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Two phase transitions in complex networks are analyzed. The first of these

is a percolation transition, in which the network develops a macroscopic connected

component as edges are added to it. Recent work has shown that if edges are added

“competitively” to an undirected network, the onset of percolation is abrupt or

“explosive.” A new variant of explosive percolation is introduced here for directed

networks, whose critical behavior is explored using numerical simulations and finite-

size scaling theory. This process is also characterized by a very rapid percolation

transition, but it is not as sudden as in undirected networks.

The second phase transition considered here is the emergence of instability in

Boolean networks, a class of dynamical systems that are widely used to model gene

regulation. The dynamics, which are determined by the network topology and a set

of update rules, may be either stable or unstable, meaning that small perturbations

to the state of the network either die out or grow to become macroscopic. Here, this

transition is analytically mapped onto a well-studied percolation problem, which

can be used to predict the average steady-state distance between perturbed and



unperturbed trajectories. This map applies to specific Boolean networks with few

restrictions on network topology, but can only be applied to two commonly used

types of update rules.

Finally, a method is introduced for predicting the stability of Boolean net-

works with a much broader range of update rules. The network is assumed to have

a given complex topology, subject only to a locally tree-like condition, and the up-

date rules may be correlated with topological features of the network. While past

work has addressed the separate effects of topology and update rules on stability,

the present results are the first widely applicable approach to studying how these

effects interact. Numerical simulations agree with the theory and show that such

correlations between topology and update rules can have profound effects on the

qualitative behavior of these systems.
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Chapter 1: Background

The work described in this thesis addresses two major topics, both of which

may be described as phase transitions in networks or network dynamics. Therefore,

Sections 1.1 and 1.2 begin with a brief introduction to random and complex net-

works. Next follows a similar introduction to phase transitions in statistical physics

in Section 1.3. Since both topics are vast, the focus here will be limited to concepts,

terminology, and notation which will be useful later in the text.

Subsequently, Section 1.4 introduces the first phase transition under study,

percolation on networks. Percolation refers to the development of a connected com-

ponent which spans a significant fraction of a network with a large number of nodes.

The other major theme of this work, the dynamical stability of Boolean networks,

is introduced in Sections 1.5-1.6. This concerns the general response of a network

of interacting two-state elements to a small perturbation which changes the states

of some elements.

Chapters 2-4 each describe original research relating to these two topics. These

chapters are based upon material first released in Refs. [1], [2], and [3], respectively.

In Chapter 2, I discuss a recently introduced type of non-standard percolation pro-

cess called explosive percolation, and I study its properties on directed networks.
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Next, in Chapter 3, I show that there is a deep connection between the two topics of

this work: for some types of Boolean networks, the stability phase transition can be

mapped onto a related percolation phase transition. Finally, in Chapter 4, I develop

and illustrate a new technique which can predict the stability of a much broader

class of Boolean networks.

1.1 Networks

A variety of social, biological, and technological systems can be represented as

a collection of interacting elements, in which each element interacts with a limited

number of others [4]. Such systems are naturally represented as networks. A network

is a collection of N nodes and a set of edges which join pairs of nodes. Each node

may be labeled by an index from 1 to N (typically denoted by i or j), and edges

may be described by the nodes that they connect (for example, the edge from j to

i). The total number of edges in the network will be denoted E.

Networks can be classified into a variety of types and described by a variety

of features. One important distinction is between directed networks, in which each

edge can only be traversed in one direction (i.e., from j to i, but not from i to j),

and undirected networks, in which each edge can be traversed in both directions. A

directed network may contain edges from both j to i and from i to j, but in this

case the two are considered distinct edges, whereas they are considered a single edge

in an undirected network. When there is an edge from j to i, j will be called an

input node of i and i an output node of j. The set of edges in either directed and
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undirected networks may be described by an adjacency matrix A, where Aij = 1 if

there is an edge from j to i, and Aij = 0 if there is not. Note that I am using the

convention that Aij refers to the edge to node i from node j, which will be more

convenient for writing sums over a node’s inputs.

One of the most important characteristics of a network node is its degree,

which is the number of edges to which it is connected. In an undirected network,

the degree of a node i is a non-negative integer di. The degree is related to the

adjacency matrix by di =
∑

j Aij =
∑

j Aji. For directed networks, however, there

are two distinct concepts of the degree of i. First, there is the number of edges

from other nodes j to i, called the in-degree of i and denoted din
i =

∑
j Aij. Second,

there is the number of edges from i to other nodes j, called the out-degree of i and

denoted dout
i =

∑
j Aji. The degree of a node is frequently related to its importance

in the structure of the network.

In fact, two of the most important properties of a network are its average

degree, which will be denoted z, and its degree distribution, which will be denoted

akl for directed networks or ak for undirected networks. In directed networks, it

is important to note that each edge contributes to the in-degree of one node and

the out-degree of another, so the respective totals of the in- and out-degrees in the

network must be equal. Therefore, the average degree z for a given directed network

can be defined as

z = 〈di〉 =
1

N

∑
i

din
i =

1

N

∑
i

dout
i =

E

N
, (1.1)

where di in 〈di〉 could refer to either din
i or dout

i . In an undirected network, the
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average degree is given by z = 2E/N , because each edge contributes to the degrees

of two nodes rather than one.

The degree distribution akl is defined as the fraction of nodes i whose degrees

are din
i = k and dout

i = l. That is,

akl =
1

N

∑
i

δk,dini δl,douti
, (1.2)

where δ is the Kronecker delta. It is important to note that for any distribution akl,

the normalization and mean must obey

∑
k,l

akl = 1, (1.3a)

∑
k,l

kakl =
∑
k,l

lakl = z. (1.3b)

Similar relations hold for undirected networks. For directed networks, it is also

convenient to define the marginal distributions

ain
k =

∑
l

akl, (1.4a)

aout
l =

∑
k

akl. (1.4b)

A degree distribution akl is said to be uncorrelated if akl = ain
k a

out
l .

Empirical networks have been found to exhibit a wide variety of degree dis-

tributions, which are often believed to be related to the function, development, or

dynamics of the network [4]. Three important examples which will be used in subse-

quent chapters are homogeneous (or regular), Poisson, and power-law (or scale-free)

distributions. In an undirected network, these are respectively given by the distribu-

tions ak = δk,K for some integer K, ak = zke−z/k!, and ak ∝ k−γ for some exponent
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γ. For directed networks, the joint distribution may have a take complicated form

if there are degree correlations, but in many examples, the marginal distributions

ain
k and aout

l follow the same forms.

From here forward, I will restrict discussion to sparse networks, in which the

number of nodesN in the network is large (N � 1), but the average degree z remains

finite (i.e., E is on the order of N , rather than N2). The assumption of large N

allows for the application of concepts and techniques from probability theory and

statistical physics, which hold exactly in the thermodynamic limit, N → ∞. The

assumption that z is finite is both appropriate and necessary for the applications

studied in the following chapters.

1.2 Random and complex networks

Random networks are a class of models for generating networks by assigning

edges to randomly selected nodes. Random networks are useful for a variety of

applications, most notably that they provide a null model against which empirical

data for large, sparse networks can be compared. Below, two well-known approaches

to generating random networks are described, focusing on the case where the network

is directed.

The prototypical random network model is the Erdős-Rényi model [5, 6], in

which each pair of nodes i and j is assigned an edge with probability z/N , where

z is now considered a parameter of the model. Since the existence of each edge

in an Erdős-Rényi network is independent, such networks may also be generated
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through a growth process in which one edge is added at a time between randomly

selected pairs of nodes until the average degree is z. This perspective is adopted

in Chapter 2, where this growth process is compared to other recently introduced

network growth processes.

This model has been widely studied due to its simplicity (there is only one pa-

rameter, and all nodes are treated identically), as well as the fact that it undergoes

a percolation phase transition (described in more detail in Section 1.4). However,

the degree distribution of an Erdős-Rényi network is known to approach a Poisson

distribution for large N , which severely limits the range of systems which can be

modeled by Erdős-Rényi networks. In order to create random networks with more

general degree distributions, the Erdős-Rényi model must be generalized. The sim-

plest such generalization is the configuration model [4], in which an arbitrary degree

distribution akl can be chosen, subject to the constraints in Eq. (1.3). Initially it is

imagined that each of the E edges in the network is broken into an incoming half

and an outgoing half. Each node i is then randomly assigned din
i = k and dout

i = l

with probability akl, and it is imagined that node i is then attached to din
i incoming

halves and dout
i outgoing halves. One by one, pairs of randomly selected incoming

and outgoing halves are selected and joined to create whole edges, until all halves

have been matched. In some cases, matching is impossible, but these cases can be

handled through suitable re-sampling.

While random networks are an invaluable theoretical tool, a considerable num-

ber of studies over the past two decades have demonstrated that a variety of empir-

ical social, biological, and technological networks contain structural features which
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are absent in random networks. Networks with such features are typically called

complex networks. Numerous complex features have been studied—see Ref. [4] for

a review—but some of the most commonly studied cases are clustering, motifs,

community structure, and assortative mixing. Clustering is common in friendship

networks, and in this context it refers to the fact that two of an individual’s friends

have a significant probability of being friends with one another, whereas in large ran-

dom networks this probability would be close to 0. Motifs are small sub-networks

which appear frequently in a given network, and community structure is when a

network contains groups of nodes which preferentially connect to other members of

their own group rather than members of other groups.

Assortative mixing is a complex network feature whose effects will be studied

in detail in Chapter 3. Assortative mixing is a general concept which refers to

networks where edges preferentially form between nodes which have similar values

of some characteristic feature [7]; this naturally subsumes community structure as

well as other types of network structure. Here, the focus is on a particular type of

assortative mixing by degree called edge degree correlation. In subsequent chapters,

a network will be said to be assortative if, in the set of all edges from j to i, there

is a positive correlation between din
j and dout

i . This can be quantified using the edge

degree correlation measure ρ described in Ref. [8]. In the case of networks whose

degree distribution is uncorrelated, ρ can be expressed as

ρ =

∑
i,j Aijd

out
i din

j

E
. (1.5)

If dout
i and din

j are uncorrelated for edges from j to i, as in a random network, then
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ρ = 1; otherwise, positive (negative) correlations between these degrees lead to ρ > 1

(ρ < 1) [8].

In general, for complex networks, the adjacency matrix A contains significant

information about the structure which is absent in the degree sequence akl. To

some extent, this information can be quantified using measures of features such as

community structure and assortativity. However, it is reasonable to expect that

empirical networks may, for a variety of reasons, contain complex features which are

not known and have not been explicitly studied in the literature. This is one major

motivation for the work described in Chapters 3 and 4, which relies directly on the

adjacency matrix rather than any proxy such as the degree distribution.

1.3 Phase transitions

A phase transition is a macroscopic change in the behavior of an infinite system

which occurs when an external tuning parameter P passes through a critical point

Pc. The behavior of the system is measured through an order parameter O. Often,

several tuning parameters can be used to produce a phase transition in the same

system, and the choice of order parameter is not necessarily unique.

Modern treatments generally divide phase transitions into two types, discon-

tinuous and continuous, based on the continuity of O(P ) at the point P = Pc [9].

These are also called first-order and higher-order phase transitions for historical rea-

sons. A typical example of a discontinuous phase transition is the boiling of water,

in which P could be the temperature and O could be the volume of the water, which

8



Pc P

O

Figure 1.1: The order parameter O of a continuous phase transition as the tuning

parameter P is varied (see Section 1.3). In this example, β = 1 because O(P ) is

linear to the right of P = Pc. For Erdős-Rényi percolation (Section 1.4), one may

use P = z, Pc = 1, and O = SGC. For the stability phase transition in biased N -K

Boolean networks (Section 1.6), one may use P = 2b(1− b)K, Pc = 1, and O = Y .

changes discontinuously at the boiling temperature. In continuous phase transitions,

such as the emergence of magnetization or superconductivity, the order parameter

is continuous, but typically has a discontinuity in its derivative or in a higher-order

derivative. A typical continuous phase transition is depicted in Fig. 1.1.

Behavior near the critical point of a continuous phase transition can be char-

acterized by a set of critical exponents which describe the behavior of the order

parameter or other variables near P = Pc. In Chapter 2, considerable attention is

devoted to estimating the critical exponent β, which describes the scaling of O(P ),

defined by

O(P ) ∼ (P − Pc)
β (1.6)
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for P near but greater than Pc. Estimating β is one way to distinguish continu-

ous from discontinuous phase transitions, because β > 0 only in continuous phase

transitions, as discussed in Chapter 2.

It is now understood that true phase transitions can only occur when the free

energy becomes non-analytic, and therefore only happen in physical systems with

an infinite number of degrees of freedom [9]. However, large finite systems show

similar behavior to infinite systems, except that the critical point is often blurred

into a “critical region,” where significant discrepancies can be observed between the

finite and infinite cases. These discrepancies are known as finite size effects, and

they vanish as the system size approaches infinity. Such effects will be explored

quantitatively in Chapters 2 and 3.

1.4 Connected components and percolation

One elementary question which can be asked about a network node is the

size of the connected component to which it belongs. In undirected networks, the

concept of connectedness is unambiguous, and the network can be divided into

distinct connected components. However, in directed networks, it may be possible

to travel along network edges from j to i, but not from i to j. Thus, it is clear that in

directed networks, there must be several distinct concepts of connected components

[10]. First, there is the set of distinct nodes (including itself) which can be reached

on paths along network edges beginning at i. This is called the out-component of

i and is denoted OUT(i). Similarly, the set of nodes from which i can be reached

10



is called the in-component of i and is denoted IN(i). The intersection of these

two sets, nodes which can both reach and be reached from i, is called the strongly

connected component of i, SCC(i). Finally, I define the union of IN(i) and OUT(i)

to be the “bow-tie” BT(i) (see below); note that this last definition is non-standard.

For undirected networks, all four of these definitions coincide and correspond to

connected components.

The percolation phase transition may be motivated by asking what the average

size of the component of a randomly selected node is. Consider undirected Erdős-

Rényi networks with average degree z. When z < 1, the network consists of a

large number of isolated components, whose average size is finite. As z → 1, more

and more components merge, and the average size of the component of a randomly

selected node grows and diverges. Finally, when z > 1, there is a single connected

component, called the giant component (GC), which contains a macroscopic fraction

of the nodes in the network [10]. That is, for large finite networks N , the size of the

giant component scales as O(N); and for N → ∞, the giant component is infinite

and includes a finite fraction of the nodes in the network. This phase transition, in

which a giant component is formed, is known as percolation. In this case, z is the

tuning parameter for the phase transition, with zc = 1, and the order parameter is

given by the normalized size of the giant component,

SGC =
|GC|
N

, (1.7)

where |GC| denotes the number of nodes in the giant component. For N → ∞,

SGC = 0 when z ≤ 1 and SGC > 0 when z > 1. Moreover, for z > 1, SGC =

11



2(z − 1) + O((z − 1)2), indicating that the critical exponent β is equal to 1. This

phase transition is depicted in Fig. 1.1.

These results were independently discovered by Solomonoff and Rapoport [5]

and Erdős and Rényi [6] and later generalized by other authors [10, 11] to networks

with arbitrary degree distributions. They may also be generalized to cases where

either nodes or edges may be deleted from the network, which are known as site per-

colation and bond percolation, respectively. These generalizations require a longer

discussion which appears in Chapter 3. The generalization to directed Erdős-Rényi

networks is, however, fairly straightforward. The only necessary complication is

that, as discussed above, there are several alternative concepts of connectedness in

directed networks. Because of this, there are also several types of giant compo-

nents, corresponding to each of the types of connected components: the giant out-

component (GOUT), the giant in-component (GIN), the giant strongly connected

component (GSCC), and the giant bow-tie (GBT). The relationships between these

four are summarized in the well-known “bow-tie” diagram, Fig. 1.2 [12]. As order

parameters, one can define SGIN, SGOUT, SGSCC, and SGBT in analogy with Eq. (1.7).

It can be shown that all four giant components emerge simultaneously, so the critical

point, which is also zc = 1 for directed networks, is well-defined. In fact, all of the

results of the preceding discussion of the giant component of an undirected network

carry over in a straightforward fashion to GIN and GOUT [10]. The only notable

difference is that, for the GSCC, the critical exponent β is equal to 2 rather than 1.
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Giant Strongly 
Connected Component 

(GSCC)

Giant in-component (GIN)

Giant out-component (GOUT)

Figure 1.2: An illustration of the “bow-tie” structure of the giant component in a

directed network above the percolation threshold [12]. The whole figure comprises

the giant bow-tie (GBT), and the GOUT, GIN, and GSCC are marked. See text of

Section 1.4 for details.

1.5 Boolean networks

Here, I introduce the second major topic of this thesis, the dynamics of Boolean

networks, to be studied in Chapters 3 and 4. Boolean networks have been a promi-

nent tool for modeling genetic regulation in cells since their introduction by in 1969

[13, 14]. Genetic regulation refers to mechanisms by which the expression of genes

in a cell are controlled by other biochemical elements in the cell. The expression of

a gene refers to the cellular concentration of the mRNA sequence encoded by that

gene, which can, for example, be modified by proteins which encourage or inhibit

transcription. These proteins, in turn, may be encoded by other genes which have

regulatory functions. The network of human gene regulatory interactions is believed
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to be large (on the order of thousands of elements) and have complex topology. In

a Boolean network, each gene (or other relevant biochemical element) is modeled as

a node in a network, and its expression level is modeled as the state of the node.

Boolean modeling of gene regulatory systems relies on the approximation that each

node can be modeled as having one of two expression levels, which are denoted 0

(“off”) or 1 (“on”).

Formally, a Boolean network is a dynamical system consisting of a directed

network and a fixed update rule Fi for each node i. In the network, each edge from

j to i represents the existence of a regulatory interaction where j regulates i. Each

update rule Fi specifies the regulatory relationship between i and its inputs. That

is, Fi is a Boolean-valued function which depends only upon i’s network inputs.

Each Fi may be specified in the form of a “truth table” which lists each of the 2d
in
i

possible combined input states and gives the corresponding output (see Fig. 1.3).

In Boolean network models, time is typically taken in discrete steps (t =

0, 1, 2 . . . ) and the states of nodes are updated synchronously (though asynchronous

variations are also considered in Chapter 4). The dynamics are defined as follows.

Consider a node i which has din
i network inputs with indices j1 . . . jdini . The state of

node i, xi(t), evolves in time according to

xi(t+ 1) = Fi

(
xj1(t), . . . , xjdin

i

(t)
)
. (1.8)

A more convenient notation is to denote the ordered list of input states to node i

at time t as

Xi(t) =
(
xj1(t), . . . , xjdin

i

(t)
)
, (1.9)
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x1 x2 F3

0 0 0

0 1 0

1 0 0

1 1 1

(b) An update rule in truth table form

Figure 1.3: In the example network depicted in (a), node 3 has two network inputs,

whose states are x1 and x2. An example of one possible Boolean update rule F3 for

node 3 is shown in (b), expressed in its “truth table” form. The left-hand side of the

truth table lists all possible combined input states of x1 and x2, and the right-hand

side lists the associated output F3.

which is called a combined input state for i. In this notation, Eq. (1.8) may be

re-written as

xi(t+ 1) = Fi (Xi(t)) . (1.10)

The evolution of the state vector of the network x(t), starting from a specific initial

condition x(0), will be called an orbit or a trajectory of the network.

When modeling real gene regulatory systems, both the network edges and the

update rules should be determined experimentally. However, when investigating the

dynamics of the model, they can be chosen arbitrarily, and a variety of ensembles

of network topologies and update rules have been studied in the literature. One

recurring example will be the original system studied by Stuart Kauffman, who

originally introduced Boolean networks [13, 15]. He studied random networks in
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which each node has K inputs randomly selected from among the (N − 1) other

nodes, which are frequently called N -K networks. For update rules, he randomly

assigned an output value of 0 or 1 to Fi(Xi), with probability 1/2, for each combined

input state Xi. (Note that these update rules Fi are only initially assigned randomly

and are fixed afterwards; they do not depend on t.) This procedure was later

generalized by Derrida and Pomeau, who introduced a bias parameter b (0 < b < 1)

and generated update rules for which each Fi(Xi) was randomly assigned the value

1 with probability b and 0 with probability (1− b). Such update functions are called

biased functions and are widely studied in the Boolean networks literature.

1.6 Stability of Boolean networks

One important question about any dynamical system is whether or not it is

stable, i.e., whether or not small perturbations of a typical initial state tend to

grow or shrink as the system evolves. While studying ensembles of N -K Boolean

networks with biased update rules, Kauffman found numerically that as the in-degree

K increases, there is a phase transition between a phase in which the dynamics are

stable to one in which they are unstable. This unstable phase is often called chaotic,

because its dynamics mimic some of the well-known properties of chaotic systems,

including exponential sensitivity to initial conditions.

The standard order parameter for this stability phase transition is the average

long-time normalized Hamming distance between two close initial conditions, defined

as follows. Consider two trajectories, x(t) and x̃(t), which evolve on the same
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Boolean network. Assume that N � 1 and that the initial conditions x(0) and x̃(0)

are “close” in the sense that they differ only on a small fraction ε of nodes. Then the

normalized Hamming distance between these two orbits is defined as the fraction of

the nodal states that differ between them,

H (x(t), x̃(t)) =
1

N

N∑
i=1

|xi(t)− x̃i(t)| . (1.11)

Therefore, H(x(0), x̃(0)) = ε� 1. If H(x(t), x̃(t)) decreases to zero as the dynamics

evolve under Eq. (1.10), the system is considered to be stable; if it typically grows to

O(1), the system is considered to be unstable. More specifically, the order parameter

Y is defined to be

Y = 〈H (x(t), x̃(t))〉t, i.c. , (1.12)

where the average 〈·〉t, i.c. is taken over times t = 0 to t = ∞ and over all initial

conditions for which H = ε at t = 0.

There are a variety of choices for the tuning parameter, depending on the

parameters used to determine the network topology and update rules. Given the

standard example of N -K networks using biased update rules with bias probability

b, the quantity 2b(1 − b)K can be used as a tuning parameter, with critical value

1. This is derived in Chapter 3, where it is shown that for this case (as well as a

number of others), the stability phase transition can be mapped onto an associated

percolation problem. See Fig. 1.1 for a visual depiction of the transition.

One motivation for considering the question of stability is that it may have

important ramifications for biological systems which can be modeled by Boolean net-

works, including gene regulation and neuronal avalanches [16]. In the case of gene
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regulatory networks, Kauffman introduced a long-standing hypothesis that gene reg-

ulatory networks exist near the critical border separating the stable and unstable

regimes, known as the “life at the edge of chaos” hypothesis [15]. Recently, Pomer-

ance et al. [17] introduced the additional hypothesis that orbital stability of the gene

regulatory system may be causally related to cancer. Specifically, they suggested

that mutations that promote instability—causing the gene regulatory network to

move closer to, or across, the edge of chaos—may be a contributing factor for some

types of cancers. This hypothesis is consistent with recent results which indicate

that a distinguishing feature of cancer cells is extreme variation in gene expression

levels [18]. Although biological aspects of this hypothesis are not explored further

here, this hypothesis does motivate the treatment of possible intervention strategies

for stabilizing unstable networks in Chapter 4.
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Chapter 2: Weakly explosive percolation in directed networks

2.1 Introduction

In this chapter, I explore the properties of a new category of percolation pro-

cesses with unusually rapid growth of the giant component, known as “explosive

percolation.” These processes have recently been studied on undirected networks,

but here they are generalized to directed networks, based on work published in

Ref. [1]. As described in Section 1.4, a large directed or undirected network may

transition from a non-percolating phase, in which every connected component is

microscopic, to a percolating phase, in which there is a single “giant” component

which contains a macroscopic fraction of the nodes in the network, as edges are

added to the network [10]. The fraction of nodes in the giant component is the

order parameter for the percolation phase transition.

The network growth process studied by Erdős and Rényi, now the prototypical

example of network percolation, may be characterized as follows for the undirected

case. The network initially consists of N � 1 nodes and no edges. Then, on each

successive step of the growth process, a pair of nodes is selected randomly and an

edge is added between them. The size of the largest connected component is recorded

and the process is repeated. The percolation phase transition for networks grown in
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this manner is continuous (or second-order) in the number of edges in the network.

However, recent work by Achlioptas et al. demonstrated that simple modifications to

this growth algorithm can induce surprisingly different behavior in the growth of the

giant component [19]. In particular, they found that introducing “edge competition”

during network growth results in a delayed, seemingly discontinuous (or first-order)

transition, which has been called explosive percolation.

The network growth process proposed by Achlioptas et al. is designed to inhibit

the formation of large connected components. At each step, two random candidate

edges are considered, with the intention of selecting only one of them for addition

to the network. If one of the edges connects two nodes in the same component, it

is selected automatically because its addition would not cause any component to

grow. If the addition of either edge would connect two distinct components, the

product of the sizes of these two components is compared, and only the edge with

the smaller product is added to the network.1

Networks grown in this fashion percolate much later than Erdős-Rényi net-

works; however, when a giant component eventually forms, it grows extremely

rapidly. Based on numerical simulations, Achlioptas et al. conjectured that the

phase transition is discontinuous, but it has now been shown that the Achlioptas

process actually produces a continuous transition [20–23]. The abrupt growth ob-

served in numerical experiments is due to a small but positive critical exponent for

the growth of the order parameter, along with strong finite-size effects which dimin-

ish only very slowly as N → ∞. In spite of this, the Achlioptas process continues

to attract considerable interest because, at network sizes that are typical in applica-
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Figure 2.1: The growth of SGC, the fraction of nodes in the giant component of an

undirected network, for three individual networks with N = 223. The growth pro-

cess is repeated using the Erdős-Rényi growth process (red), the Achlioptas process

(blue), and a modified Achlioptas process in which three candidate edges, rather

than two, are used at each network growth step (green).

tions, these finite-size effects give the percolation phase transition an “effectively”

discontinuous appearance that is qualitatively different from that of traditional per-

colation problems (see Fig. 2.1). It has also spurred interest in other models which

exhibit abrupt phase transitions, including Kuramoto [24] and Ising [25] models, as

well as other modified percolation processes [26–34], many of which are believed to

exhibit genuine discontinuous transitions.

As the existing literature on explosive percolation is exclusively focused on

undirected networks, this chapter introduces a growth process which generalizes the
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Achlioptas to directed networks. The scaling properties of this process are stud-

ied, and it is found that competitive edge percolation on directed networks shares

some of the unusual qualitative features of the Achlioptas process on undirected

networks (discussed further in Section 2.3). For the purposes of this chapter, these

features—those which distinguish the Achlioptas process from both ordinary perco-

lation as well as truly discontinuous models—will be referred to as “explosive,” and

the behavior of the directed model introduced below as “weakly explosive.” This

terminology is discussed further in Section 2.3.

2.2 The directed competition process

In order to define an Achlioptas-like process on directed networks, one first

needs to define connected components in directed networks. As discussed in Section

1.4, there are multiple related definitions of the component to which a node i in a

directed network belongs: (1) the in-component, IN(i), the set of all nodes which

have paths to i; (2) the out-component, OUT(i), the set of all nodes which can be

reached from i; (3) the strongly connected component, SCC(i), the intersection of

IN(i) and OUT(i); and (4) the full bow-tie, BT(i), the union of IN(i) and OUT(i).2

This comparison extends to the percolation transition in the directed Erdős-Rényi

process, in which directed edges are successively added between randomly selected,

unconnected pairs of nodes. At the critical point, a giant strongly connected compo-

nent (GSCC), giant in-component (GIN), and giant out-component (GOUT) form

simultaneously [10], comprising the giant bow-tie (GBT). This is illustrated in the
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well-known “bow-tie diagram” (Fig. 1.2) [12].

The new directed network growth process introduced here will be called the

directed competition process (DCP) to distinguish it from the Achlioptas process

(AP), the Erdős-Rényi process (ER), and the directed Erdős-Rényi process (DER).

It also consists of repeatedly choosing two random directed candidate edges j1 →

i1 and j2 → i2 from the set of all distinct unoccupied edges, then selecting one

for addition to the network. As in the Achlioptas process, one of the edges is

automatically selected if that edge is redundant to the connectedness of the network,

i.e., if there is already a path from j to i. Otherwise, the edge which has the minimum

value of |IN(j)| · |OUT(i)| is chosen. Here, the vertical bars denote cardinality, so

|IN(j)| refers to the number of nodes in IN(j). As in Refs. [35, 36], I also discuss

generalizations of both AP and DCP in which m (rather than two) edges are chosen

for consideration at each step in the growth process, and results will be shown for

both m = 2 and m = 3. Note that the m = 1 case of AP corresponds to ER, and the

m = 1 case of DCP corresponds to DER. Also, note that DCP is a generalization of

AP, because the two processes are identical when applied to an undirected network.

The DCP edge selection rule may also be motivated by noting that it minimizes

the “throughput” which is created by the addition of each edge in a way which is

analogous to the Achlioptas product rule. More formally, let Bij indicate whether

or not there is a path from j to i, i.e., Bij = 1 if there is such a path and Bij = 0

if there is not. The throughput of the network can be defined as B̄ = 〈B〉, where

the average is taken over all node pairs i and j (i 6= j). Well below the percolation

threshold, when there are few paths from nodes in IN(j) to nodes in OUT(i), adding
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an edge from j to i on average increases B̄ by approximately |IN(j)| · |OUT(i)|/N2.

Similarly, in the Achlioptas process for an undirected network, the change in B̄

from the addition of a single edge to a network well below the percolation threshold

is approximately 2|C(i)| · |C(j)|/N2, where C(i) and C(j) are the components to

which i and j belong. Thus, both rules may be construed as minimizing B̄ early in

the network growth process. This, in turn, leads to an explosive phase transition

by creating what has been termed a “powder keg” [37] of mesoscopic components

which “ignites” at the critical point, when edge competition can no longer prevent

them from merging.

The normalized size SGC of a giant component,

SGC =
|GC|
N

, (2.1)

is used as the order parameter for the phase transition, where, for directed networks,

GC may also be replaced with GIN, GOUT, GSCC, or GBT. Numerically, the GSCC

is considered to be the largest strongly connected component in the network, the

GIN and GOUT to be its in- and out-components, and the GBT to be the union of

the two.3 The average degree of the network, z, will be used as a tuning parameter.

For undirected networks, z = 2E/N , whereas for directed networks, z = E/N (see

Section 1.1). Note that, for undirected networks, the use of z as the tuning parameter

differs slightly from the usual convention of using E/N as a tuning parameter. The

use of the average degree is motivated by the observation that both undirected and

directed Erdős-Rényi networks percolate at the same average degree (zc = 1), so z

is a natural scale for comparison between the directed and undirected cases.
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Computationally, percolation simulations are more time-intensive for directed

networks than undirected networks. While only O(N) operations are needed to

simulate an entire network growth process in an undirected network [38], a näıve

algorithm for competitive edge percolation in a directed network would require at

least O(N2) operations, because there are O(N) edge additions, between each of

which several processes with up to O(N) steps must occur. These processes include

checking for a path from j to i for each prospective edge j → i, finding IN(j) and

OUT(i), and decomposing the network into strongly connected components [39]. In

order to improve computational performance, each part of the giant component is

tracked during the network growth process, and this knowledge is used to speed up

or eliminate the first two processes. For example, if j is in GIN and i is in GOUT,

checking for a path from j to i is unnecessary because one must exist. Additionally,

results are only reported for the giant component, not the distribution of other

component sizes, to avoid the third process. The performance of this algorithm

scales approximately as O(N1.5), where most of the time is spent in the critical

region where more than one macroscopic or near-macroscopic component exists.

This improvement enables the simulation of networks with significantly larger N

than would otherwise be feasible.

2.3 Results

Plots of the order parameters versus z for single realizations of DER (red) and

DCP with m = 2 (blue) or m = 3 (green) are shown in Fig. 2.2 for N = 1023. Panels
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Figure 2.2: The formation of the giant component in directed networks; see text.
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(a), (b), and (c) show the emergence of the giant strongly connected component,

giant out-component, and giant bow-tie, respectively. When edge competition is

present, the emergence of all four parts of the giant component are delayed, and the

GOUT and GBT display sudden growth at the critical point which is qualitatively

similar to (though less marked than) that of the Achlioptas process (Fig. 2.1). By

symmetry, results for GIN are the same as those for GOUT and are not displayed.

Quantitative comparisons between DCP and AP can be made by examining

several scaling exponents which characterize the features of explosive percolation

[21–23, 40, 41]. In fact, the Achlioptas process is striking precisely because these

exponents are small, but it is continuous because they are nonzero. These critical

exponents are listed in Table 2.1 for all processes studied here.

The first quantitative measure studied here is the critical exponent β, defined

by

〈S〉 ∼ (z − zc)
β (2.2)

as z → zc from above, for networks in the thermodynamic limit N → ∞. The

average 〈·〉 is taken over the ensemble of grown networks. Clearly, β > 0 indicates

a continuous transition, and it has been observed that 0 < β � 1 for AP [21, 22].

The next reported exponent is κ, defined by

〈max(∆S)〉 ∼ N−κ, (2.3)

where max(∆S) is the largest jump in S upon the addition of a single edge during

a network growth process. In a discontinuous phase transition, the maximum jump

would approach a nonzero constant as N →∞, corresponding to κ = 0, but κ has
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Growth Rule zc φ Cpt. β κ ξ

m = 1 ER 1 1/3 GC 1 0.328(7) 0.30(9)

DER 1 1/3 GOUT 1 0.329(3) 0.31(9)

GSCC 2 0.64(7) 0.50(5)

m = 2 AP 1.7769(8) 0.5(0) GC 0.0861(5) 0.0645(5) ——

DCP 2.565(9) 0.44(1) GOUT 0.34(5) 0.14(1) 0.12(9)

GSCC 1.2(9) 0.55(8) 0.53(3)

m = 3 AP 1.92(9) 0.50(1) GC 0.03(0) 0.020(7) ——

DCP 4.86(1) 0.42(7) GOUT 0.30(0) 0.10(5) 0.09(3)

GSCC 1.(4) 0.40(7) 0.4(9)

Table 2.1: Critical exponents for each process (see text). For ER and DER, zc, φ,

and β are well-known exact results (see, for example, [6] and [7]). For AP with

m = 2, values of zc, φ, and β are reproduced from [21] and κ from [40]; refer to

[21] for additional comments about the interpretation of φ. All other exponents

listed above are derived from numerical simulations, as described below. Due to

symmetry, results for GIN are identical to those for GOUT, and results for GBT

are not listed because, in most cases, they are similar to those for GOUT.
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also been observed to be small and positive for AP [23, 40].

Finally, this work introduces a third scaling exponent ξ, defined by

max
z

(Var[S]) ∼ N−ξ (2.4)

for sufficiently large N . This is motivated by the observation in Ref. [21] that, for

the Achlioptas process, the maximum variance of SGC initially increases as N grows,

then begins to decrease very slowly only when N is extremely large. This is related

to other unusual finite-size effects in AP; see Ref. [21] for a thorough discussion. In

a continuous transition, one expects that Var[S]→ 0 for all z in the thermodynamic

limit, so ξ > 0. Moreover, a small value of ξ indicates that for finite N , there may

be large changes in S near the critical point.

These observations suggest the use of the following descriptions for the critical

behavior of percolation models for large but finite networks. However, I emphasize

that these categories are merely useful heuristics for describing qualitative behavior,

rather than precise definitions.

• Discontinuous: Cases in which β = 0, κ = 0, and ξ = 0.

• Explosive: Cases in which 0 < β � 1, 0 < κ� 1, and 0 < ξ � 1.

• Weakly explosive: Intermediate cases which cannot be clearly designated as

either “explosive” or “ordinary.”

• Ordinary: Cases in which β is on the order of 1 and κ and ξ are not small.

(In practice, a natural standard for comparison is ER, in which both κ and ξ

are approximately 1/3.)
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In order to avoid confusion, I note that this terminology is not directly related to the

language of [23], which distinguishes between “strongly” and “weakly” discontinuous

transitions.4

Numerical estimation of both κ and ξ may be obtained by a straightforward

fit of simulation data to the scaling laws Eqs. (2.3) and (2.4). This is illustrated

in Figs. 2.3 and 2.4. In Figure 2.3, the scaling for (a) the GSCC (diamonds), (b)

the GOUT (squares), and (c) the GBT (triangles) are compared in each panel to

the results for undirected networks (circles). Figure 2.4 shows the scaling of the

largest variance in (a) SGC (circles) and (b) SGOUT (squares) with N . In both cases,

ER and DER (red) are compared to AP and DCP with m = 2 (blue) and m = 3

(green). Both figures use a simulation data set in which each point is averaged over

many network growth trials (50 to 10, 000, depending on m and N). Error bars

(one standard deviation of the mean) are smaller than the point size except where

shown. Solid lines are power-law fits, whose slopes are given as κ and ξ, respectively,

in Table 2.1. On the other hand, the dashed lines in Fig. 2.4 merely connect the

data points to guide the eye of the reader. No attempt is made to fit the maximum

variance of SGC to Eq. (2.4) because of the unusual finite-size behavior of AP noted

above, in which the variance first increases and then slowly decreases.

Estimating the critical exponent β, as well as the critical point zc, is more

difficult than estimating κ and ξ. However, this may be accomplished by analyzing

the finite-size scaling properties of the system. Finite-size effects in a continuous

phase transition are important in a “critical region” in which the correlation length

of the system, which diverges at the critical point, is comparable to or greater than
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the system size. In the present case, the critical region scales asymptotically as N−φ,

so the order parameter S is hypothesized to obey the finite-size scaling relation

〈S〉 = (z − zc)
βg
(
Nφ(z − zc)

)
, (2.5)

where g is a universal scaling function [21, 42]. The function g(w) has the properties

that limw→−∞ g(w) = 0 and limw→∞ g(w) exists and is positive, so that as N →∞,

Eq. (2.2) holds for z slightly over zc, and 〈S〉 = 0 for z < zc. The scaling function

g(w) also has a pole at w = 0, where g(w) ∼ w−β, which is necessary so that, at

finite N , 〈S〉 may be nonzero at z = zc, while 〈S〉 is nonetheless analytic for all z.

Equation (2.5) may be written in the equivalent form

〈S〉 = N−βφh
(
Nφ(z − zc)

)
, (2.6)

by defining another universal scaling function h(w) = wβg(w) to remove the singu-

larity at w = 0 [41, 42]. Equation (2.6) may be interpreted by saying that plots

of 〈S〉 versus w = Nφ(z − zc) for various large values of N will all collapse, when

appropriately scaled, onto h(w), when w is near 0 (i.e., z ≈ zc). The parameters β,

φ, and zc are chosen to optimize this data collapse; see Fig. 2.5. Specifically, β, φ,

and zc are chosen to minimize the function

V (β, φ, zc) =
1

∆w

∫ ∆w

−∆w

VarN
[
Nβφ〈S(w,N)〉

]
dw, (2.7)

which is zero when the data collapse perfectly onto a single curve. For further

details, see Ref. [42]. Since there is no straightforward way to estimate the range

of validity of Eq. (2.6), which also depends on N , ∆w is treated as an external
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parameter in Eq. (2.7) and ∆w is chosen to give the smallest minimum in V . For

all values of m and all components in Table 2.1, ∆w was between 1 and 3.

The results in Table 2.1 summarize the important features of DCP and how

they relate to both DER (the analogous non-explosive case) and AP (the analogous

undirected case). For the GSCC, β and κ are lower in DCP than in DER, but are

not small enough to lead to interesting behavior; therefore, I will focus on GOUT

from here forward. It is clear that β and κ are significantly smaller in DCP than

in DER, but not nearly as small as in AP. This provides quantitative support for

the characterization of DCP as weakly explosive, in contrast to both the explosive

behavior of AP and the ordinary behavior of DER. It is clear that DCP belongs

somewhere between these two previously-studied regimes.

Several other features of Table 2.1 are worth noting. For example, in the

Achlioptas process, β and κ change quite significantly when m is changed from

2 to 3, but the corresponding changes for DCP are comparatively small. This

suggests again that the amount of edge competition has a more pronounced effect

on the critical behavior of undirected networks than directed networks. However, the

opposite is true of the critical point zc, which, for successive values of m, increases

by a much greater factor for directed networks than for undirected networks. If

one views the purpose of edge competition as delaying the formation of a giant

component rather than producing an explosive transition, then this goal is better

achieved by DCP than by AP.

Finally, in Fig. 2.4, it can be seen that DCP lacks some of the unusual scal-

ing behavior observed for AP in Ref. [21]. Although the values of ξ for the giant
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out-component in DCP are smaller than those for DER, again indicating weakly

explosive behavior, it is nonetheless clear that they are positive. In AP, a much

more detailed analysis is required to show that Var[S] eventually approaches 0 for

all z as N → ∞ [21], so a value for ξ in AP is not reported here.5 However, the

qualitative differences between AP and DCP are quite clear.

2.4 Discussion

This chapter shows that an extension of the Achlioptas process to directed

networks exhibits critical behavior which is, in many respects, partway between

classical percolation and explosive percolation, and has been termed weakly explo-

sive percolation here. This has several interesting ramifications for future research

on controlling or modifying percolation phase transitions. One fundamental open

question is how general the phenomenon of explosive percolation is, and whether the

explosiveness of a percolation process can be predicted in a relatively straightfor-

ward way. From the perspective of classical percolation, the primary distinguishing

features of the Achlioptas network growth process are that it is irreversible [22] and

uses nonlocal information [21]; however, there are clearly such processes which are

not explosive (see, for example, [43]). The strong explosiveness of the Achlioptas

process may be contingent on several factors, and the present work suggests that

the use of undirected networks is one of these factors.

Another avenue for further research is the possibility of tailoring percolation

transitions with particular features. For example, different growth rules may create
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different complex network structures. In Figure 2.2, nearly all network nodes have

joined the giant bow-tie soon after the critical point, but this is not true of the giant

in- or out-components until z is quite large.6 While it is beyond the scope of this

chapter to investigate this feature, it suggests that there is additional interesting

structure in networks grown through the directed competition process which cannot

exist in undirected networks. More importantly, it may be possible to control the

critical point and the critical behavior of the giant component by using a mix of di-

rected and undirected edges in the network growth process. Because the Achlioptas

process produces a more explosive transition, but the directed competition process

delays the onset of criticality for longer, this may produce some degree of control for

both features. Along with the above results, this suggests that further study of com-

petitive percolation processes on directed networks will widen the known repertoire

of percolation behavior in fascinating ways.

Notes for Chapter 2

1Achlioptas et al. present another rule in which the sum, rather than the product, of the

component sizes are used. Since they found similar results for the two cases, I refer only to the

product rule.

2Note that the full bow-tie of i is not equivalent to the weakly connected component of i,

which is the component to which i would belong if all edges in the network were undirected. This

difference can be illustrated by a sample directed network of three nodes in which the edges are

1 → 2 and 3 → 2; node 3 is in the weakly connected component of node 1 but not in BT(1).

All percolation properties of weakly connected components on directed networks are equivalent to

those of components on undirected networks, so they are not studied here.
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3One consequence of this definition is that, while the size of the giant component in undirected

percolation must increase monotonically as edges are added, this is not always true here. Because

GIN, GOUT, and GBT are defined in terms of the GSCC, their sizes may decrease if, for example,

a strongly connected component with a relatively large GIN grows to overtake the GSCC and

becomes the new GSCC. These events are relatively rare but do occur.

4In Ref. [23], “strongly discontinuous” transitions have a jump discontinuity (β = 0, κ = 0)

and “weakly discontinuous” transitions are pointwise continuous but contain supralinear growth

(0 < β < 1, 0 < κ < 1). Here, the categorization between explosive and weakly explosive are used

instead, because the emphasis is on behavior which depends on how small the critical exponents

are, rather than whether or not they are nonzero.

5The exponent ξ is related to the exponent η+ considered in Ref. [21]. Comments in that work

suggest that ξ should have a value of approximately 0.04 for the m = 2 case, but an explicit value

is not reported there.

6In DER, one can show that SGBT = SGOUT(2− SGOUT) [10], but the behavior of SGOUT and

SGBT in Fig. 2.2 is quite different. Compared to DER, nodes in DCP are much more likely to be

in either GIN or GOUT but not in both (that is, not in the GSCC) when z is not too far above zc.
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Chapter 3: Dynamical instability in Boolean networks as a percola-

tion problem

3.1 Introduction

In this chapter, I discuss how the order parameter for the phase transition

in the dynamical stability of a Boolean network can be mapped onto the order

parameter for a related percolation phase transition [2]. One primary advantage of

this technique is that it is valid for, and can be used to make predictions for, specific

networks with complex topology. In contrast, previously existing techniques have

mostly focused on the average behavior of ensembles.

As discussed in Section 1.5, in a Boolean network, each node is assigned a

state, 0 or 1, which is synchronously updated at discrete time steps according to

a pre-assigned update function which depends on the states of that node’s inputs

on the previous time step. That is, each node i is assigned a state, xi(t) = 0 or

xi(t) = 1, at each discrete time step t, according to

xi(t+ 1) = Fi (Xi(t)) , (3.1)

where Fi is a Boolean function which depends on the combined state of the din
i
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inputs to node i,

Xi(t) =
(
xj1(t), . . . , xjdin

i

(t)
)
. (3.2)

One common choice of the functions Fi are biased functions, in which each output is

independently and randomly selected to be Fi(Xi) = 1 with some bias probability,

b. As discussed in Section 1.6, it is well-known that such networks undergo a phase

transition from stable to unstable dynamics. The order parameter for this phase

transition is Y , which is defined in Eq. (1.12) as the average normalized Hamming

distance between pairs of initially close trajectories x(t) and x̃(t).

A derivation of the critical in-degree was given by Derrida and Pomeau for

N -K networks using an “annealed approximation” [44], which is discussed in more

detail in Section 3.2.1. An “annealed” system is one in which the network edges

and update functions are randomly re-drawn between time steps, as opposed to the

original “quenched” system under study, in which the network and update rules

are fixed. Derrida and Pomeau hypothesized that for large networks the stability

properties of the annealed system are similar to those of a typical quenched sys-

tem. This hypothesis, called the “annealed approximation,” is well-supported by

numerical experiments [44, 45].

Recent work in Ref. [17] has extended this approach by using a partial ran-

domization, in which only the update functions (but not the network topology) are

randomly generated at each time step. In contrast with the annealed approxima-

tion, this “semi-annealed” approximation describes the dynamics on a fixed network

which may have nontrivial topological features such as edge assortativity [46], mo-
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tifs [47], and community structure [48]. The only necessary assumption is that the

network must satisfy a locally tree-like condition discussed in Section 3.3.1.

Some recent papers have derived stability properties of Boolean networks with-

out annealing [49, 50]. These papers are complementary to this work in the following

sense. Although rigorous, their results only apply to the ensemble average of random

networks with restrictions on their network topology and/or update functions. In

contrast, because these results rely on the semi-annealed approximation, they can

model the dynamics of a specific network.

Here, using a semi-annealed approach, the dynamical problem of stability on

a Boolean network is mapped onto the static problem of network percolation in

the N → ∞ limit. Previous authors have discussed the percolation properties of

the “frozen component” of N -K networks [51–53], and others have used percolation

to discuss the stability of N -K lattices [54, 55]. In contrast, this chapter shows

that a dynamic quantity, the long-time average Hamming distance between two

initially close trajectories on a Boolean network, can be mapped onto the size of

the giant out-component in a percolation problem. This map will be illustrated in

three different contexts. First, the well-known annealed approximation is mapped

onto site percolation in the configuration model for networks with biased update

rules in Section 3.2. Second, the semi-annealed approximation is similarly mapped

onto weighted site percolation for a given complex network in Sections 3.3.1-3.3.2.

Finally, another biologically interesting class of update rules—canalizing functions—

is treated by mapping to a correlated bond percolation problem in Section 3.3.3.
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3.2 Mapping the annealed approximation onto site percolation

3.2.1 The annealed approximation

Derrida and Pomeau’s original statement of the annealed approximation was

derived in the context of N -K networks with biased update rules [44]. In that

context, an annealed system is one in which between every time step of the dynamics,

each node is given K inputs selected randomly from among the (N −1) other nodes

in the network, along with a new biased update rule Fi using the bias probability

b. Note that, although the inputs and update rules are selected randomly, the same

sequence of inputs and update rules are used for both of the trajectories x(t) and

x̃(t) which are considered in the stability problem. The annealed approximation is

Derrida and Pomeau’s conjecture that, in the large N limit, the stability boundaries

for the quenched and annealed situations are approximately the same.

The stability of this case can be evaluated in the following way. First, define a

node i to be “damaged” at time t if xi(t) 6= x̃i(t), i.e., if its state differs on the original

and perturbed systems. (Note that the order parameter Y may be interpreted as

the average amount of damage in the steady state of the system.) Next, consider

the probability of damage spreading to a node i from one of its inputs j, that is,

Pr[xi(t+1) 6= x̃i(t+1)|xj(t) 6= x̃j(t)]. This quantity is typically called the sensitivity

associated with the bias b and is denoted q [56]. Since each output value of Fi is

determined randomly and independently, q is just the probability that Fi = 0 for

one set of inputs and Fi = 1 for another. This can occur in two ways, each with
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probability b(1− b), so

q = 2b(1− b). (3.3)

Because each node has K randomly selected inputs, one expects that, the number

of damaged nodes created by a single damaged node in the network is qK. When

this quantity is greater than 1, the number of damaged nodes in the network ini-

tially grows, indicating instability, so the critical boundary separating the stable

and unstable regimes is determined by qK = 1.

In this framework, the value of the order parameter Y can be predicted ana-

lytically in the following way [44]. A node will become damaged with probability

q if it at least one of its K inputs is damaged. Therefore, the average amount of

damage, Y , reaches a steady state when

Y = q
(
1− (1− Y )K

)
, (3.4)

which is straightforward to solve numerically. Nonzero solutions for Y occur only

when qK > 1, as expected.

Since its introduction, the annealing approach has been generalized in a num-

ber of ways to apply to systems with a distribution of in-degrees [57–61], joint

in-degree/out-degree distributions [62, 63], canalizing update rules [56, 64–67], and

threshold update rules [68–71]. This work focuses on the treatment of biased update

rules in networks specified by joint in-degree/out-degree distributions, where akl is

the probability that a node i has in-degree din
i = k and out-degree dout

i = l. For

simplicity, it is assumed that the bias of the update rules depends only on degree,

so the bias of such a node is bkl, with an associated sensitivity qkl = 2bkl(1 − bkl).
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An annealed system with a specified degree distribution means that each node is

assigned a degree, which is fixed, but its edges are re-drawn randomly from the set

of all configuration-model networks (see Section 1.2) between each time step.

In this scenario, Y can still be predicted analytically using a similar technique

as above, first derived in Ref. [62]. Let ψ denote the probability that a randomly

selected edge originates from a damaged node; this definition is necessary here,

but not in the case of N -K networks, because of the heterogeneity in the degree

distribution. A randomly selected edge originates from a node with k inputs and

l outputs with probability lakl
z

, where z is the average degree. A node will become

damaged with probability qkl if it has at least one damaged input, which occurs with

probability 1− (1− ψ)k. Therefore,

ψ =
∑
k,l

lakl
z
qkl

[
1− (1− ψ)k

]
, (3.5a)

Y =
∑
k,l

aklqkl

[
1− (1− ψ)k

]
. (3.5b)

In the stable regime, these equations only have the trivial solution ψ = 0 and Y = 0,

but there will be a nonzero solution in the unstable regime [62].

3.2.2 The map to site percolation for network ensembles

I now show that Eq. (3.5) can be mapped onto the generating function for-

malism for treating site percolation in directed configuration-model networks, as

developed in Refs. [10] and [72]. In this model, each node is deleted with some

probability which depends only on its degree. The resulting ensemble of site-deleted

networks exhibits a percolation phase transition similar to that of directed Erdős-
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Rényi networks, as described in Section 1.4. Above the percolation threshold, a

giant strongly connected component (GSCC) of mutually path-connected nodes

forms; this, along with all nodes that can be reached from it, is called the giant

out-component (GOUT). In this map, the probability that a node is not deleted

will be identified with the sensitivity. That is, qkl will stand for both the sensitiv-

ity and the non-deletion probability for a node with k inputs and l outputs. With

this identification, I will show that Y maps onto the expected fraction of nodes in

GOUT, SGOUT, which in this chapter is simply denoted S.

It is shown in Refs. [10] and [72] that S can be found as follows. The first step

is to define modified generating functions for the in-degrees of nodes and edges,

G0(w) =
∑
k,l

aklqklw
k, (3.6a)

G1(w) =
∑
k,l

lakl
z
qklw

k. (3.6b)

As above, the coefficient lakl
z

on terms in G1(w) is the probability that a randomly

selected edge originates from a node with in-degree k and out-degree l. Note that

while many generating functions are normalized so that G(1) = 1, in this case,

because of the qkl term, G0(1) < 1 and should be interpreted as the fraction of

nodes which are undeleted; similarly, G1(1) < 1 and should be interpreted as the

fraction of edges which originate at undeleted nodes.

A variety of percolation-related features may be derived using G0 and G1,

including the full distribution of component sizes [10, 72]. Below, only the size of

GOUT is derived. Let Γ be the probability that a randomly selected edge is not

in GOUT (i.e., its parent node is not in GOUT). A self-consistent equation for
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Γ may be obtained by noting that there are two cases in which an edge will not

be in GOUT. The first case is if it comes from a deleted node, which occurs with

probability 1−G1(1). The second is if its parent is an undeleted node with k inputs

(with probability
∑

l
lakl
z
qkl), all of which are not in the giant out-component (with

probability Γk). This results in Eq. (3.7). Similarly, a node is in GOUT if it is not

deleted and it is not true that all of its input edges are not in GOUT. Therefore,

Γ = 1−G1(1) +G1(Γ), (3.7)

S = G0(1)−G0(Γ). (3.8)

Once the mathematical and conceptual parallels between the derivations of

Eqs. (3.5) and (3.6-3.7) have been noted, it is straightforward to show that there

is a map between these two cases, which I give below. The spread of damage from

node to node in Boolean networks is similar to the transmission of the state of

“being in GOUT” from node to node in percolation. However, since damage only

spreads with a given probability qkl, the appropriate percolation process involves

site deletion, which prevents a node from being in GOUT. As long as the site non-

deletion probability is identified with the network sensitivity, then the substitutions

ψ = 1− Γ (3.9)

Y = S (3.10)

map Eq. (3.5) onto Eqs. (3.6-3.7). Therefore, the phase transition between dy-

namical stability and instability in this ensemble of random Boolean networks is

equivalent to the static percolation phase transition on a site-deleted network en-

semble.
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3.3 Mapping the semi-annealed approximation onto percolation

3.3.1 The semi-annealed approximation on locally tree-like networks

This section summarizes a more powerful stability analysis technique known

as semi-annealing, which was introduced and analyzed in Ref. [17]. For now, the

discussion is restricted to biased update rules, but these are generalized so that the

bias may be arbitrarily selected for each node, i.e., a different bias bi assigned to

each node i, with a corresponding sensitivity qi = 2bi(1− bi). In the semi-annealed

approximation, the network topology is considered to be fixed, but the update rules

Fi are randomly re-drawn between time steps.

In order to make the analysis of the semi-annealed system analytically tractable,

it is convenient to assume that any correlations between the states of two network

inputs j1 and j2 to the same node i are typically close to zero. This assumption is

supported by numerical simulations in cases where the network structure is locally

tree-like. Here, locally tree-like means that if two nodes j and i are connected by

a short directed path, it is very unlikely that there will exist a second such path.1

Almost all commonly studied Boolean networks are locally tree-like, including, for

example, all sparse random networks in the configuration model with large N [10].

In locally tree-like networks, the states of two inputs to a node are approximately

uncorrelated, because correlations arise when two nodes are both influenced by a

common ancestor. Analyses based on this approximation have been found to yield

accurate results, even in cases where the network contains significant clustering
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[73, 74] (including for Boolean networks [17]).

Reference [17] derived a damage-spreading condition for specific, complex,

locally tree-like Boolean networks with semi-annealed, biased update rules. This

derivation may be summarized as follows. First, yi(t) is defined to be the probability

that a node i is damaged at time t,

yi(t) = 〈|xi(t)− x̃i(t)|〉i.c., dyn. , (3.11)

where the average 〈·〉i.c.,dyn. is over all possible initial conditions with initial Ham-

ming distance ε (see Section 1.6) and all stochastic realizations of the semi-annealed

dynamics. The time evolution of yi(t) can be derived by a more sophisticated ver-

sion of the argument leading to Eq. (3.5). The conditional probability that a node

i will become damaged at a time t+ 1, given that it has at least one damaged input

at time t, is qi. Moreover, the probability that node i has a damaged input at time

t can be expressed using the values yj(t), assuming that the damage probabilities

are independent, as described above. Multiplying these gives yi(t). This can be

expressed most simply by introducing the notation Ji for the set of inputs to node

i, giving

yi(t+ 1) = qi

[
1−

∏
j∈Ji

(1− yj(t))
]
. (3.12)

The probability of any node being damaged in the initial conditions is ε, so the

time-evolution of y(t) can be found by solving Eq. (3.12) with initial conditions

yi(0) = ε.

Appendix 3.C argues that, in cases of interest, Eq. (3.12) approaches a single

unique stable fixed point as t→∞, representing the expected damage probabilities
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in the steady state of the system. Here these steady-state values are denoted by

dropping the time-dependence of yi. By Eq. (3.12), these must satisfy the consis-

tency conditions

yi = qi

[
1−

∏
j∈Ji

(1− yj)
]
. (3.13)

This is the analogue of Eq. (3.5) for a specific node in a complex network. Equation

3.13 defines a system of N equations and N unknowns which can, in practice, be

solved for yi simply by iterating Eq. (3.12) until convergence is achieved. Since

Y = 〈yi〉 (3.14)

in the semi-annealed approximation, this technique can be used to solve for Y in

specific, complex locally tree-like Boolean networks.

3.3.2 The map for specific networks with biased update rules

The value of Y in the semi-annealed approximation can be mapped to the

size of GOUT in a site percolation problem. In particular, I show that it can be

mapped onto the results obtained in Ref. [73] for weighted site percolation in locally

tree-like directed networks. The sensitivity qi will once again be identified with a

site non-deletion probability. Independently deleting each node i with probability

(1 − qi) generates an ensemble of site-deleted networks. In Ref. [73], ηi is defined

as the fraction of networks in this ensemble for which node i is not in GOUT. It is

shown that ηi must satisfy the equations

ηi = 1− qi + qi
∏
j∈Ji

ηj, (3.15)
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because a node is not in GOUT when it is either deleted (with probability 1− qi),

or when it is not deleted but has no inputs from GOUT (the final term above). The

expected size of GOUT, S, is then given by

S = 〈1− ηi〉i (3.16)

Equations (3.13-3.14) may be mapped onto Eqs. (3.15-3.16) through the simple

substitution

ηi = 1− yi (3.17)

Y = S (3.18)

This map subsumes the map described in Eq. (3.9), and has the additional advantage

of being applicable to networks with complex topology.

3.3.3 The map for specific networks with canalizing update rules

Finally, I consider the case of Boolean networks with “canalizing” update rules,

in which one input acts as a master switch for the update rule. That is, an input j

to node i is canalizing if there is a state of xj which completely determines the value

of Fi independent of the other inputs to i. When xj is not equal to its canalizing

value, Fi depends on the states of its other inputs. Canalizing functions are thought

to be common in real gene networks [64, 75].

The methods used above can be extended to canalizing functions, but because

the update rule elements in a canalizing function are not generated independently,

it is necessary to consider a new type of percolation problem, which I will call
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correlated bond percolation. Unlike typical bond percolation, which treats the case

in which each bond is considered individually for deletion, the deletion of two bonds

may be correlated if they are inputs to the same node. Here follows the derivation of

a correlated bond percolation problem that corresponds to a Boolean network whose

update rules each have one canalizing input but are otherwise generated randomly.

That is, for each node i, there is a canalizing input ci, and all the rows of the update

rule on which xci assumes its canalizing value have the same constant output; but

the outputs of the other rows are randomly generated with a probability bias bi.

In the derivation below, I assume that the system is approximately equally

likely to be in any of its states. This assumption will be revisited in Chapter

4, which correctly accounts for the fact that the system is more likely to be in

some states than others. For the biased and canalizing update rules studied in this

chapter, however, this is a reasonable first approximation. As shown below, it is

then formally possible to obtain equations describing damage spreading in closed

form for canalizing update rules. Based on the numerical results, I conjecture that

these equations can be used to predict damage spreading in a large class of Boolean

networks with frozen update rules.

An expression for yi for canalizing update rules may be derived as follows. Let

ri denote the “activity” of ci on i [56], defined here as the fraction of states in which

i will become damaged if ci becomes damaged. If ci is not damaged, it may be in

either the canalizing or non-canalizing state, each with probability 1
2
. In the first

case it is impossible for i to become damaged, while the second case is equivalent
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to Eq. (3.13). Therefore,

yi = riyci +
1

2
qi (1− yci)

1−
∏
j∈J ′

i

(1− yj)

 , (3.19)

where J ′i = Ji − {ci} and qi is the sensitivity of the update rule when xci is not in

its canalizing state. As above, it can be shown that this is equivalent to

ηi = 1− ri +

(
ri −

1

2
qi

)
ηci +

1

2
qi
∏
j∈Ji

ηj, (3.20)

with the substitution ηi = 1− yi. This corresponds to a correlated bond percolation

problem in which one of the following three things may occur. With probability

1− ri, all edges to i are deleted; with probability ri− 1
2
qi, all of i’s edges are deleted

except for the edge from ci; and otherwise no input edges are deleted.2 Note that it is

straightforward to describe the case where only some of the nodes have a canalizing

input by using Eqs. (3.19-3.20) for those nodes and Eqs. (3.13-3.15) for the others.

3.4 Numerical results

Figures 3.1 and 3.2 demonstrate the results of the map described in Section

3.3.2. (Numerical results for the map of Section 3.2.2 are not shown, since it averages

the map in Section 3.3.2 over a random network ensemble.) The long-time average

Hamming distance Y is compared to the size of the giant out-component S for both

ensembles of random networks as well as particular complex networks. Both Y and

S are also compared to the theoretical prediction given by the solution to Eq. (3.13),

which is denoted T .

Numerical results are found as follows. First, a configuration-model network

with N = 105 nodes is generated. Networks used in the data in the figures have no
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degree correlations, akl = ain
k a

out
l , where the in-degree distribution ain

k is a Poisson

distribution and the out-degree distribution aout
l follows a truncated power law with

a cutoff of 50. If desired, interesting topological features such as assortativity are

then enhanced using the same algorithms as in Ref. [17]. For assortativity, this

entails randomly selecting pairs of edges, j1 → i1 and j2 → i2, and exchanging

their outputs (i.e., replacing them with the edges j1 → i2 and j2 → i1) if doing so

would change the assortativity in the desired direction. I have also tested networks

with other degree distributions and other biologically motivated features, such as

feedforward motifs, and found similar results. Next, each node is assigned a bias bi.

These may be distributed randomly, or, to encourage (impede) instability on the

network, they may be distributed so that the nodal average 〈qidin
i d

out
i 〉 is maximized

(minimized); see Ref. [17] for more details. For the data in the figures, the biases

bi were distributed randomly so that the sensitivities qi form a uniform distribution

on the interval [.3, .5], but other choices also give similar results.

In the Boolean network dynamics, the initial conditions for x are chosen ran-

domly, and a randomly selected fraction ε = .01 of the nodes are damaged for the

initial conditions of x̃. To find Y , the system is time-evolved and |xi(t) − x̃i(t)| is

averaged between t = 900 and t = 1000, also averaging over 100 initial conditions.

The theoretical prediction is found by iterating Eq. (3.12) until it converges to a

solution y∗, then taking T = 〈y∗i 〉. Finding S is less straightforward, because a

typical percolation problem is only guaranteed to have a single, well-defined giant

out-component in the N → ∞ limit. For reasons discussed in Appendix 3.A, the

following procedure is used. Each node i is deleted with probability 1− qi and any
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Figure 3.1: The ensemble averages of Y (red), S (blue), and T (black) versus the

average degree z, for three families of networks. The three families of networks

are assortative (left), neutral (middle), and disassortative (right). Each point is

averaged over 20 networks. The mean assortativity of networks in the three families

are 〈ρ〉 = 1.26, 1.00, and 0.76, respectively, where ρ is defined as in Eq. (1.5). Both

Y and S agree well with T , except for finite-size effects near the critical point.
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Figure 3.2: Y versus S for individual neutrally assortative networks on linear and

(inset) log-log axes.

strongly connected components (SCCs) in the resulting network are found, where

an SCC is defined to be a mutually path-connected set of nodes containing at least

one loop. The size of GOUT, S, is defined to be the fraction of nodes which can

be reached from at least one of these SCCs, averaged over the ensemble of deletion

trials. For each network, 103 deletion trials are averaged. The numerical uncertainty

in the measured values of T , Y , and S for each point in each figure is smaller than

the point size; see Appendix 3.B for details.

Figure 3.1 illustrates the relationship between Y , S, and T for networks gen-

erated in this way, showing that Y and S have the same average values on the

ensemble of random networks with given average degree z, up to finite-size effects

near the transition. However, in Fig. 3.2, it can be seen that the prediction Y = S
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sometimes fails for individual networks, especially near the phase transition. These

deviations are primarily caused by the quenched disorder in the update rules, which

may cause orbits to fall onto attractors which visit only a small fraction of the state

space. For finite systems, this leads to deviations from Eq. (3.12), which is one

motivation for the work in Chapter 4.

In Figure 3.3, each point has been averaged over this quenched disorder by

choosing update rules from an ensemble of closely related frozen update rules (but

not networks) as follows. Before time-evolving each new pair of initial conditions, a

set of exchanges are performed on the update rules. For each edge j → i, with prob-

ability 1
2
, xj = 0 and xj = 1 are exchanged in the update rule for i. Note that there

are two major differences between this and the semi-annealed approximation. In the

latter, the update rules are changed during the dynamics, whereas here they are only

changed before each new dynamical trial. Second, whereas the semi-annealed ap-

proximation treats all inputs interchangeably, this procedure preserves input-specific

information (such as whether an input is canalizing). In Figure 3.3, this procedure

yields excellent agreement between Y , S, and T for individual networks well above

the transition. Near the transition and below it, finite-size effects still cause S (and,

to a lesser extent, Y ) to deviate slightly from the prediction T . These effects are

discussed further in Appendix 3.A.

Figure 3.4 shows the results of the same numerical experiment but for the

case in which each node has one canalizing input. Here, Y , S, and T agree for

individual networks if the map between Eqs. (3.19) and (3.20) is used, but the map

between Eqs. (3.13) and (3.15) fails for this case. This indicates that significant
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Figure 3.3: (a) Linear and (b) log-log scatterplots of Y versus S for data generated

in the same way as that of Fig. 3.2, except that averaging over the quenched disorder

in the update rules is applied, as described in the text. (c) Linear and (d) log-log

scatterplots of Y (red) and S (blue) versus T for the same data, sampling alternate

points for visibility.
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Figure 3.4: Y versus S on (a) linear and (b) log-log axes, for networks in which each

node has one canalizing input, using the map described in Section 3.3.3.

input-specific information about the dynamics is retained when averaging over the

quenched disorder in the update rules.

3.5 Discussion

The stability of a Boolean network can be understood in terms of a related

percolation problem on that network, in which being in the giant out-component

represents damage in the steady state, and node or edge deletion enables the treat-

ment of cases in which a node with a damaged input does not become damaged.

This relationship may be helpful in understanding the stability of systems modeled

by Boolean networks, such as gene regulatory networks and neural networks. Two

previously-studied cases (the annealed and semi-annealed approximations) map onto

known results for percolation, and a case of biological interest (canalizing update

rules) maps onto a novel percolation problem.

These maps are valid for the typical cases in the literature (large, locally tree-
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like networks with biased or canalizing update rules), but have the advantage of

applying to specific networks rather than ensembles of random networks. Numerical

experiments show excellent agreement with the analysis when averaged over a family

of quenched update rules. In Chapter 4, I address the fact that, contrary to the

approximation used in this chapter, the system does not actually visit all states

equally, which has important ramifications for systems with some types of update

rules. It is possible that there is an improved map between stability and correlated

bond percolation which correctly takes into account the results of Chapter 4. If so,

it would be able to address systems with a much broader range of update rules than

the maps presented in this chapter. At the same time, it would probably eliminate

the need for the quenched averaging used above. However, it is unclear whether

such a map exists, and this question is beyond the scope of the present work.

Appendices

In the following appendices, I discuss the role of finite-size effects in the results

above and how they influence the choice of definition of S used in the main body of

the chapter. I also discuss the tests used to confirm that the numerical simulations

in this chapter are converged, and I give a brief argument that there is typically a

unique stable solution to Eq. (3.13).
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3.A Finite-size effects

In this section, I expand on two points from the above chapter. First, I explain

the deviations of S and Y from T when T is small (see Fig. 3.3). Figure 3.5 shows

numerically that these deviations are due to finite-size effects; it is identical to

Fig. 3.3 except that it includes results for N = 103 and N = 104 as well, showing

that the deviations of Y and S from the theory decrease as N increases. The origin

of these finite-size effects is discussed at length below. Second, I explain the choice

of algorithm for the numerical calculation of S, which is motivated by another finite-

size effect for percolation.

Two significant finite-size effects for percolation must be considered:

S1. A finite network near the percolation phase transition may not contain a single

well-defined giant component, which forces a choice between multiple defini-

tions for S.

S2. The theory is derived using a locally tree-like approximation, but finite net-

works typically contain some simple loops that contribute to S but not T .

This is the most evident finite-size effect in Fig. 3.3, where it causes S > T

when T is small.

Random networks in the limit N →∞ have a single macroscopic GSCC, whose

out-component is the GOUT, but the above results are derived in the context of

specific, finite-sized locally tree-like networks. Such networks, including finite ran-

dom networks, may contain several strongly connected components with significant
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Figure 3.5: Log-log scatterplots of (a) Y versus S, (b) Y versus T , and (c) S versus

T for increasing N . The data approach Y = S = T as N grows. The data for

N = 103 and N = 104 are generated as in Fig. 3.3, but more initial conditions and

node deletion trials are used to ensure convergence of Y and S.
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out-components, particularly near the percolation phase transition. Above the tran-

sition, many of these SCCs join into a single giant component which scales as O(N),

but the effect of multiple SCCs may be significant for finite N (effect S1). In this

scenario, two obvious choices are to either choose the largest SCC as the GSCC or

to include all SCCs as part of the GSCC. Either choice leads to finite-size effects,

and both reduce to the standard one in the infinite limit for random networks, when

the only SCC which contributes to S is the GSCC. Based on the observation that

in a finite network, more than one SCC can in principle contribute to T , I use the

convention that all SCCs and their out-components should be included in S. (This

also gives the most conservative estimate of the accuracy of the theory, because in

networks without strong community structure, the former choice leads to finite-size

effects which cancel to some extent.)

With this choice, the most significant finite-size effect in Fig. 3.3 is that S > T

for small T . This is due to the definition of S combined with the fact that the

derivation of T relies on the assumption that the network is locally tree-like, which

is only approximately true for typical finite networks near the percolation transition.

In particular, finite configuration-model networks contain some short loops, which

contribute to S but are assumed not present in T (effect S2). The source of this

discrepancy may be illustrated with an example: Consider an SCC which is a simple

loop between two nodes, for which q1 = q2 = 1
2
. Equation (3.15) reduces to η1 =

1
2
(1 + η2) and η2 = 1

2
(1 + η1). The solution is η1 = η2 = 1, contributing nothing

to T . However, the probability that both nodes are undeleted is 1
4
, and when this

occurs, there will be a nonzero contribution to S from this SCC. Near the percolation
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transition, many simple loops form, and numerical results suggest that they typically

form between high-degree nodes with large out-components. The total contribution

of such loops may be substantial for near-critical networks.

There are also two finite-size effects in the estimate of Y :

Y1. When the number of damaged nodes is small, a “gambler’s ruin” effect may

cause Y < T for some networks with small T .

Y2. Finite networks contain some simple loops on which damage can persist indef-

initely, contributing to Y but not T . This is analogous to effect S2.

Consider the number of damaged nodes in a Boolean network with semi-

annealed dynamics. This number is discrete and evolves stochastically in time,

undergoing significant fluctuations early in the dynamics when the number of dam-

aged nodes is initially small. Sometimes the number of damaged nodes fluctuates to

zero even though it would have been expected to grow macroscopic in the absence

of fluctuations. If this occurs, the two orbits x and x̃ have become identical, and

the damage will remain at zero for the rest of the dynamics (effect Y1). This is a

variant of the classic “gambler’s ruin” problem from probability theory, in which a

gambler wishes to become arbitrarily rich by betting with an unfair coin, but may

be “ruined” by losing all of his money at some point along the way, at which point

he is forced to stop gambling. The gambler’s ruin effect in Boolean networks has

previously been found to occur when the number of initially damaged nodes εN is

small (see Supplementary Information 2 in Ref. [17]). Specifically, it occurs when

very few damaged nodes belong to the in-components of SCCs on which damage
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can persist. For the networks used in the numerical results above, the size of these

in-components is similar to S (the size of the out-components of SCCs), which is

modeled by T . This suggests that gambler’s ruin will be significant when εNT is

small, which is consistent with Fig. 3.5(c).

Below the stability phase transition in a finite network, it is possible for damage

to persist indefinitely on short loops which do not contribute to T (effect Y2). This

occurs because short loops are not locally tree-like and there is quenched disorder

in the update rules, violating the assumptions used to derive Eq. (3.13). There-

fore, this leads to deviations from the semi-annealed approximation for small SCCs.

For networks close to the stability phase transition, these loops can spread damage

to comparatively large out-components in a manner that is analogous to effect S2

described above, and the same example can be used to illustrate both cases. There-

fore, numerical results show Y > T for some networks with very small T (T < .01).

However, the effect is quite small, and it is quickly overtaken by effect Y1 when

T > .01, so it cannot be seen in the figures above.

3.B Convergence analysis

Several numerical tests confirm that the numerical uncertainties in the values

of T , Y , and S reported in the main text are significantly smaller than the corre-

sponding point sizes in Figs. 3.1-3.4. The theoretical prediction T is determined by

iterating Eq. (3.12) from the main text until 〈|y∗i (t)− y∗i (t− 1)|〉 < 10−7. (This level

of accuracy for T is not strictly necessary, but it adds virtually nothing to the cal-
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culation time.) The convergence time here is denoted tT . Figures 3.6 and 3.7 show

tT as a function of z and N . There is a critical slowing down in the convergence

time near the critical point z = 2.5, but tT has no obvious dependence on N .

For the average Hamming distance Y and the expected giant out-component

S, the uncertainties ∆Y and ∆S are interpreted as the standard deviations of the

sample means used to calculate Y and S. Recall that Y is determined by choosing

two similar initial conditions x(t) and x̃(t), time-evolving each of them, averaging

|xi(t)−x̃i(t)| over i and t, and averaging over many initial conditions. The dominant

source of uncertainty in this process is averaging over initial conditions, which con-

tributes significantly to ∆Y near the critical point. In the simulations in the main

text, using 100 initial conditions per network is sufficient to reduce the uncertainty

to below 3.5 · 10−4 for every network when N = 105.

A second source of uncertainty in Y is the uncertainty in the measurement of

the Hamming distance for each initial condition. This uncertainty is estimated here

using an additional simulation. Many systems are time-evolved in parallel, where

each system consists of two trajectories starting from close initial conditions. The

Hamming distance in each system i is observed, which is denoted Y i(t). Starting

at t = 100, convergence is tested every 10 time steps according to the following

procedure. The average Hamming distance Ȳ (t) is recorded for the last 100 time

steps, where the average is taken over the initial conditions. The Pearson coefficient

of Ȳ (t) and t is calculated for these last 100 time steps. When Ȳ has reached its

equilibrium behavior, it will resemble a random variable fluctuating around some

mean value, so the Pearson coefficient will be approximately 0. Here, Ȳ (t) is consid-
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Figure 3.6: Average convergence times for T , Y , and S on networks with N =

105, as a function of average degree z. The convergence times for each point are

averaged over 10 networks, each of which is generated with the same parameters as

the calculations in Fig. 3.2 of the main text. The method of determining convergence

is described in the text. It appears that T undergoes critical slowing down near the

critical point z = 2.5 while Y and S do not, although S slows down significantly in

the region slightly above the critical point.
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ered to have converged when the absolute value of the Pearson coefficient is smaller

than 1 · 10−7 for at least 10 consecutive convergence checks. Note that because

this method is conservative in its estimate, the earliest possible convergence time is

tY = 190, even if the actual equilibrium behavior has been reached earlier.

Once the system has reached its equilibrium behavior, it is time-evolved for

200 more time steps and a measurement is taken over the last 100. To estimate

the uncertainty of the measurement, each Y i(t) is regarded as a random variable

fluctuating in time with a mean µi and a variance (σi)2, which is estimated using

a sample mean and unbiased sample variance. The standard deviation of the mean

Y is then given by 1
100

√∑
i(σ

i)2. This quantity is always less than 1 · 10−4 for the

parameters used in the simulations in the main text. Therefore, for each simulation,

the combined uncertainty ∆Y is smaller than 5 · 10−4, which corresponds to the

smallest point size in Figs. 3.2-3.4. That is, the most restrictive condition is that

∆Y/Y < .05 for the log-log plots, where ∆Y is the uncertainty in Y . For Y = .01,

this corresponds to ∆Y < 5 · 10−4.

In Figure 3.6, it can be seen that the convergence time for Y , tY , is much

less than 900, the transient time used for the calculations in the main text. The

convergence of Y does not appear to undergo critical slowing down. The relatively

short transient period can be understood intuitively by considering that the average

path length in a random network with N nodes grows only logarithmically in N [10].

Information passes quickly through the network, which typically falls quickly into

either a short periodic orbit or a “chaotic” orbit with seemingly ergodic dynamics. In

either case, the convergence to the equilibrium behavior is generally quite fast. Note
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Figure 3.7: Average convergence times for T , Y , and S as a function of the network

size N when z = 2.75. Each point is averaged over 20 network realizations.

that although tY does not undergo critical slowing down, the variance in µi between

different initial conditions is largest near the critical point. It is possible that there

is a critical slowing down effect in the number of initial conditions required for the

results to converge to a specified level of relative accuracy (i.e., ∆Y
Y

< const.), but

this possibility is not explored here. Also, note from Fig. 3.7 that tY has no obvious

dependence on N , although it is possible that the fact that the minimum possible

value of tY is 190 has obscured a small N -dependence.

Finally, consider the convergence of S. In the main text, S is defined as the

mean size of GOUT over 1000 node deletion trials. The uncertainty ∆S is the

standard deviation of the sample mean for these trials. In the simulations in the

main text, ∆S is less than the point size 5 · 10−4 for all data points. Figures 3.6
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and 3.7 show the number of node deletion trials which are actually necessary for

convergence, which is denote tS, by checking every 100 trials whether ∆S < 5 ·10−4.

Interestingly, critical slowing down is not observed for S (at least when finding an

absolute rather than relative level of accuracy). Instead, the largest fluctuations in

S occur in the region slightly above the critical point, due to the finite-size effects

discussed in the previous section. These fluctuations decrease as N grows, leading

to the N -dependence of tS seen in Fig. 3.7.

Finally, the uncertainties in Fig. 3.1, in which T , Y , and S are averaged over

20 networks, can be estimated in the following way. Let Yk denote the measured

value of Y for the kth network and ∆Yk its uncertainty. Then the uncertainty in

〈Y 〉 is given by ∆〈Y 〉 =
√

1
20

Vark[Yk] + 1
202

∑
k(∆Yk)

2. This incorporates both the

uncertainty from incomplete sampling of the ensemble of networks as well as the

uncertainty associated with each measurement. Analogous expressions are used

for ∆〈T 〉 and ∆〈S〉. For each point in Fig. 3.1, ∆〈T 〉, ∆〈Y 〉, and ∆〈S〉 are all

significantly less than the point size, 5 · 10−3.

3.C On the uniqueness of the steady-state damage probabilities

In the main text, I made the assertion that in cases of interest, the update

equation for damage in semi-annealed, locally treelike networks, Eq. (3.13), has a

unique stable solution, to which Eq. (3.12) will converge. While this claim is not

an important focus of this chapter, it is an interesting side topic worthy of explo-

ration. The assertion cannot be proven in general, because there are straightforward
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counterexamples, such as the case where the “network” consists of two completely

disconnected pieces, each of which may independently have its own steady-state

damage probabilities. However, I show in this section that, with suitable restric-

tions, the assertion is correct.

In particular, the discussion is restricted to a strongly connected network with

a primitive adjacency matrix, i.e., there is some integer n0 such that, for all n ≥

n0, (An)ij > 0 for all i and j. The sensitivities are also restricted so that qi >

0 for all nodes i; otherwise, network edges to node i do not actually influence

the dynamics. The primitivity of A allows for the application of Frobenius-Perron

theorem, a powerful result that applies to such matrices [76]. It states, among other

things, that the eigenvalue of A with largest magnitude, as well as all the entries of

its associated eigenvectors, will be real and positive.

The restrictions imposed here are suitable for any network which does not

have multiple strongly connected components, which is an excellent approximation

for networks above the percolation threshold. In this case, according to the argument

here, the damage probabilities in the giant strongly connected component are fixed,

which determines damage probabilities in the rest of the network, barring the possi-

bility that small strongly connected components have a significant effect. Networks

below the percolation threshold, on the other hand, are nearly always dynamically

stable (i.e., the only stable fixed point is y = 0). The main case where the conclusion

does not apply, then, is when, perhaps due to strong community structure, there

are many distinct strongly connected components which are all important.

Begin by defining the right-hand side of Eq. (3.13) to be the ith component
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Mi of a map M : [0, 1]N → [0, 1]N ,

Mi(y) = qi

[
1−

∏
j∈Ji

(1− yj)
]
. (3.21)

This map has a trivial fixed point, M(0) = 0, but it may also have a nonzero fixed

point, denoted y∗. Below, the first step is to show that if a nonzero fixed point

y∗ exists, then it must be unique and positive. Subsequently, it is shown that a

nonzero fixed point only exists if the fixed point at zero is unstable, in which case

the positive fixed point is stable and the only attractor of iterating M ; otherwise,

the fixed point at zero is the only attractor of iterating M .

Note that ∂jMi (i.e., the partial derivative of Mi with respect to yj) is always

positive when there is an edge from j to i and is zero otherwise. Similarly, the

second derivatives ∂j∂kMi is always negative when there are edges from j and k to i

and j 6= k. This suggests that there is a sense in which M is an increasing, concave

function, for which there are useful fixed-point theorems. However, rather than

considering M directly, it is more convenient to consider the nth iterate of this map,

where n ≥ n0 as defined above.3 This map, which will be denoted M̂(y) = Mn(y),

can be shown to be strictly increasing as follows. The Jacobian matrix DM̂ of M̂

can be related to that of M through the chain rule,

DM̂(y) = DM(Mn−1(y))DM(Mn−2(y)) . . . DM(y). (3.22)

The sign of each factor of DMij is the same as Aij, so the sign of each element in

the product is the same as that of An, which is strictly positive. Since every element

of DM̂ is strictly positive, M̂ is strictly increasing. By a similar argument, the sign

of the second derivative ∂j∂kM̂i is never positive, so M̂ is concave.
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Since M̂ is strictly increasing, any nonzero fixed point y∗ must be strictly

positive in each element, y∗i > 0 for all i. Moreover, it has been shown that a

strictly increasing, concave map can have at most one positive fixed point [77], so

any positive fixed point y∗ of M̂ must be unique; see Theorem 1 and Remark 1 in

Ref. [77]. If M̂ does have a positive fixed point y∗, this must also be a fixed point

of M (rather than, say, lying on periodic orbit of M), because the argument above

can be applied for any n ≥ n0.

It remains to be shown that there are two cases, one in which y = 0 is stable and

attracting, but there is no positive fixed point, and one in which y = 0 is unstable,

but y = y∗ is stable and attracting. The first part follows from the linear stability

analysis of this system, which is discussed more fully in Ref. [17]. To linear order,

Eq. (3.12) is y(t + 1) = Qy(t), where Qij = DM(0)ij = qiAij. When the largest

eigenvalue of Q, λQ, is less than 1, it is easy to show that the zero fixed point will

be stable and attracting. Since M is concave, Mi(y) ≤Mi(0) + (DM(0)y)i = (Qy)i

for all i and y, so |M(y)| ≤ |Qy| ≤ λQ|y| < |y| for all y.4

When λQ > 1, another theorem can be used to guarantee that iteration will

lead to convergence (and also that y∗ is in the unit hypercube). Using Theorem

3 from Ref. [77], the only additional necessary conditions are that there are two

positive vectors y and y′ such that Mi(y) > yi and Mi(y
′) < y′i for all i. (See also

Remarks 1 and 3 from Ref. [77].) The first requirement can be satisfied by using

y = εvQ, where vQ is the right eigenvector associated to λQ, for ε sufficiently small.

Choosing y′i = 1 for all i satisfies the second requirement, since Mi(y
′) = qi < 1 = y′i.

Therefore, when λQ > 1, a positive fixed point exists and is stable and attracting.
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It is also instructive to note that the stability of any positive fixed point can

be verified for this map using the following argument, independent of most of the

above discussion. Since M is concave, a first-order Taylor series at y = y∗ can be

used to show that (DM(y∗)y∗)i < Mi(y
∗), which is equal to y∗i by definition. (This

can also be shown algebraically using the Weierstrass inequality.) Since DM(y∗) is

a primitive non-negative matrix, the Frobenius-Perron theorem applies, and so its

largest eigenvalue λ∗ is positive, and the associated left eigenvector u∗ is also positive.

Multiplying by u∗i and summing over i gives λ∗(u
∗)Ty∗ = (u∗)TDM(y∗)y∗ < (u∗)Ty∗.

Dividing through by (u∗)Ty∗, which must be positive, shows that λ∗ < 1.

Notes for Chapter 3

1A more thorough definition is that for locally tree-like networks, short paths between j and i

should account for a small fraction of the total number of short paths originating at j or terminating

at i [73]. For synchronously updated Boolean networks, an even weaker locally tree-like condition

is sufficient for the derivation at hand, that paths from j to i are a small fraction of paths of the

same length beginning at j or ending at i. However, since asynchronously updated networks are

also treated in Chapter 4, this point is not emphasized further. Networks with motifs that violate

each of these conditions are studied in Refs. [17].

2It can be shown that ri ≥ 1
2qi, so the second probability is non-negative.

3Perhaps the most straightforward approach would be to apply Theorem 1 of Ref. [77] directly

to M . Unfortunately, this approach seems to be rigorous only in cases where each node has an

in-degree of at least two.

4When λQ = 1, y∗ is marginally stable. Convergence, which undergoes critical slowing down,

depends in this case on the fact that M is strictly concave along the right eigenvector for λQ.
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Chapter 4: The joint effects of topology and update rules on the

stability of Boolean networks

4.1 Introduction

In this chapter, I present and numerically verify a general method for studying

the stability of large, locally tree-like directed Boolean networks [3]. This method

can be used to study a variety of Boolean network systems for which, up to now, no

generally effective method has been available. Like the technique used in Chapter

3, it can be applied to specific complex networks with given topology, but it is much

more general in the sense that it can also be applied to systems with essentially

arbitrary update rules. Because of its generality, this technique may be useful for

modeling systems whose topology and update rules are determined experimentally.

For example, one question which may be important in gene regulatory systems

is how silencing (or “knocking down”) a particular gene will affect the expression

of other genes, as well as the stability of the dynamics of the entire system. The

present analysis provides a framework for addressing this kind of question, in con-

trast to previous work based on the annealed approximation, which typically ob-

tained analytical results on the stability of ensembles of networks with given degree
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distributions. The framework below can also be used in a more general sense to

study how topology, update rules, and correlations between the two affect stability.

This is demonstrated with two examples illustrating that the joint effects of network

topology and update rules can have profound effects on Boolean network dynamics,

which cannot be captured by previous theories.

As described in Section 1.5, in a Boolean network, each node i is assigned a

binary state xi(t) = 0 or 1 at each discrete time t using an update rule Fi which

depends on the states of its network inputs on the previous time step, i.e.,

xi(t+ 1) = Fi (Xi(t)) , (4.1)

where the combined input state Xi(t) is an ordered list of xj(t) for all j which are

network inputs to i. A Boolean network is considered to be stable or unstable,

respectively, if two initially close orbits x(t) and x̃(t) evolving under Eq. (4.1) tend

to converge or diverge with time, as discussed in Sections 1.6 and 4.4. A node i is will

be called “damaged” at time t if xi(t) 6= x̃i(t). The main theoretical result of this

chapter is a criterion for stability in Section 4.3 that accounts for the joint effects

of network topology (represented by an adjacency matrix A) and node dynamics

(i.e., the functions Fi). For now, only synchronously updated Boolean networks are

considered, but Appendix 4.A demonstrates that this stability criterion is unchanged

if nodes are updated asynchronously.

The chapter is organized as follows. Section 4.2 reviews previous work on the

annealed and semi-annealed approximations (also discussed in Sections 3.2.1 and

3.3.1), then introduces a new method of semi-annealing which can be applied to
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arbitrary update rules. This semi-annealing procedure is then used to derive a set of

“dynamical biases” which describe the steady-state dynamics of the system. Section

4.3 uses these dynamical biases to analyze the stability of the system, giving the

main result of the chapter. Agreement between theory and numerical simulations is

illustrated for two examples in Section 4.4. The first of these examples is primarily

pedagogical, but the second is application-oriented, using threshold update rules.

These take the form

xi(t+ 1) = U
(∑

j

Wijxj(t)− θi
)
, (4.2)

where U denotes the unit step function, θi is a threshold value, and Wij is a signed

weight whose magnitude reflects the strength of the influence of node j on node

i and whose sign indicates whether node j “activates” or “represses” node i (i.e.,

promotes xi to be 1 or 0).

4.2 Generalized semi-annealing and dynamical biases

The stability of Boolean networks has, for three decades, been analyzed pri-

marily in terms of Derrida and Pomeau’s annealed approximation [44]. This states

that the stability of a typical “quenched” or “frozen” realization of a random network

with randomly selected update rules is typically similar to that of an “annealed” sys-

tem in which the network and update rules are randomized between every time step.

Because the annealed system can be treated analytically, the annealed approxima-

tion has provided powerful techniques for studying ensembles of random networks.

However, its major limitation is that it cannot be applied to specific networks with
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complex topological features.

This limitation was addressed in Ref. [17], which developed a “semi-annealing”

technique that directly uses the adjacency matrix of the system under examination

when addressing the question of stability. In a semi-annealed system, the network

topology is fixed and may be complex, and only the update rules are selected ran-

domly at each time step. The semi-annealed approximation is the hypothesis that

the stability of the semi-annealed system, which can be computed analytically, is

a good approximation for the stability of a typical system with quenched update

rules on the same network. Besides allowing for the consideration of complex net-

work topologies, this approach also makes it possible to consider the contributions

of individual nodes to the system dynamics.

The semi-annealed approximation has been used to analyze the stability of

complex locally tree-like networks with biased update rules, [2, 17], and has also been

applied to canalizing update rules [2, 78]. In each case, the stability of the system

is determined by the magnitude of the largest eigenvalue of a modified adjacency

matrix, which allows for the consideration of quite general topological features. In

fact, Refs. [17, 78] considered systems with a variety of complex features, such as

degree assortativity, community structure, motifs, and correlation of the in- and out-

degrees din
i and dout

i with node bias bi. Many of these features dramatically affect

the stability of the system in ways that cannot be predicted using fully annealed

techniques. Numerical results strongly support the validity of the semi-annealed

analysis [2, 17, 78].

Thus, semi-annealed techniques have vastly extended the range of network
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topologies whose stability can be analyzed. However, they have only been applied to

two limited classes of update rules, and a clear next step is the development of a semi-

annealed analysis which can be applied with fewer constraints on the update rules.

The principal difficulty in this endeavor is that it requires detailed knowledge of the

steady-state behavior of the system. Here, this problem is addressed by introducing

a set of “dynamical biases,” pi, which describes the steady-state behavior of the

semi-annealed system and can be determined from a set of consistency conditions.

In the generalized semi-annealing procedure introduced here, each node i is

assigned an ensemble of update rules, Ti, from which a specific update rule is ran-

domly drawn at each time step t. This choice is made independently at each network

node i, and the probability of drawing a particular update rule f from Ti is denoted

by Pr[Fi = f ]. In typical applications of Boolean networks, each quenched update

rule Fi are selected from a random ensemble, and in these cases one should use the

same ensemble for Ti. Otherwise, the selection of the update rule ensemble Ti may

depend on the case of interest. This is illustrated with examples in Section 4.4.

The dynamics of this model are somewhat similar to those of probabilistic

Boolean networks [79]. They may be described by the probabilities F̄i(Xi) that the

state of node i, given inputs Xi, will be 1 on the next time step. This is just the

average of Fi(Xi) over the ensemble Ti,

F̄i(Xi) =
∑
f∈Ti

Pr[Fi = f ]f(Xi), (4.3)

because f (Xi) = 0 or 1. It is important to note that F̄i(Xi) is solely determined

from Ti, i.e., independent of the update rule assignments at other nodes. Thus,
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computation of F̄i(Xi) is straightforward.

Another important quantity, which is also purely local and therefore can also

be calculated directly from Ti, is the probability that a node i will become damaged if

its input states on the previous time step are given by Xi and X̃i for the original and

perturbed orbits. This quantity is denoted by Di(Xi, X̃i), and it may be calculated

using

Di

(
Xi, X̃i

)
= Pr

[
xi(t+ 1) 6= x̃i(t+ 1)

∣∣∣Xi, X̃i

]
(4.4a)

=
∑
f∈Ti

Pr [Fi = f ] ·
∣∣∣f(Xi)− f(X̃i)

∣∣∣ , (4.4b)

because, once again, f(Xi) = 0 or 1.

This formalism allows for the treatment of a wide variety of update rules,

including but not limited to previously studied cases. As an example, consider

the case of biased update rules with node-dependent biases bi; other examples will

be given in Section 4.4. For biased rules, the ensemble Ti must contain all possible

update rules with din
i inputs, since any such rule could be generated when 0 < bi < 1.

The probabilities Pr[Fi = f ] follow a binomial distribution
(
dini
n

)
bni (1−bi)dini −n, where

n is the number of combined input states which result in f = 1. It is easy to show

that with this distribution, F̄i(Xi) = bi for all Xi, as well as the well-known result

that the “sensitivity” of a biased function is Di(Xi, X̃i) = 2bi(1− bi) for all X̃i 6= Xi

[17, 44, 56]. However, here, as in most cases, it is not actually necessary to specify

the ensemble Ti. In fact, the analysis below only makes use of the functions F̄i and

Di, and in many cases, including the example in Section 4.4.2, it is more convenient

to specify them directly than to calculate the probabilities Pr[Fi = f ].
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Note that this approach can also be used to describe a quenched system if only

one function is in each Ti. However, I will primarily focus on cases in which there is

a non-trivial degree of semi-annealing, which typically results in the existence of a

single ergodic attractor for the system, simplifying the analysis. (A sufficient, but

certainly not necessary, condition for this to occur is if 0 < F̄i(Xi) < 1 for all i and

Xi.) The semi-annealed approximation asserts that the stability of this attractor

in the semi-annealed system is the same as that of typical attractors in quenched

systems. Further comments on applying these results to quenched dynamics will

follow below.

The next step is to define the dynamical biases pi and derive a set of consistency

equations which can be used to determine them. Given an orbit on the attractor

of the semi-annealed system, pi is defined to be the fraction of time that the state

xi(t) of node i is 1, or the probability that xi(t) = 1 at a randomly chosen time

t. A global average of this quantity has been considered in fully annealed network

ensembles (e.g., [66, 67, 69]).

The consistency conditions which determine pi can be derived as follows. First,

note that pi is determined by the set of probabilities Pr[Xi] of i receiving each

possible combined input state Xi, using

pi =
∑
Xi

Pr [Xi] Pr [xi = 1 |Xi ] (4.5)

=
∑
Xi

Pr [Xi] F̄i(Xi), (4.6)

where F̄i is as defined in Eq. (4.3). Assuming that the network topology is locally

tree-like, the states of the inputs to node i can be treated as statistically independent
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(see the discussion of semi-annealing in locally tree-like networks in Section 3.3.1).

Therefore, the probabilities Pr[Xi] are determined by the biases of i’s inputs. Letting

Ji denote the set of indices of nodes that are inputs to i,

Pr [Xi] =
∏
j∈Ji

[xjpj + (1− xj) (1− pj)] , (4.7)

where the fact that each xj = 0 or 1 has been used. That is, the probability of

a state Xi in which an input xj = 0 is weighted by a factor of (1 − pj), and the

probability of a state in which xj = 1 is weighted by a factor of pj.

Inserting Eq. (4.7) into Eq. (4.5) yields a set of N equations for the N dy-

namical biases pi. In typical applications, these equations can be solved by choosing

a random initial value for each pi and iterating Eqs. (4.5-4.7) until they converge.

Moreover, in numerical simulations such as those considered in Section 4.4, there is

a unique solution which is stable under iteration, and this represents the attractor

of the semi-annealed system. This will be assumed in the analysis below, but note

that the analysis can be extended in a natural way to cases where this does not

occur. For example, some systems (including completely quenched systems) may

have more than one attractor, in which case the attractors can be found by iterating

multiple initial guesses for pi, and the stability of each attractor can be evaluated

individually.1
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4.3 Stability analysis

Now, consider the stability of the semi-annealed system. As in Section 3.3.1,

let yi(t) be the probability that i is damaged at time t, i.e.,

yi(t) = Pr [xi(t) 6= x̃i(t)] . (4.8)

Marginalizing over Xi and X̃i in Eq. (4.8) and inserting Eq. (4.4a),

yi(t+ 1) =
∑
Xi

∑
X̃i

Pr
[
Xi(t), X̃i(t)

]
Di

(
Xi, X̃i

)
. (4.9)

In the question of stability, it is assumed that the two orbits under consideration,

x(t) and x̃(t), are close to each other in the sense of Hamming distance for times

t close to the perturbation time t0. In this case, terms of O(y2) on the right hand

side of Eq. (4.9) can be dropped, which corresponds to ignoring the possibility that

Xi(t) and X̃i(t) differ for two or more inputs. Moreover, if X̃i(t) and Xi(t) are the

same, Di = 0 via Eq. (4.4b), so nothing is contributed to the sum in Eq. (4.9).

Therefore, the only values of X̃i which contribute significantly to the sum are ones

in which X̃i(t) and Xi(t) differ for exactly one node j. Hence, Xj
i (t) is defined to be

a vector which is the same as Xi(t) except that the state of input node j is damaged

[x̃j(t) = 1− xj(t)]. Using this notation, Eq. (4.9) can be rewritten as

yi(t+ 1) =
∑
j∈Ji

∑
Xi

Pr
[
Xi(t), X

j
i (t)
]
Di

(
Xi, X

j
i

)
. (4.10)

Furthermore, because the network is locally tree-like, the inputs to node i can
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be treated as uncorrelated, yielding

Pr
[
Xi(t), X

j
i (t)
]

= Pr [Xi] Pr [xi(t) 6= x̃j(t)]

= Pr [Xi] yj(t).

(4.11)

When substituted into Eq. (4.10), this leads to

yi(t+ 1) =
∑
j∈Ji

yj(t)
∑
Xi

Pr [Xi]Di

(
Xi, X

j
i

)
. (4.12)

Since the second sum is time-independent, this can written as

yi(t+ 1) =
∑
j

Rijyj(t) +O(y2), (4.13a)

Rij ≡
∑
Xi

Pr [Xi]Di

(
Xi, X

j
i

)
, (4.13b)

where Rij = 0 when there is no edge from j to i. (The second-order terms in this

expansion are discussed further in Appendix 4.B, which derives an expression for

the critical slope of the stability phase transition.) Rij may be interpreted as the

probability that damage will spread from node j to node i and here it is named the

“effective activity” of j on i in analogy with the terminology of Ref. [56].

The average of the normalized Hamming distance over all possible perturba-

tions and realizations of the semi-annealed dynamics is 〈H(x(t), x̃(t))〉 = 1
N

∑
i yi(t),

so the stability of the system is determined by whether or not the elements of y(t)

grow with time. It can be seen by writing Eq. (4.13b) in matrix form,

y(t+ 1) = Ry(t), (4.14)

that the growth of y is determined by whether or not R has any eigenvalues λ whose

magnitude is greater than 1. If so, and the initial perturbation has a nonzero compo-

nent along the left eigenvector associated with one of these eigenvalues, the expected

83



Hamming distance will initially grow as λt. Therefore, the largest-magnitude eigen-

value of R, denoted λR, predicts the stability of the system. It can be shown that

this eigenvalue is always real and positive. With additional assumptions that are

applicable to commonly studied cases, it can also be shown that this eigenvalue has

multiplicity one and is well-separated in magnitude from other eigenvalues, which

implies that it can be computed efficiently through power iteration of R on an initial

random vector.2 Therefore, the stability of the system can be classified using

λR < 1 stable

λR = 1 critical

λR > 1 unstable


. (4.15)

One major advantage of the approach introduced here is that, from a compu-

tational perspective, evaluating p, R, and λR is typically much faster than finding

the average Hamming distance through simulations. This is discussed further in Ap-

pendix 4.C, along with other computational aspects of the above solution. Another

potential advantage of Eq. (4.15) is that it may facilitate qualitative understanding

of the effects of certain network or update rule features on stability. For example,

previous work has shown that introducing assortativity to a network tends to in-

crease the largest eigenvalue of certain types of modified adjacency matrices, and

this effect can be estimated analytically [8, 80]. This suggests that similar results

may be derived for λR in future work.

It is also possible that empirical gene regulatory networks will contain impor-

tant topological or update rule features which may not correspond to commonly

studied network metrics. The analysis presented here nonetheless applies to these
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cases. Moreover, such features may be highlighted by any cases where the direct

evaluation of λR gives a significantly different stability prediction than annealed or

approximation-based techniques. In these cases, research aimed at understanding

the discrepancy may lead to the discovery or study of new network features.

Finally, in contrast to fully annealed techniques, in which nodes are distin-

guished only by their degree signature, semi-annealing also allows for the consid-

eration of individual nodes and their contribution to instability in the full system.

This enables the treatment of questions such as the optimal method of stabilizing or

de-stabilizing a network through some limited set of possible external interventions.

One interesting case is where the intervention strategy is to permanently silence

or activate a small set of nodes (i.e., forcing xi(t) = 0 or xi(t) = 1 for some node

i). Another case is when damage can actively be corrected during the dynamics

for some nodes. In both cases, the problem of selecting nodes for intervention can

be addressed using this framework. This and other related questions are discussed

further in Appendix 4.D.

4.4 Numerical results

This section uses the framework above to analyze two cases that illustrate the

effects of correlations between local topological features and update rules. Each

example uses a single network with N = 105 nodes using the configuration model

[7]. The in-degrees are Poisson-distributed with a mean of 4 and the out-degrees

are scale-free with exponent γ ≈ 2.2. In Figs. 4.1 and 4.2, the average Hamming
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distance 〈H〉 and λR are plotted against a tuning parameter for each model.

Each Hamming distance H is calculated using the following procedure. First,

an initial condition x(0) for an orbit x(t) is randomly selected (xi(0) = 0 or xi(0) = 1

with equal probability for each i). Next, x(t) is time-evolved until a time t0 =

100, which is large enough that transient behavior has ceased. A perturbed initial

condition x̃(t0) is created by randomly choosing a small fraction ε = 0.01 of the

components of x(0) and damaging their states, i.e., if node i is chosen to be damaged,

then x̃i(0) = 1 − xi(0). The long-time behavior of H is measured by averaging

H(x(t), x̃(t)) from a later time t1 = 400 to t2 = 500. Finally, this procedure is

repeated for many initial conditions x(0) and average H over initial conditions.

When calculating H, the update rules are quenched, whereas the theoretical

prediction λR is calculated using the semi-annealed theory described above. The

average 〈H〉 is taken over 10 initial conditions for each quenched set of update rules.

The figures show 〈H〉 for both a single quenched system as well as an average over

50 sets of quenched update rules.

4.4.1 Example 1: XOR, OR, and AND update rules

This example illustrates the effect of correlations by assigning a node either a

highly “sensitive” update rule (XOR) or a less sensitive update rule (OR or AND),

based on the node’s in-degree. That is, the update rule at each node i is randomly

drawn from three classes: (1) XOR, whose output is one (zero) if i has an odd (even)

number of inputs that are one; (2) OR, whose output is one if and only if at least one
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input is one; or (3) AND, whose output is one if and only if all din
i inputs are one.

Following [56], XOR is described as highly sensitive because any single damaged

input will cause its output to become damaged, so Rij = 1 whenever there is an

edge from j to i. On the other hand, if node i has OR or AND as its update rule,

damaging node j will damage node i only if every node other than j is zero or one,

respectively. Thus in cases (2) and (3), Rij depends on the node biases pj which

are obtained by solving Eqs. (4.5-4.7). For OR, Rij =
∏

k(1 − pk), and for AND,

Rij =
∏

k pk, where the products are taken over all inputs k which are not equal to

j.

Figure 4.1 shows results for a network with these three classes of update rules.

The update rules of a fraction α of nodes are assigned to be XOR, and the remaining

nodes are evenly split between OR and AND rules. For correlations, three cases are

considered here: (1) XOR is assigned to the αN nodes with the largest in-degree

(red squares in Fig. 4.1); (2) XOR is randomly assigned to αN nodes irrespective of

their degrees (blue circles); or (3) XOR is assigned to the αN nodes with smallest

in-degree (green triangles). In all three cases, the remainder are randomly assigned

OR or AND. In numerical simulations, all update rule assignments are quenched. In

order to find appropriate semi-annealing probabilities for the theoretical prediction,

it is important to note that the initial assignment of XOR is deterministic in cases

(1) and (3), but OR and AND are assigned randomly. Therefore, in the theory, the

network and the identity of the XOR nodes are treated as fixed, and the identities

of the OR and AND nodes are annealed, assigning a probability of 1/2 to choosing

either OR or AND on each time step. Other annealing choices are also possible,
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but this procedure is chosen because it straightforwardly resembles the quenched

assignment of update rules above.

In Fig. 4.1(a), filled markers are averaged over 50 quenched realizations of

the update rules, while hollow markers show a single quenched realization. The

values of α at which the three cases become unstable are rather different, thus

demonstrating that stability is strongly affected by correlation between the local

topological property of nodal in-degree and the sensitive XOR update rule. This

agrees with the intuitive expectation that assigning update rules which result in high

values of Rij to topologically important nodes will increase instability. In panel (b),

the stability criterion λR < 1 correctly accounts for this behavior. Re-plotting 〈H〉

against λR in panel (c), it is clear that in each case the network becomes unstable at

λR ≈ 1, as predicted by the theory. This is also pointedly illustrated by the vertical

arrows in panel (a) marking the values of α at which λR = 1.

4.4.2 Example 2: Threshold networks

The second numerical example is the case of networks with threshold rules,

i.e. Eq. (4.2). Such threshold rules may be re-cast as Boolean functions Fi by

enumerating all possible Xi and calculating whether the weighted sum of inputs

exceeds the threshold θi. Conversely, threshold rules are appropriate for Boolean

network applications in which each edge has a fixed “activating” or “repressing”

character. The special case of random networks with θi = 0 and Wij = ±1 has been

considered previously using the annealed approximation [68–71, 81].

88



 0

 0.1

 0.2

 0.3

 0.4

 0  0.1  0.2  0.3  0.4  0.5

〈H
〉

α

(a) maximum
random
minimum

 0.5

 1

 1.5

 2

 2.5

 0  0.1  0.2  0.3  0.4  0.5

λ
R

α

(b) maximum
random
minimum

 0

 0.1

 0.2

 1  1.5

〈H
〉

λR

(c) maximum
random
minimum

Figure 4.1: 〈H〉 and λR for a network with XOR, OR, and AND update rules. The

tuning parameter α is the fraction of nodes using XOR rules, and different markers

represent different correlations between these nodes and degree. Arrows mark points

where λR = 1 and correctly predict transitions. See text of Section 4.4.1 for details.
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Results for threshold networks are shown in Fig. 4.2 and are generated as

follows. The weight Wij for each edge j → i is assigned by first choosing a sign,

positive or negative, each with probability 1/2, to indicate whether the edge will be

activating or repressing. Then, the weight is drawn from a normal distribution with

mean ±1 (according to the chosen sign) and standard deviation 1/4. This procedure

is used for the “uncorrelated” results in Fig. 4.2 (blue circles).

Correlations between update rules and network topology are introduced in

two additional cases. Specifically, the weights of an edge Wij may be correlated (red

squares) or anticorrelated (green triangles) to the product of a node’s in-degree and

out-degree, din
i d

out
i . It has been shown that nodes with high degree product play a

crucial role in the stability of Boolean networks [17, 63, 80]. Here, the correlated and

anticorrelated cases are generated by exchanging weights between pairs of edges in

the original (uncorrelated) assignment of weights in the following procedure. First,

two random edges j1 → i1 and j2 → i2 are selected from the network. Next, the

edge for which i has a higher degree product is identified. Finally, in the correlated

(anticorrelated) case, the values of the two weights are exchanged if doing so would

increase (decrease) the weight of the edge with the higher degree product. This

procedure is repeated E/2 times, where E is the number of edges in the network,

so that each edge is expected to be considered for one exchange.

Figure 4.2 treats the case in which the thresholds of different nodes are similar,

but not necessarily equal. In the theory, this is modeled by annealing the thresholds

θi over a normal distribution with a mean θ̄ and standard deviation σθ = 1/10. By
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Figure 4.2: 〈H〉 and λR for a threshold network. The average threshold θ̄ is used as

a tuning parameter in (a) and (b). Arrows mark points where λR = 1 and correctly

predict transitions. See text of Section 4.4.2 for details.
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Eqs. (4.2), (4.3), and (4.4b),

F̄i(Xi) = Φ

[
1

σθ

(∑
j

Wijxj − θ̄
)]

, (4.16a)

Di(Xi, X
j
i ) =

∣∣F̄i(Xi)− F̄i(Xj
i )
∣∣ , (4.16b)

where Φ(x) = (2π)−1/2
∫ x
−∞ exp(−t2/2)dt. Equation (4.16) can be used to find

pi, Rij, and λR. Here, as in many cases, it is not necessary to enumerate the

ensemble of update rules or find the associated probabilities, because F̄i and Di can

be calculated directly. When finding the average normalized Hamming distance 〈H〉

in the numerical simulations, θi is treated as quenched by writing θi = θ̄+δθi, where

δθi is drawn from a normal distribution with mean 0 and standard deviation σθ.

Figure 4.2 shows results for both a single quenched set of δθi (hollow markers)

as well as an average over 50 quenched sets of δθi (filled markers). Typical single

quenched realizations show similar behavior to the average, in agreement with the

semi-annealing hypothesis. More striking is the qualitative difference between the

anticorrelated case and the correlated and uncorrelated cases. At low thresholds,

the anticorrelated network is stable, whereas both the correlated and uncorrelated

case are unstable. As the threshold is increased, the anticorrelated network becomes

unstable before becoming stable again at large thresholds. This agrees with panel

(b), where in all three cases, λR initially increases with increasing threshold, but

the anticorrelated case is the only one where λR < 1 initially. Finally, in panel (c),

〈H〉 is plotted against λR using the same data. It is clear that in all three cases the

stability transition clearly occurs at λR = 1, confirming the analysis.

The behavior of the anticorrelated case again illustrates the importance of the
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fact that the stability criterion Eq. (4.15) can accommodate correlations between

network topology and update rules, in contrast to fully annealed techniques. Note

that all three cases in Fig. 4.2(a) share the same network topology and thresholds,

as well as the distribution of weights. Therefore, any theory which does not take

into account the joint effects of network topology and update rules would be unable

to predict the marked difference in the behavior of these three cases.

4.5 Discussion

This chapter presents a general framework for addressing the question of orbit

stability of large, locally tree-like Boolean networks, given arbitrary network topol-

ogy and update rules. There are four steps in this process: (1) identify the update

rule ensemble Ti (or the functions F̄i and Di) for each node i; (2) calculate the

dynamical biases pi of the each node i by iterating Eqs. (4.5-4.7); (3) calculate the

effective activities Rij using Eq. (4.13b); and (4) find the largest eigenvalue of R,

λR, which determines the stability of the system through Eq. (4.15). As illustrated

above, the first step requires a judicious selection of which aspects of the update

rules should remain quenched, but is typically straightforward thereafter. The sec-

ond step—and, in general, the use of dynamical biases in the analysis—is essential

for all but the simplest classes of update rules, because the probability of damage

spreading from one of a node’s inputs depends on the states of the other inputs.

For this reason, the analysis presented here is the first which can be applied to

specific complex Boolean networks with general update rules, taking into account
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the steady-state dynamics of the system. As examples of the application of the gen-

eral stability criterion, both a pedagogical case and the case of threshold networks

were presented. Whereas research into the stability of Boolean networks has pri-

marily focused on either topology or update rules alone, these results confirm that

correlations between the two can have profound qualitative effects on the dynamical

properties of a Boolean network. The dynamical biases pi and the stability indicator

λR offer systematic measures for evaluating these effects. As discussed in Section

4.3, this approach also makes it possible to study the effects of interventions which

modify either the topology or update rules of a given Boolean network, because

specific networks with quite general update rules can be treated.

Further consequences and development of these results remain to be explored.

Because the activity matrix R depends on both the dynamical biases p and the dam-

age probability functions Di, introducing any feature to the network or update rules

can affect λR in several (sometimes conflicting) ways, as in the case of threshold

networks. Further exploration of other features is likely to yield other interesting

examples. Another interesting direction of work is to develop techniques similar to

those used in Refs. [8, 17, 80], which would allow pi and λR to be estimated analyti-

cally in particular cases without solving Eqs. (4.5-4.7) numerically. This would allow

greater intuitive understanding of the effects of various characteristics of the net-

work or update rules, as well as the interaction between these characteristics. I hope

that the results here will draw more attention to these issues, and, more broadly,

to the fascinating interplay between topology and update rules in the dynamics of

Boolean networks.
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Appendices

In the following appendices, I discuss four extensions and implications of the

above work. Section 4.A shows that the stability criterion, Eq. (4.15), can be applied

to asynchronously updated Boolean networks as well. Section 4.B derives the critical

slope of the stability phase transition using the above framework, and Section 4.C

discusses the computational scaling of evaluating λR. Finally, Section 4.D discusses

the contributions of individual nodes to instability and explains how the framework

introduced here can be used to evaluate the effects of modifications to a Boolean

network.

4.A Asynchronous updates

Asynchronous updates may arise in discrete state systems for several reasons.

For example, links may have nonuniform delays, δij, that model delays arising from,

for example, the chemical kinetics of gene regulation. In this case, the dynamics

would be described by a modified version of Eq. (4.1) in which the state of node i

at time t depends on the states of its inputs j at times (t− δij). Another alternative

is a model in which nodes are individually chosen to be updated in a stochastically

determined order. Here, it is shown that the stability condition given in the main

text applies not only to the case of synchronous nodal updates, but to asynchronous

models as well, including both of these examples.

In particular, consider updates which occur at times τ1 < τ2 < ... < τt < ...,
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where the update intervals, (τt+1 − τt), are arbitrary, incommensurate and do not

influence the analysis. Since the update times are incommensurate, approximate

the deterministic choice of node to update at each time, indexed by integer t, with

a stochastic process where node i (and only node i) is chosen to be updated by

Eq. (4.1) with probability ωi. This is also appropriate, of course, for systems that

are inherently stochastic.

To analyze this case, the approximate update equation, Eq. (4.14), must be

adjusted. Since node i is chosen independently of the values of the nodes, the

joint probability at time step t that node i is chosen for update and that node i

differs between the two initial conditions after the update is given approximately

by ωi
∑
Rijyj(t). If node i is not chosen for update at this time step, yi does not

change. Putting this together yields, for small t and small initial perturbations,

yi(t+ 1) ≈ ωi
∑
Rijyj(t) + (1− ωi)yi(t), which can be written in matrix form as

y(t+ 1) = Ω(R− I)y(t) + y(t), (4.17)

where Ω is a diagonal matrix with ωi in each row, I is the identity matrix, and R

is the activity matrix. In order to see that Eq. (4.15) also applies in this case, note

that, at criticality, y(t + 1) = y(t), so that Eq. (4.17) reduces to Ω(R − I)y(t) = 0.

This has a solution for y 6= 0 only if λR = 1. Note, however, that in this case, for

λR > 1, the growth rate of the Hamming distance will be at a rate of the order of

1/N smaller than the rate of the synchronously updated networks, because N time

steps of asynchronous update correspond to one time step of synchronous update.
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4.B Critical slope

The second-order terms in the expansion in Eq. (4.13a) may be used to derive

the critical slope of H near λR = 1. A sketch of this derivation is included because

it may be useful for near-critical approximations or for designing networks with

extreme behavior near the critical point. Begin by considering input combinations

in which two distinct inputs j and k are damaged, denoted X̃ = Xj,k
i in analogy with

the definition of Xj
i above. Following similar steps as those that led to Eq. (4.13a)

and retaining all terms of O(y2), gives

yi =
∑
j

Rijyj +
∑
j,k

Rijkyjyk,

Rijk ≡
1

2

∑
Xi

Pr[Xi]Di

[
Xi, X

j,k
i

]
−Rij,

(4.18)

where Rij is defined as in the main text, and it is assumed that y has reached its

steady state behavior. Note that when j = k, Rijk = 0.

Now the critical slope may be derived through a perturbation expansion near

the critical point, yi = εHy1
i + ε2y2

i and λR = 1 + ελ1
R, where superscripts for

yi and λR refer to the level of the perturbation expansion. From Eq. (4.14), y1

must be equal to the right Frobenius-Perron eigenvector of R, denoted v here. It is

convenient to normalize v so that
∑

i vi = 1. Inserting the second-order expansion

and simplifying yields

y2
i = Hλ1

Rvi +
∑
j

Rijy
2
j +H2

∑
j,k

Rijkvjvk (4.19)

This expression may be simplified by using the left Frobenius-Perron eigenvector,

denoted u. Multiplying through by ui and summing over i, the left-hand side and
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the second term on the right-hand side of Eq. (4.19) cancel to leading order in ε.

With the remaining terms, the critical slope mc = H/λ1
R is given by

mc = −
∑

i uivi∑
i,j,k Rijkuivjvk

. (4.20)

This result may be used numerically to find the critical slope in particular cases. It

may also be used to approximate the critical slope analytically, when good approx-

imations for u and v are known, as in Refs. [8, 17, 80].

4.C Computational considerations

Because the theory presented here uses dynamical biases and the locally tree-

like approximation, it is applicable to very large values of N for sparse networks.

This offers a tremendous computational improvement over previous theoretical treat-

ments of similar systems; for example, the analysis of probabilistic Boolean networks

in Ref. [79] relies upon a state transition matrix of size 2N ×2N , which is intractable

for networks with more than a few dozen nodes. Numerical results also suggest that

finding λR is much more efficient in typical cases than direct computation of the

Hamming distance, which requires O(nict3E) operations, where nic is the number of

initial conditions used, t3 is as defined in Section 4.4, and E is the number of edges.

This is because nic and t3 must be relatively large in order to obtain good estimates

for 〈H〉.

The most computationally intensive step in the analysis is iterating Eqs. (4.5-

4.7), which requires on the order of 2d
in
i steps for each i (see below). Calculating

Rij for each edge also requires 2d
in
i steps, but only needs to be performed once. The
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eigenvalue λR may be found through power iteration, which requires only O(E) op-

erations per iteration (using sparse matrix-vector multiplication) and also converges

quickly.

Iterating Eqs. (4.5-4.7) is fast for large-N networks as long as most nodes

have din
i < 15, because few iterations are needed for convergence. In cases where

the average degree is large, direct evaluation of pi becomes intractable, but in many

cases additional simplifying assumptions can be used for such systems. For example,

for threshold networks with high in-degree, rather than enumerating all 2d
in
i possible

input states, one could use the central limit theorem to approximate the distribution

of
∑

jWijxj. In the case of moderate values of din
i , it is also worth noting that, while

a näıve approach would use din
i 2d

in
i steps to calculate the set of Pr[Xi] for node i,

this can be achieved somewhat more efficiently through the following process when

din
i > 2. Begin with a list containing the values (1 − pj) and pj for some input j.

Then for each additional input k, copy the list, multiply one copy by (1 − pk) and

the other by pk, then join the two copies. This way, all Pr[Xi] are generated in

approximately 2d
in
i +1 operations.

4.D Individual contributions to instability

A great deal of information about the effects of network interventions (as dis-

cussed at the end of Section 4.3) can be derived from the left- and right-eigenvectors

associated to λR, which may be obtained through power iteration along with λR.

Here, these eigenvectors are denoted u and v, respectively. For example, to first or-
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der, it is only possible to cause Y > 0 by initially damaging at least one node with

ui 6= 0, and only nodes with vi 6= 0 will have yi(t) > 0 when t is large. These results

are intuitive in light of the relationship between the stability of Boolean networks

and percolation explored in Section 3.3.2 and Ref. [2].

It is also possible to use u and v to estimate the contribution of an individual

node to damage spreading in the network, using the concept of dynamical impor-

tance introduced in Ref. [82]. Let ∆λR denote the change in λR that would result if

a node i were unable to spread damage to its outputs. Then ∆λR/λR ≈ uivi/u
Tv.

A similar result for edge removal is also available [82]. These results are useful for

understanding the flow of damage through a specific network, as well as for stabi-

lization in systems where there is a mechanism for correcting the states of damaged

nodes.

Another approach to intervening in a network, more applicable to gene reg-

ulatory applications such as those discussed in Section 4.1, is to silence nodes or

edges. In the theory, silencing a node would correspond to forcing pk = 0 for some

k, and silencing an edge would correspond to considering only the values of Xi in

which xj = 0 in the sums in Eqs. (4.5-4.7) and (4.13b). The change in p after such

an intervention describes its effect on the behavior of the rest of the system (i.e., for

gene regulation, the change in the expression levels of other genes), and the resulting

change in λR describes the overall effect on the stability of the system.

Given the goal of stabilizing an unstable network through a small intervention,

one could compare a number of possible interventions and choose the one which re-

sults in the smallest value of λR. When doing so, it is best to repeat the analysis of
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Section 1.6 for each modified system, rather than applying a perturbative approx-

imation, because the change in p which results from silencing a node can affect R

and λR in complicated ways. Even so, a large number of such interventions can be

compared in a computationally efficient manner by storing the values of p and v for

the original system. These can then be used as initial conditions for the iterative

processes used to find the dynamical biases and λR, decreasing the convergence time

for both processes.

Notes for Chapter 4

1Attractors which correspond to periodic or chaotic orbits in the map defined by Eqs. (4.5-4.7)

are not considered here, although they have been shown to exist in unusual cases [67, 83]. Such

cases are unlikely to correspond to biologically realistic dynamics.

2These statements follow directly from the Frobenius-Perron theorem when R is a primitive

matrix. They are also nearly always true for networks which are above the percolation threshold

without strong community structure. In this case, it is safe to assume that the network has only a

single macroscopic strongly connected component, whose associated Frobenius-Perron eigenvalue

dominates all other eigenvalues. The effects of community structure on the spectra of adjacency

matrices are discussed in detail in Ref. [84].
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Glossary of Frequently Used Notation

akl fraction of nodes with in-degree k and out-degree l
A adjacency matrix of network
bi update rule bias of i
ci index of canalizing input to i
di degree of node i

Di probability of i becoming damaged, given Xi and X̃i

E number of edges in a network
f an arbitrary update rule
Fi update rule for node i in a Boolean network
F̄i average of Fi over Ti
g universal scaling function for S
G generating function
h another universal scaling function for S
H Hamming distance
Ji the set of network inputs to i
K degree of homogeneous network
m number of candidate edges in a network growth process
M map for the time-evolution of y
N number of nodes in a network
qi sensitivity of i, or the probability of non-deletion in percolation
pi dynamical bias of i
R matrix describing damage spreading in a Boolean network
S order parameter for percolation
t time
T theoretical prediction for Y and S in stability-percolation map
Ti update rule ensemble for i in generalized semi-annealing
u left eigenvector
v right eigenvector
w complex number
W matrix of weights in a threshold network
x state of a Boolean network
x̃ state of a perturbed orbit in a Boolean network
Xi combined state of input nodes to i in orbit x

X̃i combined state of input nodes to i in orbit x̃

Xj
i equal to Xi except that the jth component is damaged

yi the probability that i is damaged
Y order parameter for stability of a Boolean network
z average degree

(continued on next page)
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Glossary of Frequently Used Notation (continued)

α the fraction of nodes in a Boolean network with XOR update rules
β critical exponent for the scaling of the order parameter
ε fraction of nodes damaged in a perturbation
ηi the probability that i is not in GOUT
κ exponent for the scaling of the maximum ∆S with N
λR the Frobenius-Perron eigenvalue for R
ξ exponent for the scaling of the maximum variance of S with N
ρ assortativity of a network
φ critical exponent for the scaling of the critical region
θi threshold of i in a threshold network
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