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Sound propagation is commonly known to be air pressure perturbations due to

vibrating/moving objects. The energy of sound gets attenuated by transmitting in

the air over a distance and by being absorbed at other objects’ surfaces. Numerous

researchers have focused on devising better acoustic simulation methods to model

sound propagation in a more realistic manner. The benefits of accurate acoustic

simulations include but are not limited to computer-aided acoustic design, acoustic

optimization, synthetic speech data generation, and immersive audio-visual rendering

for mixed reality. However, acoustic simulation has been underexplored for relevant

virtual and real-world audio processing applications. The main challenges in adopting

accurate acoustic simulation methods include the tradeoff between accuracy and time-

space cost and the difficulties in acquiring and reconstructing acoustic scenes in the

real world.

In this dissertation, we propose novel methods to overcome the above challenges

by leveraging the inferential power of deep neural networks, and combining them

with interactive acoustic simulation techniques. First, we develop a neural network

model that can learn the acoustic scattering fields of different objects given their



3D representations as the input. This works facilitates the inclusion of wave acous-

tic scattering effects in interactive sound rendering applications, which used to be

difficult without intensive pre-computation. Second, we incorporate a deep acoustic

analysis neural network into the sound rendering pipeline to allow the generation of

sounds that are perceptually consistent with real-world sounds. This is achieved by

predicting acoustic parameters at run-time from real-world audio samples and opti-

mizing simulation parameters accordingly. Finally, we build a pipeline that utilizes

general 3D indoor scene datasets to generate high-quality acoustic room impulse re-

sponses and demonstrate the usefulness of the generated data on several practical

speech processing tasks. Our results demonstrate that by leveraging state-of-the-art

physics-based acoustic simulation and deep learning techniques, realistic simulated

data can be generated to enhance sound rendering quality in the virtual world and

boost the performance of audio processing tasks in the real world.
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Chapter 1

Introduction

1.1 Motivation

Accurate and efficient simulation of physics has been an important topic for computer

science and applied math research. Over past decades, the rapid development of

computing hardware and software has facilitated many simulation techniques that

transfer theories to professional tools that we use to interpret and predict real-world

physics. The application of computer simulation has seen huge success in many

fields, including weather forecasting, industrial computer-aided design (CAD), flight

simulation for personnel training, digital entertainment, etc.

One research area that has gained increased interest in recent years is efficient

acoustic simulation for audio processing. Audio signals corresponding to music,

speech, and non-verbal sounds in the real world encode rich information regarding the

surrounding environment. Many digital signal processing algorithms and audio deep

learning techniques have been proposed to extract information from audio signals.

These methods are widely used for different applications such as music information

retrieval, automated speech recognition, sound separation and localization, sound

synthesis and rendering, etc. Acoustic simulation techniques are often used in audio
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processing tasks where real-world audio data is difficult to acquire.

In contrast to realistic visual rendering techniques, which have been the main

topic for computer graphics research, acoustic simulation has not been as widely

adopted by related applications such as computer games, digital film making, and

virtual reality. While state-of-the-art acoustic simulation techniques can add high-

fidelity physics-based sounds to these applications, there are still barriers that make

them less practical to be used for situations where: (1) it is difficult to faithfully

describe the acoustic environment and give accurate inputs to the simulator or (2)

there is a strict requirement for computing efficiency. As a result, digital audio in

many applications is often post-processed by professionals subjectively, even though

they can deviate hugely from physically realistic sounds. However, there are still

areas where accurate acoustic simulation is irreplaceable, including but not limited to

computer-aided acoustic design, environmental acoustic optimization, and immersive

audio-visual rendering for mixed reality. This motivates us to investigate how to

use acoustic simulation techniques practically in various virtual and real-world audio

processing tasks.

1.2 Challenges and Contributions

In contrast to previous research, which focused on theoretical acoustic simulations,

my dissertation research aims to bridge the gap between theoretical methods and

their applications in practical audio processing tasks. One challenge is the trade-off

between simulation accuracy and time-space cost. Conventional numeric wave solvers

based on the first-principal wave equation provides the most accurate results and can

be validated with real-world measurements. However, they usually scale poorly with

simulation frequency and scene scale, making them unsuitable for large simulations

(in number or scale). Another challenge is incorporating synthetic sound in real-world
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settings, where the simulated sound needs to be consistent with the recorded sound.

This requires the simulator to be scene-aware: the sound simulation setups need to

align well with the real-world scene. The main difficulty comes from two parts: (1)

The real-world scene configurations are not always well known, and they need to be

empirically inferred or measured on-site. Prior solutions are either inaccurate or not

user-friendly. (2) The wave effects are essential for low-frequency components but

are poorly approximated by state-of-the-art real-time acoustic simulators. A large

amount of pre-computation time is needed to incorporate results from wave-based

solvers.

In this dissertation, we develop a series of algorithms and tools to overcome the

above challenges and verify their effectiveness via real-world acoustic benchmarks

and subjective listening studies. Our main contributions can be summarized in the

following three aspects:

Scene-Aware Audio for Mixed Reality We propose a novel method that allows

automatic analysis of real-world acoustics for generating virtual sounds that

are perceptually consistent with real-world sounds. This is achieved by train-

ing acoustic parameter predictors1 from a large amount of simulated data in

various room environments. The scene analysis can be performed on new real-

world scenes on-the-fly while still generating plausible sound rendering that is

consistent with the recorded sound in the same environment.

Fast Learning-Based Acoustic Scattering We present a novel approach to ap-

proximate the acoustic scattering field of any geometric object using neural

networks for interactive sound propagation of highly dynamic scenes2. Our ap-

proach is general and makes no assumption about the scene or the motion or

topology of the objects. We exploit properties of the acoustic scattering field
1Code available at https://github.com/GAMMA-UMD/deep-acoustic-analysis
2Code available at https://github.com/GAMMA-UMD/Fast3DScattering-release
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of objects for lower frequencies and use neural networks to learn this field from

geometric representations of the objects.

High-Quality Synthetic Acoustic Datasets We propose methods to simulate high-

quality room impulse responses (RIRs) using our physics-based geometric acous-

tic simulator3 and a hybrid geometric-acoustic simulation approach. We address

the challenges in accurately modeling acoustic phenomena, including occlusion,

specular and diffuse reflections, and diffraction and demonstrate the benefits of

our method in speech recognition, speech enhancement, key-word spotting, and

direction of arrival estimation tasks.

1.3 Organization

The rest of the dissertation is organized as follows: Chapter 2 gives a comprehensive

background and overview of previous research related to topics in this dissertation.

Chapters 3, 4, and 5 present our work on scene-aware audio, fast 3D acoustic scat-

tering, and high-quality acoustic datasets generation, respectively. Then we discuss

the limitations, envision several future research directions, and conclude my disserta-

tion in Chapter 6.

3Code available at https://github.com/GAMMA-UMD/pygsound
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Chapter 2

Background and Previous Research

2.1 Room Acoustics

2.1.1 Room Impulse Response

Sound is commonly known to be air pressure perturbations caused by vibrating/moving

objects. One conventional way to define a sound signal is by describing the air pres-

sure perturbation (in Pascal) as a function of time, denoted as s(t). A sound signal

can get attenuated by transmitting in the air over a distance and by being absorbed at

other objects’ surfaces. A room, or more generally, an acoustic environment, affects

any sound signal excited within it before the sound is received by a listener (e.g.,

human ears or microphones). The transformation from the input signal to the out-

put signal can be characterized by the room impulse response (RIR), which specifies

how a signal is delayed and attenuated in a linear time-invariant (LTI) system. If we

denote the RIR by h(t), we can write the input-output relationship as

sout[t] = sin[t]⊛ h[t], (2.1)
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where ⊛ denotes 1D convolution. More formally, the RIR is defined as the output

signal in response to an impulsive input signal represented by the Dirac function δ(t),

which is zero everywhere except at the origin, where it is infinite (Kuttruff, 2016).

Conventionally, an RIR can be decomposed into three parts: the direct response,

early reflections, and the late reverberation. The direct response is determined by

the visibility between the source and listener. Early reflections have stronger energy

peaks and follow shortly after the direct response. The late reverberation is the result

of high-order reflections and is more random. A typical RIR energy distribution is

shown in Figure 2.1.

Figure 2.1: Energy distribution of an impulse response in time.

The Fourier transform of the RIR is known as the frequency response of the room,

which can reveal the frequency dependence for changes in sound intensity and phase.

Once the RIR for a particular source-listener pair in a room is known, it can be used

as a digital filter to reproduce any sound signal as if the sound was emitted in the

same room.

In terms of recording RIRs in the real world, the most reliable methods involve

playing and recording Golay codes (Foster, 1986) or sine sweeps (Farina, 2000) at

high signal-to-noise ratios. Also required are fairly high-quality speakers and micro-

phones with flat frequency responses, small harmonic distortion, and little cross-talk.

The speaker and microphone should be acoustically separated from surfaces, i.e., they

shouldn’t be placed directly on tables (else surface vibrations could contaminate the

signal). Clock drift between the source and microphone must be accounted for (Bryan
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et al., 2010). Alternatively, balloon pops or hand claps have been proposed for easier

RIR estimation, but require additional post-processing (Abel et al., 2010; Seethara-

man and Tarzia, 2012).

2.1.2 Reverberation Time

The sound signal emitted by any finite-time sound source will eventually drop its

amplitude below the human hearing threshold as the signal is absorbed by its prop-

agating medium (i.e., air) and boundaries in the room. Such energy decay is often

exponential with respect to time. One acoustic metric commonly used to describe

the decay rate is the reverberation time (Sabine, 1927), defined as the time interval

in which the sound pressure level for an impulse input decays by 60dB from its onset,

written as T60. T60 can be directly evaluated from a recorded RIR (Karjalainen et al.,

2001). Conventional rooms may have reverberation times from 0.3s to 2.0s, mostly

depending on the size and furnishing of the room. Extremely large environments and

reverberation chambers can have reverberation times up to 10s. In theory, a signal

in the free field (e.g., vacuum) will have a T60 of 0s. An acoustically treated anechoic

chamber can also have its T60 close to zero; sounds that are recorded in this condition

is often called “dry” or “clean” sounds.

2.1.3 Room Modes

As the sound signal propagates in a room, standing waves can form at discrete res-

onant frequencies whose wavelength λ satisfies λ = 2L
n
, n = 1, 2, 3, ..., where L is the

room dimension along some direction (e.g., axial, tangential, oblique). Room modes

are the collection of these resonant frequencies and consist of mostly low frequencies

below the Schroeder frequency (in Hz) fc = 2000
√

T60

V
(Schroeder, 1996), where T60 is

the reverberation time in seconds and V is the volume of the room in m3. For typical

residential rooms, fc will be lower than 200Hz. At these resonant frequencies, the
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sound pressure tends to be significantly modified in different locations in the same

room, which can cause problems for accurate sound reproduction. Various methods

have been devised to remove room modes using equalization filters (Cecchi et al.,

2018).

2.2 Acoustic Simulation

Acoustic simulation can involve the process of sound generation and propagation.

In this dissertation, we focus on the sound propagation aspect and refer readers

interested in modal sound simulation to Zheng and James (2011).

2.2.1 Wave Acoustics

First, we describe the theoretical foundation of wave acoustic simulations. A scalar

acoustic pressure field, P (x, t), satisfies the inhomogeneous wave equation

∂2P (x, t)

∂t2
− c2∇2P (x, t) = f(x, t), (2.2)

where c is the speed of sound, x is the 3D coordinate, and f(x, t) is the forcing term,

usually representing some driving source signal. An RIR can be obtained by setting

f(x, t) to an impulse signal at a source location xs, fixing P (x, t) at the receiver loca-

tion xr and extracting its time-varying component. The wave equation can be solved

numerically using the finite-difference time domain (FDTD) (Botteldooren, 1995)

method or in the frequency domain using the finite-element (FEM) method (Thomp-

son, 2006), the boundary-element (BEM) method (Wrobel and Kassab, 2003), the

adaptive rectangular decomposition (ARD) method (Raghuvanshi et al., 2009), etc.

These methods are also referred to as wave-based methods. Their computation com-

plexity increases linearly with the size of the environment (surface area or volume)

and as a third or fourth power of frequencies. As a result, they are limited to lower
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frequencies and offline simulations (Raghuvanshi et al., 2010; Mehra et al., 2013; Yeh

et al., 2013).

2.2.2 Geometric Acoustics

When the wavelength of the sound is smaller than the size of the obstacles in the

environment, the sound wave can be treated in the form of a ray, which is the key

idea of geometric acoustics. Typical geometric acoustic simulation techniques include

the image method (Allen and Berkley, 1979), which only models specular reflections,

path tracing methods (Taylor et al., 2009, 2012b; Schissler and Manocha, 2016, 2018)

based on efficient Monte Carlo path tracing (Kajiya, 1986), and beam or frustum

tracing methods (Funkhouser et al., 1998b; Chandak et al., 2008). These techniques

are designed to run magnitudes faster than wave acoustic solvers and can be enhanced

to simulate low-frequency diffraction effects. This category includes the time-domain

Biot-Tolstoy-Medwin (BTM) model, which can be expensive and is also limited to

offline computations (Svensson et al., 1999). For interactive applications, commonly

used techniques are based on the uniform theory of diffraction (UTD), which is a

less accurate frequency-domain model that can generate plausible results in some

cases (Tsingos et al., 2001; Taylor et al., 2012a; Schissler et al., 2014). Moreover, the

complexity of edge-based diffraction algorithms can increase exponentially with the

maximum diffraction order. A more extensive review of geometric acoustic techniques

can be found in Liu and Manocha (2020).

2.3 Acoustic Scene Representation

Room acoustics depend on many factors. Room geometry and acoustic materials

together can greatly affect how a sound signal is being modified by propagation.

In larger and less absorbent rooms, the sound signal can keep travelling for longer
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times before vanishing (hence longer T60), and vice versa. For the same room size, a

rectangular room would have different room modes if it were differently shaped. In

practice, modern 3D vision techniques can be used on commodity devices to construct

geometry proxies from a video recording of the real-world scene in the form of dense

3D point clouds or meshes (Zhi et al., 2019; Bloesch et al., 2018).

Acoustic materials are often described in terms of how they react to incoming

sound. The complex acoustic impedance indicates how much sound pressure would

be generated in response to vibrations in the acoustic medium (e.g., air). This in-

dicator is being used by many wave acoustic solvers but needs to be measured in

controlled lab settings (Hiremath et al., 2021), making it less accessible for most ma-

terials. In the geometric acoustics context, the absorption and scattering coefficients

are more commonly used, though they are also the sources of errors for acoustic sim-

ulations (Vorländer, 2013). The absorption coefficient α ∈ [0, 1] is defined as the

fraction of sound energy at a specific frequency that is absorbed by the material.

While the measurement of α also requires a reverberation chamber environment, the

frequency-dependent absorption coefficients of many commonly seen materials have

been measured and compiled as acoustic material databases. The energy that is not

absorbed can be further described using the scattering coefficient s ∈ [0, 1], which

represents the fraction of sound that is diffusely reflected (e.g., following Lambertian

distribution), while the remaining fraction is specularly reflected (i.e., having high

directivity). However, the scattering coefficient is highly relevant to the roughness of

the surface (Christensen and Rindel, 2005), and available measured data are few. In

theory, bidirectional reflection distribution functions (BRDFs) that are widely used in

computer graphics can more accurately describe the interaction between an incoming

sound and the material (Mückl and Dachsbacher, 2014), but acoustic BRDFs have

not been commonly measured.

Once the room geometry and materials are well-defined, the soundfield can be
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simulated for any given sources. Wave-based methods solve the soundfield for the

whole space within the acoustic scene, so the sound pressure at specific locations

can be evaluated after the simulation finishes. In contrast, geometric methods only

simulate results at pre-defined receiver locations but use less memory than wave-based

methods. One convenient property for acoustic measurements and simulations is that

the location of the source and the receiver can be interchanged without affecting the

measured/simulated result according to acoustic reciprocity (Wapenaar, 2019). This

is sometimes useful in reducing the number of measurements/simulations in various

scenes.

2.4 Audio Processing Applications

The measurement/computation of RIRs and resulting datasets has been used for

audio processing applications including but not limited to:

1. Sound Propagation and Rendering: Sounds in nature are produced by vi-

brating objects and then propagate through a medium (e.g., air) before finally being

heard by a listener. Humans can perceive these sound waves in the frequency range of

20Hz to 20KHz (human aural range). There is a large body of literature on modeling

sound propagation in indoor scenes using geometric and wave-based methods (Liu

and Manocha, 2020; Krokstad et al., 1968; Vorländer, 1989; Funkhouser et al., 1998a;

Raghuvanshi et al., 2009; Mehra et al., 2013; Schissler et al., 2014). Wave-based

solvers are practical for lower frequencies and limited to static scenes. Geometric

methods, widely used in interactive applications, are accurate for higher frequencies.

We need automatic software systems that can accurately compute IRs corresponding

to human aural range and handle arbitrary 3D models.

2. Deep Audio Synthesis for Videos: Video acquisition has become very common

and easy. However, it is difficult to add realistic audio that can be synchronized with
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animation in a video. Many deep learning methods have been proposed for such audio

synthesis that utilize acoustic impulse responses for such applications (Li et al., 2018;

Owens et al., 2016; Zhou et al., 2018)

3. Speech Processing using Deep Learning: IRs consist of many clues related

to reproducing or understanding intelligible human speech. Synthetic datasets of IRs

have been used in machine learning methods for automatic speech recognition (Ma-

lik et al., 2021; Ko et al., 2017; Tang et al., 2020; Ratnarajah et al., 2021), sound

source separation (Aralikatti et al., 2021; Jenrungrot et al., 2020), and sound source

localization (Grumiaux et al., 2021).

4. Sound Simulation using Machine Learning: Many recent deep learning

methods have been proposed for sound synthesis (Hawley et al., 2020; Ji et al., 2020;

Jin et al., 2020), scattering effect computation, and sound propagation (Fan et al.,

2020b; Meng et al., 2021; Pulkki and Svensson, 2019). Deep learning methods have

also been used to compute material properties of a room and acoustic characteris-

tics (Schissler et al., 2017; Tang et al., 2019a).

Some of these will be discussed in more detail in this dissertation. Other applica-

tions that have used acoustic datasets include navigation (Chen et al., 2020), floorplan

reconstruction (Purushwalkam et al., 2021) and depth estimation algorithms (Gao

et al., 2020).
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Chapter 3

Scene-Aware Audio for Mixed

Reality1

Figure 3.1: Given a natural sound in a real-world room that is recorded using a
cellphone microphone (left), we estimate the acoustic material properties and the
frequency equalization of the room using a novel deep learning approach (middle).
We use the estimated acoustic material properties for generating plausible sound
effects in the virtual model of the room (right). Our approach is general and robust,
and works well with commodity devices.

3.1 Introduction

Auditory perception of recorded sound is strongly affected by the acoustic environ-

ment it is captured in. Concert halls are carefully designed to enhance the sound

on stage, even accounting for the effects an audience of human bodies will have on

the propagation of sound (Barron, 2010). Anechoic chambers are designed to remove
1The work in this chapter has been published in Tang et al. (2019a)
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acoustic reflections and propagation effects as much as possible. Home theaters are

designed with acoustic absorption and diffusion panels, as well as with careful speaker

and seating arrangements (Rizzi et al., 2016).

The same acoustic effects are important when creating immersive effects for vir-

tual reality (VR) and augmented reality (AR) applications. It is well known that

realistic sounds can improve a user’s sense of presence and immersion (Larsson et al.,

2002). There is considerable work on interactive sound propagation in virtual en-

vironments based on geometric and wave-based methods (Vorländer, 1989; Schissler

and Manocha, 2017; Raghuvanshi and Snyder, 2014c; Cao et al., 2017). Furthermore,

these techniques are increasingly used to generate plausible sound effects in VR sys-

tems and games, including Microsoft Project Acoustics2, Oculus Spatializer3, Steam

Audio4, etc. However, these methods are limited to synthetic scenes where an ex-

act geometric representation of the scene and acoustic material properties are known

apriori.

In this chapter, we address the problem of rendering realistic sounds that are

similar to recordings of real acoustic scenes. These capabilities are needed for VR

as well as AR applications (Conference, 2018), which often use recorded sounds.

Foley artists often record source audio in environments similar to the places the

visual contents were recorded in. Similarly, creators of vocal content (e.g. podcasts,

movie dialogue, or video voice-overs), carefully re-record content made in different

environment or with different equipment to match the acoustic conditions. However,

these processes are expensive, time-consuming, and cannot adapt to spatial listening

location. There is strong interest in developing automatic spatial audio synthesis

methods.

For VR or AR content creation, acoustic effects can also be captured with an
2https://aka.ms/acoustics
3https://developer.oculus.com/downloads/package/oculus-spatializer-unity
4https://valvesoftware.github.io/steam-audio
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impulse response (IR) – a compact acoustic description of how sound propagates

from one location to another in a given scene. Given an IR, it can be convolved with

any virtual sound or dry sound to generate the desired acoustic effects. However,

recording the IRs of real-world scenes can be challenging, especially for interactive

applications. Many times special recording hardware is needed to record the IRs.

Furthermore, the IR is a function of the source and listener positions and it needs to

be re-recorded as either position changes.

Our goal is to replace the step of recording an IR with an unobtrusive method

that works on in-situ speech recordings and video signals and uses commodity devices.

This can be regarded as an acoustic analogy of visual relighting (Debevec, 2002): to

light a new visual object in an image, traditional image based lighting methods re-

quire the capture of real-world illumination as an omnidirectional, high dynamic range

(HDR) image. This light can be applied to the scene, as well as on a newly inserted

object, making the object appear as if it was always in the scene. Recently, Gardner

et al. (2017) and Hold-Geoffroy et al. (2017) proposed convolutional neural network

(CNN)-based methods to estimate HDR indoor or outdoor illumination from a single

low dynamic range (LDR) image. These high-quality visual illumination estimation

methods enable novel interactive applications. Concurrent work from LeGendre et al.

(2019) demonstrates the effectiveness on mobile devices, enabling photorealistic mo-

bile mixed reality experiences.

In terms of audio “relighting" or reproduction, there have been several approaches

proposed toward realistic audio in 360° images (Kim et al., 2019), multi-modal estima-

tion and optimization (Schissler et al., 2017), and scene-aware audio in 360° videos (Li

et al., 2018). However, these approaches either require separate recording of an IR,

or produce audio results that are perceptually different from recorded scene audio.

Important acoustic properties can be extracted from IRs, including the reverberation

time (T60), which is defined as the time it takes for a sound to decay 60 decibels (Kut-
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Figure 3.2: Our pipeline: Starting with a audio-video recording (left), we estimate
the 3D geometric representation of the environment using standard computer vision
methods. We use the reconstructed 3D model to simulate new audio effects in that
scene. To ensure our simulation results perceptually match recorded audio in the
scene, we automatically estimate two acoustic properties from the audio recordings:
frequency-dependent reverberation time or T60 of the environment, and a frequency-
dependent equalization curve. The T60 is used to optimize the frequency-dependent
absorption coefficients of the materials in the scene. The frequency equalization
filter is applied to the simulated audio, and accounts for the missing wave effects in
geometrical acoustics simulation. We use these parameters for interactive scene-aware
audio rendering (right).

truff, 2016), and the frequency-dependent amplitude level or equalization (EQ) (Hak

et al., 2012). This heavy reliance on IRs greatly constrains the wide adoption of au-

dio for immersive applications or video post-production that require realistic acoustic

simulation that is calibrated to real-world acoustic scenes.

Main Results: We present novel algorithms to estimate two important environ-

mental acoustic properties from recorded sounds (e.g. speech). Our approach uses

commodity microphones and does not need to capture any IRs. The first property is

the frequency-dependent T60. This is used to optimize absorption coefficients for ge-

ometric acoustic (GA) simulators for audio rendering. Next, we estimate a frequency

equalization filter to account for wave effects that cannot be modeled accurately using

geometric acoustic simulation algorithms. This equalization step is crucial to ensur-
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ing that our GA simulator outputs perceptually match existing recorded audio in the

scene. Estimating the equalization filter without an IR is challenging since it is not

only speaker dependent, but also scene dependent, which poses extra difficulties in

terms of dataset collection. For a model to predict the equalization filtering behavior

accurately, we need a large amount of diverse speech data and IRs. Our key idea is

a novel dataset augmentation process that significantly increases room equalization

variation. With robust room acoustic estimation as input, we present a novel inverse

material optimization algorithm to estimate the acoustic properties. We propose a

new objective function for material optimization and show that it models the IR de-

cay behavior better than (Li et al., 2018). We demonstrate our ability to add new

sound sources in regular videos. Similar to visual relighting examples where new ob-

jects can be rendered with photorealistic lighting, we enable audio reproduction in

any regular video with existing sound with applications for mixed reality experiences.

We highlight their performance on many challenging benchmarks.

We show the importance of matched T60 and equalization in our perceptual user

study §3.5. In particular, our perceptual evaluation results show that: (1) Our T60

estimation method is perceptually comparable to all past baseline approaches, even

though we do not require an explicit measured IR; (2) Our EQ estimation method im-

proves the performance of our T60-only approach by a statistically significant amount

(≈ 10 rating points on a 100 point scale); and (3) Our combined method (T60+EQ)

outperforms the average room IR (T60 = .5 seconds with uniform EQ) by a sta-

tistically significant amount (+10 rating points) – the only reasonable comparable

baseline we could conceive that does not require an explicit IR estimate. To the best

of our knowledge, ours is the first method to predict IR equalization from raw speech

data and validate its accuracy. Our main contributions include:

• A CNN-based model to estimate frequency-dependent T60 and equalization filter

from real-world speech recordings.
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• An equalization augmentation scheme for training to improve the prediction

robustness.

• A derivation for a new optimization objective that better models the IR decay

process for inverse materials optimization.

• A user study to compare and validate our performance with current state-of-the-

art audio rendering algorithms. Our study is used to evaluate the perceptual

similarity between the recorded sounds and our rendered audio.

3.2 Related Work

Cohesive audio in mixed reality environments (when there is a mix of real and virtual

content), is more difficult than in fully virtual environments. This stems from the

difference between “Plausibility” in VR and “Authenticity” in AR (Kim et al., 2019).

Visual cues dominate acoustic cues, so the perceptual difference between how audio

sounds and the environment in which it is seen is smaller than the perceived envi-

ronment of two sounds. Recently, Li et al. (2018) introduced scene-aware audio to

optimize simulator parameters to match the room acoustics from existing recordings.

By leveraging visual information for acoustic material classification, Schissler et al.

(2017) demonstrated realistic audio for 3D-reconstructed real-world scenes. However,

both of these methods still require explicit measurement of IRs. In contrast, our

proposed pipeline works with any input speech signal and commodity microphones.

Sound simulation can be categorized into wave-based methods and geometric

acoustics. While wave-based methods generally produce more accurate results, it

remains an open challenge to build a real-time universal wave solver. Recent ad-

vances such as parallelization via rectangular decomposition (Morales et al., 2015),

pre-computation acceleration structures (Mehra et al., 2015), and coupling with ge-

ometric acoustics (Yeh et al., 2013; Rungta et al., 2018) are used for interactive

18



applications. It is also possible to precompute low-frequency wave-based propaga-

tion effects in large scenes (Raghuvanshi et al., 2010), and to perceptually compress

them to reduce runtime requirements (Raghuvanshi and Snyder, 2014a). Even with

the massive speedups presented, and a real-time runtime engine, these methods still

require tens of minutes to hours of pre-computation depending on the size of the

scene and frequency range chosen, making them impractical for augmented reality

scenarios and difficult to include in an optimization loop to estimate material param-

eters. With interactive applications as our goal, most game engines and VR systems

tend to use geometric acoustic simulation methods (Vorländer, 1989; Schissler and

Manocha, 2017; Cao et al., 2017). These algorithms are based on fast ray tracing

and perform specular and diffuse reflections (Savioja and Svensson, 2015). Some

techniques have been proposed to approximate low-frequency diffraction effects using

ray-tracing (Tsingos et al., 2001; Rungta et al., 2018; Taylor et al., 2012a). Our ap-

proach can be combined with any interactive audio simulation method, though our

current implementation is based on bidirectional ray tracing (Cao et al., 2017). The

sound propagation algorithms can also be used for acoustic material design optimiza-

tion for synthetic scenes (Morales and Manocha, 2016).

The efficiency of deep neural networks has been shown in audio/video-related tasks

that are challenging for traditional methods(Virtanen et al., 2018; Gharib et al., 2018;

Hinton et al., 2012; Evers et al., 2016; Sterling et al., 2018). Hershey et al. (2017)

showed that it is feasible to use CNNs for large-scale audio classification problems.

Many deep neural networks require a large amount of training data. Salamon and

Bello (2017) used data augmentation to improve environmental sound classification.

Similarly, Bryan (2020) estimates the T60 and the direct-to-reverberant ratio (DRR)

from a single speech recording via augmented datasets. Tang et al. (2019b) trained

CRNN models purely based on synthetic spatial IRs that generalize to real-world

recordings. We strategically design an augmentation scheme to address the challenge
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of equalization’s dependence on both IRs and speaker voice profiles, which is fully

complimentary to all prior data-driven methods.

Figure 3.3: The simulated and recorded frequency response in the same room at a
sample rate of 44.1kHz is shown. Note that the recorded response has noticeable peaks
and notches compared with the relatively flat simulated response. This is mainly
caused by room equalization. Missing proper room equalization leads to discrepancies
in audio quality and overall room acoustics.

Acoustic simulators require a set of well-defined material properties. The material

absorption coefficient is one of the most important parameters (Bork, 2000), ranging

from 0 (total reflection) to 1 (total absorption). A material’s acoustic properties are

correlated with its visual appearance to some extent. For example, a carpet is usually

more absorptive for sound than a glass is. This audio-visual correlation enables rough

material estimation from visual cues (Schissler et al., 2017). However, despite a non-

zero material recognition error, visual information alone does not accurately capture

the acoustic property of materials. Prior work shows that 7D (source-listener 3D

locations and time) acoustic fields in an environment can be effectively compressed

into 6D time-invariant fields using only four selected scalar acoustic metrics with low
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reconstruction errors (Raghuvanshi and Snyder, 2014c). This indicates that certain

acoustic metrics can be used to guide the modeling of acoustic materials.

When a reference IR is available, it is straightforward to adjust room materials

to match the energy decay of the simulated IR to the reference IR (Li et al., 2018).

Similarly, Ren et al. (2013) optimized linear modal analysis parameters to match the

given recordings. A probabilistic damping model for audio-material reconstruction

has been presented for VR applications (Sterling et al., 2019). Unlike all previous

methods which require a clean IR recording for accurate estimation and optimization

of boundary materials, we infer typical material parameters including T60 values and

equalization from raw speech signals using a CNN-based model.

Analytical gradients can significantly accelerate the optimization process. With

similar optimization objectives, it was shown that additional gradient information can

boost the speed by a factor of over ten times (Li et al., 2018; Schissler et al., 2017).

The speed gain shown in (Li et al., 2018) is impressive, and we further improve

the accuracy and speed of the formulation. More specifically, the original objective

function evaluated energy decay relative to the first ray received (the direct sound if

there were no obstacles). However, energy estimates can be noisy due to both the

oscillatory nature of audio as well as simulator noise. Instead, we optimize the slope

of the best fit line of ray energies to the desired energy decay (defined by the T60),

which we found to be more robust.

3.3 Deep Acoustic Analysis: Our Algorithm

In this section, we overview our proposed method for scene-aware audio rendering. We

begin by providing background information, discuss how we capture room geometry,

and then proceed with discussing how we estimate the frequency dependent room

reverberation and equalization parameters directly from recorded speech. We follow
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by discussing how we use the estimated acoustic parameters to perform acoustic

materials optimization such that we calibrate our virtual acoustic model with real-

world recordings.

3.3.1 Background

To explain the motivation of our approach, we briefly elaborate on the most difficult

parts of previous approaches, upon which our method improves. Previous methods

require an impulse response of the environment to estimate acoustic properties (Li

et al., 2018; Schissler et al., 2017). Recording an impulse response is a non-trivial task.

The most reliable methods involve playing and recording Golay codes (Foster, 1986)

or sine sweeps (Farina, 2000), which both play loud and intrusive audio signals. Also

required are a fairly high-quality speaker and microphone with constant frequency

response, small harmonic distortion and little crosstalk. The speaker and microphone

should be acoustically separated from surfaces, i.e., they shouldn’t be placed directly

on tables (else surface vibrations could contaminate the signal). Clock drift between

the source and microphone must be accounted for (Bryan et al., 2010). Alternatively,

balloon pops or hand claps have been proposed for easier IR estimation, but require

significant post-processing and still are very obtrusive (Abel et al., 2010; Seethara-

man and Tarzia, 2012). In short, correctly recording an IR is not easy, and makes it

challenging to add audio in scenarios such as augmented reality, where the environ-

ment is not known beforehand and estimation must be done interactively to preserve

immersion.

Geometric acoustics is a high-frequency approximation to the wave equation. It

is a fast method, but assumes that wavelengths are small compared to objects in the

scene, while ignoring pressure effects (Savioja and Svensson, 2015). It misses several

important wave effects such as diffraction and room resonance. Diffraction occurs

when sound paths bend around objects that are of similar size to the wavelength.
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Resonance is a pressure effect that happens when certain wavelengths are either re-

inforced or diminished by the room geometry: certain wavelengths create peaks or

troughs in the frequency spectrum based on the positive or negative interference they

create.

We model these effects with a linear finite impulse response (FIR) equalization

filter (Schafer and Oppenheim, 1989). We compute the discrete Fourier transform

on the recorded IR over all frequencies, following Li et al. (2018). Instead of filter-

ing directly in the frequency domain, we design a linear phase EQ filter with 32ms

delay to compactly represent this filter at 7 octave bin locations. We then blindly

estimate this compact representation of the frequency spectrum of the impulse re-

sponse as discrete frequency gains, without specific knowledge of the input sound or

room geometry. This is a challenging estimation task. Since the convolution of two

signals (the IR and the input sound) is equivalent to multiplication in the frequency

domain, estimating the frequency response of the IR is equivalent to estimating one

multiplicative factor of a number without constraining the other. We are relying on

this approach to recognize the a compact representation of the frequency response

magnitude in different environments.

3.3.2 Geometry Reconstruction

Given the background, we begin by first estimating the room geometry. In our exper-

iments, we utilize the ARKit-based iOS app MagicPlan5 to acquire the basic room

geometry. A sample reconstruction is shown in Figure 3.4. With computer vision

research evolving rapidly, we believe constructing geometry proxies from video input

will become even more robust and easily accessible (Zhi et al., 2019; Bloesch et al.,

2018).
5https://www.magicplan.app/
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Figure 3.4: We use an off-the-shelf app called MagicPlan to generate geometry proxy.
Input: a real-world room (left); Output: the captured 3D model of the room (right)
without high-level details, which is used by the runtime geometric acoustic simulator.

3.3.3 Learning Reverberation and Equalization

Figure 3.5: Network architecture for T60 and EQ prediction. Two models are trained
for T60 and EQ, which have the same components except the output layers have
different dimensions customized for the octave bands they use.

We use a convolutional neural network (Figure 3.5) to predict room equalization

and reverberation time (T60) directly from a speech recording. Training requires

a large number of speech recordings with known T60 and room equalization. The

standard practice is to generate speech recordings from known real-world or synthetic

IRs (Kim et al., 2017; Doulaty et al., 2017). Unfortunately, large scale IR datasets do

not currently exist due to the difficulty of IR measurement; most publicly available

IR datasets have fewer than 1000 IR recordings. Synthetic IRs are easy to obtain and

can be used, but again lack wave-based effects as well as other simulation deficiencies.

Recent work has addressed this issue by combining real-word IR measurements with

augmentation to increase the diversity of existing real-world datasets (Bryan, 2020).
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This work, however, only addresses T60 and DRR augmentation, and lacks a method

to augment the frequency-equalization of existing IRs. To address this, we propose

an augmentation method in this section. Beforehand, however, we discuss our neural

network estimation method for estimating both T60 and equalization.

Octave-Based Prediction

Most prior work takes the full-frequency range as input for prediction. For exam-

ple, one closely related work (Bryan, 2020) only predicts one T60 value for the entire

frequency range (full-band). However, sound propagates and interacts with mate-

rials differently at different frequencies. To this end, we define our learning tar-

gets over several octaves. Specifically, we calculate T60 at 7 sub-bands centered at

{125, 250, 500, 1000, 2000, 4000, 8000}Hz. We found prediction of T60 at the 62.5Hz

band to be unreliable due to low SNR. During material optimization, we set the

62.5Hz T60 value to the 125Hz one. Our frequency equalization estimation is done

at 6 octave bands centered at {62.5, 125, 250, 500, 2000, 4000}Hz. Note that we will

compute equalization relative to the 1kHz band, so we do not estimate it. When

applying our equalization filter, we set bands greater than or equal to 8kHz to -50dB.

Given our target sampling rate of 16kHz and the limited content of speech in higher

octaves, this did not affect our estimation.

Data Augmentation

We use the following datasets as the basis for our training and augmentation.

• ACE Challenge (Eaton et al., 2016): 70 IRs and noise audio;

• MIT IR Survey (Traer and McDermott, 2016): 271 IRs;

• DAPS dataset (Mysore, 2014): 4.5 hours of 20 speakers’ speech (10 males and

10 females).
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Table 3.1: Dataset composition. The training set and validation set are based on
synthetic IRs and the test set is based on real IRs to guarantee model generalization.
Clean speech files are also divided in a way that speakers (“f1" for female speaker 1;
“m10" for male speaker 10) in each dataset partition are different, to avoid the model
learning the speaker’s voice signature. Audio files are generated at a sample rate of
16kHz, which is sufficient to cover the human voice’s frequency range.

Partition Noise Clean Speech IR
Training set
(size: 56.5k) ACE ambient f5∼f10, m5∼m10 Synthetic IR

(size: 4.5k)

Validation set
(size: 19.5k) ACE ambient f3, f4, m3, m4 Synthetic IR

(size: 1k)

Test set
(size: 18.5k) ACE ambient f1, f2, m1, m2 MIT survey IR

(size: 271)

First, we use the method in Bryan (2020) to expand the T60 and direct-to-

reverberant ratio (DRR) range of the 70 ACE IRs, resulting in 7000 synthetic IRs

with a balanced T60 distribution between 0.1 ∼ 1.5 seconds. The ground truth T60

estimates can be computed directly from IRs can be computed is a variety of ways.

We follow the methodology of Karjalainen et al. (2001) when computing the T60 from

real IRs with a measurable noise floor. This method was found to be the most robust

estimator when computing the T60 from real IRs in recent work (Eaton et al., 2016).

The final composition of our dataset is listed in Table 3.1.

While we know the common range of real-world T60 values, there is limited lit-

erature giving statistics about room equalization. Therefore, we analyzed the equal-

ization range and distribution of the 271 MIT survey IRs as a guidance for data

augmentation. The equalization of frequency bands is computed relative to the 1kHz

octave. This is a common practice (Välimäki and Reiss, 2016), unless expensive

equipment is used to obtain calibrated acoustic pressure readings.

For our equalization augmentation procedure, we first fit a normal distribution

(mean and standard deviation) to each sub-band amplitude of the MIR IR dataset

as shown in Figure 3.6. Given this set of parametric model estimates, we iterate

through our training and validation IRs. For each IR, we extract its original EQ.
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(a) MIT IR survey equalization distribution by sub-band.

(b) Original synthetic IR
equalization.

(c) Target (MIT) IR equaliza-
tion.

(d) Augmented synthetic IR
equalization.

Figure 3.6: Equalization augmentation. The 1000Hz sub-band is used as reference and
has unit gain. We fit normal distributions (red bell curves shown in (a)) to describe
the EQ gains of MIT IRs. We then apply EQs sampled from these distributions to
our training set distribution in (b). We observe that the augmented EQ distribution
in (d) becomes more similar to the target distribution in (c).

We then randomly sample a target EQ according to our fit models (independently

per frequency band), calculate the distance between the source and target EQ, and

then design an FIR filter to compensate for the difference. For simplicity, we use the

window method for FIR filter design (Smith III, 2008). Note, we do not require a

perfect filter design method. We simply need a procedure to increase the diversity

of our data. Also note, we intentionally sample our augmented IRs to have a larger

variance than the recorded IRs to further increase the variety of our training data.

We compute the log Mel-frequency spectrogram for each four second audio clip,

which is commonly used for speech-related tasks (Chen et al., 2018; Eskimez et al.,

2018). We use a Hann window of size 256 with 50% overlap during computation of the

short-time Fourier transform (STFT) for our 16kHz samples. Then we use 32 Mel-

scale bands and area normalization for Mel-frequency warping (Stevens et al., 1937).
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The spectrogram power is computed in decibels. This extraction process yields a 32

x 499 (frequency x time domain) matrix feature representation. All feature matrices

are normalized by the mean and standard deviation of the training set.

Network Architecture and Training

We propose using a network architecture differing only in the final layer for both T60

and room equalization estimation. Six 2D convolutional layers are used sequentially

to reduce both the time and frequency resolution of features until they have approx-

imately the same dimension. Each conv layer is immediately followed by a rectified

linear unit (ReLU) (Nair and Hinton, 2010) activation function, 2D max pooling, and

batch normalization. The output from conv layers is flattened to a 1D vector and

connected to a fully connected layer of 64 units, at a dropout rate of 50% to lower

the risk of overfitting. The final output layer has 7 fully connected units to predict

a vector of length 7 for T60 or 6 fully connected units to predict a vector of length

6 for frequency equalization. This network architecture is inspired by Bryan (2020),

where it was used to predict full-band T60. We updated the output layer to predict

the more challenging sub-band T60, and also discovered that the same architecture

predicts equalization well.

For training the network, we use the mean square error (MSE) with the ADAM

optimizer (Kingma and Ba, 2014) in Keras (Chollet et al., 2015). The max number

of epochs is 500 with an early stopping mechanism. We choose the model with the

lowest validation error for further evaluation on the test set. Our model architecture

is shown in Figure 3.5.

3.3.4 Acoustic Material Optimization

Our goal is to optimize the material absorption coefficients at the same octave bands

as T60 of a set of room materials to match the sub-band T60 of the simulated sound
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with the target predicted in § 3.3.3.

Ray Energy. We borrow notation from Li et al. (2018). Briefly, a geometric acous-

tic simulator generates a set of sound paths, each of which carries an amount of sound

energy. Each material mi in a scene is described by a frequency dependent absorption

coefficient, ρi. A path leaving the source is reflected by a set of materials before it

reaches the listener. The energy fraction that is received by the listener along path j

is

ej = βj

Nj∏
k=1

ρmk , (3.1)

where mk is the material the path intersects on the kth bounce, Nj is the number of

surface reflections for path j, and βj accounts for air absorption (dependent on the

total length of the path). Our goal is to optimize the set of absorption coefficients

ρi to match the energy distribution of the paths ej to that of the environment’s IR.

Again similar to (Li et al., 2018), we assume the energy decrease of the IR follows an

exponential curve, which is a linear decay in dB space. The slope of this decay line

is m′ = −60/T60.

Objective Function. We propose the following objective function:

J(ρ) = (m−m′)2 (3.2)

where m is the best fit line of the ray energies on a decibel scale:

m =
n
∑n

i=0 tiyi −
∑n

i=0 ti
∑n

i=0 yi

n
∑n

i=0 t
2
i − (

∑n
i=0 ti)

2 , (3.3)

with yi = 10log10(ei), which we found to be more robust than previous methods.

Specifically, in comparison with Equation (3) in Li et al. (2018), we see that they try

to match the slope of the energies relative to e0, forcing e0 to be at the origin on a
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dB scale. However, we only care about the energy decrease, and not the absolute

scale of the values from the simulator. We found that allowing the absolute scale to

move and only optimizing the slope of the best fit line produced a better match to

the target T60.

We minimize J using the L-BFGS-B algorithm (Zhu et al., 1997). The gradient

of J is given by

∂J

∂ρj
= 2(m−m′)

nti −
∑n

i=0 ti

n
∑n

i=0 t
2
i − (

∑n
i=0 ti)

2

10

ln(10)ei
∂ei
∂ρj

(3.4)

3.4 Analysis and Applications

3.4.1 Analysis

Speed. We implement our system on an Intel Xeon(R) CPU @3.60GHz and an

NVIDIA GTX 1080 Ti GPU. Our neural network inference runs at 222 fps on 4-second

sliding windows of audio due to the compact design (only 18K trainable parameters).

Optimization runs twice as fast with our improved objective function. The sound

rendering is based on the real-time geometric bi-directional sound path tracing from

Cao et al. (2017).

Sub-band T60 prediction. We first evaluate our T60 blind estimation model and

achieve a mean absolute error (MAE) of 0.23s on the test set (MIT IRs). While the

271 IRs in the test set have a mean T60 of 0.49s with a standard deviation (STD) of

0.85s at the 125Hz sub-band, the highest sub-band 8000Hz only has a mean T60 of

0.33s with a STD of 0.24s, which reflects a narrow subset within our T60 augmentation

range. We also notice that the validation MAE on ACE IRs is 0.12s, which indicates

our validation set and the test set still come from different distributions. Another

error source is the inaccurate labeling of low-frequency sub-band T60 as shown in
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Figure 3.7, but we do not filter any outliers in the test set. In addition, our data is

intended to cover frequency ranges up to 8000Hz, but human speech has less energy

in high-frequency range (Titze et al., 2017), which results in low signal energy for

these sub-bands, making it more difficult for learning.

(a) 125Hz sub-band. (b) 8000Hz sub-band.

Figure 3.7: Evaluating T60 from signal envelope on low and high frequency bands of
the same IR. Note that the SNR in the low frequency band is lower than the high
frequency band. This makes T60 evaluation for low frequency bands less reliable,
which partly explains the larger test error in low frequency sub-bands.

Material Optimization. When we optimize the room material absorption coeffi-

cients according to the predicted T60 of a room, our optimizer efficiently modifies the

simulated energy curve to a desired energy decay rate (T60) as shown in Figure 3.8.

We also try fixing the room configuration and set the target T60 to values uniformly

distributed between 0.2s and 2.5s, and evaluate the T60 of the simulated IRs. The

relationship between the target and output T60 is shown in Figure 3.9, in which our

simulation closely matches the target, demonstrating that our optimization is able to

match a wide range of T60 values.

To test the real-world performance of our acoustic matching, we recorded ground

truth IRs in 5 benchmark scenes, then use the method in Li et al. (2018), which

requires a reference IR, and our method, which does not require an IR, for comparison.
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Figure 3.8: Simulated energy curves before and after optimization (with target slope
shown).

Benchmark scenes and results are summarized in Table 3.2.

We apply the EQ filter to the simulated IR as a last step. Overall, we obtain a

prediction MAE of 3.42dB on our test set, whereas before augmentation, the MAE

was 4.72dB under the same training condition, which confirms the effectiveness of our

EQ augmentation. The perceptual impact of the EQ filter step is evaluated in §3.5.

3.4.2 Comparisons

We compare our work with two related projects, Schissler et al. (2017) and Kim

et al. (2019), where the high-level goal is similar to ours but the specific approach is

different.

Material optimization is a key step in our method and Schissler et al. (2017). One

major difference is that we additionally compensate wave effects explicitly with an

equalization filter. Figure 3.10 shows the difference in spectrogram where the high

frequency equalization was not properly accounted for. Our method better replicate

the rapid decay in the high frequency range. For audio comparison, please refer to
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Figure 3.9: Stress test our our optimizer. We uniformly sample T60 between 0.2s and
2.5s and set it to be the target. The ideal I/O relationship is a straight line passing
the origin with slope 1. Our optimization results matches the ideal line much better
than prior optimization method.

our supplemental video6.

Figure 3.10: We show the effects of our equalization filtering on audio spectrograms,
compared with Schissler et al. (2017). In the highlighted region, we are able to better
reproduce the fast decay in the high-frequency range, closely matching the recorded
sound.

We also want to highlight the importance of optimizing T60. In (Kim et al., 2019),

a CNN is used for object-based material classification. Default materials are assigned

to a limited set of objects. Without optimizing specifically for the audio objective, the

resulting sound might not blend in seamlessly with the existing audio. In Figure 3.11,
6https://gamma.umd.edu/pro/sound/sceneaware
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Table 3.2: Benchmark results for acoustic matching. These real-world rooms are of
different sizes and shapes, and contain a wide variety of acoustic materials such as
brick, carpet, glass, metal, wood, plastic, etc., which make the problem acoustically
challenging. We compare our method with Li et al. (2018). Our method does not
require a reference IR and still obtains similar T60 and EQ errors in most scenes
compared with their method. We also achieve faster optimization speed. Note that
the input audio to our method is already noisy and reverberant, whereas Li et al.
(2018) requires clean IR recording. All IR plots in the table have the same time and
amplitude scale.

Benchmark Scene

Size (m3) 1100
(irregular)

1428
(12x17x7) 72 (4x6x3) 352

(11x8x4)
# Main planes 6 6 11 6
Groundtruth IR

(dB scale)

Li et al. (2018) IR
(dB scale)

Opt. time (s) 29 43 71 46
T60 error (s) 0.11 0.23 0.02 0.10

EQ error (dB) 1.50 2.97 3.61 7.55
Ours IR

(dB scale)

Opt. time (s) 13 13 31 20
T60 error (s) 0.14 0.12 0.04 0.24

EQ error (dB) 2.26 3.86 3.46 4.62

we show that our method produces audio that matches the decay tail better, whereas

(Kim et al., 2019) produces a longer reverb tail than the recorded ground truth.

3.4.3 Applications

Acoustic Matching in Videos Given a recorded video in an acoustic environment,

our method can analyze the room acoustic properties from noisy, reverberant recorded

audio in the video. The room geometry can be estimated from video (Bloesch et al.,

2018), if the user has no access to the room for measurement. During post-processing,

we can simulate sound that is similar to the recorded sound in the room. Moreover,
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Figure 3.11: We demonstrate the importance on T60 optimization on audio amplitude
waveform. Our method optimizes the material parameters based on input audio and
matches the tail shape and decay amplitude with the recorded sound, whereas the
visual-based object materials from Kim et al. (2019) failed to compensate for the
audio effects.

virtual characters or speakers, such as the ones shown in Figure 3.1, can be added to

the video, generating sound that is consistent with the real-world environment.

Real-time Immersive Augmented Reality Audios Our method works in a

real-time manner and can be integrated into modern AR systems. AR devices are

capable of capturing real-world geometry, and can stream audio input to our pipeline.

At interactive rates, we can optimize and update the material properties, and update

the room EQ filter as well. Our method is not hardware-dependent and can be used

with any AR device (which provides geometry and audio) to enable a more immersive

listening experience.
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Real-world Computer-Aided Acoustic Design Computer-aided design (CAD)

software has been used for designing architecture acoustics, usually before construc-

tion is done, in a predictive manner (Pelzer et al., 2014; Kleiner et al., 1990). But

when given an existing real-world environment, it becomes challenging for traditional

CAD software to adapt to current settings because acoustic measurement can be

tedious and error-prone. By using our method, room materials and EQ properties

can be estimated from simple input, and can be further fed to other acoustic design

applications in order to improve the room acoustics such as material replacement,

source and listener placement (Morales et al., 2019), and soundproofing setup.

3.5 Perceptual Evaluation

We perceptually evaluated our approach using a critical listening test. For this test, we

studied the perceptual similarity of a reference speech recording with speech record-

ings convolved with simulated impulse responses. We used the same speech content

for the reference and all stimuli under testing and evaluated how well we can recon-

struct the same identical speech content in a given acoustic scene. This is useful

for understanding the absolute performance of our approach compared to the ground

truth results.

3.5.1 Design and Procedure

For our test, we adopted the multiple stimulus with hidden reference and anchor

(MUSHRA) methodology from the ITU-R BS.1534-3 recommendation (Series, 2014).

MUSHRA provides a protocol for the subjective assessment of intermediate quality

level of audio systems (Series, 2014) and has been adopted for a wide variety of

audio processing tasks such as audio coding, source separation, and speech synthesis

evaluation (Schoeffler et al., 2015; Cartwright et al., 2016).
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Figure 3.12: A screenshot of MUSHRA-like web interface used in our user study. The
design is from Cartwright et al. (2016).

In a single MUSHRA trial, participants are presented with a high-quality reference

signal and asked to compare the quality (or similarity) of three to twelve stimuli on a 0-

100 point scale using a set of vertical sliders as shown in Figure 3.12. The stimuli must

contain a hidden reference (identical to the explicit reference), two anchor conditions

– low-quality and high-quality, and any additional conditions under study (maximum

of nine). The hidden reference and anchors are used to help the participants calibrate

their ratings relative to one another, as well as to filter out inaccurate assessors in

a post-screening process. MUSHRA tests serve a similar purpose to mean opinion

(MOS) score tests (Series, 2016), but requires fewer participants to obtain results that

are statistically significant.

We performed our studies using Amazon Mechanical Turk (AMT), resulting in

a MUSHRA-like protocol (Cartwright et al., 2016). In recent years, web-based

MUSHRA-like tests have become a standard methodology and have been shown to

perform equivalently to full, in-person tests(Schoeffler et al., 2015; Cartwright et al.,

37



2016).

3.5.2 Participants

We recruited 261 participants on AMT to rate one or more of our five acoustic scenes

under testing following the approach proposed by Cartwright et al. (2016). To increase

the quality of the evaluation, we pre-screened the participants for our tests. To do

this, we first required that all participants have a minimum number of 1000 approved

Human Intelligence Task (HITs) assignments and have had at least 97 percent of all

assignments approved. Second, all participants must pass a hearing screening test

to verify they are listening over devices with adequate frequency response. This was

performed by asking participants to listen to two separate eight second recordings

consisting of a 55Hz tone, a 10kHz tone and zero to six tones of random frequency.

If any user failed to count the number of tones correctly after two or more attempts,

they were not allowed to proceed.

3.5.3 Training

After having passed our hearing screening test, each user was presented with a one

page training test. For this, the participant was provided two sets of recordings. The

first set of training recordings consisted of three recordings: a reference, a low-quality

anchor, and a high-quality anchor. The second set of training recordings consisted of

the full set of recordings used for the given MUSHRA trail, albeit without the vertical

sliders present. To proceed to the actual test, participants were required to listen to

each recording in full. In total, the training time was estimated to take approximately

two minutes.
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3.5.4 Stimuli

For our test conditions, we simulated five different acoustic scenes. For each scene,

a separate MUSHRA trial was created. In AMT language, each scene was presented

as a separate HIT per user. For each MUSHRA trial or HIT, we tested the follow-

ing stimuli: hidden reference, low-quality anchor, mid-quality anchor, baseline T60,

Baseline T60+EQ, proposed T60, and proposed T60+EQ.

As noted by the ITU-R BS.1534-3 specification (Series, 2014), both the reference

and anchors will have a significant effect on the test results, must resemble the artifacts

from the systems, and must be designed carefully. For our work, we set the hidden

reference as an identical copy of the explicit reference (required), which consisted of

speech convolved with the ground truth IR for each acoustic scene. Then, we set

the low-quality anchor to be completely anechoic, non-reverberated speech. We set

the mid-quality anchor to be speech convolved with an impulse response with a 0.5

second T60 (typical conference room) across frequencies, and uniform equalization.

For our baseline comparison, we included two baseline approaches following previ-

ous work (Li et al., 2018). More specifically, our Baseline T60 leverages the geometric

acoustics method proposed by Cao et al. (2017) as well as the materials analysis cal-

ibration method of Li et al. (2018). Our Baseline T60+EQ extends this and includes

the additional frequency equalization analysis (Li et al., 2018). These two baselines

directly correspond to the proposed materials optimization (Proposed T60) and equal-

ization prediction subsystems (Proposed T60+EQ) in our work. The key difference is

that we blindly estimate the parameters necessary for both steps blindly from speech.

3.5.5 User Study Results

When we analyzed the results of our listening test, we post-filtered the results follow-

ing the ITU-R BS.1534-3 specification (Series, 2014). More specifically, we excluded

assessors if they
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• rated the hidden reference condition for > 15% of the test items lower than a

score of 90

• or, rated the mid-range (or low-range) anchor for more than 15% of the test

items higher than a score of 90.

Using this post-filtering, we reduce our collected data down to 70 unique participants

and 108 unique test trials, spread across our five acoustic scene conditions.

Figure 3.13: Box plot results for our listening test. Participants were asked to rate
how similar each recording was to the explicit reference. All recordings have the
same content, but different acoustic conditions. Note our proposed T60 and T60+EQ
are both better than the Mid-Anchor by a statistically significant amount (approx10
rating points on a 100 point scale).

We show the box plots of our results in Figure 3.13. The median ratings for each

stimulus include: Baseline T60 (62.0), Baseline T60+EQ (85.0), Low-Anchor (40.5),

Mid-Anchor (59.0), Proposed T60 (61.5), Proposed T60+EQ (71.0), Hidden Reference

(99.5). As seen, the Low-Anchor and Hidden Reference outline the range of user
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scores for our test. In terms of baseline approaches, the Proposed T60+EQ method

achieves the highest overall listening test performance. We then see that our proposed

T60 method and T60+EQ method outperform the mid-anchor. Our proposed T60

method is comparable to the baseline T60 method, and our proposed T60+EQ method

outperforms our proposed T60-only method.

To understand the statistical significance, we perform paired t-tests between stim-

uli pairs. The p-value between Baseline T60 and Proposed T60 is 0.09, suggesting that

we cannot reject the null hypothesis of identical average scores between prior work

(which uses manually measured IRs) and our work. The p-value of Baseline T60+EQ

and Proposed T60+EQ, however, is 1.85e-6, suggesting our EQ method has a statisti-

cally different average (lower). The p-value of Proposed T60 and Proposed T60+EQ,

however, is 0.004, suggesting our EQ method does significantly improve performance

compared to our proposed T60-only subsystem. We also note that the p-value of the

Mid-Anchor and Proposed T60+EQ is 0.0002, suggesting our method is statistically

different (higher performing) on average than simply using an average room T60 and

uniform equalization.

In summary, we see that our proposed T60 computation method is comparable to

prior work, albeit we perform such estimation directly from a short speech recording

rather than relying on intrusive IR measurement schemes. Further, our proposed

complete system (Proposed T60+EQ) outperforms both the mid-anchor and proposed

T60 system alone, demonstrating the value of EQ estimation. Finally, we note our

proposed T60+EQ method does not perform as well as prior work, largely due to the

EQ estimation subsystem. This result, however, is expected as prior work requires

manual IR measurements, which result in perfect EQ estimation. This is in contrast

to our work, which directly estimates both T60 and EQ parameters from recorded

speech, enabling a drastically improved interaction paradigm for matching acoustics

in several applications.
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3.6 Summary

We present a new pipeline to estimate, optimize, and render immersive audio in

video and mixed reality applications. We present novel algorithms to estimate two

important acoustic environment characteristics – the frequency-dependent reverber-

ation time and equalization filter of a room. Our multi-band octave-based prediction

model works in tandem with our equalization augmentation and provides robust in-

put to our improved materials optimization algorithm. Our user study validates the

perceptual importance of our method. To the best of our knowledge, our method

is the first method to predict IR equalization from raw speech data and validate its

accuracy.

Limitations and Future Work To achieve a perfect acoustic match, one would

expect the real-world validation error to be zero. In reality, zero error is only a suf-

ficient but not necessary condition. In our evaluation tests, we observe that small

validation errors still allow for plausible acoustic matching. While reducing the pre-

diction error is an important direction, it is also useful to investigate the perceptual

error threshold for acoustic matching for different tasks or applications. Moreover,

temporal prediction coherence is not in our evaluation process. This implies that

given a sliding windows of audio recordings, our model might predict temporally in-

coherent T60 values. One interesting problem is to utilize this coherence to improve

the prediction accuracy and can be an interesting future direction.

Modeling real-world characteristics in simulation is a non-trivial task – as in pre-

vious work along this line, our simulator does not fully recreate the real world in

terms of precise details. For example, we did not consider the speaker or microphone

response curve in our simulation. In addition, sound sources are modeled as omni-

directional sources (Cao et al., 2017), where real sources exhibit certain directional

patterns. It remains an open research challenge to perfectly replicate and simulate
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our real world in a simulator.

Like all data-driven methods, our learned model performs best on the same kind

of data on which it was trained. Augmentation is useful because it generalizes the

existing dataset so that the learned model can extrapolate to unseen data. However,

defining the range of augmentation is not straightforward. We set the MIT IR dataset

as the baseline for our augmentation process. In certain cases, this assumption might

not generalize well to estimate the extreme room acoustics. We need to design bet-

ter and more universal augmentation training algorithms. Our method focused on

estimation from speech signals, due to their pervasiveness and importance. It would

be useful to explore how well the estimation could work on other audio domains,

especially when interested in frequency ranges outside typical human speech. This

could further increase the usefulness of our method, e.g., if we could estimate acoustic

properties from ambient/HVAC noise instead of requiring a speech signal.
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Chapter 4

Fast Learning-Based Acoustic

Scattering1

Figure 4.1: We show the dynamic scenes with various moving objects that are used to
evaluate our hybrid sound propagation algorithm. We compute the acoustic scattered
fields of each object using a neural network and couple them with interactive ray
tracing to generate diffraction and occlusion effects. Our approach can generate
plausible acoustic effects in dynamic scenes in a few milliseconds and we demonstrate
its benefits for sound rendering in virtual environments.

4.1 Introduction

Interactive sound propagation and rendering are increasingly used to generate plau-

sible sounds that can improve a user’s sense of presence and immersion in virtual

environments (Larsson et al., 2002; Liu and Manocha, 2020). Recent advances in ge-
1The work in this chapter has been published in Tang et al. (2021)
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ometric and wave-based simulation methods have lead to integration of these methods

into current games and virtual reality (VR) applications to generate plausible acous-

tic effects, including Project Acoustics (Mic, 2019), Oculus Spatializer (Ocu, 2019),

and Steam Audio (Ste, 2018). The underlying propagation algorithms are based on

using reverberation filters (Valimaki et al., 2012), ray tracing (Schissler et al., 2014;

Schissler and Manocha, 2018), or precomputed wave-based acoustics (Raghuvanshi

and Snyder, 2014b).

A key challenge in interactive sound rendering is handling dynamic scenes that

are frequently used in games and VR applications. Not only can the objects undergo

large motion or deformation, but their topologies may also change. In addition to

specular and diffuse effects, it is also important to simulate complex diffracted scatter-

ing, occlusions, and inter-reflections that are perceptible (James et al., 2006; Pulkki

and Svensson, 2019; Raghuvanshi and Snyder, 2014b). Prior geometric methods are

accurate in terms of simulating high-frequency effects and can be augmented with

approximate edge diffraction methods that may work well in certain cases (Tsingos

et al., 2001; Schissler et al., 2014), though their behavior can be erratic (Rungta et al.,

2016). On the other hand, wave-based precomputation methods can accurately sim-

ulate these effects, but are limited to static scenes (Raghuvanshi and Snyder, 2014b,

2018). Some hybrid methods are limited to interactive dynamic scenes with well-

separated rigid objects (Rungta et al., 2018). Our goal is to design similar hybrid

methods that can overcome these restrictions and can generate diffraction and occlu-

sion effects that translate into good perceptual differentiation (Rungta et al., 2016).

Many recent works use machine learning techniques for audio processing, including

recovering acoustic parameters of real-world scenes from recordings (Eaton et al.,

2016; Genovese et al., 2019; Tsokaktsidis et al., 2019). Furthermore, machine learning

methods have been used to approximate diffraction scattering and occlusion effects

from rectangular plate objects (Pulkki and Svensson, 2019) and frequency-dependent
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loudness fields for 2D convex shapes (Fan et al., 2020a). These results are promising

and have motivated us to develop good learning based methods for more general 3D

objects.

Main Results: We present a novel approach to approximate the acoustic scattering

field of an object in 3D using neural networks for interactive sound propagation in

dynamic scenes. Our approach makes no assumption about the motion or topology of

the objects. We exploit properties of the acoustic scattering field of objects for lower

frequencies and use neural networks to learn this field from geometric representations

of the objects.

Given an object in 3D, we use the neural network to estimate the scattered field at

runtime, which is used to compute the propagation paths when sound waves interact

with objects in the scene. The radial part of the acoustic scattering field is estimated

using geometric ray tracing, along with specular and diffuse reflections. Some of the

novel components of our work include:

• Learning acoustic scattering fields: We use techniques based on geometric

deep learning to approximate the angular component of acoustic wave propa-

gation in the wave-field. Our neural network takes the point cloud as the input

and outputs the spherical harmonic coefficients that represent the acoustic scat-

tering field. We compare the accuracy of our learning method with an exact

BEM solver, and the error on new, unseen objects (as compared to training

data). Our empirical results are promising and we observe average normalized

reproduction error(Lilis et al., 2010; Betlehem and Abhayapala, 2005) of 8.8%

in the pressure fields.

• Interactive wave-geometric sound propagation: We present a hybrid

propagation algorithm that uses a neural network-based scattering field repre-

sentation along with ray tracing to efficiently generate specular, diffuse, diffrac-

tion, and occlusion effects at interactive rates.
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• Plausible sound rendering for dynamic scenes: We present the first inter-

active approach for plausible sound rendering in dynamic scenes with diffraction

modeling and occlusion effects. As the objects deform or change topology, we

compute a new spherical harmonic representation using the neural network.

Compared with prior interactive methods, we can handle unseen objects at

real-time, without using precomputed transfer functions for each object.

• Perceptual evaluation: We perform a user study to validate the perceptual

benefits of our method. Our propagation algorithm generates more smooth and

realistic sound and has increased perceptual differentiation over prior methods

used for dynamic scenes (Schissler and Manocha, 2017; Rungta et al., 2018).

We demonstrate the performance in dynamic scenes with multiple moving objects and

changing topologies. The additional runtime overhead of estimating the scattering

field from neural networks is less than 1ms per object on a NVIDIA GeForce RTX

2080 Ti GPU. The overall running time of sound propagation is governed by the

underlying ray tracing system and takes few milliseconds per frame on multi-core

desktop PC. We also evaluate the accuracy of acoustic scattering fields, as shown in

Figure 4.7.

4.2 Related Work

4.2.1 Interactive Sound Rendering in Dynamic Scenes

At a broad level, techniques for dynamic scenes can be classified into reverberation

filters, geometric and wave-based methods, and hybrid combinations. The simplest

and lowest-cost algorithms are based on artificial reverberators (Valimaki et al., 2012),

which simulate the decay of sound in rooms. These filters are designed based on

different parameters and are either specified by an artist or computed using scene
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characteristics (Tsingos, 2009). They can handle dynamic scenes but assume that

the reverberant sound field is diffuse, making them unable to generate directional

reverberation or time-varying effects.

Many interactive techniques based on geometric acoustics and ray tracing have

been proposed for dynamic scenes (Vorländer, 1989; Taylor et al., 2012a; Schissler

and Manocha, 2017). They use spatial data structures along with multiple cores on

commodity processors and caching techniques to achieve higher performance. Fur-

thermore, hybrid combinations of ray tracing and reverberation filters (Schissler and

Manocha, 2018) have been proposed for low-power, mobile devices. In practice, these

methods can handle scenes with a large number of moving objects, along with sources

and the listener, but can’t model diffraction or occlusion effects well.

Many precomputation-based wave acoustics techniques tend to compute a global

representation of the acoustic pressure field. They are limited to static scenes, but

can handle real-time movement of both sources and the listener (Raghuvanshi et al.,

2010; Mehra et al., 2015). These representations are computed based on uniform or

adaptive sampling techniques (Chaitanya et al., 2019). Overall, the acoustic wave

field is a complex high-dimensional function and many efficient techniques have been

designed to encode this field (Raghuvanshi and Snyder, 2014b, 2018) within 100MB

and with a small runtime overhead. A hybrid combination of BEM and ray tracing has

been presented for dynamic scenes with well-separated rigid objects (Rungta et al.,

2018). A recent Planeverb system (Rosen et al., 2020) is able to perform 2D wave

simulation at interactive rates and calculate perceptual acoustic parameters that can

be used for sound rendering.

4.2.2 Machine Learning and Acoustic Processing

Machine learning techniques are increasingly used for acoustic processing applica-

tions. These include isolating the source locations in multipath environments (Fer-
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guson et al., 2018) and recovering the room acoustic parameters corresponding to

reverberation time, direct-to-reverberant ratio, room volume, equalization, etc. from

recorded signals (Eaton et al., 2016; Genovese et al., 2019; Tsokaktsidis et al., 2019;

Tang et al., 2019a). These parameters are used for speech processing or audio ren-

dering in real-world scenes. Neural networks have also been used to replace the

expensive convolution operations for fast auralization (Tenenbaum et al., 2019), to

render the acoustic effects of scattering from rectangular plate objects for VR applica-

tions (Pulkki and Svensson, 2019), or to learn the mapping from convex shapes to the

frequency dependent loudness field (Fan et al., 2020a). The last method formulates

the scattering function computation as a high-dimension image-to-image regression

and is mainly limited to convex objects that are isomorphic to spheres. In contrast,

our learning-based method can compute a good approximation of the acoustic scat-

tering field of arbitrary objects (e.g. non-convex or non-manifold).

4.3 Acoustic Scattering Preliminary

4.3.1 Helmholtz Equation

We can analyze the acoustic pressure field in the frequency domain by converting

P (x, t) from Equation (2.2) using Fourier transform

p(x, ω) = Ft{P (x, t)} =

∫ ∞

−∞
P (x, t)e−jωtdt. (4.1)

At each frequency ω the pressure field satisfies the homogeneous Helmholtz wave

equation

(∇2 + k2)p(x, ω) = 0, (4.2)
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where k = ω
c

is the wavenumber. We can expand the Laplacian operator in terms of

spherical coordinates (r, θ, ϕ) as

(
∂2

∂r2
+

2

r

∂

∂r
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2
+ k2

)
p = 0. (4.3)

The general free-field solution of (4.3) can be formulated as

p(x, ω) =
∞∑
l=0

+l∑
m=−l

[
Almh

(1)
l (kr) +Blmh

(2)
l (kr)

]
Y m
l (θ, ϕ), (4.4)

where h
(1)
l and h

(2)
l are Hankel functions of the first and the second kind, respectively.

Alm and Blm are arbitrary constants, Almh
(1)
l (kr) + Blmh

(2)
l (kr) together represents

the radial part of the solution and the spherical harmonics term Y m
l (θ, ϕ) represents

the angular part of the solution.

4.3.2 Acoustic Wave Scattering

Equation (4.2) describes the behavior of acoustic waves in free-field conditions. When

a propagating acoustic wave generated by a sound source interacts with an obstacle

(the scatterer), a scattered field is generated outside the scatterer. The Helmholtz

equation can be used to describe this scenario:

(∇2 + k2)p(x, ω) = −Q(x, ω), ∀x ∈ E, (4.5)

where E is the space that is exterior to the scatterer and Q(x, ω) represents the

acoustic sources in the frequency domain. Common types of sound sources include

monopole sources, dipole sources, and plane wave sources. To obtain an exact solution

to Equation (4.5), the boundary conditions on the scatterer surface S need to be

specified. In this work, we assume all the scattering objects are sound-hard (i.e. all

energy is scattered, not absorbed) and therefore use the zero Neumann boundary
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condition for all S:
∂p

∂n(x)
= 0, ∀x ∈ S, (4.6)

where n(x) is the normal vector at x. Alternatively, other conditions including

the sound-soft Dirichlet boundary condition and the mixed Robin boundary con-

dition (Pierce and Beyer, 1990) can be used to model different acoustic scattering

problems. When the boundary conditions are fully defined, the constants in Equa-

tion (4.4) can be uniquely determined.

4.3.3 Global and Localized Sound Fields

Sound fields typically refer to the sound energy/pressure distribution over a bounded

space as generated by one or more sound sources. The global sound field in an acous-

tic environment depends on each sound source location, the propagating medium,

and any reflections from boundary surfaces and objects. This requires solving the

wave equation in the free-field condition and evaluating inter-boundary interactions

of sound energy using a global numeric solver (details in § 4.3.1). In this case, the

position of all scene objects/boundaries and sound sources needs to be specified be-

forehand, and any change in these conditions changes the sound field. The exact

computation of the global pressure field is very expensive and can take tens of hours

on a cluster (Mehra et al., 2013; Raghuvanshi et al., 2010; Raghuvanshi and Snyder,

2014b).

Our goal is to generate plausible sounds in virtual environments with dynamic

objects. Therefore, it is important to model the acoustic scattering field (ASF) of

each object. The ASFs of different objects are used to represent the localized pressure

field, which is needed for diffraction and inter-reflection effects (James et al., 2006;

Mehra et al., 2013). At the same time, the sound field in the free space (e.g., the far-

field) between two distant objects is approximated using ray tracing, and we do not
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compute that pressure field accurately using a wave-solver. In practice, computing

the sound field in a localized space for each object in the scene is much simpler and

easier to represent than using a global solver (Mehra et al., 2013; Rungta et al., 2018).

4.3.4 Overview

We present a learning method to approximate the ASFs of static or dynamic 3D

objects of moderate sizes. In terms of correlation between the object shape and

its scattering field, the volume of the scatterer closely relates to its low-order shape

characteristics that can be represented by coarse triangle faces, which dominate the

low-frequency scattering behaviors; while at high frequencies, this relationship shifts

to high-order shape characteristics (i.e., geometrical details). Given the powerfulness

of deep learning inference, we hypothesize the scattering sound distribution can be

directly learned from the scatterer geometry, without solving the complicated wave

equations. The inference speed on a modern GPU far exceeds conventional wave

solvers, making deep neural networks suitable for interactive sound rendering appli-

cations. Therefore, we propose using appropriate 3D representation of objects to feed

a neural network that can learn its corresponding scattered acoustic pressure field.

We build and evaluate our method mainly on low frequency sounds and leverage

state-of-the-art geometric ray-tracing techniques to handle high frequency sounds.

For each object, we consider a spherical grid of incoming directions and model

the plane-waves from each direction of this grid. For each plane wave, our goal

is to compute the scattered field for the object on an offset surface of the object.

Our geometric deep learning method is used to compute the angular portion of the

scattered field (Equation 4.4). If two objects move and are in a touching configuration,

our learning algorithm treats them as a one large object and estimates its scattered

field. Similarly, we can recompute the scattered field for a deforming object. An

overview of our approach is illustrated in Figure 4.2.
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Figure 4.2: Overview: Our algorithm consists of the training stage and the runtime
stage. The training stage uses a large dataset of 3D objects and their associated
acoustic pressure fields computed using an accurate BEM solver to train the network.
The runtime stage uses the trained neural network to predict the sound pressure field
from a point cloud approximation of different objects at interactive rates.

4.4 Learning-based Sound Scattering

4.4.1 Wave Propagation Modeling

Our approach is designed for synthetic scenes and we assume a geometric represen-

tation (e.g., triangle mesh) is given to us. So the acoustic scattering field p(x, ω)

around the object can be solved numerically (derivation in § 4.3.1 and 4.3.2). In this

work, we propose modeling the angular part of the scattering field using our learning

based pressure field inference. The radial part is approximated using geometric sound

propagation techniques.

Radial Decoupling

Our goal is to determine the scattering field exterior to an object using a wave-

solver. This field needs to be compactly encoded for efficient training. As shown in

Equation (4.4), acoustic wave propagation in the free-field can be decomposed into

radial and angular components. Furthermore, the radial sound pressure in the far-

field follows the inverse-distance law (Beranek and Mellow, 2012): p ∼ 1/r, as shown

in Figure 4.3. We utilize this property to extrapolate the full ASF from one of its

far-field “snapshots” at a fixed radius, so that the full ASF does not need to be stored.

Following the inverse-distance law, the sound pressure at any far-field location (r, θ, ϕ)
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can be computed as

p(r, θ, ϕ, ω) =
rref
r

p(rref , θ, ϕ, ω), (4.7)

where rref is the reference distance and only p(rref , ·, ·, ·) needs to be computed and

stored. For brevity, we omit r in following sections.

Figure 4.3: Simulated sound pressure fall-off and inverse-distance law fitted
curves: We calculate the sound pressure around a sound scatterer in our dataset
using the BEM solver as reference. We examine the sound pressure from 1m to 10m
scattered along 5 directions (0◦, 72◦, 144◦, 216◦, and 288◦). We regard the sound pres-
sure value at 10m to correspond to far-field condition, and inversely fit the pressure
values for distance within 10m according to Equation 4.7. We userref = 5m is used
for generating our ASFs, although other values can be used as well.

Angular Pressure Field Encoding

A spherical field consisting of a fixed number of points (e.g., 642 points evenly dis-

tributed on a sphere surface) is obtained by generating an icosphere with 4 subdi-

visions. Real valued scattered sound pressures are evaluated at these field points

during wave-based simulation. Spherical harmonics (SH) can represent a spherical

scalar field compactly using a set of SH coefficients; they have been widely used for

3D sound field recording and reproduction (Poletti, 2005). SH function up to order

lmax has M = (lmax +1)2 coefficients. The angular pressure at the outgoing direction
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(θ, ϕ) can be evaluated as

p(θ, ϕ, ω) =
lmax∑
l=0

+l∑
m=−l

Y m
l (θ, ϕ)cml (ω), (4.8)

where Y m
l (θ, ϕ) are the SH basis functions at degree l and order m, and cml (ω) are

the SH coefficients that encode our angular pressure fields. Increasing the number of

coefficients can lead to more challenges because the dimension of our learning target

is raised.

4.4.2 Learning Spherical Pressure Fields

We need an appropriate geometric representation for the underlying objects in the

scene so that we can apply geometric deep learning methods to compute the ASF. It

is important that our approach should be able handle dynamic scenes with moving

objects or changing topology. It can be difficult to handle such scenarios with mesh-

based representations (Hanocka et al., 2019; Tan et al., 2018; Zheng et al., 2017). For

example, (Hanocka et al., 2019) calculates intrinsic geodesic distances for convolution

operations, which cannot be applied when one big object breaks into two.

Our approach uses a point cloud representation of the objects in the scene as an

input. And we leverage the PointNet (Charles et al., 2017) architecture to regress

the spherical harmonics term cml in Equation (4.8). PointNet is a highly efficient and

effective network architecture that works on raw point cloud input, and can perform

various tasks including 3D object classification, semantic segmentation and our ASF

regression. It also respects the permutation invariance of points. We slightly modify

its output layers to predict the SH vector as shown in Figure 4.4.
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Figure 4.4: PointNet regression: Given an input point cloud with N = 1024 3D
points, we feed it to the PointNet architecture (Charles et al., 2017) until maxpooling
to extract the global feature. Then we use multi-layer perceptrons (MLPs) of layer
size 256, 128, and 16 to map the feature to a SH vector of length 16 representing the
scattering field.

4.5 Interactive Sound Propagation with Wave-Ray

Coupling

In this section, we describe how our learning-based method can be combined with

geometric sound propagation techniques to compute the impulse responses for given

source and listener positions. Then, we can render them in highly dynamic scenes.

Hybrid Sound Propagation We use a hybrid sound propagation algorithm that

combines wave-based and ray acoustics. Each of them handles different parts of

wave acoustics phenomena, but they are coupled in terms of incoming and outgoing

energies at multiple localized scattering fields. Specifically, our trained neural network

estimates the scattering field and is used to compute propagation paths when sound

interacts with obstacles in the scene. On the other hand, modeling sound propagation

in the air along with specular and diffuse reflections at large boundary surfaces (e.g.,

walls, floors) is computed using ray tracing methods (Schissler et al., 2014; Schissler

and Manocha, 2017; Rungta et al., 2018).

Ray Tracing with Localized Fields Our localized ASFs are represented using SH

coefficients. Given the most general ray tracing formulation at a scattering surface,

the sound intensity Iout of an outgoing direction (θo, ϕo) from a scattering surface is
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given by the integral of the incoming intensity from all directions:

Iout(θo, ϕo, ω) =

∫
S

Iin(θi, ϕi, ω)f(θi, ϕi, θo, ϕo, ω)dS, (4.9)

where S represents the directions on a spherical surface around the ray hit point,

Iin(θi, ϕi, ω) is the incoming sound intensity from direction (θi, ϕi), and f(θi, ϕi, θo, ϕo, ω)

is the bi-directional scattering distribution function (BSDF) that is commonly used

in visual rendering (Pharr et al., 2016). Our problem of acoustic wave scattering is

different from visual rendering in two aspects: (1) sound wave scatters around objects,

whereas light mostly transmits to visible directions or propagates through transpar-

ent materials; (2) BSDFs are point-based functions that depend on both incoming

and outgoing directions, whereas our localized scattered fields are region-based func-

tions. Therefore, we replace BSDFs in Equation (4.9) with our localized scattered field

p(θ, ϕ, ω) representation from Equation (4.8). Our choice of a spherical offset surface

to model the scattered field also enables us to perform integration over the whole

spherical surface in a straightforward manner, since evaluating spherical coordinates

is efficient with SH functions. Although p(θ, ϕ, ω) encodes only the outgoing direc-

tions and assumes incoming plane waves to −x direction, one can easily rotate the

point cloud to align any incoming direction to the −x direction and use our network

to infer p(θ, ϕ, ω) at that direction. We update Equation (4.9) to

Iout(θo, ϕo, ω) =

∫
S

Iin(θi, ϕi, ω)p
2(θi, ϕi, ω)dS. (4.10)

We use the Monte Carlo integration to numerically evaluate the outgoing scattered

intensity:

Iout(θo, ϕo, ω) ≈
1

N

N∑
j=1

Iin(θj, ϕj, ω)p
2(θj, ϕj, ω)

Pr(θj, ϕj)
, (4.11)
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where N is the number of samples and Pr(θj, ϕj) is the probability of generating

a sample for direction (θj, ϕj). A uniform sampling over the sphere surface gives

Pr(θj, ϕj) =
1
4π

. As N increases, the approximation becomes more accurate.

Diffraction Compensation In wave acoustics, the total sound field at a position

can be decomposed into the sum of the free-field sound pressure and the scattered

sound field. Similar to (Rungta et al., 2018), we only have computed the scattered

sound field up to now. But when the listener is obstructed from the sound source, the

traditional ray-tracing algorithm will miss the contribution from the free-field, which

will result in a very unnatural phenomenon: the sound would be greatly attenuated

by a single obstacle if we only render the scattered sound, whereas in a realistic

setup, low-frequency sound should not be attenuated by a small obstacle by much.

To address this issue in a ray-tracing context, we propose to approximate sound

interference with and without an obstacle depending on an extra visibility check.

Specifically, for a sound source from direction (θj, ϕj) and the listener at (θo, ϕo), we

calculate the sound at the listener position based on whether they are blocked by a

scatterer from each other as:

Iout(θo, ϕo, ω) ≈


1
N

∑N
j=1

Iin(θj ,ϕj ,ω)(1−p2(θj ,ϕj ,ω))

Pr(θj ,ϕj)
, if invisible

1
N

∑N
j=1

Iin(θj ,ϕj ,ω)p
2(θj ,ϕj ,ω)

Pr(θj ,ϕj)
, if visible

(4.12)

Note that the visible case remains the same as Equation (4.11), because the direct

response will be automatically accounted for by the original ray-tracing pipeline. Ob-

viously, this implementation is not physically accurate compared with wave acoustic

simulations, since additional phase information is missing. However, this formulation

will generate more realistic and more smooth sound rendering than prior work that

only considers the scattering field, and we verify its benefits through a perceptual

evaluation in § 4.7.
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4.6 Implementation and Results

In this section, we describe our implementation details and demonstrate the perfor-

mance on many dynamic benchmarks.

4.6.1 Data Generation

Dataset To generate our learning examples, we choose to use the ABC Dataset (Koch

et al., 2019). This dataset is a collection of one million general Computer-Aided De-

sign (CAD) models and is widely used for evaluation of geometric deep learning

methods and applications. In particular, this dataset has been used to estimate of

differential quantities (e.g., normals) and sharp features, which makes it attractive

for learning ASFs as well. We sample 100,000 models from the ABC Dataset and

process them by scaling objects such that their longest dimension is in the range of

[1m, 2m]. The choice of such an object size limit is not fixed and can depend on the

specific problem domain (e.g., size of objects used in applications like games or VR).

Because the scattered pressure field is orientation-dependent, we augment our models

by applying random 3D rotations to the original dataset to create an equal-sized rota-

tion augmented dataset. To generate accurate labeled data, we use an accurate BEM

wave solver, placing a plane wave source with unit strength propagating to the −x

direction. The solver outputs the ASF for each object, which becomes our learning

target. The dataset pipeline is also illustrated in Figure 4.5.

Mesh Pre-processing The original meshes from the ABC Dataset have high levels

of details with fine edges of length shorter than 1cm. Dense point cloud inputs could

also be modeled or collected from the real-world scenes with granularity similar to

this dataset. However, a high number of triangle elements in a mesh will significantly

increase the simulation time of BEM solvers. For wave-based solver, our highest

simulation frequency is 1000Hz, which converts to a wavelength of 34cm. Therefore,
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Figure 4.5: Our dataset generation pipeline for neural network training:
Given a set of CAD models, we apply random rotations with respect to their center
of mass to generate a larger augmented dataset and use a BEM solver to calculate
the ASFs.

we use the standard procedure of mesh simplification and mesh clustering algorithm

from the vcglib 2 to ensure that our meshes have a minimum edge length of 1.7cm,

which is 1/20 of our shortest target wavelength. This is sufficient according to the

standard techniques used in BEM simulators (Marburg, 2002). Most meshes after

pre-processing have fewer than 20% number of elements than the original and the

BEM simulation for dataset generation gains over 10× speedup.

BEM Solver We use the FastBEM Acoustics software 3 as our wave-based solver.

Simulations are run on a Windows 10 workstation that has 32 Intel(R) Xeon(R) Gold

5218 CPU cores with multi-threading. First we use the adaptive cross approximation

(ACA) BEM (Kurz et al., 2002) to compute the ASF since it can achieve near O(N)

computational performance for small to medium sized models (e.g., element count

N ≤ 100, 000). If it fails to converge within some fixed number of iterations, we use
2http://vcg.isti.cnr.it/vcglib/
3https://www.fastbem.com/
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the conventional and accurate BEM solver. Overall, it takes about 12 days to compute

the ASF up to 1000Hz frequency of about 100,000 objects from the ABC Dataset.

The sound pressure field is evaluated at 642 field points that are evenly distributed

on the spherical field surface. Next, we use pyshtools 4 software (Wieczorek and

Meschede, 2018) to compute the spherical harmonics coefficients from the pressure

field using least squares inversion.

Reference Field Distance Since the inverse-distance law has increasing error in

the near-field of objects, we need to find a suitable distance for computing our ref-

erence field. We experimentally simulate the sound pressure fall-off with respect to

distance and observe that sound pressure that is 5m or further away from the scat-

terer closely agrees with this far-field approximation (see Figure 4.3). Therefore, we

choose to calculate the pressure field on an offset surface 5m away from the scatterer’s

center using a BEM solver (i.e., setting rref = 5m in Equation 4.7). Note that this

choice of 5m is not strict or fixed. If higher accuracy along the radial line is desired,

multiple locations (especially in the near field) can be sampled during the simulation

to interpolate the curve at a higher accuracy. The precomputation time and memory

overhead will increase linearly with respect to the number of sampled distance fields.

Max Spherical Harmonics Order We experiment with the number of SH coeffi-

cients by projecting our scattered sound pressure fields to SH functions with different

orders, as shown in Figure 4.6. Based on this analysis, we choose to use up to a

3rd order SH projection, which yields sufficiently small fitting errors (relative error

smaller than 2%) with 16 SH coefficients. This sets the output of our neural network

(Section 4.2.3) to be a vector of length 16.
4https://shtools.oca.eu/shtools/public/index.html
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Figure 4.6: Spherical harmonics approximation of sound pressure fields: We
evaluate different orders of SH functions to fit our pressure fields at 4 frequencies and
calculate the relative fitting errors.

4.6.2 Network Training

Our network model is trained on a GeForce RTX 2080 Ti GPU using the Tensorflow

framework (Abadi et al., 2016). The dataset is split into training set and test set

using the ratio 9 : 1. In the training stage, we use Adam optimizer to minimize L2

norm loss between predicted spherical harmonic coefficients and the groundtruth. In

practice, the initial learning rate is set to 1 × 10−3, which decays exponentially at a

rate of 0.9 and clips at 1×10−5. The batch size is set to 128 and typically our network

converges after 100 epochs in 8 hours. The number of our trainable parameters is

about 800k.

4.6.3 Runtime System and Benchmarks

We use the geometric sound propagation and rendering algorithm described in (Schissler

et al., 2014). Our sound rendering system traces sound rays at octave frequency bands

at 125Hz, 250Hz, 500Hz, 1000Hz, 2000Hz, 4000Hz, and 8000Hz. The direct out-

put from ray tracing for each frequency band is the energy histogram with respect
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to propagation delays. We take square root of these responses to compute the fre-

quency dependent pressure response envelopes. Broadband frequency responses are

interpolated from our traced frequency bands, and the inverse Fourier transform is

used to re-construct the broadband impulse response. In theory, it is possible to en-

code phase information within a spherical harmonics representation. However, prior

auralization research (Kuttruff, 1993) suggests that using a random phase spectrum

along with the energy response does not introduce noticeable sound difference during

auralization. Therefore, our method does not preserve phase information to keep the

system light-weight.

We require that the wall boundaries are explicitly marked in our scenes. As a

result, when a ray hits the wall, only conventional sound reflections occur for all

frequencies. During audio-visual rendering, when a ray hits a scattering object, we

first extend the hit point along its ray direction by 0.5m and use it as the scattering

region center. We include all the points within a search radius of 1m from the region

center to generate a point cloud approximation of the scatterer. This point cloud

is resampled using furthest point sampling and fed into our neural networks. Our

network predicts the ASFs for sound frequencies corresponding to 125Hz, 250Hz,

500Hz and 1000Hz. The higher frequencies (i.e., 2000Hz, 4000Hz, and 8000Hz) are

handled by conventional geometric ray-tracing with specular and diffuse reflections

and it does not use ASFs. Our neural network has small prediction overhead of

less than 1ms per view on an NVIDIA GeForce RTX 2080 Ti GPU. The interactive

runtime propagation system is illustrated in Figure 4.2. Our ray-tracer performs 200

orders of reflections to generate late reverberation.

We evaluate the performance of our hybrid sound propagation and rendering al-

gorithms several benchmark scenes shown in Figure 4.1 and Table 4.6.3. They have

with varying levels of dynamism in terms of moving objects and are demonstrated in

63



Scene Benchmark Description #Triangle Frame time
Floor One static sound scatterer and one static sound

source above an infinitely large floor. The
listener moves horizontally so that the sound
source visibility changes periodically. This is
the simplest case where no sound reverbera-
tion occurs so as to accentuate the effect of
sound diffraction.

4065 10.65ms

Sibenik Two disjoint moving objects are used as scat-
terers in a church. The two scatterers revolve
around each other in close proximity such that
there are complicated near-field interactions
of sound waves. This scene is a reverberant
benchmark.

122798 6.87ms

Trinity Six objects fly across a large indoor room and
dynamically generate new composite scatter-
ers or decompose into separate scatterers (i.e.,
changing topologies). As a result, the total
number of separate scattering entities in the
scene change and prior methods (Rungta et al.,
2018) are not effective. The occluded regions
also change dynamically and create challeng-
ing scenarios for sound propagation.

386007 12.95ms

Havana Two rotating walls that are generally larger
than scatterers in previous benchmarks in a
half-open space. We use this benchmark to
show that our approach can also handle large
static objects, in addition to a large number of
dynamic objects. It is an outdoor scene with
moderate reverberation.

54383 6.78ms

Table 4.1: Runtime performance on our benchmarks. The computation of ASFs takes
≤ 1ms per view and most frame time is spent in ray tracing.
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our supplemental video5.

4.6.4 Analysis

(a) ASF of static objects from the unseen test set.

(b) ASF of dynamically moving objects (lowest and highest frequencies). We recompute the
ASF at each time instance using our network.

(c) ASFs of a deforming object (lowest and highest frequencies), computed using our network.

Figure 4.7: Comparing ASF prediction accuracy in latitude-longitude plots:
We highlight the ASFs for different simulation frequencies. For each image block, the
left column shows the mesh rendering of the objects. The Lat-Long plots visualize
the ASF used in Equation (4.9) by frequency using perceptually uniform colormaps:
the top row (Target) is the groundtruth ASF computed using a BEM solver on the
original mesh; the bottom row (Predicted) represents the ASF computed using our
neural network based on point-cloud representation. The error metric NRE from
Equation (4.13) is annotated above predicted ASFs.

Accuracy Evaluation Our goal is to approximate the acoustic scattering fields of

general 3D objects. While there is a preliminary 2D scattering dataset (Fan et al.,
5https://gamma.umd.edu/pro/sound/asf
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2020a), there are no general or well-known datasets or benchmarks for evaluating such

ASFs or related computations. Therefore, we use 10k objects from our test dataset

to evaluate the performance of our trained network in terms of accuracy. Compared

with the original ABC Dataset, our test dataset has been augmented in terms of scale

and using different orientations to evaluate the performance of our learning method.

Since the prediction p(θ, ϕ, ω) ∈ [0, 1] from our network is used as the BSDF in

Equation (4.9), by fixing ω and varying θ and ϕ, we visualize the field using latitude-

longitude plots in Figure 4.7. We use the common normalized reproduction error

(NRE) (Lilis et al., 2010; Betlehem and Abhayapala, 2005) to measure the error level

of our predicted fields, which is defined as:

E(ω) =

∫ 2π

0

∫ π

0
|ptarget(θ, ϕ, ω)− ppredict(θ, ϕ, ω)|2dϕdθ∫ 2π

0

∫ π

0
|ptarget(θ, ϕ, ω)|2dϕdθ

. (4.13)

We analyze three types of results. 1) Static Objects: Figure 4.7a shows a subset

of CAD objects sampled from our test set, which is from the same distribution as

the training set. The average NREs over the entire test set are 4.2%, 7.6%, 8.5%, 10%

for 125Hz, 250Hz, 500Hz, and 1000Hz respectively, with an overall NRE of 8.8%.

In addition, we show the NRE distribution in Figure 4.8, where we see most test

errors are contained below the average NRE. We observe a close visual match in most

objects across frequencies. 2) Dynamic Objects: Figure 4.7b shows an example

where two disjoint objects moves in proximity. Such scenarios are not created for the

training set. We show the compraison and NREs at the lowest and highest frequencies.

3) Deforming objects: Figure 4.7c shows an example where a sphere deforms in

different parts.

These examples show that our network is able to perform consistently well on a

large unseen test set when they are similar to the CAD models in training. Prelimi-

nary results on dynamic objects and deforming objects indicate that our network has
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Figure 4.8: Distribution of test set prediction errors: We also mark the
50%, 75% and 95% percentiles in the error histogram.

the potential to generalize to more complicated scenarios that are not explicitly mod-

eled during training, although we cannot provide the error bound on these cases. Note

that the ASFs are not directly the perceived sound field at specific listener positions

- instead they are intermediate transfer functions as one part in the sound rendering

pipeline. Therefore, we further demonstrate the perceptual benefits of our predicted

ASFs in §4.7 and show that we can reliably generate plausible sound renderings under

this error level.

Frequency Growth In theory, our learning-based framework and runtime sys-

tem can also incorporate wave frequencies beyond 1000Hz. However, two important

factors need to be considered when extending our setup: 1) the wave simulation

time increases with the simulation frequency (e.g., between a square and cubic func-

tion for an accurate BEM solver); and 2) the ASF becomes more complicated at

higher frequencies, which makes it more difficult to be learned or approximated us-

ing the same neural network. The per-object simulation time in our experiment is

0.87s, 1.10s, 2.04s, 2.80s for 125Hz, 250Hz, 500Hz, and 1000Hz, respectively. Note

that the simulation time is governed much by the choice of the wave solver, as well

as the relevant parameters/strategies used. We pre-processed our meshes according

to the highest simulation frequency and used that mesh representation for all fre-

quencies. When a higher frequency needs to be added, the meshes need to have finer
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details, meaning more boundary elements will be involved. A frequency-adaptive

mesh simplification strategy (Li et al., 2015) can be used to reduce the simulation

time at low frequencies. Our network prediction error also grows with the target

frequency, but not at a prohibitive rate.

4.7 Perceptual Evaluation

We perceptually evaluate our method using audio-visual listening tests. Our goal is to

verify that our method generates plausible sound renderings and identify conditions it

may or may not work well. We evaluate three pipelines: 1) Using predicted ASFs and

our diffraction handling (ours); 2) Using predicted ASFs and the scattering sound

rendering pipeline in diffraction kernels (DK) (Rungta et al., 2018); and 3) Using

geometric sound propagation only (GSound) (Schissler and Manocha, 2017). The

reason for choosing the two alternatives is that GSound is the state-of-the-art for

interactive sound propagation without diffraction modeling. DK is regarded as state

of the art hybrid algorithm for interactive sound propagation in dynamic scenes with

rigid objects and uses ASFs precomputed by a BEM solver. Since wave-based methods

are limited to static scenes, they are not included in our evaluation.

4.7.1 Participants

We performed our studies using Amazon Mechanical Turk6 (AMT), a popular online

crowdsourcing platform that can help data collection. We recruited 71 participants on

AMT to take our study. To ensure the quality of our evaluation, we pre-screened our

participants for this study. The pre-screening question is designed to test whether the

participant has the proper listening device and is in a comfortable listening environ-

ment, so that they can tell basic qualitative differences between audios. Specifically,
6https://www.mturk.com/
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we convolved three impulse responses of reverberation times 0.2s, 0.6s and 1.0s with

a 5-second long clean human speech recording to generate three corresponding rever-

berant speech. The commonly used just-noticeable-difference (JND) of reverberation

times is a 5% relative change (ISO, 2009), so in normal conditions we expect a listener

to correctly rank our three audios by their reverberation levels. Each participant is

asked to listen to the three audios with no time limit, and rank them by their re-

verberance levels. The initial presentation order of the three audios is randomized

for each participant. After pre-screening, our participants consist of 35 males and 16

females, with an average age of 35.9 and a standard deviation of 9.5 years.

4.7.2 Training

As expected, general listeners have varied levels of understanding for sound effects,

and we try to diminish this variance to some extent through a quick introduction

of sound diffraction. During the training, we provide educational materials about

sound diffraction including texts in non-academic language and a short YouTube

video showing this phenomenon in the real world (where the sound travels around a

pillar while the sound source is invisible). These materials require about one minute

to read and watch.

In addition, our participants become familiar with the video playing interface and

are asked to adjust their audio playing volume to a comfortable level before the main

listening tasks.

4.7.3 Stimuli and Procedure

We use the four scenes from benchmarks in §4.6.3 in combination with the three

sound rendering pipelines to populate 12 audio-visual renderings that we ask our

participants to give ratings on, with no time limit. We present the videos in four

pages one after another, each containing only three videos from the same scene (e.g.,
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Floor (ours), Floor (DK), and Floor (GSound)). The presentation order of the pages,

as well as the order of videos within each page, are randomized for each participant.

Immediately after each video, participants are asked to give a sound reality rating

and a sound smoothness rating. Both ratings range from 0 to 5 stars, with a half-star

granularity. Participants are asked to “give 5 stars for the most realistic and most

smooth video and 0 star for the least realistic and smooth”. Although we believe the

perceptual sensitivity can vary among individuals, we expect that participants will

be able to recognize cases where unnatural abrupt sound changes occur in response

to scene dynamics, and will penalize them in their ratings.

4.7.4 Results

The average study completion time is 13 minutes. We show the box plots of user

ratings in Figure 4.9. We are interested in user’s rating differences under the 3

test conditions (i.e., GSound, DK, and ours) on a per scene basis. Therefore, we

perform within-group statistical analysis to identify potential significant differences.

A significance level of 0.05 is adopted for all results in our discussions.

Sound Reality Ratings First we conduct a non-parametric Friedman test to the

ratings given to the 3 rendering conditions, and find significant group differences in

Floor (χ2 = 10.82, p < 0.01) and Havana (χ2 = 8.27, p = 0.02), but not in Trinity

(χ2 = 0.16, p = 0.92) or Sibenik (χ2 = 3.70, p = 0.16). Note that Floor and Havana

are basically open space scenes with less reverberation, whereas Trinity and Sibenik

are common indoor environments that have a lot of reverberation. Considering that

the sound power of reverberation is usually more dominant than diffraction, this result

indicates that it is harder to tell the perceptual difference between these rendering

pipelines when there is a strong reverberation. To identify the source of differences in

Floor and Havana scenes, we perform post-hoc non-parametric Wilcoxon signed-rank
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(a) Sound reality ratings by scene.

(b) Sound smoothness ratings by scene.

Figure 4.9: Perceptual evaluation results: User ratings are visualized as box
plots. A higher rating means better quality. Results are grouped by benchmark scene
and each box represents the rating of a specific rendering pipeline in that scene.

tests with Bonferroni correction (Holm, 1979). We observe that ours receives higher

ratings than DK and GSound in both Floor (Z = {215.0, 144.0}, p < 0.01) and

Havana (Z = {254.0, 186.5}, p < 0.01). However, there are no significant differences

between GSound and DK in any scene.

Sound Smoothness Ratings Following the same procedure, we perform a Fried-

man test to the smoothness ratings, and discover that there are significant group

differences in Floor (χ2 = 10.29, p < 0.01), Havana (χ2 = 7.63, p = 0.02), and Sibenik

(χ2 = 12.59, p < 0.01). Post-hoc Wilcoxon tests show consistent results with real-
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ity ratings - we are only able to see a higher smoothness rating of ours compared

with both DK and GSound in Floor (Z = {203.5, 186.0}, p = 0.01) and Havana

(Z = {233.5, 127.5}, p < 0.01). In Sibenik, both ours and DK receive a higher rating

than GSound (Z = {146.5, 171.0}, p = 0.01).

In conclusion, our pipeline receives better perceptual ratings than the other two

methods in moderately reverberant conditions, which may not hold in highly rever-

berant scenes. We have increased perceptual differentiation over the DK method.

This is due to our better computation of the ASF for dynamic objects which DK

cannot handle well and our diffraction handling that aligns better with wave acoustic

observations.

4.8 Summary

We present a new learning-based approach to approximate the ASFs of objects for

interactive sound propagation. We exploit properties of the acoustic scattering field

and use a geometric learning algorithm based on point-based approximation. We

evaluate the accuracy of our learning method on a large number of objects not seen

in the training dataset, also undergoing topology changes. We observe low relative

error in our benchmarks. Furthermore, we combine with a ray-tracing based engine

for sound rendering in highly dynamic scenes. A perceptual study confirms that our

approach generates smooth and realistic sound effects in dynamic environments with

increased perceptual differentiation over prior interactive methods.

Our approach has several limitations. These include all the challenges of geometric

deep learning in terms of choosing an appropriate training dataset and long training

time. It is very hard to provide any rigorous guarantees in terms of error bounds

on arbitrary objects. Furthermore, we assume that objects in the scene are sound-

hard and do not take into account various material properties. There is a linear
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scaling of training time with the number of frequencies and the number of scattering

objects, while the simulation time could scale as a cubic function of the frequency.

One mitigation is to limit the training to the kind of objects that are frequently used

in an interactive application (i.e., customized training).

There are many avenues for future work. It would be useful to take into account

the material properties by considering them as an additional object characteristic dur-

ing training. We would also like to use other techniques from geometric deep learning

to improve the performance of our approach. Our runtime ray tracing algorithm could

use a different sampling scheme that exploits the properties of ASF. In-person user

study using a VR headset or standardized lab listening tests may add more insights

to how spatial sound perception is affected by different sound propagation schemes.
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Chapter 5

High-Quality Synthetic Acoustic

Datasets1

Figure 5.1: Our IR data generation pipeline starts from a 3D model of a complex
scene and its visual material annotations (unstructured texts). We sample multi-
ple collision-free source and receiver locations in the scene. We use a novel scheme
to automatically assign acoustic material parameters by semantic matching from a
large acoustic database. Our hybrid acoustic simulator generates accurate impulse
responses (IRs), which become part of the large synthetic impulse response dataset
after post-processing.

1The work in this chapter has been published in Tang et al. (2019b, 2020, 2022)
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5.1 Introduction

Many audio processing tasks have seen rapid progress in recent years due to advances

in deep learning and the accumulation of large-scale audio or speech datasets. Not

only are these techniques widely used for speech processing, but also acoustic scene

understanding and reconstruction, generating plausible sound effects for interactive

applications, audio synthesis for videos, etc. A key factor in the advancement of

these methods is development and release of audio-related datasets. There are many

datasets for speech processing, including datasets with different settings and lan-

guages (Park and Mulc, 2019), emotional speech (Tits et al., 2019), speech source

separation (Drude et al., 2019), sound source localization (Wu et al., 2018), noise

suppression (Reddy et al., 2020), background noise (Reddy et al., 2019), music gen-

eration (Briot et al., 2017), etc.

In this chapter, we present a large, novel dataset corresponding to synthetic room

impulse responses (IRs). As introduced in § 2.1.1, an IR is regarded as the acous-

tical signature of a system and contains information related to reverberant decay,

signal-to-noise ratio, arrival time, energy of direct and indirect sound, or other data

related to acoustic scene analysis. These IRs can be convolved with anechoic sound

to generate artificial reverberation, which is widely used in the music, gaming and

VR applications, as enumerated in § 2.4.

There are some known datasets of recorded IRs from real-world scenes and syn-

thetic IRs (see Table 5.1). The real-world datasets are limited in terms of number

of IRs or the size and characteristics of the captured scenes. All prior synthetic

IR datasets are generated using geometric simulators and do not accurately capture

low-frequency wave effects. This limits their applications.

Main Results: We present a large, accurate acoustic dataset (GWA) of synthetically

generated IRs. Our approach is based on using a hybrid simulator that combines a

wave-solver based on finite differences time domain (FDTD) method with geometric
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Dataset Type #IRs #Scenes Scene Descriptions Scene Types Acoustic Material Quality
BIU (Hadad et al., 2014) Rec. 234 3 Photos Acoustic lab Real-world LF, HF

MeshRIR (Koyama et al., 2021) Rec. 4.4K 2 Room dimensions Acoustic lab Real-world LF, HF
BUT Reverb (Szöke et al., 2019) Rec. 1.3K 8 Photos Various sized rooms Real-world LF, HF

S3A (Coleman et al., 2020) Rec. 1.6K 5 Room dimensions Various sized rooms Real-world LF, HF
dEchorate (Di Carlo et al., 2021) Rec. 2K 11 Room dimensions Acoustic lab Real-world LF, HF

Ko et al. (2017) Syn. 60K 600 Room dimensions Empty shoebox rooms Uniform sampling HF
BIRD (Grondin et al., 2020) Syn. 100K 100K Room dimensions Empty shoebox rooms Uniform sampling HF

SoundSpaces (Chen et al., 2020) Syn. 16M 101 Annotated 3D model Scanned indoor scenes Material database HF
GWA (ours) Syn. 2M 18.9K Annotated 3D model Professionally designed Material database LF, HF

Table 5.1: Overview of some existing large IR datasets and their characteristics. In the
“Type” column, “Rec.” means recorded and “Syn.” means synthetic. The real-world
datasets capture the low-frequency (LF) and high-frequency (HF) wave effects in the
recorded IRs. Note that all prior synthetic datasets use geometric simulation methods
and are accurate for higher frequencies only. In contrast, we use an accurate hybrid
geometric-wave simulator on more diverse input data, corresponding to professionally
designed 3D interior models with furniture, and generate accurate IRs corresponding
to the entire human aural range (LF and HF). We highlight the benefits of our high-
quality dataset for different audio and speech applications.

sound propagation based on path tracing. The resulting IRs are accurate over the

human aural range. Moreover, we use a large database of more than 6.8K professional

designed scenes with more than 18K rooms with furniture that provide a diverse set

of geometric models. We present a novel and automatic scheme for semantic acous-

tic material assignment based on natural language processing techniques. We use

a database of absorption coefficients of 2, 042 unique real-world materials and use a

transformer network for sentence embedding. Currently, GWA consists of about 2

million IRs. We can easily use our approach to generate more IRs by either chang-

ing the source and receiver positions or using different set of geometric models or

materials. The novel components of our work include:

• Our dataset has more acoustic environments than real-world IR datasets by two

orders of magnitude.

• Our dataset has more diverse IRs with higher accuracy, as compared to prior

synthetic IR datasets.

• The accuracy improvement of our hybrid method over prior methods is evalu-

ated by comparing our IRs with recorded IRs of multiple real-world scenes.
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• We use our dataset to improve the performance of deep-learning speech process-

ing algorithms, including automatic speech recognition, speech enhancement,

and source separation, and observe significant improvement in accuracy.

5.2 Data Augmentation Preliminary

In this section, we explain the process of audio data augmentation, with an emphasis

on speech data, and their use for deep learning tasks. Deep learning theory indicates

that having more training examples that have the same data distribution as the

test data is crucial to reduce the generalization error of trained models in real test

cases (Seltzer et al., 2013). However, the majority of popular speech corpuses were

recorded under relatively ideal conditions, i.e. anechoic speech with negligible noise

and environmental reverberation. When training models for real-world applications,

it is common to distort the clean speech by adding noise and reverberation as a pre-

processing step to augment the training data (Kim et al., 2017; Doulaty et al., 2017).

In general, speech processing tasks use IR dataset to augment anechoice speech data to

create synthetic distant data as the training data, whereas the test data is reverberant

data recorded in the real world. In practice, both recorded IRs and synthetic IRs

have been used to convolve with the clean speech. Significant improvements in model

accuracy have been observed due to this type of data augmentation. When high-

quality IR datasets are used, the training set is expected to generalize better on the

test data.

Specifically, we can generate distant speech data xd[t] by convolving anechoic

speech xc[t] with different IRs h[t] and adding environmental noise n[t] (e.g., from

noise datasets like BUT ReverbDB (Szöke et al., 2019)) using

xd[t] = xc[t]⊛ h[t] + n[t]. (5.1)
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This process is the most common way of reverberant speech data augmentation.

The image method is the current most widely used method in the speech com-

munity for generating IRs for speech augmentation (Ko et al., 2017). It is based

on the principle of specular reflections where all reflection paths can be constructed

by mirroring sound sources with respect to the reflecting plane. We hypothesize

that more accurate acoustic simulations (i.e., not only considering specular reflec-

tions) can benefit downstream tasks that are trained using the simulated IRs. To

verify this, we run various speech processing benchmarks to test a diffuse geomet-

ric acoustic simulator we developed (Tang et al., 2020) and compare with an image

method simulator. Specifically, we test our geometric simulation with diffuse compo-

nents against the conventional image method on the automated speech recognition

(ASR) task (Table 5.2), the key-word spotting (KWS) task (Table 5.3), as well as the

direction-of-arrival (DOA) estimation task (Table 5.4). In all tests, our method has

consistently achieved the best performance.

Table 5.2: Character accuracy of ASR
systems. Our method has the highest
accuracy and outperforms IM by 1.58%.

Model %
Image Method (IM) 59.96
Our Geometric Simulator 61.54

Table 5.3: Equal error rates of KWS sys-
tems. Our method has the lowest equal
error rate and results in a 21% error re-
duction relative to that of IM.

Model %
Image Method (IM) 1.48
Our Geometric Simulator 1.17

Table 5.4: Results on the SOFA (Pérez-López and De Muynke, 2018) dataset. First
three columns show the percentage of DOA labels correctly predicted within error
tolerances, followed by average angular errors, and %-improvement on baseline. Best
performance in each column is highlighted in bold.

Model < 5° < 10° < 15° Error Improv.
Image Method 11.9% 35.9% 73.2% 16.9° -

Ours 24.4% 66.3% 88.2% 9.68° 43%

In addition, we are aware that the geometric simulation has the drawback of

inaccurate low-frequency modeling due to diffraction and room modes (see § 2.2). This
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motivates us to develop a larger dataset with the highest quality synthetic IRs, which

model all acoustic phenomena including specular and diffuse reflections, occlusion,

diffraction, and low-frequency wave effects.

5.3 Dataset Creation

A key issue in terms of the design and release of an acoustic dataset is the choice

of underlying 3D geometric models. Given the availability of interactive geometric

acoustic simulation software packages, it is relatively simple to randomly sample a set

of simple virtual shoebox-shaped rooms for source and listener positions and generate

unlimited simulated IR data. However, the underlying issue is such IR data will not

have the acoustic variety (e.g., room equalization, material diversity, wave effects,

reverberation patterns, etc.) frequently observed in real-world datasets. We identify

several criteria that are important in terms of creating a useful synthetic acoustic

dataset: (1) a wide range of room configurations: the room space should include

regular and irregular shapes as well as furniture placed in reasonable ways. Many

prior datasets are limited to rectangular, shoebox or empty rooms (see Table 1); (2)

meaningful acoustic materials: object surfaces should use physically plausible acoustic

materials with varying absorption and scattering coefficients, rather than randomly

assigned frequency-dependent coefficients; (3) an accurate simulation method that

accounts for various acoustic effects, including specular and diffuse reflections, oc-

clusion, and low-frequency wave effects like diffraction. It is important to generate

IRs corresponding to the human aural range for many speech processing and related

applications. In this section, we present our pipeline for developing a dataset that

satisfies all these criteria. An overview of our pipeline is illustrated in Figure 5.1.
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5.3.1 Acoustic Environment Acquisition

Acoustic simulation for 3D models requires that environment boundaries and object

shapes be well defined and represented as 3D meshes. Simple image-method simula-

tions may only require a few room dimensions (i.e., length, width, and height) and

have been used for speech applications, but these methods cannot handle complex

3D indoor scenes. Many techniques have been proposed in computer vision to recon-

struct large-scale 3D environments using RGB-D input (Choi et al., 2015). Moreover,

they can be combined with 3D semantic segmentation (Dai et al., 2018) to recover

category labels of objects in the scene. This facilitates the collection of indoor scene

datasets. However, real-world 3D scans tend to suffer from measurement noise, re-

sulting in incomplete/discontinuous surfaces in the reconstructed model that can be

problematic for acoustic simulation algorithms. One alternative is to use profession-

ally designed scenes of indoor scenes in the form of CAD models. These models are

desirable for acoustic simulation because they have well-defined geometries and the

most accurate semantic labels. Therefore, we use CAD models from the 3D-FRONT

dataset (Fu et al., 2021), which contains 18,968 diversely furnished rooms in 6,813 ir-

regularly shaped houses/scenes. These different types of rooms (e.g., bedrooms, living

rooms, dining rooms, and study rooms) are diversely furnished with varying numbers

of furniture objects in meaningful locations. This differs from prior methods that use

empty shoebox-shaped rooms (Grondin et al., 2020; Ko et al., 2017), because room

shapes and the existence of furniture will significantly modify the acoustic signature

of the room, including shifting the room modes in the low frequency. 3D-FRONT

dataset is designed to have realistic scene layouts, and has received higher human

ratings in subjective studies. Generating audio data from these models allows us to

better approximate real-world acoustics.
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5.3.2 Semantic Acoustic Material Assignment

Figure 5.2: Our semantic material assignment algorithm. We use NLP techniques
based on sentence embedding along with transformer network to choose absorption
coefficients from a database of 2, 042 unique materials.

Because the 3D-FRONT dataset also provides object semantics (i.e., object ma-

terial labels), it is possible to assign more meaningful acoustic materials to individual

surfaces or objects in the scene. For example, an object with “window” description

is likely to be matched with several types of window glass material from the acous-

tic material database. SoundSpaces dataset (Chen et al., 2020) also utilizes scene

labels by using empirical manual material assignment (e.g., acoustic materials of car-

pet, gypsum board, and acoustic tile are assumed for floor, wall, and ceiling classes),

creating a one-to-one visual-acoustic material mapping for the entire dataset. This

approach works for a small set of known material types. Instead, we present a general

and fully automatic method that works for unknown materials with unstructured text

descriptions.

To start with, we retrieve measured frequency-dependent acoustic absorption co-

efficients for 2, 042 unique materials from a room acoustic database (Kling, 2018).

The descriptions of these materials do not directly match the semantic labels of ob-

jects in the 3D-FRONT dataset. Therefore, we present a method to calculate the

semantic similarity between each label and material description using natural lan-

guage processing (NLP) techniques. In NLP research, sentences can be encoded

into definite length numeric vectors known as sentence embedding (Mishra and Vi-

radiya, 2019). One goal of sentence embedding is to find semantic similarities to

81



identify text with similar meanings. Transformer networks have been very successful

in generating good sentence embeddings (Liu et al., 2020) such that sentences with

similar meanings will be relatively close in the embedding vector space. We leverage

a state-of-the-art sentence transformer model 2 (Reimers and Gurevych, 2019) that

calculates an embedding of dimension 512 for each sentence. Next, we calculate the

cosine similarity score between each pair of embedding vectors, which can represent

the pair-wise semantic distance between each material label and each description in

the material database. For each material label in a 3D scene, we assign a set of ab-

sorption coefficients from the acoustic database using weighted sampling based on the

cosine similarity scores between the 3D-FRONT material label and all descriptions

from the material database. This process is illustrated in Figure 5.2. Note that we

do not directly pick the material with the highest score because for the same type of

material, there are still different versions with different absorption coefficients (e.g.,

in terms of thickness, brand, painting, etc.). These slightly different descriptions of

the same material are likely to have similar semantic distance to the 3D-FRONT ma-

terial label being examined. We use a probabilistic assignment process that provides

balanced sampling among the material database and thereby increase the diversity of

our acoustic database.

5.3.3 Geometric-Wave Hybrid Simulation

It is well known that geometric acoustic (GA) methods do not model low-frequency

acoustic effects well due to the linear ray assumption (Funkhouser et al., 1998a;

Schissler et al., 2014). Therefore, we use a hybrid propagation algorithm that com-

bines wave-based methods with GA. These wave-based methods can accurately model

low-frequency wave effects, but their running time increases as the third or fourth

power of the highest simulation frequency (Raghuvanshi et al., 2009). Given the
2Using pre-trained model at https://huggingface.co/sentence-transformers/distiluse-base-

multilingual-cased-v2
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high time complexity of wave-based methods, we also want to use methods that

are: (1) highly parallelizable so that dataset creation takes acceptable time on high-

performance computing clusters; (2) compatible with arbitrary geometric mesh rep-

resentations and acoustic material inputs; and (3) open-source so that the simulation

pipeline can be reused by the research community. In this chapter, we develop our

hybrid simulation pipeline from a CPU-based GA implementation pygsound 3 and a

GPU-based wave FDTD implementation PFFDTD (Hamilton, 2021).

Inputs

The scene CAD models from the 3D-FRONT dataset, each corresponding to several

rooms with open doors, are represented in a triangle mesh format. Most GA methods

have native support for 3D mesh input. The meshes are converted to voxels to be used

as geometry input to the wave-based solver. We randomly sample 1 source and 50

receiver locations in each scene. We perform collision checking to ensure all sampled

locations have at least 0.2m clearance to any object in the scene.

We assign acoustic absorption coefficients according to the scheme presented in

§ 5.3.2. These coefficients can be directly used by the GA method and integrated

with the passive boundary impedance model used by the wave FDTD method (Bil-

bao et al., 2015). The GA method also requires scattering coefficients, which account

for the energy ratio between specular and diffuse reflections. Such data is less con-

ventionally measured and is not available from the material database in § 5.3.2. It is

known that scattering coefficients tend to be negligible (e.g., ≤ 0.05) for low-frequency

bands (Cox et al., 2006) handled by the wave method. Therefore, we sample scat-

tering coefficients by fitting a normal distribution to 37 sets of frequency-dependent

scattering coefficients obtained from the benchmark data in § 5.4.1, which are only

used by the GA method.
3https://github.com/royjames/pygsound
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Setup

For the GA method, we set 20, 000 rays and 200 maximum depth for specular and

diffuse reflections. The GA simulation is intended for human aural range, while most

absorption coefficient data is only valid for octave bands from 63Hz to 8,000Hz. The

ray-tracing stops when the maximum depth is reached or the energy is below the

hearing threshold.

For the wave-based FDTD method, we set the maximum simulation frequency

to 1,400Hz. The grid spacing is set according to 10.5 points per wavelength. Our

simulation duration is one second since indoor scenes are usually not too large.

Automatic Calibration

Before combining simulated IRs from two methods, one important step is to properly

calibrate their relative energies. Southern et al. (2011) describe two objective calibra-

tion methods: (1) pre-defining a crossover frequency range near the highest frequency

of the wave method and aligning the sound level of the two methods in that range;

(2) calibrating the peak level from time-windowed, bandwidth-matched regions in

the wave and the GA methods. Both calibration methods are used case-by-case for

each pair of IRs. However, the first method is not physically correct, and the second

method can be vulnerable when the direct sound is not known, as with occluded di-

rect rays in the GA method. Southern et al. (2013) improved the second method by

calculating calibration parameters once in free-field condition using a band-limited

source signal.

We use a similar calibration procedure. The calibration source and receivers have

a fixed distance r = 1 in a large volume with absorbing boundary conditions, and

the 90 calibration receivers span a 90◦ arc to account for the influence of propagation

direction along FDTD grids. The source impulse signal is low-pass filtered at a cut-off

frequency of 255Hz. When the source signal is a unit impulse, this filtering makes
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the source signal essentially the same as the coefficients of the low-pass filter. The

simulated band-limited IRs are truncated at twice the theoretical direct response

time to further prevent any unwanted reflected wave. The calibration parameter for

wave-based FDTD is computed as:

ηw =

√
Es

Er

, (5.2)

where Es is the total energy of the band-limited point source, and Er is the total

energy at the receiver point. For multiple receiver points, ηw takes the average value.

During wave-based FDTD calibration, each received signal is multiplied by ηw, and

we can calculate the difference between the calibrated signal and the band-limited

source signal. As a result, we obtain a very low mean error of 0.50dB and a max

error of 0.85dB among all calibration receivers.

For the GA method, we follow the same procedure though the process is simpler

since the direct sound energy is explicit in most GA algorithms (i.e., 1
r

scaled by

some constant). Another calibration parameter ηg is similarly obtained for the GA

method. This calibration process ensures that the full-band transmitted energy from

both methods will be E = 1 at a distance of 1m from a sound source, although the

absolute energy does not matter and the two parameters can be combined into one

(i.e., only use η′w = ηw/ηg for wave calibration). Figure 5.3 shows an example of

simulation results with and without calibration. Without properly calibrating the

energies, there will be abrupt sound level changes in the frequency domain, which

can create unnatural sound.

Hybrid Combination

Ideally we would want to use the wave-based method for the highest possible simula-

tion frequency. Besides the running time, one issue with FDTD scheme is the rising
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Figure 5.3: Power spectrum comparison between the original wave FDTD simulated
IR and the calibrated IR. The vertical dashed line indicates the highest valid frequency
of the FDTD method. Our automatic calibration method ensures that the GA and
wave-based methods have consistent energy levels so that they can generate high
quality IRs and plausible/smooth sound effects.

dispersion error with the frequency (Lehtinen, 2003). As a remedy, the FDTD results

are first high-pass filtered at a very low frequency (e.g., 10Hz) to remove some DC

offset and then low-pass filtered at the crossover frequency to be combined with GA

results. We use a Linkwitz-Riley crossover filter (Linkwitz, 1976) to avoid ringing

artifacts near the crossover frequency, harnessing its use of cascading Butterworth

filters. The crossover frequency in this work is chosen to be 1, 400Hz to fully utilize

the accuracy ofwave simulation results. Higher simulation crossover frequencies could

be used at the cost of increased FDTD simulation time.

5.3.4 Analysis and Statistics

Runtime The runtime of our hybrid simulator depends on specific computational

hardware. We utilize a high-performance computing cluster with 20 Intel Ivy Bridge

E5-2680v2 CPUs and 2 Nvidia Tesla K20m GPUs on each node. On a single node,

our simulator requires about 800 computing hours for the wave-based FDTD method

and about 500 computing hours for the GA method to generate all data. One can

roughly estimate the wall time needed by dividing the time above by the number of
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(a) Occurrence of top visual material names.

(b) Occurrence of top acoustic material names.

Figure 5.4: We highlight the most frequently used materials in our approach for
generating the IR dataset. The acoustic database also contains non-English words,
which are handled by a pre-trained multi-lingual language model.

such available compute nodes.

Distributions More than 5,000 scene/house models are used. On average, each

scene uses 22.5 different acoustic materials. We assign 1, 955 unique acoustic materials

(out of 2, 042) from the material database, and the most frequently used materials

are several versions of brick, concrete, glass, wood, and plaster. The occurrence of

most frequently used materials are visualized in Figure 5.4.

The distribution of distances between all source and receiver pairs are visualized in

Figure 5.5. We also show the relationship between the volume of each 3D house model

and the reverberation time for that model in Figure 5.6 to highlight the wide distri-

bution of our dataset. Overall, we have a balanced distribution of the reverberation

times in the normal range.
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Figure 5.5: Distance distribution between source and receiver pairs in our scene
database. No special distance constraints are enforced during sampling except the
need to be collision-free from the objects in the scene. The IRs vary based on relative
positions of the source and the received in a 3D scene.

Figure 5.6: Statistics of house/scene volumes and reverberation times. We see a large
variation in reverberation times, which is important for speech processing and other
applications.
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5.4 Acoustic Evaluation

In this section, we evaluate the accuracy of our IR generation hybrid algorithm. We

use a set of real-world acoustic scenes that have measured IR data to evaluate the

effectiveness and accuracy of our hybrid simulation method.

5.4.1 Benchmarks

Several real-world benchmarks have been proposed to investigate the accuracy of

acoustic simulation techniques. A series of three round-robin studies (Vorliander,

1995; Bork, 2000, 2005a,b) have been conducted on several acoustic simulation soft-

ware systems by providing the same input and then comparing the different simula-

tion results with the measured data. In general, these studies provide the room and

material descriptions as well as microphone and loudspeaker specifications including

locations and directivity. However, the level of detailed characteristics, in terms of

complete 3D models and consistent measured acoustic material properties tend to

vary. Previous round-robin studies have identified many issues (e.g., uncertainty in

boundary condition definitions) in terms of simulation input definitions for many sim-

ulation packages, which can result in poor agreement between simulation results and

real-world measurements. A more recent benchmark, the BRAS benchmark (Aspöck

et al., 2020), contains the most complete scene description and has a wide range

of recording scenarios. We use the BRAS benchmark to evaluate our simulation

method. Three reference scenes (RS5-7) are designed as diffraction benchmarks and

we use them to evaluate the performance of our hybrid simulator, especially at lower

frequencies.

The 3D models of the reference scenes along with frequency-dependent acoustic

absorption and scattering coefficients are directly used for our hybrid simulator. We

use these three scenes because they are considered difficult for the geometric method
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alone (Brinkmann et al., 2019).

5.4.2 Results

We use the room geometry, source-listener locations, and material definitions as an

input to our simulation pipeline. Note that the benchmark only provide absorp-

tion and scattering coefficients, and no impedance data is directly available for wave

solvers. Thus, we only use fitted values rather than exact values. The IRs generated

by the GA method and our hybrid method and the measured IRs from the bench-

mark are compared in the frequency domain in Figure 5.7. In these scenes, the source

and receiver are placed on different sides of the obstacle and the semi-anechoic room

only has floor reflections. In the high frequency range, there are fewer variations in

the measured response, and both methods capture the general trend of energy decay

despite response levels not being perfectly matched. This demonstrates that our hy-

brid sound simulation pipeline is able to generate more accurate results than the GA

method for complex real-world scenes.

5.5 Applications

We use our dataset on three speech processing applications that use deep learning

methods. Synthetic IRs have been widely used for training neural networks for auto-

matic speech recognition, speech enhancement, and source separation. We evaluate

the benefits of generating a diverse and high-quality IRs dataset over prior methods

used to generate synthetic IRs.

Far-field speech data is generated according to Equation (5.1) using synthetic IRs.

In following test, we use various versions of IR datasets: GA (geometric method only),

FDTD (only up to 1,400Hz), and GWA (hybrid method). Then the speech data

is used by different training procedure and neural network architectures on different

90



Table 5.5: Far-field ASR results obtained for the AMI corpus. The best result is
marked in bold.

IR used WER[%]↓
None (anechoic speech) 64.2
GA 55.5
GWA (ours) 54.1

benchmarks described below.

5.5.1 Automated Speech Recognition

Automatic speech recognition (ASR) aims to convert speech data to text transcrip-

tions. The performance of ASR models is measured by the word error rate (WER),

which is the percentage of incorrectly transcribed words in the test data. The AMI

speech corpus (Carletta et al., 2005) consisting of 100 hours of meeting recording is

used as our benchmark. And we use the Kaldi 4 toolbox to run experiments on this

benchmark. We randomly select 17, 749 IRs out of 2M synthetic IRs in GWA to

augment the anechoice training set in AMI, and report the WER on the real-world

test set. A lower WER indicates that the synthetic distant speech data used for train-

ing is closer to real-world distant speech data. We highlight the improved accuracy

obtained using GWA over prior synthetic IR generators in Table 5.5.

5.5.2 Speech Dereverberation

Speech dereverberation aims at converting a reverberant speech signal back to its

anechoic version to enhance its intelligibility. We use SkipConvNet (Kothapally et al.,

2020), a U-Net based speech dereverberation model. The model is trained on the

100-hour subset of Librispeech dataset (Panayotov et al., 2015). The reverberant

input to the model is generated by convolving the clean Librispeech data with our

synthetically generated IRs. In addition, we include another synthetic IR dataset,
4https://github.com/kaldi-asr/kaldi
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Table 5.6: We tabulate the SRMR of the SkipConvNet enhancement model trained
using different synthetic IR generation methods. We test the results on real-world
reverberant recordings from the VOiCES dataset. Use of our hybrid dataset results
in improved accuracy over prior methods.

IR used SRMR↑
None (baseline) 4.96
SoundSpaces (Chen et al., 2020) 7.44
GA 6.01
FDTD 4.78
GWA (ours) 8.14

SoundSpaces (Chen et al., 2020) in this comparison. We test the performance of the

model on real-world recordings from the VOiCES dataset (Richey et al., 2018). We

report the speech-to-reverberation modulation energy ratio (SRMR) over the test set.

A higher value of SRMR indicates lower reverberation and higher speech quality. As

seen from Table 5.6, our proposed dataset obtains better dereverberation performance

as compared to all other datasets.

5.5.3 Speech Separation

We train a model to separate reverberant mixtures of two speech signals into its

constituent reverberant sources. We use the Asteroid (Pariente et al., 2020) imple-

mentation of the DPRNN-TasNet model (Luo et al., 2020) for our benchmarks. The

100-hour split of the Libri2Mix (Cosentino et al., 2020) dataset is used for training.

We test the model on reverberant mixtures generated from the VOiCES dataset. We

report the improvement in scale-invariant signal-to-distortion ratio (SI-SDRi) (Roux

et al., 2018) to measure separation performance. Higher SI-SDRi implies better sep-

aration. As seen from Table. 5.7, our proposed hybrid approach (GWA) outperforms

both GA and FDTD for speech separation.
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Table 5.7: SI-SDRi values reported for different IR generation methods. We report
results separately for the four rooms used to capture the test set (higher is better).

IR used SI-SDRi↑
Room 1 Room 2 Room 3 Room 4

GA 2.25 2.55 1.44 2.55
FDTD 2.36 2.43 1.33 2.46
GWA (ours) 2.94 2.76 1.86 2.91

5.6 Summary

We introduced a large new audio dataset of synthetic room impulse responses and

the simulation pipeline, which can take different scene configurations and generate

higher quality IRs. We demonstrated the improved accuracy of our hybrid geometric-

wave simulator on three difficult scenes from the BRAS benchmark. As compared

to prior datasets, GWA has more scene diversity than recorded datasets, and has

more physically accurate IRs than other synthetic datasets. We also use our dataset

with audio deep learning algorithms to improve the performance of speech processing

applications.

Our dataset only consists of synthetic scenes, and may not be as accurate as real-

world captured IRs. In many applications, it is also important to model ambient

noise. In the future, we will continue growing the dataset by including more 3D

scenes to further expand the acoustic diversity of the dataset. We plan to evaluate

the performance of other audio deep learning applications.
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(a) RS5: simple diffraction with infinite edge.

(b) RS6: diffraction with infinite body.

(c) RS7: multiple diffraction (seat dip effect)

Figure 5.7: Frequency responses of geometric and hybrid simulations compared with
measured IRs in BRAS benchmarks RS5-7 (Aspöck et al., 2020). Images of each setup
are attached in the corners of the graph. We notice that the IRs generated using our
hybrid method closely match with the measure IRs, as compared to those generated
using GA methods. This demonstrates the higher quality and accuracy of our IRs as
compared to the ones generated by prior GA methods highlighted in Table 5.1.
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Chapter 6

Conclusion

6.1 Summary of Results

In this dissertation, we first investigate novel solutions via acoustic simulation and

deep learning to provide high-quality sound rendering in mixed reality settings with

fewer limitations than existing vision-based and measurement-based methods. Next,

we continue to extend the inferential power of deep neural networks to predict compli-

cated acoustic scattering fields by analyzing object shapes. This becomes the first and

the fastest method to generate wave acoustic scattering effects on-the-fly in 3D envi-

ronments without additional pre-computation for unseen scenes. Finally, we develop

a data pipeline that utilizes state-of-the-art geometric and wave acoustic simulators

to generate high-quality synthetic impulse response data at scale. Our pipeline can

take general 3D model inputs and automatically assign meaningful acoustic materials

by semantic matching. The simulation pipeline and dataset can significantly im-

prove the performance of data-driven applications such as deep learning-based speech

processing tasks.

Our results have demonstrated that by leveraging state-of-the-art physics-based

acoustic simulation and deep learning techniques, realistic simulated data can be
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generated to enhance the sound rendering quality in the virtual world and boost the

performance of audio processing tasks in the real world.

6.2 Future Work

In the future, I would like to address some limitations mentioned in previous chapters.

In the following, I identify several specific future directions.

Just-Noticeable-Difference (JND) in Simulations We have run several percep-

tual evaluations against other works to verify that the quality of sound rendering

from our methods is on par with or better than previous work. However, it is

not clear to what extent we want to optimize respective objective functions

for acoustic simulations. In other words, how much do factors like accurate

material modeling, low-frequency wave simulation, and geometry details affect

perceptual listening quality for humans? While some JND metrics have been

established for more common acoustic metrics like the T60, less work has been

done under the context of acoustic simulations. I believe more rigorous in-lab

listening tests with a range of simulation setups will help establish more useful

JND metrics for follow-up works.

Curse of Dimensionality Deep learning methods generally suffer from the curse of

dimensionality, which means if the dimensionality of the problem being analyzed

increases even slightly, the required amount of data will grow exponentially. As a

consequence, the time needed to prepare the data and train the model also grows

accordingly. This situation applies to deep learning with acoustic problems. As

discussed, the soundfield in a room can be affected by the room shape, source

and listener positions, acoustic materials/boundary conditions, and medium

property (e.g., air temperature). Most of the time we are only able to study a

subset of these conditions, as is the case with our deep learning-based acoustic
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scattering framework, where we based our analysis entirely on the geometry

inputs and ignored the variations in their material properties. While we can

expand the training data by adding more dimensions to the simulation setup,

techniques like parameter regularization and autoencoders should be considered

to mitigate the curse of dimensionality to train a more general acoustic inference

model.

Neural Acoustic Fields We have managed to generate a large, high-quality acous-

tic dataset, and the pipeline allows anyone to expand the dataset to much larger

scales if resources permit. This also includes simulating audio data in differ-

ent hardware (e.g., multi-channel) or software (e.g., spatially encoded) formats.

However, there can be infinite amount of data to simulate, and it is unlikely

that any one dataset can satisfy all needs. Therefore, one promising direction is

to use such a large dataset to learn to construct the acoustic field using neural

networks. The same idea has rapidly gained huge success in computer graphics

and is known as the neural radiance fields (NeRF) (Mildenhall et al., 2020).

While some preliminary work has been done for acoustics (Ratnarajah et al.,

2022), dealing with acoustic fields in higher dimensions than radiance fields

remains an open and challenging problem.
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