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by
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Kazuo Nakajima and Toshio Fujisawa

Abstract

We consider a layout problem of computer communication networks. It is formulated
graph-theoretically as follows : Given a graph G= (V, E), find an embedding of G in the plane
with the least number of edge-crossings such that (i) the vertices in V are placed on the cir-
cumference of a circle C, and (ii) the edges in E are drawn only inside C. In this paper, we
first present a linear time algorithm for embedding an outerplanar graph in the plane with no
edge-crossings under constraints (i) and (ii). We then show that the problem is NP-hard for
general graphs. This indicates that the computer network layout problem is, in general, very

likely to be intractable.



1. Introduction

An important task of computer communication network management tools is to provide
users with information on the global configuration of a network in an appropriate form. A
natural and reasonable way of presentation is to draw the network on a graphics screen so that
the users can easily grasp its entire logical structure. And, as such, an automatic network lay-
out algorithm is provided in IBM’s CNMgraf : Communications Network Management Graphics
Facility [6]. Based on a classification of the links, this algorithm first partitions the set of the
computing facilities into subsets, called sites. It then draws the sites as points located on the
circumference of a ‘“primary” circle and the links between different sites as straight lines inside
the circle. Similarly, for each site, the algorithm places its computing facilities on a ‘‘regional’’
circle and draws the links between the different facilities of the site as straight lines inside the
regional circle. The final drawing of the entire network is completed by placing the regional cir-

cles around the primary circle.

In this approach, all circles must be arranged in such a way as to make the resultant lay-
out of the network suitable for the users’ inspection. For this purpose, the algorithm used in
the CNMgraf tries to find a drawing which results in as few crossings of links as possible for
each of the circles. The problem of finding such a drawing may be formulated graph-
theoretically as follows : Given a graph G = (V, E), find an embedding of G in the plane with
the least number of edge-crossings such that (i) the vertices in V' are placed on the circumfer-

ence of a circle C, and (ii) the edges in E are drawn inside C.

In this paper, we present complexity results of this problem. We first describe a linear
time algorithm for embedding an outerplanar graph G in the particular form mentioned above

in such a way that no edge-crossings occur. This algorithm is based on the characterization of

outerplanar graphs obtained by Syslo and Iri [11]. We then show that the problem is NP-hard



for general graphs, which implies that the network layout problem is, in general, very likely to
be intractable. Note that in the case in which constraints (i) and (ii) are not imposed, the prob-
lem is an optimization version of the CROSSING NUMBER problem [3,4] which was recently
shown to be NP-complete by Garey and Johnson [4]. However, their proof can not be extended

for our problem.

In the next section, after defining some terms, we formally describe the decision problem
version of our problem. In Section 3, we present a linear time algorithm for embedding ;m
outerplanar graph with no edge-crossings under the above constraints. In Section 4, we intro-
duce a modified version of the OPTIMAL LINEAR ARRANGEMENT problem which is known
to be NP-complete [3,5]. Then, we show a polynomial transformation from this modified NP-

complete problem to our decision problem. Section 5 concludes this paper with some comments.

2. Preliminaries

Let G=(V, E) be an undirected graph with no self-loops and no multiple edges. Two dis-
tinct edges ¢ and ¢' in E are said to be adjacent to each other in G if they share a vertex as
their common endpoint. Let G be an embedding of G in the plane. We call G a circle-
confined drawing associated with a circle C if it satisfies the following four constraints.

(i) Each vertex in V is drawn as a point located on the circumference of C.

(i) Each edge in E is drawn as a continuous line inside C.
(i) Any two adjacent edges touch or intersect with each other only at their common endpoint.
(iv) Any two non-adjacent edges do not touch each other, but they may intersect with each

other at exactly one point.

Fig. 1 shows an example of a circle-confined drawing of a graph.



For a circle-confined drawing G of G = (V, E) and two edges ¢ and ¢' in E, we say that
¢ and ¢ cross each other in G if they intersect in G but are not adjacent in G. Such an
unordered pair of edges ¢ and ¢’ is called a crossingin G. Note that two edges ¢ and ¢’ cross
each other in G if and only if the endpoints of ¢ and those of ¢’ appear alternately on the cir-
cumference of the circle (if the remaining vertices are ignored). Therefore, the number of cross-

ings in G depends on only the order of the appearances of the vertices on the circle.

For a subset V, of V, we say that V, is consecutive in G if all vertices in V, are placed
successively on the circumference of the circle. For a subset E, of E, let Ngz(E;) denote the
number of crossings of the edges of E, in G. Furthermore, for two mutually disjoint subsets E,

and E, of E, let Ng(E,, E;) denote the number of crossings in G between the edges of E; and
those of E,. Note that if E, = ¢, then Nz(E,) =0. Similarly, if E, = ¢ or E,=¢, then

NE(EI) E2) = 0.

Using the terms and notations introduced above, the decision problem version of our prob-

lem is formally defined as follows :

Problem OPTIMAL CIRCLE-CONFINED DRAWING (OCCD)
Instance : Graph G= (V, E), integer B > 0.

Question: Is there a circle-confined drawing G of G such that Nz(E) < B ? [0

A planar circle-confined drawing is a circle-confined drawing with no edge-crossings. A
graph is called outerplanar if it can be embedded in the plane so that all of the vertices lie on
the same face and that no two edges cross each other. It is easy to see that a graph has a
planar circle-confined drawing if and only if it is outerplanar. In Section 3, we present an
efficient algorithm for finding a planar circle-confined drawing of an outerplanar graph. Then,

we show in Section 4 that OCCD is in general NP-complete.



Before closing this section, we introduce four functions gy, g4, g5, and g, which play impor-

tant roles in the NP-completeness proof of OCCD.

Let g,(p) denote the number of crossings in a circle-confined drawing of graph H, = K,
namely, a complete graph with p(>0) vertices. For a complete bipartite graph
Hy=(V UV, E)where |V,|=p2>0, |Vy|=g>0and E ={(v,w)|v € V, and w € V,},
g2(r ,q) is defined to be the number of crossings in a circle-confined drawing of H, in which V,
and V, each are consecutive. Note that the value of 91(p ) is uniquely determined for any non-

negative integer p. Likewise, the value of g,(p,¢) depends on the values of p and ¢ only.
Next, consider the following graph:
Hy=(V,U V, E,; U Ey),
where |V |=p2>0, |V,|=g¢2>0,
Ey={(v,w)|v,w €V},

and Eyp = {(v,w)]|v € V, and w € V,}.

We define g4(p,q) to be Nya(Eu, E,g), where Hj is a circle-confined drawing of Hj in which V,

and V, each are consecutive. Note that g4(p,q) is not always equal to ga(g,p), whereas

92(p,9) = g2(q,p). For example, ¢5(2,3) = 0 while ¢43,2) = 2 as shown in Fig. 2.
Finally, let H, be a graph defined as follows:
Hi=(ViuVaUuV3UV,EpUE»RUEUEy),
where |V |=p>0, |V,]|=¢>0, |V3|=r;>_0,| Vel=s>0,
Eijisy={(v,w)|v €V, and w € V; 1} fori=123,

and By ={(v,w)|v € Viand w € V,}.

We define ¢,(p,q,r,s) to be Nﬁi(Ew, E%)+N54(E34, E,), where H, is a circle-confined drawing

of H, in which each of V|,V,,V, and V, is consecutive and they are placed on the circumference



of the circle in this order in the clockwise direction. An example is given in Fig. 3, where the‘
points enclosed by "[0 ” indicate the crossings between the edges in E; and in E,; and those
between the edges in Eg and in F .

The following four lemmas provide the expression for each of the above functions in terms

of its parameters. The proofs are given in Appendix 1.

1
Lemma 1. ¢,(p) = 5op(p - 1){(p -2)(p -3) forp 200

1
Lemma 2. g5(p,q) = 2p'¢:(p -1)(¢ -1) forp,¢ 20.0
Lemma 3. g3(p,q) = %'p g(p -1)(p -2) forp,q >0.0

Lemma 4. gi(p,q,r,8) = g9-r{q(g - 1+s-(s ~1)} forp,a, 7,6 20.0

3. Circle-Confined Drawing of Outerplanar Graphs

Any outerplanar graph has a planar circle-confined drawing. We first show a straightfor-
ward method of finding such a drawing. Let G = (V, E) be an outerplanar graph.

(1) Create a new vertex v*.

(2) Set E*¥ « {(v*,v)|v € V}and G* « (V U {v*}, E U E*).

(3) Find a planar embedding G* of G*.

(4) Place the vertices in V on the circumference of a circle C in the order in which their
incident edges in E* appear, say in the counterclockwise direction, around v* in G¥*.
Draw the edges in E by straight line segments inside C'.

An example is provided in Fig. 4.

Using existing linear time algorithms for finding a planar embedding of a planar graph, in

particular, the one given by Chiba, et al. [2], the above procedure can be implemented to run in



linear time. However, those algorithms are developed to deal with general planar graphs. And,
as such, they are unnecessarily complicated for our purpose. In the remainder of this section,

we will present another approach which is much simpler to implement.

We will first show an algorithm for finding a planar circle-confined drawing of a bicon-
nected outerplanar graph. The following lemma due to Syslo [10] gives a useful property of

biconnected outerplanar graphs.

Lemma 5 {10]. Any biconnected outerplanar graph with three or more vertices has a
unique Hamiltonian cycle. O
Assume that the outerplanar graph G = (V, E) is biconnected. If | V |= 2, it is trivial
to obtain a planar circle-confined drawing of G. On the other hand, if | V | > 3, we can con-
struct such a drawing in the following manner.
(1) Find a unique Hamiltonian cycle for G .
(2) Place the vertices in V on the circumference of a circle C in the same order as they appear
on the Hamiltonian cycle.
(3) Draw the edges in E by straight line segments inside C.
In what follows, we assume that | V | > 3, and show how to construct the Hamiltonian cycle
for G. |
A simple path P = [v,,v5,...,v;] in a graph is called a branchless path ' if the degree of ver-

tex »; is equal to two for 1= 2,3,...,5 ~ 1 and the degrees of v, and v; are greater than two. It is

known that any biconnected outerplanar graph with three or more vertices has at least two

branchless paths if it is not a cycle [11].

I Syslo and Iri [11] called such a path a maximal series of edges. We feel that the term
“branchless path” is more appropriate to represent the situation.



Lemma 6 [11]. Suppose that an outerplanar graph has a branchless path
P = [v,,vg,..,v;]. If the graph contains edge (v,, v;), remove all edges on P; otherwise replace

P by a new single edge (v;, v;) (see Fig. 5). Then, the resultant graph is also outerplanar. [

The operation described in Lemma 6 is called the reduction of the branchless path P.

Syslo and Iri [11] obtained the following characterization of outerplanar graphs.

Theorem 1 [11]. A biconnected graph with three or more vertices is outerplanar if and

only if a cycle is obtained from the graph by zero or more reductions of branchless paths. O

Based on this theorem, they developed a linear time outerplanarity testing algorithm. We
will show that such reductions are also useful to find a Hamiltonian cycle for G.

Let P =[v,,vq,...,,v;] be a branchless path in G. By definition, the degree of v is two for
i=123,...,5 -1 and the degrees of v, and »; are greater than two. Therefore, G contains at
least one vertex different from the vertices on P. Let HCy; be the set of edges on the unique
Hamiltonian cycle for G. Since P contains all edges incident upon vertices vq,vs,...,v;4, HCg
must contain all edges on P. Let G' = (V', E') be the graph obtained from G by performing
the reduction of P. Then G’ is outerplanar by Lemma 6, and has at least three vertices as
mentioned above. Furthermore, it is easy to see that G' is biconnected. Therefore, by

Lemma 5, G' has a unique Hamiltonian cycle. Let HC, be the set of edges on such a cycle.
Then, HC; and HC, have the following relationship.
Lemma 7. HOG = { ('U,‘, ’U,'+1) I 1= 1,2,...,]. - 1} U ( HOGI -—{ (‘Ul, 'l)j) } )

Proof. The edges in the set HCg —{ (v, v 41) | ¢= 1,2,...,§ — 1} constitute a Hamiltonian

path for @' from v, to v;. Therefore, from the uniqueness of the Hamiltonian cycle for G’ , we

have HC = ( HCg - { (v, via) | i= 12,5 ~1} ) U {(vy, ;) }. O



If G’ itself is a cycle of | V' | vertices, then HC, = E', and hence HC; is immediately

determined by Lemma 7. On the other hand, if G’ is not a cycle, it has at least one branchless
path. The reduction of such a path will yield a smaller biconnected outerplanar graph. Repeat-
ing this process, the graph will eventually become a cycle as claimed in Theorem 1. During such
repetitions, we can ext;fa.ct appropriate edges from each of the branchless paths in the following

manner.

Algorithm HC

Input: A biconnected outerplanar graph G = (V, E) with |V | > 3.
Output: The set HCy of edges on the unique Hamiltonian cycle for G .
Method:
1. Set HC; «— ¢ and G' —G. Mark all edges in E “new’”’.
2. while G’ is not a cycle do

a) Find a branchless path P = [v,v,...,v;] in G’ .

b) Add all new edges on P to HCg.

c¢) Perform the reduction of P. Set G' to be the resultant graph, and mark the edge

(vy, v;) “old”. |

3. Add all new edges of G' to HCy. O

In their graph outerplanarity testing algorithm, Syslo and Iri [11] gave an efficient pro-
cedure for making a series of reductions of branchless paths. Using their method in Steps 2.a)
and 2.c), Algorithm HC can be implemented to run in O(|V |) time. Furthermore, one can
easily determine, in O (| V |) time, the Hamiltonian cycle for G from HCg. Therefore, a planar

circle-confined drawing of G can be constructed in O (| V' |) time.

Now let G = (V,E) be any connected outerplanar graph. Let G,=(V,, E)}),

Gy = (Vs Ey), ..., Gy = (Vi, E;) be its biconnected components. Without any loss of general-



ity, we assume that (U/_,V; )N Vi % ¢ for i=12,..,k -1. We denote by G) subgraph
(Ufo1Vj, USoEj) of @ for i=12,.. k. Note that G*) = ¢ . From the assumption, G) and
G; 41 have one and only one vertex in common which is a cut vertex in G. Let ¢; denote such a

cut vertex.

Let ¢ be an integer such that 1<¢ <k -1. Since any subgraph of an outerplanar graph is
also outerplanar, G) and G;,, each have a planar circle-confined drawing. Let G and Git1
denote such drawings of G) and G;,,, respectively. Then, we can construct a planar circle-
confined drawing of G+ by inserting the vertices in V;; - {¢; } onto the circle associated with
GUT in such a way that they are placed together between ¢; and one of its neighboring vertices
in G in the same order as in G,

Since G is outerplanar, |E | < 2-|V | -3, [7]. Using depth-first search [1], we can parti-
tion G into its biconnected components in O(| V |) time. If necessary, renumber them in
O(] V|) time so that they satisfy the aforementioned assumption. Using Algorithm HC, we
can find a planar circle-confined drawing of G; in O (| V; |) time for ¢ = 1,2,....k. Therefore, the
construction of a planar circle-confined drawing of the entire graph G requires O (| V |) time in

total.

4. NP-completeness Proof of OPTIMAL CIRCLE-CONFINED DRAWING

As mentioned in Section 2, the number of crossings in a circle-confined drawing is uniquely
determined by the ordering of the vertices on the circle. Therefore, by guessing such an order-
ing and then computing the number of crossings, OCCD is nondeterministically solvable in poly-
nomial time. Thus, OCCD belongs to the class NP. In order to complete the NP-completeness
proof, we have to show that a known NP-complete problem is polynomially transformable to

OCCD.

10



We begin with the following NP-complete problem, called OPTIMAL LINEAR

ARRANGEMENT (abbreviated to OLA) [3,5].

Problem OPTIMAL LINEAR ARRANGEMENT (OLA)
Instance : Graph G == (V, F), integer B > 0.
Question: Is there a one-to-one function f: V — {1,2,...,| V' | } such that

| f(v)-f(v)| £B?O
(s,0)EE

With respect to the instance of OLA, we may assume that |E |<B < |V | |E|.

Furthermore, if B > | E |, then it is clear that Y} |[f(v)-/(v)| < B if and only if
(s,9)€E

Y (f(v)-f(u)-1)< B-|E|. Therefore, the following decision problem, which we
E

(¢,9) €
1{$)</ (%)
call MODIFIED OPTIMAL LINEAR ARRANGEMENT (abbreviated to MOLA), ls also NP-

complete.

Problem MODIFIED OPTIMAL LINEAR ARRANGEMENT (MOLA)
Instance: Graph G = (V, E), integer B such that 0 < B < |V |{(|E | -1).
Question: Is there a one-to-one function f: V — {1,2,...,| V | } such that

( S (f(v)-f(x)-1)<B?O

/ F;)’l? (b:)

In the remainder of this section, we will show a polynomial transformation from MOLA to
OCCD. Suppose that we are given a graph Go=(V,, Eq) with | V| =n and an integer B,
such that 0 < By < n{(|Ey| -1). As an instance of OCCD, we construct another graph
G = (V, E) and an integer B in the following manner.

G =(V,E),

where V = VU V, U V,,

with V, = {wy,w,, ..., w, 4},

11



and Vy= {z,,2,, ..., 2'3”10},
and E = EqUEqUEUE;3U Eg,
with By = {(v,w)|v € Vo, w € V,},
Ey={(v,w)|v,w €V},
Eg={(v,w)|v €V, w €V},
and Epp={(v,w)|v,w € V,},
and B = g4(3n"%+2nY)+go(2nn)+gs(2ntn)+gun,nt 300 nY)+nt - 1+2Bynt.

Since By < n*(|Eg| -1) and | Ey| < %-n (n —1), we have By < %- (n +1)(n —2). Therefore,

B is bounded by a polynomial function of n from Lemmas 1, 2, 3 and 4. Note that subgraphs

(ViU Vg, Ejy UE |3 U Eg), (Vy, Eyy) and (Vy, Eg) of G form complete graphs K K

3n042n Y 2nt

and K, respectively. A rough sketch of graph G is shown in Fig. 6.

In order to complete the proof, we have to show the equivalence of the following two state-

ments.

(I) There exists a one-to-one function f: Vo~ {1,2,....,n } such that

Y (folv)-Solu)-1) < B,
(v,v)EE,
I ole)</t glv)

(II) There exists a circle-confined drawing G of G such that Nz(E) < B.

Theorem 2. If Statement (I) holds for G, and B, then Statement (II) holds for G

and B.

Proof. Let fo:Vy—{1,2,,.,n} be a oneto-one function such  that

Y, (folv)-folu)-1) < B, Corresponding to f, we define a one-to-one function
(¢,0)EE
£ d#)<1 o)

F:Vv {2, | V |} as follows.

12



f(v)=folv) (v € Vy)
S(w)=n+i (w; € Vy, i=12,..,n%
f(z)=rn*%n+i  (z, €Vy i=12,.30")

f(w)=3n04n+i (w; €V, i=n*+1,n*+2,.,2n%).

Let G be a circle-confined drawing of G in which the vertices in V are placed on the cir-

cumference of the circle in ascending order of the values of f (-) in the clockwise direction (see

Fig. 7). Then, it is clear that Nz(Eo E, U E;2U Eg) =0 and Nz(Eq, Eg)=0. Since

| Eo| £ %-n (n -1), Nz(E,) < %— |Eo| (| Eo| -1) < n*-1. Furthermore, the following four

equations hold from the definitions of g, g4, g5 and g4.
Nz(E 1 U E13 U Eg) = ¢,(3n1%2nY).
Nz(Eoq) = go2n*n).
Ng(Eoy, E11) = go2n%,n).
Nz(Eq, E1) = g4(n ,n* 3004
For each edge e=(u,w)€E, such that
= 2n%(f (v)- f (¢)-1). This implies that

NE;‘(EO, Eg) = 2nt 2 (f(v)-f (u)-1)
(v,0)E B,
1(#)<t (0)

=20t Y (folv)-Solu)-1)
(s.v)€EE,
1 ole)</ ol?)

S 2Bo'ﬂ4.

From the above equations, we have

fuw) < fw)

Nz ( {8 b Eor)

Ng(E) = Nz(Eo)+Nz(EywU Ep U Ep)+Ng(Eg)+Ng(Eq, E)+Ng(Eo, Evg)

+Nz(Eo, Ea)

13



< (nt-1)+¢,(3n1%42nY)+g(2ntn )+g5(2ntn )+g4(n,nt,3n 0, n)+2Byn!
=B.0
A circle confined-drawing G of G is said to be canonical if it satisfies the following condi-
tion: For a partition of V, into two subsets V,® and V,® such that | V,)|=|V,®|=n*
each of Vo, V,0,V, and V,@ is consecutive in G and they are placed on the circumference of the
circle in this order in the clockwise direction (see Fig. 8).
For each vertex v € Vg, let Eg(v) be defined as { (v,w) € Eq; | w € V;}. To prove the

converse of Theorem 2, we start with the following four lemmas. Since the proofs of Lemmas 9

and 10 are complicated, they are given in Appendix 2.
Lemma 8. For any circle-confined drawing G of G,
Nz(Ey U E ;U Eg) = g,(3n'%+2n%), and
NE(EOD Eu) = 93(2'14»" ).
Proof. Since subgraph (V, U V,, E;; U EjpU Eg) of G forms a complete graph K, 10,5,4
the first equality clearly holds. Let v be a vertex in V,, and let &, denote the circle-confined

drawing which is obtained from G by removing all vertices in Vo, U (V,~{v»}) and the edges

incident upon them. Then, V, is consecutive in G,. Since subgraph (Vy, Ey,) forms K, 4 and v

is adjacent to every vertex in V,, we have
Ng(Ea(v), En) = Nau(on(” ), E11)

=4 3(272 4»1)'

Applying the same argument to each of the other vertices in Vo, we have

Né(Em; Ey) = E NE(Em(” ), E11)

v eV,

14



= n-g4(2n4,1).
Since n-gg(2n*1) = g4(2n*n) from Lemma 3, we obtain
Nz(Eo, E1y) = gg(2nn). O
Lemma 9. For any circle-confined drawing G of G,
Ngz(Eoi, E12) 2 gu(n n*32°0%. 0O
Lemma 10. Let G be a circle-confined dfawing of G. If V,is consecutive in G but G is
not canonical, then
Ng(Eo, Eg) 2 g4(n,n‘,3nl°,n‘)-f-3n1°. ]
Lemma 11. Let G be a circle-confined drawing of G. If V, is not consecutive in G, then
Nz(Eo, Eog) > go(2n*,n)+2Byni+nt-1.
Proof. Suppose that V, is not consecutive in G. Then, it is easy to see that there exist
two edges ¢ = (v,w) € Eo; and ¢’ = (z,y) € Eq4 which cross each other in G . Starting from v,
we visit the vertices on the circumference of the circle one by one in the clockwise direction.
We denote by o the number of vertices in V, which are encountered before we arrive at w.

Since exactly one of z and y is encountered by such a visit, 1 < & < 3n'°-1. Therefore, we

have

Ng(Eq, Eg) 2 Ng({c}, Eg)
= a:(3n'° -~ q)
> 32101

> % a0t 1-(n- n7)-%(n°— n®)

= (n10-nf- %n6+%n6)+2n7+n4 -1

By Lemma 2, n'®—n®— %n"-{—%ns = go(2n*n). Furthermore, By < n(|Ey| -1) < n® by the

15



assumption on By, and hence 2n7 > 2By'n®. Thus, we obtain
NE(EOI) E22) > g2(2ﬂ4,n )+2Bo'ﬂ4+n4 -1.0
The above four lemmas lead to the following lemma.

Lemma 12. If G is a circle-confined drawing of G such that Nz(E) < B, then G is

canonical.

Proof. Assume that V, is not consecutive in G. Then, Nz(Eo, Ex) > go(2n*n)

+2Bgn*+n*-1 from Lemma 11. Furthermore, the following three equations hold by Lemmas 8
and 9.
Ng(E;1 U E ;3 U Eg) = g,(3n'%+2n%).
Ng(Eo, En) = gs(2ntn).
Ng(Eor, Erg) 2 g4(n 143010 nt).
Therefore, we have
Ng(E) = Ng(Eoi, Ex)+Ng(E1 U E13 U Eg)+Ng(Eo, En)+Ng(Eoy, E1g)
> go(2ntn)+2Bynttnt - 14¢,(3n %420 ) +g4(2n%n )+g4(n,n* 30100
= B.
This contradicts the hypothesis that Nz(E) < B. Thus, if Nz(E) < B, then V; is consecutive
in G.

We now assume that G is not canonical. Since V, is consecutive in G, Nz(Ey, E o)
> gy(n,n%300 044301 from Lemma 10. Furthermore, 3n!° > g,(2n*n)+2Byntn* -1 as is
shown in the proof of Lemma 11. Thus, we have

Nz(Eo, E12) > ga(n 4300 n4g2ntn)+2Bynttnt - 1.

This and Lemma 8 y1eld

16



Ng(E) 2 Nz(EjyU Ey U Ep)+Ng(Eq, Eu)+Ng(Eo, E1)
> 9130420 )+g4(2n4n )+g(n,n 300 nY)+go(2n4n)+2Byntent -1
= B.
This contradicts the hypothesis that N5z(E) < B again. Consequently, if Nz(E) < B, then G

is canonical. O
The following lemma is trivial from the definitions.
Lemma 13. For any canonical circle-confined drawing G of G,
Nz(Eo) = go(2n*n), and
Ngz(Eon, E1g) = g4(n,n*3n%a%). O
We are now rea,d)‘I to show the following theorem.

Theorem 3. If Statement (II) holds for G and B, then Statement (I) holds for G,

and B,

Proof. Let G be a circle-confined drawing of G such that N3(E) < B. Then, G is
canonical from Lemma 12, and hence V, is consecutive in G. Therefore, one can define a one-
to-one function f:V — {1,2,...,| V |} such that (i) {f (v)|v € Vo} ={1,2,..,n}, and (ii) the
vertices are placed on the circumference of the circle in ascending order of the values of f (*) in

the clockwise direction.

Assume that Y] (f(v)-/(v)-1) > Botl. For each edge ¢ = (u, v) € E, such that
(s.0)EE
1®)<1 6)

f(v) < f(v), we have Nz( {e}, Eq)) = 2n*(f (v)- f (v)-1). This implies that

Nz (Eo, on)=2"4' E (f(v)-f(v)-1)
(s,2)E€EE,
1 (s)<t (v)

> 2n4(By+1)
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> 2Bgni+nt-1.
Therefore, from Lemmas 8 and 13, we have
Ng(E)} > Ng(E U E ;3 U Ep)+Ng(Eq)+Ng(Eq, Ey)+Ng(Eoy, Eo)+Ng(Eo, Eqy)
> g1(3n %420 Y4920t n )+g5(2ntn )+gy(n,nt30 00 )4 2Bntnt — 1
= B.
This  contradicts  the  hypothesis that Nz(F)<B. Therefore, we  have

Y, (f(v)-f(v)-1) < By. This completes the proof. O
(vv)eE
1)<t (@)

As mentioned before, OCCD belongs to the class NP. Since G and B can be constructed

in polynomial time, the following theorem is established from Theorems 2 and 3.

Theorem 4. MOLA is polynomially transformable to OCCD. Therefore, OCCD is NP-

complete. [J

5. Conclusion

In this paper, we considered a graph drawing problem which gives rise to a computer com-
munication network layout problem. More specifically, the problem is to find an embedding of
a graph with the minimum number of edge-crossings such that the vertices are placed on the
circumference of a circle and that the edges are drawn inside the circle. We have first presented
a linear time algorithm for embedding an outerplanar graph in such a way that no edge-
crossings occur. We have then shown that the corresponding decision problem is in general
NP-complete. If the graph is allowed to have multiple edges between some pairs of vertices,
then the NP-completeness proof becomes much simpler. In fact, such a proof was given in the

preliminary version of this paper [9].
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It is important to develop an effective heuristic algorithm for the problem. As is usually
the case with this type of problems, a reasonable approach is to find an initial solution and
improve its quality to produce a good final solution. We have already obtained a good heuristic
algorithm for the initial stage [8] and are currently engaged in the development of an algorithm

for the second stage.
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Appendix 1. Proofs of Lemmas 1, 2, 3 and 4

The proofs of Lemmas 2, 3, 1 and 4 are given here in this order.

Proof of Lemma 2. Let H, be a complete bipartite graph described as follows:

Hy= (ViU Vy E),
where V= {vy,vy, ..., 9},
Vo= {Up+lva+21 c ey Ypgg b
and E = {(v,w)]|v € Vi, w € Vy}.

Let H, be a circle-confined drawing of H, in which the vertices are placed on the circumference

of the circle in ascending order of their subscripts in the clockwise direction (see Fig. A-1). By

the definition of gq, go(p,¢) = N,72(E). When p =0 or ¢ =0, clearly go(p,g) =0, and hence
the lemma holds. Therefore, we only need to consider the case in which p, ¢ > 1.

For i=12,...,q, let ¢, = (vy,9,4;) and E; = {(w,v,4;)|w € V- {v,} }. Furthermore, let

E*=E,UE,U---UE,, that is, E*=FE - {e,e5,..,¢,}. Then, NﬁQ(E - E*)=0, and hence
Nﬁ2(E) = N,—,2(E*)+N,72(E*, E - E*). Since subgraph ((V,-{v;}) U Vy, E*) of H, forms a com-
plete bipartite graph, Nﬁz(E*) = go(p - 1,¢). Thus, we have

9op,q) = golp - 1,¢)+Ng (E*, E - E¥).

If ¢ > 2, ¢ crosses the edges in E;,, UE; ,U--"UE, C E* for i=12,.,¢ -1, and ¢,

crosses no edges in E*. Since |E; |=p -1 for i{=1.2,...,¢, we have
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Nﬂz(E*r E - E*) = 20"=1Nﬂz(E*) {cl' })
=X g -¢)(p - 1)
1
=59 -1)(qg-1) forg >2.

If ¢ =1, Nﬁz(E‘, E - E*) =0, and hence the above equality still holds. Thus, we have

gop,q) = gop - 1,9 )+-§~'q (p-1)(¢g-1) forp,g > 1

Since ¢4(0,9 )=0, we obtain

gop ,9) = E.Ll%“q (g -1)(¢ - 1)

1
=1re(p-1)(¢-1).0
Proof of Lemma 3. Let H; be a graph defined by:
Hy={V, UV, E U Ey),

where V= {v,,v,,...,9,},

Ve={vp41,%+2 - - - %ag },
Ey={(v,w)|v,w €V}
and Ej,={(v,w)|v € V}, w € V,}.
Let H, be a circle-confined drawing of H in which the vertices are placed on the circumference

of the circle in ascending order of their subscripts in the clockwise direction. By the definition

of ¢3, g3s(p.q) = N,—is(E”, Ey). The lemma trivially holds when p = 0 or ¢ = 0. Therefore, we
only need to consider the case in which p, ¢ > 1.

For a vertex v in Vy, let ¢ = (v,y;) for +=12,..,p. Note that ¢; crosses the edges in
{(v;, )| ISJ<i<k=Sp} C Eqy. Let B°={(v,w)|w eV} —={epen. . e} Then, we

have
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Nﬁs(En» E')= 2.”=1N)T1,,(Eu, {e:})
= 2'};1(,’ - 1)'(17 - z)
1
=P -1)-2)
It is clear that Nﬁs(Ell» Eiu-E")=gs(p,qg —1). Furthermore, Nﬁs(En, Ep) = Ngs(Eu,

E*)+Ng(Ey, Er2 - E*). Thus, we have

g3(p,9) = gsp 9 - 1)+%'p (p -1)(p -2).

Since g4(p ,0) = 0, we obtain

gs(p .q) = %—'p ¢(p -1)(r -2). O

Proof of Lemma 1. Let H, = (V, E) be a complete graph with p vertices, and let H bea

circle-confined drawing of H,. By the definition of ¢,, ¢,(p) = Nﬁl(E). The lemma clearly

holds when p = 0. Suppose that p > 1. For a vertex v in V, let E°={(v,w)€EE

|w €V -{v}} Then, Ng(E - E®)= gy(p -1) since subgraph (V -{v}, E - E") of H, forms
K,.,. Furthermore, Nﬁl(E —E°,E’)=g4p -1,1)= %'(p -1)(p -2)(p -3) from Lemma 3.
Since Ng (E°) = 0, we have
9:(p) = Ny (B - E*)+Ng (E - E*, E*)
— gu(p ~ 1+ 2(r - 1(p - 22 -3)
Since g,(0) = 0, we derive

91(p) = +Tmli - V(i - 2)( - 3)

27 =D -2 -3). O
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Proof of Lemma 4. Let H, be a graph defined by:
Hi=(ViUV,U VUV, EuUE»RUELUEy)
where |V | =p, |Vy| =4¢q, | V3| =71, | V4| =3,
Egmy={(v,w)|v eV, weV,} fori=123
and E,, ={(v,w)|v €V, w € V }.
Let H, be a circle-confined drawing of H, in which each of V,, V,, V3and V,is éonsécutive and
they are located on the circumference of the circle in this order in the clockwise direction.
Then, from the definition of g4, g4p.q,r,8) = Ng (E, E23)—+—Ng‘(E34, Ey Ifp=|V,|=0,

then E;p,=E, = ¢. On the other hand, if r =| V3| =0, then Eg = E3 = ¢. Thus, the
lemma holds when p =0 or r = 0. Therefore, we only need to consider the case in which

p,r 2 1.
It is clear that N;,‘(E,z, Eg) = N;;‘(Em U Eg) - Ny‘(Elg) - N,74(E23). Furthermore, sub-

graphs ((V,U V3) U Vo, Ej3U Egg), (ViU Vg, Eyp) and (V2 U Vs, Ey) each are complete bipar-

tite graphs, and hence we have
Ng (E12U Exs) = go(p +7,9),
Nil‘,(Ew) = go(p,q), and
Nii‘(Ezs) = g4(r,q).

Thus, from Lemma 2, we obtain

Ng (Erz) Eg)) = go(p +7.,9) - 92(p ,q) - 92(r )

q(g -1 {(p+r)(p+r -1)-p(p -1)-r(r-1) }.

Al)—

8o | =

‘pgr(g-1) forg 20.
Similarly, we have
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NF4(E34» Ey) = %’P ‘rs:(s -1) fors >0.
Therefore, we obtain

g4p,q,r,8)= Nﬁ4(E12y E23)+Nﬁ4(E34, E4)

=%.p.r.{q-(q_1)+a-(s ~1)} forg,s >0.0

Appendix 2. Proofs of Lemmas ¢ and 10

Let v be a vertex in V, Let G* be the induced subgraph of G with respect to
ViU V,U{v}, and let G* be a circle-confined drawing of G* in which V, is not consecutive.
Then, V, is partitioned in G* into ¢t subsets V,(1),V42), ..., Vyt) for some integer ¢t > 2 such
that

(1) VAU VU U Vyt)= Vyand V(i) N Vy(5) = ¢ for 1<is; <t,

(i) for i=1,2,.,t, Vy(i) is not empty and is consecutive in G*, but V,(#) U {w} is not con-
secutive in G* for any vertex w € V,~ Vi), and

(iii) the vertices in {v },Vy(1),V4(2), . . ., Vy(t) are placed on the circumference of the circle in
this order in the clockwise direction.

We call ¢ the partition number of G*. For 1= 2.3,...,t, let V(i) denote the set of vertices in V,

such that V(¢) itself is consecutive in G* and that V(i — 1) U V(i) U Vy(i) is also consecutive

in G*. Note that the vertices in {v}, Vy4(1), V1(2), Vo(2), Vi(3), ..., Vo(t — 1), Vi(t), Vo(t) appear

on the circle in this order in the clockwise direction. Let V(1) (resp., V(¢ +1) ) denote the set

of vertices in V, —U#_,V,(¢) which are placed between v and the vertices in V(1) (resp., V(t)).

See Fig. A-2. Note that V(1) and V,(t+1) may be empty while V,(2), V(3), ..., V(t) are not.

We define ofz), ofi,5), A(¢) and (¢, ) as follows:
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afi) = | Vy(i)| fori=1,2,..,t+1.

ofi 7)) = afi JH+a(i +1)+ - - - +a(s) for 1<i <5 Lt +1.

B(i) =] Vy(f)| fori=12,...,¢.

Bli,5) = A+ +1)+ - - - +8(5) for 1<i <5 <t.
Let Eff)={(v,w)|w e V(i)} for i=12,.,t+1. Note that EUEP U - -uUEHH
=~ Eoq(v). Let Eyg()={(w,z)|w € Vi), z € Vo()U Vo(2)U - U Vofi ~1)}  for
t=23,..,t+1, and Ef ({)={(w,2z)|w € Vi(i), 2 € V(1)U V(i +1) U - - U Vyt)} for

i=12,.,t. See Fig. A-3. In particular, we define E 5 (1) and E;§ (¢ +1) to be empty.
Claim 1. For i=12,...,t+1, Ng (Ef), E;; ({)UE,$ (i) = %-a(i)'(a(i)— 1)'n ',

Proof. For ¢=28,..,t+1, subgraphs (V,(i‘) U{v}Uu Vo ()U Va(B)U - U V(i ~1)),
EF) UEy; (5))and (Vi(s) U (VAU Va2 U - U Voli ~1) ), E3 (7) ) form complete bipartite
graphs (see Fig. A-3 again). Since |V (¢s)|=a(f) and | V(1)U V4(2)U---U Vg(z' -1))
= f(1,§ - 1) by definition, we have
Nz.(Ef) UEg; (1)) = gafa(s), B(1,i - 1)+1), and
Nz.(Erz (1)) = goloaft), A1, -1)).
It is clear that Nz (Ef))=0, and hence Nz (Ef'UE;Z (1)) = Nz (EF , E; (1))
+Ngz.(Ez (f)). This and Lemma 2 yield
= Nz. (E§UEz (1)) - Na. (Eyz (1))

92(“('. )’ /9(1)'. - 1)+1) - y2(a(‘.)r ﬂ(ly" - 1) )

f

a(i)(a(i) - 1){ (AL, - 1)+1)B(1i -1) - A(1,i - 1)(B1,¢ -1)-1) }

f
o~

I

—;—-a(i)-(a(i) ~1)8(L,i —1) for i=2,3,..,t+1.
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In the case of i=1, N5 (E{), E; (1) ) = 0 since E 5 (1) = ¢.
Similarly, we obtain
Nz (E{) E\f (5)) = %‘a(i)'(a(i)—l)'ﬂ(i,t) for i=1.2,..,¢t, and

Ng. (E{™), Ef (t+1))=o0.
From the above equalities, we have the following equations.

Ng.(E4), Bz (1) UE (1)) = Ng (B, B¢ (1))

I

-o1)(a(1) - 1)-4(1,1).

Nz (Ef) B (1)U B¢ (1)) = Ng. (Ef) E; (6) Nz (B, Evf (1))

f

3ol (ali) 1) B(Li - 1)+A( ) )

B~

‘a(i)(a(i)-1)A(1,t) fori=23, .t
Ng (ES™, Eg (t+41) U B (£41) ) = Ng. (E§*Y, By (t+1))

- —;-'a(t+1)'(a(t +1) - 1)-4(1L,t).
Since f(1,t )= V3| = 3n'°, the following equality holds for i=1,2,...,¢t +1.
Nau(E§) , Biz () U Eif () = S-aiMali)- 101 O
Claim 2. Ny, (E{), Eyp) = -g—u(l)'(a(l) ~1)nl,
Nz (E{$™)  Ep) = %‘a(t +1)-(aft +1) ~ 1)n'®,
Nz (B8, Evg) = a(i){ a(1,i -1)-8(i ,t +ali +1,t +1)-4(1, - 1) }
3

+ > aft)(afi) - 1)n'®  for i=23,..,¢.
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Proof. It is clear that Ny, (E{), E) = Nz (EJ, Eid (1)) and that Nz, (B, EL)
= Ng. (EE*Y ,E; (¢ +1) ). Therefore, the first two equalities are obtained from Claim 1.
For i=23,.,t, the edges in E§) cross those in {(w,z)|w € V (1)U V,(2)
U UVt -1), 2z €Vy({)U Vo(i+1)U- - U Vy(t) U {(w,2)|w € V,(i+1)U V(i 4+2) U - - -
UVi(t+1), 2 €V I)U Vy2JU U Vi ~1)} C Ep-(Ey; ()UE (1)) Thus, from
Claim 1, we derive
Né'(E(}f) » E1p)
= a(¢){ a(1,§-1)-B(i ¢ J+a(i +1,t +1)-4(1,i - 1) }+ Nz (EF) , Ej5 ({)UE S (5))
= a(i){ a(1,i=1)8(s ¢ )+al(i +1,¢ +1)-8(1,i - 1) }+—g-'oz(i )(afi) - 1)n 0. 03
We now consider two embeddings (;’ * and G * of G* defined as follows. C:’ * (resp., . *)
is the circle-confined drawing which is obtained from G* by exchangiﬁg the position of V(2) for

that of V(1) (resp., V5(2)) in such a way that the orders of the vertices within V,(2) and V(1)

(resp., V5(2) ) are preserved (see Fig. A-4). Then, the following two claims can be established.
Claim 3. Ng.(Eq(v), Evg) = Ng.(Eqy(v), Eo)+a(2)-8(1)( of1) - 3,t +1) ).

Proof. From the definitions, Eq(v) = EPUEP U - U E{*Y. Furthermore, it is clear
that Ng.(E{), Ey)) = Ng.(E§), Ey5) for i=34,.,t+1. Thus, N§.(Ea(v), Ey)
~Nzg.(Eqy(v), Erg) = Ng(EQUEE ,E ) - N, (E UE , E\5). From Claim 2, we have

Nz (EfPUE , Ey)
- Nﬁ’(ED(ll) ’ E12)+NG-’(E0(12) ’ ElZ)

‘(1) (ef1) - 1) n lO-F%'w@)‘(a(?) ~1)n'%a(2)-{ a(1)-A(2,¢ )+a3,t +1)-4(1) }.

[
e

Furthermore, V(1) U V(2) and V(1) U V4(2) each are consecutive in G *. Thus, substituting

a(1)+a(2) for (1) in the right hand side of the first equality in Claim 2, we obtain
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N+ (B UES , Bi) = 2 all)+a(2) )} a(t)+a(2) -1 )™,
Therefore, we can obtain
Ng+(Eov), E12) - Ng. (E(v), E12)
= %'{ (a(1)+a(2) ) (a(1)+a(2) - 1) - a(1){a(1) - 1) - a(2)(a(2) - 1) }n 1
- a(2)a(1)A(2,t) - o(2) (3, +1)-B(1)
= 3a(1)a(2)n'® - a(1)a(2)(3n'° - A1) ) - a(2) a(3,¢ +1)- (1)
= o(2)-A(1)( o(1) - a(3,t +1) ). O
Claim 4. Nj.(Eu(v), E1) = Ng.(Eov), E1g)+a(2)-8(2)-( a3,¢ +1) - (1) ).
Proof. Using an argument similar to the one made in the proof of Claim 3, we derive

Ge(En(v), Era) - Nc‘:u(Em(”)» E )

(EPUEE,Ep)- N ERPUEH , Ey)

G (E(;12) UES, Ey)- Nc“,va(Eo(%) , Eg) - Nc—;t(Eo(?) , E12)

(a(2)+a(3) )(e(2)+a(3) ~ 1)n+(a(2)+a(3) ) { (1) A3,¢ ) +als,t +1)-A1,2) }

I
o]

- {5-a(2)(a(2) - 1) +a(2) (1) B2t} to(3,t +1)61)) }
- {5-a(3)(a(3) - 1) n *+a(3)( a(1,2)A(3,t+a(tt +1)-8(1,2) ) }

= 2.{ (a(2)+a(3) )(e(2)+a(3) - 1) - o(2)(a(2) - 1) - a(8)(a(3) - 1) } o °
+af3){ a(1)B(3,t) - al1,2) B3, Jrald,t +1)6(1,2) - a4t +1)-A(1,2) )
+a(2){ a(1)A(3,¢) - a(1) A2t +alat +1)H(1,2) - (3, +1)801) )

— 3a(2)a(3)n" - a(3)a(2)A3,¢)
a2} { a(1)}(B(3.) - A2t ) (4t +11(BLHAR) ) - (a(31+al4t +1) JAL) }

— a(2)a(3)(3n '~ B(3,1))
+a(2){ - a(1)AR)Falet +1)8(2) - o(3)AL) )
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= a(2)-{ a(3)(B(1)+A(2) ) - a(1)-A2)+a(4,t +1)-A(2) - «(3) A1) }
= a(2)A(2)( a(3) - a(1)+a(4,t +1) )

= a(2)8(2) (a(3,t+1) - (1) ). O
The following claim is an immediate consequence of Claims 3 and 4.
Claim 5. Ng.(Eo(v), E1g) 2 Min { Ng«(Eqi(v), Ev2), N6+ (E(v), Ey2) }. O
The next lemma follows from Claim 5.

Lemma A-1. For any circle-confined drawing G* of G*, there exists a circle-confined

Qf

drawing G* of G* such that V, is consecutive in * and  that

Nz, (Eov), E1g) < Ng.(Eay(v), Erg).

Proof. If V, is consecutive in G*, then the lemma trivially holds. Otherwise, as can be
seen from Claim 5, we can construct another circle-confined drawing of G* whose partition
 number is smaller than that of G* without increasing the number of crossings between the
edges in Eg(v) and those in E;,. Therefore, repeating such a construction as many times as

needed would result in a desired circle-confined drawing of G*. O
Lemma A-2. For any circle-confined drawing G* of G*,
Nz.(Eav), E1g) = ¢41,n%30%0%. O
Proof. By Lemma A-1, there exists a circle-confined drawing G* of G* such that V, is
consecutive in G* and that Nz, (Eq(v), E12) £ Nz (Eav), E o). Suppose, starting from v, we

visit the vertices on the circumference of the circle associated with G* one by one in the clock-
wise or counterclockwise direction. Let «, (resp., 8,) denote the number of the vertices in V,
which are encountered before the vertices of V, when we go along the circle in the clockwise
(resp., counterclockwise) direction. Note that «,, 4, 20 and a, +8, = 2nt. By the definition

of g4 Nz (Ea(v), Erz) = 94(1, @y, 3n'0, 3,). Therefore, from Lemma 4, we have
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Ng. (Ealv), Ey2) 2 Na. (Ea(v), E12)
=941, @, 30", §,)
= 3"y (=148, (B, - 1)
= 248 oy, - 142t - @) 2nt -y - 1))
—3n10{ (@, — n¥)>+n®—nt)
=3n'"%(a, - n*)?43n't(nt-1).
By Lemma4 again, 3n'(n*-1)= g (1,n%32%0"). Therefore,  Nz.(Eq(v), E1g)
> g4(L,n* 30004, O
We are now ready to show the proofs of Lemmas 9 and 10.
Proof of Lemma 9. From Lemma A-2, Nz(Eg, E5) = n-g41,n%,32%n*%). Therefore,
Nz(Eo, E12) 2 g4{n ,n*30'%0% by Lemma 4. O
Proof of Lemma 10. Suppose that V, is consecutive in G. For each vertex » € V,, let «,
be defined in the same manner as in the proof of Lemma A-2. Then, if G is not canonical, there
exists a vertex v in V, such that o,5%n* For such v, the argument used in the proof of
Lemma A-2 immediately yields
Nz(Eg(v), E1g) 2 g4(1,n*3n0n%)+3n0.
For every other vertex w € Vy-{v}, Nz(Ep(w), E1s) > g41,n%3n%n*) by Lemma A-2. Thus,
from Lemma 4, we have
Nz(Eq, E19) = 94(1,n*30%n%)43n04(n — 1) g4(1,n*3n"%n%)

= g4(n,n* 300043210 O
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Fig. 1. An example of a circle-confined drawing of a graph.
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Fig 3. g4(| Vll!' V2|:I VSI!' V4l)= 94(1)372;2)=8'
O ’s indicate the points under consideration.
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Fig. 4. A planar circle-confined drawing of an outerplanar graph.
(a) An outerplanar graph G'.
(b) A planar embedding of G*.
(c) A planar circle-confined drawing of G .
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Fig. 5. Reduction of branchless path [v;,v,v3,v,).
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Fig. 6. A rough sketch of graph G.
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Fig. 8. Placement of the vertices in a canonical drawing of G .
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Fig. A-2. Placement of the vertices in G*.
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Fig. A-4. Two circle-confined drawings C:' * and G *.
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