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Generalized Linear Mixed Models (GLMMs) extend the framework of Gener-

alized Linear Models (GLMs) by including random effects into the linear predictor.

This will achieve two main goals of incorporating correlation and allowing broader

inference. This thesis investigates estimation of fixed effects as the number of ran-

dom effects grows large. This model describes cluster analysis with many clusters

and also meta-analysis.

After reviewing currently available methods, especially the penalized likeli-

hood and conditional likelihood estimators of Jiang [14], we focus on the random

intercept problem. We propose a new estimator
ˆ̂
βw of regression coefficient and

prove that when m, the number of random effects, grows to infinity at a slower

rate than the smallest cluster sample size,
ˆ̂
βw is consistent and given the realiza-

tion of random effects, is asymptotically normal. We also show how to estimate

the standard errors of our estimators. We also study the asymptotic distribution of

Jiang’s [14] penalized likelihood estimators. In the absence of regression coefficients,



the normalized estimated intercept
√

m(â− a0) converges to a normal distribution.

Difficulties arise in establishing the conditional asymptotic normality of Jiang’s [14]

penalized likelihood estimator β̂ of regression coefficients for fixed effects in a general

GLMM.

In Chapter 4, we make an extended analysis of the 2 × 2 ×m table to show

how to verify the general conditions in Chapter 3. We compare our estimator to

the Mantel-Haenszel estimator. Simulation studies and real data analysis results

validate our theoretical results.

In Chapter 5, asymptotic normality of joint fixed effect estimate and scale

parameter estimate is proved for the case as m/N 9 0. An example was used to

verify the general conditions in this case.

Simulation studies were performed to validate the theoretical results as well

as to investigate conjectures that are not covered in the theoretical proofs. The

asymptotic theory for β̂w describes the finite sample behavior of β̂w very accurately.

We find that in the case as m/N → 0, in the random logistic and Poisson intercept

models, consistency and conditional asymptotic normality results appear to hold for

the penalized regression coefficient estimates β̂.
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Chapter 1

Introduction

This thesis is focused on asymptotic normality of fixed effect estimates in

Generalized Linear Mixed Models (GLMMs) for the canonical link function case

when the number of random effects is large. Due to the wide range of applications

of GLMMs, these models have received substantial attention during the last decade.

Although asymptotic behavior of fixed effect estimates has been well studied in linear

regression models, Generalized Linear Models (GLMs) and Generalized Estimating

Equations (GEEs), for GLMMs there is still a lot of work to do. These models and

the main idea of this thesis are addressed briefly below.

Generalized Linear Models (GLMs), originally introduced by Nelder and Wed-

derburn [23], provide a unified family of models that is widely used for regression

analysis. These models are intended to describe non-normal responses. In partic-

ular, they avoid having to select a single transformation of the data to achieve the

possibly conflicting objectives of normality, linearity and homogeneity of variance.

Important examples include binary and count data. They can be applied to a wide

array of discrete, continuous and censored outcomes. They are most commonly used

when the outcomes are independent. These models are described in detail in Section

2.1. Another important extension of GLM is the Quasilikelihood model approach

which can be defined by specifying only the relation between the mean and the
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linear predictors and between the mean and variance of observations. This model

is illustrated in Section 2.2.

However, in many applications, independence of outcomes is not a reasonable

assumption. This is particularly obvious in longitudinal studies, where multiple

measurements made on the same individual are likely to be correlated. One tech-

nique for the analysis of such general correlated data is the generalized estimating

equations (GEE) approach introduced by Liang and Zeger [37]. This approach has

the desired quality of independence between subjects while adjusting for the cor-

relation structure within subjects. These models are described in detail in Section

2.3.

We may wish to build a model that accommodates correlated data, or to

consider the levels of a factor as selected from a population of levels in order to

make inference about that population. Generalized Linear Mixed Models (GLMMs)

extend the framework of Linear Mixed Models (LMMs) and of Generalized Linear

Models (GLMs) by allowing for non-Gaussian data, nonlinear link functions and

inclusion of random effects and of correlated error. These models are described in

detail in Section 2.4.

Asymptotic normality and consistency results for fixed effect estimates have

been proved for GLMs ( e.g., Habermann [13] and Fahrmeir and Kaufmann [11]) and

also for GEEs ( e.g., Zeger and Liang [37] and Xie and Yang [35]). For GLMMs, most

work about asymptotic properties of fixed effect estimates is based on eliminating

random effects either by integrating them out (e.g., Sinha [30]) or by conditioning on

minimal sufficient statistics of random effects (e.g, Sartori and Severini [28] ). Simply

2



eliminating random effects may discard information. In addition, integrating out all

the random effects requires knowledge about the distribution of all the random

effects.

Jiang [14] extended GLMMs to generalized GLMMs by making only an expec-

tation assumption for random effects instead of a normal distribution assumption.

He divided generalized GLMMs into two cases: m/N → 0 (case 1) and m/N 9 0

(case 2) where m is the number of levels of random effects and N is the sample

size. Both m and N go to infinity. For case 1 and 2, he proposed two methods:

Penalized Generalized Weighted Least Squares (PGWLS) and Maximum Condi-

tional Likelihood (MCL). Under reasonable conditions, consistency of both fixed

and random effect estimates was proved rigorously. Jiang [14] used three examples

to illustrate those reasonable conditions. The concepts and results mentioned above

are discussed in Section 2.5.

In order to find approximate tests and confidence regions, an asymptotic nor-

mality result is needed. In Chapter 3, focusing on the random intercept problem,

we propose a new estimator
ˆ̂
βw of regression coefficients and prove that when m,

the number of random effects, grows to infinity at a slower rate than the smallest

cluster sample size,
ˆ̂
βw is consistent and given the realization of random effects, is

asymptotically normal. We also show how to estimate the normalizer and weight

matrices of our estimators. We also study the asymptotic distribution of Jiang’s [14]

penalized likelihood estimators. In the absence of regression coefficients, the normal-

ized estimated intercept
√

m(â−a0) converges to a normal distribution. Difficulties

arise in establishing the conditional asymptotic normality of the penalized likelihood

3



estimator β̂ of regression coefficients for fixed effects in a general GLMM.

In Chapter 4, we make an extended analysis of the 2 × 2 ×m table to show

how to verify the general conditions in Chapter 3. We compare our estimator to

the Mantel-Haenszel estimator. Simulation studies and real data analysis results

validate our theoretical results. In Chapter 5, asymptotic normality of joint fixed

effect estimate and scale parameter estimate is proved for the case as m/N 9 0.

An example was used to verify the general conditions in this case. In Chapter 6, in

order to check the asymptotic results of the theorems in Chapter 3 and 5, logistic

and Poisson random intercept models are simulated in case 1. For case 2, a simple

model is simulated. The Splus built-in function nlminb is used to compute the

estimates. The contents of Chapters 3-6 are new.

In Chapter 7, we summarize our theoretical and simulation results, and discuss

the potential direction of future work.

1.1 Notations.

4



Table 1.1: Notations used throughout the Thesis

Symbol Meaning

Bij b
′′
ij(ηij0) + 1

2
b
(3)
ij (η∗ij)(η̂ij − ηij0)

rij
1
2
b
(3)
ij (η∗ij)(η̂ij − ηij0)

B̃ diag(Bij)1≤i≤m , 1≤j≤ni

E∗
i

∑
j Bij

n∗ min1≤i≤m ni

C∗
λ1

−λ1/(λ1

∑
i(E

∗
i )
−1 + m)

η̂ij âi + xt
ijβ̂i

ˆ̂ηij âi + xt
ij

ˆ̂
βw
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Table 1.2: Table 1.1 (Continued): Notation used throughout the Thesis

Symbol Meaning

DN(γ) −∂2lP (γ)/∂2γ

gN(γ) ∂lP (γ)/∂γ

1ni
the ni × 1 vector whose elements are all 1′s

‖u‖ = (
∑n

i=1 u2
i )

1/2
vector norm for vector u ∈ Rn

‖A‖ = sup‖u‖=1 |utAu| = maxj(|λj|) matrix norm for a symmetric matrix A

λmax(A) = sup‖u‖=1 utAu largest eigenvalue of A

λmin(A) = inf‖u=1‖ utAu smallest eigenvalue of A

A =




A11 A12

A21 A22


 Partitioned matrix A

A11.2 = A11 −A12A
−1
22 A21 Schur component of A11

For notational simplicity, we let b
′′
ij = b

′′
(ηij0), b′ij = b′(ηij0), DN = DN(γ0)

and gN = gN(γ0), ect. where ηij0 and γ0 are the true values of ηij and γ respectively.

A1/2 or AT/2 represents a left or right square root. A− represents generalized inverse.
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Chapter 2

Literature Review

2.1 Generalized Linear Models

Nelder and Wedderburn [23] introduced Generalized Linear Models (GLMs)

as a unifying class of models which are widely used in regression analysis. Section

2.1.1 presents their original definition and the extended definition from Fahrmeir

and Kaufmann [11]. Asymptotic properties of estimates are described in Section

2.1.2.

2.1.1 Definitions

GLMs were originally described as follows: A vector of observations y having

n components is assumed to be a realization of a random variable Y whose compo-

nents are independently distributed with means µi, i = 1, . . . , n. Assume that the

components Yi are independent and have a distribution in the exponential family,

taking the form

f(yi; θi, φ) = exp

{
yiθi − b(θi)

a(φ)
+ c(yi, φ)

}
(2.1)

for some specific functions a(·), b(·) and c(·). Then

E(Yi) = µi = b′(θi),

Var(Yi) = b
′′
(θi)a(φ).

7



Define g(µi) = xT
i β = ηi, where β = (β1, . . . , βp)

T is a vector of unknown para-

meters, xi
T = (xi1, . . . , xip) is a vector of covariates and g is a known link function

(since it links together the mean of yi and the linear form of predictors).

The large sample theory of GLM’s is derived by Fahrmeir and Kaufmann [11].

They consider GLM’s with the following structure and notations.

(i) The {yi} are independent q-dimensional random variables with densities

f(yi|θi) = c(yi) exp(θT
i yi − b(θi)) (2.2)

of the natural exponential type, θi ∈ Θ0 (assume Θ ∈ <2 to be the natural

parameter space, that is, the set of all θ satisfying 0 <
∫

c(y) exp(θTy)dy <

∞). Then Θ is convex, and in the interior Θ0 of Θ, all derivatives of b(θ)

and all moments of y exist (assume Θ0 6= ∅). In particular we have E(y) =

∂b(θ)/∂θ ≡ µ(θ) ∈ <2 and Cov(y) = ∂2b(θ)/∂θ∂θT ≡ Σ(θ), a q × q matrix.

(ii) The deterministic matrix xi influences yi in the form of a linear combination

ηi = xT
i β, where β is a p-dimensional parameter.

(iii) The linear combination ηi is related to the mean µ(θi) of yi by the injective

link function g : M → <q where M ∈ <q is the range of the function µ(θ),

ηi = g(µ(θi)). One can write θi = u(xT
i β), where u is the injective function

(g ◦ µ)−1, mapping < into Θ.

Here (2.2) is different from (2.1) because the response variable may be a vec-

tor rather than a scalar and (2.1) has an additional nuisance parameter φ. The

maximum likelihood estimating equations are unchanged by the presence of a(φ),
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but the information matrix has to be multiplied by an unknown scale factor a(φ),

which can be estimated consistently. Thus, without loss of generality, Fahrmeir and

Kaufmann [11] define GLM’s using the simpler form (2.2). By allowing y to be a

vector, Fahrmeir and Kaufmann [11] can accommodate multivariate responses, such

as multinomial data.

Then the loglikelihood of a sample y1, . . . , yn is given by

ln(β) =
n∑

i=1

(θT
i yi − b(θi))− Cl (2.3)

where θi = u(xT
i β), i = 1, · · · , n and Cl does not depend on β.

Setting µi(β) = µ(u(xT
i β)), Σi(β) = Σ(u(xT

i β)), Ui(β) = [∂u(xT
i β)/∂η]T

and differentiating ln(β), we find the score function sn(β) and the information ma-

trix Fn(β) to be

sn(β) = ∂ln(β)/∂β =
n∑

i=1

xiUi(β)(yi − µi(β)) (2.4)

Fn(β) = Cov[sn(β)] =
n∑

i=1

xiUi(β)Σi(β)UT
i (β)xT

i (2.5)

Further differentiation yields

Hn(β) = −∂2ln(β)/∂β∂βT . (2.6)

It is easy to see that E(sn(β)) = 0 and E(Hn(β)) = Fn(β).

For canonical link functions, these expressions simplify considerably:

sn(β) =
n∑

i=1

xi(yi − µi(β)), Fn(β) =
n∑

i=1

xiΣi(β)xT
i , Hn(β) = Fn(β).

The true parameter is denoted by β0, and Fn(β0) is written as Fn for simplicity.

Similarly we write sn and Hn, etc.
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2.1.2 Asymptotics

Based on maximum likelihood, under reasonable conditions, asymptotic ex-

istence, consistency and asymptotic normality of fixed effect estimates are proved

by Haberman [13] and Fahrmeir and Kaufmann [11]. The details of their work are

presented in the following.

Haberman [13] provides conditions for the asymptotic existence of the MLE by

use of the general theory for exponential models derived by Berk [2] and Barndorff-

Nielsen [4]. Here asymptotic properties of MLE are considered for canonical link

functions when the dimension of β grows to infinity. The main idea is that the

parameter space grows with the sample size, but one only wants to estimate a linear

functional of the natural parameter which is determined by a finite dimensional sub-

space of the parameter space. Suppose κ = κ(θ) is the linear functional and κ̂n is the

unique MLE of κ(θ), and σn(κ) is the asymptotic standard deviation of κ̂n. Under

some technical conditions , consistency results like σn(κ) →p 0 and κ̂n →p κ(θ) as

n → ∞ are established. Based on Newton’s method, κ̂n is proved to be asymp-

totically normal with asymptotic mean κ(θ), meaning that (κ̂n − κ(θ))/σn(κ) →d

N(0, 1). Asymptotic confidence intervals are also considered since the MLE σ̂n(κ) of

σn(κ) is a consistent estimate of σn(κ) (e.g., σ̂n(κ)/σn(κ) →p 1). There are about six

different inner products appearing back and forth in Haberman’s [13] paper which

makes it intractable and not easily understood. Fahrmeir and Kaufmann [11] present

mild general conditions which, respectively, assure weak or strong convergence or

asymptotic normality of the MLE for both canonical and noncanonical link function
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cases, where the dimension of β is fixed.

In the canonical link function case, the normality condition, though obtained

by a different approach, is closely related to one of Haberman’s [13] conditions. The

assumptions of Fahrmeir and Kaufmann [11] are simpler to interpret and check and

they seem slightly weaker. In addition to regularity conditions on the parameter

space, link function and covariates, in order to derive conditions for consistency and

asymptotic normality of MLE, they define a sequence Nn(δ), δ > 0, of neighborhoods

of β0 (the true value of β) as

Nn(δ) = {β : ‖FT/2
n (β − β0)‖ ≤ δ}

where n = 1, 2, · · · and A1/2 is a left square root of the positive definite matrix A

and AT/2 denotes (A1/2)T so that A1/2AT/2 = A. Their conditions are:

(D) Divergence: λmin(Fn) →∞.

(C) Boundedness from below: for all δ > 0, Fn(β) − cFn is positive semidefinite,

β ∈ Nn(δ), n ≥ n1 with some constants n1 = n1(δ), c > 0 independent of δ.

(N) Convergence and continuity: for all δ > 0, maxβ∈Nn(δ) ‖Vn(β)− I‖ → 0, where

Vn(β) = F
−1/2
n Fn(β)F

−T/2
n is the normed information matrix.

(Sδ) Boundedness of the eigenvalue ratio: there is a neighborhood N ⊂ B of β0

such that

λmin(F(β)) ≥ c(λmax(Fn))1/2+δ, β ∈ N, n ≥ n1.

where B, the set of admissible values of β, is open in <p and additionally,

convex for canonical link functions and c > 0, δ > 0, n1 are some constants.

11



Fahrmeir and Kaufmann’s [11] main theorems for the canonical link function case

are the following:

Theorem 2.1.1. Under (D) and (C), there is a sequence {β̂n} of random variables

with

(i) P [sn(β̂n) = 0] → 1 (asymptotic existence),

(ii) β̂n →p β0 (weak consistency).

Theorem 2.1.2. Under (D) and (Sδ) with a δ > 0, there is a sequence {β̂n} of

random variables and a random number n2 with

(i) P (sn(β̂n) = 0 for all n ≥ n2) = 1,

(ii) β̂n →a.s. β0 (strong consistency).

Lemma 2.1.3. Under (D) and (N), the normed score function is asymptotically

normal:

F−1/2
n sn →d N(0, I).

Theorem 2.1.4. Under (D) and (N), the normed MLE is asymptotically normal:

FT/2
n (β̂n − β0) →d N(0, I).

Remark: Because B us convex and Fn(β) is positive definite, there is at most

one zero of the score function. Lemma 2.1.3 and Theorem 2.1.4 hold for any version

of the matrix square root.

Remark: In practice the normalizing matrix F
T/2
n must be replaced by F

T/2
n (β̂n).

Fahrmeir and Kaufmann [11] state that F
T/2
n (β̂n)(β̂n − β0) →d N(0, I) if the fol-

lowing condition holds
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(Q) For all δ > 0, supβ∈Nn(δ) ‖F1/2
n F

1/2
n (β)− I‖ → 0

They state that (Q) =⇒ (N). If F
1/2
n is the Choleski square root, then (N) =⇒ (Q).

Likewise, (N) =⇒ (Q) if λmax(Fn)/λmin(Fn) ≤ c < ∞, n ≥ n0 for some constants c

and n0.

They also verify these general conditions in several examples, including Poisson

model, response with a bounded range, regressor with compact range and stochastic

regressor.

Noncanonical link functions enlarge the class of GLMs but they cause ad-

ditional difficulties in establishing consistency and asymptotic normality, mainly

because of the existence of the MLE can not be guaranteed except in special cases

(for a number of important examples see Wedderburn [33]). A local maximum of

the likelihood in a neighborhood of the true β0 does not necessarily define a global

maximum. Here consistency and asymptotic normality results only apply to a se-

quence {β̂n} of solutions of maximum likelihood equations sn(β) = 0. The same

line of arguments in the canonical link function case is followed in the proof, but

only for conditions (C), (D), (N), (Sδ) with Fn(β) replaced by Hn(β).

2.2 Quasilikelihood

Another important extension of GLMs is the Quasilikelihood model approach

which was introduced by Wedderburn [34]. To define a likelihood one has to specify

the form of distribution of the observations. It may be difficult to decide what

distribution the observations follow, but to define a quasilikelihood function one
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needs only to specify a model for the mean and a relation between the mean and

variance of the observations.

This is is what makes quasi-likelihood useful. By using the chain rule we can

rewrite Equation (2.4) in the following form

sn(β) = ∂ln(β)/∂β =
n∑

i=1

xi
∂µi

∂η

∣∣∣η=xT
i β Σ−1

i (β)(yi − µi(β)). (2.7)

We can see that the score function in (2.7) depends on the parameters only

through the mean µi(β) and Σi(β) = Σi(µi(β)), the variance function.

Fahrmeir [12] extended the analysis of correctly specified GLM’s to misspec-

ified GLM’s, where misspecification occurs if the true density of response variable

is not of the assumed exponential type, and/or the true expectation yi can not be

represented by µ(u(xt
iβ)).

He followed the same line argument as Fahrmeir and Kaufmann [11] and

proved consistency and asymptotic normality of Maximum Quasilikelihood Esti-

mators (MQLE) under very similar conditions. Fahrmeir [12] also verified these

conditions in several examples like regressors with a compact range, response y

with bounded range and univariate models, etc.

2.3 Generalized Estimating Equations

The class of GLM’s (Nelder and Wedderburn [23]) plays a central role in re-

gression problems with discrete or nonnegative responses. This class of regression

models was extended by Liang and Zeger [37] to analyze longitudinal or batch cor-

related data. The Liang and Zeger approach is known as Generalized Estimating
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Equations (GEE). The definition of GEE is presented in Section 2.3.1. Several

approaches to the asymptotic properties of GEE are summarized in Section 2.3.2.

2.3.1 Definition

The GEE model is the following: Suppose (yij,xij) are observations for the

jth measurement on the ith subject, j = 1, 2, . . . , ni and i = 1, 2, . . . , m, where yij

is a scalar response, xij is a p×1 covariate vector, and ni is the cluster size. Assume

that the observations on different subjects are independent and the observations

on the same subjects are correlated. For i = 1, . . . , m, let yi = (yi1, . . . , yini
)T and

Xi = (xi1, . . . ,xini
)T . Liang and Zeger [37] used a generalized linear model to model

the marginal density of yij (with respect to a σ-finite measure ξ):

f(yij|xij, β, φ) = exp[{yijθij − b(θij) + c(yij)}/φ]. (2.8)

As in Section 2.1, θij = u(ηij), u is a known injective function mapping < into Θ and

ηij = xT
ijβ. The vector β contains the regression parameters of interest, and φ is a

nuisance scale parameter. Under such a model specification, the first two moments

of yij are given by

µij(β) = E(yij|xij, β, φ) = b′(θij), σ2(β) = Cov(yij|xij, β, φ) = b
′′
(θij)φ. (2.9)

Let g(t) = (b′ ◦u)−1(t); then g(µij(β)) = xt
ijβ. The function g(t) is the link function

and its inverse function h(s) = (b′ ◦ u)(s) is called the inverse link function. Of

importance are the canonical link functions, where u(s) = s, so g(t) = (b′)−1(t) and

h(s) = b′(s).
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Let µi(β) = E(yi) = (µi1(β), . . . , µini
(β))T and Σi(β) = Cov(yi). We

write Ai(β) = diag(σ2
i1(β), . . . , σ2

ini
(β)) and ∆i(β) = diag(u′(xT

i1β), . . . , u′(xT
ini

β)),

where, for any vector v, diag(v) represents a diagonal matrix whose diagonal ele-

ments are the elements of v. Let Di(β) = Ai(β)∆i(β)Xi and Vi(β, α) = A
1
2
i (β)Ri(α)A

1
2
i (β).

Here Ri(α) is the “working” correlation matrix which one can choose freely and

which may possibly contain a nuisance parameter (or parameter vector) α. If Ri(α)

is equal to the true (often unspecified) correlation matrix Ri, then Vi(β0, α) =

Σi(β0). Liang and Zeger [37] proposed solving the following equations:

gnm(β) =
m∑

i=1

gni,i =
m∑

i=1

Di(β)TV−1
i (β, α)(yi − µi(β)) = 0, (2.10)

which they called “generalized estimating equations.” Let λmin(T) (λmax(T)) denote

the smallest (largest) eigenvalue of the matrix T, and define

Mnm(β) = Cov(gnm(β))

=
m∑

i=1

DT
i (β)V−1

i (β, α)Σi(β)V−1
i (β, α)Di(β), (2.11)

Dnm(β) = −∂gnm(β)

∂βT
, (2.12)

Hnm(β) =
m∑

i=1

DT
i (β)V−1

i (β, α)Di(β). (2.13)

Let

gnm = gnm(β0), Hnm = Hnm(β0),

and

Mnm = Mnm(β0), Fnm = HnmM−1
nmHnm.
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2.3.2 Asymptotics

The GEE method allows the nuisance parameter to be determined from the

sample, which extends the flexibility and applicability of the method. Furthermore,

the covariance matrices Σi(β) can be estimated from the data, so that large-sample

testing and interval estimation is possible. In the past, most research in GEE

has been directed to methodological development and modeling issues. Most of

the work relies on the asymptotic results presented by Liang and Zeger [37], in

which exact conditions are not specified. Xie and Yang [35] developed a set of

(information matrix based) general conditions, which leads to the proof of weak and

strong consistency as well as asymptotic normality. In both papers, the dimension

of β is fixed.

Liang and Zeger [37] claim consistency and asymptotic normality of GEE

estimator under regularity conditions when the number of independent subjects goes

to infinity and the number of observations on each subject stays bounded. Exact

conditions are not specified. Efficiency is improved if the “working” correlation is

correct or close to correct.

Xie and Yang [35] present asymptotic properties of the GEE estimator β̂nm in

each of three distinct large sample settings:

(i) m →∞ and n = n(m) = max1≤i≤m ni is uniformly bounded for all m,

(ii) m is bounded but n →∞,

(iii) n →∞ as m →∞,
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where m is the number of independent clusters and ni is the cluster size.

Liang and Zeger [37] only consider large sample setting (i). Most of the con-

ditions Xie and Yang [35] derived for consistency and asymptotic normality of GEE

estimator parallel the elegant conditions presented by Fahrmeir and Kaufmann [11].

They also ignore the nuisance parameter φ in their equations (2.10) and (2.11),

following (2.4) and (2.5) of Fahrmeir and Kaufmann [11]. Also for simplicity, they

do not study the effect of estimating the nuisance parameter α that appears in the

working correlation matrix Ri(α).

In addition to regularity conditions on the parameter space, link function

and covariates, Xie and Yang [?] propose the following conditions for asymptotic

behaviors of GEE estimation:

(Iw) λmin(Fnm) →∞.

(Lw) There exists a constant c0 > 0, for any r > 0 such that

P
(DT

nm(β)M−1
nmDnm(β) ≥ c0Fnm and

Dnm(β) is nonsingular , for all β ∈ Bnm(r)) → 1

where Bnm(r) = {β : ‖M− 1
2

nmHnm(β − β0)‖ ≤ r}.

(I∗w) (τnm)−1λmin(Hnm) →∞, where τnm = max1≤i≤m{λmax(R
−1
i (α)Ri)}.

(L∗w) There exists a constant c0, for any δ > 0 and r > 0, such that

P (Dnm(β) ≥ c0Hnm and

Dnm(β) is nonsingular, for β ∈ B∗
nm(r)) → 1
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where B∗
nm(r) = {β : ‖H

1
2
nm(β − β0)‖ ≤ (τnm)

1
2 r}.

(CC) For any given r > 0 and δ > 0

P

(
sup

β∈B∗nm(r)

‖H− 1
2

nmDnm(β)H
− 1

2
nm − I‖ < δ

)
→ 1.

The matrix norm is the Euclidean matrix norm and their main theorems are the

following:

Theorem 2.3.1. Under conditions (Iw) and (Lw), there exists a sequence of random

variables β̂nm, such that

P (gnm(β̂nm) = 0) → 1

and

β̂nm → β0 in probability.

Theorem 2.3.2. The results of Theorem 2.3.1 hold if (Iw) and (Lw) are replaced

by (I∗w) and (L∗w), respectively.

Theorem 2.3.3. Suppose that conditions (Iw), (Lw) and (CC) hold, or that condi-

tions (I∗w) and (CC) hold. Then there exists a sequence of solutions β̂nm to the GEE

equation in B∗
nm(r) such that M

− 1
2

nmHnm(β̂nm−β0) and M
− 1

2
nmgnm are asymptotically

identically distributed.

For t > 0, let ψ(t) be a positive nondecreasing function such that limt→∞ ψ(t) =

∞ and tψ(t) is a convex function. Xie and Yang [35] use ψ(t) to establish Lindeberg

conditions. Examples include ψ(t) = t1/δ, δ > 0 and ψ(t) = exp(t).
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Lemma 2.3.4. Under the GEE setting, suppose there exist a constant K (indepen-

dent of n) and an integer n0 such that, for j = 1, 2, . . . , ni and i = 1, 2, . . . , m, when

n > n0

E[y∗2ij ψ(y∗2ij )] ≤ K

where y∗i = (y∗i1, . . . , y
∗
imi

)T = A
− 1

2
i (yi − µi). In addition, for any ε > 0,

cnmλ̃nmn

[
ψ

(
ε2

cnmλ̃nmnγ
(D)
nm

)]−1

→ 0

Then, when m →∞, we have

M
− 1

2
nmgnm → N(0, I) in distribution

where cnm = λmax(M
−1
nmHnm),

γ(D)
nm = max

1≤i≤m
λmax(H

− 1
2

nmDT
i V−1

i DiH
− 1

2
nm).

Strong consistency of the GEE estimator can be proven under the following

condition.

(Ls) In a neighborhood of β0, say N , there exists a constant c0 > 0 (independent

of m) and δ > 0 such that when m →∞.

λmin(Dnm(β)TM−1
nmDnm(β)) ≥ c0(log m)2(1+δ)

and Dnm(β) is nonsingular a.s. for β ∈ N .

Theorem 2.3.5. Suppose gni,i, i = 1, . . . , m, the summands of the GEE score

function gnm, form a infinitesimal double array sequence. Under condition (Ls),

there exist a sequence of random variables β̂nm and a random number n0, such that

P (gnm(β̂nm) = 0, for all n ≥ n0) = 1
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and when m →∞

β̂nm → β0 a.s.

Also they stated that when m is bounded or n goes to infinity too fast, as-

ymptotic normality of gnm or β̂nm does not hold without specifying the dependence

structure on each subject. They even point out that if we put Ri = I, gnm(β) is

asymptotically normally distributed if and only if n/m → 0. Also for settings (i)

and (iii) when n is bounded above or tends to infinity at a limited rate as m →∞,

they present a set of sufficient conditions to ensure asymptotic normality of gnm and

β̂nm.

They verify these general conditions for some cases of practical importance,

such as marginal GLM with compact covariate set, marginal Poisson regression

model and marginal GLMs with bounded responses (binomial or polytomous re-

gression models).

A drawback to the GEE approach is that it assumes all subjects have the same

covariance structure. The “working” correlation matrix is not necessarily an essen-

tial feature of GEE. Jiang [16] proposed a nonparametric quasi-likelihood approach

for getting a nonparametric estimator of the unknown covariance matrices. Chiou

and Müller [7] proposed Estimated Estimating Equations (EEE) whose covariance

structure is modeled nonparametrically as a function of the mean and therefore is

an essential component that is part of the model fitting.

The difference between the approaches of Jiang [16] and Chiou and Müller [7]

is that the mean function is correctly specified in Jiang [16] but unknown in Chiou
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and Müller [7]. It has been shown by Jiang [16] that the estimator obtained from

the nonparametric quasi-likelihood approach has an asymptotic normal distribution,

the same as the estimator obtained from quasi-likelihood approach with true covari-

ance matrix. Moreover, the rate of convergence has been established. Chiou and

Müller [7] gave a sketchy proof on consistency and asymptotic normality of their

EEE estimator along the lines of McCullagh and Nelder [19].

2.4 Generalized Linear Mixed Models

Generalized Linear Mixed Models (GLMM’s) are a natural extension of GLM

by including random effects. It is usually assumed that the random effects have

a multivariate normal distribution whose variance components are to be estimated

from the data. In Section 2.4.1 the definition of GLMM is presented and some

asymptotic results are discussed in Section 2.4.2.

2.4.1 Definitions

The structure of GLMM’s (McCulloch and Searle [22]) is the following:

The response vector y is typically, but not necessarily, assumed to consist of

conditionally independent elements, each with a distribution with density from the

exponential family:

yi|α ∼ independent, fYi|α(yi|α)

fYi|α(yi|α) = exp{[yiθi − b(θi)]/a(φ) + c(yi, φ)}.
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E[yi|α] = µi

g(µi) = xt
iβ + zt

iα = ηi.

Here, g(·) is a known function, called the link function, xt
i is the ith row of the

model matrix for the fixed effects, and β is the fixed effects parameter vector. To

that specification we have added zt
i, which is the ith row of the model matrix for

the random effects, and α, the random effects vector. To complete the specification

we assign a distribution to the random effects:

α ∼ fα(α|D)

E(α) = 0

where D represents the parameters governing the distribution of α. Often f(α|D)

is multivariate normal and D is the covariance matrix.

In GLMM, the canonical parameter θi is related to the covariate by θi = θ(ηi).

When θi = ηi, the link is said to be the canonical link.

2.4.2 Estimation approaches

According to Jiang [14], the GLMM setup is divided into two cases: the case

where there is enough information about the random effects and the case where

there is not. The first case is characterized by m/N → 0 (case 1), while the second

by m/N 9 0 (case 2), where m is the dimension of the random effects and N is the

sample size.

In case 1 when the dimension of fixed effects is fixed, Sartori and Severini [28]

extend Davison’s [9] conditional likelihood approach for GLMs to GLMMs. The
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Conditional Maximum Likelihood Estimate (CMLE) is defined by Andersen [1] in

the following way:

To describe the situation Neyman and Scott [24] introduced the concept of

structural and incidental parameters as follows. Consider a sequence of independent

random variables X1, X2, X3, . . . The distribution of Xi depends on the parameters

β and τi, where the value of β is the same, independent of i, while the value of

τi changes with i. Then β is called a structural parameter and the τ ’s incidental

parameters.

Andersen [1] discussed a general method for obtaining consistent estimates for

a structural parameters β of fixed dimension in the presence of an increasing number

of incidental parameters. He eliminated the incidental parameters by considering

the conditional distribution given minimal sufficient statistics for the τ ’s. The value

of β that maximizes this conditional distribution is then called the Conditional

Maximum Likelihood Estimate (CMLE) for β.

Sartori and Severini [28] showed that the conditional likelihood function is

valid for any distribution of the random effects. Hence, the inferences about the

fixed effects are insensitive to misspecification of the random effect distribution.

Furthermore, Andersen [1] showed that the convergence of the normalized β̂ to a

normal distribution holds given the random effects. Hence, the asymptotic normality

of β̂ is valid for any random effect distribution.

Li, Lindsay and Waterman [18] considered a rectangular array asymptotic

embedding for multistratum datasets, in which both the number of strata and the

number of within-stratum replications increase, and at the same rate. They pointed
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that under this embedding the MLE is consistent but may not be efficient owing to a

non-zero mean in its asymptotic normal distribution. By using a projection operator

on the score function, an adjusted MLE can be obtained that is asymptotically

unbiased and has a variance that attains the Cramer-Rao lower bound. The adjusted

MLE can be viewed as an approximation to the conditional MLE.

In case 2 with fixed dimension of fixed effects, Sinha [30] develops a technique

for finding a Robust Maximum Likelihood (RML) estimate of the model parame-

ters in GLMM’s by using Huber’s ψ function and the Mahalanobis distance, which

appears to be useful in downweighting the influential data points when estimating

the parameter. The asymptotic properties of RMLE are investigated under regu-

larity conditions. Sinha [30] also proposed a Robust Monte Carlo Newton-Raphson

(RMCNR) algorithm for fitting GLMM’s to avoid the computational problems in-

volving high-dimensional integrals. RMCNR can be considered as a modification of

the Monte Carlo Newton-Raphson (MCNR) method of McCulloch [21].

Breslow and Clayton [8] considered two closely related approximate methods

of inference in GLMM’s: Penalized Quasi-likelihood (PQL), which is based on in-

tegrated quasi-likelihood for integral approximation, and Marginal Quasi-likelihood

(MQL). The major difference between those two is that PQL has E(y|α) = h(XT β+

ZT α) in which α is a vector of random effects and MQL only has E(y) = h(XT β).

Lee and Nelder [17] developed a joint likelihood, called h-likelihood, for Hier-

archical Generalized Linear Models (HGLMs) which allows extra error components

in the linear predictors of GLMM’s. In order to get a marginal likelihood, one

has to integrate out the random effects from the joint likelihood. However, this
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integration is often quite intractable and at the same time it makes random effects

nonestimable. By contrast the h-likelihood is easily available and avoids the need for

burdensome integration. Under appropriate conditions, Lee and Nelder [17] showed

that a random effect MHLE (Maximum h-likelihood estimator) is an asymptotically

best unbiased predictor and that a fixed effect MHLE is asymptotically efficient as

the marginal MLE. With the h-likelihood, the scaled deviance test and test statistics

for fixed and random effects offer a simple unified framework of analysis. They also

proposed an extended quasi-h-likelihood and several algorithms.

2.4.3 Random intercept model (canonical link)

The penalized methods proposed by Jiang [14] are discussed in detail in Section

2.5 and we have the following important case of GLMM.

Jiang [14] considers a special case of GLMM in which the responses are clus-

tered into groups with each group associated with a single random effect (possibly

vector valued). Suppose that given unobservable random vectors α1 , . . . , αm satis-

fying E(αi) = 0 the responses yij, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, (ni ≥ 1) are independent

with E(yij|α) = b′ij(ηij), where bij(·) is differentiable. Write,

ηij = a + xt
ijβ + zt

iαi

where a is an unknown intercept, β = (βk)1≤k≤s (s is fixed) is an unknown vector

of regression coefficients, and xij = (xijk)1≤k≤s and zi are known vectors. Such

models are useful, for example, in the context of small-area estimation in which
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αi represents a random effect associated with the ith selected area. Here we are

interested in the estimation of the fixed effect a, βk, 1 ≤ k ≤ s, and the “area-

specific” random effects vi = zt
iαi, 1 ≤ i ≤ m. Therefore, we may assume that in

the above model ηij has the following expression:

ηij = a + xt
ijβ + vi

where v1, . . . , vm are random variables with E(vi) = 0. Note that here we regard

ai = a + vi as a random intercept.

Logistic 2×2×m table is an important example in this case and it is modeled

as logitP (yij = 1|αi) = αi + xijβ where αi is the random effect, β is the common

log odds ratio and xij=0 or 1.

2.5 Generalized GLMM (canonical link function case)

In order to apply GLMM, one has to know the distribution of random effects.

In fact, in many problems little is known about the distribution of random effects.

Therefore, it is of practical interest to develop methods and models that do not

require strong distributional assumptions. In Section 2.5.1 the definition of gener-

alized GLMM is given. Jiang [14] proposed methods called Penalized Generalized

Weighted Least Squares (PGWLS) and Maximum Conditional Likelihood Estimate

(MCLE) which are discussed in Sections 2.5.2 and 2.5.3 respectively. Jiang’s [14]

consistency results are summarized in Section 2.5.4.
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2.5.1 Definitions

Jiang [14] generalized the definition of GLMM’s without assuming distribu-

tions of random effects and yi by conditioning on random effects in the following

way.

Suppose that, given a vector α = (αk)1≤k≤m of unobservable random variables

(the random effects) satisfying

E(α) = 0, (2.14)

the responses y1, . . . , yN are independent with conditional expectation

E(yi|α) = b′i(ηi) (2.15)

where bi(·) is a differentiable function. Let suppose

ηi = xt
iβ + zt

iα (2.16)

where β = (βj)1≤j≤p is a vector of unknown constants (the fixed effects), and xi =

(xij)1≤j≤p, zi = (zik)1≤k≤m are known vectors, 1 ≤ i ≤ N . In vector notation,

η = Xβ + Zα.

2.5.2 Penalized Generalized Weighted Least Squares in Case 1

The method of maximum likelihood is widely used for analyzing GLMMs.

A full maximum likelihood analysis requires numerical integration techniques to

calculate the log-likelihood and also the distribution of random effects needs to be

known. Jiang [14] proposed a method of inference which in many ways resembles
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the method of Least Squares (LS) in linear models and relies on weak distributional

assumptions about random effects.

Assume without loss of generality that rank (X) = p and no column of Z is

0. In linear models (LMs), which correspond to (2.15) and (2.16) with bi(ηi) = η2
i /2

and m = 0 (i.e., there are no random effects), a well-known method is weighted least

squares (WLS), which defines the estimate of β as the minimizer of

N∑
i=1

wi(yi − ηi)
2, (2.17)

where wi, 1 ≤ i ≤ N , are weights, or equivalently, the maximizer of

N∑
i=1

wi

(
yiηi − η2

i

2

)
. (2.18)

A straightforward generalization of this method to the case of GLMM would suggest

the maximizer of the following function as the estimates of β and α:

N∑
i=1

wi(yiηi − bi(ηi)). (2.19)

However, conditionally, the individual fixed and random effects may not be identifi-

able. In LM there are two remedies when the identifiability problem arises, namely,

reparameterization and constraints. We shall, for now, focus on the latter. A set of

linear constraints on α may be expressed as Pα = 0 for some matrix P. By La-

grange’s method of multipliers, maximizing (2.19) subject to Pα = 0 is equivalent

to maximizing
N∑

i=1

wi(yiηi − bi(ηi))− λ1

2
‖Pα‖2 (2.20)

without constraint, where λ1 is an additional variable. On the other hand, for fixed

λ1 the last term in (2.20) may be regarded as a penalizer. The only thing that
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needs to be specified is the matrix P. For any matrix M and vector space V, let

B(V) = {B : B is a matrix whose columns constitute a base for V}; N (M) = the

null-space of M = {v : Mv = 0}; PM = M(MtM)−Mt, and PM⊥ = I − PM. Let

A ∈ B(N (PX⊥Z)) so that PX⊥ZA = 0. We define the penalized generalized WLS

(PGWLS) estimate of γ = (β, α) as the maximizer of

lP (γ) =
N∑

i=1

wi(yiηi − bi(ηi))− λ1

2
‖PAα‖2. (2.21)

where λ1 is a positive constant. The notation lP is used because (2.21) may also be

viewed as a penalized conditional quasi-log-likelihood.

Consider the expression (2.21). The reason that one needs a penalizer here is

because the first term, lC(γ) =
∑N

i=1 wi(yiηi − bi(ηi)), depends on γ = (β, α) only

through η. However, γ can not be identified by η, so there may be many vectors γ

for which η = Xβ + Zα is the same. The idea is therefore to consider a restricted

space S = {γ : PAα = 0} such that within this subspace, γ is uniquely determined

by η.

Case 1 Consistency Results.

Jiang [14] uses the following notations:

Let B = (bij)1≤i≤k, 1≤j≤l be a matrix, v = (vi)1≤i≤k a vector and V a vector

space. Define ‖v‖ = max1≤i≤k |vi|; ‖B‖ = λ
1
2
max(BtB), ‖B‖R = (tr(BtB))

1
2 , ‖B‖∞ =

max1≤i≤k

∑l
j=1 |bij|; BV = {Bv : v ∈ V}, λmin(B)|V = infv∈V\{0}(vtBv/vtv).

Jiang [14] presents consistency results for case 1 in the following Theorem 2.5.2

and 2.5.4 and Corollary 2.5.3.

Theorem 2.5.1. Let b
′′
i (·) be continuous, let max1≤i≤N{w2

i Evar(yi|α0)} be bounded
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and let

1

N

[
( max
1≤u≤p

|Xu|2)‖(XtX)−1XtZ‖2 + ( max
1≤k≤m

|Zk|2)
]
|PAα0|2 →p 0. (2.22)

Let cN , dN > 0 be any sequences such that lim sup ‖β0‖/cN < 1 and P (‖α0‖/dN <

1) → 1, Mi ≥ cN

∑p
u=1 |xiu|+ dN

∑m
k=1 |zik|, 1 ≤ i ≤ N and γ̂ = (β̂, α̂) be the

maximizer of lP over Γ(M) = {γ : |ηi| ≤ Mi, 1 ≤ i ≤ N}. Then

1

N

(
p∑

u=1

|Xu|2(β̂u − β0u)
2 +

m∑

k=1

|Zk|2(α̂k − α0k)
2

)
→p 0 (2.23)

provided that

p + m

N
= o(ω2) (2.24)

where

ω = λmin(W
−1HW−1)|WS min

1≤i≤N
{wi inf

|h|≤Mi

b
′′
i (h)}

with

W = diag(|X1|, . . . , |Xp|, |Z1|, . . . , |Zm|).

Corollary 2.5.2. Let the conditions of Theorem 2.5.2 [including (2.24)] hold.

(i) Suppose p is fixed, and

lim inf λmin(X
tX)/N > 0 (2.25)

Then β̂ →p β0.

(ii) Suppose Z = (Z(1) · · ·Z(q)) and correspondingly, α = (α1, . . . , αq), where

αu = (αuv)1≤v≤mu, and each Z(u) is a standard design matrix in the same sense as

for U defined below Lemma 2.5.1, 1 ≤ u ≤ q. Let Zuv be the vth column of Z(u) and

nuv = |Zuv|2 = the number of appearances of the vth component of αu.
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Then

(
mu∑
v=1

nuv

)−1 mu∑
v=1

nuv(α̂uv − α0uv)
2 →p 0, 1 ≤ u ≤ q, (2.26)

where α̂uv and α0uv, 1 ≤ v ≤ mu, 1 ≤ u ≤ q are the corresponding components of α̂

and α0, respectively.

For the special case of GLMM described in Section 2.4.3 as a random intercept

model, the following theorem presents the consistency results:

Theorem 2.5.3. Let b
′′
ij(·) be continuous; let w2

ijEvar(yij|v0), |xij| be bounded, let

lim inf(λN/N) > 0 where λN = λmin(
∑m

i=1

∑ni

j=1(xij − xi)(xij − xi)
t) with xi =

n−1
i

∑ni

j=1 xij. and let v0 →p 0. Let cN , dN > 0 be such that lim sup |a0|∨|β0|/cN < 1

and P (‖v0‖/dN < 1) → 1, Mij ≥ cN(1 + |xij|) + dN and γ̂ = (â, β̂, v̂) be the maxi-

mizer of lP over Γ(M) = {γ : |ηij| ≤ Mij, all i, j} and δN = minij inf |h|≤Mij
b
′′
(h).

Then β̂ →p β0 and

1

N

m∑
i=1

ni(âi − a0i)
2 →p 0, (2.27)

where âi = â + v̂i and a0i = a0 + v0i, provided that m/N = o(δ2
N). If the latter is

strengthened to (min1≤i≤m ni)
−1 = o(δ2

N), then, in addition, â →p a0, and

1

N

m∑
i=1

ni(v̂i − v0i)
2 →p 0,

1

m

m∑
i=1

(v̂i − v0i)
2 →p 0. (2.28)

Note. It can be shown, by simple example, that α̂ →p α0 and (2.28) may not hold

without min1≤i≤m ni →∞, even if m/N → 0.
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2.5.3 Maximum Conditional Likelihood Estimates in Case 2

In case 2 since m/N 9 0, we do not have enough information to estimate all

random effects. Jiang [14] states that it is often possible to estimate with adequacy a

subset of the random effects, and the ones which are not estimable will be integrated

out. As in case 1, conditionally, the individual effects may not be identifiable. A

basic technique here is reparameterization which is a map from (β, α) to (β̃, α̃).

Jiang’s [14] reparameterization is stated in the following lemma:

Lemma 2.5.4. There is a map β 7→ β̃, α 7→ α̃ such that

(i) Xβ+Zα = X̃β̃+ Z̃α̃, where (X̃, Z̃) is a known matrix of full column rank.

(ii) z̃i = z̃∗j, i ∈ Sj for some known vector z̃∗j, where z̃t
j is the ith row of Z̃

and where Sj is defined below.

Let U be a standard design matrix in the sense that it consists of 0’s and 1’s

and there is exactly one 1 in each row and at least one 1 in each column. The vector

ut
i is the ith row of U and eM,j is the M -dimensional vector whose jth component

is 1 and whose other components are 0. Let Sj = {1 ≤ i ≤ N : ui = eM,j},

and y(j) = (yi)i∈Sj
, 1 ≤ j ≤ M . Suppose that ζ1, . . . , ζM are independent with

common distribution ν(·/τ)/τ , where ν(·) is a known density function and τ > 0

is an unknown scale parameter. Furthermore, we assume that there are no random

effects nested within ζ. In notation, this means that zi = z∗j, i ∈ Sj, 1 ≤ j ≤ M ,

where z∗j = (z∗jk)1≤k≤l.

Let ϕ = (β̃, τ), ψ = (α̃, ϕ). Then we have

f(yi|α, ζ) = f(yi|ηi), 1 ≤ i ≤ N (2.29)
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where f(ξ2|ξ1) denotes the conditional density of ξ2 given ξ1.

By Lemma 2.5.1, we have

η = X̃β̃ + Z̃α̃ + Uζ.

Let ϕ = (β̃, τ), ψ = (α̃, ϕ). By (2.29) we have

f(y|ψ) =
M∏

j=1

f(y(j)|ψ)

and it is easy to show that f(y(j)|ψ) = gj(z
t
∗jα̃, β̃, τ), where

gj(s) = E


∏

i∈Sj

f(yi|s1 + xt
is(2) + sr+2ζ)


 ,

s(2) = (s2, . . . , sr+1) and r is the dimension of β̃. Note that r ≤ p. Let n be the

dimension of α̃, hj(s) = log gj(s), lC(ψ) = log f(y|ψ) and lC,j(ψ) = log f(y(j)|ψ) =

hj(z
t
∗jα̃, β̃, τ). Then

lc(ψ) =
M∑

j=1

lc,j(ψ)

Let Z∗ be the matrix whose jth row is zt
∗j, 1 ≤ j ≤ M . Let ϕ0 and ψ0 be the

vectors corresponding to the true parameters and realization of random effects.

Case 2 Consistency Results.

Under some regularity conditions on derivatives, smoothness, integrability of

densities f(y(j)|ψ), boundness of hj(s)’s second, third derivatives, etc., Jiang [14]

proved consistency results for estimates of reparameterized parameters (β̃, α̃) but

not for the original (β, α), and one may never recover a consistency result for the

original parameter (β, α) from the reparameterized (β̃, α̃).

Jiang [14] verifies the general conditions for consistency in three examples: for

case 1, the two way crossed logistic model logit(P (yij = 1|a, b)) = µ + ai + bj, the
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other one is random intercept logistic regression model are analyzed. For case 2 the

only example is two stage nested logistical model logit(P (yijk = 1|a, b)) = µ+ai+bij.
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Chapter 3

Case 1 random intercept model results.

This Chapter proposes a new estimator
∑m

i=1 ŵiβ̂i and establishes its condi-

tional asymptotic normality in the random intercept problem in case 1. Here β̂i

is the maximum likelihood estimator based on the ith group and ŵi is a matrix

weight proportional to the inverse estimated covariance of β̂i. Also this Chapter

extends the consistency results of Jiang [14] to establishing asymptotic normality of

the penalized likelihood estimators for fixed intercept in the case 1 random intercept

problem when there are no regression coefficients. Furthermore, this Chapter dis-

cusses the difficulties of establishing asymptotic normality of Jiang’s [14] penalized

likelihood estimators in general.

Throughout this chapter we consider the canonical GLMM with

f(yij|vi) = exp[ηijyij − b(ηij) + c(yij)]

and ηij = a + vi + xt
iβ = ai + xt

iβ.

Assumptions:

(i) vi0 are iid, E(vi0) = 0, Var(vi0) = σ2
v where σ2

v is a constant. ∃M such that

P [|vi0| ≤ M ] = 1.

(ii) ∃K ′ such that ‖xij‖ ≤ K ′ for all i, j.
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3.1 Case 1 random intercept (combine a and vi)

Recalling the Estimating Equation (2.3), for the ith group in the random

intercept model we have the loglikelihood function :

ln(γi) =

ni∑
j=1

(yijηij − b(ηij)− C(yij)). (3.1)

where γi = (ai, β
t
i)

t. Take Taylor expansion for partial derivative of ln(γi) around

γi0:

Ur(γ̂i) =
∂ln(γri)

∂γi

(γ̂i) = Ur(γi0) + (∇Ur(γ
∗
i ))(γ̂i − γi0)

= Ur(γi0) + (−Fni
)(γ̂i − γi0) + [Fni

− Fni
(γ∗)](γ̂i − γi0) (3.2)

where γ∗i is between γ̂i and γi0 and −Fni
(γ∗) = ∇Ur(γ

∗
i ).

Because the random effects vi0 are independently and identically distributed

with mean 0 and bounded and ‖xij‖ are uniformly bounded, for all i, j, b′ij is

bounded and b
′′
ij is bounded below and above by positive constants bl and bu, Fur-

thermore, the consistency of γ̂i implies that the b
(3)
ij (η̃ij) are bounded with high

probability where η̃ij is between η̂ij and ηij0 .

Define

(Fββ
i )−1 = Wbi = (W bi

kl )1≤kl≤s , 1≤l≤s

where

W bi
kl =

∑
j

b
′′
ij

(
xijk −

∑
j xijkb

′′
ij∑

j b
′′
ij

)(
xijl −

∑
j xijlb

′′
ij∑

j b
′′
ij

)
. (3.3)
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Lemma 3.1.1. Let lim inf(λni
/ni) > 0, where λni

= λmin(
∑

j(xij − xi)(xij − xi)
T )

with xi = n−1
i

∑ni

j=1 xij. Then there exists a positive constant c2 such that for any

h > 0,

inf
‖u‖=1

uTWbiu

ni

>
1

c2

. (3.4)

for all ni sufficiently large.

By considering each group separately, we construct a new estimator
ˆ̂
βw =

∑m
i=1 ŵiβ̂i. We can treat each group as a conditional GLM, as in Fahrmeir and

Kaufmann [11]. We make the following assumptions: First we assume that (Zi,Xi)

is a full-column rank matrix and define a sequence Nni
(δ), δ > 0, of neighborhoods

of γi0 (the true value of γi) by

Nni
(δ) = {γi : ‖FT/2

ni
(γi − γi0)‖ ≤ δ}

where ni = 1, 2, · · · and F
T/2
ni any right square root of the positive definite ma-

trix Fni
; that is, F

1/2
ni F

T/2
ni = Fni

. Conditions (D), (C) and (N) of Fahrmeir and

Kaufmann [11] in our setting become:

(1) Divergence: λminFni
→∞.

(2) Boundedness from below: for all δ > 0, Fni
(γi)− cFni

is positive semidefinite,

for all γi ∈ Nni
(δ), ni ≥ n1 with some constants n1 = n1(δ), c > 0 independent

of δ.

(3) Convergence and continuity: for all δ > 0, maxγi∈Nni (δ)
‖Vni

(γi) − I‖ → 0,

where Vni
(γi) = F

−1/2
ni Fni

(γi)F
−T/2
ni is the normed information matrix.
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Let (âi, β̂i) be the solution of the score equation in the ith group.

Then, given vi0,

(Fni
)T/2




âi − ai0

β̂i − βi0


 →d N(0, I). (3.5)

Informally, given vi0,




âi

β̂i


 ∼ AN







ai0

β0


 ,F−1

ni


, (3.6)

where

F−1
ni

=




ZT
i DiZi ZT

i DiXi

XT
i DiZi XT

i DiXi




−1

=




Faa
i Faβ

i

Fβa
i Fββ

i


 . (3.7)

Here

Fββ
i =

(
XT

i DiXi −XT
i DiZi

(
ZT

i DiZi

)−1
ZT

i DiXi

)−1

and

Faa
i =

(
ZT

i DiZi − ZT
i DiXi

(
XT

i DiXi

)−1
XT

i DiZi

)−1

where Zi = 1ni
and Di = diag(b

′′
ij)1≤j≤ni

.

We choose ŵi = (
∑

i(F̂
ββ
i )−1)−1(F̂ββ

i )−1 and
ˆ̂
βw =

∑
i(
∑

i(F̂
ββ
i )−1)−1(F̂ββ

i )−1β̂i.

Note that a scalar version of
ˆ̂
βw was proposed by Woolf (1955) to estimate the com-

mon log odds ratio in a 2× 2×m contingency table.

Theorem 3.1.2. Suppose that Assumptions (i) and (ii) hold and for each i, lim inf[n−1
i λni

] >

0, ni(Fni
)−1 →p F0i, P (infi λmin(F0i) > δ > 0) > 1 − h, P (supi λmax(F0i) < M <

∞) > 1−h, where F0i is a positive definite matrix and that the following asymptotic

relations are true:
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(1) There exist positive numbers K1 < K2 such that

K1 < min
i

λmin(F
ββ
i )/ max

i
λmax(F

ββ
i ) < K2,

(2)

m/ min
i

ni = o(1), max
i

ni/ min
i

ni = O(1),

(3)

max
i

(
λmax(Fni

)−1/λmin(Fni
)−1

)
= O(1),

∑
i

‖(Fni
)−1‖ = o(1),

(4)

max
i

E
[
(β̂

∗
i )

tβ̂
∗
i ψ((β̂

∗
i )

tβ̂
∗
i )|vi0

]
= Op(1),

where β̂
∗
i = (Fββ

i )−
1
2 (β̂i−E(β̂i|vi0)) and ψ(t) is a positive nondecreasing func-

tion on [0,∞) such that limt→∞ ψ(t) = ∞ and tψ(t) is a convex function.

Then, given v0,

(
m∑

i=1

(Fββ
i )−1

)− 1
2 m∑

i=1

(Fββ
i )−1(β̂i − β0) →d N(0, I). (3.8)

Note that Fββ
i depends on the unknown (ai, β) through Di.

Let D̂i = diag(b
′′
ij(η̂ij)1≤j≤ni

), where η̂ij = âi + xt
ijβ̂i,

ˆ̂
Di = diag(b

′′
ij(

ˆ̂ηij)1≤j≤ni
)

where ˆ̂ηij = âi + xt
ij

ˆ̂
βw.

Define

F̂ββ
i =

(
XT

i D̂iXi −XT
i D̂iZi

(
ZT

i D̂iZi

)−1

ZT
i D̂iXi

)−1

.

Then F̂ββ
i estimates Fββ

i and
ˆ̂
βw =

∑m
i=1

(∑m
i=1(F̂

ββ
i )−1

)−1

(F̂ββ
i )−1(β̂i − β0) .
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Define

ˆ̂
Fββ

i =

(
XT

i
ˆ̂
DiXi −XT

i
ˆ̂
DiZi

(
ZT

i
ˆ̂
DiZi

)−1

ZT
i

ˆ̂
DiXi

)−1

.

Then
ˆ̂
Fββ

i estimates Fββ
i .

Theorem 3.1.3. Let the hypotheses of Theorem 3.1.2 hold. Then we have

(1) ∥∥∥∥∥∥

(
m∑

i=1

(Fββ
i )−1

) 1
2
(

m∑
i=1

(F̂ββ
i )−1

)− 1
2

− I

∥∥∥∥∥∥
= op(1),

(2)

‖(F̂ββ
i )−1 − (Fββ

i )−1‖ = Op(
√

ni),

(3) ∥∥∥∥∥∥

(∑
i

(Fββ
i )−1

)− 1
2

∥∥∥∥∥∥
= Op(1/

√
N), ‖(Fββ

i )1/2‖ = Op(1/
√

ni).

Furthermore, given v0, we have

(
m∑

i=1

(F̂ββ
i )−1

)− 1
2 m∑

i=1

(F̂ββ
i )−1(β̂i − β0) →d N(0, I). (3.9)

Under the same hypothesis with (1), (2) and (3) in Theorem 3.1.4 modified by re-

placing F̂ββ
i by

ˆ̂
Fββ

i , given v0,

(
m∑

i=1

(
ˆ̂
Fββ

i )−1

)− 1
2 m∑

i=1

(
ˆ̂
Fββ

i )−1(β̂i − β0) →d N(0, I). (3.10)

According to Theorem 3.1.2 and 3.1.3, given the random effects v0, the nor-

malized versions of β̂w and
ˆ̂
βw converge in distribution to N(0, I). Since this conver-

gence holds for almost all realizations of v0, we can also claim that the convergence

in distribution holds unconditionally. This is formalized in the following Corollary.
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Corollary 3.1.4. Under the hypotheses of Theorem 3.1.2, the convergence state-

ments (3.8), (3.9), and (3.10) hold unconditionally (except on a set of v0-probability

zero).

3.2 Penalized likelihood estimator â in the case 1 random intercept

model when β=0

From Jiang [14] we can write lP (γ) as follows:

lP (γ) =
m∑

i=1

ni∑
j=1

(yijηij − b(ηij))− λ1

2
mv2 (3.11)

where ηij = a + vi and there are no regression coefficient. Here the penalty term

(λ1/2)mv2 is used to take care of the identifiability problem and we can estimate a

and vi separately.

We will write

Bij = b
′′
ij +

1

2
b
(3)
ij (η∗ij)(η̂ij − ηij0) = b

′′
ij + rij (3.12)

where

rij =
1

2
b
(3)
ij (η∗ij)(η̂ij − ηij0) (3.13)

and

B̃ = diag(Bij)1≤i≤m , 1≤j≤ni
. (3.14)

Taylor expansion of ∂lP (γ)/∂γ around γ0 takes the following matrix form:




â− a0

v̂ − v0


 = (Q∗)−1




1T
N(y − µ)

ZT (y − µ)− λ1v01
t
m


 (3.15)
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where

Q∗ =




1T
NB̃1N 1T

NB̃Z

ZT B̃1N ZT B̃Z + λ1/mJ


 =




Q∗
11 Q∗

12

Q∗
21 Q∗

22


 . (3.16)

Let Znew = (1N ,Z) and note that Q∗ is a nonsingular matrix since

Q∗ = ÃtÃ + H̃tH̃.

where

Ã = B̃
1
2Znew H̃ = (0

√
λ1√
m

1t
m)

Here Ã is an N× (m + 1) matrix with rank m, since Znew is not of full column

rank matrix, and H̃ is a 1 × (m + 1) matrix with rank 1. However, Ã and H̃ are

complementary matrices since Sp(Ãt) ∩ Sp(H̃t) = {0}, we have Q∗ is a full-rank

matrix with rank m + 1.

Then

(Q∗)−1 =




(Q∗
11.2)

−1 −(Q∗
11.2)

−1Q∗
12(Q

∗
22)

−1

−(Q∗
22)

−1Q∗
21(Q

∗
11.2)

−1 (Q∗
22.1)

−1


 . (3.17)

Since we’re only interested in the â terms,

(â− a0) = (Q∗
11.2)

−1
(
1T

N(y − µ)−Q∗
12(Q

∗
22)

−1ZT (y − µ)
)

+ (Q∗
11.2)

−1Q∗
12(Q

∗
22)

−1λ1v01m. (3.18)

Here we choose
√

m as normalizer. Then

√
m(â− a0) =

√
m(Q∗

11.2)
−1

(
1T

N(y − µ)−Q∗
12(Q

∗
22)

−1ZT (y − µ)
)

+
√

m(Q∗
11.2)

−1Q∗
12(Q

∗
22)

−1λ1v01m. (3.19)
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Theorem 3.2.1. We assume the following conditions, which are equivalent to the

hypotheses of Theorem 2.5.4 (Jiang [14], Theorem 2.2).

(J1) E(Var(yij|v0)) and
∑

k x2
ijk are bounded.

(J2) Let λN = λmin(
∑

i

∑
j(xij − xi)(xij − xi)

t) with xi = n−1
i

∑ni

j=1 xij and δN =

mini,j inf |h|≤Mij
b
′′
ij(h), lim inf(λN/N) > 0 , m/N = o(δ2

N), (min1≤i≤m ni)
−1 =

o(δ2
N) and v0 →p 0.

(J3) Let cN , dN > 0 be such that lim sup(|a0| ∨ |β0|)/cN < 1 and P (‖v0‖/dN <

1) → 1, Mij ≥ cN(1 + (
∑

k x2
ijk)

1
2 ) + dN and let γ̂ = (â, β̂, v̂) be the maximizer

of lP over Γ(M) = {γ : |ηij| ≤ Mij, all i, j}.

Then

√
m(â− a0) →d N(0, σ2

v).

3.3 Discussion of Jiang [14] penalized likelihood estimator β̂ in case

1 random intercept model (β 6= 0)

According to Jiang [14], for the random intercept model the penalized loglike-

lihood is stated lP (γ) as equation (??) in Section 2.5.2. Here for simplicity, we let

wij = 1 so that lP (γ) becomes the following:

lP (γ) =
m∑

i=1

ni∑
j=1

(yijηij − b(ηij))− λ1

2
mv2. (3.20)

By Theorem 2.5.4 in Section 2.5.4 (Jiang [14], Theorem 2.2), γ̂ is the maximizer of

lP (γ) over Γ(M). The penalizer here takes care of the identifiability problem and
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when combining a with vi, (X,Z) is a full-column rank matrix we do not need a

penalizer term.

Based on Jiang’s [14] consistency results (â →p a0, β̂ →p β0, (1/m)
∑m

i=1(v̂i−

vi0)
2 →p, (1/N)

∑m
i=1 ni(v̂i − vi0)

2 →p 0) and (J1), (J2) and (J3) in Section 3.2, we

tried to establish conditional asymptotic normality for (β̂ − β0), given v0, under

certain conditions. Taylor expansion was used to solve lp(γ) to write the estimators

as 


β̂ − β0

â− a0


 = Q−1gN (3.21)

where

gN =




XT (y − µ)

ZT (y − µ)




and

Q =




XT B̃X XT B̃Z

ZT B̃X ZT B̃Z


 =




Q11 Q12

Q21 Q22


 . (3.22)

Let

Q0 =




XTDX XTDZ

ZTDX ZTDZ


 =




Q110 Q120

Q210 Q220


 . (3.23)

We will write

Bij = b
′′
ij +

1

2
b(3)(η∗ij)(η̂ij − ηij0) (3.24)

and

B̃ = diag(Bij)1≤i≤m , 1≤j≤ni
D = diag(b

′′
ij(ηij0))1≤i≤m, 1≤j≤ni

(3.25)

Recall that Z is a block diagonal matrix, Z = diag(1ni
)1≤i≤m, and X is (X1, . . . ,Xs)

without the first column 1N , after combining fixed intercept a with the random
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effects vi to obtain ai = a + vi. Note that Q is a nonsingular matrix since (X,Z) is

a full column rank matrix (not all elements of X can be equal).

Then

Q−1 =




Q−1
11.2 −Q−1

11.2Q12Q
−1
22

−Q−1
22 Q21Q

−1
11.2 Q−1

22.1


 (3.26)

where

Q11.2 = Q11 −Q12Q
−1
22 Q21

Q22.1 = Q22 −Q21Q
−1
11 Q12.

Since we are only interested in the β terms, we find that

β̂ − β0 = Q−1
11.2

{
XT (y − µ)−Q12(Q22)

−1ZT (y − µ)
}

. (3.27)

Let

W∗ = XTDX− (XTDZ)(ZTDZ)−1ZTDX. (3.28)

Here we choose (W∗)−
1
2Q11.20 as the normalizer. Then

(W∗)−
1
2Q11.20(β̂ − β0)

= (W∗)−
1
2Q11.20Q

−1
11.2

{
XT (y − µ)−Q12(Q22)

−1ZT (y − µ)
}

= I + II + III (3.29)

where

I = (W∗)−
1
2

{
XT (y − µ)−Q120(Q220)

−1ZT (y − µ)
}

, (3.30)

II = (W∗)−
1
2

(
Q11.20Q

−1
11.2 − I

)
XT (y − µ), (3.31)

III = (W∗)−
1
2

{
Q120Q

−1
220 −Q11.20Q

−1
11.2Q12Q

−1
22

}
Zt(y − µ). (3.32)
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We can prove that under regularity conditions, given v0, I →d N(0, I) and II →p 0.

Consider III, We can write III as

III = (W∗)−
1
2

{
I−Q11.20Q

−1
11.2

}
Q120Q

−1
220Z

t(y − µ) (3.33)

+ (W∗)−
1
2Q11.20Q

−1
11.2

{
Q120Q

−1
220 −Q12Q

−1
22

}
Zt(y − µ). (3.34)

we can also prove that ‖(W∗)−
1
2‖√N = Op(1), ‖I − Q11.20Q

−1
11.2‖ = op(1) and the

norm of (3.33) goes to 0. where

Q120Q
−1
220Z

t(y − µ) =

(∑
i

{∑
j xijkb

′′
ij

∑
j(yij − b′ij)∑

j b
′′
ij

})

1≤k≤s

and we have

(
Q120Q

−1
220 −Q12Q

−1
22

)
Zt(y − µ)

=

(∑
i

{∑
j xijkb

′′
ij∑

j b
′′
ij

−
∑

j xijkb
′′
ij(η

∗
ij)∑

j b
′′
ij(η

∗
ij)

}∑
j

(yij − b′ij)

)

1≤k≤s

Consider the norm of (3.34)

‖(W∗)−
1
2Q11.20Q

−1
11.2

{
Q120Q

−1
220 −Q12Q

−1
22

}
Zt(y − µ)‖

≤ ‖Q11.20Q
−1
11.2‖‖(W∗)−1/2‖‖{

Q120Q
−1
220 −Q12Q

−1
22 ‖Zt(y − µ)‖

≤ Op(1)√
N
‖{

Q120Q
−1
220 −Q12Q

−1
22

}
Zt(y − µ)‖

= Op(1)


∑

k

{
m∑

i=1

ni

{∑
j xijkb

′′
ij∑

j b
′′
ij

−
∑

j xijkb
′′
ij(η

∗
ij)∑

j b
′′
ij(η

∗
ij)

}
1

ni

∑
j

(yij − b′ij)

}2



1
2

(3.35)

We conjecture 1/ni

∑
j(yij − b′ij) = Op(1/

√
ni) and that η̂ij − ηij0 = Op(1/

√
ni). If

so, inside of square of (3.35) would be Op(m/
√

N) ≤ Op(
√

m/ mini ni). However,

we are unable to calculate the convergence rate of (η̂ij − ηij0) because the number
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of random effects goes to infinity. Li, Lindsay and Waterman [18] examined the

asymptotic behavior of MLE’s of a scalar β as the number of nuisance parameters

goes to infinity. They found that under rectangular asymptotics (m = cn, c fixed,

m → ∞)
√

N(β̂1 − β0) →d N(τ, I−1(β)) when τ is possibly nonzero and I−1(β) is

the Fisher information. They proposed an alternative estimator (based on projected

scores) which satisfied
√

N(β̂2 − β0) →d N(0, I−1(β)). In the Chapter 6 and Ap-

pendix A simulation studies, we find that in Logistic and Poisson random intercept

with combined fixed intercept a and random effects vi, consistency and conditional

asymptotic normality results appear to hold.

3.4 Proofs.

3.4.1 Proof of Lemma 3.1.1

Recall the definition of Wbi in (3.3). We have

uTWbiu =

ni∑
j=1

b
′′
ij

(
s∑

k=1

uk

{
xijk −

∑ni

l=1 xilkb
′′
il∑ni

l=1 b
′′
il

})2

.

Let

W̃i = diag(πi)− πiπ
T
i

where

πi =




b
′′
i1/

∑
j b

′′
ij

...

b
′′
ini

/
∑

j b
′′
ij




ni×1

.

48



Then

1

ni

uTWbiu =
1

ni

uT
∑

j

b
′′
ijX

T
i W̃iXiu

=
1

ni

uT
∑

j

b
′′
ij(Xi −Xi)

TW̃i(Xi −Xi)u

where

Xi = (Xi1, . . . ,Xis),

Xik =




xi1k

...

xinik




ni×1

,

Xi = (xi11ni
, . . . , xis1ni

),

and xik = n−1
i

∑
j xijk.

Therefore

inf
‖u‖=1

uT
(∑

j b
′′
ij(Xi −Xi)

TW̃i(Xi −Xi)
)

u

ni

= inf
‖u‖=1

∑
j b

′′
ij

(
uT (Xi −Xi)

TW̃i(Xi −Xi)u
)

ni

≥ inf
‖u‖=1

∑
j b

′′
ijλ2(W̃i)

(
uT (Xi −Xi)

T (Xi −Xi)u
)

ni

.

The bound above λ2(W̃i) is the second smallest eigenvalue of W̃i, because (Xi−Xi)u

is orthogonal to 1ni
which is the eigenvector corresponding to the unique eigenvalue

0.

Here we use the definition of the second smallest eigenvalue of Wi:
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uT (Xi −Xi)
TW̃i(Xi −Xi)u

uT (Xi −Xi)T (Xi −Xi)u

≥ inf
‖u‖=1

uT (Xi −Xi)
TW̃i(Xi −Xi)u

uT (Xi −Xi)T (Xi −Xi)u
= λ2(W̃i).

Now we need to find a lower bound of λ2(W̃i). Stewart’s [31] Theorem 5.1 states

the following result:

Let α1 ≤ α2 ≤ · · · ≤ αn, β1 ≤ β2 ≤ · · · ≤ βn and γ1 ≤ γ2 ≤ · · · ≤ γn be the

eigenvalues of the real Hermitian matrices A, B and C = A + B.

Then

αi + β1 ≤ γi ≤ αi + βn.

In our case we set A = −πiπ
T
i and B = diag(πi), and by the special structure of A

we have α2 = · · · = αni
= 0 and α1 = −πT

i πi = −∑
j π2

j .

Then

min
j

b
′′
ij∑
j b

′′
ij

≤ λ2(W̃i). (3.36)

Consider

inf
‖u‖=1

uTWbiu

ni

= inf
‖u‖=1

uT{∑j b
′′
ij(ηij0)(Xi −Xi)

TW̃i(Xi −Xi)}u
ni

≥ inf
‖u‖=1

uT{∑j b
′′
ij(ηij0)(Xi −Xi)

T λ2(W̃i)(Xi −Xi)}u
ni

≥ inf
‖u‖=1

uT{minj b
′′
ij(ηij0)(Xi −Xi)

T (Xi −Xi)}u
ni

>
1

c2

.

where c2 is a suitably large constant. Equivalently Wbi is a positive definite matrix.
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3.4.2 Proof of Theorem 3.1.2

It is easy to prove that of β̂w−β0, where β̂w =
∑

i

(∑
i(F

ββ
i )−1

)−1

(Fββ
i )−1β̂i,

then β̂w →p β0. by using the result of Lemma 3.1.1 and conditions of Theorem 3.1.2

because we have

‖β̂w − β0‖

≤
∑

i

∥∥∥∥∥∥

(∑
i

(Fββ
i )−1

)−1
∥∥∥∥∥∥
‖(Fββ

i )−1/2‖‖(Fββ
i )−1/2(β̂i − β0)‖

≤ Op(1)

K1 mini

√
λmax(F

ββ
i )−1

≤ Op(1)/K1

mini
√

ni

√
bl lim inf(λni

/ni)
= op(1).

Here we use the fact that (Fββ
i )−1/2(β̂i − β0) is Op(1), as proved by Fahrmeir and

Kaufmann [11].

Since

(
∑

i

(Fββ
i )−1)−

1
2

∑
i

(Fββ
i )−1(β̂i − β0)

= (
∑

i

(Fββ
i )−1)−

1
2

∑
i

(Fββ
i )−1(β̂i − E(β̂i|vi0) + E(β̂i|vi0)− β0),

let u be a unit vector and

Ti = ut

(∑
i

(Fββ
i )−1

)− 1
2

(Fββ
i )−1(β̂i − E(β̂i|vi0)) (3.37)

= ut

(∑
i

(Fββ
i )−1

)− 1
2

(Fββ
i )−

1
2 (Fββ

i )−
1
2 (β̂i − E(β̂i|vi0)). (3.38)

Recall β̂
∗
i = (Fββ

i )−
1
2 (β̂i − E(β̂i|vi0)). By the Cauchy-Schwartz inequality we have

T 2
i ≤



ut

(∑
i

(Fββ
i )−1

)− 1
2

(Fββ
i )−1

(∑
i

(Fββ
i )−1

)− 1
2

u



 (β̂

∗
i )

tβ̂
∗
i (3.39)

≤ λmax

(∑
i

(Fββ
i )−1

)−1

λmax(F
ββ
i )−1(β̂

∗
i )

tβ̂
∗
i (3.40)
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By Lemma 3.1.1 we have ni‖(Wbi)
−1‖ = niλmaxF

ββ
i = O(1), and because of bound-

ness of
∑

k x2
ijk and b

′′
ij

1

ni

utWbiu =
1

ni

∑
j

b
′′
ij

{∑

k

uk(xijk −
∑

j xijkb
′′
ij∑

j b
′′
ij

)

}2

= O(1).

Equivalently we have (λminF
ββ
i )−1 = ‖Wbi‖ = Op(ni) and (1) of Theorem 3.1.3

follows. Now we check the Lindeberg condition:

m∑
i=1

E(T 2
i I(|Ti| > ε)|vi0) =

m∑
i=1

E(T 2
i I(T 2

i > ε2)|vi0)

≤
(∑

i

λ−1
maxF

ββ
i min

i
λminF

ββ
i

)−1

×
m∑

i=1

E

[
(β̂

∗
i )

tβ̂
∗
i I

(
(β̂

∗
i )

tβ̂
∗
i > ε2λmin(F

ββ
i )λmin(

∑
i

(Fββ
i )−1)

)
|vi0

]

≤ maxi λmaxF
ββ
i

m mini λminF
ββ
i

m∑
i=1

E[(β̂
∗
i )

tβ̂
∗
i ψ((β̂

∗
i )

tβ̂
∗
i )|vi0]

×
{

ψ

(
ε2λmin(F

ββ
i )(

∑
i

λ−1
maxF

ββ
i )

)}−1

≤ Op(1)
maxi λmaxF

ββ
i

mini λminF
ββ
i

{
ψ

(
m mini λminF

ββ
i

maxi λmaxF
ββ
i

)}−1

= op(1)

since by condition (1) and (4), the argument of ψ goes to ∞.

According to equation (3.2) we have

l′n(γ̂i) = l′n(γi0)− Fni
(γ̂i − γi0) + (Fni

− Fni
(γ∗))(γ̂i − γi0)

where γ∗i is between γi0 and γ̂i.

Taking the expectation on both sides and conditioning on vi0 we have

E[(γ̂i − γi0)|vi0]

= (Fni
)−1E

[
(Fni

− Fni
(γ∗))F−T/2

ni
FT/2

ni
(γ̂i − γi0)|vi0

]

= (Fni
)−1E

[
(1/
√

ni) (Fni
− Fni

(γ∗))
√

niF
−T/2
ni

FT/2
ni

(γ̂i − γi0)|vi0

]
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Let u be a unit vector and consider

(1/
√

ni)‖Fni
− Fni

(γ∗i )‖

= (1/
√

ni) sup
‖u=1‖

∣∣∣∣∣∣
∑

j

(b
′′
ij − b

′′
ij(η

∗
ij))

(
u1 +

s∑

k=1

uk+1xijk

)2
∣∣∣∣∣∣

≤ (2sK ′ + 2)(1/ni)
∑

j

√
ni|b′′ij − b

′′
ij(η

∗
ij)|

≤ (2sK ′ + 2)(1/2ni)
∑

j

√
ni|b(3)

ij (η̃ij)||ηij − η̂ij| (3.41)

= Op(1). (3.42)

Since we have b
(3)
ij (η̃ij) bounded and according to Fahrmeir and Kaufmann [11], we

have, given vi0,

√
ni(η̂ij − ηij0) ∼ AN(0, ni(F

aa
i + Faβ

i xij + xt
ijF

βa
i + xt

ijF
ββ
i xij)). (3.43)

In addition, by the assumptions of Theorem 3.1.3 we can get from (3.41) to

(3.42) and
√

ni‖(Fni
)−T/2‖ = Op(1).

Then

‖E[(β̂i − β0)|vi0]‖ ≤ ‖E[(γ̂i − γi0)|vi0]‖ ≤ ‖(Fni
)−1‖δOp(1).

Now we consider the bias term

(∑
i

(Fββ
i )−1

)− 1
2 ∑

i

(Fββ
i )−1(E(β̂i|vi0)− β0). (3.44)
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Then


ut

(∑
i

(Fββ
i )−1

)− 1
2 ∑

i

(Fββ
i )−1(E(β̂i|vi0)− β0)




2

≤ m

m∑
i=1

(
ut(

∑
i

(Fββ
i )−1)−

1
2 (Fββ

i )−1(E(β̂i|vi0)− β0)

)2

≤ m

m∑
i=1

ut(
∑

i

(Fββ
i )−1)−

1
2 (Fββ

i )−1(
∑

i

(Fββ
i )−1)−

1
2u

× (E(β̂i|vi0)− β0)
t(Fββ

i )−1(E(β̂i|vi0)− β0)

≤ m



max

i
λmax(F

ββ
i )−1λmax

(∑
i

(Fββ
i )−1

)−1




×
m∑

i=1

(E(β̂i|vi0)− β0)
t(Fββ

i )−1(E(β̂i|vi0)− β0)

≤ maxi λmaxF
ββ
i

mini λminF
ββ
i

m∑
i=1

(E(β̂i|vi0)− β0)
t(Fββ

i )−1(E(β̂i|vi0)− β0)

≤ Op(1)
m∑

i=1

‖E(β̂i|vi0)− β0‖2‖(Fββ
i )−1‖

≤ δ2Op(1)
m∑

i=1

‖(Fni
)−1‖2‖(Fββ

i )−1‖ (3.45)

≤ δ2Op(1) max
i

λmax(Fni
)−1

λmin(Fni
)−1

m∑
i=1

‖(Fni
)−1‖ (3.46)

= op(1)

The step from (3.45) to (3.46) follows Schott’s [29] Theorem 3.20:

If A is a m×m symmetric matrix and Ak is a leading k×k principal submatrix

we have the following inequality:

λm−i+1(A) ≤ λk−i+1(Ak) ≤ λk−i+1(A)

where i = 1, · · · , k and λ1 is the maximum eigenvalue of A. Here we chose A =

(Fni
)−1 and Ak = Fββ

i .
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By the Central Limit Theorem and Slutsky’s Theorem, we have, given v0,
(∑

i

(Fββ
i )−1

)− 1
2 ∑

i

(Fββ
i )−1(β̂i − β0) →d N(0, I).

3.4.3 Proof of Theorem 3.1.3

If we let V =
∑

i(F
ββ
i )−1 and V̂ =

∑
i(F̂

ββ
i )−1, then

‖ˆ̂βw − β0‖

≤ ‖ˆ̂βw − β̂w‖+ ‖β̂w − β0‖

=

∥∥∥∥∥
m∑

i=1

(
V̂−1

{
[(F̂ββ

i )−1Fββ
i − I]V + V − V̂

})
wi(β̂i − β0)

∥∥∥∥∥ + op(1)

≤
∑

i

∥∥∥
(
V̂−1

{
[(F̂ββ

i )−1Fββ
i − I]V + V − V̂

})∥∥∥ ‖wi(β̂i − β0)‖+ op(1)

= op(1)

Since we can prove

∥∥∥
(
V̂−1

{
[(F̂ββ

i )−1Fββ
i − I]V + V − V̂

})∥∥∥

≤ ‖V̂−1‖‖[(F̂ββ
i )−1Fββ

i − I]‖‖V‖+ ‖V̂−1‖‖V − V̂‖ (3.47)

= op(1) (3.48)

Consider∥∥∥∥∥∥

m∑
i=1




(∑
i

(F̂ββ
i )−1

)− 1
2

(F̂ββ
i )−1 −

(∑
i

(Fββ
i )−1

)− 1
2

(Fββ
i )−1


 (β̂i − β0)

∥∥∥∥∥∥

= ‖
m∑

i=1

(
V̂− 1

2 (F̂ββ
i )−1 −V− 1

2 (Fββ
i )−1

)
(β̂ − β0)‖

= ‖
m∑

i=1

V− 1
2

(
V

1
2 V̂− 1

2 (F̂ββ
i )−1 − (Fββ

i )−1
)

(Fββ
i )

1
2 (Fββ

i )−
1
2 (β̂i − β0)‖

≤
m∑

i=1

‖V− 1
2‖‖V 1

2 V̂− 1
2 (F̂ββ

i )−1 − (Fββ
i )−1‖‖(Fββ

i )
1
2‖‖(Fββ

i )−
1
2 (β̂i − β0)‖

≤ I1 + I2
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where

I1 =
m∑

i=1

‖V− 1
2‖‖V 1

2 V̂− 1
2 − I‖‖(F̂ββ

i )−1‖‖(Fββ
i )

1
2‖‖(Fββ

i )−
1
2 (β̂i − β0)‖

I2 =
m∑

i=1

‖V− 1
2‖‖(F̂ββ

i )−1 − (Fββ
i )−1‖‖(Fββ

i )
1
2‖‖(Fββ

i )−
1
2 (β̂i − β0)‖

Consider

‖V 1
2 V̂− 1

2 − I‖ = ‖(V 1
2 − V̂

1
2 )V̂− 1

2‖ (3.49)

≤ ‖V − V̂‖ 1
2‖V̂− 1

2‖ (3.50)

The step from (3.49) to (3.50) follows from Theorem X.1.1 of Bhatia’s [3]. A function

f is said to be matrix monotone of order n if it is monotone with respect to this

order n × n Hermitian matrices, i.e., if A ≤ B implies f(A) ≤ f(B). If f is

matrix monotone of order n for all n then we say f is matrix monotone or operator

monotone.

Then the following theorem holds:

Let f be an operator monotone function on [0,∞] such that f(0) = 0. Then

for all positive operators A, B,

‖f(A)− f(B)‖ ≤ f(‖A−B‖).

Here our operator monotone function is the square root function.
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In addition, we have

1

N
‖V − V̂‖ =

1

N
‖

∑
i

(Fββ
i )−1 −

∑
i

(F̂ββ
i )−1‖

≤ 1

N

∑
i

‖(Fββ
i )−1 − (F̂ββ

i )−1‖

=
1

N

∑
i

ni

∥∥∥∥
1

ni

(Fββ
i )−1 − 1

ni

(F̂ββ
i )−1

∥∥∥∥ .

Since here we have the assumption that |vi0| is bounded, the assumption of

Theorem 3.1.3 and the result of Lemma 3.1.2, considering condition (3) of Theorem

3.1.4 we have

N‖V− 1
2‖2 = N‖

(∑
i

(Fββ
i )−1

)−1

‖ = N

(
λmin(

∑
i

(Fββ
i )−1)

)−1

≤ N

(∑
i

λmin(F
ββ
i )−1

)−1

= N

(∑
i

ni
1

ni

λ−1
maxF

ββ
i

)−1

= O(1).

and

1

ni

(
(Fββ

i )−1 − (F̂ββ
i )−1

)

=
1

ni

(∑
j

xijkxijl(b
′′
ij − b

′′
(η̂ij)) +

(
∑

j xijkb
′′
ij)(

∑
j xijlb

′′
ij)∑

j b
′′
ij

−(
∑

j xijkb
′′
ij(η̂ij))(

∑
j xijlb

′′
ij(η̂ij))∑

j b
′′
ij(η̂ij)

)

1≤k≤s,1≤l≤s

Therefore,

1

ni

‖((Fββ
i )−1 − (F̂ββ

i )−1)‖ ≤ II1 + II2
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where

II1 =
1

ni

sup
‖u‖=1

∣∣∣∣∣
∑

j

(b
′′
ij(η̂ij)− b

′′
ij)(

∑

k

ukxijk)
2

∣∣∣∣∣ (3.51)

II2 =
1

ni

sup
‖u‖=1

∣∣∣∣∣

(
(
∑

k uk

∑
j xijkb

′′
ij)

2

∑
j b

′′
ij

− (
∑

k uk

∑
j xijkb

′′
ij(η̂ij))

2

∑
j b

′′
ij(η̂ij)

)∣∣∣∣∣ . (3.52)

Let rij = b
′′
ij(η̂ij)− b

′′
ij(ηij0) and consider

∣∣∣∣∣
(
∑

k uk

∑
j xijkb

′′
ij)

2

∑
j b

′′
ij

− (
∑

k uk

∑
j xijkb

′′
ij(η̂ij))

2

∑
j b

′′
ij(η̂ij)

∣∣∣∣∣

=

∣∣∣∣∣

∑
j b

′′
ij(η̂ij)(

∑
k uk

∑
j xijkb

′′
ij)

2 −∑
j b

′′
ij(

∑
k uk

∑
j xijkb

′′
ij(η̂ij))

2

∑
j b

′′
ij

∑
j b

′′
ij(η̂ij)

∣∣∣∣∣

≤
∣∣∣∣∣
(
∑

k uk

∑
j xijkrij)

2

∑
j b

′′
ij

∣∣∣∣∣ +

∣∣∣∣∣
2(

∑
k uk

∑
j xijkb

′′
ij(η̂ij))(

∑
k uk

∑
j xijkrij)∑

j b
′′
ij

∣∣∣∣∣

+

∣∣∣∣∣

∑
j rij(

∑
k uk

∑
j xijkb

′′
ij(η̂ij))

2

∑
j b

′′
ij

∑
j b

′′
ij(η̂ij)

∣∣∣∣∣ ,

By the Cauchy-Schwartz inequality

II1 ≤ 1

ni

sup
‖u‖=1

∣∣∣∣∣
∑

j

(b
′′
ij(η̂ij)− b

′′
ij)

∑

k

u2
k

∑

k

x2
ijk

∣∣∣∣∣

≤ K
′2

ni

∑
j

|1
2
rij|,

and

II2 ≤ 1

ni

(
∑

k

∑
j x2

ijk)(
∑

j r2
ij)∑

j b
′′
ij

+
1

ni

(
∑

j |rij|)
∑

k(
∑

j xijkb
′′
ij(η̂ij))

2

∑
j b

′′
ij(η̂ij)

∑
j b

′′
ij

+
1

ni

sup
‖u‖=1

(
∑

k |uk|
∑

j |xijk|b′′ij(η̂ij))(
∑

k |uk|
∑

j |xijk||rij|)∑
j b

′′
ij

≤
(

K
′2 + 2sK

′2

4bl

)
1

ni

∑
j

|1
2
rij|+

(
K

′2

bl

)
1

ni

∑
j

(
1

2
rij

)2

.

Since
∑s

k=1 x2
ijk < K ′ where K ′ is a positive constant and according to Fahrmeir

and Kaufmann [11], given vi0, we have (3.43).
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By the delta method and assumptions of Theorem 3.1.3, we obtain

‖ 1

ni

(
(Fββ

i )−1 − (F̂ββ
i )−1

)
‖ = Op(1/

√
ni).

By the assumption of Theorem 3.1.2, we have, (1/N)‖V−V̂‖ ≤ Op(1)/N
∑

i

√
nici =

op(1) and conditions (1) and (2) of Theorem 3.1.3 are satisfied.

We can prove (1/N)‖V − V̂‖ = op(1) and N‖V−1‖ = O(1) which leads the

result N‖V̂−1‖ = Op(1). Also it easy to get (
√

ni/N)‖V − V̂‖ = Op(1) and

(1/ni)‖(F̂ββ
i )−1‖ = Op(1), then we can get from (3.47) to (3.48) which leads the

conclusion that
ˆ̂
βw is consistent. By (2) of Theorem 3.1.2, we have I1 →p 0 and

I2 →p 0. The result of Theorem 3.1.3 follows.

The similar argument follows for replacing F̂ββ
i by

ˆ̂
Fββ

i since by the conclusion

of Theorem 3.1.3, we have, according to Fahrmeir and Kaufmann [11] and Slutsky’s

Theorem, given vi0,

√
ni(ˆ̂ηij − ηij0) ∼ AN(0, niF

aa
i ).

By the delta method and assumptions of Theorem 3.1.2, we obtain

‖ 1

ni

(
(Fββ

i )−1 − (
ˆ̂
Fββ

i )−1
)
‖ = Op(1/

√
ni).

The asymptotic normality result follows.

3.4.4 Proof of Corollary 3.1.4

We prove the unconditional convergence in (3.8); the same method applies to

(3.9) and (3.10).

Write Zm, N =
(∑m

i=1{Fββ
i }−1

)−1/2

(β̂i − β0), Let B be any p-dimensional

rectangle with rational coordinates for all vertices. We know from Theorem 3.1.2
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that

P [Zm, N ∈ B|v0] → P (Z ∈ B)

where Z ∼ N(0, I).

From properties of conditional expectation, E[P (Zm, N ∈ B|v0)] = P [Zm, N ∈

B]. where the expectation is taken over the distribution of v0. Almost surely,

P [Zm, N ∈ B|v0] ≤ 1, so we can use the Dominated Convergence Theorem to write

lim P [Zm, N ∈ B] = lim E[P (Zm, N ∈ B|v0)]

= E[lim P (Zm, N ∈ B|v0)]

= E[P (Z ∈ B)] = P (Z ∈ B).

In fact, since the rationals are countable, the above convergence holds simul-

taneously over all rectangles whose vertices have rational components, and hence

for all Borel sets.

3.4.5 Proof of Theorem 3.2.1

Consider (Q∗
22)

−1:

(Q∗
22)

−1 = (ZTB̃Z +
λ1

m
J)−1 = (ZTB̃Z)−

1
2 (I + A)−1(ZTB̃Z)−

1
2 (3.53)

where

A = (ZTB̃Z)−
1
2
λ1

m
J(ZTB̃Z)−

1
2 .
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Since ZTB̃Z is a symmetric matrix, using the l2 norm of a symmetric matrix we

have:

‖(ZTB̃Z)−
1
2‖2 = sup

‖u‖=1

|uT (ZTB̃Z)−
1
2 (ZTB̃Z)−

1
2u|

= ‖(ZTB̃Z)−1‖.

Then

‖A‖ ≤ ‖(ZTB̃Z)−
1
2‖2‖λ1

m
J‖ =

|λ1|
mini |E∗

i |
.

Recall that Bij defined in (3.24) is positive and lies between b
′′
ij and b

′′
ij(η̂ij).

By Jiang’s [14] condition (J2), we have the following:

‖A‖ ≤ |λ1|
mini |E∗

i |
≤ 1/(n∗δN) = o(1/

√
n∗).

where n∗ = mini ni.

By applying the Neumann series we have

(Q∗
22)

−1 = (ZTB̃Z)−
1
2 (I−A + A2 −A3 + · · · )(ZTB̃Z)−

1
2

After the calculation we can get a closed form of (Q∗
22)

−1 as the following:

(Q∗
22)

−1 =




(E∗
1)
−1 + (E∗

1)
−2C∗

λ1
· · · (E∗

1)
−1(E∗

m)−1C∗
λ1

...
. . .

...

(E∗
1)
−1(E∗

m)−1C∗
λ1

· · · (E∗
m)−1 + (E∗

m)−2C∗
λ1




m×m

(3.54)

where

C∗
λ1

=
∞∑
i=1

(
λ1

m
)i(

m∑

k=1

(E∗
k)
−1)i−1(−1)i = − λ1

λ1

∑m
k=1(E

∗
k)
−1 + m

. (3.55)

and E∗
i =

∑
j Bij.
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Recall (3.19). We have

√
m(â− a0) =

√
m(Q∗

11.2)
−1

(
1T

N −Q∗
12(Q

∗
22)

−1ZT
)
(y − µ)

+
√

m(Q∗
11.2)

−1Q∗
12(Q

∗
22)

−1λ1v01m

where Q∗
12 = (E∗

1 , . . . , E∗
m) and Q∗

11.2 = −m2C∗
λ1

. Then,

|√m(Q∗
11.2)

−1
(
1T

N(y − µ)−Q∗
12(Q

∗
22)

−1ZT (y − µ)
) |

=
{√

m|(Q∗
11.2)

−1
(
1T

N −Q∗
12(Q

∗
22)

−1ZT
)
(y − µ)|}

=
√

m

∣∣∣∣∣
1

m

∑
i

(E∗
i )
−1

∑
j

(yij − b′ij)

∣∣∣∣∣

≤ op(1)√
mn∗

|
∑

i

∑
j

(yij − b′ij)|

= op(1). (3.56)

Since by (J1) we have 1/
√

N |∑i

∑
j(yij − b′ij)| = Op(1).

Then
√

m(â− a0) and
√

m(Q∗
11.2)

−1Q∗
12(Q22)

−1λ1v01m have the same asymp-

totic distribution. Furthermore,

√
m(Q∗

11.2)
−1Q∗

12(Q22)
−1λ1v01m

=
√

m
−1

m2C∗
λ1

(
mv0λ1 + v0λ1mC∗

λ1

∑
i

(E∗
i )
−1

)

= − λ1

mC∗
λ1

√
mv0 − v0λ1√

m

∑
i

(E∗
i )
−1.

Since by (J1), condition (2) of Theorem 3.1.3 and v0 →p 0,

− λ1

mC∗
λ1

= (1 +
λ1

∑
i(E

∗
i )
−1

m
) →p 1 (3.57)

v0λ1

∑
i(E

∗
i )
−1

√
m

→p 0 (3.58)
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and the fact that the vi0 are iid with mean 0 and variance σ2
v , by the Central Limit

Theorem

√
mv0 →D N(0, σ2

v).

By Slutsky’s theorem, asymptotic normality follows.
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Chapter 4

Logistic 2× 2×m table

This Chapter illustrates conditional asymptotic normality results of Theorem

3.1.3 and 3.1.4. In order to check the asymptotic results, simulations are performed

to explore the asymptotic properties of our estimator. We also apply the estimator

to a real data set to compare with Mantel-Haenszel estimator.

4.1 Logistic 2× 2×m table

We use this example to illustrate Theorem 3.1.2 and 3.1.3. The 2 × 2 × m

table example is set up as the following:

logitP (yij = 1|x) = αi + βxij

where xij=1 or 0 and the table is the following:

Table 4.1: 2× 2×m table

y = 0 y = 1

x = 0 a1 b1

x = 1 c1 d1

. . .

y = 0 y = 1

x = 0 am bm

x = 1 cm dm

For 2× 2×m tables, there are two types of models:

Model I : the number of tables m remains fixed but individual cell sizes increase

without bound.
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Model II : the number of tables m increases but the cell sizes remained bounded.

Breslow [5] studied the properties of four commonly used estimators of the odds

ratio in Model II:

Consider a series of m pairs of independent binomial observations (di, bi) with

denominators (ni = di + ci, mi = ai + bi) and success probabilities (p1i, p0i) for

i = 1, . . . , m. Its assumed throughout that the odds ratio ψ = (p1iq0i)/(p0iq1i)

remains constant from table to table.

One of the earliest estimators (Woolf, 1955) of the common odds ratio ψ is

the empirical logit estimator defined by

log(ψ̂G) =

[
m∑

i=1

wi log

{
(ai + ∆)(di + ∆)

(ci + ∆)(bi + ∆)

}]/(∑
i

wi

)

where the weights are

wi = (1/(ai + ∆) + 1/(bi + ∆) + 1/(ci + ∆) + 1/(di + ∆))−1

and ∆ > 0 is a constant added to each cell to avoid zero denominators. The choice

∆ = 1/2 is the most popular because it is thought to reduce the bias in small

examples (Anscombe, 1956). There are unconditional MLE and conditional MLE

(the details omitted here). The fouth and final estimator is given by famous formula

of Mantel and Haenszel (1959):

ψ̂MH =

∑
i(aidi/Ni)∑
i(cibi/Ni)

where Ni = ai + bi + ci + di = mi + ni. Due largely to its simplicity, ψ̂MH has been

widely used by practicing statisticians and epidemiologists. Breslow [5] showed that
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in the Model II setting, the empirical logit estimator does not converge to the true

odds ratio. The Mantel-Haenszel estimator is consistent and retains good efficiency

even for moderately large odds ratios in the Model II setting (sparse data).

Let Ri = aidi/Ni and Si = cibi/Ni, Breslow [5] proposed an empirical estimate

of Var[ψ̂MH ] as

mV̂arE(ψ̂MH) =

∑
i(Ri − ψ̂MHSi)/m

(
∑

i Si/m)2

Robins, Breslow and Greenland [25] proposed a new estimator of Var[ψ̂MH ] as:

mV̂arUS(ψ̂MH) = m

[∑
i PiRi

2R2
+

+

∑
i(PiSi + QiRi)

2R+S+

+

∑
i QiSi

2S2
+

]
(ψ̂MH)2

where Pi = (ai + di)/Ni, Qi = (ci + bi)/Ni, R+ =
∑

i Ri and S+ =
∑

i Si. The

corresponding estimators of mVar(log ψ̂MH) are

mVi = mV̂ari(ψ̂MH)/(ψ̂MH)2

where i ∈ US, E means using V̂arUS, V̂arE respectively. The Robins-Breslow-

Greenland [25] estimator is consistent under both Model I and Model II.

The estimating equation xt
i(yi − µi) is

0 = bi + di − (ai + bi) exp(αi)/(1 + exp(αi))

− (ci + di) exp(αi + β)/(1 + exp(αi + β)) (4.1)

0 = di − (ci + di) exp(αi + β)/(1 + exp(αi + β)) (4.2)

and we can get the MLE of β as log(aidi/bici) = log ai + log di − log bi − log ci.

Let

Zi0 = (ai − E(ai|αi0))/
√

Var(ai|αi0)
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and

Zi1 = (ci − E(ci|αi0))/
√

Var(ci|αi0)

For simplicity we assume ai + bi = ni and ci + di = ni. Since given αi0, ai belongs

to Binomial(ni, 1/(1 + exp(αi0))) we have

ai =
ni

1 + exp(αi0)
+

√
Var(ai|αi0)

(
ai − E(ai|αi0)√

Var(ai|αi0)

)

=
ni

1 + exp(αi0)
+ Zi0

exp(αi0/2)
√

ni

1 + exp(αi0)

=
ni

1 + exp(αi0)

(
1 + Zi0

exp(αi0/2)√
ni

)
,

log ai ≈ log

(
ni

1 + exp(αi0)

)
+ Zi0

exp(αi0/2)√
ni

− Z2
i0

exp(αi0)

2ni

+ o(
1

ni

).

By the same argument we have

− log bi ≈ − log

(
ni exp(αi0)

1 + exp(αi0)

)
+ Zi0

exp(−αi0/2)√
ni

+ Z2
i0

exp(−αi0)

2ni

+ o(
1

ni

),

− log ci ≈ − log

(
ni

1 + exp(αi0 + β0)

)
− Zi1

exp((αi0 + β0)/2)√
ni

,

+ Z2
i1

exp(αi0 + β0)

2ni

+ o(
1

ni

)

log di ≈ log

(
ni exp(αi0 + β0)

1 + exp(αi0 + β0)

)
− Zi1

exp(−(αi0 + β0)/2)√
ni

− Z2
i1

exp(−(αi0 + β0))

2ni

+ o(
1

ni

).

Then

β̂i = β0 +
Zi0√
ni

(exp(αi0/2) + exp(−αi0/2))

− Zi1√
ni

(exp((αi0 + β0)/2) + exp(−(αi0 + β0)/2))

− Z2
i0

2ni

(exp(αi0)− exp(−αi0))

+
Z2

i1

2ni

(exp(αi0 + β0)− exp(−(αi0 + β0))) + op(
1

ni

).
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The bias of β̂i is the following:

E((β̂i − β0)|αi0)

=
exp(αi0)(exp(β0)− 1)− exp(−αi0)(exp(−β0)− 1)

2ni

+ o(
1

ni

).

Let

G(x) = (4 + 4 exp(−x) + 4 exp(x))−1 , (4.3)

in order to check the hypotheseses of Theorem 3.1.2, first we consider 1
ni

(F ββ
i )−1 =

G(ηij) where ηij = αi + xijβ and xij = 1 or 0. Since we assume |αi0| is bounded, it

is obvious that infi G(ηij0) > δ1 > 0 and supi G(ηij0) < M1 < ∞, for some positive

constants δ1 and M1. Similar arguments follow for ni(Fni
)−1.

We need to verify condition (1) of Theorem 3.1.3. In this case we have the

log-likelihood function for ith group as the following:

l = biαi + di(αi + β)− ni log(1 + exp(αi))− ni log(1 + exp(αi + β)).

Then

− 1

ni

l
′′
(αi0, β0) =




Ii1 + Ii2 Ii2

Ii2 Ii2


 (4.4)

where

Ii1 =
exp(αi0)

(1 + exp(αi0))2

Ii2 =
exp(αi0 + β0)

(1 + exp(αi0 + β0))2

Since in this special example F ββ
i as a scalar instead of a matrix, the Lindeberg

condition verification can be simplified and for condition (1) of Theorem 3.1.2 we
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only need to verify

K1 <
mini F

ββ
i

maxi F
ββ
i

< K2

where K1 and K2 are positive constants. Obviously here K2 = 1 since here we have

F ββ
i = (1/ni) ((1 + exp(−β0)) exp(−αi0) + (1 + exp(β0)) exp(αi0) + 4).

Consider condition (3) of Theorem 3.1.2: Let

λmaxF
−1
ni

λminF−1
ni

=
sup‖u‖=1 fi(u)

inf‖u‖=1 fi(u)

where

fi(u) =
(1 + exp(αi0 + β0))

2

exp(αi0 + β0)
u2

2 + (u1 − u2)
2 (1 + exp(αi0))

2

exp(αi0)
.

For the further calculation we write

fi(u) = exp(αi0)

[
(exp(−αi0) + exp(β0))

2

exp(β0)
u2

2 + (u1 − u2)
2(1 + exp(−αi0))

2

]

= exp(−αi0)

[
(1 + exp(αi0 + β0))

2

exp(β0)
u2

2 + (u1 − u2)
2(1 + exp(αi0))

2

]

Let

B1 =
(exp(−αi0) + exp(β0))

2

exp(β0)
, A1 = (1 + exp(−αi0))

2.

and

B2 =
(1 + exp(αi0 + β0))

2

exp(β0)
, A2 = (1 + exp(αi0))

2.

Here we have u1 =
√

1− u2
2 for A1, B1 and A2, B2 as the above, we have

(u2
2)1 =

1

2
± 1

2

√
1− 4A2

1/(4A
2
1 + B2

1)

(u2
2)2 =

1

2
± 1

2

√
1− 4A2

2/(4A
2
2 + B2

2)
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So we have

max
i

sup‖u‖=1 fi(u)

inf‖u‖=1 fi(u)

= max
i

A1(1− 2
√

A2
1/(4A

2
1 + B2

1)) + B1(
1
2

+ 1
2

√
1− 4A2

1/(4A
2
1 + B2

1))

A1(1− 2
√

A2
1/(4A

2
1 + B2

1)) + B1(
1
2
− 1

2

√
1− 4A2

1/(4A
2
1 + B2

1))

and we can see that when αi0 → +∞ we have maxi

(
sup‖u‖=1 fi(u)/inf‖u‖=1 fi(u)

)
=

O(1). Also

max
i

sup‖u‖=1 fi(u)

inf‖u=1‖ fi(u)

= max
i

A2(1− 2
√

A2
2/(4A

2
2 + B2

2)) + B2(
1
2

+ 1
2

√
1− 4A2

2/(4A
2
2 + B2

2))

A2(1− 2
√

A2
2/(4A

2
2 + B2

2)) + B2(
1
2
− 1

2

√
1− 4A2

2/(4A
2
2 + B2

2))

we can see that when αi0 → −∞ we have maxi

(
sup‖u‖=1 fi(u)/inf‖u‖=1 fi(u)

)
=

O(1). Consider

F−1
ni

=
(
−l

′′
(αi0, β0)

)−1

= 1/ni




I−1
i1 −I−1

i1

−I−1
i1 I−1

i1 + I−1
i2


 . (4.5)

Here ‖u‖2 = u2
1 + u2

2 = 1 so that

m∑
i

‖F−1
ni
‖ =

∑
i

1

ni

sup
‖u‖=1

(
(1 + exp(αi0 + β0))

2

exp(αi0 + β0)
u2

2 + (u1 − u2)
2 (1 + exp(αi0))

2

exp(αi0)

)

≤
m∑
i

1

ni

(6 + (2 + exp(−β0)) exp(−αi0) + (2 + exp(β0)) exp(αi0))

≤ 6m

mini ni

+
m∑

i=1

c1 exp(|αi0|) 1

ni

≤ 6m

mini ni

+
mc1

mini ni

1

m

m∑
i=1

exp(|αi0|). (4.6)

If we have condition the (1/m)
∑m

i=1 exp(|αi0|) →a.s. E(exp(|αi0|)), then by condition

(2) of Theorem 3.1.2, (4.6)= 6m/mini ni + Op(m/mini ni) = op(1), the asymptotic
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relation ‖(1/√ni)[Fni
−Fni

(γ∗)]‖ = Op(1) can be verified following the same argu-

ment in the proof of Theorem 3.1.3, we verified assumptions of Theorem 3.1.2 which

gives ‖√ni(Fni
)−T/2‖ = O(1), so condition (3) of Theorem 3.1.3 is satisfied.

Consider condition (4) of Theorem 3.1.2 and here we let ψ(t) = t:

We have:

β̂i − E(β̂i|αi0)

=
Zi0√
ni

(exp(αi0/2) + exp(−αi0/2))

− Zi1√
ni

(exp((αi0 + β0)/2) + exp(−(αi0 + β0)/2))

− 1 + Z2
i0

2ni

(exp(αi0)− exp(−αi0))

+
1 + Z2

i1

2ni

(exp(αi0 + β0)− exp(−(αi0 + β0))) + o(
1

ni

),

and

[
Ki1Zi0√

ni

− Ki3(1 + Z2
i0)

2ni

+
Ki4(1 + Z2

i1)

2ni

− Ki2Zi1√
ni

+ o(
1

ni

)

]4

≤
[∣∣∣∣

Ki1Zi0√
ni

− Ki2Zi1√
ni

∣∣∣∣ +

∣∣∣∣
Ki4(1 + Z2

i1)

2ni

− Ki3(1 + Z2
i0)

2ni

+ o(
1

ni

)

∣∣∣∣
]4

≤ 8

[∣∣∣∣
Ki1Zi0√

ni

− Ki2Zi1√
ni

∣∣∣∣
4

+

∣∣∣∣
Ki4(1 + Z2

i1)

2ni

− Ki3(1 + Z2
i0)

2ni

+ o(
1

ni

)

∣∣∣∣
4
]

≤ 64

[∣∣∣∣
Ki1Zi0√

ni

∣∣∣∣
4

+

∣∣∣∣
Ki2Zi1√

ni

∣∣∣∣
4

+

∣∣∣∣
Ki4(1 + Z2

i1)

2ni

∣∣∣∣
4

+

∣∣∣∣o(
1

ni

)− Ki3(1 + Z2
i0)

2ni

∣∣∣∣
4
]

≤ 64

[
K4

i1Z
4
i0

n2
i

+
K4

i2Z
4
i1

n2
i

+
K4

i4(1 + Z2
i1)

4

16n4
i

+ o(
8

n4
i

) +
8K4

i3(1 + Z2
i0)

4

16n4
i

]

≤ 64

[
K4

i1Z
4
i0

n2
i

+
K4

i2Z
4
i1

n2
i

+
K4

i4(1 + Z8
i1)

2n4
i

+ o(
8

n4
i

) +
4K4

i3(1 + Z8
i0)

n4
i

]
.
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Then we have

E((β̂∗ti β̂∗i )
2|αi0)

= (F ββ
i )−2E

{[
Ki1Zi0√

ni

− Ki3(1 + Z2
i0)

2ni

+
Ki4(1 + Z2

i1)

2ni

− Ki2Zi1√
ni

+ o(
1

ni

)

]4

|α i0

}

≤ 64(F ββ
i )−2E

{[
K4

i1Z
4
i0

n2
i

+
K4

i2Z
4
i1

n2
i

+
K4

i4(1 + Z8
i1)

2n4
i

+ o(
8

n4
i

) +
4K4

i3(1 + Z8
i0)

n4
i

]
|α i0

}

where Ki1 = exp(αi0/2)+exp(−αi0/2), Ki2 = exp((αi0+β0)/2)+exp(−(αi0+β0)/2),

Ki3 = exp(αi0)− exp(−αi0), Ki4 = exp(αi0 + β0)− exp(−(αi0 + β0)) .

Since here Zi0 and Zi1 are normalized binomial random variables for ni with

different means ni/(1+exp(αi0)), ni/(1+exp(αi0+β0)) and variances ni exp(αi0)/(1+

exp(αi0)), ni exp(α0 +β0)/(1+exp(αi0 +β0)) respectively, which are both in order of

ni, by M. Znidaric [38] we have E(Z4
i0|αi0) = (n2

i +O(n−1
i ))Op(n

−2
i ) = Op(1). By the

same argument we have E(Z8
i0|αi0) = Op(1), E(Z4

i1|αi0) = Op(1) and E(Z8
i1|αi0) =

Op(1), so it is easy to show that condition (4) of Theorem 3.1.2 satisfied.

Now we consider the following:

(
(
∑

i

(F ββ
i )−1)−

1
2

∑
i

(Fββ
i )−1(E(β̂i|vi0)− β0)

)2

=

{∑
i

(F ββ
i )−1

(
Ki4 −Ki3

2ni

+ op(
1

ni

)

)}2

×
{∑

i

ni

(
I−1
i1 + I−1

i2

)−1

}−1

≤ m
∑

i

n2
i

(
Ii1Ii2

Ii1 + Ii2

)2 (
Ki4 −Ki3

2ni

+ op(
1

ni

)

)2
{∑

i

ni

(
I−1
i1 + I−1

i2

)−1

}−1

(4.7)

≤ 2m
∑

i

(
I−1
i1 + I−1

i2

)−2 (
(K2

i4 + K2
i3) + op(1)

)
{∑

i

ni

(
I−1
i1 + I−1

i2

)−1

}−1

(4.8)

≤ Op(1)
m

mini ni

(4.9)

The step from (4.7) to (4.8) follows because of (1) and (2) of Theorem 3.1.2, the

fact that |αi0|is bounded and maxi(K
2
i3 + K2

i4)/ mini(I
−1
i1 + I−1

i2 ) = Op(1). The result
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of Theorem 3.1.2 follows.

Consider (1) of Theorem 3.1.3. We have

1

N
‖V̂ −V‖ =

1

N
‖

∑
i

ni{G(η̂ij)−G(ηij0)}‖

≤ 1

N

m∑
i=1

ni‖G(η̂ij)−G(ηij0)‖ =
1

N

∑
i

√
niOp(1) = op(1).

The above conclusion follows from the delta method since, given αi0,

√
ni(G(η̂ij)−G(ηij0)) ∼ AN(0, ni(G

′(ηij0))
2(F aa

i + 2F aβ
i + F ββ

i )).

Also N |V −1| = N |(∑i niG(ηij0)| = O(1) and condition (1) of Theorem 3.1.3 is

satisfied. For condition (2) of Theorem 3.1.4, |(F̂ ββ
i )−1 − (F ββ

i )−1| = ni|G(η̂ij) −

G(ηij0)| = Op(
√

ni), the condition (3) is easy to verified. The result of Theorem

3.1.3 follows. Similar argument follow if we replace β̂ij by ˆ̂ηij since ,given αi0,

√
ni(G(ˆ̂ηij)−G(ηij0)) ∼ AN(0, ni(G

′(ηij0))
2F aa

i ).

4.2 Simulation results for 2× 2×m table.

We consider the 2× 2×m table as the following set up:

logitP (yij = 1|αi, xij) = αi + xijβ

where αi is the random effect and β is fixed effect, xij=0 or 1. The αis are uniformly

distributed between -0.8 and 0.8 since from the Section 4.1 we assume |αi0| bounded.

We maximize the following likelihood function to get estimator of β̂i and α̂i for each

group according to Table 4.1.

L =

(
1

1 + exp(αi)

)ai
(

exp(αi)

1 + exp(αi)

)bi
(

1

1 + exp(αi + β)

)ci
(

exp(αi)

1 + exp(β + αi)

)di
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The weighted sum of the β̂ (using both true and estimated weights) are simulated.

It is easy to solve the above equation and get β̂i = log (aidi/cibi) and α̂i = log bi/ai

for the ith table.

4.2.1 Unconditional convergence in distribution

We simulated both balanced and unbalanced m tables with n observations per

table. We generated product binomial data for the first and second rows with success

probabilities exp(αi0)/(1+exp(αi0)) and exp(β0+αi0)/(1+exp(β0+αi0)) respectively.

Here ai + bi + ci + di = n and for the balanced case we have ai + bi = ci + di = n/2.

For the unbalanced case we either have ai + bi = n/3 or ai + bi = n/4. We simulated

with either β0 = 1 or = 0.5. Various combinations of (m,n) and true values of β

were used for both balanced and unbalanced settings.

For each combination, 1000 replications of random effects αi and m groups

of ai, bi, ci and di were generated. Estimated regression coefficients for various

choices of (m,n) and β0 with αi ∼ Unif(−0.8, 0.8) are summarized in Table 4.2 and

Table 4.3.

For the balanced setup, the tables display the means and standard errors of the

simulated values of (β̂w − β0)/s.e., (
ˆ̂
βw − β0)/ŝ.e., β̂w − β0,

ˆ̂
βw − β0, 95% confidence

bounds for (β̂w−β0) and (
ˆ̂
βw−β0) based on Student’s t. From Table 4.2 and Table

4.3 under the balanced setup, we can see that for β0 = 0.5 in all the combinations β̂w

is approximately unbiassed and for all combinations with β0 = 1 except for (100, 50)

β̂w is slightly biased. For β0 = 0.5 and β0 = 1
ˆ̂
βw is approximately biased in all
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combinations except the combination β0 = 1 or 0.5, m = 100 and n = 50.

For all of the combinations in both tables, Shapiro-Wilk test p values are above

0.24 except for β0 = 0.5 (20, 400) and β0 = 1 and (40, 800) which means in those

combinations, β̂w and
ˆ̂
βw given α0 are normal. Likewise, Kolmogorov-Smirnov test

p values are larger than 0.06.

From Table 4.2 and Table 4.3, we can see that bias/se< 0.208 except for ex-

treme case (m = 100, n = 50) so the normal inference is not greatly affected in the

cases where consistency results do not hold. For the combination (100, 50), in order

to avoid 0 observations in the cells we use (Woolf, 1955)’s adjusted method to have

β̂i = log {[(ai + 1/2)(di + 1/2)] /[(ci + 1/2)(bi + 1/2)]} and α̂i = log ({bi + 1/2} /{ai + 1/2}).

We compared our estimators β̂w with true weights and
ˆ̂
βw with estimated

weights to the Mantel-Haenszel estimator β̂MH . To see whether our estimators

are more efficient, we compared the standard deviation of our estimators from 1000

replications with that of the Mantel-Haenszel estimator. From the results of different

combinations of (m,n) and β0, our estimators are almost as efficient as the Mantel-

Haenszel estimator. Since
ˆ̂
βw is constructed by plugging the MLE β̂i for ith group

into the weight formula, we can also construct another empirical estimator of β

by plugging in
ˆ̂
βw. We ran similar simulations of this new empirical estimator,

which still introduced more positive bias. But the normality results hold for this

new empirical estimator. It suggests that in practice, one can stay with the simple

empirical estimator by plugging MLE β̂i from each group. The plots show that β̂w

and
ˆ̂
βw are approximately normal, with departures from normality in the extreme

tails in this balanced setup.
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Table 4.2: Simulated estimates of logistic odds ratio in 2× 2×m balanced table.

(β̂w − β0) (
ˆ̂
βw − β0)

(m, n) mean std 95% CI for (β̂w − β0) mean std

β0 = 0.5, balanced set up

(10,200) 0.006 0.095 (0.000, 0.001) -0.0001 0.093

(10,300) 0.002 0.077 (-0.003, 0.007) -0.002 0.076

(20,400) 0.002 0.067 (-0.002, 0.007) -0.004 0.066

(30,600) 0.001 0.032 (-0.002, 0.001) -0.002 0.032

(40,800) -0.002 0.023 (0.000, 0.003) 0.000 0.023

(100,50) -0.001 0.060 (-0.005, 0.002) -0.028 0.056

β0 = 1, balanced setup

(10,200) 0.013 0.100 (0.006, 0.019) -0.002 0.098

(10,300) 0.012 0.080 (0.008, 0.017) 0.003 0.079

(20,400) 0.007 0.050 (0.004, 0.010) -0.001 0.050

(30,600) 0.004 0.033 (0.002, 0.006) -0.001 0.032

(40,800) 0.005 0.024 (0.003, 0.006) 0.001 0.024

(100,50) 0.000 0.063 (-0.004, 0.004) 0.061 0.057
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Table 4.3: Simulated standardized estimates of log odds ratio (standardized by true

and estimated conditional standardized error) in 2× 2×m balanced table .

(β̂w − β0)/s.e. (
ˆ̂
βw − β0)/ŝ.e.

(m, n) mean std 95% CI for (
ˆ̂
βw − β0) mean std

β0 = 0.5, balanced set up

(10,200) 0.064 1.016 (-0.006, 0.006) -0.005 0.995

(10,300) 0.026 1.011 (-0.007, 0.003) -0.029 0.997

(20,400) 0.037 1.017 (-0.008, 0.0003) -0.060 0.993

(30,600) 0.016 1.019 (-0.001, 0.002) -0.054 1.014

(40,800) 0.064 0.990 (-0.002, 0.001) -0.006 0.986

(100,50) -0.023 1.032 (-0.031, -0.024) -0.475 0.958

β0 = 1, balanced set up

(10,200) 0.131 1.029 (-0.008, 0.004) -0.026 1.000

(10,300) 0.156 1.005 (-0.002, 0.008) 0.026 0.985

(20,400) 0.144 1.030 (-0.004, 0.003) -0.013 1.021

(30,600) 0.120 1.002 (-0.003 0.001) -0.037 1.000

(40,800) 0.190 0.979 (-0.001, 0.002) 0.035 0.972

(100,50) -0.001 1.043 (-0.064, -0.057) -0.994 0.933
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Figure 4.1: Q-Q plots for (β̂w−β0) and (
ˆ̂
βw−β0) standardized by true and estimated

conditional standard error, for various values of (m,n) in logistic 2×2×m balanced

setup.
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For each combination, 1000 replications of random effects αi and m groups of

ai, bi, ci and dis were generated. Estimated regression coefficients for various choices

of (m,n), β0 with αi ∼ Unif(−0.8, 0.8) are summarized in Table 4.4 and Table 4.5.

For the unbalanced setup, the tables display the means and standard errors of the

simulated values of (β̂w−β0)/s.e., (
ˆ̂
βw−β0)/ŝ.e., (β̂w−β0), (

ˆ̂
βw−β0), 95% confidence

bounds for (β̂w−β0) and (
ˆ̂
βw−β0) based on Student’s t. From Table 4.4 and Table

4.5 for β0 = 0.5 or 1 with unbalanced setup (1/3, 2/3) (meaning ai + bi = n/3) and

(1/4, 3/4) (meaning ai + bi = n/4), we can see that in all the combinations β̂w is

approximately unbiased hold except for the combination with β0 = 1, (1/4, 3/4),

m = 10, n = 200 or β0 = 0.5, (1/3, 2/3), m = 10, n = 300 and β0 = 0.5 with

m = 30, n = 600 or m = 20, n = 400.

But their Shapiro-Wilk test p values are above 0.19 except β0 = 0.5, (20, 400)

which means in those combinations, β̂w given α0 are conditionally normal and

Kolmogorov-Smirnov test p values are larger than 0.10.

For
ˆ̂
βw in all the combinations except for β0 = 1 or 0.5, (1/4, 3/4) or (1/3, 2/3),

m = 100, n = 60 the estimator is approximately unbiased. From Table 4.4 and

Table 4.5, we can see that bias/se< 0.109 except for extreme combinations like

(m = 100, n = 60), so the normal inference is not greatly affected in these cases

because the bias is small.

For the combination (100, 60), in order to avoid 0 observations in the cells we

use (Woolf, 1955)’s adjusted method to have

β̂i = log ((ai + 1/2)(di + 1/2)/(ci + 1/2)(bi + 1/2))
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and α̂i = log (bi + 1/2/ai + 1/2).

In order to compare our estimators β̂w with true weights and
ˆ̂
βw with es-

timated weights to the Mantel-Haenszel estimator β̂MH and to see whether our

estimators are more efficient, we compared the standard deviation of our estimators

from 1000 replication with of Mantel-Haenszel estimator. From the results of dif-

ferent combinations of (m,n) and β0, our estimators are almost the same efficient

as Mantel-Haenszel estimator. Since
ˆ̂
βw is constructed by plugging MLE β̂i for ith

group, we can also construct another empirical estimator of β by plugging in
ˆ̂
βw,

we run the similar simulations under this new empirical estimator which introduced

more positive bias. But the normality results hold for this new empirical estimator.

It suggests that in practice, one can stay with the simpler empirical estimator by

obtained by plugging MLE β̂i into the formula for the weight matrix. The plots

show that β̂w and
ˆ̂
βw are approximately normal, with departures from normality in

the extreme tails in logistic 2× 2×m unbalanced setup.

Since when we introduce 1/2 adjustment into estimator we reduce bias, we

tried simulation for (10, 200) in balanced setup and unbalanced setup (1/4, 3/4) and

(10, 300) in unbalanced setup (1/3, 2/3). Adding the 1/2 adjustment can reduce

bias for β̂w − β0 and
ˆ̂
βw − β0 a lot, especially for the combination (10, 200).
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Table 4.4: Simulated estimates of log odds ratio (standardized by true and estimated

conditional standardized error) in 2× 2×m unbalanced table.

(β̂w − β0) (
ˆ̂
βw − β0)

(m, n) mean std 95% CI for (β̂w − β0) mean std

β0 = 1, unbalanced setup (1/4,3/4)

(10,200) 0.012 0.110 (0.005, 0.019) 0.005 0.107

(20,400) 0.003 0.054 (-0.0003, 0.006) -0.0002 0.053

(100,60) 0.001 0.063 (-0.003 0.004) 0.023 0.057

β0 = 1, unbalanced setup (1/3,2/3)

(10,300) 0.010 0.084 (0.005, 0.015) 0.004 0.083

(30,600) 0.002 0.034 (-0.0003, 0.004) -0.001 0.034

(100,60) -0.001 0.059 (-0.004, 0.003) -0.032 0.055

β0 = 0.5, unbalanced setup (1/3,2/3)

(10,300) 0.005 0.082 (-0.0004, 0.010) 0.002 0.081

(30,600) 0.002 0.033 (0.0004, 0.004) 0.0003 0.032

(100,60) -0.003 0.056 (-0.007, 0.0004) -0.016 0.052

β0 = 0.5, unbalanced setup (1/4,3/4)

(10,200) 0.006 0.109 (-0.0005, 0.013) 0.003 0.106

(20,400) 0.005 0.054 (0.002, 0.008) 0.004 0.054

(100,60) -0.001 0.064 (-0.003, 0.005) -0.009 0.058
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Table 4.5: Simulated standardized estimates of log odds ratio (standardized by true

and estimated conditional standardized error) in 2× 2×m unbalanced table .

(β̂w − β0)/s.e. (
ˆ̂
βw − β0)/ŝ.e.

(m, n) mean std 95% CI for (
ˆ̂
βw − β0) mean std

β0 = 1, unbalanced setup (1/4,3/4)

(10,200) 0.110 1.005 (-0.002, 0.012) 0.041 0.969

(20,400) 0.056 0.985 (-0.004, 0.003) -0.006 0.965

(100,60) 0.008 1.015 (-0.027, -0.020) -0.372 0.899

β0 = 1, unbalanced setup (1/3,2/3)

(10,300) 0.122 1.011 (-0.001, 0.009) 0.047 0.992

(30,600) 0.054 1.004 (-0.003, 0.001) -0.035 0.996

(100,60) -0.012 1.025 (-0.035, -0.028) -0.542 0.939

β0 = 0.5, unbalanced setup (1/3,2/3)

(10,300) 0.058 1.018 (-0.003, 0.007) 0.025 1.001

(30,600) -0.049 0.996 (-0.002, 0.002) 0.010 0.986

(100,60) -0.055 1.005 (-0.019, -0.013) -0.283 0.924

β0 = 0.5, unbalanced setup (1/4,3/4)

(10,200) 0.059 1.018 (-0.003, 0.010) 0.029 0.980

(20,400) 0.094 1.020 (0.0002, 0.007) 0.064 1.002

(100,60) 0.017 1.066 (-0.013, -0.006) -0.149 0.947
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Figure 4.2: Q-Q plots for (β̂w−β0) and (
ˆ̂
βw−β0) standardized by true and estimated

conditional standard error, for various values of (m,n) in logistic 2×2×m unbalanced

setup where n1=600, 400 for (1/3,2/3), (1/4, 3/4) setups respectively .
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4.2.2 Conditional Convergence in Distribution

Recall that Theorem 3.1.2 and Theorem 3.1.3 gave conditional convergence in

distribution of the normalized β̂w and
ˆ̂
βw to the N(0, I) distribution. We performed

a limited study to examine this conditional convergence.

We repeated the simulations designed for the logistic 2×2×m table, but with

the following modification: we generated 10 realizations of i.i.d Unif(-0.8,0.8) of α0.

For each realization of α0 we generated 1000 replications of y with the same α0.

This was performed only for sample sizes m = 10, n = 200 for β0=1 or 0.5.

From the following tables Table 4.6,Table 4.7, Table 4.8 and Table 4.9, we

found that each realization of α0, the normalized β̂w and
ˆ̂
βw had Monte Carlo mean

zero and variances near 1 in the case m = 10, n1 = 200. The Kolmogorov-Smirmov

and Shapiro-Wilk tests all indicated no significant departures from normality. These

findings are very similar to those which describe the unconditional distribution.
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Table 4.6: Simulated estimates of logistic odds ratio for fixed realizations of uni-

formly distributed random effects (m = 10, n1 = 200) and β0 = 0.5.

(β̂w − β0)
ˆ̂
βw − β0

Realization mean std 95% CI for β̂w − β0 mean std

1 0.007 0.097 (0.001, 0.013) 0.000 0.096

2 0.002 0.091 (-0.005, 0.006) -0.005 0.090

3 0.004 0.100 (-0.002, 0.010) -0.001 0.100

4 0.003 0.093 (-0.003, 0.009) -0.004 0.092

5 0.011 0.095 (0.005, 0.017) 0.004 0.093

6 0.002 0.092 (-0.004, 0.008) -0.003 0.090

7 0.003 0.092 (-0.003, 0.009) -0.003 0.091

8 0.006 0.098 (0.000, 0.012) -0.001 0.097

9 0.006 0.092 (0.000, 0.012) 0.005 0.092

10 0.003 0.095 (-0.003, 0.009) -0.003 0.093
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Table 4.7: Simulated standardized estimate of logistic odds ratio with fixed realiza-

tions of uniformly distributed random effects (m = 10, n1 = 200) and β0 = 0.5.

(β̂w − β0)/s.e (
ˆ̂
βw − β0)/ŝ.e.

Realization mean std 95% CI for (
ˆ̂
βw − β0) mean std

1 0.071 1.030 (-0.005, 0.006) -0.003 1.000

2 0.002 0.980 (-0.011, 0.000) -0.062 0.964

3 0.045 1.089 (-0.008, 0.005) -0.019 1.069

4 0.030 1.000 (-0.009, 0.002) -0.041 0.970

5 0.116 1.000 (-0.002, 0.010) 0.037 0.975

6 0.024 1.000 (-0.009, 0.002) -0.039 0.980

7 0.032 0.991 (-0.008, 0.003) -0.033 0.974

8 0.066 1.040 (-0.006, 0.006) -0.009 1.016

9 0.068 1.007 (-0.005, 0.006) 0.002 0.993

10 0.033 1.018 (-0.009, 0.003) -0.035 0.993
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Table 4.8: Simulated estimates of logistic odds ratio with fixed realizations of uni-

formly distributed random effects (m = 10, n = 200) and β0 = 1.

(β̂w − β0)
ˆ̂
βw − β0

Realization mean std 95% CI for β̂w − β0 mean std

1 0.015 0.097 (0.009, 0.021) 0.002 0.095

2 0.013 0.102 (0.007, 0.020) -0.003 0.099

3 0.010 0.100 (0.003, 0.016) -0.004 0.099

4 0.013 0.103 (0.008, 0.020) 0.000 0.102

5 0.014 0.094 (0.009, 0.020) 0.000 0.092

6 0.011 0.094 (0.005, 0.017) 0.000 0.093

7 0.013 0.099 (0.007, 0.020) -0.001 0.097

8 0.011 0.097 (0.005, 0.017) -0.003 0.095

9 0.009 0.099 (0.003, 0.015) -0.004 0.098

10 0.011 0.098 (0.005, 0.017) -0.005 0.096
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Table 4.9: Simulated standardized estimate of logistic odds ratio with fixed realiza-

tions of uniformly distributed random effects (m = 10, n1 = 200) and β0 = 1.

(β̂w − β0)/s.e (
ˆ̂
βw − β0)/ŝ.e.

Realization mean std 95% CI for (
ˆ̂
βw − β0) mean std

1 0.153 1.021 (-0.003, 0.008) 0.019 0.996

2 0.138 1.022 (-0.009, 0.003) -0.039 0.987

3 0.099 1.033 (-0.010, 0.002) -0.050 1.008

4 0.144 1.064 (-0.007, 0.006) -0.011 1.038

5 0.149 0.968 (-0.005, 0.006) -0.003 0.940

6 0.119 1.001 (-0.006, 0.006) -0.008 0.982

7 0.139 1.025 (-0.007, 0.006) -0.013 0.999

8 0.109 0.994 (-0.009, 0.003) -0.039 0.969

9 0.095 1.031 (-0.010, 0.002) -0.051 1.011

10 0.111 1.003 (-0.010, 0.001) -0.053 0.977
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4.3 Analysis of real data for a 2× 2× 22 table

We used the data from Yusuf et al. [36] which has 22 clinical trials of beta-

blockers for reducing mortality after myocardial infarction. The data structure is

the following: Clinical trial j, where 1 ≤ j ≤ 22 (in the series to be considered for

meta-analysis), involves the use of n0j subjects in the control group and n1j in the

treatment group, giving rise to bj and dj deaths in the control and treatment groups,

respectively. Then the usual sampling models involve two independent binomial

distributions with probability of death p0j and p1j, respectively. We concentrate on

estimating the common log odds ratio which we label β. Here we assume the model

logit(yij = 1|xij, αi) = αi + xijβ where αi is a random effect which may represent

variation between clinical trials. We use this real data to calculate our estimator,

the Mantel-Haenszel estimator and their variance estimators, respectively. Here we

need to point out that the difference between our asymptotic setting and that Woolf

(1955) is that we allow m → ∞, but in Woolf’s setting, m is fixed. The following

table summarizes the result.
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Table 4.10: Summary of simulation of our estimator and Mantel-Haenszel estimator

of log odds ratio.

ˆ̂
βw β̂MH 95% CI for

ˆ̂
βw 95% CI for β̂MH Var(

ˆ̂
βw) Var(β̂MH)

-0.260 -0.261 (-0.359, -0.161 ) (-0.372, -0.150) 0.00253 0.00249

First, we use Woolf’s test in Splus, Breslow-Day test and Likelihood test in

SAS to test homogeneity of odds ratios whose p-values are 0.3595, 0.3149 and 0.3118

respectively. They all suggest that the common odds ratio model is appropriate for

combining the 22 clinical trials.

The above empirical variance estimator of Var[β̂MH ] is based on Breslow,

Greenland and Robins [25]. We bootstrapped the data as follows: for each i =

1, . . . , 22 and j = 0, 1, we generated Y ∗
ij ∼ Binomial(nij, pij), where pij = Yij/nij

is the sample proportion of successes in table i with x = j. Based on this bootstrap

sample, new estimators
ˆ̂
β∗w and β̂∗MH were calculated. This process were repeated

1000 times, and the sample variance of these bootstrap replicates was used to esti-

mate Var[
ˆ̂
βw] and Var[β̂MH ].

We obtained 0.002476 for
ˆ̂
βw and 0.002603 for β̂MH . These results agree with

Table 4.10 and we can see that our estimator
ˆ̂
βw is very close to the Mantel-Haenszel

estimator. The Mantel-Haenszel estimator is consistent in the sparse data case,

unlike our estimator. The logic of our estimator can be extended to other types

of GLMM where m → ∞ and m/ mini ni → 0. No corresponding extension for

Mantel-Haenszel seems available in the literature.
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Chapter 5

Case 2 Results.

This Chapter establishes asymptotic normality results for parameter estimates

in certain versions of Case 2, when m/n 9 0. In Section 5.1 we review Jiang’s [14]

results on consistency. In Section 5.2 we state and prove our asymptotic normality

theorem, and in Section 5.3 we focus on a random effect logistic regression model.

Our results focus on the Maximum Conditional Likelihood Estimates (MCLEs).

These estimates are based on maximizing the likelihood function conditional on the

estimable random effects after integrating out the unestimable random effects. The

estimates derived from this likelihood function were called MCLEs by Jiang [14].

A basic technique here is reparameterization, because, conditionally, the indi-

vidual effects may not be identifiable. To illustrate this method, a special case is

considered. The analysis of the more general setting will be similar. In case 2 the

dimension of β is fixed.

5.1 Case 2 consistency results of Jiang [14].

This section reviews the results on MCLE’s obtained by Jiang [14]. A key tool

in this analysis is to reparameterize the model to address identifiability.

Lemma 5.1.1. There is a map β 7→ β̃, α 7→ α̃ such that

(i) Xβ+Zα = X̃β̃+Zα̃, where (X̃ Z̃) is a known matrix of full column rank.
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(ii) z̃i = z̃∗j, i ∈ Sj for some known vector z̃∗j, where z̃t
j is the ith row of Z̃

and Sj is defined as below.

Vector ut
i is the ith row of U where U is standard in the sense that consists

of 0’s and 1’s and there is at least one 1 in each column and exactly one 1 in

each row. Vector eM,j is the M -dimensional vector whose jth component is 1 and

other components are 0. Let Sj = {1 ≤ i ≤ N : ui = eM,j}, and y(j) = (yi)i∈Sj
,

1 ≤ j ≤ M . Suppose that ζ1, . . . , ζM are independent with common distribution

ν(·/τ)/τ , where ν(·) is a known density function and τ > 0 is an unknown scale

parameter. Furthermore, we assume that there are no random effects nested within

ζ. In notation, this means that zi = z∗j, i ∈ Sj, 1 ≤ j ≤ M , where z∗j = (z∗jk)1≤k≤l.

By Jiang’s [14] Lemma 4.1.1, we have

η = X̃β̃ + Z̃α̃ + Uζ (5.1)

Let ϕ = (β̃, τ), θ = (α̃, ϕ). By (2.23) distribution of y given only α is

f(y|θ) =
M∏

j=1

f(y(j)|θ) (5.2)

and it is easy to show that f(y(j)|θ) = gj(z
t
∗jα̃, β̃, τ), where

gj(s) = E


∏

i∈Sj

f(yi|s1 + xt
is(2) + sr+2ξ)




with s(2) = (s2, . . . , sr+1) and r is the dimension of β̃. Note that r ≤ p. Let n

be the dimension of α̃ and the ecpectation is with respect to the distribution of ξ,

hj(s) = log gj(s), lC(θ) = log f(y|θ) and lC,j(θ) = log f(y(j)|θ) = hj(z
t
∗jα̃, β̃, τ).
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Then

lc(θ) =
M∑

j=1

lc,j(θ). (5.3)

Let Z∗ be the matrix whose jth row is zt
∗j, 1 ≤ j ≤ M . Let ϕ0 and θ0 be the

vectors corresponding to the true parameters and realization of random effects.

Define s
(l)
M, k =

∑M
j=1 |z̃∗jk|l, l = 1, 2, . . ., tM,k =

∑M
j=1

∑
l 6=k |z̃∗jkz̃∗jl|,

Hj = (∂2hj/∂s2)
∣∣∣s1=z̃t

∗j α̃, s(2)=β̃, sr+2=τ , (5.4)

and

A2 =
M∑

j=1




z̃∗j 0

0 Ir+1


 (Hj(θ0)− E(Hj(θ0)|θ0))




z̃t
∗j 0

0 Ir+1


 (5.5)

where Il represents the l-dimensional identity matrix. Define

G =




Z̃t
∗Z̃∗ 0

0 MIr+1


 =

M∑
j=1




z̃∗j z̃t
∗j 0

0 Ir+1


 , (5.6)

λM(θ) = min
1≤j≤M

λmin

(
Var

(
(∂hj/∂s)|(z̃t

∗j α̃, β̃, τ)|θ
))

, (5.7)

and λM = λM(θ0). Let ξ
(l)
j (θ) = (∂lhj/∂

ls1)(z̃
t
∗jα̃, β̃, τ), l = 1, 2,

V
(1)
k (ε) = max

1≤j≤M
E

(
|ξ(1)

j (θ0)|1(z̃∗jkξ
(1)
j (θ0)|>1/2ε)

|θ0

)
,

V
(2)
k (ε) = max

1≤j≤M
E

(
|ξ(2)

j (θ0)− E(ξ
(2)
j (θ0)|θ0)|1(z̃2

∗jk|···−···|>1/2ε)|ψ0

)
.

Theorem 5.1.2. Suppose:

(i) the conditional densities f(y(j)|θ), 1 ≤ j ≤ M , are with respect to a com-

mon measure µ and have common support, and the first and second partial deriva-

tives of
∫

f(yj|θ)dµ with respect to components of θ exist and can be taken under

the integral sign.
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(ii) hj(s), 1 ≤ j ≤ M , are three times differentiable and there exist δ, B > 0

such that

max
1≤j≤M

{(
max

1≤u≤r+2

∣∣(∂2hj/∂s1∂su)
∣∣
)
∨

(
max

1≤u, v, w≤r+2

∣∣(∂3hj/∂su∂sv∂sw)
∣∣
)}

≤ B

(5.8)

for all θ such that ‖ϕ− ϕ0‖ < δ.

(iii) Z̃∗k 6= 0, 1 ≤ k ≤ n, where Z̃∗k is the kth column of Z̃∗, and the following

are bounded:

‖Z̃∗‖∞, max
1≤k≤n

(
s
(1)
M, k

s
(2)
M, k

)
, max

1≤k≤n

(
s
(2)
M, k

s
(4)
M, k

)
, max

1≤k≤n

(
s
(4)
M, k

s
(2)
M, k

)

and

max
1≤j≤M

(
|z̃∗j|2E

(
∂hj

∂s1

|s0

)2
)
∨

(
max

2≤u≤r+2
E

(
∂hj

∂su

|s0

)2
)

, (5.9)

(iv) λM > 0, and there is a sequence ρM such that 0 < ρM ≤ λM ∧ 1, and the

following → 0 in probability:

λmax(G
−1/2A2G

−1/2)/ρM , max
1≤k≤n

(
tM, k

s
(2)
M, k

)
/ρM , (

n

M
)/ρ4

M

and

max
l=1, 2

(log n/ρ2l
M min

1≤k≤n
s
(6−2l)
M, k ) ∨

(
n max

1≤k≤n
V

(3−l)
k (ρl

M)/ρl
M

)
.

Then, with probability approaching 1, there is a sequence θ̂ satisfying (∂lC/∂θ)(θ̂) =

0 and maxi |θ̂i − θi0| = op(ρM).

Note. In fact, it is seen from the proof of the theorem that maxi |ϕ̂i − ϕi0| =

op(ρ
2
M).
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Consider a special case in which there is only one random effect factor. In such

a case, one may integrate out all the random effects, if necessary. The resulting MCL

estimates are the maximum likelihood estimates for the fixed parameters. We have

the following.

Corollary 5.1.3. Suppose that in (5.1) α = 0 (i.e., there are no random effects

besides ζ), and that:

(1) Part (i) of Theorem 4.1.2 holds with θ replaced by ϕ.

(2) hj(ϕ), 1 ≤ j ≤ M are three times differentiable and there exists δ, B > 0 such

that

max
1≤j≤M

sup
‖ϕ−ϕ0‖≤δ

|(any third derivative of hj)(ϕ)| ≤ B.

(3) λM = min1≤j≤M λmin(Var((∂hj/∂ϕ)(ϕ0))|ϕ0) > 0 and

1

M2(λM ∧ 1)2

M∑
j=1

E(‖Hj(ϕ0)− EHj(ϕ0)‖2
R) → 0,

where Hj(ϕ) = ∂2hj/∂ϕ2. Then, with probability approaching 1, there is a sequence

5.2 The Simple case (α = 0).

In this case, we have the classical likelihood function after integrating out the

unestimable random effects and do not need reparameterization, since we only have

fixed effects and the dispersion parameter of the random effect distribution.
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Recall the likelihood function is defined between (5.1) and (5.4), Then




(∂lC(ϕ)/∂β) |ϕ̂

(∂lC(ϕ)/∂τ) |ϕ̂




=




(∂2lC(ϕ)/∂β∂βt) |ϕ∗ (∂2lC(ϕ)/∂β∂τ) |ϕ∗

(∂2lC(ϕ)/∂βt∂τ) |ϕ∗ (∂2lC(ϕ)/∂τ 2 |ϕ∗







β̂ − β0

τ̂ − τ0




+




(∂lC(ϕ)/∂β)
∣∣
ϕ0

(∂lC(ϕ)/∂τ)
∣∣
ϕ0




where ϕ∗ is between ϕ̂ and ϕ0.

Then

(−H)




β̂ − β0

τ̂ − τ0


 =




(∂lC(ϕ)/∂β)
∣∣
ϕ0

(∂lC(ϕ)/∂τ)
∣∣
ϕ0




where

H =




(∂2lC(ϕ)/∂β∂βt) |ϕ∗ (∂2lC(ϕ)/∂β∂τ) |ϕ∗

(∂2lC(ϕ)/∂βt∂τ) |ϕ∗ (∂2lC(ϕ)/∂τ 2) |ϕ∗


 . (5.10)

Let

C = Cov




(∂lC(ϕ)/∂β)
∣∣
ϕ0

(∂lC(ϕ)/∂τ)
∣∣
ϕ0


 (5.11)

Then

C− 1
2 (−H)C− 1

2C
1
2




β̂ − β0

τ̂ − τ0




= C− 1
2




(∂lC(ϕ)/∂β)
∣∣
ϕ0

(∂lC(ϕ)/∂τ)
∣∣
ϕ0


 . (5.12)
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Theorem 5.2.1. Suppose we have the following conditions:

(1) For any δ > 0, assume C− 1
2 (−H)C− 1

2 is a positive definite matrix and

P (‖C− 1
2 (−H)C− 1

2 − I‖ < δ) → 1

(2)

M‖C−1‖ = O(1)

(3)

E{‖Gj‖ψ(‖Gj‖)} ≤ K2

where K2 is a positive constant, ψ(t) is a positive nondecreasing function mapping

from [0, infty) to [0,∞) such that limt→∞ ψ(t) = ∞ and tψ(t) is a convex function,

and

Gj =




(
(∂hj/∂β)|ϕ0

) (
(∂hj/∂β)|ϕ0

)T (
(∂hj/∂β)|ϕ0

) (
(∂hj/∂τ)|ϕ0

)

(
(∂hj/∂τ)|ϕ0

) (
(∂hj/∂β)|ϕ0

)T (
(∂hj/∂τ)|ϕ0

)2


 . (5.13)

Then

C
1
2




β̂ − β0

τ̂ − τ0


 →D N(0, I). (5.14)

Proof:

Recall (5.11), (5.12). By condition (1), we have

C
1
2




β̂ − β0

τ̂ − τ0




= (C− 1
2 (−H)C− 1

2 )−1C− 1
2




(∂lC(ϕ)/∂β)
∣∣
ϕ0

(∂lC(ϕ)/∂τ)
∣∣
ϕ0



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Then
∥∥∥∥∥∥∥∥
C− 1

2




(∂lC(ϕ)/∂β)
∣∣
ϕ0

(∂lC(ϕ)/∂τ)
∣∣
ϕ0


−C

1
2




β̂ − β0

τ̂ − τ0




∥∥∥∥∥∥∥∥
(5.15)

≤ ‖(C− 1
2 (−H)C− 1

2 )−1 − I‖

∥∥∥∥∥∥∥∥
C− 1

2




(∂lC(ϕ)/∂β)
∣∣
ϕ0

(∂lC(ϕ)∂τ)
∣∣
ϕ0




∥∥∥∥∥∥∥∥
(5.16)

= ‖(C− 1
2 (−H)C− 1

2 )−1 − I‖Op(1). (5.17)

The second factor of (5.16) is Op(1) from the following argument:

P




∥∥∥∥∥∥∥∥
C− 1

2




(∂lC(ϕ)/∂β)
∣∣
ϕ0

(∂lC(ϕ)∂τ)
∣∣
ϕ0




∥∥∥∥∥∥∥∥
< c4




≥ 1− (1/c2
4)E




∥∥∥∥∥∥∥∥
C− 1

2




(∂lC(ϕ)/∂β)
∣∣
ϕ0

(∂lC(ϕ)∂τ)
∣∣
ϕ0




∥∥∥∥∥∥∥∥




2

= 1− (1/c2
4)tr


C−1Cov




(∂lC(ϕ)/∂β)
∣∣
ϕ0

(∂lC(ϕ)∂τ)
∣∣
ϕ0





 = 1− (p + 1)/c2

4

By condition (1) of Theorem 5.2.1, We have

‖(C− 1
2 (−H)C− 1

2 )−1 − I‖

≤ ‖(C− 1
2 (−H)C− 1

2 )−1‖‖C− 1
2 (−H)C− 1

2 − I‖

= op(1).

So C− 1
2




(∂lC(ϕ)/∂β)
∣∣
ϕ0

(∂lC(ϕ)/∂τ)
∣∣
ϕ0


 and C

1
2




β̂ − β0

τ̂ − τ0


 have the same asymptotic dis-

tribution.
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Let u be a unit vector and

Tj = uTC− 1
2




(∂hj/∂β)|ϕ0

(∂hj/∂τ)|ϕ0 .




Recall (5.13). Then we have

T 2
j = uTC− 1

2GjC
− 1

2u. (5.18)

By conditions (1), (2) and (3)

M∑
j=1

E(T 2
j I(|Tj| > ε))

=
M∑

j=1

E(T 2
j I(T 2

j > ε2))

≤ ‖C−1‖
M∑

j=1

E

{
‖Gj‖I

(
‖Gj‖ >

ε2

‖C−1‖
)}

≤ ‖C−1‖
M∑

j=1

E (‖Gj‖ψ {‖Gj‖})
{

ψ

(
ε2

‖C−1‖
)}−1

≤ M‖C−1‖K2

{
ψ

(
ε2

‖C−1‖
)}−1

= op(1).

The Lindeberg condition is satisfied and by Slutsky’s theorem, the conclusion of

Theorem 5.2.1 follows.

5.3 The logistic model logitP (yijk = 1|bij) = µ + bij.

We use the logistic model logitP (yijk = 1|bij) = µ + bij example to illustrate

Theorem 5.2.1.
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Suppose ai = 0 and bij are iid normal with 1 ≤ i ≤ m1, 1 ≤ j ≤ n. The binary

responses yijk are conditionally independent with

logitP (yijk = 1|b) = µ + bij, 1 ≤ k ≤ r (5.19)

where r is fixed.

Recall hj(s) above (5.3). Then

hij(s) = log E exp{(s1 + s2ξij)
r∑

k=1

yijk − r log(1 + exp(s1 + s2ξij))},

where the ξij are independently identically distributed with a standard normal dis-

tribution.

Recall (5.11). In this example we have

C =
∑

i

∑
j

Var(
∂hij

∂ϕ
|ϕ0). (5.20)

By condition (iii) of Corollary 5.1.3, C is a positive definite matrix. We need

to verify mn1‖C−1‖ = O(1), equivalently as

inf
‖u‖=1

(utCu)/mn1 > 1/cmn1

where cmn1 is a positive constant and u is a unit vector.

By condition (iii) of Corollary 5.1.3 we have

inf
‖u‖=1

(utCu)/mn1 > λM

where λM > 0. Then condition (2) of Theorem 5.2.1 is verified.

Recall (5.10), (5.11) and consider condition (1) of Theorem 5.2.1. In this
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example we have

−H =



−(∂2lC(ϕ)/∂µ2) |ϕ∗ −(∂2lC(ϕ)/∂µ∂τ) |ϕ∗

−(∂2lC(ϕ)/∂µ∂τ) |ϕ∗ −(∂2lC(ϕ)/∂τ 2) |ϕ∗




= C−C−H. (5.21)

Then

‖C− 1
2 (−H)C− 1

2 − I‖

= ‖C− 1
2 (C−H−C)C− 1

2 − I‖

= ‖C− 1
2 (−H−C)C− 1

2‖.

Let

−C =




C11 C12

C21 C22




where

C11 = −
∑

i

∑
j

E(
∂hij

∂µ
|ϕ0)

2,

C12 = C21 = −
∑

i

∑
j

E(
∂hij

∂µ
|ϕ0)(

∂hij

∂τ
|ϕ0),

C22 = −
∑

i

∑
j

E(
∂hij

∂τ
|ϕ0)

2.

Let

wij(ϕ0, ξij) = (µ0 + τ0ξij)
∑

k

yijk − r log(1 + exp(µ0 + τ0ξij)) (5.22)

and

vij(ϕ0, ξij) =
∑

k

yijk − r exp(µ0 + τ0ξij)

1 + exp(µ0 + τ0ξij)
. (5.23)
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Since we have P (yijk = 1|µ, τξij) = exp(µ + τξij)/ (1 + exp(µ + τξij)), then

∑

k

yijk|µ0, τ0ξij ∼ Binomial

(
r,

exp(µ0 + τ0ξij)

1 + exp(µ0 + τ0ξij)

)
.

Thus

∂hij

∂µ
|ϕ0 =

E(exp(wij(ϕ0, ξij)))vij(ϕ0, ξij)

E(exp(wij(ϕ0, ξij)))
(5.24)

∂hij

∂τ
|ϕ0 =

E {ξij(exp(wij(ϕ0, ξij)))vij(ϕ0, ξij)}
E(exp(wij(ϕ0, ξij)))

(5.25)

−∂2hij

∂µ2
|ϕ0 = − 1

E(exp(wij(ϕ0, ξij)))

{
E

(
exp(wij(ϕ0, ξij))(v

2
ij(ϕ0, ξij))

− Var(
∑

k

yijk|µ0, τ0ξij)

)}

+

{
E(exp(wij(ϕ0, ξij)))vij(ϕ0, ξij)

E(exp(wij(ϕ0, ξij)))

}2

−∂2hij

∂τ 2
|ϕ0 = − 1

E(exp(wij(ϕ0, ξij)))

{
E

(
ξ2
ij exp(wij(ϕ0, ξij))v

2
ij(ϕ0, ξij)

− Var(
∑

k

yijk|µ0, τ0ξij)

)}

+

{
E {ξij(exp(wij(ϕ0, ξij)))vij(ϕ0, ξij)}

E(exp(wij(ϕ0, ξij)))

}2

− ∂2hij

∂τ∂µ
|ϕ0 = − 1

E(exp(wij(ϕ0, ξij)))

{
E

(
ξij(exp(wij(ϕ0, ξij)))v

2
ij(ϕ0, ξij)

− Var(
∑

k

yijk|µ0, τ0ξij)

)}

+

(
E(exp(wij(ϕ0, ξij)))vij(ϕ0, ξij)

{E(exp(wij(ϕ0, ξij)))}2

)

× (E {ξij(exp(wij(ϕ0, ξij)))vij(ϕ0, ξij)}).

Since we have the classical likelihood function in this example, then

−E(
∂hij

∂µ
|ϕ0)

2 − E(
∂2hij

∂µ2
|ϕ0) = 0, −E(

∂hij

∂µ
|ϕ0)(

∂hij

∂τ
|ϕ0)− E(

∂2hij

∂µ∂τ
|ϕ0) = 0,

−E(
∂hij

∂τ
|ϕ0)

2 − E(
∂2hij

∂τ 2
|ϕ0) = 0.
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So now we have

−C =




A∗
11 A∗

12

A∗
21 A∗

22




where

A∗
11 =

∑
i

∑
j

E(
∂2hij

∂µ2
|ϕ0), A∗

12 = A∗
21 =

∑
i

∑
j

E(
∂2hij

∂µ∂τ
|ϕ0),

A∗
22 =

∑
i

∑
j

E(
∂2hij

∂τ 2
|ϕ0).

Let

−C−H =




H∗
11 H∗

12

H∗
21 H∗

22




where

H∗
11 =

∑
i

∑
j

{
E(

∂2hij

∂µ2
|ϕ0 )− ∂2hij

∂µ2
|ϕ0

− ∂2hij

∂µ2
|ϕ∗ +

∂2hij

∂µ2
|ϕ0

}
,

H∗
21 = H∗

12 =
∑

i

∑
j

{
E(

∂2hij

∂µ∂τ
|ϕ0)−

∂2hij

∂µ∂τ
|ϕ0 −

∂2hij

∂µ∂τ
|ϕ∗ +

∂2hij

∂µ∂τ
|ϕ0

}
,

H∗
22 =

∑
i

∑
j

{
E(

∂2hij

∂τ 2
|ϕ0)−

∂2hij

∂τ 2
|ϕ0 −

∂2hij

∂τ 2
|ϕ∗ +

∂2hij

∂τ 2
|ϕ0

}
.

By Jiang’s [14] Corollary 4.1.3 (ii) and Taylor expansion

max
ij

∣∣∣∣
∂2hij

∂µ2
|ϕ∗ − ∂2hij

∂µ2
|ϕ0

∣∣∣∣ ≤ |ϕ̂− ϕ0|max
ij

∣∣∣∣
∂3hij

∂µ3
|ϕ̃

∣∣∣∣ ≤ B|ϕ̂− ϕ0| (5.26)

max
ij

∣∣∣∣
∂2hij

∂τ 2
|ϕ∗ − ∂2hij

∂τ 2
|ϕ0

∣∣∣∣ ≤ |ϕ̂− ϕ0|max
ij

∣∣∣∣
∂3hij

∂τ 3
|ϕ̃

∣∣∣∣ ≤ B|ϕ̂− ϕ0| (5.27)

max
ij

∣∣∣∣
∂2hij

∂τ∂µ
|ϕ∗ − ∂2hij

∂τ∂µ
|ϕ0

∣∣∣∣ ≤ |ϕ̂− ϕ0|max
ij

∣∣∣∣
∂3hij

∂ϕ3
|ϕ̃

∣∣∣∣ ≤ B|ϕ̂− ϕ0| (5.28)

where ϕ̃ is between ϕ∗ and ϕ0 and B|ϕ̂− ϕ0| →p 0.
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Since −H−C is a symmetric matrix, then

‖ −H−C‖

= sup
‖u‖=1

|ut(−H−C)u|

≤ 2

{(
m1nB|ϕ̂− ϕ0|+

∣∣∣∣∣
∑

i

∑
j

(E
∂2hij

∂µ2
|ϕ0 −

∂2hij

∂µ2
|ϕ0)

∣∣∣∣∣

)

∨
(

m1nB|ϕ̂− ϕ0|+
∣∣∣∣∣
∑

i

∑
j

(E
∂2hij

∂τ 2
|ϕ0 −

∂2hij

∂τ 2
|ϕ0)

∣∣∣∣∣

)

∨
(

m1nB|ϕ̂− ϕ0|+
∣∣∣∣∣
∑

i

∑
j

(E
∂2hij

∂τ∂µ
|ϕ0 −

∂2hij

∂τ∂µ
|ϕ0)

∣∣∣∣∣

)}

Since (∂2hij/∂µ2)|ϕ0 are iid, (∂2hij/∂τ 2)|ϕ0 are iid, and (∂2hij/∂τ∂µ)|ϕ0 are iid.

Suppose we have 0 < τ0 < b where b is a positive constant. By Jiang’s [14]

Lemma 3.3, the second derivatives of hij are uniformly bounded. Then

E

∣∣∣∣
∂2hij

∂µ2
|ϕ0

∣∣∣∣ < ∞ E

∣∣∣∣
∂2hij

∂τ 2
|ϕ0

∣∣∣∣ < ∞ E

∣∣∣∣
∂2hij

∂τ∂µ
|ϕ0

∣∣∣∣ < ∞. (5.29)

By the Law of Large numbers

1

mn1

∣∣∣∣∣
∑

i

∑
j

(
E

∂2hij

∂µ2
|ϕ0 −

∂2hij

∂µ2
|ϕ0

)∣∣∣∣∣ = op(1), (5.30)

1

mn1

∣∣∣∣∣
∑

i

∑
j

(
E

∂2hij

∂τ 2
|ϕ0 −

∂2hij

∂τ 2
|ϕ0

)∣∣∣∣∣ = op(1), (5.31)

1

mn1

∣∣∣∣∣
∑

i

∑
j

(
E

∂2hij

∂τ∂µ
|ϕ0 −

∂2hij

∂τ∂µ
|ϕ0

)∣∣∣∣∣ = op(1). (5.32)
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Then

‖C− 1
2 (−H)C− 1

2 − I‖

= ‖C− 1
2 (−H−C)C− 1

2‖

≤ ‖C−1‖‖ −H−C‖

= Op(1)
‖ −H−C‖

mn1

= op(1).

Consider condition (3) of Theorem 5.2.1 and recall (5.13). We have

Gij =




((∂hij/∂µ)|ϕ0)
2 ((∂hij/∂µ)|ϕ0) ((∂hij/∂τ)|ϕ0)

((∂hij/∂τ)|ϕ0) ((∂hij/∂µ)|ϕ0) ((∂hij/∂τ)|ϕ0)
2


 .

Since Gij is a symmetric matrix, we have

‖Gij‖ ≤ 2 max

((
∂hij

∂µ
|ϕ0

)2

,

∣∣∣∣
(

∂hij

∂τ
|ϕ0

)(
∂hij

∂µ
|ϕ0

)∣∣∣∣ ,

(
∂hij

∂τ
|ϕ0

)2
)

.

Recall (5.24), (5.23). It is easy to show

(
∂hij

∂µ
|ϕ0

)2

≤ 4r2

since ξij are independent identically distributed standard normal. Suppose we have

0 < τ0 < b where b is a positive constant, By Jiang’s [14] Lemma 3.3 that first

derivatives of hij are uniformly bounded. We have E (∂hij/∂τ |ϕ0)
2 bounded and

∣∣∣∣
(

∂hij

∂τ
|ϕ0

)(
∂hij

∂µ
|ϕ0

)∣∣∣∣
2

≤
(

∂hij

∂µ
|ϕ0

)2 (
∂hij

∂τ
|ϕ0

)2

.

Condition (1), (2) and (3) of Theorem 5.2.1 are verified, so we have

C
1
2




µ̂− µ0

τ̂ − τ0


 →D N(0, I) (5.33)
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Chapter 6

Simulation

In this chapter, in order to check the asymptotic results of Chapters 3 and 5,

logistic and Poisson random intercept models are simulated under case 1 for both

our new estimator (linear combination of weighted MLE) and PGWLE (Penalized

Generalized Weighted Least Square Estimate) from Jiang [14]. For case 2, one simple

model was simulated. The asymptotic behavior of the estimates is investigated in

samples generated by Splus 2000 or R 2.6 for various sample sizes and parameter

configurations. The built-in function nlminb was used to compute the estimates.

Both statistical and computational questions were examined in the course of the

simulations.

In our simulations we compared Monte Carlo average of estimators to the

known true values of parameters, and we compared Monte Carlo averages of ap-

proximate variance formulas to the Monte Carlo sample variances. We also used

both the Kolmogorov-Smirnov and Shapiro-Wilk tests to assess agreement of stan-

dardized estimators with the N(0, 1) distribution.

The Kolmogorov-Smirnov test is based on Dn = supx |F̂n(x) − Φx|, where

F̂n(x) is the empirical cdf and Φ(x) is the N(0, 1) cdf. The Shapiro-Wilk test [27]

is implemented in R using the algorithm of Royston. Intuitively, the Shapiro-Wilk

test is based on the observed correlation between an ordered sample and expected
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values of N(0, 1) order statistics. The actual calculation of the statistic and its

p-value relies on various approximations of means and variances of normal order

statistics. See Royston [26] and references there in for details.

6.1 Case 1 simulations for
ˆ̂
βw

We simulate logistic and Poisson random intercept regression to investigate

consistency and asymptotic normality of the estimated regression coefficients β̂w

and
ˆ̂
βw. The results of Chapter 3 established the conditional and unconditional

asymptotic behavior of regression coefficients, given the random effects v0.

6.1.1 Case 1 combining a with vi.

We consider:

E(yij|vi) = b′ij(a + vi + βxij) (6.1)

where a and β are fixed parameters, xij is a scalar valued predictor, and vi are iid

Unif (−0.8, 0.8) or N(0, 0.25). For our simulations we let a0 = 1. We used the

nlminb minimization function in Splus to get estimators which minimize −lni
(γi) in

each cluster defined as

−lni
(γi) =

∑
j

(−yijηij + bij(ηij))

where ηij = a+vi+xijβ and γ = (a, β, v1 , . . . , vm)t. We do not attempt to estimate

a and vi separately but only a+vi. For simplicity, we simulated the balanced model

with m clusters and n1 observations per cluster. We generated m × n1 covariates

xij uniformly spaced between −1 and 1, so that the ranges of {xij} and {xlj}, i 6= l,
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did not overlap. For example if we have m = 3 clusters and n1 = 2 observations per

cluster, first we divided interval [−1, 1] into m = 3 equal sized intervals [−1,−1/3],

[−1/3, 1/3] and [1/3, 1], and then divide each interval into n1 = 2 subintervals to get

x11 = −1, x12 = −2/3, x21 = −1/3, x22 = 0, and x31 = 1/3, x32 = 2/3 for clusters

1, 2, 3 respectively. We also generate m independent random effects vi from the

Uniform distribution (−0.8, 0.8) or N(0, 0.25) according to (xij, vi) with regression

coefficient β0 = 1, m samples of n1 binary random variables Yij was generated

with E(Yij|vi, xij) = b′ij(ηij) where for Poisson model with b′ij(ηij) = exp(ηij) and

for logistic model with b′ij(ηij) = exp(ηij)/(1 + exp(ηij)). Various combinations of

(m,n1) are used in the simulations.

For each combination, 1000 replications of random effects vi and responses Yij

were generated. The covariates xij were the same for all the simulations. Estimated

regression coefficients for various choices of (m,n1) are summarized in Table 6.1

and Table 6.2. The tables display the Monte Carlo means and standard errors of

the simulated values of β̂w − β0,
ˆ̂
βw − β0, (β̂w − β0)/s.e., (

ˆ̂
βw − β0)/ŝ.e. and 95%

confidence bounds for (β̂w − β0) and
ˆ̂
βw − β0 based on Student’s t. From Table

6.1 and Table 6.2, we can see that in combinations (30, 120), (40, 240) in logistic

model for β̂w,
ˆ̂
βw, some bias is present (based on confidence intervals). But for all

the combinations from both tables, their Shapiro-Wilk test p values are above 0.18

and Kolmogorov-Smirnov test p values are larger than 0.1, which means in those

combinations, β̂w and
ˆ̂
βw given v0 seem normal. From Table 6.1 and Table 6.2,

we can see that bias/se< 0.165 so the normal inference is not greatly affected in

the cases where bias is present. The plots show that β̂w and
ˆ̂
βw are approximately
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normal, with departures from normality in the extreme tails when random effects

are uniformly distributed.
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Table 6.1: Simulated estimates of logistic and Poisson regression coefficient combin-

ing fixed intercept with uniformly distributed random effects.

(β̂w − β0)
ˆ̂
βw − β0

(m, n1) mean std 95% CI for β̂w − β0 mean std

Logistic β0 = 1

(10,200) 0.020 0.808 (-0.029, 0.071) 0.002 0.794

(20,200) -0.020 1.190 (-0.089, 0.050) -0.033 1.100

(30,120) -0.224 1.432 (-0.313, -0.135) -0.229 1.421

(30,210) -0.055 1.200 (-0.130, 0.019) -0.063 1.191

(40,240) -0.197 1.226 (-0.273, -0.120) -0.202 1.221

Poisson β0 = 1

(10,200) 0.007 0.355 (-0.015, 0.029) 0.002 0.352

(20,200) 0.028 0.510 (-0.004, 0.059) 0.023 0.504

(30,210) -0.033 0.590 (-0.069, 0.004) -0.036 0.588

(40,240) 0.003 0.648 (-0.038, 0.043) -0.001 0.644
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Table 6.2: Simulated standardized estimate of logistic and Poisson regression coef-

ficient with uniformly distributed random effects.

(β̂w − β0)/s.e (
ˆ̂
βw − β0)/ŝ.e.

(m,n1) mean std 95% CI for (
ˆ̂
βw − β0) mean std

Logistic β0 = 1

(10,200) 0.026 1.014 (-0.047, 0.051) 0.001 0.989

(20,200) -0.018 0.995 (-0.101, 0.035) -0.030 0.971

(30,120) 0.126 0.806 (-0.317, -0.140) -0.127 0.792

(30,210) -0.041 0.893 (-0.137, 0.010) -0.047 0.881

(40,240) -0.135 0.845 (-0.278, -0.126) -0.139 0.837

Poisson β0 = 1

(10,200) 0.014 1.006 (-0.020, 0.024) 0.001 1.000

(20,200) 0.053 0.995 (-0.008, 0.054) 0.044 0.982

(30,210) -0.051 0.963 (-0.073, 0.0002) -0.057 0.959

(40,240) 0.005 0.976 (-0.041, 0.039) -0.0005 0.968
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Figure 6.1: Q-Q plots for (β̂w−β0) and (
ˆ̂
βw−β0) standardized by true and estimated

standard error, for various values of (m,n) in case 1 random intercept model with

uniformly distributed random effects.
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Our theoretical results assumed bounded random effects, but we investigated

unbounded normal random effects by simulation studies to those with uniform ran-

dom effects. For each combination (m,n), 1000 replications of random N(0, 0.25)

effects vi and responses Yij were generated. The covariates xij were the same for all

the simulations. Estimated regression coefficients for various choices of (m,n1) are

summarized in Table 6.3 and Table 6.4. The tables display the means and standard

errors of the simulated values of β̂w−β0,
ˆ̂
βw−β0, (β̂w−β0)/s.e., (

ˆ̂
βw−β0)/ŝ.e. and

95% confidence bounds for (β̂w−β0),
ˆ̂
βw−β0 based on Student’s t. From Table 6.3

and Table 6.4, we can see that in combinations (30, 210), (40, 240) in logistic model

for β̂w,
ˆ̂
βw, some bias is present. But for all the combinations from both tables,

the Shapiro-Wilk test p values are above 0.463 and the Kolmogorov-Smirnov test p

values are larger than 0.1, which means in those combinations, β̂w and
ˆ̂
βw given v0

seem normal. From Table 6.3 and Table 6.4, we can see that bias/se< 0.177, so the

normal inference is not greatly affected in the cases where bias is present. The plots

show that β̂w and
ˆ̂
βw are approximately normal, with departures from normality in

the extreme tails when random effects are normally distributed. Here we need to

point out that we have not proven asymptotic normality of our estimator in case 1

random intercept model for normally distributed random effects, but the simulation

studies show that normality appears to hold.
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Table 6.3: Simulated estimates of logistic and Poisson regression coefficient combin-

ing fixed intercept with normally distributed random effects.

(β̂w − β0)
ˆ̂
βw − β0

(m, n1) mean std 95% CI for β̂w − β0 mean std

Logistic β0 = 1

(20,200) 0.012 1.132 (-0.058, 0.082) -0.002 1.117

(30,210) -0.206 1.219 (-0.282, -0.130) -0.214 1.209

(40,240) -0.202 1.227 (-0.278, -0.126) -0.203 1.221

Poisson β0 = 1

(20,200) -0.001 0.512 (-0.033, 0.031) -0.005 0.510

(30,210) 0.011 0.587 (-0.026, 0.047) 0.005 0.585

(40,240) 0.024 0.662 (-0.017, 0.065) 0.021 0.659
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Table 6.4: Simulated standardized estimate of logistic and Poisson regression coef-

ficient with normally distributed random effects.

(β̂w − β0)/s.e (
ˆ̂
βw − β0)/ŝ.e.

(m,n1) mean std 95% CI for (
ˆ̂
βw − β0) mean std

Logistic β0 = 1

(20,200) 0.011 1.004 (-0.071, 0.068) -0.002 0.983

(30,210) -0.153 0.904 (-0.289, -0.139) -0.158 0.891

(40,240) -0.139 0.843 (-0.279, -0.127) -0.139 0.834

Poisson β0 = 1

(20,200) -0.003 1.003 (-0.037, 0.026) -0.011 0.997

(30,210) 0.019 0.959 (-0.031, 0.414) 0.009 0.954

(40,240) 0.037 0.994 (-0.019, 0.062) 0.033 0.987
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Figure 6.2: Q-Q plots for (β̂w−β0) and (
ˆ̂
βw−β0) standardized by true and estimated

standard error, for various values of (m,n) in case 1 random intercept model with

normally distributed random effects.
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6.2 Case 1 logistic random intercept simulation for fixed realizations

of random effects

Recall that Theorem 3.1.2 and Theorem 3.1.3 gave conditional convergence in

distribution of the normalized β̂w and
ˆ̂
βw to the N(0, I) distribution. We performed

a limited study to examine this conditional convergence.

We repeated the simulations designed in Section 6.1.1 for the random intercept

problem, but with the following modification: we generated 10 realizations of i.i.d

Unif(-0.8,0.8) of v0. For each realization of v0 we generated 1000 replications of y

with the same v0 and x’s as described in Section 6.1.1. This was performed only

for sample sizes m = 20, n1 = 200 and m = 40, n1 = 240, and for the logistic model

(6.1).

From the following tables Table 6.5,Table 6.6, Table 6.7 and Table 6.8, we

found that each realizations of v0, the normalized β̂w and
ˆ̂
βw had Monte Carlo

mean zero and variances near 1 in the case m = 20, n1 = 200. For the case m = 40,

n1 = 240, the Monte Carlo mean and variance show some departures from the

desired 0 and 1. The Kolmogorov-Smirmov and Shapiro-Wilk tests all indicated no

significant departures from normality. These findings are very similar to those of

Section 6.1.1, which describe the unconditional distribution.
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Table 6.5: Simulated estimates of logistic regression coefficient combining fixed effect

and fixed realizations of uniformly distributed random effects (m = 20, n1 = 200).

(β̂w − β0)
ˆ̂
βw − β0

Realization mean std 95% CI for β̂w − β0 mean std

1 0.004 1.063 (-0.062, 0.070) -0.012 1.047

2 -0.208 1.133 (-0.098, 0.043) -0.042 1.117

3 -0.012 1.127 (-0.082, 0.058) -0.028 1.109

4 -0.044 1.105 (-0.113, 0.024) -0.058 1.087

5 0.028 1.066 (-0.038, 0.094) 0.012 1.048

6 0.019 1.141 (-0.052, 0.089) 0.005 1.127

7 -0.024 1.075 (-0.090, 0.043) -0.039 1.059

8 0.026 1.110 (-0.043, 0.095) 0.010 1.095

9 -0.035 1.079 (-0.102, 0.032) -0.048 1.061

10 -0.026 1.110 (-0.095, 0.042) -0.040 1.092
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Table 6.6: Simulated standardized estimate of logistic regression coefficient with

fixed realizations of uniformly distributed random effects (m = 20, n1 = 200).

(β̂w − β0)/s.e (
ˆ̂
βw − β0)/ŝ.e.

Realization mean std 95% CI for (
ˆ̂
βw − β0) mean std

1 0.003 0.948 (-0.077, 0.052) -0.011 0.926

2 -0.025 1.005 (-0.111, 0.027) -0.037 0.982

3 0.010 0.998 (-0.097, 0.041) -0.025 0.975

4 -0.040 0.988 (-0.125, 0.010) -0.052 0.975

5 0.025 0.946 (-0.053, 0.077) 0.011 0.924

6 0.017 1.016 (-0.065, 0.075) 0.004 0.996

7 -0.021 0.959 (-0.105, 0.027) -0.035 0.937

8 0.023 0.991 (-0.058, 0.078) 0.008 0.970

9 -0.031 0.961 (-0.114, 0.018) -0.043 0.938

10 -0.024 0.992 (-0.108, 0.027) -0.036 0.969
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Table 6.7: Simulated estimates of logistic regression coefficient combining fixed effect

and fixed realizations of uniformly distributed random effects (m = 40, n1 = 240).

(β̂w − β0)
ˆ̂
βw − β0

Realization mean std 95% CI for β̂w − β0 mean std

1 -0.210 1.207 (-0.285, -0.135) -0.214 1.202

2 -0.225 1.226 (-0.301, -0.149) -0.228 1.223

3 -0.117 1.125 (-0.194, -0.041) -0.120 1.229

4 -0.201 1.261 (-0.279, -0.122) -0.204 1.257

5 -0.164 1.261 (-0.238, -0.089) -0.204 1.225

6 -0.211 1.204 (-0.285, -0.136) -0.214 1.198

7 -0.185 1.211 (-0.260, -0.110) -0.188 1.206

8 -0.206 1.189 (-0.280, -0.132) -0.209 1.184

9 -0.205 1.203 (-0.279, -0.130) -0.207 1.200

10 -0.249 1.223 (-0.325, -0.173) -0.252 1.219
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Table 6.8: Simulated standardized estimate of logistic regression coefficient with

fixed realizations of uniformly distributed random effects (m = 40, n1 = 240).

(β̂w − β0)/s.e (
ˆ̂
βw − β0)/ŝ.e.

Realization mean std 95% CI for (
ˆ̂
βw − β0) mean std

1 -0.145 0.836 (-0.288, -0.139) -0.147 0.829

2 -0.150 0.845 (-0.304, -0.152) -0.157 0.839

3 -0.081 0.853 (-0.200, -0.044) -0.083 0.845

4 -0.138 0.868 (-0.282, -0.126) -0.140 0.861

5 -0.112 0.822 (-0.242, -0.093) -0.114 0.815

6 -0.145 0.831 (-0.288, -0.140) -0.147 0.823

7 -0.128 0.836 (-0.263, -0.113) -0.129 0.829

8 -0.142 0.821 (-0.283, -0.136) -0.144 0.813

9 -0.142 0.833 (-0.281, -0.133) -0.143 0.824

10 -0.172 0.845 (-0.328, -0.176) -0.174 0.839

6.3 Case 1 random intercept simulations for penalized likelihood es-

timators

We simulate logistic and Poisson random intercept regression to investigate

consistency and asymptotic normality of penalized regression coefficient estimates by

using Jiang’s [14] PGWLE (Penalized Generalized Weighted Least Squares) method.
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6.3.1 Case 1 logistic random intercept combining a with vi.

We consider Example 3.2 from Jiang [14]:

logitP (yij = 1|vi) = a + vi + β1xij (6.2)

where a and β1 are fixed parameters, xij is a scalar valued predictor, and vi are

iid N(0, Va). For our simulations we let a = 0. We used the PGWLS method by

Jiang [14] and the nlminb minimization function in Splus to get estimators which

minimize −lP (γ) derived by Jiang [14] as (??), which is defined as

−lP (γ) =
∑

i

∑
j

(−yijηij + log(1 + exp(ηij))) +
λ1

2
m(v)2

where ηij = a + vi + xijβ1, v =
∑m

i vi/m, and γ = (a, β1, v1 , . . . , vm)t. We do not

attempt to estimate a and vi separately but only a+vi. For simplicity, we simulated

the balanced model with m clusters and n1 observations per cluster. We generated

m×n1 covariates xij uniformly spaced between -1 and 1, so that the ranges of {xij}

and {xlj}, i 6= l, did not overlap. We also generate m independent random effects vi

from the normal distribution with mean 0 and variance Va. Conditionally on (xij, vi)

with regression coefficient β10 = 1, a sample of mn1 binary random variables Yij was

generated with E(Yij|vi, xij) = exp(xij + vi)/(1 + exp(vi + xij)).

Various combinations of (m,n1), Va, λ1 and initial values of estimated β1,

v1 , . . . , vm were used.

For each combination, 1000 replications of random effects vi and responses Yij

were generated. The covariates xij were the same for all the simulations. Estimated

regression coefficients for various choices of (m,n1) with Va = 4, initial estimates set
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to 0, and λ1 = 1, are summarized in Table 6.9. The tables display the means and

standard errors of the simulated values of (β̂1 − β10)/s.e., (β̂1 − β10)/ŝ.e. and 95%

confidence bounds for β̂1 − β10 based on Student’s t. From Table 6.9, we can see

that in the combination (20, 20) with Va = 4, bias is present. But its Kolmogorov-

Smirnov test p values are larger than 0.1. This can be explained in terms of the

consistency condition log m/(log n1)
2 → 0 [Jiang ([14], Ex.3.2]. Among all the pairs

of sample sizes for simulation, (20, 20) has the highest values of log m/(log n1)
2 as

0.334. For all combinations from Table 6.9 whose 95% confidence intervals including

0.

In order to check whether the computations of β̂1 are sensitive to initial values,

we ran various combinations of m, n1, Va and λ1 with initial values set to 0. For

the same vi and yij, we initialized β̂1 at 3 and at logit(y../(1 − y..)). In each case

the v̂i were initialized at 0. This comparison was repeated 1000 times. The results

are summarized in Table 6.10.
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Table 6.9: Simulated standardized estimates of logistic regression coefficient (stan-

dardized by true and estimated conditional standardized error) combining fixed

intercept with random effects.

(β̂1 − β10)/s.e. (β̂1 − β10)/ŝ.e.

(m, n1) mean std 95% CI for β̂1 − β10 mean std

Va = 4, initials set to 0, λ1=1

(10,20) -0.017 1.021 (-0.127, 0.293) -0.015 1.010

(20,20) 0.077 1.012 (0.082, 0.665) 0.076 1.011

(20,40) 0.054 0.995 (-0.019, 0.384) 0.053 0.991

Va = 3, initials set to 0, λ1 = 1

(20,20) 0.054 0.938 (-0.008, 0.509) 0.053 0.932

Table 6.10: Simulated standardized estimate of logistic regression coefficient for

various initial values.

(β̂1 − β10)/s.e. (β̂1 − β10)/ŝ.e.

initial β̂1 mean std 95% CI for β̂1 − β10 mean std

Va = 4, (m,n1) = (10, 20), λ1=1

0 -0.017 1.021 (-0.127, 0.293) 0.015 1.011

3 -0.014 0.878 (-0.150, 0.277) 0.009 1.022

logit -0.020 0.896 (-0.150, 0.277) 0.015 1.011
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As we can see from Table 6.10, the estimates are biased for larger log m/(log n1)
2.

Moreover, the variance of (β̂1−β10)/s.e. is sensitive to the initial guess of β̂1. Also in

the combination (20, 20) with Va = 4 and initial β̂1 equal to logit, their Kolmogorov-

Smirnov test rejects the hypothesis of normality with p values 0.043 and 0.019. For

all the other combinations from Table 6.10, their goodness-fit tests suggest normal-

ity.

Since in reality we do not know how to choose λ1, we tried various values of λ1

to assess the effect of λ1 on normality and consistency. The Monte Carlo averages

and standard deviations of (β̂1 − β10)/s.e. are displayed in Table 6.11 for various

(m,n1), λ1, initial values and Va. The estimates are computed for λ1 = 0.1, 1 and 5

for the same data, and this comparison was repeated 1000 times. Table 6.11 shows

that extremely large values of the penalty parameter (λ1 = 5) did affect the bias.

Table 6.11: Simulated standardized estimate of logistic regression coefficient for

various λ1 values.

(β̂1 − β10)/s.e. (β̂1 − β10)/ŝ.e.

λ1 mean std 95% CI for β̂1 − β0 mean std

Va = 4, (m,n1) = (20, 50), initials set to 0

1 0.048 1.012 (-0.034, 0.330) 0.048 1.009

0.1 0.022 0.858 (-0.034, 0.330) 0.048 1.009

5 0.022 0.858 (0.034, 0.400) 0.070 1.017
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6.4 Case 2 logistic simple example

We consider Example 3.3 from Jiang [14], with αi = 0 for simplicity. We have

logitP (yijk = 1|bij) = µ + bij = µ + τξij (6.3)

where the ξij are iid N(0, 1). We estimate µ and τ by Jiang’s [14] MCLE method

based on integrating ξij out of the likelihood. This gives us an unconditional log-

likelihood function in this special example. We also use the nlminb function in

Splus to get estimates which minimize the negative log likelihood function. In Case

2, reparameterization is used to take care of the identifiability problem. Here since

we integrate out ξij, we only have the fixed effect µ and scale parameter τ . We do

not need to worry about the identifiability problem, so the negative log-likelihood

function is the following:

−lC(ψ) = −
∑

i

∑
j

hij = −
∑

i

∑
j

E exp[(µ + τξij)yij+ − r log(1 + exp(µ + τξij))]

(6.4)

where yij+ =
∑

k yijk.

More precisely, here we have m rows and n columns for each cell we have r

observations. We generate m × n1 random effects bij from N(0, τ 2
0 ), where τ0 is a

scale parameter and set r = 2. Then we can get ηij1 = ηij2 = µ + bij. Conditionally

on ηijk with k=1 or 2, a sample of m×n1×2 random variables Yijk is generated from

the Bernoulli distribution with E(Yijk|µ, τξij) = exp(µ + τξij)/(1 + exp(µ + τξij)).

Various choices of (m,n1) were simulated. For each choice, 500 replications of

bij, Yijk were generated. We used the Splus nlminb function to calculate estimates

of µ and τ . In this simulation, τ0 = 1, initials for µ̂ and τ̂ are 0 and 1, respectively.
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Asymptotic normality results for standardized µ̂−µ0 and τ̂ − τ0 are summarized in

Table 6.12.

For the combinations of Table (6.12), the only pair (m,n1) = (20, 20) has

Kolmogorov-Smirnov test p values larger than 0.1. For (m,n1) = (10, 10), the

Kolmogorov-Smirnov test rejects the normality hypothesis with p values 0.01 and 0

for (µ̂ − µ0)/s.e(µ) and (τ̂ − τ0)/s.e.(τ), respectively. For combinations (m,n1) =

(10, 40) and (m,n1) = (10, 30), normality only appear to hold for standardized

(τ̂ − τ0) with Kolmogorov-Smirnov test p values larger than 0.1. Moreover, the

Kolmogorov-Smirnov test rejects the normality hypothesis with p value less than

0.008.

The 95% confidence intervals for (µ̂ − µ0) for all the pairs (m,n1) include 0,

but 95% confidence intervals for (τ̂ − τ0) for (10, 10) and (10, 30) do not include 0.

In the combinations (m,n1) = (20, 20) and (m,n1) = (10, 40), both (µ̂ − µ0) and

(τ̂ − τ0) seem unbiased.

As a partial check on the joint normality of (µ̂, τ̂), we also examined [(µ̂ −

µ0) + (τ̂ − τ0)]/
√

2. Similar results were obtained.
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Table 6.12: Simulated standardized estimate of µ and τ in case 2 simple example

for various (m,n1) values

(µ̂− µ0)/s.e(µ) (τ̂ − τ0)/s.e.(τ)

(m,n1) mean std mean std

τ0 = 1, µ0 = 1, initials set to (0,1)

(10,10) -0.024 0.641 -0.236 1.550

(10,30) 0.079 0.835 -0.025 0.475

(20,20) 0.062 0.816 -0.015 0.523

(10,40) 0.036 0.800 -0.024 0.531
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Figure 6.3: Q-Q plots for standardized (µ̂−µ0) and (τ̂ − τ0) by true standard error,

for various (m,n1) in case 2 logistic simple example.
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Chapter 7

Conclusions and Future Work.

7.1 Theoretical Conclusions

We have proposed a new estimator
ˆ̂
βw =

∑
i ŵiβ̂i and have proven its condi-

tional asymptotic normality for the random intercept problem when m, the number

of random effects goes to infinity with the sample size N but at a slower rate,

characterized as m/N → 0. Given the random effects, the linear combinations of

weighted MLE denoted β̂w and
ˆ̂
βw are asymptotically normal. The weight matri-

ces and asymptotic conditional covariance matrix of β̂w can be estimated, and the

standardized regression estimates, standardized by either the true or estimated co-

variance, have a limiting N(0, I) distribution. We have proven that in the absence

of regression coefficients, the normalized Jiang’s [14] penalized likelihood estima-

tor of fixed intercept
√

m(â − a0) converges to a normal distribution. Difficulties

arise in establishing the conditional asymptotic normality of the penalized likelihood

estimator β̂ of regression coefficients for fixed effects in a general GLMM.

For the case m/N 9 0, joint asymptotic normality is proved for regression

coefficient and scale parameter estimates after suitable standardization. A logistic

example with logitP (yijk|bij) = µ+ bij is used to illustrate how to verify the general

conditions in this case.
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7.2 Conclusions from the simulation studies and real data analysis

We focused on investigating asymptotic behavior of our new estimator
ˆ̂
βw,

theoretic estimator β̂w and simulated balanced models for simplicity. In the case

m/N → 0, logistic and Poisson random intercept models were simulated. For both

models, we considered normally and uniformly distributed random effects. When

m/n ≥ 1/7, our estimators had some bias under logistic model. But for Poisson

model this problem did not occur except for (30, 210) with β0 = 1. In all the cases,

normality appears to hold and the ratio bias/s.e is less than 0.218, which means

normal inference is not greatly affected. In the simulation studies for Jiang’s [14]

penalized estimator â of fixed intercept, asymptotic consistency and normality does

not hold for (30, 60) with Va = 4 and (30, 60), (40, 60), (40, 80) with Va = 2. Esti-

mates of a0 and standard deviation shows considerable bias.

We simulated logistic 2×2×m tables for both balanced and unbalanced setups

with uniformly distributed random effects. In both setups,
ˆ̂
βw has better consistency

results than β̂w. In all the cases, normality holds and the ratio bias/s.e is less than

0.194 except in extreme cases (100, 50) and (100, 60), which means normal inference

is not greatly affected.

In the case m/N 9 0 for the logistic model logitP (yijk = 1|bij) = µ + bij,

among the combinations (20, 20) with r = 2, unbiasedness and approximate nor-

mality hold for the intercept and scale parameter estimates. Scale parameter esti-

mates are biased if the number of clusters is too small (< 300). Normality holds

for standardized τ̂ − τ0 but not for standardized µ̂ − µ0 in (10, 40) and (10, 30)
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combinations.

We analized a real data set of 22 clinical trials of beta-blocker for heart attach

treatment (Yusuf et al. (1985)). We first test homogeneity of odds ratios by using

Woolf’s test, the Breslow-Day test and the likelihood ratio test. None of them reject

the null hypothesis, which suggest common odds ratio model is appropriate. Our

estimator and Mantel-Haenszel estimator are very close. Mantel-Haenszel estimator

is consistent in sparse data case unlike our estimator. The logic of our estimator

can be extended to other types of GLMM where m → ∞ and m/ mini ni → 0. No

corresponding extension for Mantel-Haenszel is available.

7.3 Future work.

We can try to use projected score methods to overcome the difficulties in

proving conditional asymptotic normality for penalized likelihood estimates of fixed

effects in the case 1 random intercept problem. Also we can consider conditional

logistic regression estimate of random intercept model.

We can investigate the asymptotic behavior of Penalized Generalized Weighted

Least Square (PGWLS) estimate in a more complicated random effects models such

as two way crossed random effects model.
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Chapter A

Simulation Results

A.1 Case 1 random intercept model for penalized likelihood estima-

tor

A.1.1 Case 1 logistic random intercept combining a with vi.

We consider Example 3.2 from Jiang [14]:

logitP (yij = 1|vi) = a + vi + β1xij (A.1)

where a and β1 are fixed parameters, xij is a scalar valued predictor, and vi are

iid N(0, Va). For our simulations we let a = 0. We used the PGWLS method

by Jiang [14] and nlminb minimization function in Splus to get estimators which

minimize −lP (γ) derived by Jiang [14] as (??), which is defined as

−lP (γ) =
∑

i

∑
j

(−yijηij + log(1 + exp(ηij))) +
λ1

2
m(v)2

where ηij = a + vi + xijβ1, v =
∑m

i vi/m, and γ = (a, β1, v1 , . . . , vm)t. We do

not attempt to estimate a and vi separately but only a + vi. For simplicity, we

simulated the balanced model with m clusters and n1 observations per cluster. We

generated m × n1 covariates xij uniformly spaced between -1 and 1, so that the

ranges of {xij} and {xlj}, i 6= l, did not overlap. For example if we have m = 3

clusters and n1 = 2 observations per cluster, first we divided interval [−1, 1] into
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m = 3 equal sized intervals [−1,−1/3], [−1/3, 1/3] and [1/3, 1], and then divide

each interval into n1 = 2 subintervals to get x11 = −1, x12 = −2/3, x21 = −1/3,

x22 = 0, and x31 = 1/3, x32 = 2/3 for clusters 1, 2, 3 respectively. We also

generate m independent random effects vi from the normal distribution with mean

0 and variance Va. Conditionally on (xij, vi) with regression coefficient β10 = 1,

a sample of mn1 binary random variables Yij was generated with E(Yij|vi, xij) =

exp(xij + vi)/(1 + exp(vi + xij)).

Various combinations of (m,n1), Va, λ1 and initial values of estimated β1,

v1 , . . . , vm were used.

For each combination, 1000 replications of random effects vi and responses Yij

were generated. The covariates xij were the same for all the simulations. Estimated

regression coefficients for various choices of (m,n1) with Va = 4, initial estimates

set to 0, and λ1 = 1, are summarized in Table A.1. The tables display the means

and standard errors of the simulated values of (β̂1 − β10)/s.e. and 95% confidence

bounds for E(β̂1 − β10) based on Student’s t. From Table A.1, we can see that in

combinations (20, 20), (20, 30) with Va = 4 and even for Va = 3 with (20, 20), the

bias is present. But their Kolmogorov-Smirnov test p values are larger than 0.1.

This can be explained in terms of the consistency condition log m/(log n1)
2 → 0

[Jiang ([14], Ex.3.2]. Among all the pairs of sample sizes for simulation, (20, 20) and

(20, 30) have the highest values of log m/(log n1)
2, 0.334 and 0.259 respectively. For

all combinations from Table A.1 whose 95% confidence intervals including 0.

In order to check whether the computations of β̂1 are sensitive to initial values,

we ran various combinations of m, n1, Va and λ1 with initial values set to 0. For
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the same vi and yij, we initialized β̂1 at 3 and at logit(y../(1− y..)). In each case the

v̂i were initialized at 0. This comparison was repeated 1000 times. The estimated

standardized regression coefficients, standardized by conditional standard error and

estimated conditional standard error, are summarized in Table A.2.
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Table A.1: Simulated standardized estimates of logistic regression coefficient (stan-

dardized by true and estimated conditional standardized error) combining fixed

intercept with random effects.

(β̂1 − β10)/s.e. (β̂1 − β10)/ŝ.e.

(m, n1) mean std 95% CI for β̂1 − β10 mean std

Va = 4, initials set to 0, λ1=1

(10,20) -0.017 1.021 (-0.127, 0.293) -0.015 1.010

(10,30) 0.025 1.009 (-0.075, 0.260) 0.024 1.002

(10,40) 0.021 0.980 (-0.086, 0.195) 0.021 0.977

(20,20) 0.077 1.012 (0.082, 0.665) 0.076 1.011

(20,30) 0.075 0.995 (0.059, 0.523) 0.075 0.990

(20,40) 0.054 0.995 (-0.019, 0.384) 0.053 0.991

(20,50) 0.049 1.012 (-0.034, 0.330) 0.048 1.009

Va = 3, initials set to 0, λ1 = 1

(20,20) 0.054 0.938 (-0.008, 0.509) 0.053 0.932

136



Table A.2: Simulated standardized estimate of logistic regression coefficient for var-

ious initial values.

(β̂1 − β10)/s.e. (β̂1 − β10)/ŝ.e.

initial β̂1 mean std 95% CI for β̂1 − β10 mean std

Va = 4, (m,n1) = (10, 20), λ1=1

0 -0.017 1.021 (-0.127, 0.293) 0.015 1.011

3 -0.014 0.878 (-0.150, 0.277) 0.009 1.022

logit -0.020 0.896 (-0.150, 0.277) 0.015 1.011

Va = 4, (m,n1) = (20, 50), λ1 = 1

0 0.048 1.011 (-0.034, 0.330) 0.048 1.009

logit 0.022 0.058 (-0.034, 0.330) 0.048 1.009

Va = 4, (m,n1) = (20, 20), λ1 = 1

0 0.077 1.012 (0.082, 0.665) 0.076 1.001

logit 0.074 0.839 (0.152, 0.696) 0.087 0.940

Va = 4, (m,n1) = (20, 30), λ1 = 1

0 0.075 0.995 (0.059, 0.523) 0.075 0.990

logit 0.062 0.845 (0.114, 0.562) 0.087 0.958
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As we can see from Table A.2, the estimates are biased for larger log m/(log n1)
2.

Moreover, the variance of (β̂1−β10)/s.e. is sensitive to the initial guess of β̂1. Also in

the combination (20, 20) with Va = 4 and initial β̂1 equal to logit, their Kolmogorov-

Smirnov test rejects the hypothesis of normality with p values 0.043 and 0.019. For

all the other combinations from Table A.2, their Kolmogorov-Smirnov test p values

are larger than 0.1.

Since in reality we do not know how to choose λ1, we tried various values

of λ1 to assess the effect of λ1 on normality and consistency. The Monte Carlo

averages and standard deviations of (β̂1 − β10)/s.e. are displayed in Table A.3 for

various (m,n1), λ1, initial values and Va. The estimates are computed for λ1 = 0.1,

1 and 5 for the same data, and this comparison was repeated 1000 times. Table A.3

shows that extremely large values of the penalty parameter (λ1 = 5) did affect the

consistency. For Table A.3, the combinations (20, 20) with Va = 4 have their the

Kolmogorov-Smirnov test rejects the hypothesis of normality with p values between

0.019 and 0.043, except for λ1 = 5 whose p value is bigger than 0.1. For all the other

combinations from Table A.3, their Kolmogorov-Smirnov test p values are larger

than 0.1. Generally speaking, the plots show that β̂1 is approximately normal, with

departures from normality in the extreme tails.
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Table A.3: Simulated standardized estimate of logistic regression coefficient for var-

ious λ1 values.

(β̂1 − β10)/s.e. (β̂1 − β10)/ŝ.e.

λ1 mean std 95% CI for β̂1 − β10 mean std

Va = 4, (m,n1) = (10, 20), initials set to 0

1 -0.017 0.957 (-0.229, 0.164) -0.018 0.947

0.1 -0.020 0.896 (-0.150, 0.277) -0.009 1.002

5 -0.020 0.914 (-0.164, 0.258) 0.003 1.020

Va = 3, (m,n1) = (20, 20), initials set to 0

1 0.054 0.938 (-0.008, 0.509) 0.053 0.932

0.1 0.037 0.889 (-0.021, 0.520) 0.052 0.975

5 0.037 0.889 (-0.021, 0.520) 0.052 0.975

Va=4, (m,n1) = (20, 50), initials set to 0

1 0.048 1.012 (-0.034, 0.330) 0.048 1.009

0.1 0.022 0.858 (-0.034, 0.330) 0.048 1.009

5 0.022 0.858 (0.034, 0.400) 0.070 1.017

Va = 4, (m,n1) = (20, 20), initials set to 0

1 0.077 1.012 (0.082, 0.665) 0.076 1.001

0.1 0.074 0.839 (0.250, 0.800) 0.087 0.940

5 0.078 0.855 (0.250, 0.800) 0.108 0.959
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Figure A.1: Q-Q plots for (β̂1−β10) standardized by true conditional standard error

combining a with vi, for various (m,n1) in logistic random intercept case 1.

140



Quantiles of Standard Normal

N
or

m
al

iz
ed

 e
st

im
at

e 
of

 b
et

a

-2 0 2

-3
-2

-1
0

1
2

Va=4, m=10, n1=20

Quantiles of Standard Normal
N

or
m

al
iz

ed
 e

st
im

at
e 

of
 b

et
a

-2 0 2

-3
-2

-1
0

1
2

Va=4, m=20, n1=20

Quantiles of Standard Normal

N
or

m
al

iz
ed

 e
st

im
at

e 
of

 b
et

a

-2 0 2

-2
-1

0
1

2

Va=3, m=20, n1=20

Quantiles of Standard Normal

N
or

m
al

iz
ed

 e
st

im
at

e 
of

 b
et

a

-2 0 2

-3
-2

-1
0

1
2

3

Va=4, m=20, n1=30

Figure A.2: Q-Q plots for (β̂1−β10) standardized by estimated conditional standard

error combining a with vi, for various (m,n1) in logistic random intercept case 1.
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Figure A.3: Q-Q plots for (β̂1−β10) standardized by true conditional standard error

combining a with vi, for various initial values of β̂1 in logistic random intercept case

1.
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Figure A.4: Q-Q plots for (β̂1 − β10) standardized by estimated standard error

combining a with vi, for various initial values of β̂1 in logistic random intercept case

1.
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Figure A.5: Q-Q plots for (β̂1−β10) standardized by true conditional standard error

combining a with vi, for various values of λ1 in logistic random intercept case 1.
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Figure A.6: Q-Q plots for (β̂1−β10) standardized by estimated conditional standard

error combining a with vi, for various values of λ1 in logistic random intercept case

1.
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A.1.2 Case 1 logistic random intercept when a and vi are estimated

separately.

We consider the following example from Jiang [14]:

logitP (yij = 1|v) = a + vi + xijβ1. (A.2)

Since â0 and β̂1 have different convergence rates, we do not consider joint asymptotic

distribution. We are interested in β̂1 and use the estimating equation (??) and the

Splus function nlminb to investigate the asymptotic behavior of β̂1.

We use a balanced setup with m clusters and n1 observations per cluster. We

generate m random effects vi from the normal distribution with mean 0 and variance

Va. Conditionally on (xij, vi) with β10 = a0 = 1, a sample of mn1 random variables

Yij is generated from Bernoulli distribution with E(Yij|vi, xij) = exp(xijβ1 + a +

vi)/(1 + exp(xijβ1 + a + vi)).

Various combinations of (m,n1), Va, λ1 were simulated and all combinations

initialized â, β̂1 and v̂i at zero.

For each combination, 1000 random replications of random effects vi and the

responses Yij are generated. Estimated standardized regression coefficients β̂1 stan-

dardized by true conditional standardized error and estimated conditional standard-

ized error are summarized in Table A.4.
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Table A.4: Simulated standardized estimates of logistic regression coefficient (stan-

dardized by true and estimated conditional standardized error) with a and vi esti-

mated separately.

(β̂1 − β10)/s.e. (β̂1 − β10)/ŝ.e.

(m,n1) mean std 95% CI for β̂1 − β10 mean std

Va = 4, initials set to 0, λ1=1

(10,20) -0.007 0.999 (-0.207, 0.223) -0.009 0.976

(20,20) 0.018 0.903 (-0.344, 0.194) -0.019 0.890

(20,30) 0.011 0.970 (-0.190, 0.280) 0.010 0.963

(20,40) 0.054 1.030 (-0.110, 0.276) 0.053 0.956

Va = 3, initials set to 0, λ1 = 1

(20,20) 0.020 0.924 (-0.160, 0.370) 0.018 0.910

(20,30) 0.020 0.975 (-0.159, 0.290) 0.020 0.967

Va = 2, initials set to 0, λ1 = 1

(20,20) 0.014 0.963 (-0.190, 0.340) 0.012 0.950

For the above Table (A.4), the 95% confidence intervals for (β̂1 − β10) include

0. Normality holds for (β̂1 − β10) standardized by true conditional standard error

given v0. The mean and standard error estimates are close to 0 and 1 respectively,

except for the pairs as (20, 20) and (20, 30) with Va = 4. In these cases, their the

Kolmogorov-Smirnov test rejects the hypothesis of normality with p-values of 0.0179

and 0.0171 respectively. Even for Va = 3 , (m,n1) = (20, 20), the p-value of 0.06 is
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almost significant.

Normality holds for (β̂1−β10) standardized by estimated conditional standard

error given v0. The mean and standard error estimates are close to 0 and 1 respec-

tively, except for the pairs as (20, 20), (20, 30) with Va = 4 and (20, 20) with Va = 3.

In these cases, the Kolmogorov-Smirnov test rejects the hypothesis of normality

with p-values of 0.014, 0.011, 0.04 respectively.

For all the other combinations for Table A.4, their Kolmogorov-Smirnov test

p values are larger than 0.1.

The 95% confidence intervals for (â−a0) do not include 0 (the intervals are not

listed in the table but all were approximately (0.1, 0.4)). The Kolmogorov-Smirnov

test applied to Monte Carlo distribution of â significantly rejects the hypothesis

of normality. From the theoretical results of Chapter 3, we know the convergence

rates differ between estimated logistic regression coefficient and intercept, with rates

approximately 1/N and 1/m, respectively. Here we have sample sizes from 200 to

1000, but number of clusters 10 or 20. Even in a small simulation with (m,n1) =

(40, 60) with 200 replications, there is bias present for estimated logistic regression

intercept.

The Q-Q plots show that the standardized (β̂1−β10) is approximately normal,

with departures from normality in the extreme tails.
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Figure A.7: Q-Q plot for (β̂1−β10) standardized by true conditional standard error

not combining a with vi, for various (m,n1) in logistic random intercept case 1.
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Figure A.8: Q-Q plot for (β̂1−β10) standardized by estimated conditional standard

error with estimated a with vi separately, for various (m,n1) in logistic random

intercept case 1.
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A.1.3 Case 1 Poisson random intercept combining a and vi.

We use the PGWLS method by Jiang [14] and nlminb minimization function

in Splus to get estimators which minimize negative lP (γ) as (??), Here we have

−lP (γ) =
∑

i

∑
j

(−yijηij + exp(ηij)) +
λ1

2
m(v)2

where ηij = ai + β1xij, ai = a + vi = vi (in our simulation we let a = 0) and

v =
∑m

i vi/m, γ = (β1, v1, . . . , vm). Here a and β1 are fixed parameters, xij is a

scalar valued predictor, and vi are iid N(0, Va). We do not attempt to estimate a and

vi separately. For simplicity we simulated the balanced model with m clusters and n1

observations per cluster. We generate m random effects vi from normal distribution

with mean 0 and variance Va. Covariates xij are the same here as in logistic Case 1.

Conditionally on (xij, vi) with β10 = 1, a sample of mn1 random variables Yij were

generated from Poisson distribution with E(Yij|vi, xij) = exp(xij + vi).

Various combinations of (m,n1), Va and λ1 values are investigated.

For each combination, 1000 replications of random effects vi and responses Yij

were generated. Estimated regression coefficients, for various choices of (m,n1) with

Va = 4, λ1 = 1 and initial estimates set to 0, are summarized in Table A.5. The table

displays the means and standard errors of the simulated values of (β̂1 − β10)/s.e.

and 95% confidence bounds for E(β̂1 − β10) based on Student’s t.

151



In order to check sensitivity of λ1 values, the estimates are computed for

λ1 = 0.1, 1 and 5 for the same data, and this comparison was repeated 1000 times.

From Table A.5 and Table A.6, consistency and normality results hold and are not

sensitive to the values of λ1. In these cases, their Kolmogorov-Smirnov test p values

are larger than 0.1 except for the combination (20, 20) with Va = 4. In this case,

the Kolmogorov-Smirnov test almost rejects the normality hypothesis with p value

0.06. The Q-Q plot shows that standardized (β̂1 − β10) is approximately normal.

Table A.5: Simulated standardized estimate of Poisson regression coefficient for

various (m,n1) values.

(β̂1 − β10)/s.e. (β̂1 − β10)/ŝ.e.

(m,n1) mean std 95% CI for β̂1 − β10 mean std

Va = 4, λ1 = 1, initials set to 0

(10,20) 0.018 0.970 (-0.022, 0.064) 0.018 0.969

(20,20) -0.005 1.008 (-0.050, 0.054) 0.005 1.008

(20,30) -0.0006 1.007 (-0.042, 0.039) 0.006 1.007
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Table A.6: Simulated standardized estimate of logistic regression coefficient for var-

ious λ1 values.

(β̂1 − β10)/s.e. (β̂1 − β10)/ŝ.e.

λ1 mean std 95% CI for β̂1 − β10 mean std

Va = 4, (m,n1) = (10, 20), initials set to 0

1 0.018 0.970 (-0.022, 0.064) 0.018 0.969

0.1 0.015 1.100 (-0.026, 0.064) 0.013 1.024

5 0.028 1.021 (-0.018, 0.064) 0.022 0.965

Va = 4, (m,n1) = (20, 30), initials set to 0

1 0.006 1.007 (-0.042, 0.039) 0.006 1.007

0.1 0.001 1.025 (-0.044, 0.033) -0.002 1.008

5 0.009 1.012 (-0.038, 0.043) 0.006 1.003
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Figure A.9: Q-Q plots for (β̂1−β10) standardized by true conditional standard error

with a and vi estimated separately in Poisson random intercept case 1.
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Figure A.10: Q-Q plots for(β̂1−β10) standardized by estimated conditional standard

error with a and vi estimated separately in Poisson random intercept case 1.
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Figure A.11: Q-Q plots for (β̂1− β10) for standardized by true conditional standard

error with a and vi estimated separately, for various values of λ1 in Poisson random

intercept case 1.
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Figure A.12: Q-Q plots for (β̂1−β10) standardized by estimated conditional standard

error with a and vi estimated separately, for various values of λ1 in Poisson random

intercept case 1.
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A.1.4 Case 1 Poisson random intercept with a and vi estimated sep-

arately

We use the PGWLS method by Jiang [14] and nlminb minimization function

in Splus to get estimators which minimize negative lP (γ) as (??). Here we have

−lP (γ) =
∑

i

∑
j

(−yijηij + exp(ηij)) +
λ1

2
m(v)2

where ηij = a + vi + β1xij and v =
∑m

i vi/m, γ = (β1, a, v1, . . . , vm). Here a and

β1 are fixed parameters, xij is a scalar valued predictor, and vi are iid N(0, Va). We

attempt to estimate a and vi separately. For simplicity we simulated the balanced

model with m clusters and n1 observations per cluster. We generate m random

effects vi from normal distribution with mean 0 and variance Va. Covariates xij are

the same here as in logistic Case 1. Conditionally on (xij, vi) with β10 = a0 = 1, a

sample of mn1 random variables Yij were generated from Poisson distribution with

E(Yij|vi, xij) = exp(β1xij + vi + a).

The same choices of (m,n1) and Va values as in the previous subsection were

simulated.

Unlike the results when only vi + a were estimated, as in the previous sub-

section, when we attempted to estimate a and vi separately, none of the desired

asymptotic results for β̂1 were observed. The estimate β̂1 was biased and its Monte

Carlo distribution failed tests of normality.
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