 0.088 0.084 0.105 0.094 
60% 0.109 0.089 0.084 0.115 0.089 

0.8 
20% 0.114 0.112 0.105 0.116 0.108 
40% 0.093 0.076 0.072 0.100 0.079 
60% 0.105 0.082 0.078 0.115 0.082 

1 

0.2 
20% 0.098 0.080 0.076 0.101 0.078 
40% 0.102 0.087 0.082 0.113 0.085 
60% 0.094 0.073 0.068 0.121 0.073 

0.5 
20% 0.105 0.078 0.074 0.108 0.077 
40% 0.092 0.072 0.068 0.105 0.072 
60% 0.084 0.073 0.070 0.113 0.073 

0.8 
20% 0.103 0.064 0.061 0.101 0.064 
40% 0.090 0.058 0.055 0.096 0.057 
60% 0.124 0.053 0.050 0.096 0.053 
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Table 26 
RMSE for Item Difficulty Parameter under Each Study Condition 

Manipulated Factors RMSE 

Testlet Effect 
SD 

Dual Testlets 
Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL 

0.5 

0.2 
20% 0.201 0.358 0.334 0.168 0.335 
40% 0.131 0.379 0.368 0.189 0.364 
60% 0.177 0.318 0.308 0.217 0.318 

0.5 
20% 0.154 0.352 0.342 0.173 0.335 
40% 0.161 0.366 0.346 0.172 0.353 
60% 0.198 0.399 0.388 0.162 0.399 

0.8 
20% 0.199 0.379 0.356 0.189 0.364 
40% 0.244 0.312 0.309 0.218 0.308 
60% 0.190 0.424 0.433 0.270 0.424 

1 

0.2 
20% 0.107 0.354 0.367 0.115 0.373 
40% 0.106 0.412 0.422 0.152 0.431 
60% 0.098 0.396 0.429 0.186 0.396 

0.5 
20% 0.138 0.373 0.383 0.155 0.383 
40% 0.101 0.398 0.413 0.167 0.392 
60% 0.090 0.264 0.261 0.185 0.264 

0.8 
20% 0.206 0.369 0.378 0.185 0.383 
40% 0.145 0.379 0.394 0.154 0.410 
60% 0.237 0.336 0.344 0.183 0.336 
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Table 27 
Bias for Task weight under Each Study Condition 

Manipulated Factors Bias 

Testlet Effect 
SD 

Dual Testlets 
Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL 

0.5 

0.2 
20% -0.026 -0.093 -0.095 NA NA 
40% 0.018 0.072 0.072 NA NA 
60% -0.043 0.004 0.005 NA NA 

0.5 
20% 0.031 -0.033 -0.030 NA NA 
40% -0.018 -0.042 -0.044 NA NA 
60% -0.085 -0.040 -0.044 NA NA 

0.8 
20% 0.027 -0.002 -0.006 NA NA 
40% 0.006 0.043 0.040 NA NA 
60% -0.031 0.112 0.110 NA NA 

1 

0.2 
20% -0.012 -0.027 -0.024 NA NA 
40% 0.006 -0.015 -0.021 NA NA 
60% 0.000 0.004 0.011 NA NA 

0.5 
20% 0.015 0.025 0.027 NA NA 
40% 0.009 0.157 0.162 NA NA 
60% -0.013 0.014 0.014 NA NA 

0.8 
20% 0.020 -0.007 -0.007 NA NA 
40% -0.023 -0.055 -0.057 NA NA 
60% -0.128 -0.210 -0.214 NA NA 
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Table 28 
SE for Task weight under Each Study Condition 

Manipulated Factors SE 

Testlet Effect 
SD 

Dual Testlets 
Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL 

0.5 

0.2 
20% 0.082 0.083 0.083 NA NA 
40% 0.071 0.065 0.065 NA NA 
60% 0.106 0.063 0.065 NA NA 

0.5 
20% 0.053 0.042 0.043 NA NA 
40% 0.055 0.065 0.064 NA NA 
60% 0.045 0.059 0.057 NA NA 

0.8 
20% 0.089 0.083 0.082 NA NA 
40% 0.050 0.058 0.058 NA NA 
60% 0.050 0.052 0.052 NA NA 

1 

0.2 
20% 0.071 0.070 0.070 NA NA 
40% 0.039 0.041 0.043 NA NA 
60% 0.042 0.031 0.031 NA NA 

0.5 
20% 0.098 0.090 0.091 NA NA 
40% 0.046 0.055 0.055 NA NA 
60% 0.037 0.034 0.035 NA NA 

0.8 
20% 0.085 0.074 0.073 NA NA 
40% 0.053 0.067 0.068 NA NA 
60% 0.060 0.050 0.049 NA NA 
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Table 29 
RMSE for Task weight under Each Study Condition 

Manipulated Factors RMSE 

Testlet Effect 
SD 

Dual Testlets 
Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL 

0.5 

0.2 
20% 0.115 0.143 0.144 NA NA 
40% 0.074 0.113 0.113 NA NA 
60% 0.139 0.096 0.098 NA NA 

0.5 
20% 0.073 0.123 0.126 NA NA 
40% 0.070 0.108 0.108 NA NA 
60% 0.213 0.144 0.146 NA NA 

0.8 
20% 0.104 0.108 0.108 NA NA 
40% 0.051 0.100 0.100 NA NA 
60% 0.067 0.154 0.153 NA NA 

1 

0.2 
20% 0.110 0.118 0.119 NA NA 
40% 0.041 0.075 0.080 NA NA 
60% 0.044 0.047 0.050 NA NA 

0.5 
20% 0.099 0.124 0.124 NA NA 
40% 0.047 0.171 0.175 NA NA 
60% 0.042 0.119 0.124 NA NA 

0.8 
20% 0.093 0.080 0.079 NA NA 
40% 0.071 0.129 0.132 NA NA 
60% 0.231 0.228 0.231 NA NA 
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Table 30 
Bias for Intercept under Each Study Condition 

Manipulated Factors Bias 

Testlet Effect 
SD 

Dual Testlets 
Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL 

0.5 

0.2 
20% 0.083 -0.018 -0.047 NA NA 
40% 0.066 0.027 -0.001 NA NA 
60% -0.001 0.035 0.008 NA NA 

0.5 
20% 0.069 0.389 0.357 NA NA 
40% 0.123 0.066 0.038 NA NA 
60% 0.214 0.273 0.230 NA NA 

0.8 
20% 0.086 0.032 0.008 NA NA 
40% 0.145 0.003 -0.023 NA NA 
60% 0.116 0.084 0.053 NA NA 

1 

0.2 
20% 0.021 -0.075 -0.106 NA NA 
40% 0.000 -0.070 -0.095 NA NA 
60% -0.027 0.053 0.013 NA NA 

0.5 
20% 0.041 -0.079 -0.103 NA NA 
40% 0.027 -0.002 -0.044 NA NA 
60% -0.004 -0.121 -0.145 NA NA 

0.8 
20% 0.058 -0.093 -0.114 NA NA 
40% 0.057 -0.165 -0.181 NA NA 
60% -0.290 -0.287 -0.299 NA NA 
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Table 31 
SE for Intercept under Each Study Condition 

Manipulated Factors SE 

Testlet Effect 
SD 

Dual Testlets 
Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL 

0.5 

0.2 
20% 0.096 0.084 0.080 NA NA 
40% 0.039 0.034 0.031 NA NA 
60% 0.041 0.050 0.048 NA NA 

0.5 
20% 0.050 0.045 0.051 NA NA 
40% 0.052 0.054 0.050 NA NA 
60% 0.052 0.046 0.042 NA NA 

0.8 
20% 0.098 0.082 0.077 NA NA 
40% 0.042 0.029 0.028 NA NA 
60% 0.042 0.036 0.034 NA NA 

1 

0.2 
20% 0.076 0.056 0.054 NA NA 
40% 0.029 0.023 0.023 NA NA 
60% 0.029 0.029 0.027 NA NA 

0.5 
20% 0.062 0.048 0.045 NA NA 
40% 0.052 0.055 0.050 NA NA 
60% 0.024 0.025 0.023 NA NA 

0.8 
20% 0.083 0.063 0.059 NA NA 
40% 0.066 0.053 0.051 NA NA 
60% 0.070 0.034 0.031 NA NA 
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Table 32 
RMSE for Intercept under Each Study Condition 

Manipulated Factors RMSE 

Testlet Effect 
SD 

Dual Testlets 
Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL 

0.5 

0.2 
20% 0.127 0.086 0.092 NA NA 
40% 0.076 0.043 0.031 NA NA 
60% 0.041 0.061 0.049 NA NA 

0.5 
20% 0.085 0.392 0.360 NA NA 
40% 0.133 0.085 0.063 NA NA 
60% 0.220 0.277 0.234 NA NA 

0.8 
20% 0.130 0.088 0.077 NA NA 
40% 0.151 0.029 0.036 NA NA 
60% 0.123 0.091 0.063 NA NA 

1 

0.2 
20% 0.079 0.094 0.119 NA NA 
40% 0.029 0.074 0.098 NA NA 
60% 0.040 0.061 0.030 NA NA 

0.5 
20% 0.074 0.092 0.112 NA NA 
40% 0.058 0.055 0.067 NA NA 
60% 0.025 0.123 0.147 NA NA 

0.8 
20% 0.101 0.112 0.129 NA NA 
40% 0.087 0.174 0.188 NA NA 
60% 0.298 0.289 0.300 NA NA 
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Table 33 
Bias for Testlet Effect Variance under Each Study Condition 

Manipulated Factors Bias 

Testlet Effect 
SD 

Dual Testlets 
Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL 

0.5 

0.2 
20% 0.649 -0.048 NA 0.489 NA 
40% 0.347 -0.048 NA 0.651 NA 
60% 0.316 -0.060 NA 0.716 NA 

0.5 
20% 0.325 -0.079 NA 0.392 NA 
40% 0.516 -0.097 NA 0.564 NA 
60% 0.251 -0.081 NA 0.300 NA 

0.8 
20% 0.575 -0.132 NA 0.532 NA 
40% 0.818 -0.137 NA 0.685 NA 
60% 0.510 -0.131 NA 0.864 NA 

1 

0.2 
20% 0.199 -0.516 NA 0.263 NA 
40% 0.100 -0.526 NA 0.493 NA 
60% 0.007 -0.527 NA 0.855 NA 

0.5 
20% 0.516 -0.725 NA 0.645 NA 
40% 0.251 -0.695 NA 0.776 NA 
60% 0.130 -0.696 NA 0.852 NA 

0.8 
20% 0.978 -0.865 NA 0.832 NA 
40% 0.581 -0.857 NA 0.651 NA 
60% 1.009 -0.870 NA 1.089 NA 
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Table 34 
SE for Testlet Effect Variance under Each Study Condition 

Manipulated Factors SE 

Testlet Effect 
SD 

Dual Testlets 
Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL 

0.5 

0.2 
20% 0.189 0.033 NA 0.151 NA 
40% 0.128 0.034 NA 0.161 NA 
60% 0.166 0.032 NA 0.217 NA 

0.5 
20% 0.085 0.024 NA 0.075 NA 
40% 0.138 0.020 NA 0.116 NA 
60% 0.080 0.026 NA 0.066 NA 

0.8 
20% 0.099 0.012 NA 0.089 NA 
40% 0.121 0.012 NA 0.094 NA 
60% 0.100 0.016 NA 0.105 NA 

1 

0.2 
20% 0.247 0.061 NA 0.252 NA 
40% 0.187 0.060 NA 0.276 NA 
60% 0.205 0.057 NA 0.300 NA 

0.5 
20% 0.289 0.035 NA 0.317 NA 
40% 0.227 0.051 NA 0.357 NA 
60% 0.265 0.052 NA 0.509 NA 

0.8 
20% 0.300 0.017 NA 0.231 NA 
40% 0.273 0.018 NA 0.211 NA 
60% 0.809 0.018 NA 0.303 NA 
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Table 35 
RMSE for Testlet Effect Variance under Each Study Condition 

Manipulated Factors RMSE 

Testlet Effect 
SD 

Dual Testlets 
Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL 

0.5 

0.2 
20% 0.676 0.060 NA 0.512 NA 
40% 0.370 0.060 NA 0.671 NA 
60% 0.359 0.069 NA 0.749 NA 

0.5 
20% 0.336 0.083 NA 0.399 NA 
40% 0.534 0.099 NA 0.575 NA 
60% 0.263 0.085 NA 0.307 NA 

0.8 
20% 0.583 0.132 NA 0.539 NA 
40% 0.827 0.137 NA 0.692 NA 
60% 0.520 0.131 NA 0.871 NA 

1 

0.2 
20% 0.318 0.519 NA 0.364 NA 
40% 0.222 0.530 NA 0.567 NA 
60% 0.225 0.530 NA 0.907 NA 

0.5 
20% 0.592 0.726 NA 0.718 NA 
40% 0.339 0.698 NA 0.855 NA 
60% 0.298 0.698 NA 0.993 NA 

0.8 
20% 1.023 0.866 NA 0.863 NA 
40% 0.642 0.858 NA 0.685 NA 
60% 1.295 0.870 NA 1.130 NA 
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Table 36 
Bias for Dual Testlet Correlation under Each Study Condition 

Manipulated Factors Bias 

Testlet Effect 
SD 

Dual Testlets 
Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL 

0.5 

0.2 
20% 0.448 NA NA 0.404 NA 
40% 0.341 NA NA 0.428 NA 
60% 0.324 NA NA 0.454 NA 

0.5 
20% 0.172 NA NA 0.188 NA 
40% 0.230 NA NA 0.235 NA 
60% 0.143 NA NA 0.172 NA 

0.8 
20% 0.046 NA NA 0.040 NA 
40% 0.068 NA NA 0.056 NA 
60% 0.033 NA NA 0.063 NA 

1 

0.2 
20% 0.049 NA NA 0.065 NA 
40% 0.024 NA NA 0.122 NA 
60% -0.017 NA NA 0.172 NA 

0.5 
20% 0.076 NA NA 0.089 NA 
40% 0.029 NA NA 0.087 NA 
60% -0.025 NA NA 0.069 NA 

0.8 
20% 0.035 NA NA 0.026 NA 
40% 0.017 NA NA 0.018 NA 
60% -0.001 NA NA 0.040 NA 
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Table 37 
SE for Dual Testlet Correlation under Each Study Condition 

Manipulated Factors SE 

Testlet Effect 
SD 

Dual Testlets 
Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL 

0.5 

0.2 
20% 0.056 NA NA 0.065 NA 
40% 0.086 NA NA 0.067 NA 
60% 0.078 NA NA 0.060 NA 

0.5 
20% 0.054 NA NA 0.060 NA 
40% 0.046 NA NA 0.044 NA 
60% 0.065 NA NA 0.052 NA 

0.8 
20% 0.030 NA NA 0.032 NA 
40% 0.023 NA NA 0.026 NA 
60% 0.041 NA NA 0.035 NA 

1 

0.2 
20% 0.046 NA NA 0.047 NA 
40% 0.045 NA NA 0.035 NA 
60% 0.061 NA NA 0.037 NA 

0.5 
20% 0.026 NA NA 0.024 NA 
40% 0.044 NA NA 0.031 NA 
60% 0.049 NA NA 0.032 NA 

0.8 
20% 0.019 NA NA 0.021 NA 
40% 0.028 NA NA 0.028 NA 
60% 0.040 NA NA 0.025 NA 
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Table 38 
RMSE for Dual Testlet Correlation under Each Study Condition 

Manipulated Factors RMSE 

Testlet Effect 
SD 

Dual Testlets 
Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL 

0.5 

0.2 
20% 0.451 NA NA 0.409 NA 
40% 0.352 NA NA 0.434 NA 
60% 0.333 NA NA 0.458 NA 

0.5 
20% 0.180 NA NA 0.197 NA 
40% 0.234 NA NA 0.239 NA 
60% 0.157 NA NA 0.180 NA 

0.8 
20% 0.054 NA NA 0.051 NA 
40% 0.072 NA NA 0.062 NA 
60% 0.053 NA NA 0.072 NA 

1 

0.2 
20% 0.067 NA NA 0.081 NA 
40% 0.051 NA NA 0.127 NA 
60% 0.063 NA NA 0.175 NA 

0.5 
20% 0.081 NA NA 0.092 NA 
40% 0.053 NA NA 0.092 NA 
60% 0.055 NA NA 0.076 NA 

0.8 
20% 0.040 NA NA 0.033 NA 
40% 0.033 NA NA 0.033 NA 
60% 0.040 NA NA 0.047 NA 
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Table 39 
Bias for Overall Ability under Each Study Condition 

Manipulated Factors Bias 

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% -0.001 -0.005 -0.005 -0.004 -0.007 -0.058 
40% 0.000 0.000 0.001 -0.004 -0.007 -0.066 
60% -0.026 -0.015 -0.015 -0.004 -0.008 -0.070 

0.5 
20% -0.001 -0.034 -0.035 -0.001 -0.005 -0.043 
40% 0.001 -0.005 -0.005 -0.005 -0.008 -0.086 
60% -0.035 -0.015 -0.017 -0.009 -0.011 -0.130 

0.8 
20% 0.002 -0.007 -0.007 -0.001 -0.005 -0.064 
40% 0.002 -0.004 -0.004 -0.005 -0.008 -0.073 
60% -0.007 0.003 0.003 -0.007 -0.009 -0.129 

1 

0.2 
20% -0.001 -0.006 -0.006 -0.001 -0.005 -0.040 
40% 0.001 -0.024 -0.021 -0.002 -0.006 -0.062 
60% -0.001 -0.043 -0.046 -0.004 -0.006 -0.081 

0.5 
20% 0.000 -0.004 -0.004 -0.002 -0.005 -0.067 
40% 0.001 0.009 0.010 -0.004 -0.007 -0.101 
60% 0.000 -0.045 -0.045 -0.003 -0.006 -0.074 

0.8 
20% 0.001 -0.002 -0.002 -0.002 -0.005 -0.043 
40% -0.004 -0.026 -0.026 -0.003 -0.006 -0.104 
60% 0.010 0.018 0.018 -0.005 -0.007 -0.042 
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Table 40 
SE for Overall Ability under Each Study Condition 

Manipulated Factors SE 

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% 0.270 0.324 0.327 0.277 0.326 0.539 
40% 0.279 0.326 0.328 0.260 0.329 0.521 
60% 0.279 0.318 0.320 0.258 0.318 0.517 

0.5 
20% 0.287 0.342 0.343 0.280 0.343 0.547 
40% 0.261 0.327 0.328 0.257 0.327 0.549 
60% 0.291 0.343 0.343 0.285 0.340 0.545 

0.8 
20% 0.254 0.332 0.332 0.257 0.332 0.563 
40% 0.224 0.314 0.311 0.230 0.311 0.562 
60% 0.248 0.320 0.318 0.226 0.318 0.554 

1 

0.2 
20% 0.239 0.302 0.297 0.235 0.298 0.515 
40% 0.242 0.305 0.299 0.227 0.300 0.501 
60% 0.251 0.297 0.301 0.213 0.302 0.502 

0.5 
20% 0.209 0.289 0.289 0.205 0.290 0.544 
40% 0.224 0.297 0.295 0.208 0.296 0.536 
60% 0.233 0.289 0.293 0.215 0.294 0.506 

0.8 
20% 0.175 0.273 0.270 0.175 0.270 0.558 
40% 0.197 0.287 0.284 0.197 0.284 0.563 
60% 0.212 0.277 0.276 0.194 0.275 0.588 
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Table 41 
RMSE for Overall Ability under Each Study Condition 

Manipulated Factors RMSE 

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% 0.476 0.470 0.472 0.472 0.472 0.767 
40% 0.465 0.475 0.476 0.469 0.477 0.713 
60% 0.461 0.465 0.466 0.470 0.464 0.720 

0.5 
20% 0.490 0.503 0.504 0.489 0.502 0.747 
40% 0.483 0.494 0.495 0.483 0.495 0.794 
60% 0.493 0.509 0.509 0.489 0.507 0.753 

0.8 
20% 0.499 0.515 0.514 0.498 0.514 0.840 
40% 0.491 0.503 0.501 0.488 0.501 0.905 
60% 0.488 0.509 0.507 0.493 0.508 0.844 

1 

0.2 
20% 0.583 0.623 0.623 0.582 0.623 0.948 
40% 0.580 0.622 0.622 0.578 0.623 0.927 
60% 0.593 0.626 0.628 0.588 0.630 0.914 

0.5 
20% 0.602 0.652 0.653 0.602 0.653 1.119 
40% 0.602 0.649 0.650 0.603 0.651 1.053 
60% 0.605 0.648 0.651 0.607 0.651 0.993 

0.8 
20% 0.609 0.678 0.673 0.607 0.674 1.310 
40% 0.619 0.676 0.673 0.621 0.673 1.225 
60% 0.630 0.676 0.673 0.625 0.674 1.286 

 
 
  



 

 178 
 

Table 42 
Bias for Subscore of Addition under Each Study Condition 

Manipulated Factors Bias 

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% 0.014 -0.011 -0.018 -0.007 -0.037 0.023 
40% 0.003 0.010 0.008 -0.005 -0.013 -0.013 
60% -0.015 -0.106 -0.113 -0.100 -0.108 -0.066 

0.5 
20% 0.021 0.072 0.059 -0.097 -0.114 0.012 
40% -0.002 0.017 0.019 0.102 0.097 -0.033 
60% -0.044 -0.050 -0.055 0.118 0.103 -0.056 

0.8 
20% 0.031 0.011 0.004 -0.144 -0.156 0.161 
40% 0.013 -0.016 -0.021 -0.031 -0.038 -0.028 
60% 0.001 -0.030 -0.038 0.014 -0.010 -0.108 

1 

0.2 
20% 0.010 -0.022 -0.034 -0.079 -0.101 -0.008 
40% 0.021 0.020 0.011 0.127 0.096 -0.040 
60% -0.014 -0.050 -0.067 -0.062 -0.065 -0.049 

0.5 
20% 0.003 -0.008 -0.016 -0.076 -0.083 -0.006 
40% -0.001 -0.007 -0.002 0.077 0.074 -0.020 
60% 0.004 -0.102 -0.123 -0.157 -0.169 -0.061 

0.8 
20% 0.013 -0.002 -0.010 -0.054 -0.065 -0.038 
40% 0.035 -0.034 -0.052 -0.073 -0.108 -0.170 
60% -0.051 -0.105 -0.117 -0.104 -0.116 -0.147 
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Table 43 
SE for Subscore of Addition under Each Study Condition 

Manipulated Factors SE 

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% 0.757 0.722 0.716 0.762 0.727 1.072 
40% 0.665 0.634 0.657 0.679 0.657 0.883 
60% 0.586 0.564 0.560 0.613 0.584 0.778 

0.5 
20% 0.761 0.741 0.738 0.769 0.734 1.087 
40% 0.652 0.622 0.638 0.671 0.653 0.905 
60% 0.571 0.582 0.578 0.625 0.620 0.820 

0.8 
20% 0.718 0.687 0.679 0.730 0.695 0.998 
40% 0.696 0.644 0.656 0.696 0.659 1.006 
60% 0.634 0.631 0.623 0.651 0.624 0.932 

1 

0.2 
20% 0.752 0.705 0.699 0.770 0.714 1.065 
40% 0.633 0.572 0.625 0.658 0.636 0.922 
60% 0.580 0.570 0.568 0.614 0.578 0.797 

0.5 
20% 0.688 0.631 0.638 0.692 0.639 0.979 
40% 0.638 0.582 0.614 0.669 0.617 0.910 
60% 0.557 0.521 0.522 0.606 0.556 0.805 

0.8 
20% 0.667 0.570 0.566 0.681 0.583 0.943 
40% 0.673 0.604 0.620 0.683 0.631 1.072 
60% 0.691 0.599 0.593 0.696 0.618 1.043 
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Table 44 
RMSE for Subscore of Addition under Each Study Condition 

Manipulated Factors RMSE 

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% 0.827 0.784 0.781 0.823 0.794 1.227 
40% 0.737 0.708 0.731 0.757 0.732 1.013 
60% 0.669 0.651 0.650 0.708 0.673 0.907 

0.5 
20% 0.829 0.814 0.811 0.842 0.813 1.227 
40% 0.740 0.711 0.728 0.761 0.749 1.075 
60% 0.666 0.681 0.679 0.723 0.738 0.978 

0.8 
20% 0.806 0.777 0.771 0.825 0.802 1.189 
40% 0.799 0.746 0.757 0.793 0.761 1.239 
60% 0.734 0.737 0.731 0.756 0.731 1.139 

1 

0.2 
20% 0.885 0.863 0.868 0.904 0.890 1.334 
40% 0.800 0.764 0.825 0.829 0.844 1.219 
60% 0.763 0.773 0.781 0.795 0.794 1.092 

0.5 
20% 0.859 0.839 0.854 0.865 0.857 1.378 
40% 0.827 0.812 0.850 0.856 0.857 1.274 
60% 0.765 0.764 0.776 0.815 0.828 1.175 

0.8 
20% 0.865 0.834 0.831 0.874 0.857 1.449 
40% 0.857 0.842 0.859 0.867 0.880 1.551 
60% 0.879 0.836 0.834 0.888 0.867 1.514 
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Table 45 
Bias for Subscore of Subtraction under Each Study Condition 

Manipulated Factors Bias 

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% -0.004 -0.030 -0.039 0.043 0.028 -0.144 
40% 0.003 -0.075 -0.085 0.024 0.004 -0.047 
60% -0.036 -0.148 -0.158 -0.083 -0.103 -0.138 

0.5 
20% 0.009 -0.091 -0.103 -0.164 -0.183 -0.048 
40% 0.010 -0.024 -0.026 0.081 0.067 -0.026 
60% -0.003 -0.002 -0.013 0.106 0.090 -0.097 

0.8 
20% -0.024 -0.029 -0.028 0.092 0.073 -0.045 
40% -0.014 -0.086 -0.086 0.105 0.090 -0.128 
60% 0.006 -0.084 -0.094 -0.034 -0.061 -0.125 

1 

0.2 
20% 0.000 -0.067 -0.075 -0.165 -0.165 -0.011 
40% -0.009 -0.225 -0.235 -0.181 -0.190 -0.112 
60% -0.008 -0.099 -0.128 -0.104 -0.129 -0.101 

0.5 
20% -0.006 -0.048 -0.058 -0.020 -0.037 -0.093 
40% -0.002 -0.057 -0.069 -0.015 -0.027 -0.050 
60% -0.009 -0.175 -0.192 -0.175 -0.184 -0.065 

0.8 
20% -0.009 -0.076 -0.081 -0.007 -0.024 -0.064 
40% -0.012 -0.130 -0.130 0.031 0.014 -0.050 
60% -0.021 -0.100 -0.093 0.160 0.161 -0.006 
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Table 46 
SE for Subscore of Subtraction under Each Study Condition 

Manipulated Factors SE 

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% 0.701 0.652 0.649 0.703 0.669 1.019 
40% 0.622 0.600 0.598 0.637 0.621 0.867 
60% 0.625 0.592 0.588 0.657 0.628 0.881 

0.5 
20% 0.789 0.755 0.748 0.774 0.749 1.084 
40% 0.590 0.564 0.558 0.612 0.593 0.809 
60% 0.686 0.658 0.665 0.663 0.652 0.930 

0.8 
20% 0.702 0.664 0.656 0.718 0.675 0.983 
40% 0.647 0.590 0.582 0.665 0.623 0.922 
60% 0.691 0.667 0.659 0.696 0.660 1.011 

1 

0.2 
20% 0.667 0.636 0.630 0.643 0.619 0.933 
40% 0.627 0.580 0.572 0.636 0.595 0.853 
60% 0.588 0.572 0.574 0.612 0.592 0.910 

0.5 
20% 0.702 0.633 0.623 0.704 0.632 1.032 
40% 0.579 0.553 0.547 0.596 0.555 0.820 
60% 0.573 0.516 0.517 0.624 0.559 0.811 

0.8 
20% 0.649 0.570 0.563 0.659 0.587 1.012 
40% 0.611 0.547 0.541 0.641 0.575 0.897 
60% 0.573 0.493 0.490 0.612 0.538 0.891 
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Table 47 
RMSE for Subscore of Subtraction under Each Study Condition 

Manipulated Factors RMSE 

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% 0.778 0.721 0.721 0.773 0.742 1.198 
40% 0.699 0.678 0.679 0.719 0.699 1.003 
60% 0.703 0.681 0.680 0.743 0.710 1.004 

0.5 
20% 0.854 0.826 0.821 0.857 0.835 1.216 
40% 0.689 0.661 0.656 0.708 0.696 0.986 
60% 0.764 0.741 0.749 0.754 0.741 1.074 

0.8 
20% 0.792 0.757 0.750 0.808 0.774 1.176 
40% 0.759 0.701 0.695 0.769 0.740 1.159 
60% 0.780 0.765 0.759 0.797 0.757 1.202 

1 

0.2 
20% 0.830 0.822 0.828 0.824 0.825 1.246 
40% 0.800 0.799 0.802 0.825 0.822 1.160 
60% 0.764 0.772 0.786 0.792 0.810 1.205 

0.5 
20% 0.867 0.839 0.837 0.870 0.846 1.422 
40% 0.787 0.795 0.799 0.802 0.806 1.210 
60% 0.777 0.767 0.779 0.830 0.831 1.176 

0.8 
20% 0.850 0.827 0.825 0.854 0.854 1.544 
40% 0.822 0.815 0.813 0.844 0.853 1.380 
60% 0.801 0.778 0.778 0.846 0.859 1.439 
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Table 48 
Bias for Subscore of Multiplication under Each Study Condition 

Manipulated Factors Bias 

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% -0.021 -0.035 -0.035 0.181 0.158 -0.083 
40% -0.006 -0.124 -0.128 0.039 0.015 -0.114 
60% -0.100 -0.139 -0.150 -0.207 -0.213 -0.093 

0.5 
20% -0.023 0.007 0.002 0.077 0.060 -0.027 
40% 0.006 -0.168 -0.172 0.030 0.009 -0.041 
60% 0.108 0.075 0.060 0.112 0.096 -0.039 

0.8 
20% -0.001 -0.019 -0.025 0.006 -0.014 -0.045 
40% -0.002 -0.104 -0.106 0.016 0.000 -0.114 
60% 0.047 -0.119 -0.123 0.038 0.017 -0.141 

1 

0.2 
20% -0.016 -0.087 -0.091 0.125 0.109 -0.097 
40% -0.030 -0.162 -0.167 -0.071 -0.073 -0.082 
60% -0.011 -0.158 -0.182 -0.072 -0.092 -0.072 

0.5 
20% -0.016 -0.050 -0.051 0.025 0.027 -0.024 
40% 0.004 -0.063 -0.079 -0.043 -0.090 -0.285 
60% -0.041 -0.118 -0.121 0.015 0.025 -0.013 

0.8 
20% -0.030 -0.066 -0.065 0.101 0.089 -0.118 
40% -0.014 -0.148 -0.140 0.112 0.093 -0.057 
60% -0.240 -0.228 -0.236 -0.182 -0.183 -0.255 
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Table 49 
SE for Subscore of Multiplication under Each Study Condition 

Manipulated Factors SE 

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% 0.680 0.632 0.628 0.698 0.662 0.930 
40% 0.679 0.643 0.653 0.698 0.685 1.025 
60% 0.657 0.647 0.643 0.635 0.615 0.916 

0.5 
20% 0.723 0.713 0.710 0.717 0.694 0.981 
40% 0.700 0.642 0.653 0.726 0.702 1.053 
60% 0.639 0.655 0.647 0.649 0.639 0.864 

0.8 
20% 0.734 0.699 0.689 0.741 0.698 1.068 
40% 0.686 0.612 0.618 0.675 0.631 0.990 
60% 0.611 0.576 0.572 0.613 0.597 0.908 

1 

0.2 
20% 0.710 0.661 0.652 0.743 0.697 0.993 
40% 0.600 0.591 0.602 0.601 0.595 0.859 
60% 0.593 0.558 0.555 0.629 0.595 0.864 

0.5 
20% 0.630 0.581 0.576 0.652 0.598 0.899 
40% 0.696 0.658 0.661 0.707 0.668 1.195 
60% 0.511 0.493 0.491 0.562 0.520 0.732 

0.8 
20% 0.672 0.579 0.571 0.691 0.606 0.997 
40% 0.637 0.570 0.578 0.631 0.590 0.959 
60% 0.557 0.500 0.497 0.578 0.514 0.851 
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Table 50 
RMSE for Subscore of Multiplication under Each Study Condition 

Manipulated Factors RMSE 

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% 0.762 0.704 0.702 0.787 0.753 1.088 
40% 0.749 0.722 0.735 0.773 0.759 1.176 
60% 0.735 0.732 0.732 0.749 0.719 1.079 

0.5 
20% 0.796 0.790 0.788 0.796 0.773 1.117 
40% 0.780 0.737 0.749 0.800 0.785 1.212 
60% 0.729 0.754 0.747 0.738 0.745 1.023 

0.8 
20% 0.820 0.786 0.777 0.823 0.786 1.244 
40% 0.791 0.723 0.728 0.779 0.736 1.228 
60% 0.714 0.691 0.688 0.724 0.708 1.132 

1 

0.2 
20% 0.854 0.835 0.837 0.890 0.891 1.266 
40% 0.783 0.809 0.831 0.786 0.812 1.194 
60% 0.770 0.764 0.772 0.803 0.810 1.150 

0.5 
20% 0.817 0.804 0.807 0.833 0.836 1.308 
40% 0.857 0.861 0.874 0.870 0.885 1.611 
60% 0.735 0.752 0.760 0.773 0.793 1.110 

0.8 
20% 0.867 0.834 0.829 0.881 0.877 1.519 
40% 0.841 0.829 0.838 0.839 0.851 1.451 
60% 0.830 0.791 0.792 0.825 0.808 1.357 
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Table 51 
Bias for Subscore of Division under Each Study Condition 

Manipulated Factors Bias 

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% -0.027 -0.073 -0.082 0.038 0.032 0.009 
40% 0.002 -0.100 -0.113 -0.084 -0.108 -0.043 
60% -0.237 -0.287 -0.291 -0.220 -0.234 -0.213 

0.5 
20% -0.024 -0.114 -0.113 0.043 0.029 -0.031 
40% 0.025 -0.060 -0.083 -0.126 -0.163 -0.264 
60% 0.198 -0.067 -0.070 0.163 0.148 0.080 

0.8 
20% 0.011 -0.125 -0.133 0.057 0.022 -0.190 
40% 0.023 -0.088 -0.095 -0.084 -0.102 -0.002 
60% 0.025 -0.015 -0.017 0.101 0.080 -0.050 

1 

0.2 
20% -0.022 -0.096 -0.100 0.002 -0.003 -0.001 
40% -0.013 -0.153 -0.169 -0.151 -0.171 -0.153 
60% -0.019 -0.079 -0.090 -0.008 -0.011 -0.034 

0.5 
20% 0.001 -0.084 -0.099 0.053 0.019 -0.180 
40% 0.002 -0.104 -0.125 0.016 -0.034 -0.194 
60% -0.012 -0.172 -0.184 -0.115 -0.128 -0.034 

0.8 
20% 0.019 -0.071 -0.082 -0.229 -0.246 0.007 
40% 0.000 -0.123 -0.134 -0.039 -0.066 -0.163 
60% -0.262 -0.208 -0.212 -0.079 -0.080 -0.267 
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Table 52 
SE for Subscore of Division under Each Study Condition 

Manipulated Factors SE 

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% 0.668 0.610 0.605 0.721 0.681 0.940 
40% 0.669 0.646 0.673 0.683 0.693 0.966 
60% 0.659 0.620 0.622 0.663 0.616 0.881 

0.5 
20% 0.697 0.666 0.664 0.726 0.702 0.978 
40% 0.688 0.664 0.681 0.696 0.696 1.211 
60% 0.670 0.574 0.570 0.673 0.656 0.888 

0.8 
20% 0.726 0.679 0.673 0.740 0.713 1.163 
40% 0.578 0.544 0.554 0.624 0.612 0.912 
60% 0.643 0.621 0.614 0.663 0.626 0.905 

1 

0.2 
20% 0.635 0.602 0.593 0.638 0.601 0.905 
40% 0.581 0.581 0.604 0.585 0.609 0.942 
60% 0.566 0.541 0.545 0.598 0.560 0.761 

0.5 
20% 0.669 0.617 0.615 0.688 0.643 1.078 
40% 0.625 0.605 0.636 0.639 0.649 1.062 
60% 0.612 0.557 0.553 0.658 0.596 0.867 

0.8 
20% 0.703 0.591 0.585 0.717 0.609 1.012 
40% 0.638 0.578 0.599 0.632 0.597 1.003 
60% 0.562 0.513 0.510 0.586 0.527 0.867 
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Table 53 
RMSE for Subscore of Division under Each Study Condition 

Manipulated Factors RMSE 

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% 0.753 0.684 0.681 0.786 0.759 1.079 
40% 0.748 0.726 0.760 0.771 0.781 1.119 
60% 0.782 0.748 0.750 0.796 0.723 1.018 

0.5 
20% 0.773 0.752 0.750 0.798 0.785 1.116 
40% 0.774 0.748 0.771 0.788 0.799 1.458 
60% 0.773 0.667 0.664 0.769 0.768 1.054 

0.8 
20% 0.811 0.771 0.768 0.821 0.801 1.376 
40% 0.706 0.670 0.679 0.733 0.749 1.183 
60% 0.742 0.726 0.719 0.771 0.738 1.109 

1 

0.2 
20% 0.802 0.797 0.799 0.805 0.805 1.205 
40% 0.767 0.799 0.855 0.780 0.862 1.335 
60% 0.755 0.752 0.764 0.783 0.780 1.057 

0.5 
20% 0.836 0.827 0.834 0.853 0.866 1.498 
40% 0.810 0.828 0.875 0.825 0.887 1.494 
60% 0.800 0.787 0.792 0.845 0.839 1.202 

0.8 
20% 0.891 0.838 0.835 0.922 0.892 1.506 
40% 0.842 0.832 0.854 0.843 0.846 1.489 
60% 0.834 0.803 0.803 0.816 0.815 1.421 
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Appendix D SD of Bias for Overall Ability and Subscores  
Table 54 
SD of Bias for Overall Ability 

Manipulated Factors SD of Bias 

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% 0.450 0.380 0.379 0.435 0.379 0.600 
40% 0.425 0.384 0.381 0.452 0.381 0.538 
60% 0.414 0.375 0.375 0.450 0.374 0.563 

0.5 
20% 0.448 0.406 0.405 0.453 0.404 0.561 
40% 0.467 0.415 0.414 0.472 0.414 0.635 
60% 0.453 0.420 0.419 0.457 0.419 0.564 

0.8 
20% 0.499 0.445 0.443 0.496 0.443 0.688 
40% 0.508 0.439 0.438 0.498 0.438 0.793 
60% 0.489 0.444 0.443 0.518 0.443 0.706 

1 

0.2 
20% 0.627 0.630 0.634 0.628 0.634 0.919 
40% 0.623 0.624 0.630 0.632 0.631 0.900 
60% 0.628 0.636 0.637 0.648 0.639 0.876 

0.5 
20% 0.674 0.684 0.685 0.677 0.685 1.133 
40% 0.663 0.673 0.675 0.676 0.676 1.045 
60% 0.666 0.680 0.682 0.680 0.684 0.995 

0.8 
20% 0.713 0.732 0.728 0.709 0.729 1.364 
40% 0.704 0.722 0.721 0.705 0.721 1.257 
60% 0.706 0.722 0.719 0.713 0.720 1.326 
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Table 55 
SD of Bias for Subscore of Addition 

Manipulated Factors SD of Bias 

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% 0.341 0.313 0.321 0.321 0.325 0.615 
40% 0.328 0.323 0.331 0.347 0.331 0.521 
60% 0.337 0.325 0.327 0.359 0.333 0.499 

0.5 
20% 0.334 0.335 0.339 0.336 0.339 0.583 
40% 0.364 0.358 0.363 0.359 0.371 0.613 
60% 0.356 0.366 0.369 0.359 0.407 0.570 

0.8 
20% 0.379 0.380 0.381 0.373 0.388 0.657 
40% 0.407 0.392 0.393 0.394 0.395 0.757 
60% 0.385 0.397 0.397 0.401 0.397 0.691 

1 

0.2 
20% 0.491 0.525 0.545 0.491 0.555 0.853 
40% 0.525 0.546 0.579 0.526 0.588 0.863 
60% 0.535 0.565 0.581 0.540 0.591 0.816 

0.5 
20% 0.549 0.597 0.612 0.551 0.613 1.045 
40% 0.563 0.613 0.635 0.568 0.639 0.965 
60% 0.570 0.606 0.621 0.571 0.656 0.946 

0.8 
20% 0.597 0.667 0.669 0.589 0.687 1.193 
40% 0.568 0.636 0.643 0.567 0.657 1.194 
60% 0.578 0.624 0.626 0.581 0.651 1.169 
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Table 56 
SD of Bias for Subscore of Subtraction 

Manipulated Factors SD of Bias 

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% 0.347 0.314 0.319 0.328 0.327 0.651 
40% 0.327 0.318 0.321 0.343 0.329 0.532 
60% 0.331 0.318 0.318 0.352 0.327 0.506 

0.5 
20% 0.334 0.332 0.334 0.343 0.336 0.571 
40% 0.372 0.360 0.362 0.364 0.377 0.596 
60% 0.347 0.351 0.354 0.357 0.351 0.560 

0.8 
20% 0.381 0.378 0.379 0.372 0.389 0.677 
40% 0.411 0.388 0.389 0.389 0.409 0.734 
60% 0.376 0.380 0.380 0.402 0.380 0.673 

1 

0.2 
20% 0.528 0.554 0.573 0.532 0.564 0.894 
40% 0.533 0.555 0.569 0.539 0.589 0.851 
60% 0.521 0.549 0.566 0.528 0.583 0.852 

0.5 
20% 0.543 0.590 0.599 0.546 0.606 1.047 
40% 0.577 0.622 0.633 0.581 0.639 0.975 
60% 0.570 0.601 0.614 0.569 0.653 0.943 

0.8 
20% 0.596 0.648 0.651 0.589 0.675 1.250 
40% 0.598 0.657 0.661 0.596 0.697 1.147 
60% 0.611 0.663 0.666 0.618 0.723 1.244 
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Table 57 
SD of Bias for Subscore of Multiplication 

Manipulated Factors SD of Bias 

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% 0.353 0.316 0.320 0.331 0.332 0.588 
40% 0.326 0.316 0.324 0.340 0.335 0.601 
60% 0.326 0.329 0.333 0.363 0.328 0.606 

0.5 
20% 0.343 0.349 0.352 0.350 0.347 0.554 
40% 0.356 0.339 0.343 0.348 0.362 0.622 
60% 0.348 0.379 0.382 0.350 0.388 0.581 

0.8 
20% 0.377 0.372 0.372 0.371 0.377 0.657 
40% 0.409 0.388 0.388 0.402 0.394 0.754 
60% 0.386 0.384 0.383 0.405 0.398 0.712 

1 

0.2 
20% 0.503 0.535 0.553 0.504 0.583 0.838 
40% 0.543 0.579 0.604 0.546 0.597 0.910 
60% 0.525 0.543 0.555 0.529 0.587 0.823 

0.5 
20% 0.561 0.605 0.615 0.559 0.637 1.037 
40% 0.534 0.586 0.601 0.540 0.609 1.123 
60% 0.581 0.620 0.635 0.582 0.668 0.932 

0.8 
20% 0.593 0.651 0.653 0.584 0.688 1.222 
40% 0.593 0.646 0.652 0.593 0.666 1.177 
60% 0.634 0.642 0.644 0.621 0.667 1.139 
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Table 58 
SD of Bias for Subscore of Division 

Manipulated Factors SD of Bias 

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% 0.358 0.311 0.312 0.318 0.345 0.548 
40% 0.344 0.330 0.350 0.364 0.361 0.596 
60% 0.371 0.331 0.330 0.412 0.322 0.498 

0.5 
20% 0.345 0.343 0.345 0.340 0.361 0.566 
40% 0.364 0.349 0.361 0.362 0.370 0.825 
60% 0.349 0.349 0.350 0.350 0.390 0.591 

0.8 
20% 0.373 0.358 0.360 0.363 0.377 0.746 
40% 0.427 0.400 0.402 0.395 0.445 0.806 
60% 0.385 0.392 0.392 0.399 0.400 0.680 

1 

0.2 
20% 0.527 0.555 0.571 0.527 0.578 0.866 
40% 0.536 0.574 0.636 0.540 0.641 1.019 
60% 0.540 0.564 0.578 0.545 0.591 0.804 

0.5 
20% 0.536 0.583 0.594 0.535 0.621 1.104 
40% 0.556 0.599 0.636 0.564 0.649 1.118 
60% 0.559 0.586 0.597 0.561 0.634 0.911 

0.8 
20% 0.589 0.643 0.645 0.580 0.670 1.198 
40% 0.594 0.642 0.650 0.603 0.649 1.176 
60% 0.626 0.652 0.655 0.618 0.685 1.209 
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Appendix E Identified Significant Effects for Subscore of 
Addition, Subscore of Subtraction and Subscore of Division 
Table 59 
ANOVA Results of Significant Effects on the Bias of !"#$ 
Source  % Value &-value '() 
Within (Huyhn-Feldt Adjustment)    
model * percent_dbcd 117.218 <0.001 0.013 

Note: The testlet effect SD is shorted as “testlet.sd”. The dual testlets correlation is 
abbreviated as “dbcorr”. The percentage of double-coded items is abbreviated as 
“percent_dbcd”. 
 

Table 60 
ANOVA Results of Significant Effects on the SE of !"#$ 
Source  % Value &-value '() 
Within (Huyhn-Feldt Adjustment)    
model 134587.285 <0.001 0.882 
model * testlet.sd 1119.058 <0.001 0.059 
model * dbcorr 1101.647 <0.001 0.109 
model * percent_dbcd 650.056 <0.001 0.067 
model * testlet.sd * dbcorr 221.608 <0.001 0.024 
model * testlet.sd * percent_dbcd 145.601 <0.001 0.016 
model * dbcorr * percent_dbcd 424.443 <0.001 0.086 
model * testlet.sd * dbcorr * percent_dbcd 49.376 <0.001 0.011 
Between    
testlet.sd 232.658 <0.001 0.013 
percent_dbcd 1251.945 <0.001 0.122 
testlet.sd * percent_dbcd 93.437 <0.001 0.01 
dbcorr * percent_dbcd 252.546 <0.001 0.053 

Note: The testlet effect SD is shorted as “testlet.sd”. The dual testlets correlation is 
abbreviated as “dbcorr”. The percentage of double-coded items is abbreviated as 
“percent_dbcd”. 
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Table 61 
ANOVA Results of Significant Effects on the RMSE of !"#$ 
Source  % Value &-value '() 
Within (Huyhn-Feldt Adjustment)    
model 29716.447 <0.001 0.623 
model * testlet.sd 769.269 <0.001 0.041 
model * dbcorr 500.254 <0.001 0.053 
model * percent_dbcd 127.663 <0.001 0.014 
model * testlet.sd *dbcorr 88.066 <0.001 0.01 
model * dbcorr * percent_dbcd 70.484 <0.001 0.015 
Between    
testlet.sd 1254.99 <0.001 0.065 
dbcorr 154.421 <0.001 0.017 
percent_dbcd 311.614 <0.001 0.033 
dbcorr * percent_dbcd 54.47 <0.001 0.012 

Note: The testlet effect SD is shorted as “testlet.sd”. The dual testlets correlation is 
abbreviated as “dbcorr”. The percentage of double-coded items is abbreviated as 
“percent_dbcd”. 
 

Table 62 
ANOVA Results of Significant Effects on the Bias of !"#* 
Source  % Value &-value '() 
Within (Huyhn-Feldt Adjustment)    
model 300.771 <0.001 0.016 
model * testlet.sd * dbcorr * percent_dbcd 59.742 <0.001 0.013 

Note: The testlet effect SD is shorted as “testlet.sd”. The dual testlets correlation is 
abbreviated as “dbcorr”. The percentage of double-coded items is abbreviated as 
“percent_dbcd”. 
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Table 63.  
ANOVA Results of Significant Effects on SE of !"#* 
Source  % Value &-value '() 
Within (Huyhn-Feldt Adjustment)    
model 110395.684 <0.001 0.86 
Model * testlet.sd 370.559 <0.001 0.02 
model * dbcorr 462.529 <0.001 0.049 
model * percent_dbcd 610.398 <0.001 0.064 
model * testlet.sd * dbcorr 160.081 <0.001 0.017 
model * dbcorr * percent_dbcd 79.272 <0.001 0.017 
model * testlet.sd *dbcorr * percent_dbcd 166.046 <0.001 0.036 
Between     
testlet.sd 1020.012 <0.001 0.054 
percent_dbcd 869.946 <0.001 0.088 
testlet.sd * percent_dbcd 115.409 <0.001 0.013 
dbcorr * percent_dbcd 118.45 <0.001 0.026 

Note: The testlet effect SD is shorted as “testlet.sd”. The dual testlets correlation is 
abbreviated as “dbcorr”. The percentage of double-coded items is abbreviated as 
“percent_dbcd”. 
 
Table 64  
ANOVA results of Significant Effects on the RMSE of !"#* 
Source  % Value &-value '() 
Within (Huyhn-Feldt Adjustment)    
model 27037.106 <0.001 0.601 
model * testlet.sd 587.772 <0.001 0.032 
model * dbcorr 315.537 <0.001 0.034 
model * percent_dbcd 130.408 <0.001 0.014 
model * testlet.sd * dbcorr 87.94 <0.001 0.01 
Between    
testlet.sd 865.562 <0.001 0.046 
dbcorr 111.203 <0.001 0.012 
percent_dbcd 187.975 <0.001 0.02 

Note: The testlet effect SD is shorted as “testlet.sd”. The dual testlets correlation is 
abbreviated as “dbcorr”. The percentage of double-coded items is abbreviated as 
“percent_dbcd”. 
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Table 65  
ANOVA results of Significant Effects on the Bias of !"#+ 
Source  % Value &-value '() 
Within (Huyhn-Feldt Adjustment)    
model 359.975 <0.001 0.020 

Note: The testlet effect SD is shorted as “testlet.sd”. The dual testlets correlation is 
abbreviated as “dbcorr”. The percentage of double-coded items is abbreviated as 
“percent_dbcd”. 
 
Table 66  
ANOVA results of Significant Effects on the SE of !"#+  
Source  % Value &-value '() 
Within (Huyhn-Feldt Adjustment)    
model 97562.138 <0.001 0.844 
model * dbcorr 794.199 <0.001 0.081 
model * percent_dbcd 1455.947 <0.001 0.139 
model * testlet.sd * dbcorr 91.4 <0.001 0.01 
model * dbcorr * percent_dbcd 293.368 <0.001 0.061 
model * testlet.sd * dbcorr * percent_dbcd 332.139 <0.001 0.069 
Between     
testlet.sd 657.552 <0.001 0.035 
dbcorr 148.818 <0.001 0.016 
percent_dbcd 530.319 <0.001 0.056 
dbcorr * percent_dbcd 93.871 <0.001 0.02 
testlet.sd * dbcorr * percent_dbcd 76.557 <0.001 0.017 

Note: The testlet effect SD is shorted as “testlet.sd”. The dual testlets correlation is 
abbreviated as “dbcorr”. The percentage of double-coded items is abbreviated as 
“percent_dbcd”. 
 
Table 67  
ANOVA Results of Significant Effects on the RMSE of !"#+  
Source  % Value &-value '() 
Within (Huyhn-Feldt Adjustment)    
model 28662.802 <0.001 0.614 
model * testlet.sd 494.56 <0.001 0.027 
model * dbcorr 417.428 <0.001 0.044 
model * percent_dbcd 412.191 <0.001 0.044 
model * dbcorr * percent_dbcd 73.434 <0.001 0.016 
model * testlet.sd * dbcorr * percent_dbcd 89.14 <0.001 0.019 
Between     
testlet.sd 813.256 <0.001 0.043 
dbcorr 117.366 <0.001 0.013 
percent_dbcd 116.346 <0.001 0.013 

Note: The correlation between testlet effects for dual testlets is abbreviated as “dbcorr”. 
The percentage of double-coded items is abbreviated as “percent_dbcd”. 
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Appendix F Reliability for Overall Ability and Subscores 
Table 68  
Reliability for Overall Ability  

Manipulated Factors Reliability  

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% 0.561 0.817 0.832 0.623 0.832 0.885 
40% 0.682 0.818 0.833 0.563 0.833 0.890 
60% 0.717 0.832 0.846 0.588 0.850 0.900 

0.5 
20% 0.627 0.796 0.812 0.595 0.812 0.876 
40% 0.606 0.826 0.839 0.585 0.840 0.893 
60% 0.655 0.788 0.807 0.634 0.813 0.881 

0.8 
20% 0.524 0.818 0.831 0.545 0.830 0.884 
40% 0.515 0.854 0.864 0.572 0.864 0.905 
60% 0.624 0.840 0.853 0.458 0.854 0.903 

1 

0.2 
20% 0.667 0.849 0.865 0.647 0.865 0.912 
40% 0.691 0.852 0.867 0.573 0.867 0.913 
60% 0.720 0.842 0.871 0.446 0.870 0.913 

0.5 
20% 0.549 0.871 0.886 0.503 0.886 0.922 
40% 0.621 0.864 0.879 0.436 0.880 0.919 
60% 0.657 0.861 0.876 0.414 0.876 0.916 

0.8 
20% 0.389 0.898 0.908 0.443 0.908 0.931 
40% 0.480 0.889 0.896 0.450 0.896 0.926 
60% 0.436 0.890 0.904 0.365 0.906 0.930 
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Table 69  
Reliability for Subscore of Addition 

Manipulated Factors Reliability  

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% 0.105 0.523 0.567 0.211 0.572 0.644 
40% 0.520 0.672 0.701 0.399 0.701 0.749 
60% 0.636 0.748 0.770 0.519 0.773 0.807 

0.5 
20% 0.198 0.448 0.500 0.172 0.527 0.654 
40% 0.471 0.703 0.725 0.468 0.728 0.759 
60% 0.558 0.687 0.713 0.570 0.740 0.789 

0.8 
20% 0.311 0.637 0.660 0.356 0.670 0.702 
40% 0.325 0.700 0.725 0.394 0.727 0.755 
60% 0.553 0.752 0.773 0.425 0.775 0.812 

1 

0.2 
20% 0.188 0.510 0.585 0.187 0.594 0.680 
40% 0.538 0.714 0.748 0.429 0.744 0.805 
60% 0.617 0.743 0.795 0.394 0.797 0.824 

0.5 
20% 0.375 0.732 0.759 0.333 0.760 0.785 
40% 0.453 0.735 0.759 0.300 0.762 0.792 
60% 0.539 0.769 0.796 0.386 0.808 0.830 

0.8 
20% 0.077 0.738 0.762 0.186 0.769 0.767 
40% 0.304 0.768 0.786 0.294 0.791 0.810 
60% 0.184 0.747 0.791 0.153 0.794 0.796 
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Table 70  
Reliability for Subscore of Subtraction 

Manipulated Factors Reliability  

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% 0.299 0.626 0.657 0.382 0.660 0.735 
40% 0.584 0.725 0.750 0.479 0.750 0.796 
60% 0.614 0.731 0.757 0.501 0.762 0.803 

0.5 
20% 0.357 0.562 0.594 0.314 0.592 0.681 
40% 0.484 0.721 0.740 0.483 0.746 0.777 
60% 0.511 0.652 0.688 0.465 0.684 0.757 

0.8 
20% 0.284 0.628 0.654 0.319 0.657 0.706 
40% 0.314 0.705 0.731 0.394 0.734 0.761 
60% 0.464 0.705 0.733 0.309 0.732 0.779 

1 

0.2 
20% 0.547 0.729 0.764 0.506 0.763 0.805 
40% 0.532 0.718 0.756 0.420 0.757 0.796 
60% 0.639 0.760 0.805 0.432 0.812 0.850 

0.5 
20% 0.285 0.690 0.731 0.230 0.732 0.769 
40% 0.566 0.790 0.813 0.427 0.814 0.836 
60% 0.470 0.732 0.766 0.277 0.777 0.808 

0.8 
20% 0.299 0.788 0.813 0.375 0.819 0.819 
40% 0.341 0.785 0.801 0.367 0.806 0.814 
60% 0.334 0.803 0.833 0.394 0.838 0.835 
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Table 71  
Reliability for Subscore of Multiplication 

Manipulated Factors Reliability  

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% 0.321 0.636 0.665 0.403 0.666 0.718 
40% 0.500 0.673 0.709 0.370 0.704 0.776 
60% 0.631 0.742 0.764 0.540 0.781 0.813 

0.5 
20% 0.444 0.627 0.653 0.405 0.654 0.716 
40% 0.287 0.617 0.658 0.284 0.661 0.725 
60% 0.564 0.669 0.698 0.542 0.723 0.775 

0.8 
20% 0.238 0.601 0.628 0.267 0.631 0.693 
40% 0.306 0.683 0.715 0.355 0.713 0.751 
60% 0.614 0.789 0.807 0.493 0.805 0.837 

1 

0.2 
20% 0.302 0.586 0.648 0.306 0.655 0.710 
40% 0.588 0.749 0.783 0.475 0.780 0.822 
60% 0.603 0.743 0.792 0.381 0.791 0.828 

0.5 
20% 0.382 0.742 0.777 0.369 0.782 0.796 
40% 0.404 0.702 0.752 0.212 0.752 0.816 
60% 0.572 0.785 0.810 0.410 0.822 0.838 

0.8 
20% 0.200 0.757 0.789 0.304 0.796 0.790 
40% 0.396 0.785 0.805 0.339 0.811 0.819 
60% 0.346 0.815 0.840 0.350 0.846 0.847 
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Table 72  
Reliability for Subscore of Division 

Manipulated Factors Reliability  

Testlet 
Effect SD 

Dual 
Testlets 

Correlation 

Percentage of 
Double-Coded 

Items 
DT-MIRID T-MIRID MIRID DTM 2PL NCS 

0.5 

0.2 
20% 0.192 0.610 0.616 0.335 0.631 0.689 
40% 0.503 0.653 0.690 0.401 0.695 0.755 
60% 0.515 0.650 0.682 0.386 0.707 0.772 

0.5 
20% 0.440 0.680 0.652 0.425 0.661 0.723 
40% 0.382 0.646 0.681 0.397 0.698 0.799 
60% 0.485 0.658 0.687 0.481 0.682 0.731 

0.8 
20% 0.307 0.615 0.679 0.332 0.676 0.755 
40% 0.341 0.726 0.752 0.460 0.767 0.794 
60% 0.497 0.725 0.748 0.364 0.750 0.784 

1 

0.2 
20% 0.521 0.727 0.737 0.505 0.741 0.796 
40% 0.586 0.766 0.799 0.477 0.801 0.843 
60% 0.614 0.738 0.787 0.379 0.790 0.820 

0.5 
20% 0.355 0.695 0.773 0.330 0.772 0.808 
40% 0.411 0.718 0.772 0.228 0.770 0.816 
60% 0.475 0.731 0.765 0.282 0.773 0.797 

0.8 
20% 0.043 0.706 0.742 0.154 0.754 0.751 
40% 0.383 0.782 0.801 0.375 0.800 0.821 
60% 0.412 0.829 0.854 0.436 0.860 0.859 
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Appendix G Item Structure for Subscores of Addition, Multiplication and Division 
Table 73 
Information for Items in Subscore of Addition  

 20% of Double-coded Items 40% of Double-coded Items 60% of Double-coded Items 
Position 

in 
subscore 

Position in 
Test 

Composite 
Item 

Item 
Difficulty 

Used 

Position in 
Test 

Composite 
Item 

Item 
difficulty 

Used 

Position in 
Test 

Composite 
Item 

Item 
Difficult 

Used 
1 1 no 1 1 no 1 1 no 1 
2 2 no 2 2 no 2 5 yes 1 
3 9 yes 1 7 yes 1 6 yes 1 
4 10 yes 2 8 yes 2 7 yes 1 
5 11 no 11 9 yes 1 11 no 11 
6 12 no 12 10 yes 2 15 yes 11 
7 19 yes 19 11 no 11 16 yes 11 
8 21 no 21 12 no 12 17 yes 11 
9 22 no 22 17 yes 11 21 no 21 

10    18 yes 12 24 no 21 
11       25 yes 21 
12       26 yes 21 

Note: 1. For component items, numbers in “Item Difficulty Used” are positions of the items in the test. For a composite item, the 
number in column 4, 7 and 10 is the position of the component item that assesses addition.  
2. The scale of shades indicates which testlet the item belongs to, under the true condition. The lightest shade indicates the first testlet, 
the medium shade indicates the second testlet and the darkest indicates items for the dual testlets.  
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Table 74  
 Information for Items in Subscore of Multiplication 

 20% of Double-coded Items 40% of Double-coded Items 60% of Double-coded Items 

Position in 
subscore 

Position in 
Test 

Composite 
Item 

Item 
Difficulty 

Used 

Position in 
Test 

Composite 
Item 

Item 
difficulty 

Used 

Position in 
Test 

Composite 
Item 

Item 
Difficult 

Used 
1 5 no 5 5 no 3 2 no 3 
2 6 no 6 6 no 4 6 yes 3 
3 10 yes 5 9 yes 3 8 yes 3 
4 15 no 15 10 yes 4 10 yes 3 
5 16 no 16 23 no 13 13 no 13 
6 20 yes 15 24 no 14 16 yes 13 
7 25 no 25 27 yes 13 18 yes 13 
8 26 no 26 28 yes 14 20 yes 13 
9 30 yes 25 29 yes 21 23 no 23 
10    30 yes 22 26 yes 23 
11       28 yes 23 
12       30 yes 23 

Note: 1. For component items, numbers in “Item Difficulty Used” are positions of the items in the test. For a composite item, the 
number in column 4, 7 and 10 is the position of the component item that assesses multiplication.  
2. The scale of shades indicates which testlet the item belongs to, under the true condition. The lightest shade indicates the first testlet, 
the medium shade indicates the second testlet and the darkest indicates items for the dual testlets.  
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Table 75  
Information for Items in Subscore of Division 

 20% of Double-coded Items 40% of Double-coded Items 60% of Double-coded Items 

Position in 
subscore 

Position in 
Test 

Composite 
Item 

Item 
Difficulty 

Used 

Position in 
Test 

Composite 
Item 

Item 
difficulty 

Used 

Position in 
Test 

Composite 
Item 

Item 
Difficult 

Used 
1 7 no 7 15 no 15 4 no 4 
2 8 no 8 16 no 16 7 yes 4 
3 17 no 17 17 yes 15 9 yes 4 
4 18 no 18 18 yes 16 10 yes 4 
5 19 yes 17 19 yes 15 14 no 14 
6 27 no 27 20 yes 16 17 yes 14 
7 28 no 28 25 no 25 19 yes 14 
8 29 yes 27 26 no 26 20 yes 14 
9 30 yes 28 29 yes 25 24 no 24 
10    30 yes 26 27 yes 24 
11       29 yes 24 
12       30 yes 24 

Note: 1. For component items, numbers in column “Item Difficulty Used” are positions of the items in the test. For a composite item, 
the number in column 4, 7 and 10 is the position of the component item that assesses division.  
2. The scale of shades indicates which testlet the item belongs to, under the true condition. The lightest shade indicates the first testlet, 
the medium shade indicates the second testlet and the darkest indicates items for the dual testlets.  
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