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Chapter 1

Introduction

Motivated by the rapid developments of problems of design of large flexible
space structures, vibration suppression by active modal control has drawn much
attention in recent years and has been the subject of much research.

Generally, large spacecraft/space structures have very poor passive damping
due to the materials used and also the fact that there might be no air to induce
viscous damping. Another characteristic of these space structures is that the
natural frequency of the structure (at least the lowest) may fall into the band-
width of the attitude control system resulting in large amplitude vibrations and
fatigﬁe in the whole structure.

Mechanical systems of this type are generally governed by a system of partial
differential equations; thus, evolution equations of them may be modeled in
infinite dimensional state space.

Despite the recent advances in the theory of distributed-parameter control,
(see [19] and [14] for example), it is still a growing field. Also, usually
distributed—parameter control requires some sort of distributed sensor which
may be costly and difficult to implement. As a result, there is always a tendency

toward the approximation of the infinite dimensional system with a finite dimen-



sional one to take advantage of the existing well-developed lumped-parameter
control theory. Of course, this approach (truncation/approximation) may entail
some performance trade-off.

There has been a significant effort in the field of distributed parameter control
with specific application in active vibration damping of flexible structures, e.g.
Balas [11] devised a control scheme for a certain class of flexible structures and
Curtain and Glover [16] addresses the problem of designing a finite dimensional
controller for the control of a distributed-parameter system.

The major goal in the first two chapters (chapters two and three) of this
thesis is to exploit some kind of finite dimensional approximation method to
obtain a model (an approximation) for a cantilever beam. In chapter two, a
Galerkin approximation method is used to model the beam with several rigid
rods that are compliantly linked together, and equations of motion are derived
based on this model. The rest of the chapter is devoted to obtaining estimates for
various parameters that are involved in the model. Once the system of ordinary
differential equations has been derived, there is another step of simplification
that is needed, namely linearization.

The detailed models of piezoceramic actuated beam can be quite involved
and complicated (see [4] for example). Usually several aspects such as stiff-
ness of the bonding material or the way in which the piezo ceramic is mounted
(e.g. embedded or bonded) comes into the picture. For example, in a real world
application like active vibration damping in a helicopter rotor [17], the heli-
copter blade cannot be precisely modeled by an Euler-Bernoulli beam and more
complicated models should be used that in turn need the knowledge of many
physical parameters that are not so easily obtainable.

In chapter three we developed a general non-parametric system identification



tool that uses the idea of rational wavelet decomposition. The matching pursuit
algorithm of Mallat et. al. [18] has been applied to the problem of approximation
of a given frequency response with a real rational transfer function. This method
is then used to obtain a finite dimensional model of the experimental set up that
consists of a flexible beam and piezoceramic actuators.

Chapter four addresses the problem of control. First, a classical LQR type
controller 1s employed to control the vibration. This is later used as a basis
for comparison with other methods. In a real control set-up, however, there
is a limit on the amplitude of the voltage that can be applied safely to the
actuating piezoceramics and this saturation limit on control signals may lead
to instability or poor performance of the system if one does not take voltage
limit into account in the design of the controller. Stability of systems with
bounded controls is a topic studied in depth by Sussman et al. [21], Gutman
and Hagander [13] and others. Gutman and Hagander proposed a control
algorithm to accommodate bounded controls in {13]. In chapter four, a controller
of this type has been designed and tested ina simulation program. This type of
controller, as presented in [13] needs state variable information to implement the
stabilization, a requirement that may not be feasible in most practical situations.

In chapter five, we provide a modification to the Gutman-Hagander algo-
rithm to allow for the usage of estimated state variables obtained by a classical
state observer. The proof of stability is also given in chapter five. Although the
main goal in this type of controller is stability, an improvement in settling time
of the response is observed in comparison to the LQR method.

Chapter six offers an algorithm (implicit finite difference) for finding the nu-
merical solution to the PDE describing the behavior of a cantilever beam with

piezo actuator material mounted on it and piezoceramics used as sensors. The



effect of air drag and internal damping is also included in the model. This can
serve as a simulation tool to test the performance of control strategies. With
the application of spectral analysis method and the simulation program at hand,
the empirical frequency response of the cantilever beam with piezoceramic ac-
tuators and sensors is obtained and is later used for the purpose of system
identification. The final section of chapter six has been devoted to the deriva-
tion of an analytical expression for the transfer function of a cantilever beam
with bonded piezoceramics. The empirical frequency response obtained through
spectral analysis is shown to corroborate the one obtained from the closed form
representation of the transfer function.

Chapter seven contains results, some concluding remarks, and suggestions

for future work in this area.



Chapter 2

Galerkin Model of a Flexible

Cantilever Beam

First, equations of motion of an approximated finite dimensional model for a
cantilever beam with embedded piezo actuators are obtained. The model con-
sists of N rigid bodies that are linked together via torsional springs. We use
plezoceramics as actuators which apply point moments at the joints. These
actuators may have non-uniform spatial distribution. Based on the physical pa-
rameters of the beam, some expressions for tile stiffness coeflicients and moment

generators that model the effect of piezoceramics has been obtained. Finally,

simulations are also performed to verify the correctness of the model.

2.1 Derivation of Equations of Motion

A flexible beam is an infinite dimensional dynamical system. In order to use
the classical control methods for damping the vibration of a flexible cantilever
beam, we first need to approximate it with a finite dimensional model.

Consider the following model in which the beam is approximated with N



rigid links, connected to each other by torsional springs. Figure 2.1 shows our

discretized model.

Figure 2.1: Discretized model of the cantilever beam

where,
k; = Stiffness of the ‘" spring,
M; = Moment corresponding to the i** actuator (piezoceramic),
; = Length of the ' link,
(z;,y:) = Position of the center of mass of the ** link,
a; = Slope of the i** link. .

We use the Euler-Lagrange method to derive the equations of motion,

d oT aor  ou

Mk B Mk+1 B E(aak) B aak t 8ak’

(2.1.1)

with M, = 0. The potential energy, U, and kinetic energy, T, are obtained

from the following relations,

N1 N1 .
T = 2 5mi(@ +37) + 3 5l (2.1.2)
i=1 1==1
1
U = E‘éki+1(ai+1"ai)2, (2.1.3)
=0



“where,
m; = Mass of the i** link,
I; = Moment of inertia of the it* link with respect to its center of mass.

Now, we compute the various terms in the Euler-Lagrange equation,

N ayz

aT N axz . 3y, .
= = Lecix,
ddy ?__‘; (Z (%z] }—; ]2:1 + KOk
d or., BL 5333
o) = Xl 223 e i +Z e
By typppin a;al+za )l
i=1 j=11=1 aajaal —1 80!1 Jday
ax,
* Z mil Z Z aaKaozl
+ i{ Z ay’ Z )+ Tndik (2.1.4)
=1 60(]{8011 ’
ou orT
Ex—; " Do = ki(or — or—1) — krera (arpn — ax)
N d 81'1' . ! 82:13,‘ .
_g[m1(§ 5‘&;0&_7)(; 8akaa1a1)]
ayz . : 8 Yi

(2.1.5)

—ZWZ

Substituting equations (2.1.4) and (2.1.5) into the Euler-Lagrange equa-

Z 8ak8a1

tion (2.1.1 we get,



DI IPLE RIS o i

1=1 7=11l=1

+Ikdk + ke(ax — Oék—l) - kk+1(ak+1 — o). (2.1.6)

the position of the center of mass of the :** link can be obtained from the

following relations (assuming a uniform distribution of mass),

i—1 1

z; = Zlicosaj—}-é—licosai (2.1.7)
7=1
. . 1.

Yi = Zl,-31naj+—2—l,~51na,-. (2.1.8)
—

To simplify the equations of motion (2.1.6) we need the partial derivatives

of z; and y; with respect to «; i.e.,

0 1< k
Oz; . .
ézjk‘ = —5SImaE 1=
—lsinagr k<1
(2.1.9)
0 <k
9y _ |}, .
b 5 COs ay, 1=
—lycosar k<1
(2.1.10)
0 1< J
0%z By o
S = —5Co8Q; 1=
J
—ljcosa; 7 <
(2.1.11)



0 1< 7
323!{

. I . .
- —2 8o, 1= .
6@2 2 ' .7

—lsing; 7<1
Now, (2.1.6) reduces to,
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e 801{ ot Oay, k Oy,
o 0% Oy O
+Z=Z;1 z[;:"’l( Oa? 7 Oa J)aak]
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(2.1.13)

(2.1.14)



N i-1 )
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k=1 _ L
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o Iy oo .
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—; SO N
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J=1
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-

After some cancellations, the above equation reduces to,

N i1 .
My — My = Z mz[z Lili(sin(ag — aj)a? + cos{ay — aj)d;))
i=k+1 J=1
k-1 i
[Z Lilk(sin(ar — a;)o? + cos(ay — a;)d;)]

=1

mg

3

N : .
+ > T—n—l[lilk(sin(ak — a;)o? + cos(ag — o))
i=k+1 2
2

. .. -
+mk‘fak + Ipdy + kp(ar — ag-1) — krpr (@i — o),

k=1,--, N. (2.1.16)

These, are the equations of motion for the discretized model.

10



In order to apply classical control strategies we will have to linearize them about
the stationary equilibrium point ay =ay =0, £ =1, ---, N .

The linearized equations are:

My =My = SN pli 0 Llkd; + 3ol Y52 Lilkdy + 2 2K, plPlcs
+ 2play + kp(on — ap—1) — kegr (o1 — o),
where p is the mass density per unit of length of the beam and we made the
following substitutions for the moment of inertia, Ix, and mass, my, of the kt*

link respectively,

-

2.2 An Estimate For the Stiffness Constant of

the k'* Link

Up to this point we derived the equations of motion for our model. The next
step is to compute the various constants that appear in (2.1.17) . One of these
constants is the stiffness of the k** link. We have to decide on some criterion
for computing these constants. One reasonable criterion might be to compute
k; such that the deflection of the tip of the beam at the steady state due to a
force F' applied at its free end is the same for both the model and the actual

flexible beam.

11



Figure 2.2: Deflection of the beam due to a force F' applied at its free end

The deflection of a cantilever beam due to a force F' at its free end is [5],

FIL?

where, L is the length of the beam and E is the modulus of elasticity. For our

N-link model and for small f; in the static situation we can write,

N 1
6 = E(Eﬁjﬂi, (2.2.2)
=1 g= .
kB = Fle. (2.2.3)

Eliminating §; from the above two equations and using (2.2.1), we get,

LA A A 7
mi o 2 2.2.4
2.2 2 ki 3EI (2.24)

1=1 =1 m=3y

We also assume that the compliance of the torsional spring corresponding to

each link is proportional to its length. i.e.,

ki Zi

I

O
I
=

(2.2.5)

12



where, ¢ is a constant. Combining (2.2.4) and (2.2.5) and then solving for

c we get,

N Inlil; L3
21 13_:] - 3EI
- 3E]Z§:Zz ;. (2.2.6)
i=1 j=1 m=j

Alternatively, one may consider a different criterion for estimating the stiff-
ness coefficients: find %; such that the potential energy stored in the model is
the same as that of the flexible beam. The potential energy stored in torsional

springs is,

Z ~k; 3% (2.2.7)

1.—1

The potential energy stored in the flexible beam is obtained from the follow-

ing equation:

= 3 / (93:2 dz. (2.2.8)

Again, it can be shown that the transversal deflection of the flexible beam

due to a force F applied at its free end is [5]

7

F
_ 3 2
w(z) = (2L° - 3L ;c+:z:)6E]

where z is the distance from the free end. Substituting for w(z) from

(2.2.9) into (2.2.8), results:

(2.2.9)

U =1ffE 36(EI)2[ 2 (203 — 3Lz + 22)]?,

L3
6K °

13



Now we can equate (2.2.10) and (2.2.7) to get,

F2[2 N1
= Y —kpL. (2.2.10)
GBI ~ &2

Substitute for §; from (2.2.3) into the right hand side of the above equation:

N
S L, (2.2.11)

and finally we can eliminate k; from the above equation and (2.2.5 to obtain

the constant ¢,

L3 N I N )
— VAN
3E] ; c(]z:; J)f
Thus,
3E1 &Y, X
c = FZQ(ZW (2.2.12)
=1 7=

Remark: It can be easily shown that the constant ¢ goes to the value ET
as the number of rigid links, N goes to infinity while the length L remains

constant.

2.3 Relation Between M; and the Voltage

Applied to the Piezoceramic

We try to find an expression for M; in terms of V; , the voltage that applied

to the i** piezoceramic. We compute M; such that at the static situation it

results in the same amount of deflection at the tip of each link as the amount of

14



deflection caused by applying the voltage V; to the it*

segment of the piezo
material. In the steady state, the following relation holds for the actual flexible

beam,

2
%%EI = ¢,V (2.3.1)

where, w is the deflection and cp is a constant relating the voltage applied to
the piezo material to the moment that it produces [20]. Integrating the above

equation with respect to z two times we get,

= V.. (2.3.2)

(2.3.3)

Figure 2.3: Deflection resulting from the moment M;

where, k; has already been computed.

15



2.4 Initial State Computation

Suppose our model for the cantilever beam is subjected to a force F at
its free end. In order to perform some simulations we need the values of
o;, 1=1,---, N as the initial state for the dynamical equations of motion.

From (2.2.1) and (2.2.3) we have:

F N
i 241
- £ aan

FL3
= 2.4.2
3EI’ (242)
which give us f; as a function of § (deflection at the tip),

"13EI§ X .

ﬁi = k L3 Zl l=1, ety N, (243)

and o; can be computed using the following relation,

g - Z;:l ﬂ'&?

3E15 N :
= Z:n_lk Z_.m‘ Z:L"'aN'

2.5 Simulation

Based on equation (2.1.17) the program ’EqOfMotion.m’ has been written to
derive the matrices A and B in the state space representation,

= Az + Bu, (2.5.1)

which we need for simulation and control. EqOfMotion.m is a Mathematica

macro. Asinput, this macro accepts n = number of links and physical constants

16



of the beam and in return it gives the numerical matrices A, B, and zo. The
output of the program is stored on a text file named AandB.m which is in a
format that is readable by MATLAB. Given those two matrices a simulation has
been performed that shows the free oscillation of the beam when i1t is released
from the initial rest with 6 =4 cm.

The results are shown on figure 2.4 and figure 2.5 for N =3 and N =
4 respectively. The upper graphs are the slopes of each rigid link versus time
and the lower ones shows the time derivative of the slope of the rigid links. Each

curve corresponds to one link.

10 T T T T T T T T T

Deflection [Deg]

Angular Vel. [rad/sec]

Time [sec]

Figure 2.4: Free oscillation of the beam N =3

One may compare the lowest mode of oscillation of the Galerkin model ob-
tained above (which is easily readable from the deflection curves) and compare

it with the one that can be obtained analytically by solving the Euler-Bernoulli
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Figure 2.5: Free oscillation of the beam N =4

equation to verify the correctness of the model and simulation. In the next
chapter we follow a different algorithm to get a finite dimensional model for the

flexible beam.
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Chapter 3

Matching Pursuit with Rational
Wavelets for Nonparametric

Estimation of Stable Systems

The matching pursuit algorithm developed by S. Mallat and Z. Zhang [18]
has been exploited to obtain a rational transfer function approximation to a
set of empirical data obtained from say, an experiment, or even to reduce the
order of a transfer function which is real-ra:tional already. In this chapter we
follow closely the work done by Y. C. Pati in his Ph.D. thesis [15], which
basically addresses the same problem but with a different solution. Using this
method, a priori knowledge of time-frequency localization properties of the given
transfer function enables us to obtain a “good” model for the physical system
under consideration. One advantage of this algorithm is its simplicity which
in turn makes it fast (e.g. compared to the least squares method discussed in

[15]). As a practical application of this, we considered the problem of finding a

finite dimensional approximation to the transfer function of flexible beam with

9This work has been done under the supervision of Dr. Y. C. Pati.

19



piezoceramic actuators. The performance of the matching pursuit algorithm is

compared to the Laguerre method and also the one developed in [15].

3.1 Introduction

The nonparametric estimation problem has been addressed in many ways and
different methods-have been devised to solve the problem. Obviously one always
seeks a low order approximation while achieving a certain degree of accuracy.
It 1s also desirable to obtain an approximation that can be easily realized. We
use the algorithm developed by S. Mallat and Z. Zhang [18] that decomposes
any signal into a linear combination of waveforms that belong to a redundant
dictionary of functions.

Clearly, the choice of the dictionary has a great deal to do with how compact
the decomposition is going to be. For the system identification problem one of
the requirements is the real-rationality of the approximation (a real-rational
function is a rational one with real coefﬁcien‘gs). At least this is important when
we want to use the method to represent an infinite dimensional system with a
finite dimensional one.

We also may use our a priori knowledge of time-frequency localization prop-
erties of the signal to select the elements of the dictionary in an efficient fashion.

Motivated by these two, rational wavelets seem to be a good choice for the

purpose of decomposition of a transfer function because:

e 1. They are rational.

o 2. They capture the localization properties of the signal.

20



e 3. It is easy to realize a wavelet decomposition of the signal (elements of

the dictionary are just translation and dilation of the mother wavelet.)).

Of course, the fact that the approximation given by this method is realrational
is something that must be proven and we will show that in section 3.

One thing that should be pointed out is that although a poor choice will
affect the compactness and the degree of accuracy, the elements of the dictio-
nary can be virtually any set of functions and there are no constraints such as

orthogonality on them. The only requirement is that they must be unit normed.

3.2 Preliminaries

Before introducing the algorithm, we need to develop some notations which are
almost standard but yet, for the sake of completeness, worth mentioning. The

inner product of two signals f, and g in L%(R) is defined to be

(o0 = [ s

—00

which leads to the usual L? norm,

1 = [ sl

If ®(w) is the analyzing wavelet ., ,(s) is defined by,
On(s) = af*®(al's —inky), (3.2.1)

where ag and by are dilation and translation step sizes, respectively and m and

n are called dilation and translation levels. Note that it is necessary to put the
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imaginary number ¢ in (3.2.1) for n to be the translation index. To see this, let
us substitute tw for s in (3.2.1),

Opn(iw) = aglﬂ@(ag"iw— inbo)

= ag”?®(ial(w — ag™nbo)).

3.3 The Algorithm

First, we describe the algorithm in its general form and its application to rational
transfer functions follows as a special case. In the initialization part of the
algorithm, a set of translation and dilation levels has to be chosen that is referred
to as dictionary. This is the set from which the algorithm select the translation
and dilation levels. The apriori knowledge of time-frequency localization of the
signal should help to choose this set. Here the objective is to approximate f,
an element of the Hilbert space, by a linear combination of elements of the
dictionary.

-

o Step 0: Select the analyzing wavelet ® with norm equal to one.
o Step 1: Choose the finite set D of translation and dilation levels.

o Step 2: Set
Rf = f; : = 1.
e Step 3: Find indices (m;,n;) € D such that,

(BT, @)

> (RS, Cmn)l (3.3.1)

V(m,n) € D.
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o Step 4: Compute the approximation at level ¢ via,
fo = AR, Oy P (3.3.2)
k=0
If satisfactory, stop. Otherwise continue.
o Step 5: Compute,
Rf = R = (R, i) Ponimis

increment ¢, and go to step 3.

3.4 The Theory Behind The Algorithm

First note that the residuals satisfy the following recursive equation,
R'f = (R"f, @,),®,, + R f. (3.4.1)

where, ®.,. is the selected wavelet at the n'* iteration. Evaluating the inner
product on both sides with ®.,, and noting that ®.,, is normed one, proves that

R™*1f is orthogonal to ®., which in turn enables us to write,

IR fI = KBS, o) + RS2 (3.4.2)

This shows that the residual R™f is monotonically decreasing. In fact the

following theorem states that the series:

o0

f =Y (R, ©,,)0,, (3.4.3)

n=0

converges to the projection of f into the subspace spanned by the dictionary.
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Theorem [18]: Let H be a Hilbert space and f € H. The residual R™ f defined

by the recursion (3.4.1) satisfies

Tim [|R"S — Pwf] = 0. (3.4.4)
Hence
Pyf = SR, 0,9, (3.4.5)
n=0
and
Py AP = SSURRS, @) (3.4.6)
n=0

Where, V is the space spanned by the vectors in D, W is its orthogonal com-
plement in H, and Py and Py are orthogonal projections of f into V and W
respectively. When V =H, we have Py f = f and the matching pursuit recovers
f.

But, if we want to use this method to approximate a stable transfer function
F with real coefficients there is one more thing that needs to be shown. That
1s, we have to show that the projection of F' into the space V is a real rational
function. Formally, the space of transfer functions of stable systems is the Hardy
space H(II1)) where II* is the right half plane . Also, RH2(II*) is a subset of
H2(II*)) that consists of those elements that are rational functions in s with
real coefficients. So, we need to prove that Py f = f eRH*(II*) .

Rationality is not a problem because the analyzing wavelet is rational to

begin with (we choose it to be this way). But note that @, ,(s) = a;”ﬂtl)(ag‘s —
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inbo) is not the Laplace transform of a real valued function (unless n = 0). It

can be easily shown that [15] G™"(s) defined as,
G™(s) = a®un(s)+ @l —n(s)

is a real rational function in H2(II*).

Thus, to guarantee the real rationality, for every wavelet ®,,, in the space
V, corresponding wavelet with the translation index —n should be present in V
as well. In fact by doing this, the matching pursuit process picks the coefficients
corresponding to wavelets ®,,, and ®,, -, complex conjugate of each other to
make Py f real rational.

Hereafter, we use ®(.) instead of ®(3.) to simplify the notation. Recall that

if the inverse Fourier transform of F(w) is a real valued function then,
F(—w) = F(w). (3.4.7)
We will use this in the proof of the following proposition.

Proposition 1 The following relation holds,

(F, ®pn) = (F, Opn). (3.4.8)
Proof:
(F), ®pp) = [T F(w)al’*®(afiw — nbo)
= fj‘o‘f F(w)a?/z@(nbo — al'w)
= (F* @m,o)(nbo/a{)")
= F[f(t)¢m70(t)”w=nboa;m'
Similarly,
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(F, @mmn) = FU()Pmo(®)]lom—nsoaym (3.4.9)

Since f(t) and @ 0(t) are both real we have,

Flf ) mo@)](—w) = F[f(£)¢mo(t)](«),

and this proves the statement of the proposition.O

The next proposition is what we need to justify that the approximation given

by the matching pursuit algorithm converges to a real rational function.

Proposition 2  Let V be such that ®,,, € V implies that ®,, ., € V for all

m,n € D, then Py f is real rational.

Proof: Since Py [ is the orthogonal projection of f into V we have,

(f—Pvf,g) =0, VgeV

In particular the following equalities hold:

(f(@), Pmn(w) + Pm,—a(w)) = Py f(w), Pmn(w)+ m,—n(w)) (3.4.10)

(f(@), Pmn(w) = Cmyon(w)) = (Pvf(w), Prmn(w) = Bm,—n(w)) (3.4.11)

From (3.4.7) we see that @, ,(w) + ®,—n(w) is a real rational function and

by (3.4.7) we can write,

Dy (W) + Py (W) = P (W) + P (W), (3.4.12)
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Replace w by —w in (3.4.11) and use (3.4.12) and the fact that f(w) has a

real valued weighting pattern (therefore f(—w) = f(w)), to get

(Pyf(=w), Pma(-w) + Bmn(-w)) = (f(=w); Pmn(=w) + Pm-n(-w))

= (f(w); Cmpn(w) + Comn(w))
(3.4.13)

= (f(w), Pmn(w) + Cmn(w))

- <PVf(w): cbm,n("") + (I)m,—'n(w»'

Therefore,

(Pyf(—w) = Py f(w), Puu(w)+ Ppm—n(w)) = 0, (3.4.14)

or, after taking complex conjugate,

Py f(—0) — Py f(w), ®mn(w) Ppon(w)) = 0 (3.4.15)

vV (m,n) € D.

It can be shown that the following holds:

Ppn(—w) — Py n(—w) = =By o (W) + P —n(w). (3.4.16)

Starting with (3.4.11) and taking the same steps as we took for (3.4.11), we

obtain

Py f(—w) — Py f(w), Bmn(w) = Bp—n(w)) = 0, (3.4.17)

V (m,n) € D.
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Add equations (3.4.16) and (3.4.18) up to get

(Py f(~w) = Py f(w), ®ma(w)) = 0, (3.4.18)

V (m,n) € D.

Equations (3.4.16) and (3.4.18) can also be rewritten as

(Pyvf(—w) — Py f(w), Brm(—w) + Pp—n(—w)) =0, (3.4.19)
Y (m,n) € D,

(Pyf(—w) — Py f(w), mm(—@) = O n(—w)) =0, (3.4.20)
V (m,n) € D,

which are obtained by taking the complex conjugate once and using real ra-
tionality of ®,,,(w) + ®m —n(w) and equation (3.4.16). Again, add equations
(3.4.20) and (3.4.21) up to obtain

<PVf(_w) - PVf(w), q)m,n(‘_w» = 0, (3421)

Notice that Py f and Py f(—w) can be expressed as a linear combination of

vectors in V. 1l.e.

Pyfw) = Yijer®ij(w),
(3.4.22)

Pvf(-—w) = Ei,je] (I)i,j(—w) I CD.

From equations (3.4.22), (3.4.19), and (3.4.22) we conclude that,
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(Py f(~w) = Py f(w), Pvf(-w) =Py fw)) = 0. (3.4.23)

Hence,

Pyf(—w) = Pyf(w) almost everywhere. (3.4.24)

which together with continuity of Py f(w) results that the equality holds ev-
erywhere. This is the necessary and sufficient condition for Py f having a real-

valued weighting pattern.O

3.5 Computational Aspects

There are a few points worth noting that make the algorithm more efficient as
far as storage and speed is concerned. First note that in order to choose the
indices (m;, n;) in the third step, and also to ::ompute the approximation at step
4, we only need the inner product of the residuals with the wavelets (and not
the residuals). Thus, in step 5 one may directly compute the inner products

mnstead. i.e.
(Rf, ®mn) = (BT, 0n0) = (BT, ®mini) (Prmini> Cm) (3:5.1)

Note that by doing this we actually do not have to do any integration for
computing the inner products (other than just one set of integration to get
(f;, ®mn)). As far as storage is concerned, note that at each step we only have

to keep one set of inner products of the residuals with the wavelets and as we

proceed, we can throw away the previous ones.
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The third point is that the correlation matrix (with the elements (&4,

®,,n)) can be computed a priori and in fact this can be done analytically:

(P s (©) Py (@) = [ Py (W)t "B (waag” — nigbo)dw

= al"? [ @) o (0)®(noby — Wi )duw

= (D, * ‘sz,nz)[uf%z (3.5.2)
= F(bmna ()9 0(8)) | mgip -
Also, ¢m n(t) can be written in terms of ¢(t) as,
Pmn(t) = aEm/zeE?itqﬁ(é). (3.5.3)

Substitute for @, (t) from (3.5.3) into (3.5.2) to get,

~(mitmy) BN

Py (@), Py (W) = @9 2 Fleo o

2 t
o )¢(goﬁ;)) |w=§%_%ﬂz_’3 (3.5.4)
0 0

3.6 Results

-

The matching pursuit scheme has been used to obtain the approximation to
several frequency responses and in each case we compared its performance with
the Laguerre method and wavelet decomposition using least square [15]. As an
example consider the second order system with delay which has been examined

in [15]. The transfer function for this system is

4.94¢7%
s2 +1.25s + 0.406

H(s) =

Figure (3.1) shows the magnitude of the wavelet coefficients obtained from
the matching pursuit algorithm. The analyzing wavelet is again given in Eq.(6.8.1).
As it can be seen in the figure, very few coefficients have a significant magnitude

and this is a measure of how well the frequency response/impulse response is
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localized in time-frequency domain. This localization property, in turn, enables

us to get a fairly low degree for the approximation.

[\S] (S8} E N
Vi L /

—
/
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i
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Dilations

Figure 3.1: Magnitude of the wavelet coefficients (delay system)

The approximation results together with the true values of the frequency
response are shown in figure (3.2). The model order is 16 here and the number
of wavelets that has been used is only 5 (each wavelet with nonzero translation
increase the order by four and those with zero translation only increase the

model order by two).

For the purpose of comparison, the normalized error (in time domain) versus
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Figure 3.2: Approximation to the delay system with model order 16

the model order is plotted in figure (3.3). It can be seen from figure (3.3) that
the matching pursuit algorithm outperforms both methods in a relatively wide
range of model order and it is only with high order models that the least square

method beats the matching pursuit. In this figure, the Laguerre data is taken
from [15]

In figure (3.4) is again the magnitude of the wavelet coefficients for the
cochlear filter (it is a filter in the human ear that separates different frequencies
in the receiving wave). The same set of graphs are shown for in figure (3.5). As

before, the time-frequency localization properties are clear from figure (3.4).
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Figure 3.3: Normalized time domain approximation error versus model order for

different algorithms (delay system) (Laguerre data from [14])

3.7 Application

As a practical application we consider the problem of approximation of the
transfer function relating the input voltage to the actuating piezo ceramic to
the output voltage of the sensors (which are piezo ceramics again). The setup
for this experiment is shown in figure (6.7 ).

The empirical transfer function has been obtained through simulation and

application of spectral analysis.
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Figure 3.4: Magnitudes of wavelet coefficients (cochlear filter)

Due to the presence of resonances the frequency response turns out to be
fairly well localized in the frequency domain, which is a desirable factor when
we want to apply the matching pursuit algorithm.

Figure (3.7) shows the result of an approximation of degree 28. The dashed
line represents the empirical frequency response, and the solid line is the the one
obtained by the degree 28 approximation. Note that the governing model for
the problem is actually a PDE and thus it is not a finite dimensional system.
The analyzing wavelet is again the one given in Eq.(6.8.1).

It is also interesting to get a high order approximation and observe that
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Figure 3.5: Approximation to the cochlear filter with model order 16.

only a few of the wavelet coefficients are of significant magnitude. Figure (3.8)

reflects this fact.

3.8 The Experiment

In addition to previous applications we arranged an experimental setup consist-
ing of a flexible cantilever Aluminum beam, piezo material, spectrum analyzer,
and a power amplifier together with two power supplies. The objective here,

as in its simulated version, is to find a finite dimensional model that approx-
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Figure 3.6: Normalized time domain approximation error versus time for differ-

ent algorithms (cochlear filter) (Laguerre+Least square from [14]).

imates the transfer function from input voltage to the power amplifier to the
output voltage measured by the piezo ceramics. A schematic diagram of the
experimental setup is shown in fig.(3.9) .

The spectrum analyzer (HP 3566A) [6] applies a swept sine wave to the input
of the power amplifier and senses the voltage generated by the sensor. The gain
of the power amplifier is about 43 and it has a fairly large bandwidth [3]. The
frequency response obtained in this way is actually the one from the input of the

amplifier to the sensor voltage. The output voltage of the spectrum analyzer is
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Figure 3.7: Approximation of order 28 to the beam transfer function

adjustable and has been set to get an output voltage of about 120 volts pk — pk
at the output of the amplifier. At frequencies below 80H z the output is distorted
and it is so small that the 60H z noise of the line is more significant, so we start
from 80H z. The Bode plot obtained from the experiment is shown in fig.(3.11).
The peaks in the magnitude plot represent the resonance frequencies.

Having the empirical data at hand, the next step is to feed it to the program
and get the approximation. Here there are a few parameters that we should
choose before running the program. First, we must choose the translation step-

size bp. There is a limit on how large we can choose this parameter and it is
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Figure 3.8:

determined by a limit beyond which the set of wavelets cease to be a frame (see

As the analyzing wavelet again we chose the

).

[15] for a definition of frames

second order system,

3.1). The upper limit for by to preserve the

(

frame property is in this case is about 17 [15]. In Table (3.2) we have listed

with the parameters as in Table

the selected elements of the dictionary for an approximation of order 46. Note
that each wavelet with nonzero translation adds up four to the order (because
we have to include the negative translation too) and those with zero translation
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Table 3.1: Parameters of the analyzing wavelet and translation-dilation step

sizes
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just add two. The approximation has the following form:
f(s) = Ym0 Zm(CmnagL/zg(ag‘/?s —inbo) + ma?/zg(a?/zs + inbg))—f(—(_g 8.1)
T Cmoag’ “g(ag"s). o
The frequency response of the approxim,ation corresponding to Table(3.2),
along with the empirical frequency response is plotted in Fig.(3.12). Fig.(3.14)

shows the magnitude of the wavelet coefficients for a high order approximation.

3.9 Conclusion

The matching pursuit method is a simple yet efficient algorithm to compactly
represent a waveform/signal. Here, with a little modification, we applied this
method to the problem of obtaining an approximation to a given frequency re-
sponse. Through comparison, it has been shown that this method out performs
the classical Laguerre method for system identification and gives a lower nor-

malized error for the same degree of the approximation. There is a natural
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Dilation | Translation Comn

level level

1 59 —0.69032973051 — 3.848483562472
0 52 3.12591791153 + 2.195229291922

0 9 0.40908780694 + 3.03336858749:

0 29 2.59771537781 + 0.25139620900:2

-1 15 —3.00720357895 — 7.58607721329:
-1 7 2.81444954872 — 0.27529984713¢

-1 20 1.73732197285 — 2.21613240242:

-2 13 4.71194553375 + 23.73843002319¢
-3 5 1.660286(36496 —9.23096656799:

-4 3 —3.34253716469 — 0.558115839961
-4 2 0.47969451547 — 6.922820091252

-5 2 5.80866384506 + 0.5589126944 52

-6 1 —2.26374673843 — 2.98484420776¢

Table 3.2: Selected elements of the dictionary and their coefficients
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Figure 3.10: Piezo-electric transducer drive circuit

question here that one may ask about this method. i.e. since the approximation
actually converges to the projection of the signal into the space spanned by the
waveforms in the dictionary, why don’t we simply compute the projection using
pseudo inverse and in this way get the answer in one shot? There are two rea-
sons that we do not want to do this; Firstly,computation of the pseudo inverse
is very expensive and requires lots of operations specially when we are dealing
with extremely redundant dictionary. The second reason, which is really more
important, is that our objective is to pick those waveforms in the dictionary
that are more important in the sense that they can represent the structure of
the signal best. In this way we have taken advantage of the redundancy of the
set of waveforms and at the same time if we want to only choose, say n number
of waveforms to represent the signal we know when to stop where as in the case

of pseudo inverse there is no clear way to do this.
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Chapter 4

Design of Controller for the

Constrained System

Like most of the systems in the real world, there is a limit on the amplitude
of the input that can be safely applied to the actuators. In the case of flexible
beam, these limits are imposed partly by the saturation limit on power amplifiers
driving the piezoceramics and partly by the break down voltage of the piezo ma-
terial itself. One approach to controller design would be to define a cost function
and solve a constrained optimization problem to compute the optimum input.
Although this gives the “optimal” solution, it has the disadvantage that both
computation and storage of the optimum input is expensive. As an alternative
procedure we consider the method proposed by Gutman and Hagander [13] and
formulate the vibration suppression problem into a form suitable for application
of this control strategy. The results of this method are then compared with the
LQR method.
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4.1 Application of the LQR method

As mentioned before, we assume that there is a constraint on the magnitude of
the maximum and minimum voltages that can be applied to the input of the
power amplifiers driving the piezoceramic actuators. As a basis for comparison
first we use the LQR method for obtaining the suitable stabilizing feedback gain
L. The penalty on inputs has been increased until the magnitude of inputs
satisfy the constraints at all times. The results of the simulation are shown on

figure 4.1. Here, we used the linearized Galerkin model obtained in chapter 2.
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2
g -100F =
0 0.5 1

Time [sec}

Figure 4.1: Controlled vibration of the beam (Linear Quadratic Regulator)

Shown in figure 4.2 and figure 4.3 are the results of the simulation for the
cases that a disturbance torque in the form of a sinusoid at the frequency of the

largest and the smallest modes is applied at the first joint, respectively.
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Figure 4.2: Controlled vibration of the beam under the disturbance torque (Lin-

ear Quadratic Regulator)

Now let us put a saturation block at the input terminal of the system and
observe the effects of saturation with the LQR as the controller as we increase
the amount of the initial deflection of the free end of the beam. Simulation

results are shown in figure 4.4.

4.2 The Gutman-Hagander Method

In this section, we use a control strategy devised by Gutman and Hagander [13]
for controlling systems subject to input constraints. Although this method is
not optimal, it guarantees the asymptotic stability. Hereafter, in this chapter

we will use the same notations and symbols as in [13] and the reader is referred
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Figure 4.3: Controlled vibration of the beam under the disturbance torque (Lin-

ear Quadratic Regulator)

to that paper for a detailed description of tHe method and definition of various
symbols that we are going to use. The general idea is to first stabilize the
system by a low-gain linear state feedback. Then, quadratic Lyapunov function
is found, on the basis of which another linear state feedback is'computed. The
two controls are added and passed through the saturation element Figure (4.5)

shows the block diagram of such a controller.

The algorithm consists of five steps:

e Step 1: Determine the set of initial conditions, D. This is the set from
which we want the controller steer the state of the system to zero. One

obtains an estimate for this set by a knowledge of the physics of the system.
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Figure 4.4: The effect of saturation on the LQR controller

o Step 2: Find the low-gain stabilizing feedback gain by solving an LQR
problem. Increase the control penalty until the inputs satisfy the con-

straint for z starting in D.

e Step 8: Find the positive definite matrix P by solving the following Lya-

punov equation,

PA.+ATP = —(Q, (4.2.1)

where, () is a positive definite matrix that can be considered as a control
parameter and A, = A + BLT. Since A, is stable this equation has a

unique positive definite solution.

o Step 4: Let E be the set of state variables such that the control v = LTz
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Figure 4.5: Block diagram of a Gutman-Hagander type controller.

satisfies the constraint. Check to see if the following inequality holds,

supz? Pz < minz? Pz. (4.2.2)
reD z€SE

If not either go back to step 3 and choose another matrix (), or change the

feedback gain L, or choose a more restrictive set of initial conditions D.

e Step 5: Set up the control v and tune the parameter K, which is a diagonal

positive definite matrix,
u = sat[(LT — KBTP)z). (4.2.3)

In the following subsections, we formulate the problem of vibration damping

such that fits the Gutman-Hagander (G-H) algorithm.

Identifying the Initial Condition Set D

Assume that the objective is to damp the vibration of the beam resulting from
deflecting the tip of the beam and then releasing it. Simulation results of free

oscillation can be used to obtain the region from which we want to steer the
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state to zero. i.e. by looking at the maximum and minimum values that each
state variable takes during free oscillation, we can get an estimate of the range
of values on which state variables take values. This, of course, gives a conserva-
tive and rather large estimate for the set D because the extremum of all state
variables do not occur at the same instant of time. Thus, we get inequalities

like the following,

m; < z; < M; 1=1, ---, N. (4.2.4)
Constraints on Inputs

As mentioned before, there is a limit on the voltage that can be applied to
the piezo material as an actuator. This limit is due to two factors: first, the
breakdown voltage of the piezoceramic and second, the limit imposed by the sat-
uration voltage of the power amplifier. So, there are constraints of the following

form on inputs,

Vmin < ‘/1 < Vmaz 121, Tty N, (425)

where, V; is the input voltage to the power amplifier.

The Stabilizing Feedback Gain ’L’

As mentioned in Step 2, the objective is to find the feedback gain matrix
L={[ly| L] --- |l] such that the input V = LTz stabilizes the system (asymp-
totically) while the inputs V; satisfy inequalities (4.2.5) for all = € D (this
guarantees that D C E (see [13])). Given the feedback gain L the maximum

of [Tz is achieved when z is computed from the following rule,
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j=1,--, 2N (4.2.6)

m; Zﬁ Z 0
Zj min =
M]‘ lji < 0
j=1, .-, 2N. (4.2.7)

One way to choose the feedback gain L 1is to use the LQR method and
increase the penalty on ipput until inequalities (4.2.5) are satisfied with V;
replaced by [Fz,for all z € D. To check if the given feedback gain is acceptable,

the above rules for «; pin and «j mez may be used.

Feasibility Check

In this step we check to see if the following inequality holds for a given choice

of P, L,and D [13]:

supzl Pz < mina’ Pz. (4.2.8)
zeD z€SE

At the left hand side of the above inequality, the supremum can be achieved
only at the vertices of the polytope (a convex hull of finitely many points) D .
The reason for this is that P can be diagonalized with an orthogonal transfor-
mation 7. Then in the new coordinate system, the left hand side of (4.2.8)
can be rewritten as, sup,er(p) i #fA: (A > 0). The result follows by noting

that first, the transformation induced by T is actually a rotation and vertices
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are transformed to vertices and second, the maximum of the above expression

occurs at a vertex of the transformed poly tope. Therefore, sup ., z? Pz can

be computed after 22V checks (i.e. evaluating z?7Pz on the vertices of the

region D) and taking the maximum value).

Also, the left hand side of the inequality (4.2.8) is equal to [13],

2 2
Vmin VMax

F Py 7P )

min 27 Pz = mjn[min{
K3

min (4.2.9)

Again, if the inequality (4.2.8) is not satisfied we have two options: first,
change ) to get another P and second, increase the input penalty to obtain
another feedback gain [ and proceed as before.

Gutman and Hagander showed that [13] the input,

V = sat[(LT - kBT P)z], (4.2.10)

stabilizes the system for all positive definite diagonal matrices k. In order to
choose the tuning matrix &k we plot the eigenvalues of the closed loop system
(without the saturation) as k changes (here we choose k = cI and we vary
¢ to obtain the root locus). The tuning parameter k has been chosen so that
the dominant eigenvalue (the one that is the closest to the imaginary axis) be
as far as possible from the imaginary axis. Figure 4.6 shows a portion of the

root locus.

The results of simulation for this particular choice of tuning parameters are .

shown in figure 4.7.

In order to compare the performance of the LQR method and the Gutman-

Hagander method, a disturbance in the form of a sinusoid is applied at the first
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Figure 4.6: Location of the eigenvalues of the closed loop system as the tuning

parameter k varies

joint. In figure 4.8 the frequency of this sinusoid is chosen to be the lowest
natural mode of the beam. Figure 4.9 shows the results when the frequency of

the disturbance is the highest natural mode of the beam.

Up to this point we studied the behavior of the linearized system. To observe
the effect of non-linearities(which come into the picture when we use the non-
linear equations of motion, (2.1.16), instead of the linearized ones). In order to
perform the simulation, the non-linear equations of motion has been transformed

in the following form :

Qa = fla,&,M), (4.2.11)

where () 1s a symmetric matrix

56



o
— Q
F 5
=) g
= iy
.8 )
3 >
5 2
2 ®

<

-1.5
0 0.5
Time [sec] Time [sec]
Saturated Input
— 200+ -
S
2
go k=0.0881
3
>
3
2
= 200 ]
0 0.5

Time [seg]

Figure 4.7: Controlled vibration of the beam (Gutman-Hagander method)

Two simulations has been performed. In the first simulation we want to show
the effect of non-linearities in the free oscillation of a four link model. One may

compare figure 2.5 and figure 4.10 .

In the second simulation the Gutman-Hagander control is applied to the
linear and nonlinear systems. Although in this simulation we consider large de-
flections of the beam (which is unrealistic), again comparison of figure 4.11 and
4.12 shows that the responses are very similar and the controller work well even

for the nonlinear system.
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Chapter 5

Observer Based Gutman-Hagander

Type Controller

In this Chapter we prove that under certain conditions, a Gutman-Hagander
type controller with a classical state observer can be used for LTI systems with

constraints on the magnitude of input to make them stable.

5.1 Introduction

The problem of stabilizing LTI (linear time invariant) systems with constraints
on the magnitude of the input has been considered by Gutman-Hagander [13].
The method requires the knowledge of all the state variables. In many practi-
cal situations it is not possible or it is too expensive to measure all the state
variables. So, one may try to use the estimated values of the state variables
and then exploit the Gutman-Hagander (G-H) type controller. We prove that
it is possible provided that some conditions are satisfied. In Section 5.2 we’
obtain a proper Lyapunov function to prove the stability of the method. In
Section 5.3 we propose an algorithm (which is very similar to the one proposed

by Gutman and Hagander) to choose the control parameters. Next, in order to
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test the performance of the control strategy we apply this control law to the

problem of damping the vibration of a cantilever beam.

5.2 Control Strategy

Consider a controllable and observable linear time invariant plant represented

as:

z = Az + Bu,
(5.2.1)

y = Cz.

The control strategy due to Gutman and Hagander proposed the following

control law as stabilizing input:
w = sat[(L¥ — K BT P)z], (5.2.2)

where K is a positive definite diagonal matrix. In what follows we prove that the
above control law still makes the system stable, even if one uses the estimated
state variable, Z , computed by an state observer instead of the actual sate, z.

1.e.
v = sat[(LY — K BT P)z]. (5.2.3)

Let e be the estimation error (i,e. e = z—1Z). It is well known that the

dynamics of the error is described as:
¢ = (A— HC)e, (5.2.4)

where, H is the observer gain.
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Let P, G be the positive definite solutions to the algebraic Lyapunov

equations :

PA,+ATP = —Q, (5.2.5)
GAnp+ALG = —M. (5.2.6)

Where Ay, = A—DC, A, = A+LTB,and M and Q are symmetric
positive definite matrices M (these positive definite solutions exist because
A, and Ay are stable). Suppose R is a positive definite diagonal matrix and

apply the following input to the plant 5.2.1:
uw= (LT — RBTP)z (5.2.7)

The claim is that V(z,t) defined below is a Lyapunov function for the

closed loop system (including the observer).

V = 2Pz + aefGe (5.2.8)

for some positive constant « which is to be chosen to make the derivative of

V' negative. One can show [13] that ,
sat[(LY — KBTP)z] = (LT — RBTP)z, (5.2.9)

for 0 < R < K, provided that the condition D C E holds (see section 4.2
for definitions of D and FE). Taking the derivative with respect to time of

eq. 5.2.8 and substituting for u(t) from eq. 5.2.7 we get:
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vV = (Az + Bu)TPz + :cTP(A:E + Bu) + aeT AL Ge + aeTGA e

= zT(PA.+ ATP)z — 2TPRBT Pz — 2T PBL%e
+2TPBRBTPe — T LB Pz — zTPBRPz

(5.2.10)
+el PBRBT Pz + aeT AL Ge + aeTGAge

= —zTQz — 22T(BTP)TR(BTP)z
—2¢T(LBTP — PBRBT P)z — aeT Me.

To simplify the above equation define S and U as,
S = Q4 2(BTP)TR(BTP), S > 0,

(5.2.11)
U = 2LBTP—-2PBRBTP.

Rewrite 5.2.10 in termsof S and U to get:

V = —27Sz — eTUz — aeT Me. (5.2.12)

The idea is to choose o large enough such that V becomes negative. Since

matrices M and S are symmetric and positive definite these inequalities hold:

Mitllell? < ef Me < A3E=|elf?, (5.2.13)
)\g‘m[[eﬂz < eTSe< A7 [e]|?, (5.2.14) _
e"Uz < |e7Uz| < |[Uf]l][lle]l. (5.2.15)

Thus,
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Vo< =gzl = A el + U el

= =20zl = (2 el + 1UNllellizll + (L) llell — aAginel?,

2ag
where, 2a% = A7,

Subsequently,

Vo< —adfls]l® - (aslel] — Elell)? — (o = L) el

2

(5.2.16)
< —adfle|? - (o — ) el

To make sure that V -Temains negative choose « such that,

(5.2.17)

Then we have,

V < —ag=)* (5.2.18)

5.3 Stability Under Variable Matrix R

In the previous section we proved the stability of the plant when the control
5.2.7 is used. To relate this control to the control with saturation given by

Equation (5.2.3) (see the inequality (5.2.9)), we need the following proposition.
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Proposition: The input 5.2.7 with the condition 0 < R < K makes the

plant 5.2.1 asymptotically stable.

Proof:

Now, both A7 and ||U|| in 5.2.17 are variables. So, we try to obtain an

upper bound for ||U]| and a lower bound for AZ™. From 5.2.11 we can write:

WUI = ||2LBTP —2PBRBTP||
< |l2LBTP|| + 2| PB|P||R|

< |[2LBTP|| + 2| PB|*||I K,

the last inequality follows from the assumption that R < K.

The next step would be to find an upper bound for A7

/\g“.n = inf“:c“:l :L'TS:L'

= inf”x||=1(acTQx + 2T Nz).
where N = 2(BTP)TR(BTP). We also have:

/\gin < :vTQx

< 2TQz + zTNz.

(5.3.1)

(5.3.2)

(5.3.3)

The above inequality shows that /\’C’jm is a lower bound for the set defined

by {wTQm + TNz | ||z|| = 1} we get:

A?‘l’n > /\gm .

68

(5.3.4)



Therefore, the ineqﬁality 5.2.17 is satisfied if the following holds:

. 2ILBTP|| + 2 PBI|K|
- )\anm .

(5.3.5)

This implies the negativity of V and asymptotic stability of the plant repre-

sented by 5.2.1 with the control given by Equation 5.2.3.

5.4 Controller Design Procedure

The controller design algorithm is essentially the same as the one proposed by
Gutman-Hagander. The only difference is that, now we have to redefine the sets

D, E ,etc. introduced in [13]. Lets define the augmented state variable, z ,and

the matrix P as,

i = : (5.4.1)

P = : (5.4.2)
0 oG

Now, V can be written in terms of the new state variable:

v = z'Pz. (5.4.3)

To obtain the various control parameters we follow these steps:

Step 1: Find the set of initial conditions, D , as restrictive as possible.
This set must be large enough to include all the possible initial values of the

augmented state variable Z that may occur in practice.
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Step 2: Choose the stabilizing feedback gain L in a way that:
g < I'% < h Vie D, (5.4.4)

where, L = [ —1I]TL and L is a stabilizing feedback gain for the plant
5.2.1 and h, g € R™ are the upper bound and the lower bound on the input
respectively.

Step 3: Choose the diagonal matrix K with positive elements and solve the
Lyapunov equation 5.2.5 for some positive definite matrix . Then choose a

positive constant o« according to the inequality 5.3.5.

Step 4: Choose some positive definite matrix M and solve the Lyapunov
equation 5.2.6 to get the matrix (. Construct the matrix P according to
5.4.2 and change the confrol parameters until the following inequality holds:

supzT PZ < min %’ P%. (5.4.5)
zeD z€8E

Step 5: Compute the estimated state, Z, using a state observer and apply

the stabilizing input 5.2.7 to the plant.

5.5 Simulation

To justify the second step, note that by the separation theorem, if v = LTz
stabilizes the plant 5.2.1, the input u = LTZ stabilizes the whole system in-
cluding the observer (provided that A is stable too). Thus, the procedure for
computing an acceptable LT is to find stabilizing L , say by LQ method, and |

then define L as above. Note that we can write:

Tz = L7z, (5.5.1)
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this means that:

8)
m

E o ick, ' (5.5.2)

with the obvious definitions for £ and E.
The implication 5.5.2 is important because in the proof of the stability we
rely on the fact that Z remains in the set E and by 5.5.2 we know that this

is guaranteed provided that the following holds:

DcQCceE. (5.5.3)

Again, we can increase the input penalty so that L satisfy 5.4.4. To see how
efficient the proposed control strategy is, we apply the method to the problem
of damping the vibration of a cantilever beam. We assume that the deflection
angles are directly measurable and we design an observer to construct the other

state variables (time derivative of the deflection angles).

5.5.1 Observability

Consider the state variable,  defined as the vector of alternating deflection

angles and their respective corresponding time derivative:

71



(84]
ay
Q;

r = : (5.5.4)

Oin

It can be shown that the A and C matrices describing the cantilever beam

are of the form:

, (5.5.5)

C=1001000]|. (5.5.6)

0]

<D
(=]
[a]
[ow]
[y

here, for the sake of simplicity, we showed A and C for n = 3 ( * stands for
nonzero elements).

Therefore, the observability matrix has the following form:
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-

which is full rank and consequently the pair (C, A) is observable.

5.5.2 Simulation Results

-

[om NN an B o

o

o O

(5.5.7)

The observer settling time is chosen to be much faster than that of the closed loop

system. Note that the faster you make the observer the larger the estimation

error would be and the latter cause a larger initial condition set D. Thus in

a sense there is a trade off between the size of the set D and the speed of the

observer. Figure 5.1 shows the estimation error of the observer for a particular

choice of the parameters:

Now, we can set up the controller-observer according to the scheme shown

in figure 5.2.

Although the analysis has been performed for the linear systems, simulation

results show that the response of the linear and nonlinear systems are very

similar.
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Figure 5.1: Estimation error in deflection and velocity

Shown in figure 5.3 is the response of the nonlinear model for the cantelevered

beam when the scheme shown in figure 5.2 has been used to damp the vibrations.
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Figure 5.2: G-H type controller with observer
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Chapter 6

Numerical Solution to the PDE for the
Cantilever Beam With Control and
Derivation of the Closed Form

Transfer Function

The purpose of this chapter is to first develop a simulation tool to study the
behavior of the PDE describing the transversal deflection of an Euler-Bernoulli
beam and then to exploit it to derive an empirical transfer function matrix of a
set up that is used to damp out the vibrations of the beam. To solve the PDE
(numerically) an implicit finite difference method is used. The approximation
is done using a scheme based on least squares proposed in [15], that employs
rational wavelets. A closed form expression for the transfer function of the
system is obtained at the end and comparison has been made with the empirical

transfer function estimated by the spectral analysis.
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6.1 Introduction

The transversal deflection of a beam can be described by a partial differential
equation and proper boundary conditions which reflect the type of constraints
at its ends.

In the process of designing a controller, to damp out the vibrations of the
beam, one may fit a finite dimensional model to the beam or use some distributed
parameter controller. In either case, to test the efficiency of the controller we
need to apply the control method to a model of the beam, which takes into
account the infinite dimensional nature of the system. Here, we developed a
simulation program to solve the PDE pertaining to Euler-Bernoulli beam. At
first, we had considered the free oscillation of the beam, and then to verify the
results, the total energy of the beam as a function of time was computed (since
no damping mechanism exists this should be a constant). Next, we include the
effect of internal and viscous damping in the model to make it more realistic.
With the simulation tool in hand we apply a swept sine wave as the input to the
actuating piezo material and observe the voltage across the piezoceramics that
are used as sensors. The input and output waveforms then enable us to get an
empirical frequency responce. In the next step we fit a finite dimensional model

to the frequency response.

6.2 Finite Difference Approximation

The following PDE describes the transversal vibrations of a thin beam [1],

0%y dy  0? 0%y &y
Parz T8 T 52 Bl (t :c)—i-CDIa 2570 z) +epV(t,z)) =0, (6.2.1)
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where, y = y(z, t) is the displacement from the equilibrium position at distance
z along the beam from one end, 7 is the coefficient of viscous damping, p is the
linear mass density, and cpl is a coeflicient reflecting the internal damping.

Define two new variables, v and w as below

v = Y
. (6.2.2)
w = \/'E%y:ca:'_ f,%jv+%yzzt
Now, PDE (6.2.1) can be written in the following form
v; = —1v— awg, ,
? (6.2.3)
wy = QUgy — "%\/%LTV; + _cpa”mlvzzt

-

where a = y/EI/p and subscripts z and ¢ are stand for partial derivatives with

respect to z and t.

One possible finite difference representation of the above PDE is

U7}+1_Up _ (62w)7}+1+(62w)7} -
At - 2(A.‘I:)2 - ;U] (6 2 4)
wnz'+1““’nz cply (521’)'}4‘1‘*‘(52“)"‘ ¢ acpl (52U)nz+1_(52“)n2' o
= (a - ) z "t~ = Vi + Z
Y; VoBI 2(A7) NI Bl (AoP(AD)

where, superscripts and subscripts represent time and position indices, respec-
tively and (—%‘)’—2— is the finite difference approximation of the second derivative of

w with respect to z. That is,
(w)? = wliy — 2w} +w! . (6.2.5)

Of course, instead of (6.2.4), one could use some other scheme of finite dif-
ference approximation, but the advantage of using (6.2.4) is that it makes the

difference equation unconditionally stable (i.e. stability does not depend on the
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choice of step sizes Az, and At). Nevertheless, system (6.2.4) entails other com-

plications due to its implicit nature, and the extra effort required to solve the

system (6.2.4).

We may cast (6.2.4) into the form

—AU]+1+B'U,J —Au]‘__l = dj, ] = 1, 2,
in which,
— alt
124 - (Aa’:)z’
_ cpl alt cpla cpAt
g = 2(a- \/%E’—YT)Z(AxP + JElae? — VGBI
v}‘“
u; =
4 = |07
£ 9
1 —~«a
B = ,
g 1
PR e (O b R B s
. =
| W} + S(vfy — 207 +0ly) — 2RV
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6.3 Preliminaries

In the algorithm that we are going to use, it is required that the boundary
conditions to be specified in a form shown below (in the next section we show

how to write down these equation for the cantilever beam)
wj, = Huj41+1, (6.3.1)
UJ—jy~1 = ]\{[u,]_.j2 + n, (632)

with known matrices M, H and vectors n and /.

Now, consider the difference equation,

uj = Ejuga + fj, j=20,1 - (6.3.3)

Equations (6.2.6) and (6.3.2) specify a two-parameter family of solutions of
(6.2.6). Equation (6.3.3) also has a two-parameter family of solutions and these

two families are identical if we choose E and f as,

E;, = H,
. = I
& (6.3.4)
E; = (B - AEj_1)~1A,
fi = (B—AE;)™"(d; + Afj=) j > 1
Rewrite (6.3.3) for the index J — ja — 1 to get
Uj_jo1 = Ejj1ugjy + fiojp-1- (6.3.5)

Eliminating wj_;, -1 between (6.3.5) and (6.3.2) give us uy_j, in terms of .

other variables:

us—jy = (Esojym1 — M)7'(n — fi-jp-1)- (6.3.6)
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Now that we have defined the various variables involved, we can state the

algorithm.

6.4 Algorithm

Assume that the state of the system, u?, j=0,1, ---, J, for somen is known.
The algorithm described below shows how to obtain u;-‘“, J=0,1 -, J

at the next time step.

o Step 1: Solve the difference equations (6.3.4) for j = ji, ;1 +1, -+ ,J—1
with the initial values specified. (For the problem that we want to study,

it can be shown that E; and f; both remain bounded)

Py

e Step 2: Using the matrix Fj_;,—1 and the vector fj_;,_1 compute u;_;,

from equation (6.3.6).

o Step 3: Compute u;, 1=J—jy—1, ---, j1+1, j1 by solving (6.3.3)

backward in j.

o Step 4: It remains to obtain a few of the state variables, u;, at each end.

ie. ug, -+ ,uj-1 at one end and uy, ---, us_j,41 at the other end. These

can be obtained from (6.2.6)

6.5 Boundary Conditions for the Cantilever

Beam

In order to use the above algorithm we need to specify the boundary conditions

for the cantilever beam in the form of equations (6.3.2) and (6.3.2). So, the
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parameters ji, jo, M, H, n, and [ are need to be computed. The boundary

conditions are:

y(¢,0) = y,(¢,0) = 0 Yt>0 (clamped end) (65.1)
M@, L) = M(t,L) = 0 Vt>0 (free end) -
where, M is the total moment (internal and external) defines by:
ok %y Py
M(CE,t) - ﬁ(Elé‘zK—z(t, 122) + Cplm(t, :E) + CPV(t, SE)) (652)

The boundary condition at the clamped end implies that v¢ = v; = 0.
~ Equation (6.2.6) together with the boundary conditions at the clamped end have
a solution which is linearly dependent on two parameters. Choose A = [wg w;]?

as the vector of parameters. Then one can write

u; = U;A+gj, 7J=0,1, -, J, (6.5.3)
where, U; is defined by,
Ouj;
i = . 54
U = 55 (6:5.9)
The procedure is to compute U; for ¢ = 0, 1, --- , ji such that Uj, is the

fist invertible matrix in that sequence of matrices. Then we have

A= U'_l(uﬁ _gj1)7 (655)

n

which in turn results,

w1 = Up U (u = g5:) + i (6.5.6)
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which is in the form of (6.3.2) with H and [ as below,

H = Ujl_lU-l

n

! = - jlflszlgjl + g -1-

(6.5.7)

For the problem considered here U, is the first nonsingular one and it can

be readily verified that the previous ones are,

01
Uy = ,

10

00
Ul = 3

01

0 2
U2 - o

-1 2

Now, we need to compute g; and g:

g2 = uy— A
= A”lBul — Ug — A—1d1 - UgA
= -‘*A_ldl.

Also, for g; we have,

g = uy — Ui A

i

Thus,

jl = 2, H = U1U2_1, l - U1U2—1A‘1d1.
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Now, consider the boundary conditions at the free end of the beam. Again,
from (6.5.1) we get wy = wy_1 = 0 and this time we choose A = [v; vy-1)T as

the parameters. Similarly, define U; by,

Buﬁ

80J-k+1

(Ui = (6.5.14)

Going backward in position from the free end toward the clamped end, U;_,

is the first nonsingular matrix and we have,

10
Uy = , (6.5.15)
0 OJ
01
Uj, = , (6.5.16)
00
-1 2
Uj_yg = . (6.5.17)
0 =2

Thus, j, = 2. Following the same steps as for the clamped end but this time

for the free end, one gets,

A = Uil (uj_e — gi—2), (6.5.18)

and,
ug_z = Us_sUsly(uj—g — gi-2) + gros. (6.5.19)
Again, it can be shown that g;_o = —A"'d;_;. To obtain gs_s first we
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need to compute Uy_3. So, write

-1 -
uj-3 = AT Buj_s —uj_1 — A7ldj_,,

= A_lB(A_lBuJ-l — Uy — A-ldj_l) —UJ.1 — A_ldj..g,

3_4 8 (6.5.20)
= 0 F Ny —A'Buy— A"'BA~'d,_,—
-8 3_ 4
o af
A_ldj_g.
from which we can easily obtain Ujy_3:
23—
Ujs = « (6.5.21)
2 _8

Substitute for uy_s and Uj_5 into the relation for g;_3 and simplify to get

e e Us-ad, (6.5.22)
= —A—lBA_ldJ~1 - A_ldj_.g.

To compute M and n, plug in the expressions that we obtained for gs_s,
97-2, Us—3, and U;_; into (6.5.19)
M = UJ—3UJT—125
n = UsaUsl, A7 gy — A7y~ (6.5.23)
A*IBA_ld_]_l — A_ldJ_Q.

So, we have computed all the terms that are required by the algorithm.

6.6 Simulation

To implement the algorithm mentioned above, first we must specify the initial
shape and velocity of the beam. We assumed a uniform load on the beam of
length 1m and the load is such that it results in a deflection of 8cm at the tip.

The deflection, y, at t = 0 and at distance z from the clamped end is [5]

3
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)
y = g—ﬁ-(Gszz ~ 4Lz +z*). (6.6.1)

where, § is the maximum deflection (which occurs at the tip) and L is the length

of the beam.

First, we set both. the internal and damping coefficients to zero. This gives
us a way to verify the correctness of the algorithm. Because in the absence of
damping, the total energy must remain constant with time. Figure (6.1) shows

the velocity and deflection of various fixed point on the beam versus time.

Deflection of fixed points on the beam vs time
T ; z T

E 0.01 Fos Mo berreremrendeio s LB m 2 SN
g A
&
0 =001 b EREEETATG s SRG S T L s .......
0.02 i i i i i i i i i
0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Time [sec]
0.4 . Velolcity of fi.?(ed poinlts on thelbeam vs time

Vel. [m/sec]

Time [sec]

Figure 6.1: Velocity and deflection as a function of time (no damping)

The velocity and deflection at the free end of the beam are shown in figure

(6.2)
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0.4 , :  Velocity of the tip vs time

o
[
T

Vel. [m/sec]
&
to o

-0.4 N : N M n M
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time [sec]
0.03 ! :r : Dcﬂe!ction of !the tip vs! time : '
002 :
£
‘5 0.01
E ok . A : . . | .
0.02 : ; : H : : : : :
0 0.1 0.2 0.3 0.4 0. 0.6 0.7 0.8 0.9 1
Time [sec]

-

Figure 6.2: Velocity and deflection of the free end as a function of time

Also, we can show the shape of the beam as it oscillates. Each curve in figure

(6.3) represents the shape of the beam at a fixed instant of time.

The energy of the system at time ¢ is obtained from the following relation:

E(t) = /()L(p(%%)erEl(%)z) dz. (6.6.2)

Using the first order approximation of the integral the above equation can

be easily written in terms of the variables v and w introduced at the beginning

of the chapter,

E* =3 (p((v})) + (w})?)- (6.6.3)
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Shape of the beam at different instants of time
0.02 ; - v r T T

0.015

-0.015

002 i 1 1 1 t 1 1 1 L
0 0.1 02 0.3 0.4 0.5 0.6 0.7 038 0.9 1

[m]

Figure 6.3: Free oscillation of the beam

Since the deviation of the energy from its average value is very small, in

figure (6.4) we show the percentage of deviation of it versus time.

As it can be seen, the error is relatively small and perhaps the major part
of the error is due to the first order approximation that we used for integration
of (6.6.2). Introducing internal and viscous damping give us the following set of

graphs.

6.7 Estimating the Empirical Transfer Func-
tion

We are interested in finding the transfer function from the output which is the

voltage across piezoceramics attached to the beam and operate as sensors, to
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Percentage of the variation of the total energy vs time
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Figure 6.4: The energy stored in the beam remains constant.

-~

the input voltage that is applied to the actuating piezoceramics. The model

that we use is shown in Fig. (6.7).

Since the PDE (6.2.1) is linear, we may use the ratio of Fourier transform of

the output to that of the input and this give an estimate of the transfer function

[9]. That is,

Ge™) = (6.7.1)

and Yuy(w) is defined by,

N
Yn(w) = %gy(t)e—i‘”t. (6.7.2)

It can be shown that [9] the following relationship holds between the empir--

ical transfer function, G(e7*), and the true transfer function G(e’*):

Ry (w)

G(e?¥) = G(e?) + (o)’

(6.7.3)



Velocity of the tip vs time
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Figure 6.5: Velocity and deflection as a function of time (with passive damping)

where Ry(w) decays as 1/+/N.

In the case of periodic input the above procedure gives a good estimation of
the transfer function around the frequencies that exist in the periodic input. But,
if the input is not periodic we must assume that the values of the true transfer
function are related at different frequencies. As an alternative procedure, we
may obtain the spectral estimate é’(ejw) from the expression,

6e) =

)
2

(6.7.4)

H)
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Total energy vs time
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Figure 6.6: The energy stored in the beam decreases with time as a result of

passive damping

Where,;ﬁuN(w) is the power spectrum of the input and is obtained from,

o0

Figure 6.7: The inputs and outputs to the system
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RY() = & S ulut =),
t=1
and w,(7) is a lag window with shape parameter v and is chosen such that
vanishes for |r| > 6, where 6, << N. This allows us to approximate 6.7.5
with [9].
5

(W) = D0 wy(r)RY (r)e™.

T=—6,

The expression for &)fxl(w) is similar. There are different choices for the lag

window wy(7) among which we use the Hamming lag window function defined

as [9].

w,(r) = %(1 + cos E’YI) IT] <7, (6.7.5)

here, the scaling parameter + is chosen to be equal to é, in 6.7.5. The effect of
choosing a relatively large 4, is that it results in a large bias in the estimated
transfer function, whereas decreasing &, results a larger variance in G(e’).

To get a “good” estimate of the transfer function the test input should be
as “informative” as possible. A good choice may be a white noise because its
spectrum ideally contains all frequencies. However, the input voltage to the
piezoceramics , V(z,t), must be differentiable (with respect to time) as it can

be seen from 6.2.1. In fact, piezoceramics behave like small capacitors and a

discontinuity of the voltage across them theoretically requires an infinite current. - °

A sweeping sinusoid (frequency modulation of a triangular waveform) seems to
be a reasonable input because it is smooth enough and more importantly covers

a wide range of frequencies.
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To demonstrate the effectiveness of the method and also to verify the men-
tioned procedure, we used the above method to obtain the frequency responce
of a known system. Note that here we are obtaining the frequency responce just
by one experiment and we do not have to wait until the settling time of the
system. The following system has been used as the test model,

289.

H(s) = .
(8) = 5 05: 730,

(6.7.6)

As input, we excited the system with the frequency modulated of a sinusoid

that varies between zero and wy,. i.€.
u(t) = sin (w(t)t), (6.7.7)
with,
w(t) = Wmae(1l — coswot)/2. (6.7.8)

The input-output waveforms together with the empirical frequencies are

shown in figures (6.8) and (6.9).

The same procedure now can be use to form the empirical transfer function
of the beam. Here we have two inputs and two outputs. Since the superposition
principle holds it is a meaningful thing to talk about the matrix transfer function.
In the set up shown in figure (6.7) there are two inputs and two outputs.

The outputs are designed to be the voltages that are induced in the piezoce-
ramics due to bending of the beam. Figure (6.10) shows a portion of the flexible
beam which is bended. Assume that the piezo material is attached to the up-
per (or lower) surface of the beam and the objective is to compute the change.
of length in it. The neutral axis is shown with the dotted line and its length
would not change due to bending since axial forces has not been considered.

The change in slope for the neutral axis is,
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Figure 6.8:"The inputs and outputs to the system

Al = yg(x)dz.

With ¢ the distance from neutral axis to the outer surface and from the equal

angles we have,
= NG = ypude.
c
Thus, the strain in the outer surface is
€((z) = — = cyz(2).
@) = © = amle)

The total change of length in a patch with its ends at z; and z; is obtained
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Figure 6.9: Bode plot of the true system together with the estimated ones
by integration,

AL = [7e(o)do
= [3? CYsz(0)do
= ¢(Ys(22) — yz(z1))-
The induced voltage in the piezoceramic is proportional to the total change

in length and the constant of proportionality if called ds;

Vour = ds1AL
' . (6.7.9)
= da1c(ys(2) — y=(21))-
Shown in figure (6.11) is the Bode plot obtained by the spectral analysis .

described above (Eq. 6.7.4).

Since the damping that has been introduced into the model is fairly small, we

still may expect that the eigenvalues of the system do not change considerably.
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N

dx

Figure 6.10: The strain induced in piezo material

The eigenvalues of the undamped system can be computed analytically [8] and

the first few of them are, «

w; = M E, (6.7.10)
p
where,
A = 1.875/L,
Ay = 4.695/L,
ds = T7.855/L,
Ay = 10.996/L, .

Xs = 14.137/L,
Based on the above figures and the parameters used in the first fifth simula-

tion the natural modes are,

w; = 16.68, wy = 10457, ws; = 292.83,

wy = 573.852, ws = 948.516,
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mag.

phase

-200

-400

Figure 6.11: Bode plot of the empirical transfer function from u; to y,

which closely match the frequencies at which the peaks of the modulus of the

transfer function in Fig. (6.11) occurs.

6.8 Fitting a Finite Dimensional Transfer Func-

tion to the Empirical Data

The next and the last step in the non-parametric estimation of the transfer
function is to actually obtain a finite dimensional transfer function that describes
the input-output behavior of the system with a reasonable accuracy. Inspecting
the Bode plot shown in Fig. (6.11), one note that it is well localized in the
frequency domain. Roughly speaking, this means that the transfer function is

more concentrated at certain frequencies.
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4 y Qo bo
1.0 11.60 | 2.0 | 3.33

Table 6.1: Parameters of the analyzing wavelet and translation-dilation step

sizes

The shape of the transfer function (localization property) together with the
stability of the overall system (due to internal and viscous damping) motivate us
to use the method of rational wavelets to approximate the transfer function [2].

This method has shown to be superior (e.g. in terms of the degree of the
transfer function used as approximation) to the conventional methods such as
the Laguerre model.

There are several parameters that one can change to get a good approxi-
mation with rational wavelets. One of the important factors is the analyzing
wavelet. Unfortunately, there is no systematic way to choose such a wavelet and
usually one has to find a proper analyzing wavelet through experiment.

The translation step size is another parameter that has a dramatic effect on
the approximation. In Fig. (6.12) the result of a high order approximation is
shown. For practical purposes we have only considered the frequency responce
up to 200rad/sec. Figure (6.13) shows the results for a rational transfer function

of degree 42.

The following function is used as the analyzing wavelet

1 | |
W) = rpTe (6.8.1)

The dilation and translation step sizes, v, and ¢ are as in Table (6.1).

Figure 6.14 depicts the frequency-time localization of the empirical transfer
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Figure 6.12: High order approximation (least squares)

function obtained. It can be seen from this figure that the certain coefficients

are considerably bigger (and thus more important) than the other and the usage

of wavelet systems for approximation is justified. Also the poles and zeros of

the approximated transfer function are shown in 6.15.

6.9 Closed Form of the Transfer Function

In order to compare the empirical transfer function obtained in the previous

section with the analytical one, here we derive a closed form expression for the
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Figure 6.13: Approximation with a transfer function of degree 42 (least squares)

transfer function.

This transfer function would not be a rational one because it is derived from

a partial differential equation rather than an ODE. Consider the following PDE

which corresponds to the vibration without damping,

,

pyu(z,1) + Moo(z, 1)
M(z,4) = Elys(z,t) +CV(z, 1),
y(0,) = y(0,2) = 0,

y(z,0) = yi(z,0) = 0,

M(L,t) = MJ(L,t) = 0.

0,

100

(6.9.1)



Translations

Figure 6.14: Magnitudes of the coefficients of the wavelet system vs. dilation

and translation

Take the Laplace transform (with respect to t) to eliminate ¢ and obtain a

differential equation with respect to z.

ps?Y (z,s) + %M(x,s) = 0,

M(z,s) = EIE%Y(.’E,S) + GV (z,s), (6.9.2)

y(0,s) = £Y(0,s) = 0,

M(L,s) = M,(L,s) = 0.

\

Define the state variables as,
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Figure 6.15: Pole and zeroes of the approximated transfer function

z) = Y(z,s),

U1

= E%Y(:c,s),

2

20T

(z)
(z)
) = i) 62
(z)
(0)
(

ug(z) = %M(m,s),
U1 0 = U2(0) = 0,
The state space representation would be
0 1 0 O 0
, 0 0 -L 0 =%
U'(z) Bl U@ + | B | V(). (6.9.4)
0 0 0 1 0
—ps? 0 0 O I 0




The only difficulty with the above ODE is that u; and u, are specified at
one end while u; and u4 are given at the other end. The variation of constant

for the system (6.9.4) is
Ulz) = e*U(z) + /x e~ BV (g, s)do, (6.9.5)
0

with the obvious definitions for the matrices A and B and the initial condition,

_ . -
0
U(0) = . (6.9.6)
U3(O)
u4(0)

To obtain u3(0) and u4(0) evaluate Eq. (6.9.5) at = L and collect the last

-

two rows. 1i.e.

0 = ual L) = KeAly( +K(/ A=) Bdo)F(s), (6.9.7)

ud(L)

where we assumed a uniform electric field, with respect to z, between z; and z,
and zero elsewhere and with the Laplace transform F(s) (see Fig. (6.16). Also

K is given by,

0010
K = : (6.9.8)

0 0 01
Solving for u3(0) and u4(0) we get,

'LL3(0)

= —(KeArKT)'K [ /” A=) Bds| F(s), (6.9.9)
u4(0) ‘

1
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Figure 6.16: The electric field across the piezoceramic at one instant of time

Since we are only interested in deriving the transfer function and the output
is proportional to the difference in slope of the beam (Eq. (6.7.9)), only the
second state variable is important. Thus, to compute uy(z) substitute for the

initial condition into Eq. (6.9.5) and pick the second row.

Vour = [0 K, 0 0](U52—Usl), (6.9.10)

where, s, and s, specify the position of the sensor and K is as in Eq. (6.9.5).
Using the above equations and with the use of Mathematica the following ex-

pression has been obtained for the transfer function,

_ (6.9.11)

Py
N
»n
N’
!
~
VA
N’

where, N(s) and D(s) are defined as,
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N(s) = {%-L[2cos(32/4) cosh(3z/4) — 2 cos(z/2) cosh(z/2)]
[~ cosh(32/4) sin(32/4) + cosh(3z/4) sin(52/4)—
cos(32/4) sinh(32/4) + cos(3z/4) sinh(52/4)]+
[cosh(z/2) sin(z/2) — cosh(3z/4) sin(32/4)—
cos(z/2) sinh(z/2) + cos(3z/4) sinh(3z/4)]
[cos(52/4) cosh(3z/4) — cos(3z/4) cosh(5z/4)+
2sin(3z/4) sinh(3z/4) — sin(5z/4) sinh(3z/4) — sin(3z/4) sinh(52/4)]},

D(s) = 2+ cos(z) + cosh(z),

sz = \/iL(Ep—I)l/‘*\/E.

To obtain the natural frequencies, one can replace s with jw and after sim-

plification we have,

1+ cos y /L(Erl—)l/‘*\/(;cosh , /L(éj)l/‘*\/&? = 0. (6.9.12)

The magnitude of the transfer function versus frequency is shown in Fig.
6.17.
One can follow the exact same procedure to get an expression for the transfer

function without ignoring passive damping by replacing the A matrix in Eq.

(6.9.4) with,
0 1 0 0
0 CD]ES—I' E‘LI 0
0 0 1
——p32 — s 0 0 O
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Figure 6.17: Modulus *of the closed form transfer function vs. frequency

However the expression in that case would be very lengthy. Again it can be
verified that the natural frequencies computed in Eq. (6.7.11) are actually roots
of the denominator of the transfer function obtained (Eq. (6.9.12)) and also the
peaks of the magnitude plot in Fig. (6.17) occurs almost at the same frequencies
as in Fig. (6.11) which shows that the estimation method for computing the
empirical transfer function is acceptable. Of course these two graphs are different

because here for the sake of simplicity passive damping has not been included.
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Chapter 7

Conclusion and Suggestions for Future

Work

In this work we consider the problem of active vibration damping in flexible
structures using piezo ceramics and some control strategies are tested using a
simulation program written for this purpose.

Specifically, the application of a Gutman-Hagander type controller is shown
to have both the advantage of stability under the assumption that there is a
limit on the input signals that can be applied to the system and a faster settling
time compared to the conventional LQR controller design.

Although the performance of these control methods has been tested through
simulation programs, the actual implementation of these control designs into a
cantilever beam is an interesting project that has not been done in the presented
work.

In the last chapter, we developed an algorithm for nonparametric system
identification and as a particular application we considered the problem of fitting’
a transfer function with piezo ceramics acting both, as sensors and actuators.

Through the usage of this method, one can obtain the transfer function {an

»
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approximation) from each input to each output and then apply a MIMO control
strategy to do the task of vibration damping. However, the controller design
problem remains as a topic for further research and is not addressed in this
thesis.

Also, once the controller is designed, the performance of it may be tested by
using either the simulation program written for this purpose or by the actual
implementation of it in an experiment.

Throughout this work, we did not consider any kind of distributed parameter
control method for solving the problem at hand (which may seem to be more
natural) and this again may be a challenging research problem.

For a general treatment of the distributed parameter control one may see

the following references : [16], [7], [12], and, [10].

-«
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