On the Nature of Modal Truth in Plans

by D.S. Nau

TECHNICAL
RESEARCH
REPORT

Institute for
Systems
Research

The Institute for Systems
Research is supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

TR 93-14

On the Nature of Modal Truth in Plans*

Dana S. Nau

Department of Computer Science,
Institute for Systems Research, and
Institute for Advanced Computer Studies

University of Maryland
College Park, Maryland 20742

nau@cs.umd.edu

Abstract

Chapman’s paper, “Planning for Conjunctive Goals,” has been widely acknowledged
as a major step towards understanding the nature of nonlinear planning, and it has been
one of the bases of later work by others—but it is not free of problems. This paper
discusses the following problems with modal truth and the modal truth criterion.

1. It is NP-hard to tell, given a plan P and a ground atom p, whether P is possibly
true in P’s final situation. This is true despite the fact that modal truth criterion
can be computed in polynomial time.

2. The reason for this discrepancy is that the “possible truth” version of the modal
truth criterion is incorrect. It tells whether —p is not necessarily true—but this is
different from telling whether p is possibly true. Possible truth is not the dual of
necessary truth, as Chapman had thought it was.

3. Instead, possible truth is the dual of another problem, which is co-NP-hard: the
problem of determining whether p is true over all executable completions of a plan.

Despite the above problems, the “necessary truth” version of the modal truth criterion
(and hence the TWEAK planner) are still correct.

"This work was supported in part by NSF Grants IRI-8907890 and NSFD CDR-88003012.

1 Introduction

Chapman’s paper, “Planning for Conjunctive Goals,” [1] has been widely acknowledged as
a major step towards understanding the nature of nonlinear planning, and it has been one
of the bases of later work by others (for example, [2, 4, 3, 5, 7, 10, 11]). But as with much
pioneering work, it is not free of problems, and this has led to confusion about the meaning
of his results. Previous papers 2, 3, 6, 11] have pointed out several of these problems, and
the current paper discusses some additional ones.

Chapman stated that the modal truth criterion could be used as a polynomial-time
method for determining the modal truth of a proposition [1, p. 340]:

The criterion can be interpreted procedurally in the obvious way. It runs in time
polynomial in the number of steps: the body of the criterion can be verified for
each of the n3 triples (t,C, W) with a fixed set of calls on the polynomial-time
constraint-maintenance module.

Since a plan is possibly correct iff its goal conditions are possibly true, this led Kambhampati
to believe he could compute the possible correctness of a plan in polynomial time |7, p. 685]:

The algorithms presented in this paper compute the weakest conditions under
which all topological sorts of a partially ordered-plan can be guaranteed to ex-
ecute successfully. Sometimes, it may be useful to compute weakest conditions
under which at least some topological sort of the plan can possibly execute.
Generalization algorithms for this case can be developed in a very similar fash-
ion. In particular, the truth criterion for guaranteeing the possible truth of a
proposition is specified by reversing the modalities in the [modal truth criterion].
Using this truth criterion, we can then develop similar polynomial time EBG
algorithms for possible correctness [of a plan).

However, after examining the problem in more detail, Kambhampati found that the “pos-
sible truth” version of the modal truth criterion gave him conditions that were necessary
but insufficient to guarantee the possible correctness of a plan [6, p. 21].

This paper points out the following problems with the modal truth criterion:

1. Although Chapman thought that possible truth and necessary truth were duals of
each other [1, p. 368], they are not. More specifically, if p is possibly true, then
—p is not necessarily true; but the reverse implication does not hold. The “possible
truth” version of the modal truth criterion computes the dual of necessary truth, and
therefore it is incorrect.

2. Telling whether p is possibly true is the dual of a different problem: the problem of
telling whether p is true in every executable completion of a plan. This problem is
co-NP-hard, and thus it is NP-hard to tell whether p is possibly true.

Despite these problems, the “necessary truth” version of the modal truth criterion (and
thus Chapman’s TWEAK planner) are still correct.

This paper is organized as follows. Section 2 contains basic definitions. Section 3
presents the complexity results; the proofs are in the appendix. Section 4 clarifies Chap-
man’s terminology, and Section 5 compares my results with his. Section 6 contains con-
cluding remarks.

2 Definitions

The planning language £ is any function-free first-order language. Since £ is function-free,
every term is either a variable symbol or a constant symbol, and thus every ground term
is a constant symbol. I follow the usual convention of defining an atom to be a predicate
symbol followed a list of terms, a literal to be an atom or its negation, and a proposition to
be a 0-ary atom. Thus, what Chapman calls a proposition, I call a literal.

A state is any finite collection of ground atoms of £. If a state s contains a ground atom
p, then p is true in s and -p is false in s; otherwise p is false in s and —p is true in s.

I T is a finite set of terms, then a codesignation constraint on T is a syntactic expression
of the form ‘t = u’ or ‘¢ % u’, where t,u € T. Let D be a set of codesignation constraints
on T, and @ be a ground substitution over T (i.e., a substitution that assigns a ground term
to each variable in T'). Then 6 satisfies D if t§ = ub for every syntactic expression ‘¢t ~ u’
in D, and tf # u# for every syntactic expression ‘¢ % v’ in D. If t§ = u8 for every 8 that
satisfies D, then t codesignates with u.

A step is a triple @ = (name(a), pre(a), post(a)), where name(a) is a constant symbol
called the name of a, and pre(a) and post(a) are collections of literals called a’s preconditions
and postconditions.) If A is a set of steps, then an ordering constraint on A is a syntactic -
expression of the form ‘a < b’ (read as “a precedes b”), where a,b € A. If O is a set of
ordering constraints on A and < is a total ordering on A, then < satisfies O if for every
syntactic expression ‘e < 0’ in O, a < b.

A plan is a 4-tuple P = (80,4, D,0), where 3¢ is a state called P’s initial state, A is
a set of steps, D is a set of codesignation constraints on the terms of P (i.e., the terms in
sp and A), and O is a set of ordering constraints on the steps of A. P is complete if there
is a unique total ordering a; < a; < ... < a,, over A that satisfies O, and a unique ground
substitution # over the terms of P that satisfies D.

Suppose that P is complete, and let k& be the largest integer < n for which there are
states s, 8s,..., 8¢ such that the following properties are satisfied for 1 < ¢ < k:

1. s;— satisfies a;’s preconditions; i.e., pf is true in s;_; for every literal p € pre(a;).

2. s; is the state produced by performing the step a; in the state s;—1; i.e., sy = (8;-1 —
fi)Ut;, where t; is the set of all ground atoms pf such that p € post(a;), and f; is the
set of all negated ground atoms pf such that p € post(a;).

Then for 1 <1 < k, a; is ezecutable in the input state s;_;, producing the output state s;. If
k = n, then P is ezecutable, and it produces the final state s,,.

A plan P' = (s, A", D',0') is a constrainment of a plan P = (sp, 4, D,0) if sy = s,
A'=A,0C O and D C D'. P is a completion of P if P’ is a constrainment of P and P’
is complete.? P is consistent if it has at least one completion; otherwise P is inconsistent.

I now define three decision problems: '

!Chapman’s definition of a step is basically similar to this, but without name(a). However, as pointed
out by McAllester and Rosenblitt [9], unless we give unique names to steps, it is impossible for a plan to
contain two distinct steps that have the same preconditions and postconditions.

*Chapman’s definition of a completion does not make it entirely clear whether a completion of P should
include only the steps in P, or allow other steps to be added. However, various other statements in his paper
make it clear that he means for a completion to include only the steps in P, so this is how I and most others
(e.g., [7]) use the term.

l Set, J [Unset, I | Set,] | Unset, l I Sets J l Unsets |

x1(yes) x1(no) x2(yes) x2(no) xa(yes) x3(no)
X1(no) X1(yes) X2(no) Xa(yes) X3(no) X3(yes)
-X1 (yes) -%1(no) -Xz(yes) -X3(no) -X3(yes) -X3(no)
-x1(no) ~x;(yes) -x2(no) -x2(yes) ~x3(no) -x3(yes)

x1(v11) Sep %1(v21)

X2(v12) x2(v22)

x3(v13) x3(v23)

Cluse;

sat(vn, 12, '013)\ /sat(vgl, V22, ’023)

Figure 1: The plan P% in the case where X = z,T3z3 + T1z2z3. Each step’s name is in a
box, with its preconditions and postconditions above and below the box.

POSSIBLE CORRECTNESS: given a ground atom p and a plan P, is there a completion of P
that produces a final state in which p is true?

NECESSARY CORRECTNESS: given a ground atom p and a plan P, does every completion
of P produce a final state in which p is true?

CONDITIONAL CORRECTNESS: given a ground atom p and a plan P, does every executable
completion of P produce a final state in which p is true?

As discussed later in Section 5, POSSIBLE CORRECTNESS and NECESSARY CORRECTNESS
are equivalent to the problems of determining whether p is possibly or necessarily true,
respectively. This is the reason for giving them the names they have.

3 Complexity Results
Theorem 1 CONDITIONAL CORRECTNESS is co-NP-hard.

The proof is by reduction from the complement of 3SAT (the satisfiability problem with
three literals per clause). In particular,let X = ¢;4+¢3+...4¢p, be a DNF formula over the
Boolean variables z1,z9,..., 2y, where each ¢; is a conjunct of three literals ¢; = l;1li20:5.
I encode X as a plan P} and a ground atom sat(yes, yes, yes), such that every executable
completion of P produces a final situation that contains sat(yes, yes, yes) iff X is a tautology.
Fig. 2 gives an example of P%; the proof is in the appendix.

Theorem 2 POSSIBLE CORRECTNESS s NP-hard.

| Set, l lUnseh I l Set, I lUnsetg | [Sets I l Unset3]

x1(yes) x1(no) xz(yes) x2(no) x3(yes) x3(no)
%1(no) %1 (yes) %2(no) Xa(yes) X3(no) X3(yes)
-X1(yes) -%;(no) —Xa(yes) —Xz(no) -X3(yes) —X3(no)
-x; (no) -x1(yes) —xz(no) -x2(yes) ~x3(no) -x3(yes)
Sep
x1(v11) Xa(v12) x3(v13) X1(v21) X2(v22) x3(v23)
| Lityy I] Lityo l l Lity3] (Litgy I ' Litg, I l Litos |
csatq(v11) csaty(v12) csat(v13) csate(vq1) csato(ve2) csato(v23)

csaty(uy), csata(uz), . . ., csaty, (Un,)

sat(uy, U2, ..., Unm)

Figure 2: The plan Q% in the case where X = (21 + T3 + 23)(Z1 + 22 + z3). Each step’s
name is in a box, with its preconditions and postconditions above and below the box.

The proof is by reduction from 3SAT. In particular, let X = ¢;c;...c,, be a CNF formula
over the Boolean variables z1, x5, ..., Z,, with three literals in each disjunctive clause ¢;. I
encode X as a plan Q% and a ground atom sat(yes, yes, . . ., yes), such that some completion
of @% can be executed to produce sat(yes,yes,...,yes) iff X is satisfiable. Fig. 2 gives an
example of (J%; the proof is in the appendix.

Remark. Note that POSSIBLE CORRECTNESS and CONDITIONAL CORRECTNESS are dual
problems: given a ground literal p and a plan P, there is an executable completion of P
that produces a final state in which p is true iff no executable completion of P produces a
final state in which —p is true. For this reason, either of Theorems 1 and 2 could have been
proved as a corollary of the other. The reason I did not do so is that I will need to use both
of the plans Py and Q% later in this paper.

4 Comparison with Chapman’s Terminology

4.1 Situations

Chapman defines a situation to be a collection of literals.® Given a literal p and a situation
s, he defines p to be true if it codesignates with a literal in s, and false if it codesignates
with the negation of a literal in s. Chapman also makes the following definitions [1, p. 338]:

A plan has an ¢nitial situation, which is a set of [literals] describing the world at
the time that the plan is to be executed, and a final situation, which describes
the state of the world after the whole plan has been executed. Associated with
each step in a plan its input situation, which is the set of [literals] that are true
in the world just before it is executed, and its output situation, which is the set
of [literals] that are true in the world just after it is executed. In a complete
pan, the input situation of each step is the same as the output situation of the
previous step. The final situation of a complete plan has the same set of [literals]
in it as the output situation of the last step.

This approach leads to several difficulties:

1. As pointed out by Yang and Tenenberg [11], if a plan P is incomplete, then its
situations are ill-defined. For example, suppose P consists of two unordered steps a
and b, such that a asserts p and denies ¢, and b asserts ¢ and denies p. Then P’s final
situation is either {p} or {¢}, depending on which completion of P we choose.

2. If a situation contains literals that are not completely ground, then what those literals
mean is problematic. For example, suppose that a plan’s initial situation contains the
literal p(z), where z is a variable symbol. This literal cannot mean (Vz)p(z), because

- Chapman’s TWEAK planner may later constrain z % y for some constant or variable y.
It cannot mean (3z)p(z), because TWEAK may later constrain z & y for some constant
or variable y. Apparently, it means p(z) for some undetermined z, and TWEAK gets
to choose what z is. In other words, if the initial situation contains any variables,
then TWEAK changes the meaning of the initial situation as it goes along.

To handle these problems, I define situations as follows. If P is a plan, then associated
with every action a of P are two symbols in(a) and out(a), called a’s input and output
situations. Associated with P are symbols init and fin called the énitial and final situations
of P. All of these symbols must be distinct. Whenever ¢ < b, I will also say that z < y,
where z may be a or in(a) or out(a), and y may be b or in(b) or out(b).

I define what is true and false in a situation as follows. Let P be a complete plan, and
p be a ground literal. Then p is true in init if p is true in P’s initial state, and p is true in
fin if p is true in P’s final state. If a is an executable step of P, then p is true in in(a;) (or
out(a;)) if p is true in a’s input state (or output state, respectively). p is false in a situation

*He calls them propositions—but as mentioned at the beginning of Section 2, I call them literals instead.

*According to this definition out{a) and in(b) are always distinct, hence I would say out(a) < in(3) in
some cases where Chapman would say out(a) = in(b). However, this makes no significant difference in any
of the results.

s iff ~p is true in s. Note that the law of the excluded middle does not apply here: if P is
not executable, then p is neither true nor false in P’s final situation.

As a consequence of the above definitions, it follows that p is true in s iff the following
three conditions are satisfied:

Establishment. Either p codesignates with a postcondition of some step a that precedes
8, OI p € Sp.

Nondeletion. For every step b between a (or sp) and s, -p does not codesignate with a
postcondition of b.

Executability. Every step that precedes s is executable.

4.2 Modal Truth
Chapman defines modal truth as follows {1, p. 336]:

I will say “necessarily p” if p is true of all completions of an incomplete plan,
and “possibly p” if p is true of some completion.

In this definition, apparently p can be nearly any statement about a plan: examples in
his paper include statements about specific literals and situations in the plan (as in the
modal truth criterion quoted earlier), and also statements about the entire plan (e.g., the
statement [1, p. 341) that a plan “necessarily solves the problem”). However, unless we
place some restrictions on the nature of p, this has some dubious results. For example, if
P is an incomplete plan, then all completions of P are complete, and therefore P itself is
necessarily complete. '

Therefore, I will modify Chapman’s definition of modal truth as follows. I will say
“necessarily p” if p is true of all completions of a plan, and “possibly p” if p is true of some
completion, where p is restricted to be one of the following kinds of statements:

¢ “g is true in s” or “a is false in s,” where a is a ground literal and s is a situation;
¢ “y precedes v,” where u and v are steps or situations.
From this, it follows that if p is an atom, P is a plan, and s is a situation in P, then

1. p is necessarily true in s iff the establishment, nondeletion, and executability condi-
tions hold in every completion of P;

2. pis possibly true in s iff the establishment, nondeletion, and executability conditions
hold in at least one completion of P.

A closely related concept is conditional modal truth, which is like modal truth except that
it does not require executability:

1. pis conditionally necessarily true in s iff the establishment and nondeletion conditions
hold in every completion of P;

2. p is conditionally possibly true in s iff the establishment and nondeletion conditions
hold in at least one completion of P.

Others [8] have proposed using this as a definition of modal truth rather than conditional
modal truth, but this leads to problems. For example, if some of P’s completions are not
executable, then sometimes p is conditionally possibly true in P’s final situation, even if it
is impossible to execute P in such a way as to produce p. ‘

To see this, consider the plan Q% used in the proof of Theorem 2, and suppose that X is
unsatisfiable. Then from the proof of Theorem 2, it follows that no completion of Q% can be
executed to make sat(yes, yes, .. ., yes) true. However, there is a unezecutable completion of
Q% in which Final’s postcondition sat(vy, vs,. . .,vn) codesignates with sat(yes, yes, ..., yes),
so since conditional modal truth does not require executability, sat(yes, yes, . . ., yes) is con-
ditionally possibly true in @%’s final situation.

5 Comparison with Chapman’s Results

From the above, it follows that NECESSARY CORRECTNESS and POSSIBLE CORRECTNESS are
equivalent to the following problems, respectively:

1. Given a ground atom p and a plan P, is p necessarily true in P’s final situation?
2. Given a ground atom p and a plan P, is p possibly true in P’s final situation?

As a consequence, Theorem 2 shows that the second problem is NP-hard, conflicting with
Chapman’s statement (quoted in Section 1) that the modal truth criterion can be computed
in polynomial time. To discover the reason for this discrepancy, let us examine the modal
truth criterion in more detail. Chapman stated it as follows [1, p. 340]:

Modal Truth Criterion. A [literal] p is necessarily true in a situation s
iff two conditions hold: there is a situation ¢ equal or necessarily previous to
s in which p is necessarily asserted; and for every step C possibly before s
and every [literal] ¢ possibly codesignating with p which C denies, there is a
step Final necessarily between C and s which asserts r, a [literal] such that »
and p codesignate whenever p and ¢ codesignate. The criterion for possible
truth is exactly analogous, with all the modalities switched (read “necessary”
for “possible” and vice versa).

Thus, the criterion for possible truth is as follows:

A literal p is possibly true in a situation s iff two conditions hold: there is a
situation ¢ equal or possibly previous to s in which p is possibly asserted; and
for every step C necessarily before s and every literal ¢ necessarily codesignating
with p which C denies, there is a step Final possibly between C' and s which
asserts 7, a literal such that 7 and p codesignate whenever p and ¢ codesignate.

The conditions stated in the criterion are not sufficient for guaranteeing that p is possibly
true (this is basically equivalent to Kambhampati’s observation [6] that the criterion pro-
vides necessary but insufficient conditions for guaranteeing that a plan is possibly correct).
To prove this, let the plan P;r(be the same as the plan P% of Theorem 1, except for the
following differences:

o The initial state sg is the set {unsat(yes, yes, yes)}.

o The step Final has one precondition sat(«, v, w), and one postcondition —unsat(u, v, w),
where u, v, w are variable symbols.

Now, suppose X is a tautology. Then from the proof of Theorem 1, every executable
completion of P} will assert sat(yes, yes,yes). Thus, no executable completion of P)T(will
produce unsat(yes, yes, yes), so unsat(yes, yes, yes) is not possibly true in P}(’s final situation.

If we apply the criterion for possible truth, we will reach a different conclusion.
unsat(yes, yes, yes) is asserted in sp and thus in P’s initial situation; and P’s initial situ-
ation precedes its final situation. Thus the first condition of the criterion is satisfied. The
only step that can ever deny unsat(yes, yes, yes) is Final. However, Final does not necessarily
deny unsat(yes, yes, yes), because not every completion of P} is executable (for example, if
we constrain Final’s precondition sat(yes, yes, yes) to codesignate with sat(foo, bar, baz), then
Final is non-executable). Thus, the criterion concludes, incorrectly, that unsat(yes, yes, yes)
is possibly true in P;(’s final situation.

The reason why this problem was not immediately evident in Chapman’s paper was
because he did not prove the criterion for possible truth explicitly, but instead said that it
followed by “modal duality” {1, p. 368]. However, necessary truth and possible truth are
not dual to each other. To see this, let p be a ground atom and P be a plan, and consider
the following two statements:

1. p is possibly true in P’s final situation;

2. —p is not necessarily true in P’s final situation.

If necessary truth and possible truth were dual, then these two statements would be equiv-
alent, but they are not. The implication goes in one direction, but not the other:

(=): Let p be a ground atom and P be a plan, and suppose p is possibly true in P’s final
situation. Then p is true in the final state of at least one completion of P, so —p is
false in the final state of this completion of P. Thus, —p is not necessarily true in P’s
final situation.

(¢£): Suppose —p is not necessarily true in P’s final situation. There are two ways this
can happen: either p is true in the final state of some completion of P, or else —p is
true in the final state of every executable completion of P but some completion of P
is not executable. In the first case, p is possibly true in P’s final situation; but in the
second case, it is not.

What the “possible truth” version of the modal truth criterion computes is whether —p is
not necessarily true. This can be computed in polynomial time as Chapman stated it could,
but it is not the same as computing whether p is possibly true.

Since the “necessary truth” version of the modal truth criterion refers at several points
to the possible truth of various statements, the problems with the “possible truth” version
raise the question whether the “necessary truth” version might also be incorrect. However,
in the special case where every completion of a plan is executable (which is required for
the necessary truth criterion to succeed), p is possibly true iff —p is not necessarily true.
Thus the “necessary truth” version (and hence Chapman’s TWEAK planner) is correct, even
though the “possible truth” version is not.

6 Concluding Remarks

The definition of modal truth says that p is possibly true in a plan P if it is true in
some completion of P, and p is necessarily true in P if it is true in every completion
of P. Chapman had thought that these were dual concepts, but they are not. Instead,
telling whether p is possibly true in a plan P is the dual of telling whether p is true in
every ezecutable completion of P—a problem that is co-NP-hard. This has the following
consequences:

1. Unless P=NP, possible truth cannrot be computed in polynomial time as Chapman
had thought it could. Instead, the problem is NP-hard.

2. The “possible truth” version of the modal truth criterion is wrong. It tells whether
-p is not necessarily true, but this is different from telling whether p is possibly true.

Because of the wide impact of Chapman’s paper, it is important to correct any misimpres-
sions that may result from it. I hope readers will find this paper useful for that purpose.

Acknowledgement

I wish to thank Kutluhan Erol, Jim Hendler, Subbarao Kambhampati, and V. S. Subrah-
manian for their helpful criticisms and comments.

References

[1] David Chapman. Planning for conjunctive goals. Artificial Intelligence, 32:333-379,
1987.

[2] K. Erol, D. Nau, and V. S. Subrahmanian. Complexity, decidability and undecidability
results for domain-independent planning. 1992. Submitted for publication.

[3] K. Erol, D. Nau, and V. S. Subrahmanian. When is planning decidable? In Proc. First
Internat. Conf. AI Planning Systems, pages 222-227, June 1992.

[4] M. L. Ginsberg. What is a modal truth criterion? Unpublished manuscript, November
1990.

[5] Steven Hanks and Daniel S. Weld. Systematic adaptation for case-based planning. In
Proc. First Internat. Conf. AI Planning Systems, pages 96105, June 1992.

[6] S. Kambhampati and S. Kedar. A unified framework for explanation-based generaliza-
tion of partially ordered and partially instantiated plans. Technical Report TR-92-008,
Department of Computer Science and Engineering, Arizona State University, April
1992.

[7] Subbarao Kambhampati. Explanation-based generalization of partially ordered plans.
In AAAL-91, pages 679685, July 1991.

[8] Subbarao Kambhampati. Private communication, 1993.

[9] David McAllester and David Rosenblitt. Systematic nonlinear planning. In AAAI-91,
pages 634-639, July 1991.

[10] M. A. Peot. Conditional nonlinear planning. In Proc. First International Conference
on AI Planning Systems, pages 189-197, 1992.

[11] Q. Yang and J. D. Tenenberg. Abtweak: Abstracting a nonlinear, least commitment
planner. In AAAI-90, pages 204-209, 1990.

Appendix

Proof of Theorem 1. Let X =¢; 4¢3+ ...+ ¢, be a DNF formula over the Boolean
variables 2y, Z,. .., Z,, Where each ¢; is a conjunct of three literals ¢; = l;1lipli3. Py is the
following plan:

Initial state. P’s initial state sp is the empty set.

Steps. For each Boolean variable z;, there are two steps, Set; and Unset;. Set; has no
preconditions, and the following postconditions:

—X;(yes), %:(no), =x;(no), x;(yes).

Unset; has no preconditions, and the following postconditions:

Xi(yes), =X;(no), x;(no), —x;(yes).

In the above, yesand no are constant symbols. The interpretations of x;(yes), X;(no),
X;(yes), and x;(no) are that the Boolean variable z; is true, not false, false, and not
true, respectively. Thus, the interpretations of Set; and Unset; are that they make the
Boolean variable z; true and false, respectively.

There is a step Sep, which has no preconditions and no postconditions.® The only
purpose of Sep is to provide a separator between the steps Set; and Unset; defined
above, and the steps Clause; defined below.

For each conjunct ¢; = l;1liolis in X, there is a step Clause;. Corresponding to the
literals in ¢;, Clause; has preconditions Lit;;, Lit;z, Lit;3, as follows. Each I;; is either zy
or Ty, for some z. If l;; = z, then Lit;; is xx(vi;), where v;; is a variable; if l;; = 7,
then Lit;; is Xx(vi;). Clause; has one postcondition: sat(wi1, vig, v:3).

The interpretation of sat(yes, yes,yes) is that X is satisfied. For any other constant
symbols u, v, w, sat{u, v, w) has no particular interpretation. Thus, the interpretation
of Clause; is that if ¢; = l;11;00;3 is satisfied, then Clause; asserts that X is satisfied.

There is one other step, Final, which has no preconditions and no postconditions.
Final’s purpose is to provide a final step in the plan.

°In the proof of his Intractability Theorem, Chapman also uses steps that have no preconditions and
postconditions. However, the use of such steps raises the question of whether TWEAK can ever create a plan
such as Py. It is easy to modify Py in such a way that TWEAK will construct it; the modification is as
follows. For each step z of Py, add a new postcondition done(name(z)) (recall that name(z) is a constant
symbol). For each ordering constraint ‘z < y’ of P, give y a new precondition done(name(z)).

10

Constraints. O contains an ordering constraint ‘Set; < Sep’ for every Set;, an ordering
constraint ‘Unset; < Sep’ for every Unset;, and ordering constraints ‘Clause; < Sep’
and ‘Clause; < Final’ for every Clause;. There are no other ordering constraints. There
are no codesignation constraints; i.e., D = .

Let P be any executable completion of Py, and 6 be the unique ground substitution
that satisfies P’s codesignation constraints. In P, Sep’s input and output states will both
be a set s of ground atoms of the form X;(u) and x;(v), corresponding a truth value for z;.
More specifically,

s=8UsyU...Usy,

where each s is either {Xi(yes),xx(no)} (indicating that zj is false), or {Xx(yes),xx(no)}
(indicating that zj is true).

For each Clause;, Clause;’s input state will consist of some ground atoms of the form
sat(u, v, w), plus the set s described above. Since Clause; is executable, each precondition
Lit;; of Clause; codesignates with an atom in Clause;’s input state. In particular, since each
Lit;; is either xk(v;;) or Xi(vi;) for some k, it follows that Lit;;6 € si. Thus, either v;;6 = yes
or v;;6 = no, depending on whether s corresponds to a truth value for z; that makes /;;
true, or one that makes I;; false. Clause; will assert sat(yes, yes, yes) iff s corresponds to a
set of truth values that make Iy, l;2, and [;3 all true.

From the above, we see that P will produce a final state containing sat(yes, yes, yes) if
s corresponds to a set of truth values that makes at least one of the conjuncts ¢; = l;zli5l3
true. Since s may correspond to any assignment of truth values to zq, 29, ..., 2Z,, this means
that P will produce a final state containing sat(yes,yes,yes) iff X = ¢; + ¢c2 + ...+ ¢p is
true for all assignments of truth values to zi,z9,...,Zy. | |

Proof of Theorem 2. Let X = ¢1cz...¢,, be a CNF formula over the Boolean variables
T1,%2,...,%n, With three literals in each disjunctive clause ¢;. Q% is the following plan:

Initial state. Q%’s initial state sq is the empty set.

Steps. For each Boolean variable z;, @% contains two steps, Set; and Unset;, which are are
identical to the corresponding steps of the plan P} of Theorem 1. Also, Q% contains
a step Sep, which is identical to the step Sep of Px.

For each c;, there let I;1, 2, I;3 be the literals in ¢;; i.e., ¢; = l;3+1;5+1;3. Corresponding
to these literals, there are three steps Lit;1, Litiz, Lit;3, as follows. Fach literal [;; is
either zy or T for some z. If I;; = zj, then Lit;; has the precondition xx(v;;), where
v;; is a variable symbol. If I;; = T, then Lit;; has the precondition Xi(v;;) instead.
Lit;; has one postcondition: csat;(v;;).

The interpretation of csat;(yes) is that ¢; is satisfied. For any other constant symbol
v, csat;(v) has no particular interpretation. Thus, the interpretation of Lit;; is that if
l;; satisfies ¢;, then Lij asserts that c; is satisfied.

Q% contains a step Final whose preconditions are esat;(u1), esato(uz), . . ., csaty, (um),
where uy,ug,...,u, are variables. Final has one postcondition: sat(ui,us,...,Un).
The interpretation of sat(yes, yes, . .., yes) is that X is satisfied. For any other constant
symbols u,..., Uy, sat(uy,ug,...,Un) has no particular interpretation. Thus, the

11

interpretation of Final is that if every clause ¢; of X is satisfied, then Final asserts that
X is satisfied.

Constraints. O contains an ordering constraint ‘Set; < Sep’ for every Set;, an ordering
constraint ‘Unset; < Sep’ for every Unset;, and ordering constraints ‘Lit;; < Sep’ and
‘Lit;; < Final’ for every Lit;;. There are no other ordering constraints. There are no
codesignation constraints; i.e., D = 0.

Let Q be the set of all completions of Q% such that all steps except possibly @ are
executable. Note that every executable completion of Q% is in Q.

In every plan in @, Sep’s input and output states will both be a set s of ground atoms
of the form X;(u) and x;(v), corresponding a truth value for z;. More specifically,

s=8 UsU...Us,,

where each si is either {Xx(yes),xx(no)} (indicating that z; is false), or {Xi(yes),xx(no)}
(indicating that zj is true). It follows that each step Lit;; will assert csat;(yes) iff the truth
value assigned to the corresponding Boolean variable zj satisfies I;;. Otherwise, Lit;; will
assert csat;(no).

Suppose X is satisfiable. Since any ordering of the Set; and Unset; is possible, every
assignment of truth values to the 2 is represented in at least one plan in Q. Thus there
is a plan in @ such that for every c;, at least one of l;1, lig, li3 is satisfied, whence Lit;; will
assert csat;(yes). Thus, there is a plan @ € Q such that in Final’s input state, csat;(v;;) is
true for every 1, so that Final will assert sat(yes, yes, . . ., yes). '

Suppose X is not satisfiable. Then for every plan in @, there will be at least one ¢
such that none of [;1, 15, li3 is satisfied. Thus csat;(no) will be true in Final’s input state,
but csat;(yes) will not. Thus in every executable completion of @%, the ground atom
sat(uy, ug,...,Uy,) asserted by Final will contain at least one u; = no. n

12

