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Twinning is an important deformation mechanism in many hexagonal close

packed metals, including α-titanium alloys. However, the processes of twin nucle-

ation, growth, and interaction with other defects are not well understood. Further,

many aspects of deformation twinning are difficult to interrogate experimentally

owing to the small time and length scales of the governing mechanisms. In this

study we apply a combination of theoretical and computational materials science

techniques, leveraged with experimental data, to quantify the effects of α-β phase

boundaries and oxygen interstitials on twin nucleation, twin growth, and ultimately

mechanical behavior in titanium alloys.

Combined results from finite element method and analytical dislocation mod-

eling demonstrate that elastic and plastic interaction stresses across the interface be-

tween the α- and β-phases are responsible for the experimentally observed anisotropy

in the deformation behavior of dual-phase alloys. Interaction stresses also promote



slip and twinning at up to 30% lower applied stress than predicted from Schmid’s

Law, significantly affecting performance in many applications. The complex interac-

tions of phase boundaries, dislocations, and deformation twins modify the preferred

deformation mechanism and promote twinning for some loading orientations.

In order to quantify the interaction between oxygen interstitials and (101̄2)

twin boundaries, we employ atomistic simulations using a newly developed modified

embedded atom method potential and density functional theory. Our investigation

reveals that a twin boundary alters interstitial formation energy by as much as 0.5 eV

while also stabilizing a tetrahedral interstitial, which is unstable in the bulk. Further,

the activation barriers for diffusion in the region near a twin are uniformly lower than

in the bulk; an atom diffusing across the twin boundary moves through several paths

with peak activation barriers more than 0.3 eV lower than for comparable diffusion

far from the twin. Despite accelerated kinetics, oxygen diffusion still occurs much

more slowly than twin growth, suggesting that oxygen interstitials contribute to

experimentally observed time-dependent twinning.

Together, these results provide new insight while enabling predictive modeling

and purposeful development of improved titanium alloys across a wide range of

applications.
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Chapter 1: Introduction

Titanium (Ti) alloys exhibit excellent specific strength, toughness, high temperature

stability, and corrosion resistance, among other characteristics [1, 2]. This unique

set of properties enables use in applications as varied as jet engines [3], artificial

hip joints [4], offshore oil drilling equipment [5], and suspension components for the

Spirit and Opportunity Mars rovers [6]. Pure Ti exhibits an isomorphous phase

transformation from the hexagonal close packed (hcp) α-phase to the body centered

cubic (bcc) β-phase at 682◦ C [7], enabling a wide range of microstructures in al-

loyed products. The crystal structure and microstructure of Ti alloys contributes

significantly to material performance; alloying and thermo-mechanical processes are

applied to produce single phase hcp α-Ti alloys, which exhibit high elastic stiff-

ness and relatively low yield strength; single phase bcc β-Ti alloys which have a

lower elastic modulus compared to α-Ti alloys but have a higher yield strength; or

dual-phase α-β Ti alloys which exhibit a wide range of properties dependent on the

phase volume fraction and microstructure. However, despite their various appli-

cations, many deformation characteristics of Ti alloys are poorly understood. For

example, nucleation and growth of twins in Ti alloys, particularly in the α-phase,

remains an active research area in the materials science community; behavior includ-
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ing non-Schmid deformation [8, 9, 10, 11], non-Hall-Petch twin nucleation [12, 13],

apparent oxygen (O) interstitial limited twin growth [14, 15, 16, 17], and even as-

yet undefined conditions for twin nucleation all confound our understanding and

the predictive capability necessary to develop higher performance Ti alloys. Twin

growth is an important deformation mechanism in Ti alloys and a more complete

understanding of the governing characteristics will support improved creep resis-

tance, greater strength and ductility, and superior fatigue behavior across a wide

range of applications.

1.1 Interaction Stresses at Microstructural Interfaces

Interaction between two volumes with different elastic properties, for example across

a phase boundary or grain boundary, produces an elastic interaction stress. A

schematic representation of the stress-strain curves for α- and β-Ti alloys in Fig-

ure 1.1 provides a indication of the source of this stress. The strain far from the

interface due to an applied stress σApp is different in each phase due to the dif-

ferent elastic moduli. However, the displacement compatibility requirement at the

interface produces an intermediate strain εinterface which in higher than the α-phase

strain far from the interface and lower than the β-phase strain far from the inter-

face. The end result is a compressive interaction stress in the β-phase and a tensile

interaction stress in the α-phase.

Elastic interaction stresses have been modeled and measured in Ti alloys as

shown in Figure 1.2. Although initials studies of specific conditions report the

2
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Figure 1.1: Schematic stress-strain curves for α- and β-Ti phases, demonstrating

the source of elastic interaction stresses. Applied stress σApp produces strains εα and

εβ in the α- and β-phases (respectively) far from the interface and εinterface at the

interface. The difference between εinterface and εα/εβ produces a tensile interaction

stress in the α-phase, σinteraction,α, and a compressive interaction stress in the β-

phase, σinteraction,β.
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degree to which interaction stresses resolve onto certain slip systems [18], no sys-

tematic effort to quantify interaction stress effects during twinning exists. It is not

known whether resolved interaction stresses are sufficient to explain non-Hall Petch

and non-Schmid behavior during twin nucleation and growth, nor is it understood

how interface orientation affects the development of interaction stress. Quantifying

the effects of these stresses on deformation in Ti alloys would provide invaluable

information for alloy and process design.

1.2 Interaction Between O Interstitials and Deformation Mechanisms

in Ti

The Ti-O system is unique from most metal-gaseous element combinations in several

important ways. For example, a large number of phases exist – structural informa-

tion is reported for at least 26 different Ti-O structures – and the solubility of O in

hcp Ti is up to 33 atomic percent at room temperature [7].

Though an increase in hardness with interstitial impurity content was reported

as early as 1951 [21], perhaps the earliest effort to understand the relationship be-

tween interstitial elements and deformation mechanisms in α-Ti was reported by

Churchman based on observations that samples with combined O and N concen-

tration of approximately 0.01 wt% exhibited prismatic 〈a〉 slip and small amounts

of basal 〈a〉 slip while samples with a combined O and N concentration of ap-

proximately 0.1 wt% deformed by a combination of basal 〈a〉 , prismatic 〈a〉, and

pyramidal 〈c + a〉 slip [22]; a hard-sphere model suggested that while interstitials

4



a) b) 

c) 

Figure 1.2: a) Example interaction stress calculated by Ankem & Margolin [19]

where the x-axis is distance across a β-platelet surrounded by an α-matrix, and the

y-axis is transverse and longitudinal stress; b) Example interaction stress calculated

by Ankem & Greene [18] where the x-axis is distance across an α-platelet surrounded

by a β-matrix, and the y-axis is the resolved shear stress on the prismatic slip system

in the α-platelet; (c) Experimental measurements by Guo, Britton, & Wilkinson [20]

for two α-grains and a grain boundary. Slip has occurred along the solid line in the

top grain (left), but not in the lower grain along the dashed line; this causes an

interaction stress in the lower grain along the dashed line, shown in the plot (right,

blue dots are measurements, red line is a simple model).
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in either octahedral position are out of plane with basal and prism planes (and

therefore able to act as a barrier to both slip systems), only one of the octahedral

positions is out of plane with a given pyramidal plane, and 〈c+ a〉 slip should thus

become more likely as interstitial content increases. Similar behavior was identified

in Ti-6Al-4V by Welsch [23] where an alloy containing 0.07 wt% O deformed by fine

prismatic 〈a〉 slip in most heat treatments, while an alloy containing 0.19 wt% O

deformed by a combination of fine prismatic 〈a〉 slip, fine pyramidal 〈c+a〉 slip, and

coarse prismatic 〈a〉 slip. Systematic measurements of temperature and strain rate

effects on flow properties provide further insight into the importance of thermally

activated processes during interaction of deformation products and interstitials in

Ti: the strengthening effect of O, N, and C interstitials in α-Ti is largest at very

low temperatures with almost no difference in yield stress between samples with

0.04 at% and 0.48 at% O above 350◦C; the strain rate sensitivity of the same Ti-O

samples is zero both for temperatures near 0 K and temperatures above 350◦C [24].

There are two plausible mechanisms through which O interstitials could affect

dislocation activity: size misfit and chemical misfit. Size misfit, where an interstitial

modifies the strain field of a nearby dislocation and the local stiffness of the lattice,

is well understood and described through elasticity theory [24], though studies in-

volving atomistic calculations are lacking. Chemical mistfit is due to changes in the

stacking fault energy (SFE), where lower SFE promotes the formation of partial

dislocations which are unable to climb thereby increasing strength and improving

local hardening. Analysis of x-ray diffraction (XRD) results from deformed samples

suggests that SFE does in fact decrease with increasing O, though this technique

6



can not differentiate between different (e.g. basal vs. prismatic) stacking faults [25].

More recent DFT calculations of generalized stacking fault energy (GSFE) for the

(0001)[11̄00] system in pure Ti along with supercells containing approximately 1

at.% O, carbon (C), and hydrogen (H) confirm that the presence of O impurities

(as well as C and H) decreases the basal SFE in Ti [26]. Recent application of DFT

calculations to the Ti-O system indicate that low-energy O interstitial sites exist

in the core of prismatic edge dislocations and that the presence of these defects

increases Peierls stress for slip by a factor of 4 [27].

While significantly less studied than O interactions with dislocations in Ti,

the presence of O interstitials may also impede the growth of twins. Observation of

slow twin growth despite prevailing belief that twins grow very quickly provoked an

analysis suggesting that O interstitials may result in time-dependent twinning by

obstructing the twin shearing/shuffling process [28]. Both high purity α-Ti with 250

parts per million (ppm) O and commercial purity α-Ti with 2500 ppm O exhibit a

peak in twinning activity (measured as the twin volume fraction at 5% strain) be-

tween 400◦C and 600◦C however twin volume fraction in the lower purity material

trends towards zero nearing 0◦C while twin volume fraction at the same temperature

in the higher purity material exceeds 35 volume percent. A study on the fatigue

strength of α-Ti showed reduced twinning and improved fatigue strength with in-

creasing O content, though no mechanism was proposed [29]. A simple analysis

of (101̄2) and (112̄1) twin growth in zirconium (Zr, an hcp metal with a crystal

structure similar to Ti) demonstrates longer shuffle distances for the interstitials to

reach twinned sites, as compared to the metal atoms, which could cause interstitial-

7



twin interaction in Ti and Zr [30]. A more complete effort combining experimental

work with a crystallographic model suggested that O interstitial sites are not con-

served during the shearing process associated with twin growth and the interstitials

thus interfere with twin growth in bcc Ti [14]. Experimentally, time dependent

{101̄2} twinning (Figure 1.3b) and strain-rate sensitive twin growth (Figure 1.3a)

is obersverd in α-Ti which may be due to the presence of O interstitials [15, 16, 17].

O interstitials are also found to impede other shear-dominated processes such as the

martensitic α → ω transformation in Ti [31] and Zr [32]. Recent DFT calculations

by Ghazisaeidi and Trinkle provide additional clarity on the relationship between O

interstitials and twins in hcp Ti, demonstrating that both attractive and repulsive

O octahedral interstitial sites exist in the vicinity of a twin boundary [33].

While crystallographic modeling suggests plausible mechanisms for twin-O in-

teraction, a thorough investigation and quantification is required to enable purpose-

ful development of improved alloys. The continued evolution and maturation of

computational materials science techniques provides a promising avenue for explor-

ing this system and developing quantitative, mechanistic descriptions of the effects

of O interstitials on twin growth and mechanical behavior in Ti alloys.

1.3 Research Summary

The overall objective of this research is to apply a combination of theoretical and

computational techniques, along with experimental data, to produce new insight

into how phase boundaries and O interstitials affect the nucleation and growth of
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Figure 1.3: a) The average twin thickness varies as a function of strain rate after

quasi-static tensile testing to 3% total strain (data from [17]). b) Growth of twins is

observed to occur slowly over several hundred hours during creep testing, where the

twin boundaries are indicated with red arrows [16]. Both a) and b) report results

for α-Ti-1.6 V (wt%).
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twins in Ti. Ultimately, the goal of this work is to enable the development of new,

high-performance Ti alloys based on a clearer understanding of defect interactions

with twins. Based on the background described above, this research is pursued in

three phases:

1. Quantify the development and effects of elastic and plastic interaction stresses

during twin nucleation in the α-phase of Ti alloys

2. Establish a Modified Embedded Atom Method (MEAM) potential for the Ti-

O system as a tool to thoroughly investigate O interstitial interactions with

deformation twins in the α-phase of Ti alloys

3. Identify and characterize the as-yet unreported critical interactions between

O interstitials and growing twins in the α-phase of Ti alloys through a combi-

nation of MEAM, density functional theory (DFT), and experimental data

First, in order to improve our understanding in the area of twin nucleation, we

apply a combination of the finite element method (FEM) and dislocation theory to

quantify the development of elastic and plastic interaction stresses in dual-phase α-β

Ti alloys and to explore the effect of these stresses on experimentally observed non-

Schmid and non-Hall-Petch twin nucleation. Chapter 2 presents the FEM model

development and validation process, while chapter 3 presents the integration of these

models with various analytical techniques to systematically quantify the effects of

the α-β interface on the development of interaction stresses and the nucleation of

deformation twins. These results demonstrate for the first time that the combination
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of elastic and plastic interaction stresses is responsible for the measured variability

in the critical resolved shear stress for slip and twinning in α-Ti. Further, the

local stress fields due to interaction stress initiate slip at up to 30% lower applied

stress than is expected based on Schmid’s Law. In some orientations, the primary

deformation mechanism changes from slip to twinning as a result of the α-β interface.

Second, in order to improve understanding in the area of twin growth, we uti-

lize DFT and MEAM calculations while leveraging earlier experimental results to

explore the interactions between O interstitials and growing twins in the α-phase

of Ti alloys. Chapter 4 presents a new MEAM potential for the Ti-O system de-

veloped during this research, which has been published [34], and which supports

our own effort as well as research on atomistic interactions of Ti and O throughout

the scientific community. Chapter 5 presents an application of the Ti-O MEAM

potential in combination with DFT calculations to quantify the effect of a (101̄2)

twin boundary on the formation energy of O interstitials and the activation barri-

ers for diffusion between interstitial sites. These results provide the first reported

quantification of interstitial behavior near any twin boundary (in Ti or otherwise)

as well as demonstrating that diffusion of O across the twin boundary is easier than

in the bulk.

Finally, chapters 6 and 7 provide concluding remarks and a discussion of future

opportunities. Overall, this research demonstrates and quantifies the effects of two

important defects (microstructural boundaries and O interstitials) on the nucleation

and growth of twins in the α-phase of Ti alloys. Given the breadth of Ti applications

and the importance of twin growth in the mechanical properties of Ti alloys, these
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results enable improved alloy, process, and component design for many products

that affect our lives every day.
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Chapter 2: Finite Element Model Development and Testing

Finite element method (FEM) modeling is a powerful technique for interrogating

material behavior. Material characteristics and geometry can be controlled directly,

and simulation results can be read from nearly any position in the sample. FEM

modeling is also an intriguing platform for developing models of elastic-plastic be-

havior in materials; new material models can be implemented in a FEM solver and

compared to experimental data as a method of model validation. However FEM

simulations are sensitive to the model set-up and features such as model construc-

tion, mesh characteristics, and mesh constraints. These model/mesh characteristics,

which are not present in “real” samples, can drive undesirable deviation from reality

hence it is important to validate that models used for research behave as desired. In

this study, results published by Greene and Ankem [18] are treated as a “baseline”

and reproduced using new finite element models to validate model behavior. The

choice of material and model parameters is carefully considered; particular focus is

given to the construction of the finite element model and the meshing parameters,

including model constraints.
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2.1 Baseline Model

Greene and Ankem explored the behavior of α-Ti platelets in a β-Ti matrix in four

scenarios represented schematically in Figure 2.1: bicrystal, tricrystal, single inclined

plate, and triple inclined plate [18]. For this study, only the bicrystal, single inclined

plate, and triple inclined plate are tested; the tricrystal model produces results quite

similar to the bicrystal model [18]. For each scenario, the top surface of the sample

is displaced such that the material remains in the elastic regime and the shear stress

resolved onto the 〈12̄10〉(0001)α and 〈11̄1〉(110)β slip systems is measured across the

interface between the α and β-phases.

a) b) c) d)

Figure 2.1: Test scenarios from [18]: a) bicrystal, b) tricrystal, c) single inclined

plate, and d) triple inclined plate. The α-phase is shown in purple and the β-phase

is shown in red.

2.2 Establishing Materials Parameters

Material characteristics such as the Young’s Modulus or stiffness matrix are a crit-

ical input into a finite element model. A single, isotropic modulus value may be
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Table 2.1: Compliance tensor component values for the α- and β-phases in Ti

(×10−11 Pa).

Phase s11 s33 s44 s12 s13 s66

α [35] 0.9581 0.6980 2.1410 -0.4623 -0.1893 2.8410

β [19] 1.8570 1.8570 2.3420 -0.7741 -0.7741 2.3420

representative of a large collection of randomly oriented grains, however the intent

of these models is to explore the deformation behavior of Ti at a microstrucural

scale, across the boundary between two phases. The stiffness or compliance matrix

is therefore required in order to accurately describe the anisotropic elastic behav-

ior of individual α- and β- grains. The stiffness matrices for the α-phase [35] and

β-phase [19] of Ti have been converted to compliance values and are shown in Ta-

ble 2.1. The values shown for α-Ti are for pure Ti. The values shown for β-Ti

were measured from a Ti-10%Cr sample, which is necessary because pure β-Ti is

not stable at room temperature.

The relative orientation of the α- and β-phases in Ti is not arbitrary. Rather,

the two phases have a well-documented relative orientation with a (5̄140)α||(3̄34)β

interface plane and a 〈12̄10〉(0001)α||〈11̄1〉(110)β Burgers orientation relationship

[36]. To reflect this in the finite element models, the stiffness matrices for each

phase must be rotated accordingly. In addition, the direction of the applied load

must be considered; as in [18], the orientation of the phases in each the test scenario

is set such that shear stress is maximized on the 〈12̄10〉(0001)α and 〈11̄1〉(110)β slip
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systems. Maximizing the shear stress on these slip systems is necessary to determine

the influence of interaction stresses on slip behavior in the worst-case scenario. The

angles between the various planes and directions of interest are required in order

to perform the necessary tensor rotations. As a tool for representing orientation

and angles in the α-β system, we construct a composite stereographic projection

which overlays the (0001)α and (110)β stereographic projections. Overlapping the

(5̄140)α and (3̄34)β poles implements the correct interface plane alignment as in

Figures 2.2a and 2.2b. We then calculate the locations of the remaining points on

the stereographic projection as angles from the (5̄140)α and (3̄34)β poles, φ, using

the relationships

cos(φCubic) =
h1h2 + k1k2 + l1l2√

(h21 + k21 + l21) + (h22 + k22 + l22)
(2.1)

cos(φHex) =
h1h2 + k1k2 + 1

2
(h1k2 + h2k1) + 3a2

4c2
l1l2√

(h21 + k21 + h1k1 + 3a2

4c2
l21)(h

2
2 + k22 + h2k2 + 3a2

4c2
l22)

(2.2)

where (h1k1l1) and (h2k2l2) are the planes of interest and a and c are the

hexagonal lattice constants for α-Ti (a = 0.29512 nm and c = 0.46845 nm) [37].

There are three coordinate systems that are relevant to the test scenarios outlined

above: (1) the standard orientation directions of the unrotated compliance tensors,

xα0 , yα0 , zα0 and xβ0 , yβ0 , zβ0 ; (2) the coordinate system for the test scenario, x′, y′, z′; (3)

the coordinate system for the 〈12̄10〉(0001)α and 〈11̄1〉(110)β slip systems (which are

aligned due to the Burgers orientation relationship), x′′, y′′, z′′. Equations 2.1 and 2.2

are used to identify the locations of these poles on the stereographic projection in

Figure 2.2.
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a) b) 

Figure 2.2: Composite (0001)α and (110)β stereograpic projections rotated to rep-

resent the a) bicrystal and b) inclined plate test scenarios

The stereographic projections in Figure 2.2 provide the angles between the

planes of interest which can then be used to calculate the direction cosines. Two

tensor rotation operations are necessary in this study: rotating the original com-

pliance matrices into the (x′,y′,z′) system (see Figure 2.4) for input into ANSYS,

and rotating the resulting stress tensors to evaluate resolved shear stress on the slip

plane. Both the compliance and stress tensors can be rotated as second rank tensors

using the relationship

T ′ij = aikajlTkl (2.3)

where T ′ij is the ij component of the rotated tensor, aik and ajl are compo-

nents of the direction cosine matrix, and Tkl is the kl component of the original

tensor; this equation is written in the conventional dummy suffix notation and can

be expanded accordingly. The final direction cosines used to perform the necessary

tensor rotations are shown in Tables 2.2 and 2.3.
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(a) xα0 , y
α
0 , z

α
0 and x′, y′, z′

xα0 yα0 zα0

x′ -0.946 -0.326 0.000

y′ 0.242 -0.669 0.707

z′ -0.242 0.669 0.707

(b) xβ0 , y
β
0 , z

β
0 and x′, y′, z′

xβ0 yβ0 zβ0

x′ -0.500 0.530 0.707

y′ 0.857 0.122 0.500

z′ 0.156 0.848 -0.500

(c) x′, y′, z′ and x′′, y′′, z′′

x′0 y′0 z′0

x′′ -0.990 -0.105 0.105

y′′ 0.000 0.707 0.707

z′′ -0.174 0.682 -0.707

Table 2.2: Direction cosines between coordinate systems for the bicrystal test sce-

nario
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(a) xα0 , y
α
0 , z

α
0 and x′, y′, z′

xα0 yα0 zα0

x′ -0.530 -0.695 0.500

y′ 0.819 -0.259 0.500

z′ -0.242 0.669 0.707

(b) xβ0 , y
β
0 , z

β
0 and x′, y′, z′

xβ0 yβ0 zβ0

x′ 0.208 0.454 0.857

y′ 0.956 -0.276 -0.122

z′ 0.156 0.848 -0.500

(c) x′, y′, z′ and x′′, y′′, z′′

x′0 y′0 z′0

x′′ -0.778 0.616 0.104

y′′ 0.500 0.500 0.707

z′′ 0.342 0.616 -0.707

Table 2.3: Direction cosines between coordinate systems for the inclined plate test

scenario
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a) b) c) 

Figure 2.3: Final solid models for the a) bicrystal, b) single inclined plate, and c)

triple inclined plate scenarios.

2.3 Model and Mesh Testing

In constructing a finite element model it is important to recognize that most model

and mesh characteristics, such as mesh size or element type, do not exist in the

real, physical scenario that is being simulated. Hence these characteristics must

be chosen such that they provide accurate simulation results in a manner that is

computationally efficient. The element type, model details, and mesh parameters

for these simulations were selected to assure accuracy and model performance. Fig-

ure 2.3 shows the final models for the bicrytsal, single inclined plate, and triple

inclined plate scenarios.

Having established the models, the simulation constraints were developed to

mimic a standard tensile test, with the bottom of the model acting as the center of

a real-world tensile bar. The test scenario and notation convention for the points

in the models is shown in Figure 2.4. All nodes on plane EFGH are constrained in
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Figure 2.4: Test scenario schematic showing coordinate system orientation and ref-

erence points A-N.

the y direction; all nodes along lines JK and MN are constrained in the z direction;

the node a point L is constrained in the x and z directions; the node at point O is

constrained in all directions; the nodes on plane ABCD are coupled to displace the

same distance in the y direction.

An important and useful feature of the ANSYS postprocessor is path oper-

ations. The stress state after simulation is reported (as a tensor) at each corner

node in the mesh; one way to increase the spatial resolution of the stress results is

to refine the mesh size however this requires additional computational effort. Path

operations offer a second option for reading stress results from the simulation by

interpolating the stress results between nodes. There are a variety of path operation

options that must be set correctly prior to reading path data. The following text
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provides the ANSYS Parametric Design Language (APDL) code necessary to set up

the path options for these test scenarios; the APDL code is commented to provide

insight into each option.

PATH,SPATH,2,,500 !Creates a path called SPATH with 500 divisions

PPATH,1,,0,50,5 !Sets the starting point at (0,50,5)

PPATH,2,,70,50,5 !Sets the end point at (70,50,5)

PMAP,,MAT !Path option for use with material discontinuities

PDEF,XSTRS,S,X !Store the x-stress results to the variable XSTRS

PDEF,YSTRS,S,Y !Store the y-stress results to the variable YSTRS

PDEF,ZSTRS,S,Z !Store the z-stress results to the variable ZSTRS

PDEF,XYSHR,S,XY !Store the xy-shear results to the variable XYSHR

PDEF,YZSHR,S,YZ !Store the yz-shear results to the variable YZSHR

PDEF,XZSHR,S,XZ !Store the xz-shear results to the variable XZSHR

RSYS,0 !Report results in the global coordinate system

Considerable effort was applied towards optimization to provide an accurate,

computationally efficient model for further use. While the computation times of

the non-optimized models/meshes described below are not exceptionally long, these

test scenarios only require simulation of elastic properties. Future work may in-

clude plasticity and twin formation which requires considerable added computa-

tional time. Starting with an optimized baseline model will help to ensure that the

computational expense is minimized for these more complex scenarios. The AN-

SYS program offers more than 100 different element types, including elements for

simulating thermal, electrical, mechanical, and multi-physics problems. The test

scenarios outlined above represent mechanical problems, and solid elements are re-

quired to avoid restricting the test to plane strain (as would be the case for 2D

elements). These restrictions reduce the number of available element types to nine.

Of these nine, six are either restricted to special applications (such as SOLID65
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which is intended for modeling reinforced concrete) or are limited in their solution

capabilities (such as SOLID45 which does not have plasticity and creep functional-

ity). The three remaining elements are SOLID185, SOLID186, and SOLID187. For

computational efficiency and potential improvement in accuracy, a brick element is

generally used whenever possible; SOLID187 is a 10 node tetrahedral element and

does not support brick geometry. Both SOLID185 and SOLID186 support brick

geometry with the only major difference being the number of nodes: SOLID185

has 8 nodes per element while SOLID186 is a higher order element with 20 nodes

per element. Higher order elements support non-linear displacement between corner

nodes, which could improve accuracy in some scenarios. Alternatively, lower order

elements require substantially less computation time. The test scenarios in this

study operate in the elastic regime and do not deform substantially so it is unlikely

that higher order elements are necessary. However, to confirm that the SOLID185

element performs adequately, a comparison test was run where the single inclined

plate scenario was modeled using the SOLID185 and SOLID186 elements. The re-

sults of the SOLID185-SOLID186 comparison test are shown in Figure 2.5 with

the calculation time for each simulation shown in parentheses; simulation with the

SOLID185 element achieves comparable results when compared to simulation with

the SOLID186 element, but at lower computational cost. Based on these results,

the SOLID185 element was used for the remaining scenarios.

The mesh size for these models is expected to have a significant effect on both

model accuracy and computational requirements so a study was conducted to de-

termine the appropriate mesh size for the inclined plate models. Before considering
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Figure 2.5: SOLID185-SOLID186 element comparison test results for the single

inclined plate model. Computation time is shown in parentheses in the legend.

Note that the results are very similar for both element types but the SOLID186

element requires significantly more processing time.
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the use of a variable-size mesh (where the mesh size varies throughout the sample),

a baseline mesh size was determined as a reference point for model performance.

To determine the baseline, simulations with increasingly fine mesh sizes were run

until the results converged with respect to mesh size. The mesh size study was

conducted using the single inclined plate model meshed at four different sizes: 1,

1.25, 2.5, and 5 units (versus the total model height of 100 units). The simulation

results and computer time are summarized in Figures 2.6 and 2.7. These results

show that changes to mesh size have a significant effect on model performance when

decreasing from 5 to 2.5 units and from 2.5 to 1.25 units. Conversely, the decrease

from 1.25 to 1 units has a very small effect on model accuracy but a significant effect

on computation time. Based on these results, a mesh size of 1.25 has been selected

for the models; this mesh size serves as a measure of baseline performance (both for

accuracy and computation time) as well as establishing an upper limit on mesh size

for the area near the platelet.

To further reduce computational requirements, a composite mesh was devel-

oped with variable mesh size throughout the sample as shown in Figure 2.8. Using

variable mesh size allows sufficient resolution in the regions of interest (near the α-β

interface) without high resolution in areas of less interest (far from the interface in

the β-phase). In order to build a composite mesh from the single platelet model

in Figure 2.3b, the corner volumes (away from the platelet) were constructed with

a mesh size of 2.5 units (versus a model height of 100 units). The volumes near

the platelet have a mesh size of 0.75 units. The single plate test scenario using the

composite mesh is compared to the results from the uniform 1.25 mesh size test
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scenario in Figure 2.9. These results show that the models produce similar results,

particularly near the interface, but the variable mesh simulation required only 21

seconds of simulation time versus 336 seconds for the uniform mesh.

The results from the single inclined plate scenario provide an indication of the

model and mesh properties required for efficient, accurate simulation in the triple

inclined plate test scenario. The triple inclined plate model in Figure 2.3c was

built specifically to accommodate a variable mesh by including large corner sections

and small regular diagonals through the platelets. A mesh size of 2.5 in the corner

sections and 0.75 in the platelet diagonals (compared to a model height of 100 units)

was used based on the results from the single inclined plate optimization tests. The

plot of normalized resolved shear stress versus distance along line Q-Q is shown in

Figure 2.10; this is similar to the results published in [18] but with considerable

improvement in resolution.
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Figure 2.6: Shear stress resolved onto the 〈12̄10〉(0001)α and 〈11̄1〉(110)β slip sys-

tems, normalized to the applied stress, versus distance along line Q-Q (Figure 2.4)

on the single inclined platelet model. Results are shown for four different mesh sizes

as indicated. Computation time for each simulation is shown in parentheses in the

legend.
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Figure 2.7: Close-up view of the results from Figure 2.6 showing normalized re-

solved shear stress through the first half of the platelet. Results are shown for four

different mesh sizes as indicated. Computation time for each simulation is shown in

parentheses in the legend.

a) b) c) 

Figure 2.8: Final meshes for the a) bicrystal, b) single inclined plate, and c) triple

inclined plate scenarios.
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Figure 2.9: Shear stress resolved onto the 〈12̄10〉(0001)α and 〈11̄1〉(110)β slip sys-

tems, normalized to the applied stress, versus distance along line Q-Q in the single

inclined platelet model. Results are shown for the uniform 1.25 mesh size and the

composite mesh.
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Figure 2.10: Shear stress resolved onto the 〈12̄10〉(0001)α and 〈11̄1〉(110)β slip sys-

tems, normalized to the applied stress, versus distance along line Q-Q in the triple

inclined platelet model using the composite mesh shown in Figure 2.8c.
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2.4 Conclusion

While finite element modeling is a useful tool for studying material behavior, the

characteristics of the model, mesh, and simulation constraints have significant effects

on the model accuracy and computation time. Optimization of these characteristics

is an important aspect of FEM model/mesh development. In this study, three test

scenarios from previously published research are replicated using updated models

and meshing. The results are compared to the published results as a measure of

model accuracy. Model characteristics such as mesh size and element type are

optimized to establish a combination of model, mesh, and constraint features that

provide sufficient accuracy at minimal computational cost.
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Chapter 3: The Effect of Microstructural Interaction Stress on Nu-

cleation and Growth of Deformation Twins

Though dual-phase Ti alloys are a composite of the single-phase constituents, their

mechanical behavior cannot always be predicted by a simple rule of mixtures. For

example, Jaworski & Ankem [13] demonstrated that a dual-phase Ti-8.1 wt.% V

alloy with a Widmansttaten microstructure deformed by twinning in the α-phase

and stress-induced martensite (SIM) transformation in the β-phase during tensile

testing, whereas a single phase alloy with the same α-phase composition and com-

parable grain size deformed by slip in the α-phase and slip and twinning in the

β-phase. This behavior indicates that the phases interact during deformation to af-

fect the preferred deformation mechanisms and the resulting mechanical behavior in

the dual-phase system. One result of the interaction between the constituent phases

is the interaction stress, which develops due to differences in the elastic or plastic

properties of the two phases [19, 38]. During elastic deformation, the displacement

compatibility requirement across the interface of the phases causes the elastically

softer β-phase to impart a tensile interaction stress on the elastically stiffer α-phase.

Previous research shows that these elastic interaction stresses can resolve onto the

deformation systems and increase the total resolved shear stress beyond the contri-
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bution from the applied stress alone [19, 18]. Plastic interaction stresses have also

been observed using FEM modeling of plastic deformation in dual-phase Ti alloys,

showing clear evidence of load shedding (a type of plastic interaction stress) where a

higher stress is observed in the high strength phase, a higher strain is observed in the

low strength phase, and significant stress and strain gradients are observed at the in-

terfaces [39]. More recently, a time dependent crystal plasticity finite element model

(CPFEM) was used to simulate the compressive creep behavior of a hard-oriented α

Ti grain embedded in a soft-oriented α-Ti grain; this model predicted load shedding

onto the hard-oriented phase with a considerable stress gradient developing near the

interfaces [40].

More generally, experimental investigations of the mechanical behavior of dual-

phase Ti alloys suggest that the applied stress is not the sole contributor to the

activation of specific deformation mechanisms. The activation of a deformation

mechanism in many crystalline materials is often modeled to follow Schmid’s law

where deformation occurs when the resolved shear stress exceeds the critical resolved

shear stress (CRSS). However, the reported behavior of dual-phase Ti alloys does

not always obey Schmid’s law. In-situ scanning electron microscopy (SEM) observa-

tions of a tensile deformed polycrystalline dual-phase Ti alloy (93% volume fraction

α) indicate that deformation by basal 〈a〉, prismatic 〈a〉, and pyramidal 〈a〉 slip is

correlated with Schmid factor, however favorably oriented systems are occasionally

not activated while unfavorably oriented systems occasionally slip [10]. Experimen-

tal results using single colony samples of α-β Ti deformed at different orientations

suggest that slip parallel to the long axis of the platelets obeys Schmid’s Law while
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slip in other directions does not [8]. Plane strain compression testing of commer-

cially pure (CP) Ti at different orientations demonstrates that the Schmid factor

is an effective though imperfect indicator of slip and twinning activity in polycrys-

talline α-Ti alloys [11]. Interaction stresses were not accounted for in any of these

studies due to difficulty measuring the detailed stress state at the grain boundary

or phase interfaces. A review of the CRSS for different slip systems measured from

single crystal and polycrystalline HCP Ti alloys further reinforces that elastically

and plastically anisotropic materials exhibit variability in CRSS and hence deviation

from Schmid’s Law, which may be attributed to the effects of the local stress state

[41]. The significance of interaction stresses during deformation in Ti alloys has been

the subject of some debate [8, 42] with a particular emphasis on the importance of

yield anisotropy within a deformation system (e.g. CRSS anisotropy within the

prismatic 〈a〉 system); this type of analysis captures the α-β interaction effects by

modifying the critical resolved shear stress for directions within a slip system which

improves model accuracy but does not demonstrate or discount the significance of

interaction stresses.

Despite the focus on predicting the tensile response of Ti alloys, a thorough

exploration of the relationship between microstructure, crystallographic/loading ori-

entation, and the development of interaction stresses is not reported in the literature.

In this study we apply a combination of finite element method (FEM) models and

analytical dislocation-boundary interaction models to quantify the effect of inter-

action stresses on the onset of plastic deformation in α-β Ti alloys. To assist the

reader, standard terminology used in this chapter is clarified here. The term “de-
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formation mechanism” refers to general categories such as slip, twinning, or stress

induced martensite. The terms “slip system”and “twinning system” refer to sym-

metrically identical sets of mechanisms such as prismatic 〈a〉 slip, basal 〈a〉 slip,

or (101̄2) twinning. The terms “independent slip system” and “independent twin-

ning system” refer to a single, specific direction/plane combination within a slip or

twinning system, such as (11̄00)[112̄0] prismatic 〈a〉 slip or (1̄012)[101̄1] twinning.

3.1 Elastic Interaction Stresses

FEM modeling is a powerful tool for predicting the complicated stress field that

arise, for example, from the interaction of the elastically anisotropic α-phase with the

elastically anisotropic β-phase in dual-phase Ti alloys. Elastic interaction stresses

impact deformation in dual-phase systems, and in order to quantify this impact we

compare the Schmid factor, calculated geometrically and therefore ignoring interac-

tion stress, and an “effective Schmid factor”, based on FEM results and including

interaction stress. Here, the standard Schmid factor is defined as usual per

Sstd = cos(φ) cos(λ) =
τres
σapp

(3.1)

where φ is the angle between the applied stress direction and the slip/twinning

direction, and λ is the angle between the applied stress direction and slip/twinning

plane normal; this is, by definition, the ratio of the resolved shear stress on a

slip/twinning system, τres, and the applied stress, σapp. We define the effective

Schmid factor as

Seff =
τtot
σapp

(3.2)
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where the total resolved shear stress, τtot, is the value obtained from FEM

simulation and thereby includes contribution from both the applied stress, σapp, and

the interaction stress between the α- and β-phases. We further define an interaction

Schmid factor, Sint, as

Sint = Seff − Sstd (3.3)

The value of Sint provides a measure of the impact of interaction stress on

deformation in a particular system: a very large magnitude of Sint (which can be

positive or negative) indicates that the interaction stress resolves strongly onto a

particular deformation system, while a very small magnitude of Sint indicates the

opposite. Finally, by incorporating the CRSS for deformation in the α-phase we

also explore how interaction stresses can contribute to the activation of specific

deformation mechanisms, such as by promoting twinning in the α-phase of dual-

phase structures instead of slip as found in single α-phase alloys [13].

3.1.1 Model Development

We use two model microstructures to explore the development of interaction stresses:

a “bicrystal” model (Figure 3.1) which considers the interaction between the two

phases at a single interface, and a “platelet” model (Figure 3.2) which incorpo-

rates interactions from multiple adjacent interfaces, such as in a Widmanstätten

or lamellar microstructure. We construct finite element models for each of these

microstructures using ANSYS R© Release 11.0 and SOLID186 elements (hexahedral

20-node quadratic elements). The mesh size and model characteristics are based on
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Figure 3.1: a) Finite element model for the “bicrystal” microstructure. b) Model

layout and coordinate system convention for the platelet microstructure. The α-

phase is shown in purple and the β-phase is shown in red. The interface areas that

appear to be white solids are areas with a very fine mesh.

the results described in Chapter 2.

The models are constrained to simulate uniaxial tensile deformation, with the

detailed model layout shown in Figures 3.1b and 3.2b. Nodes on face EFHG are

constrained in the y′ direction, nodes along lines MN and JK are constrained in the

z′ direction, the node at point L is constrained in the x′ and z′ directions, and the

node at point O has all degrees of freedom constrained. The nodes on face ABDC

are constrained such that all nodes displace the same amount in the y′ direction. A

tensile force along the y′-axis, is applied on the node at point L such that the stress

37



M 

y’ 

z’ 

x’ 

A B 

C D 

E F 

J K 

L 

P P 

H G 

N 

O 
b) a) 

Figure 3.2: a) Finite element model for the “platelet” microstructure. b) Model

layout and coordinate system convention for the platelet microstructure. The α-

phase is shown in purple and the β-phase is shown in red. The interface areas that

appear to be white solids are areas with a very fine mesh.

is below the yield point. The results from the bicrystal simulations are read along

the line Q-Q (Fig. 3.1b), which spans the entire width of the α-phase. The results

from the platelet simulations are read along the line P-P (Fig. 3.2b), which spans

the entire width of the center α-phase platelet only.

The elastic anisotropy of the system suggests orientation dependence in the

mechanical response hence we systematically adjust the relative orientation of the

loading axis and the α-β interface (which we call the “loading orientation”) as

well as the relative orientation of the loading axis and the c-axis of the hexago-
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nal close packed α-phase (which we call the “crystallographic orientation”). Dual

phase α-β Ti alloys maintain an approximate (5̄140)α||(3̄34)β interface plane and

a 〈12̄10〉(0001)α||〈11̄1〉(110)β Burgers orientation relationship (BOR) which estab-

lishes a limited set of independent crystallographic and loading orientations for the

system. Our previous work explored a scenario with the loading direction perpen-

dicular to the interface plane normal and the c-axis of the HCP α-phase oriented

at 45◦ to the loading direction [18] while our current effort includes a wide range

of loading and crystallographic orientations. We vary the loading orientation by

rotating the interface plane in 10◦ increments (green arrow in Figure 3.3) between

0◦ and 90◦ beginning with the loading direction perpendicular to the interface plane

normal and finishing with the loading direction parallel to the interface plane nor-

mal. For each loading orientation we vary the crystallographic orientation of the

α and β-phases in 10◦ increments (red arrow in Figure 3.3) between 0◦ and 90◦

beginning with the c-axis of the HCP α-phase in the x′-y′ plane and finishing in

the x′-z′ plane; the β-phase is rotated in lockstep with the α-phase owing to the

BOR. Variation of both loading orientation and crystallographic orientation in 10◦

increments yields 91 simulations each for the bicrystal and platelet microstructures.

The finite element model and mesh size/shape near α-β interface are identical for all

loading orientations to maintain consistency; however, the mesh characteristics far

from the interface vary between models as necessary to accommodate the different

geometries.

The 91 combinations of loading and crystallographic orientations are repre-

sented on one quarter of the α (0001) stereographic projection in Figure 3.4 by
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Figure 3.3: Schematic of the rotation scheme used in this study. The interface plane

is rotated in 10◦ increments from the y′-z′ plane to the x′-z′ plane, as indicated by

the green arrow. As examples, 3 of the 9 interface plane rotations are shown: (a)

0◦ (b) 30◦ and (c) 90◦. For each interface plane rotation, the c-axis direction of the

HCP α-phase is rotated in 10◦ increments from the x′-y′ plane to the x′-z′ plane

(red arrow).
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indicating the orientation of the loading axis (y′). The green and red arrows in Fig-

ure 3.4 correspond to the green and red arrows shown in Figure 3.3; as the loading

orientation changes, the y′-axis shifts in 10◦ increments “down” the stereographic

projection until it is parallel with the interface plane and the (51̄4̄0) pole. As the

crystallographic orientation changes, the y′ axis shifts in 10◦ increments “left” on

the stereographic projection until it is perpendicular to the (0001) pole. The posi-

tions of the x′- and z′-axes also change with each scenario but these are not shown

for simplicity. The simulations performed during this study required a variety of

crystallographic calculations such as rotating elastic compliance matrices, measuring

angles between directions and planes within a dual-phase system, and calculating

resolved shear stresses. The detailed calculation techniques for these operations are

described in Appendix A.

3.1.2 Calculation of Resolved Shear Stress

The finite element simulation of each loading/crystallographic orientation generates

the stress state of the model at each node reported in the (x′, y′, z′) coordinate

system from Figures 1 and 2. To explore the interaction stresses in the α-phase,

we extract the stress state along line Q-Q (bicrystal) or line P-P (platelet) (these

lines remain perpendicular to the α-β interface as the models are rotated). The

resolved shear stress on the each of independent slip and twinning systems in Ta-

ble 3.1 is determined by rotating from the (x′, y′, z′) coordinate system to a new

coordinate system with the x-direction parallel to the slip/twinning direction and
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(1320) (0001) 

(5140) 

Figure 3.4: Orientation of the loading axis (y′) for each of the 91 loading and

crystallographic orientation combinations simulated in this study, shown on one

quarter of the α (0001) stereographic projection. Each step in the green arrow

direction represents a 10◦ rotation of the interface plane relative to the loading axis.

Each step in the red arrow direction represents a 10◦ rotation of the c-axis of the

α-phase relative to the loading axis. The arrow colors correspond to the arrows

shown in Figure 3.3.
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the z-direction parallel to the slip/twinning plane normal; the resolved shear stress

is then the value of the xz shear stress (σxz) in the new coordinate system. For each

loading/crystallographic orientation we then identify the independent system within

each slip and twinning system with the highest resolved shear stress. Specifically, for

a simulation represented by a single orientation in Figure 3.4 we find the basal 〈a〉

slip system with the highest resolved shear stress, the prismatic 〈a〉 slip system with

the highest resolved shear stress, the pyramidal 〈a〉 slip system with the highest re-

solved shear stress, the pyramidal 〈c+a〉 slip system with the highest resolved shear

stress, the (101̄2) twinning system with the highest resolved shear stress, and the

(112̄1) twinning system with the highest resolved shear stress. The resolved shear

stresses from the FEM calculations are then used to calculate the effective Schmid

factor, Seff following equation 3.2. An example result for a single simulation (a

single point in Figure 3.4) using the platelet model is shown in Figure 3.5 where the

x-axis is the unit distance along line P-P across the center platelet. The dotted lines

show the effective Schmid factor calculated from FEM results using equation 3.2,

which varies with distance from the α-β interface owing to the decay of the inter-

action stress [18, 39]; the solid lines show the standard Schmid factor, calculated

using equation 3.1, which is determined geometrically and is therefore constant for

a given loading/crystallographic orientation and independent slip or twinning sys-

tem. The magnitude of Sint is shown as colored arrows next to the y-axis based on

the difference between the effective Schmid factor and the standard Schmid factor.

In Figure 3.5 it is evident that the interaction stress resolves significantly onto the

pyramidal 〈a〉 and prismatic 〈a〉 systems with a smaller effect on other mechanisms
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Table 3.1: α-Ti slip and twinning systems included in this study

Deformation Mode
Deformation

Plane

Deformation

Direction

Number of

Independent Systems

Basal 〈a〉 Slip {0001} 〈12̄10〉 3

Prismatic 〈a〉 Slip {101̄0} 〈12̄10〉 3

Pyramidal 〈a〉 Slip {101̄1} 〈12̄10〉 6

Pyramidal 〈c+ a〉 Slip {101̄1} 〈1̄1̄23〉 12

(101̄2) Twinning {101̄2} 〈1̄011〉 6

(112̄1) Twinning {112̄1} 〈1̄1̄26〉 6

for this particular orientation.

Similar calculations are performed for each of the 91 loading/crystallographic

orientations. We consolidate the results for all of the orientations by plotting Seff

as a function of stress axis (y′) on the α (0001) stereographic projection as shown

in Figures 3.6 (a)–(f) (bicrystal) and 3.7 (a)–(f) (platelet). The magnitude of the

interaction stress, Sint, as a function of loading and crystallographic orientation

is shown in Figure 3.8 (a)–(f). Results for Sint are only shown for the platelet

microstructure; the bicrystal interaction stress results are very similar.

Tables 3.2 and 3.3 provide a summary of the maximum value of Seff across all

orientations for each slip and twinning system, along with the corresponding value

of Sint and the interaction contribution as a percentage of the total.
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Figure 3.5: Schmid factor (solid lines) as defined in equation 3.1 and effective Schmid

factor (symbols) as defined in equation 3.2, versus unit distance along line P-P

(across the center platelet) in the platelet microstructure. Colored arrows indicate

the magnitude of Sint at the α-β interface.
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a) Basal <a> Slip b) Prismatic <a> Slip c) Pyramidal <a> Slip 

d) Pyramidal <c+a> Slip e) 1012 Twin f) 1121 Twin 
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Figure 3.6: Bicrystal microstructure results showing effective Schmid factor, Seff ,

for each slip and twinning system plotted as a function of loading axis (y′) on one

quarter of the α (0001) stereographic projection.
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a) Basal <a> Slip b) Prismatic <a> Slip c) Pyramidal <a> Slip 

d) Pyramidal <c+a> Slip e) 1012 Twin f) 1121 Twin 
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Figure 3.7: Platelet microstructure results showing effective Schmid factor, Seff ,

for each slip and twinning system plotted as a function of loading axis (y′) on one

quarter of the α (0001) stereographic projection.
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a) Basal <a> Slip  
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b) Prismatic <a> Slip 
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c) Pyramidal <a> Slip   
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d) Pyramidal <c+a> Slip 
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e) 1012 Twin 
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f) 1121 Twin 
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Figure 3.8: Platelet microstructure results showing the interaction stress contribu-

tion to the effective Schmid factor, Sint, for each slip and twinning system plotted

as a function of loading axis (y′) on one quarter of the α (0001) stereographic pro-

jection.
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Table 3.2: Bicrystal results summary showing the maximum value of the effective

Schmid factor, Seff , for each slip and twinning system, the contribution from the

applied stress, Sapp, the contribution from the interaction stress, Sint, and the per-

centage of the total Seff that is due to Sint

Deformation System Max Seff Sapp Sint

Interaction

Stress

Contribution (%)

Basal 〈a〉 Slip 0.690 0.494 0.196 28.4

Prismatic 〈a〉 Slip 0.521 0.482 0.039 7.4

Pyram. 〈a〉 Slip 0.567 0.487 0.080 14.0

Pyram. 〈c+ a〉 Slip 0.663 0.494 0.169 25.4

(101̄2) Twinning 0.652 0.498 0.154 23.6

(112̄1) Twinning 0.681 0.493 0.188 27.6
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Table 3.3: Platelet results summary showing the maximum value of the effective

Schmid factor, Seff , for each slip and twinnig system, the contribution from the

applied stress, Sapp, the contribution from the interaction stress, Sint, and the per-

centage of the total Seff that is due to Sint

Deformation System Max Seff Sapp Sint

Interaction

Stress

Contribution (%)

Basal 〈a〉 Slip 0.708 0.494 0.214 30.2

Prismatic 〈a〉 Slip 0.517 0.482 0.035 6.8

Pyram. 〈a〉 Slip 0.576 0.492 0.084 14.6

Pyram. 〈c+ a〉 Slip 0.686 0.495 0.191 27.8

(101̄2) Twinning 0.653 0.498 0.155 23.7

(112̄1) Twinning 0.676 0.461 0.215 31.8
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3.2 Plastic Interaction Stress During the Onset of Deformation in

the α-Phase

As the applied stress increases and a dual-phase Ti alloy begins to deform plastically,

interaction stresses again play a role in promoting and suppressing different defor-

mation mechanisms. The yield stress in the α-phase is typically much lower than

the yield stress in the β-phase. For example, in our earlier work we heat treated a

dual-phase α-β Ti-8.1 V (wt%) alloy such that the composition of the α-phase was

Ti-1.6V and the composition of the β-phase was Ti-14.8V; in separate experiments

we produced single phase α samples with composition Ti-1.6V, finding the yield

stress to be 350 MPa [15], and single phase β samples with composition Ti-14.8V,

finding the yield stress to be 900 MPa [43]. Hence under increasing load the yield

stress in the α-phase is met while the β-phase is still deforming elastically, lead-

ing to plastic-elastic interaction stresses between the phases. The presence of the

α-β phase boundary affects dislocation glide as well as twin nucleation and growth

due to the elastic mismatch between the phases. As a dislocation in a low shear

modulus material moves towards the boundary with a high shear modulus material,

the dislocation experiences a repulsive image force imposed across the interface [44];

conversely, the image force is attractive for the case of a dislocation moving in a

high shear modulus material towards the barrier with a low shear modulus material.

Twin nucleation and growth is similarly affected, experiencing a repulsive/attractive

force when nucleated at the barrier with a higher/lower shear modulus material (re-
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spectively). Conceptually, this behavior stems from the energy cost of the strain

field due to the dislocation or twin; strain energy (per unit strain) increases with

shear modulus, and thus imparting the strain field from a defect partly onto a high

shear modulus material increases energy of the system (and thus creates a repulsive

force) while the opposite is true for a strain field imparted onto a low shear modulus

material. In order to incorporate this effect into our calculations, we determine the

barrier stress τB that each independent slip and twinning system experiences as a

result of the α-β phase boundary.

3.2.1 Interaction of Dislocations with the α-β Interface

Stress fields due to dislocation interactions with a phase boundary have been studied

for many decades, including early work by Head which suggested that the applied

shear stress necessary to hold a dislocation in equilibrium at a distance c from a

phase boundary increases with 1/c [45]; however this results in infinite stress for

a dislocation at the interface. Using a perturbation analysis, Pacheco and Mura

[46] determined that the resolved shear stress necessary to hold a dislocation at the

interface of two phases, τDB, is a function of the shear moduli of the phases as

τDB = −2KG1

π2
(3.4)

where

K =
G2 −G1

G1 +G2

(3.5)

and Gi is the shear modulus of phase i. Thorough analysis of the Pacheco-Mura

model demonstrates that the value of τDB is largely insensitive to the angle between
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the dislocation line and the interface, and the model is effective for values of K up

to 0.3 [47]. Further, atomistic studies of dislocation-boundary interactions produce

values of τDB comparable to the Pacheco-Mura model [48].

Frequently shear modulus is treated as an isotropic property, which suggests

that dislocations would always experience an attractive force when moving from

the high modulus α-phase to the low modulus β-phase. However, shear modulus is

anisotropic at the single crystal level of the interface between the α- and β-phases.

In order to capture the effects of crystallographic anisotropy on the interaction of

dislocations across the α-β interface, we include the variation in shear modulus of

both phases as a function of orientation while incorporating the crystallographic

alignment of the phases due to the BOR. The shear modulus for an arbitrary di-

rection in the α-phase, Gα
θ , is given as a function of the elastic constants, sij, and

the angle θ between the [0001] direction (for which the sij are reported) and the

arbitrary direction as [49]

Gα
θ = [s44 +(s11−s12−

1

2
s44)(sin

2 θ)+2(s11 +s33−2s13−s44)(cos2 θ sin2 θ)]−1 (3.6)

The shear modulus for an arbitrary direction [hkl] in the β-phase, Gβ
θ , is given

by [50]

Gβ
θ = [s44 + 4(s11 − s12 −

1

2
s44)Γ]−1 (3.7)

where Γ is

Γ =
h2k2 + h2l2 + k2l2

(h2 + k2 + l2)2
(3.8)

Incorporating the values of Gα
θ and Gβ

θ for each slip direction in the α-phase

(and the parallel direction in the β-phase, as defined by the BOR) into equation 3.4
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produces direction-specific values of τDB. For most directions the value of Gα
θ is

greater than the value of Gβ
θ , resulting in a positive τDB (dislocations are attracted

to the interface). This attractive interaction stress extends for only about 10 lattice

spacings [46] and we therefore suggest that the α-β interface does not dramatically

affect dislocation motion for independent slip systems where Gα
θ > Gβ

θ ; dislocations

in α are able to approach the interface without any particular resistance until they

are very close, at which point they are attracted to the interface. However, for some

independent slip systems the value of Gα
θ is less than the value of Gβ

θ , resulting in

a negative value for τDB (dislocations are repelled by the interface). In these slip

systems, dislocations in the α-phase require resolved shear stress τDB in addition

to the critical resolved shear stress for dislocation motion in order to slip to the

interface between the phases. While the range of the repulsive interaction stress is

only about 10 lattice spacings, we suggest that the pileup of dislocations against

this interaction stress causes the active slip system to harden quickly, making slip

unlikely until after the barrier is overcome. Table 3.4 lists the 12 slip systems for

which τDB is negative, indicating that Gα
θ < Gβ

θ and that the α-β interface repels

dislocations slipping on the indicated slip system.

Only 12 of the 24 independent slip systems in α Ti are shown in Table 3.4; for

the remaining 12 systems Gα
θ > Gβ

θ and there is only a very short range attractive

force between the α-β interface and a dislocation. Of particular note is the distribu-

tion of which slip modes are most affected by the elastic-plastic interaction across

the α-β interface. Only 4 of the 12 independent slip systems with a Burgers vector

in the basal plane (e.g. 〈a〉 type) are repelled by the interface, requiring approxi-
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Table 3.4: The independent slip systems in α for which the shear modulus in the

α-phase, Gα
θ , is less than the shear modulus in the parallel direction in the β-phase,

Gβ
θ , repelling the dislocation and requiring an additional resolved shear stress −τRSS

in order for the dislocation to slip to the interface.

Slip System τDB (MPa)

Basal 〈a〉(0001)[112̄0] -149.6

Prismatic 〈a〉(11̄00)[112̄0] -149.6

Pyramidal 〈a〉(11̄01)[112̄0] -149.6

Pyramidal 〈a〉(1̄101)[1̄1̄20] -149.6

Pyramidal 〈c+ a〉(011̄1)[12̄13] -631.2

Pyramidal 〈c+ a〉(1̄101)[2̄1̄1̄3] -870.3

Pyramidal 〈c+ a〉(01̄11)[1̄21̄3] -631.2

Pyramidal 〈c+ a〉(11̄01)[2̄113] -870.3

Pyramidal 〈c+ a〉(101̄1)[2̄113] -870.3

Pyramidal 〈c+ a〉(1̄101)[12̄13] -631.2

Pyramidal 〈c+ a〉(011̄1)[12̄13] -631.2

Pyramidal 〈c+ a〉(1̄011)[21̄1̄3] -870.3

Pyramidal 〈c+ a〉(11̄01)[1̄21̄3] -631.2
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mately 150 MPa of additional resolved shear stress in order to slip to the interface.

However, 9 of the 12 independent slip systems with a Burgers vector that contains a

c-axis component (e.g. 〈c+a〉 type) are repelled by the interface, requiring between

630 MPa and 870 MPa of additional resolved shear stress in order to slip to the

interface. The α-β interface and the the anisotropy of the shear moduli in the α and

β-phases thus result in two significant effects. First, anisotropy is expected within

each slip system, for example making slip on the basal 〈a〉 (0001)[112̄0] system more

difficult while having little effect on the remaining two basal 〈a〉 systems as is ob-

served experimentally [51, 52, 53]. Second, the interaction stress suppresses 3
4

of

the independent pyramidal 〈c + a〉 slip systems, which require additional resolved

shear stress in excess of 600 MPa in order to slip to the interface. The latter effect

is notable in particular because the pyramidal 〈c + a〉 system is the only slip sys-

tem in α-Ti that is able to accommodate extension and contraction along the c-axis

direction. By making slip with a c-axis component more difficult, deformation by

twinning (which includes a c-axis component) may occur more readily in order to

accommodate plastic deformation of the dual-phase material.

3.2.2 Interaction of Deformation Twins with the α-β Interface

Deformation twins introduce complicated stress fields in a material during deforma-

tion. While analytical solutions exist for stress due to twinning in an infinite matrix

[54, 55], no such solutions exist for the stress field due to a twin near the boundary

between two phases. Twin formation occurs via an eigenstrain, a stress-free strain
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in the absence of a surrounding media, similar to a phase change or thermal expan-

sion. However, deformation twins are surrounded by a matrix which results in a

backstress in the twin and a forward stress in the matrix, illustrated in Figure 3.9.

The backstress operates against the formation of the twin, modifying the critical

resolved shear stress for twin growth as

τCRSS = τDCRSS + τBS (3.9)

where τCRSS is the critical resolved shear stress for twinning, τDCRSS is the critical

resolved shear stress necessary to move the twinning dislocations, and τBS is the

backstress [56]. Similar to the above analysis of the effects of the phase boundary

on dislocation motion, we study twin formation in an isotropic elastic medium using

the values of Gβ
θ is and Gα

θ that correspond to each independent twinning system.

However, given the complexity of the twinning stress fields we rely on FEM models

to extract values for τBS, again using ANSYS R© Release 11.0 and SOLID186 elements

(hexahedral 20-node quadratic elements).

First, we test a general approach for simulating twinning and capturing the

correct backstress using FEM models by comparing to Eshelby’s analytical solution

for a oblate ellipsoidal volume undergoing shear eigenstrain in an infinite matrix

[54, 55]. We model the twin as an oblate ellipsoidal volume that is 10 units on its

long axis with a 10:1 aspect ratio, placed in the center of a cubic volume that is 100

units on each side. The nodes at x = 0 are constrained to 0 displacement in the

x-direction, while the nodes at x = 100 (the opposite face of the cube) are coupled to

all displace the same amount in the x-direction; the y- and z- cube faces are similarly
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σ = -τB 

a b 

Figure 3.9: Schematic illustration of the source of backstress during twinning. a)

A twin without a surrounding parent material undergoes a stress-free eigenstrain

εtw. b) The same twin as a), surrounded by a parent material which constrains the

twin and imposes a backstress −τB where the negative sign indicates that the stress

works against the direction of εtw.
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constrained in the y- and z- directions, respectively. The shear modulus for both

the twin and matrix is set to 42 GPa, however the twin volume is also assigned

thermal expansion characteristics which produce the correct twinning eigenstrain

when the temperature of the model is raised to a certain point; the matrix material

is not assigned thermal expansion properties and does not respond to the change

in temperature; full details on the implementation of this technique are provided

in Appendix B. Eshelby’s solution [54, 55] for the backstress in this scenario is -

1170.70 MPa while our FEM model estimates a backstress of -1174.8 MPa (the sign

of the stress indicates that it works against the direction of twinning). The FEM

approach and model constraints thus yield an error of less than 0.5% compared to

the analytical solution, however the low aspect ratio results in unrealistically high

values of backstress. Increasing the aspect ratio of the ellipsoid requires significantly

more computational effort due to the meshing requirements; further, the shape of a

twin nucleus near a phase boundary is not known to be exactly ellipsoidal. Thus for

our study of the effect of the α-β interface on twinning backstress, we use a pseudo-

ellipsoidal twin model shown in Figure 3.10 where the twin volume is a double-wedge

with a 40:1 aspect ratio in the twinning direction. The additional barrier to twin

growth due to the α-β interface, τBT , is the difference in backstress τBS between a

twin in an infinite matrix and a twin near the interface between the two phases.

As with the dislocation-interface model described above, we calculate the val-

ues of Gα
θ and Gβ

θ for each of the independent {101̄2} twin systems in Ti; the {112̄1}

twin is omitted from these calculations as it was not observed in our experiments nor

was it subjected to the highest effective Schmid Factor system for any of the orienta-
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Figure 3.10: Pseudo-ellipsoidal twin shape and dimensions used for FEM simulations

of twinning backstress τBS, including line T-T which spans the center of the twin.

The dimensions of the α-β interface are not to scale.
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Figure 3.11: a) Backstress in a twin due to the α-β interface measured along line

T-T (Figure 3.10) along with Eshelby’s solution [55] for a comparable perfect oblate

ellipsoid in an infinite matrix. b) Close-up view of a) showing backstress for the

section of the twin closest to the α-β interface.

tions tested during the elastic interaction stress calculations. Table 3.5 summarizes

the FEM simulation settings and results, including a “base” case scenario where

Gα
θ = Gβ

θ , thereby approximating twinning in an infinite matrix. The backstress

as a function of distance along line T-T (Figure 3.10) is reported in Figure 3.11

along with the analytical result for a perfect oblate spheroid of comparable size in

an infinite matrix with shear modulus matching the base case simulations.

These calculations yield several interesting results. First, the pseudo-ellipsoidal

twin produces backstress values reasonably similar to the perfect ellipsoidal results

at much lower computational cost. Second, we see that the backstress on the twin

is only affected at short distances from the interface and that the magnitude of the
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Table 3.5: Summary of FEM twinning simulation settings and results

Simulation Gα
θ (GPa) Gβ

θ (GPa) τBS (MPa) τBT (MPa)

Base 26.43 26.43 -59.17 0.00

(101̄2)[1̄011] 26.43 26.38 -59.06 -0.10

(011̄2)[01̄11] 26.43 25.10 -55.92 -3.25

(1̄102)[11̄01] 26.43 41.95 -86.17 27.01

(1̄012)[101̄1] 26.43 26.38 -59.06 -0.10

(01̄12)[011̄1] 26.43 25.10 -55.92 -3.25

(11̄02)[1̄101] 26.43 41.95 -86.17 27.01

effect is quite modest. The barrier to twin growth due to the α-β interface ranges

from about -3 MPa (twinning is made easier) to about 27 MPa (twinning is made

more difficult); this barrier only exists near the interface and thus as the twin grows

beyond an initial nucleus it will no longer experience much influence.

3.3 Activation of Deformation Modes

Finally, we combine the effects of elastic and plastic interaction stresses in order

to understand the overall impact of the α-β interface on the onset of deformation

in dual-phase Widmanstätten Ti alloys. To determine the impact of interaction

stresses on the activation of the deformation mechanisms we must incorporate crit-

ical resolved shear stress (CRSS); for this study we use the CRSS ratio, which we

define as the ratio of the CRSS for a given deformation mode to the CRSS for pris-
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matic 〈a〉 slip. Reported values of the CRSS for slip and twinning in α-Ti vary with

the characteristics of the material and the measurement technique so we must first

determine appropriate ratios. The model material for this study is Ti-8.1V (wt%)

owing to our existing experimental data [13, 57].

Alloy chemistry is known to have a significant impact on the critical resolved

shear stress for slip in α-Ti. The addition of Al, which is a solid solution strength-

ening element in Ti, increases the CRSS for prismatic [58] and basal [59] slip except

at additions below 1 at% where moderate softening is observed. The CRSS ratio

of basal 〈a〉 slip to prismatic 〈a〉 slip is significantly affected by alloying additions

[59] and is expected to be near 1 for alloys containing solid solution strengthening

elements such as Al, Mn, and V. Reported values for the CRSS ratio of pyramidal

〈c+a〉 slip to prismatic 〈a〉 slip vary considerably but are generally lower for alloyed

systems when compared to pure Ti. Jones [60] suggests that the CRSS for pyrami-

dal 〈c+a〉 slip depends on both shear and hydrostatic stress, increasing the effective

CRSS by 30% for tensile versus compressive loading; our study only considers ten-

sile loading so this effect is ignored. The strain rate sensitivity of CRSS is modest

for TiAl alloys between 1 and 6 at% at room temperature and is not considered

here [58, 61]. Alloy purity also has a significant impact on the magnitude of critical

resolved shear stress for slip, particularly when considering interstitial elements such

as oxygen, nitrogen, and carbon [58]. However the CRSS ratio between systems is

generally not affected and hence impurity effects are not considered here.

Despite the significant contribution of twinning to the deformation behavior

of Ti alloys [28], the mechanisms of twin nucleation and growth are not fully under-
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stood. This lack of understanding has inhibited development of critical conditions

for twinning and the use of a critical resolved shear stress criterion for twinning

is debated. Mechanical testing of single crystal, pure Ti specimens at different

orientations yielded significant variation in the measured CRSS for twinning [61];

however, mechanical testing of polycrystalline, Ti alloy specimens tested at different

orientations suggests much smaller variation in CRSS [62]. Fitting crystal plasticity

models to mechanical test results during creep of polycrystalline, pure Ti specimens

indicates that the CRSS values for both {101̄2} and {112̄1} twinning modes are

approximately the same [63, 64].

In all cases, the method used for measuring CRSS can impact the result. Me-

chanical testing of Ti or Ti alloy single crystals has been used by many researchers

to determine CRSS however this method is susceptible to experimental error due

to crystal misalignment, activity of multiple systems, and measurement inaccuracy.

Crystal plasticity (CP) models have also been used to determine deformation resis-

tance parameters that are analogous to CRSS though they include other artifacts

[65]. For example, several crystal plasticity approaches use a Taylor plasticity as-

sumption where the strain is uniform within grains of a particular phase [63, 64].

This approach allows for improved computational efficiency and produces reason-

ably accurate bulk deformation predictions, however CRSS values determined from

Taylor-type crystal plasticity models may be artificially high (or low) if the actual

strain distribution within the grains inhibits (or promotes) slip on a particular slip

system. While the magnitude of CRSS values calculated using CP techniques gen-

erally do not match experimental results from single crystal tests, the ratios still
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provide insight to the relative difficulty of activating deformation modes and are

therefore included here.

A summary of several reported CRSS ratios is provided in Table 3.6. While

the ratios vary by material characteristics and measurement technique, we must

estimate appropriate CRSS ratios for this study in order to demonstrate the effects of

interaction stresses on preferred deformation mode. This is particularly problematic

for twinning and 〈c+ a〉 pyramidal slip where non-Schmid deformation criteria may

exist. In our own tests we found prismatic 〈a〉 slip and {101̄2} twinning to be

prevalent, while other deformation modes were rarely found [13, 57]; this suggests

that for our model system basal 〈a〉 slip is somewhat more difficult that prismatic

〈a〉 slip, and {101̄2} twinning is somewhat easier than {112̄1} twinning. After

consideration of the discussion above, we applied the CRSS ratios shown in Table 3.7.
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Table 3.6: Summary of the reported critical resolved shear stress ratios in α-Ti. Val-

ues are normalized to the CRSS for prismatic 〈a〉 slip. The detail column indicates

the chemistry, where Ti64 is T-6Al-4V (wt%), sc indicates measured from a single

crystal, pc indicates measured from a polycrystal, mech. test indicates measured

directly from a mechanical test using Schmid’s Law, and cryst. pl. indicates fit to

mechanical testing results using crystal plasticity modeling.

Prism.

〈a〉

Basal

〈a〉

Pyrm.

〈a〉

Pyrm.

〈c+ a〉

{101̄2}

twin

{112̄1}

twin

Detail

1 2.2 - - - -
Pure Ti, sc,

mech. test[66]

1 - - - 1.83 1.1–3.5
Pure Ti, sc,

mech. test[61]

1 1.32 - 5.32 5.76 5.76
Pure Ti, pc,

cryst. pl.[63]

1 5 - 4 4.17 4.17
Pure Ti, pc,

cryst. pl.[64]

1 1.16 1.06 1.66 - -
Ti64, pc,

mech. test[60]

1 1–2.5 - 4.2 - -
TiAl, sc,

mech. test[59]

Continued on next page
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Table 3.6 – Continued from previous page

Prism.

〈a〉

Basal

〈a〉

Pyrm.

〈a〉

Pyrm.

〈c+ a〉

{101̄2}

twin

{112̄1}

twin

Detail

1 - 1.64 < 2 - -
Ti64, pc,

cryst. pl.[67]

1 1 - 2.63 - -
Ti64, pc,

cryst. pl.[40]

1 1.7 - 2.0 - 2.8 1.3–1.9 -
TiAlV, pc,

mech. test[62]

1 1.14 1.32 1.59 - -
Ti64, pc,

cryst. pl.[10]

Table 3.7: Critical resolved shear stress ratios for α-Ti used in this study. Values

are normalized to the CRSS for prismatic 〈a〉 slip.

Prism.

〈a〉

Basal

〈a〉

Pyrm.

〈a〉

Pyrm.

〈c+ a〉

{101̄2}

twin

{112̄1}

twin

1 2 3 3 1.6 2.5

Finally, we modify the CRSS ratio for each independent slip and twinning

system in order to capture the plastic interaction stresses due to the α-β interface.

In order to integrate our results for τBD (dislocation barrier stress) and τBT (twin
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barrier stress), we use 60 MPa as the CRSS for prismatic 〈a〉 slip upon which the

ratios are based [59, 66, 61]. The CRSS ratio for each independent system is adjusted

from the value in table 3.7 based on the increase or decrease of CRSS due to the

dislocation-boundary and twin-boundary interaction stresses calculated above.

The active deformation mechanism for each of the 91 orientations tested during

elastic interaction stress calculations is the mechanism with the highest value of an

activation parameter Ai, defined by

Ai =
Seff

CRSSRi
(3.10)

where Seff is the effective Schmid Factor as defined in equation 3.2 and CRSSRi

is the CRSS ratio for deformation mechanism i. Results from elastic interaction

stress calculations for each orientation contribute to the value of Seff , while plas-

tic interaction stress calculations contribute to the value of CRSSRi. Figure 3.12a

provides the active deformation mechanism based only on the standard Schmid fac-

tor (Sstd, equation 3.1) and thereby not accounting for elastic or plastic interaction

stresses. Figure 3.12b provides the active deformation mechanism using the value

of Ai, which includes elastic and plastic interaction stress.

It is important to note that while the CRSS ratios selected in table 3.7 have

a significant effect on the active deformation mechanisms, they have a very minor

effect on the differences observed between the standard Schmid factor results and

the interaction stress results. For example, increasing the CRSS ratio for (101̄2)

twinning results in fewer orientations where (101̄2) twinning is active in both Fig-

ures 3.12a and 3.12b, but the difference between the two is generally unchanged.
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(1012) Twin
Basal <a>
Prismatic <a>

/ (1012) Twin
/ Basal <a>
/ Prismatic <a>

a) b)

Figure 3.12: Deformation mechanisms activated at the lowest applied stress as a

function of loading and crystallographic orientation. Results in a) are determined

using the standard Schmid factor while results in b) include elastic and plastic

interaction stress effects. Half-filled symbols indicate that the interaction stresses

cause a change of deformation mechanism when compared to the standard Schmid

factor result.
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Similarly, (11̄21) twinning along with pyramidal 〈a〉 and 〈c + a〉 slip are not ob-

served in any orientation. Reducing the CRSS ratio for these mechanisms (as would

be appropriate to model Ti alloy systems where they are observed experimentally)

produces results with (11̄21) twins, pyramidal 〈a〉 slip, and pyrmaidal 〈c + a〉 slip

using standard Schmid analysis as well as when incorporating interaction stresses;

however, the magnitude of the interaction stress effect on these deformation systems

is comparable to the results in Figure 3.12.

3.4 Implications of Interaction Stress for Mechanical Behavior in α-β

Ti Alloys

Overall, the results described above demonstrate two effects of elastic and plastic

interaction stresses on the mechanical behavior of α-β Ti alloys during the onset of

plastic deformation:

1. The effective Schmid Factor in the α-phase due to combined applied and elastic

interaction stresses is generally larger than the standard Schmid factor. The

magnitude of this increase can be up to 30% and the effect is anisotropic.

2. Elastic and plastic interaction stresses can change the preferred deformation

mechanism, for example from prismatic 〈a〉 slip to (101̄2) twinning, in some

orientations.

The significant difference between the effective Schmid factor and the standard

Schmid factor has implications for creep, quasi-static, and dynamic loading behavior.
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For example, an α-β colony aligned for basal 〈a〉 slip can yield at 30.2% lower applied

stress than a standard Schmid factor analysis would suggest. In some orientations

prismatic 〈a〉 slip, which is the most common deformation mechanism, will begin

at 6.8% lower applied stress than a standard Schmid factor analysis would suggest.

The anisotropy of this behavior, illustrated in Figure 3.7, dictates that only some

α-β colonies in a bulk material are affected, depending on their orientation relative

to the loading direction. The resulting heterogeneity of the deformation behavior

in bulk α-β alloys therefore requires careful consideration during component design

and modeling.

The change in deformation mechanisms due to interaction stress also affects

mechanical behavior. For the α-β variant tested in this study, we observe interaction

stress driving an increase in basal 〈a〉 slip and (101̄2) twinning at the cost of prismatic

〈a〉 slip. Twinning is observed to occur in tandem with stress induced martensite

(SIM) as a creep deformation mechanism in certain α-β alloys, and hence increasing

the propensity for twinning in certain orientations can affect creep performance

[13, 57]; it is, however, noteworthy that twinning is very rarely observed in any Ti

alloys containing more than 4 wt% Al. Activation of basal 〈a〉 slip near the interface

may result in somewhat higher strength due to the higher CRSS for basal slip (as

compared to prismatic slip) once the dislocation moves away from the interface.

Together, changes to the effective Schmid factor and the active deformation

mechanism will result in variation of the measured CRSS for slip and twinning as

a function of orientation. Such behavior is confirmed by comparison to experiment:

compression testing of α-β Ti-8Al-1Mo-1V (wt%) samples with a wide range of
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colony orientations (comparable to the range of orientations tested in this study)

produced a wide range of measured CRSS values for basal, prismatic, and pyr-

maidal slip [8]. Very detailed analysis for a much smaller range of orientations and

samples also indicates that CRSS varies within a slip system [51, 52, 53]. As a

direct comparison, calculated values of the apparent CRSS (as would be measured

experimentally using the standard Schmid factor) for each activated deformation

mode in Figure 3.12b and the experimental CRSS values measurements by Chan [8]

are shown in Figure 3.13. Our calculations reproduce the experimentally measured

range of CRSS for prismatic and basal 〈a〉 slip very closely. Further subtle behavior

is also correctly reproduced, such as the larger range in CRSS values for prismatic

〈a〉 slip versus basal 〈a〉 slip. The experimentally measured magnitude of the change

to CRSS is highly dependent on the loading orientation and orientation of the slip

system with respect to the α-β interface as our model predicts.

This study represents a complete analysis of the possible orientations for the

particular α-β variant used here, however other variants exist. The [12̄10]α direction

is perfectly aligned with the [11̄1]β direction per the BOR, however the angle between

〈12̄10〉α directions is 120◦ while the angles between [11̄1]β directions are 70.5◦ or

109.5◦ resulting in a necessary mismatch between the remaining slip directions in

each phase. The perfectly aligned slip systems can be oriented differently with

respect to the interface plane, producing a total of 12 possible variants. Further,

while an approximate (5̄140)α||(3̄34)β interface plane is observed macroscopically,

it is in fact comprised of many steps of lower index α and β planes [68, 51] where

the step height and width can affect the exact macroscopic habit plane and the
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Figure 3.13: Comparison of experimental measurement from Chan 1981 [8] and

model results for the range of observed CRSS for a) basal and b) prismatic slip

across many different loading and crystallographic orientations.

73



angles between certain slip directions and the α-β interface [42]. Nonetheless, the

symmetry of each variant is similar and the habit plane is experimentally observed

to exist close to (5̄140)α||(3̄34)β in many cases, thus the results demonstrated here

are qualitatively (and likely quantitatively) similar to behavior of all α-β colonies.

Our analysis pertains to the activation of deformation mechanisms beginning

at zero strain, extending through purely elastic loading, and continuing only until

the very first stage of plastic deformation in the α-phase. Calculations by Chan

[42] indicate that the primary α deformation mechanism for plastic strains above

0.05% in α-β Widmanstätten alloys is determined by which mechanism most easily

shears the β platelets, matching experimental observations [51, 52, 53]. Our analysis

provides insight into the deformation mechanisms dominating only for the onset of

plastic deformation in the α-phase, which may transition to other modes as stress

increases. The activation of new deformation mechanisms with increasing stress will

certainly be affected by the slip and twinning activity studied here. Dislocations

and twins in the vicinity of the interface will act as barriers to motion of slip and

twinning on other systems, while the local stress fields due to these defects will also

play a role. Further, activation of otherwise unexpected deformation mechanisms

due to interaction stress are significant for engineered systems where very small

plastic strains critically affect performance.
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3.5 Conclusion

Microstructural heterogeneity in engineering alloys gives rise to observed mechanical

performance via the complicated interactions between phases, grains, and deforma-

tion products. For the case of Widmanstätten α-β Ti alloys, the α-β interface

affects behavior during elastic and plastic deformation due to the development of

interaction stresses. In this study we apply a combination of FEM modeling and

dislocation theory to quantify elastic and plastic interaction stresses and their effects

on the onset of deformation, finding several interesting features:

1. Elastic interaction stress significantly modifies the effective Schmid factor near

the α-β interface. This interaction stress, due to the elastic mismatch and

anisotropy of the α and β-phases, resolves onto the available slip and twinning

systems in the α-phase, increasing the effective Schmid factor by up to 30%

and causing slip to occur at lower applied stress than would be expected from

Schmid’s Law. The elastic interaction stresses are strongly anisotropic and

affect independent slip and twinning systems differently.

2. As the α-phase begins to deform plastically, the relative shear moduli of the

α- and β-phases produce a repulsive force against dislocation motion in some

orientations. This repulsive force significantly increases the CRSS for slip near

the boundary for particular independent slip systems. Deformation twins are

similarly affected, although the magnitude of the effect is smaller
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3. Interaction stress affects the active deformation mechanism for some orienta-

tions. For the α-β variant and CRSS ratios studied here, basal 〈a〉 slip and

(101̄2) twinning are promoted at the expense of prismatic 〈a〉 slip.

4. Combined, the interaction stresses affect the observed CRSS for each indepen-

dent slip and twinning system. Our model results produce a distribution of

observed CRSS for the basal and prismatic system that matches experimental

results. This quantifies, for the first time, the source of CRSS varation and

provides a clear mechanistic description of anisotropic plastic response in α-β

Ti alloys.

By quantifying the elastic and plastic interaction stresses during the onset of

deformation in α-β Ti alloy, this study provides a mechanistic understanding of

orientation dependence and anisotropy of plasticity observed in engineered systems.

Such behavior can be beneficial or detrimental and the concepts described here

enable engineers to better predict and optimize component performance across the

many applications of dual-phase Ti alloys.
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Chapter 4: A Modified Embedded Atom Method Potential for The

Titanium-Oxygen System

Titanium and its oxides have broad technical relevance as structural, electronic,

and functional materials. Titanium oxides, particularly TiO2, are used in many

industrial and commercial applications including pigments and as electronic ma-

terials [69]. Structural Ti alloys exhibit excellent strength, toughness, corrosion

resistance, and high temperature stability and have thus been the subject of exten-

sive metallurgical research for several decades [1]. The Ti-O system is unique from

most metal-gaseous element combinations in several important ways. For example,

a large number of phases exist – structural information is reported for at least 26

different Ti-O structures – and the solubility of O in hcp Ti is up to 33 atomic

percent at room temperature [7]. The high solubility of O in metallic Ti presents

unique opportunities for tailoring the mechanical behavior of Ti alloys; O is a known

α-stabilizer that generally increases strength while reducing ductility in Ti [24]. Fur-

ther, the presence of O interstitials may affect the deformation characteristics of Ti

alloys by impeding the growth of twins. Prior experimental work combined with

a crystallographic model suggests that O interstitial sites are not conserved during

the shearing process associated with twin growth and the interstitials thus inter-
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fere with twin growth in bcc β-Ti [14]. In addition, recent experimental evidence

indicates that {101̄2} twin growth rate in hcp α-Ti is decreased by the presence

of O interstitials, with implications for room temperature creep and structural per-

formance [15, 16, 17]. Very recent DFT calculations by Ghazisaeidi and Trinkle

provide additional clarity on the relationship between O interstitials and twins in

α-Ti, demonstrating that both attractive and repulsive O interstitial sites exist in

the vicinity of a twin boundary and the calculated energy of these sites is sensitive

to supercell size [33]. Creep and deformation in Ti alloys is of critical importance

for numerous applications and while many experimental measurements and ab-initio

calculations have been dedicated to studying the Ti-O system, a gap exists in our

ability to probe behavior at length and time scales below those accessible experi-

mentally and above those accessible using first-principles techniques. Simulations

using classical potentials provide an opportunity to explore material behavior at

atomic length scales, while the modest computational requirements allow simula-

tion of millions of atoms for practically meaningful times. Here we present a new

modified embedded atom method (MEAM) potential that can be used for atomistic

calculations of the Ti-O system. The potential is fit to the lattice constants, cohe-

sive energies, and elastic constants of rock salt TiO, α-TiO (monoclinic), and Ti3O2

(hexagonal), the relative site energies of the three most prevalent O interstitial sites

in hcp Ti, and the diffusion barrier for one of the many diffusion pathways of O in

hcp Ti. The performance of the new potential is demonstrated by calculating the

properties of many Ti-O structures and comparing to experimental and ab-initio

results.
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4.1 Computational Methods

We employed two computational techniques: the MEAM for which a Ti-O inter-

atomic potential is the objective of this study, and DFT in order to produce fitting

targets and validation tests for the MEAM potential. In total, we calculated prop-

erties for 11 different Ti-O structures in order to conduct a robust survey of bond

distances, angles, O concentrations, and other important characteristics. The rel-

evant input and output files for the DFT and MEAM relaxation calculations for

all of the structures reported here are available via the NIST Computational File

Repository [70].

4.1.1 Density Functional Theory

We performed all DFT calculations in the Vienna Ab-initio Simulation Package

(VASP) [71, 72, 73, 74], employing projector augmented wave (PAW) psuedopoten-

tials [75, 76] and the Perdew-Burke-Ernzerhof generalized gradient approximation

(GGA-PBE) [77]. The cut-off energy for all calculations was held at 520 eV. For re-

laxation calculations we used a stopping criterion of < 5 meV/Å force on each atom

in the system after finding that smaller values as stopping criterion did not produce

significantly different results. All DFT calculations began with relaxation using

Methfessel-Paxton smearing of 0.2 eV. Further, calculations of elastic constants em-

ployed a final, single-point calculation using the fully relaxed coordinates and the

tetrahedron method with Blöchl corrections. Table 4.1 summarizes the supercell

characteristics and DFT calculation settings including the number of k-points for
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Table 4.1: Summary of structures and DFT settings used to determine fitting targets

in this study. The k-point characteristics are indicated as (G) for gamma-centered.

Structure Name Lattice System Ti Atoms O Atoms k-point Mesh

Rock Salt TiO Cubic 4 4 17 x 17 x 17 (G)

α-TiO Monoclinic 10 10 7 x 5 x 11 (G)

Ti3O2 Hexagonal 12 8 3 x 3 x 11 (G)

hcp-Diffusion Hexagonal 96 1 2 x 2 x 2 (G)

each of the structures used during the fitting process, while additional details for

each calculation are provided in the text.

Calculating the cohesive energy of a system using DFT is typically accom-

plished by subtracting the sum of the single-atom energies from the calculated total

energy of the system, however this produces an error of approximately 0.4 eV/atom

for both Ti and O. Some of our MEAM fitting targets are calculated using DFT

and so the systematic cohesive energy error from the DFT calculations would yield a

MEAM potential with a relatively poor match to experimentally measured cohesive

energies. To avoid this, we calculate “corrected” single-atom energies for Ti and O,

Ecs, as

Ecs = EDFT − EExp (4.1)

where EDFT is the converged total energy per atom for pure hcp Ti or an

O2 molecule and EExp is the experimental cohesive or binding energy per atom of

the same pure system. For Ti we use the reported experimental cohesive energy of
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hcp Ti, 4.871 eV/atom [78], as EExp. For O we define Ecs as one-half the binding

energy of an O2 molecule and thus EExp is the experimental binding energy of O2,

2.558 eV/atom [79], and EDFT is the converged total energy of an O2 molecule in

the triplet state. Based on these calculations EO
cs= 2.372 eV/atom and ET i

cs = 3.020

eV/atom. All DFT calculated cohesive energies reported here use the corrected

single-atom energies Ecs for O and Ti which reduces the error when comparing

to experiment and yields a MEAM potential with reasonable fit to experimental

cohesive energy data. Such an approach is not unprecedented; for example, Mishin

et al. found that corrected DFT cohesive energies can support an effective EAM

potential for studying Cu [80]. Comparison of our DFT calculated cohesive energies

with experimental values for the range of structures and stoichiometries reported

here further indicates the effectiveness of this approach.

We calculate elastic constants using the implementation of the “stress-strain”

method outlined by Shang [81] for cubic materials, and Ganeshan [82] and Wang

[83] for hexagonal materials. This approach begins by defining a set of strains, εi,

and calculating the crystal lattice vectors after deformation, Q̂, from the lattice

vectors of the relaxed structure, Q, by

Q̂ = Q


1 + ε1 ε6/2 ε5/2

ε6/2 1 + ε2 ε4/2

ε5/2 ε4/2 1 + ε3

 (4.2)

A DFT calculation for each independent strain, εi, without cell size of shape

relaxation produces a corresponding stress, σi. Finally, the elastic constants are
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calculated using Hooke’s Law as

c = ε−1σ (4.3)

Calculation of elastic constants is also achievable using an “energy-strain”

method by

cij =
1

V

(
∂2U

∂εi∂εj

)
(4.4)

where V is the volume of material, U is the total energy of the system, and

εk is a component of strain. Though VASP includes automated routines for per-

forming these calculations, we found that the elastic constants calculated using the

energy-strain approach did not match experimental values and behaved erratically

as a function of calculation settings. All of the elastic constants reported here are

calculated using the stress-strain approach.

4.1.2 Modified Embedded Atom Method

The Modified Embedded Atom Method was first proposed by Baskes [84, 85, 86] as a

variation of the Embedded Atom Method (EAM) where the electron charge density

surrounding an atom includes angular dependence. MEAM was further expanded for

use with hcp metals, however the technique considered only first nearest neighbors

and was unable to correctly predict some properties such as stacking fault energy

[87]. Here we employ second nearest neighbor (2NN) MEAM, a modification to

MEAM with improved predictive capability that includes interactions with atoms

in the second coordination shell. Many variations on the MEAM exist with subtle

differences in their implementation. We have generally followed the technique as
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described by Lee et al [88, 89]. The overall approach is described here, with the

mathematical details of the MEAM implementation used in this study provided in

Appendix C.

In the MEAM the total energy of a system is represented as the sum of energy

across all atoms, i, by

ETot =
∑
i

[Fi(ρi) + Φi(Rij)] (4.5)

where ρi is the charge density at the location of an atom and Rij is the distance

between atoms i and j; the energy of each atom is due to an embedding energy that

varies with charge density at an atom’s position, Fi(ρi), and an interatomic poten-

tial that varies with the distance between neighboring atoms, Φi(Rij). Hence in

general the MEAM requires a description of charge density throughout the system,

an embedding energy functional for each type of atom in the system, and an inter-

atomic potential for each atom-pair type. The implementation of the MEAM used

here also employs a screening function such that nearby atoms screen interactions

with more distant neighbors. Both the embedding term and interatomic potential

term in the MEAM operate by comparing the energy of an arbitrary structure to

the energy of a reference structure; in other words, after establishing the properties

of a reference structure, some of which are used as input parameters for the MEAM

potential, the MEAM allows calculation of total energy for an arbitrary structure

based on the change in charge densities and nearest neighbor distances as compared

to the reference structure.

The screening function applied in this study is a simple geometric method that
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takes as parameters a minimum screening distance, Cmin, and a maximum screening

distance, Cmax, for each atom that screens an interaction between two other atoms

[88]. For a two-element potential like Ti-O, Cmin and Cmax must be established

for all of the possible combinations, such as an O atom screening the interaction

between two Ti atoms, or (Ti-Ti-O) (here the order of the elements follows the

convention from the LAMMPS MEAM potential input files). The total possible

combinations are (Ti-O-Ti), (Ti-Ti-O), (Ti-O-O), and (O-O-Ti) thereby requiring

8 screening parameters for the Ti-O system.

We performed all of the MEAM calculations using LAMMPS [90] with elastic

constants computed using a script that is included with LAMMPS. In this study we

use a MEAM potential for Ti from Kim, Lee, and Baskes [91] and a MEAM potential

for O from Baskes [92]. A multi-element system such as Ti-O requires an additional

12 parameters, described with considerable detail in Appendix C, which must be

determined in order to define the interaction of the dissimilar elements. Several

parameters are physical properties of the reference structure that can be measured

or calculated: cohesive energy, Ec, nearest neighbor distance, re, and α, which is

function of the bulk modulus, atomic volume, and cohesive energy. The remaining

parameters are the charge density scaling factor, ρ̄0, and the 8 screening parameters,

which must be fit to reproduce known characteristics of the system. The reference

structures for the Ti-Ti and O-O potentials are simply chosen to be the best-known

structures (hcp and dimer, respectively), however a suitable reference structure for

the Ti-O system is less obvious. We use rock salt as the reference structure for Ti-O

which is relatively simple and has been used successfully as the MEAM reference
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structure for similar potentials such as Ti-N and Ti-C [93], Fe-N [94], and Fe-C

[95]. In addition, property data for other, distinct structures are required for fitting

ρ̄0 and the 8 screening parameters. We use experimentally measured and DFT

calculated lattice parameters, elastic constants, and cohesive energies of Ti3O2, a

hexagonal close packed structure, and α-TiO, a monoclinic structure, as additional

fitting targets. Further, we fit the relative energies of the three most prevalent O

interstitial sites in hcp Ti as well as a diffusion activation barrier for an O interstitial

in hcp Ti.

4.2 Determining MEAM Parameters

Our fitting process utilized property targets from two categories. First, the charac-

teristics of several Ti-O structures provided fitting targets for varying compositions

and crystal structures; second, the characteristics of O interstitials in hcp Ti pro-

vided targets for O defects in a metallurgically important structure. Our fitting

calculations employed a version of LAMMPS compiled as a Python library along

with a Python script written specifically for this fitting process, available via the

NIST Computational Data Repository [70]. This script takes as input the desired

test values for each MEAM parameter and produces a list of all possible combina-

tions across the parameters. LAMMPS calculations of the target structures are per-

formed for each parameter combination, the simulated characteristics are recorded,

and the parameters producing the best fit are identified. Each screening parameter

can have a value within a range of approximately 2 (e.g. between 0 and 2, or be-
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tween 1 and 3) and with a resolution of approximately 0.02 (e.g. changing a value

from 1.22 to 1.24 can have a meaningful impact on the calculated properties), while

the charge density scaling parameter ρ̄0 can have a range of approximately 20 with

a resolution of approximately 0.25. Running an exhaustive search across all of the

possible combinations of parameter values would therefore require approximately

1017 LAMMPS calculations, which is not feasible. To avoid this, we performed the

fitting process beginning with coarse resolution for each parameter, followed by local

searches with increasingly fine resolution near the most promising parameter sets.

We repeated this process using different starting parameters and search resolutions

until the search identified parameters similar to those reported here. Following the

brute force search, reaching the final parameter set required some manual fitting in

the region near the final result. While this type of brute force searching process is

not mathematically efficient, the thermodynamic and structural characteristics of

the Ti-O structures studied here are not smooth functions of the input parameters;

we explored the use of Nelder-Mead and Powell minimization methods, however

these approaches tended to finish in local minima or produce erroneous parameter

sets. Table 4.2 shows the best-performing Ti-O MEAM parameter set.

While a rock salt structure for TiO exists as γ-TiO, this structure includes

somewhat complicated vacancy ordering and experimental values of lattice param-

eters vary across a wide range. Hence instead of γ-TiO, we use a perfect rock

salt structure with no vacancies and supercell characteristics described in table 4.1.

Convergence of elastic constants using the stress-strain method described above was

relatively expensive, requiring a 17 x 17 x 17 gamma-centered k-point mesh that
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Table 4.2: MEAM parameters for the Ti-O system

Ti-O

Ec (eV/atom) 6.313

re (nm) 2.144

α 5.050

ρ̄0 O 2.20

Cmin(Ti-Ti-O)(Å) 0.35

Cmax(Ti-Ti-O)(Å) 1.27

Cmin(Ti-O-Ti)(Å) 0.30

Cmax(Ti-O-Ti)(Å) 2.80

Cmin(Ti-O-O)(Å) 1.64

Cmax(Ti-O-O)(Å) 3.14

Cmin(O-O-Ti)(Å) 1.73

Cmax(O-O-Ti)(Å) 2.85
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we used for all subsequent rock salt calculations. The elastic constants of a cubic

structure such as rock salt can be calculated using two-independent strains, ε1 and

ε4, however several strain levels are required to demonstrate convergence with re-

spect to strain. Rock salt TiO elastic constants reported here are averaged from

calculations with εi equal to ±1%, ±0.7%, ±0.5%, and ±0.3%. In addition to our

own calculations, the elastic constants of rock salt TiO have been the subject of

several theoretical studies, producing the range of values shows in table 4.3. The

elastic constants of the rock salt reference structure serve two purposes in the fitting

process: as fitting targets themselves, and as input to calculating the value of the

MEAM parameter α as described in the Appendix C. Included in table 4.3 are the

bulk modulii, B, calculated using the standard definition B = (c11+2c12)/3, and the

resulting values for α determined using our DFT calculated value of Ec; we allowed

the value of α to vary between 4.500 and 5.170 during the fitting process based on

the range in table 4.3. The elastic constants of rock salt TiO predicted using the

MEAM potential are also shown, along with the resulting values for the bulk mod-

ulus and α; the value of α calculated from the simulated elastic constants is nearly

identical to the input value of α in the MEAM potential (5.050), demonstrating

self-consistency.

Robust experimental data is available for the crystal structures and thermo-

dynamic properties of α-TiO and Ti3O2. A study by Watanabe using a combination

of x-ray diffraction and transmission electron microscopy established that the low-

temperature structure of α-TiO is monoclinic with space group A2/m (no.12) and

ordered vacancies on every 6th lattice site for both O and Ti [101]. Similarly, Ti3O2

88



Table 4.3: Calculated values of elastic constants for rock salt TiO using GGA-PBE,

Ceperley-Alder local density dpproximation (LDA-CA), local density dpproximation

with full-potential linear muffin tin orbitals (LDA-FPLMTO), the tight binding po-

tential method (TBPM), and the MEAM potential from this study. Bulk modulus,

B, and MEAM parameter α are calculated from the elastic constants.

Calculation Technique c11(GPa) c12(GPa) c44(GPa) B (GPa) α

GGA-PBE (this study) 503 84 18 223.7 4.542

GGA-PBE [96] 517 71 36 219.7 4.501

GGA-PBE [97] - - - 221.8 4.524

LDA-CA [98] 612 129 123 290.0 5.172

LDA-FPLMTO [99] 693 73 130 279.7 5.079

TBPM [100] 650 72 145 264.7 4.940

MEAM (this study) 619 127 72 291.0 5.053
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is known to be hcp with an ordered sub-lattice of interstitial O atoms and vacancies

[102]. Thermodynamic properties such as the room-temperature enthalpy of forma-

tion, ∆Hf , for α-TiO and Ti3O2 are also reported [79, 103]. DFT calculations of

the lattice parameters and cohesive energies of both structures using the supercell

characteristics in table 4.1 established fitting targets and verified that these com-

plicated structures were correctly captured in our structure-input files (which were

similar for both MEAM and DFT) while also confirming the reported properties.

Though experimental measurements are not available, we have also calculated the

elastic constants c11, c33, and c44 for α-TiO and Ti3O2 for use as fitting targets. The

experimental (where available), DFT calculated, and MEAM calculated properties

of rock salt TiO, α-TiO, and Ti3O2 are provided in table 4.4. The quality of the

fit is particularly good for the lattice parameters and cohesive energies of the three

structures, with all of the MEAM results within 3.5% of experimental results. The

MEAM results for elastic constants also fit well to DFT results with MEAM always

reproducing the correct order of the elastic constants and yielding reasonable er-

ror considering the challenge of producing highly accurate elastic constants either

experimentally or, as suggested in table 4.3, computationally.

In addition to the properties of the Ti-O structures described above, we em-

ployed the relative energies and a diffusion barrier for O interstitials in hcp Ti as

fitting targets for the MEAM potential. We have closely followed earlier DFT cal-

culations by Wu and Trinkle [104] using the “hcp-Diffusion” structure in table 4.1,

reproducing their DFT calculations of site energy for the octahedral, hexahedral,

and crowdion interstitial positions as well as the diffusion energy barriers between
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Table 4.4: Experimental, DFT, and MEAM lattice parameters, elastic constants,

and cohesive energies for the three Ti-O structures used for fitting in this study. DFT

calculations of Ec use the corrected single atom energies described in equation 4.1.

Experiment DFT (this study) MEAM (this study)

Rock Salt TiO

a (Å) - 4.288 4.288

Ec (eV/atom) - 6.016 6.313

α-TiO

a (Å) 5.855 [101] 5.854 6.060

b (Å) 9.340 [101] 8.910 9.098

c (Å) 4.142 [101] 4.171 4.033

γ 107.53◦ [101] 107.38◦ 105.91◦

Ec (eV/atom) 6.511 [79] 6.248 6.511

c11 (MPa) - 304 399

c33 (MPa) - 427 450

c44 (MPa) - 96 58

Ti3O2

a (Å) 4.992 [102] 4.820 4.837

c (Å) 2.879 [102] 2.935 2.969

Ec (eV/atom) 6.196 [103] 6.037 6.230

c11 (MPa) - 277 265

c33 (MPa) - 357 289

c44 (MPa) - 112 132
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the sites. Climbing imagine nudged elastic band (NEB) calculations with five in-

termediate images and cell size/shape fixed to the relaxed hcp Ti structure with an

octahedral O interstitial yield diffusion energy barriers for both DFT and MEAM

[105, 106, 107]. For consistency with other calculations in this study we use a cutoff

of 520 eV and PAW pseudopotentials; while Wu and Trinkle [104] used a lower cut-

off energy, ultrasoft Vanderbilt pseudopotentials, and a single intermediate image

for NEB calculations, our DFT results are nonetheless quite similar. After several

iterations through the fitting process failed to produce MEAM parameters with

reasonable diffusion energy barriers we opted to include the energy barrier of the

octahedral site → octahedral site diffusion path as a fitting target. We note that

only the peak energy of the diffusion barrier was included as a target and not the

energy of the other NEB images. Including this energy barrier as a fitting target had

the most significant effect on the value of the α parameter where higher values of α

generally produced higher octahedral site → octahedral site diffusion energy barri-

ers. Table 4.5 summarizes the DFT and MEAM calculated interstitial site energies

relative to the octahedral site energy and the the octahedral site → octahedral site

diffusion energy barrier. The MEAM potential is able to fit stable hexahedral and

crowdion O interstitials with minimal error relative to DFT, indicating effectiveness

for studying interstitials experiencing a variety of Ti-O bond distances and angles.

Further, the comparison of the DFT and MEAM results for the octahedral site →

octahedral site diffusion path demonstrates that the MEAM potential is capable of

reproducing diffusion energy barriers with reasonable accuracy.
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Table 4.5: Fitting results for the energy per O interstitial in hcp Ti relative to

the octahderal interstitial energy; also included is the energy barrier for O diffusion

between two octahedral sites (oct) in hcp Ti.

DFT [104] DFT (this study) MEAM (this study)

Octahedral (eV) 0.00 0.00 0.00

Hexahedral (eV) 1.19 1.22 1.14

Crowdion (eV) 1.88 1.85 1.97

oct → oct (eV) 3.25 3.30 2.94

4.3 Validation and Transferability of the MEAM Potential

In order to test the effectiveness of the new MEAM potential we compare MEAM

calculated results to DFT calculated results for a variety of structures and char-

acteristics that were not included in the fitting process. Overall, we validated our

MEAM potential by testing effectiveness in four areas: (1) diffusion energy barriers

for O in hcp Ti, (2) accuracy of lattice parameters and cohesive energies of Ti-O

structures and common oxides of Ti not included in the fitting process, (3) change

in hcp Ti lattice parameters and elastic constants as a function of O concentration,

and (4) change in cohesive energy with respect to hydrostatic strain for assorted

Ti-O structures.

Again following earlier DFT calculations by Wu and Trinkle [104] using the

“hcp-Diffusion” structure in table 4.1, we calculated the six diffusion energy barriers
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not included as fitting targets between the octahedral, hexahedral, and crowdion

interstitial sites. The results of these calculations shown in table 4.6 demonstrate

that the MEAM potential is effective for predicting transition state energy in this

system; the MEAM predicts energy barriers that are uniformly and modestly lower

than the DFT predicted values, while the order of the MEAM barriers matches

DFT. The largest error between the DFT and MEAM predicted diffusion energy

barriers is for the two paths leaving from the crowdion site, however the MEAM also

slightly overpredicts the crowdion site energy and hence the total energy required for

diffusion of an atom to a crowdion site is still comparable to the DFT results. The

MEAM is not able to comprehend significant charge transfer and so we performed

Bader charge analysis for the O interstitials in the three stable interstitial sites and

at the peak of each energy barrier using transition state tools available from the

University of Texas [108, 109]. The Bader charge on the O interstitial varies only

slightly between -1.4403 and -1.2753 across all of the base and peak positions for the

diffusion barriers; significant charge redistribution, such as might negatively affect

predictive capability of the MEAM potential, is not present.

DFT calculations using the settings described in table 4.7 along with experi-

mental measurements of lattice parameters and cohesive energies of common Ti-O

structures produced values for comparison with MEAM calculated characteristics.

The “hcp” and body centered tetragonal (“bct”) structures each include 4 at% O

as octahedral interstitials; the hcp structure was not directly included in the fitting

process as the formation energy of a single octahedral interstitial was not fit (only

the relative energies of octahedral, hexahedral, and crowdion interstitials were in-
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Table 4.6: Calculated diffusion energy barriers for various O diffusion pathways

between octahedral (oct), hexahedral (hex), and crowdion (cr) sites in hcp Ti.

DFT [104] DFT (this study) MEAM (this study)

oct → hex (eV) 2.04 2.05 1.98

hex → oct (eV) 0.85 0.83 0.84

oct → cr (eV) 2.16 2.15 2.04

cr → oct (eV) 0.28 0.30 0.07

hex → cr (eV) 0.94 0.91 0.85

cr → hex (eV) 0.24 0.28 0.02

cluded in fitting). The bct structure is the product of relaxing a body centered cubic

(bcc) structure with a single octahedral interstitial; the relaxed structure yielded a

bct cell in both DFT and MEAM calculations hence we report two independent

lattice constants. Overall the MEAM, experimental, and DFT predicted values in

table 4.8 compare favorably. The most significant errors between the MEAM poten-

tial results and DFT or experimental results are for the c-lattice constant of Ti2O3

and the cohesive energy of Rutile TiO2; the stoichiometry of these compounds in-

cludes O concentrations well beyond the range included in the fitting procedure and

hence larger error is expected. Notably, the MEAM potential reproduces the correct

structures and qualitatively correct characteristics even in the case of these O rich

chemistries.

Our DFT calculations of lattice parameters and elastic constants as a func-
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Table 4.7: Summary of structures and DFT settings used to verify MEAM potential

performance in this study; the characteristics of these structures were not included

in the fitting process. The k-point meshes are indicated as (M) for Monkhorst-Pack

and (G) for gamma-centered.

Structure Name Lattice System Ti Atoms O Atoms k-point Mesh

hcp-Elastic Hexagonal 64 0 – 4 8 x 8 x 8 (G)

hcp Hexagonal 24 1 3 x 5 x 3 (G)

bct Tetragonal 24 1 3 x 5 x 5 (G)

TiO-CsCl Cubic 1 1 15 x 15 x 15 (M)

TiO-ZincBlend Cubic 4 4 11 x 11 x 11 (M)

Ti2O3 Rhombohedral 12 18 6 x 6 x 4 (M)

Rutile TiO2 Cubic 2 4 8 x 8 x 8 (G)
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Table 4.8: Experimental, DFT, and MEAM lattice parameters and cohesive energies

for multiple structures not included in the fitting process.

Experiment DFT (this study) MEAM (this study)

hcp

a (Å) 2.954 [110] 2.944 2.956

c (Å) 4.699 [110] 4.672 4.708

Ec (eV/atom) 5.018 [111] 5.002 4.965

bct

a (Å) - 2.910 3.170

c (Å) - 4.128 3.521

Ec (eV/atom) - 4.951 4.927

TiO-CsCl

a (Å) - 2.651 2.608

Ec (eV/atom) - 5.705 5.940

TiO-Zinc Blende

a (Å) - 4.645 4.614

Ec (eV/atom) - 5.897 5.856

Ti2O3

a (Å) 5.157 [112] 5.112 5.354

c (Å) 13.610 [112] 14.021 11.374

Ec (eV/atom) 6.618 [79] 6.387 6.899

Rutile TiO2

a (Å) 4.594 [113] 4.652 4.775

c (Å) 2.959 [113] 2.969 2.882

Ec (eV/atom) 6.576 [79] 6.349 6.100
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tion of O concentration in hcp Ti used the “hcp-Elastic” structure described in

table 4.7, with an example of the supercell containing four O interstitials shown in

figure 4.1(a). We performed calculations using between zero and four O intersti-

tials in the octahedral sites shown in red, producing supercells with 0 at% O, 1.54

at% O, 3.03 at% O, 4.48 at% O, and 5.88 at% O. Using a supercell with fixed size

and increasing O content allows us to compare lattice parameters and energies as a

function of O concentration calculated with identical supercell volume and k-point

mesh, as opposed to using a single centered O interstitial and increasing the size of

the supercell (and number of Ti atoms) and k-point mesh. Elastic constants were

again calculated using the stress-strain approach with six independent strains, εi,

and three strain levels of ±2%, ±1%, and ±0.5%. The MEAM calculated, DFT

calculated, and experimental a-lattice parameter, c-lattice parameter, and cohesive

energy as a function of O concentration are shown in Figures 4.1(b)–(d). The DFT

and MEAM calculations correctly reproduce the experimentally measured increase

in lattice parameter [110] as a function of O concentration along with a decrease in

cohesive energy per atom [111]. While the MEAM calculations slightly overpredict

the increase of the a- and c-lattice parameters with increasing O, the greatest error

between MEAM and experimental values is less than 0.3%. The five independent

elastic constants as a function of O concentration are shown in figure 4.2 along with

the experimental values for pure Ti at room temperature and at 4 K [35]. The

MEAM potential reproduces DFT predicted trends for the on-diagonal elastic con-

stants, though it underestimates the increase in c33 with increasing O concentration.

The MEAM calculated values for the off-diagonal elastic constants do not match the
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DFT results with high accuracy, including an error in the trend of c13, however the

greatest error is still less than 13%. Unlike individual elastic constants, experimental

measurements of Young’s Modulus in hcp Ti as a function of O concentration are

reported [24]; we calculate the Young’s Modulus as a function of O concentration

using the DFT and MEAM predicted elastic constants and the Voight model for

Young’s Modulus in polycrystalline materials

EV =
(A−B − 3Γ)(A+ 2B)

(2A+ 3B + Γ)
(4.6)

where 3A = c11 + c22 + c33, 3B = c23 + c13 + c12, and 3Γ = c44 + c55 + c66

[49]. Our predictions compare favorably with the experimental results as shown in

figure 4.3. A recent DFT study of the elastic constants of hcp Ti as a function of

interstitial O concentration by Kwasniak et al. [114] confirms the qualitative trends

observed here, though we note that their study employs variable supercell size and

k-point mesh in order to change O concentration which can be problematic given the

extreme sensitivity of elastic constant calculations to the accuracy of the calculated

energy.
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Figure 4.1: Validation testing of the MEAM potential by comparison to DFT and

experimental (Exp) results for increasing octahedral interstitial concentration in hcp

Ti. Both DFT and MEAM calculations used an identical supercell varying between

0 and 4 O interstitials, with an example in a) shown with Ti atoms in blue and four O

interstitials in red. The MEAM results compare favorably to DFT and extrapolated

experimental results for b) cohesive energy, c) a-lattice parameter, and d) c-lattice

parameter.
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Figure 4.2: Elastic constants of hcp Ti with increasing concentrations of octahedral

O interstitials. Experimental results are shown for pure Ti at room temperature

(RT) and 4 Kelvin (4K). Results calculated using DFT and MEAM compare favor-

ably for diagonal components. All elastic constants are reported in GPa.
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Figure 4.3: Young’s Modulus versus O concentration calculated from simulated

elastic constants using equation 4.6 and extrapolated from measured values.
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In figure 4.4 we compare DFT and MEAM prediction of the change in cohesive

energy with respect to hydrostatic strain in order to demonstrate that the MEAM

potential correctly reproduces stiffness and stability for structures with a variety

interatomic distances and angles. In addition to the rock salt TiO, α-TiO, and

Ti3O2 structures used for fitting, we include the “CsCl”, “hcp”, and “bct” struc-

tures described in table 4.7. Both MEAM and DFT calculations begin with the

fully-relaxed lattice parameters as the 0% strain condition, followed by relaxation

of atomic positions at hydrostatic strains between -20% and 20%. Also shown in

figure 4.4 are the experimental cohesive energies and unit cell volumes for the 0%

strain condition of α-TiO, Ti3O2, and hcp Ti with 4 at% O. The offset between the

DFT and MEAM calculated values for the four oxide systems in the lower, left-hand

corner of figure 4.4 is due to the better accuracy of the MEAM potential in repro-

ducing experimental results as compared to the DFT calculations. Both the MEAM

potential and the DFT calculations produce very low error for cohesive energy and

lattice parameters of the hcp structure while also capturing subtle behavior such as

the overlap of the hcp and bct cohesive energies at high compressive strains. Overall,

figure 4.4 demonstrates that the MEAM potential reproduces the DFT calculated

energy curvature and stability of these structures when subjected to strain, while

also yielding good accuracy when compared to experimental measurements.
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Figure 4.4: Cohesive energy per atom versus unit cell volume per atom for six Ti-O

structures each subjected to hydrostatic strain between -20% and 20%

4.4 Conclusion

We have presented a new modified embedded atom method (MEAM) potential for

the Ti-O system which is fit to DFT calculated lattice constants, cohesive ener-

gies, elastic constants, and a diffusion barrier for structures exhibiting a variety of

bond distances, bond angles, and O concentrations. The potential is validated by

successfully reproducing the diffusion barriers for O in hcp Ti, properties of hcp

Ti as a function of increasing O concentration, the lattice parameters and cohesive
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energies of many Ti-O structures, and the hydrostatic strain versus cohesive energy

relationships for several structures. The new potential is effective for predicting

structural and thermodynamic features of structures ranging from dissolved oxygen

in a metallic titanium lattice to common oxides of titanium. The MEAM-predicted

diffusion energy barriers for O in Ti are somewhat less than DFT predictions but

correctly ordered with respect to the diffusion pathway. The lower computational

cost of MEAM calculations when compared to DFT calculations enables simulation

of the behavior of many thousands of atoms, allowing interrogation of large systems

such as twins interacting with interstitials or interaction of multiple dislocations

with interstitials. Further, the high space and time resolution of atomistic modeling

can offer new insight when compared to experimental results for a wide range of

characteristics.
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Chapter 5: Interaction Between Oxygen Defects and Deformation

Twins in α-Titanium

Oxygen (O) has up to 33 at% solubility in α-Ti [7] and is a common impurity and

alloying element. Interstitial O is also believed to interact with deformation twins,

and may result in time-dependent twinning by obstructing the shearing/shuffling

process associated with twin growth [28]. Early work by Biget & Saada identified

that the shuffle distance for interstitials impurities in Zr (an hcp metal with a simi-

lar structure to Ti) are larger than the shuffle distances for Zr atoms during (101̄2)

and (112̄1) twinning, although the possibility for O-Zr interference during shuffling

was not described [30]. More recent experimental measurements combined with a

crystallographic model suggest that O interstitial sites interfere with the shuffle of

Ti atoms during twin growth in body centered cubic (bcc) Ti, requiring O intersti-

tial diffusion away from or across the twin to enable further twin growth [14]. In

addition, a decrease in (101̄2) twin growth rate during creep in α-Ti may be associ-

ated with the presence of O interstitials based on a similar crystallographic model

[15, 16]. The width of (101̄2) twins decreases with increasing strain rate during

quasi-static loading, providing further evidence of time dependence of twin growth

in α-Ti [17]. The measured activation energy for twin growth in α-Ti, calculated
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using the diffusion coefficient for O diffusion in the bulk, is approximately 0.684 eV

during creep loading [16]; the activation energy for O diffusion in bulk α-Ti was

recently measured as 1.75± 0.52 eV using high purity samples and the nuclear res-

onance technique [115], while DFT calculations yield an activation barrier of 2.08

eV [104]. Historical measurements with reasonable results indicate activation en-

ergy for diffusion between 1.45 eV and 2.68 eV [116]. Should O interstitials interact

with twin growth as crystallographic modeling suggests, the difference between the

bulk diffusion activation barrier and the activation barrier for twin growth indi-

cates that twin growth and O diffusion mechanisms interact in a complicated way.

The length and time scales of these interactions make experimental measurement

very difficult, while atomistic modeling provides an excellent tool set for gaining

an improved, mechanistic understanding of the processes. Density functional the-

ory (DFT) calculations by Ghazisaeidi and Trinkle demonstrate that a (101̄2) twin

boundary affects the formation energy of octahedral oxygen interstitials in the im-

mediate vicinity of the twin [33], however the effect of the twin on formation energy

of other sites and the activation barriers for diffusion between the sites is not known.

Recent DFT calculations reveal that O diffuses readily along the core of a prismatic

edge dislocation in α-Ti and that the presence of O increases Peirels stress and

modifies dislocation core geometry [27], providing further indication of complicated

interactions between Ti deformation mechanisms and O interstitials. In this study

we interrogate the effect of (101̄2) twin boundaries on the formation energies, ac-

tivation barriers, and diffusion pathways for O. We report that the presence of a

(101̄2) twin boundary has a significant effect on the thermodynamics and kinetics
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of nearby O interstitials.

5.1 Computational Techniques

Investigating material behavior often requires multiple computational techniques to

properly address the range of relevant time and length scales. Directly simulating

interactions of O defects with a crystallographically complicated planar defect such

as a twin requires atomistic modeling, however many such techniques exist. In

this study, we employ a combination of DFT and modified embedded atom method

(MEAM) calculations to leverage the benefits and offset the disadvantages of each

tool. DFT is an ab-initio technique that offers excellent predictive power but is

limited to simulation of relatively few atoms for relatively brief periods. The MEAM

is an empirical potential method that trades a loss of rigorous physical modeling

for capability to simulate substantially larger systems for longer periods of time

when compared to DFT. Our DFT calculations are performed in the Vienna Ab-

initio Simulation Package (VASP) [71, 72, 73, 74], employing projector augmented

wave (PAW) psuedopotentials [75, 76] and the Perdew-Burke-Ernzerhof generalized

gradient approximation (GGA-PBE) [77]. The cut-off energy for all calculations was

held at 520 eV. We apply Methfessel-Paxton smearing of 0.2 eV and use a 2× 1× 6

Monkhorst-Pack k -point mesh. Relaxation calculations were stopped when the force

on each atom in the system was < 5 meV/Å. Our MEAM calculations are performed

in LAMMPS [90] using published MEAM potentials for Ti [91], O [92], and Ti-O

[117], noting that the Ti-O potential was fit specifically to study the interaction
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between O interstitials and twins in Ti alloys. Among several variations of the

MEAM, we use the second nearest neighbor (2NN) technique as outlined by Lee et

al. [88, 89], following the earlier work by Baskes [84, 85, 86, 87]. Activation barriers

for diffusion are calculated using the climbing imagine nudged elastic band (CI-

NEB) approach with three to seven intermediate images [105, 106, 107]. Creation

of the supercells for these calculations, visualization of results, and production of

several figures was accomplished using the Open Visualization Tool (OVITO) [118].

5.2 Structural Model

5.2.1 (101̄2) Twin in Pure Ti

We produced several supercells to enable investigation of the effects of distance

between twins and oxygen interstitials on the behavior of the system. Figure 5.1

shows our “short” and “tall” twin supercells, which vary in size along the y-direction,

along with the coordinate system used in this study; two (101̄2) twin boundaries

are required in order to maintain periodicity in the y-direction. Cell depth in the

z-direction (which corresponds to [12̄10]) varies in intervals of the lattice parameter

of α-Ti, a, which is equal to 2.95 Å [119]. To create a supercell containing a (101̄2)

twin we first rotate the hcp titanium unit cell such that the [12̄10] direction is aligned

with the z-direction. One side of the twin is then rotated so that the normal to the

(101̄2) plane is aligned with the y-direction, while the second side of the twin is

rotated so that the normal to the (1̄012) is aligned with the y-direction. Volumes

of atoms rotated for each side of the twin are combined into a single supercell and
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trimmed in the x- and z-directions for periodicity. Relaxation of the initial twin

structure is accomplished in two steps: first, the cell is relaxed in the y-direction

only while the atoms are allowed to relax completely, after which the cell and atoms

are free to relax in all directions, although the cell is prevented from shear distortion.

We first compare the experimentally measured twin boundary structure [120]

with the results of our DFT and MEAM calculations with z = 2a. Figure 5.2

compares the DFT, MEAM, and experimental structures, with the structure motif

superimposed for clarity; the calculated (101̄2) structures relax to a planar twin as

found experimentally, while the angle between basal planes across the twin bound-

ary, θ, is also correctly captured. The (101̄2) twin energy is 0.301 J/m2 calculated

using DFT and 0.410 J/m2 calculated using the MEAM. The relaxed structure and

twin boundary energy is identical for the short and tall twin supercells and is not

affected by changes to supercell depth in the x- or z-directions. While the MEAM

overestimates the twin boundary energy by comparison to DFT, the formation en-

ergies of the many oxygen interstitials studied here are not significantly affected.

5.2.2 Octahedral O Interstitials Near a (101̄2) Twin

Having obtained the correct (101̄2) twin structure for pure α-Ti, we calculate the

formation energy of octahedral O interstitials near the twin boundary following

earlier work by Ghazisaeidi and Trinkle [33], employing our short supercell and

their notation for the numbering of the octahedral sites. The five sites used to

calculate interstitial formation energy are shown in Figure 5.3. Formation energy
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x 

Figure 5.1: Front view of the a) “short” and ‘b) ‘tall” twin supercells along with

the coordinate system used in this study. The twin boundaries are indicated with

dashed lines. The supercells have variable depth along the z-direction (into the

page), which corresponds to [12̄10].
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a) MEAM b) DFT

c) Experiment (HR-TEM)

θ = 86° θ = 86°

θ = 87°

Figure 5.2: Relaxed (101̄2) twin structure a) calculated using the MEAM, b) calcu-

lated using DFT, and c) measured experimentally using high-resolution transmission

electron microscopy (HR-TEM) [120]. The angle between basal planes across the

twin boundary, θ, is also reported.

of the interstitials near the twin is calculated relative to the energy of the system

with an interstitial at site O0, where the cell size for calculation of all interstitials is

fixed at the fully relaxed size with an interstitial at site O0. As shown in Table 5.1,

despite a different supercell size and slightly different DFT calculation settings, our

results are quite similar. The MEAM is also effective for calculating formation

energy, with an error of less than 0.2 eV in all cases; while the formation energy of

interstitial O2 is negative in the MEAM and positive in DFT, this difference is very

small compared to the effect of the twin boundary on the energy of other sites and

the diffusion activation barriers as discussed later.

A benefit of applying the MEAM is the capacity for large supercells at mini-

mal computational cost. Hence while our DFT calculations are limited to the short

twin with a depth of 5.90 Å, we can explore much larger systems using the MEAM.
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O0 O1 O2 O3 O4

Figure 5.3: Octahedral interstitial sites O0 through O4, following Ghazisaeidi and

Trinkle [33]. The depth of the supercell into the page is 2a, approximately 5.90 Å,

and the twin boundaries are indicated with dashed lines.

Table 5.1: Formation energy of octahedral interstitials 0 through 4 (O0 - O4,

see Figure 5.3) calculated by DFT and MEAM using the short supercell with a

z-dimension of 5.90 Å.

DFT [33] DFT (this study) MEAM (this study)

O0 (eV) 0.0 0.0 0.0

O1 (eV) -0.052 -0.082 -0.017

O2 (eV) 0.115 0.087 -0.118

O3 (eV) 0.193 0.177 0.077

O4 (eV) -0.079 -0.109 -0.138
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The formation energy of interstitials in positions 1-4 as well as the energy barriers

for diffusion between the sites converge as cell size is increased in the x-, y-, and

z- directions. Figure 5.4 demonstrates that the formation energy of the interstitial

sites converges as thickness of the cell along the z-direction is increased to 6a (17.70

Å). Convergence with respect to the y-dimension of the cell is largely achieved using

the short cell when considering the interstitial formation energies and activation

barriers for diffusion at the twin boundary; however, the short cell limits the max-

imum possible distance from the twin boundary in the y-direction to about 8.7 Å,

restricting our study of the effects of distance of the interstitial from the twin. Not

shown are results for convergence with respect to supercell size in the x-direction,

which was achieved at the size shown in Figure 5.1. Based on these results, we

employ the tall twin structure with a depth in the z-direction of 6a (17.70 Å) for

MEAM-only calculations along with the short twin structure with a depth in the

z-direction of 2a (5.90 Å) for calculations utilizing both MEAM and DFT.

5.3 The Effects of a Twin Boundary on Interstitial Site Stability and

Formation Energy

While the presence of a (101̄2) twin boundary in Ti is known to affect the forma-

tion energy of octahedral interstitials in the immediate vicinity of the twin [33],

the effects on the hexahedral and crowdion sites, as well as octahedral interstitials

further from the twin, have not been previously explored in Ti or any other system.

The distribution of O interstitial sites in the vicinity of a the twin is shown in Fig-
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Figure 5.4: Convergence testing with respect to supercell size in the y- and z-

directions (see Figure 5.1) for (a) interstitial formation energy and (b) diffusion

activation barrier for octahedral sites 1 through 4
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ure 5.5a) with an additional crowdion site located directly into the page behind each

of the four octahedral sites. We refer to this distribution of sites as the “0th” layer

(0L) from the twin; only unique interstitial sites are shown (unique with respect to

both coordination and formation energy), and the remaining sites are obtained by

translation and symmetry operations. As a first test, and for further validation of

the MEAM potential, we calculate the formation energy of the octahedral, hexahe-

dral, and crowdion interstitials in the 0th layer using both DFT and MEAM and

the short supercell with a depth in the z-direction of 2a (5.90 Å). Fully relaxing

the system yields the arrangement of sites in Figure 5.5b); the formation energies

relative to the energy of a system with an interstitial in O0 are shown in Figure 5.6.

The twin boundary has several important effects on the stability and formation en-

ergy of the defects. First, the hexahedral site nearest to the twin boundary, H1,

and the crowdion site nearest to the twin boundary, C2, relax into stable tetrahe-

dral interstitials, T1 and T2, directly at the twin boundary; both DFT and MEAM

predict this behavior, however the MEAM potential produces slightly asymmetrical

tetrahedral sites while DFT predicts perfect tetrahedral interstitials. Tetrahedral

oxygen interstitials are not stable in bulk α-Ti and the (101̄2) twin therefore in-

troduces a new, previously unreported defect. Second, crowdion interstitials C7

and C8, directly behind octahedral sites O2 and O3, are not stable using DFT or

the MEAM; the greater interatomic distances above and below the twin allow the

system to relax by moving the twin boundary in response to the presence of these

defects. Finally, while DFT predicts that all of the sites in Figure 5.5b) are sta-

ble, crowdion interstitials C3 and C4 are unstable when using the MEAM; this is
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Figure 5.5: Unique interstitial sites in the 0th layer (0L) from the twin boundary

(indicated by a dashed line) a)before and b)after relaxation; the Ti atoms are shown

in their unrelaxed positions in both cases for clarity. Crowdion sites C5 - C8 are

behind (into the page) octahderal sites O1 - O4, as indicated by arrows. After

relaxation, hexahedral H1 and crowdion C2 relax to tetrahedral interstitials T1 and

T2, respectively. The crowdion interstitials C7 and C8 are unstable.

likely due to the slight overprediction of crowdion interstitial energy and the slight

underprediction of diffusion activation barriers for paths leaving the crowdion sites

when using this MEAM potential [117], which causes the crowdion sites to be less

stable. The energy of these sites is reported in Figure 5.6 using the peak position of

the diffusion pathway through their location, which maintains the correct crowdion

structure despite the instability.

The formation energies of oxygen interstitials continue to differ from the bulk

values at greater distance from the (101̄2) twin boundary. In order to study the

effect of distance from the boundary on interstitial formation energy, we identify

the interstitial sites matching those shown for the 0L layer in Figure 5.5 in sub-

sequent layers. Figure 5.7 shows the position of these interstitials in the 0L layer
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of the tall supercell as well as in the second (2L) and fourth (4L) layers from the

twin. Equivalent sites also exist in the first (1L) and third (3L) layers from the twin

and are included in our calculations; however the 1L and 3L sites are not shown in

Figure 5.7 for clarity. The change in formation energy of the octahedral, hexahe-

dral, and crowdion interstitials as a function of distance from the twin is shown in

Figure 5.8a)–c) as calculated using the MEAM; the tetrahedral interstitial energy

for the 0L interstitials is included in the hexagonal and crowdion plots to reflect the

position that the tetrahedral defect replaces in diffusion paths near the twin. The

formation energy of the octahedral defects varies between +0.05 eV and −0.19 eV

at the twin boundary and returns to bulk-like behavior in the 3L layer at a distance

of about 12 Å from the twin boundary.

The hexahedral defects behave similarly to the octahedral defects, although

the formation energies vary across a wider range from +0.30 eV to −0.57 eV. The

tetrahedral site that replaces the hexahedral site nearest to the twin has a formation

energy 0.35 eV lower than the bulk value, although it is not the lowest energy

hexahedral site in 0L. As with the octahedral interstitials, the hexahedral defects

recover bulk like formation energy in the 3L layer.

The crowdion interstitials behave somewhat differently, with all sites having

lower formation energy near the twin boundary than in the bulk and formation

energy for several sites still lower than the bulk value in the 4L layer. The lowest

energy crowdion site in the 0L layer has a formation energy 0.48 eV lower than the

bulk value, while the tetrahedral interstitial that replaces a crowdion site nearest to

the twin exhibits 0.79 eV lower formation energy.
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Such changes in formation energy are quite large, particularly when consid-

ering that occupancy at thermal equilibrium is proportional to exp(−∆Ef/kBT )

where ∆Ef is the difference in formation energy of a defect relative to the average

energy of the system, kB is the Boltzmann constant, and T is the temperature.

However, it is important to note that the greatest change in formation energy near

the twin boundary occurs with the hexahedral and crowdion sites, which are still at

least 0.5 eV above the bulk octahedral interstitial formation energy. The formation

energy of the octahedral sites near the twin is not as dramatically affected. We

therefore expect that the concentration of O near the twin will be comparable to

the concentration in the bulk, with most interstitials occupying octahedral sites;

however, a greater proportion of O near the twin will occupy hexahedral, crowdion,

and tetrahedral sites owing to the lower formation energy of these interstitials.

5.4 The Effects of a Twin Boundary on Activation Barriers for Dif-

fusion

Along with formation energy, the presence of a nearby (101̄2) twin boundary also

affects the activation barriers for diffusion of O through the lattice. Diffusion of O in

bulk α-Ti is known to occur by movement between the octahedral, hexahedral, and

crowdion interstitial sites with many possible paths contributing to diffusion [104].

There are four independent diffusion paths in the bulk: octahedral → octahedral,

octahedral→ hexahedral, octahedral→ crowdion, and hexahedral→ crowdion, and

the MEAM potential used here is effective for reproducing the activation barriers for
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Figure 5.7: Location of O interstitial sites at increasing distance from a (101̄2) twin,

indicated by a dashed line. The layers are labeled as the 0th layer from the twin

(0L) through the fourth layer from the twin (4L). Equivalent sites exist in 1L and

3L and have been included in the calculations described here, however they are not

shown in the figure for clarity.
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Figure 5.8: Formation energy of a) octahedral, b) hexahedral, and c) crowdion sites

as a function of distance from the twin boundary, with distance reported in terms of

layer from the twin (see Figure 5.5). Each line corresponds to a unique interstitial

which repeats in each layer; for example, the O4 octahedral is represented by a single

line in a). The hexahedral and crowdion interstitials which relax into a tetrahedral

position in the 0L layer are indicated with a green circle. The bulk formation energy

for each defect relative to the octahedral interstitial is shown with a red “X”.
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these paths [117]. The formation energy results in Figures 5.6 and 5.8 demonstrate

that there are many more independent diffusion paths near the twin due to the

increased number of unique interstitial positions. In order to conduct a complete

assessment, we have calculated the diffusion activation barrier for every possible

unique jump in layers 0L and 4L. Figure 5.9 provides the diffusion activation energy

results for each unique path.

The 4L results are very bulk-like and generally collapse onto a single path

matching the MEAM predictions of the bulk path. Conversely, the 0L results demon-

strate very different behavior near the twin boundary when compared to the bulk.

The nearby (101̄2) twin boundary has a dramatic effect on some of the octahedral

→ octahedral jumps in 0L, reducing the peak energy by more than 1 eV. While

direct octahedral → octahedral diffusion does not contribute significantly during

bulk diffusion [104], a nearby twin reduces the peak energy of these paths making

them comparable to octahedral → hexahedral and octahedral → crowdion jumps

and indicating that direct octahedral → octahedral diffusion occurs near the twin.

The peak energy for the octahedral→ hexahedral jumps is also reduced by up

to 1 eV due the twin boundary, however the activation barriers are distributed over

a wider range of energies when compared to the octahedral → octahedral jumps.

The activation barriers for the octahedral→ tetrahedral jumps in 0L to tetrahedral

site T1 (paths highlighted in blue in Figure 5.9b), which relaxes from hexahedral

site H1, are not significantly different from the bulk values.

The (101̄2) twin boundary has a modest effect on the activation barrier of

most octahedral → crowdion paths in the 0L layer. Although the peak energy of
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Figure 5.9: Site energy and activation barriers for diffusion paths in the 4L (purple)

and 0L (red and blue) layers in Figure 5.7. The paths are grouped by the initial

and final interstitial characteristics as a) octahedral→ octahedral, b) octahedral→

hexahedral, c) octahedral → crowdion, and d) hexahedral → crowdion. Paths in

blue include a tetrahedral interstitial in the 0L layer.
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some paths is reduced by about 0.4 eV, the peak energy for most paths near the

twin is only slightly reduced. However, unlike the octahedral → hexahedral case,

the octahedral → tetrahedral jump to tetrahedral site T2 (path highlighted in blue

in Figure 5.9c), which relaxes from crowdion site C2, is significantly lower than other

octahedral → crowdion paths in the bulk or near the twin. The formation of this

tetrahedral interstitial in the twin therefore contributes to diffusion by providing a

low energy path across the twin boundary.

Finally, the hexahedral → crowdion diffusion paths are also affected by the

presence of the twin boundary. The peak energy for most of the paths near the twin

is within 0.2 eV of the bulk case. The peak energy of the hexahedral → tetrahedral

path to tetrahedral site T2 is much lower than the bulk equivalent, similar to the

behavior of the octahedral→ tetrahedral jump to the same site. On the other hand,

the tetrahedral→ crowdion path from T1 to C1 is unstable; the peak position relaxes

into an neighboring octahedral interstitial and this path therefore does not appear

in Figure 5.9d).

Having calculated the interstitial site formation energy and diffusion activation

barriers for all sites and paths near the twin, we are able to assess the minimum

energy pathways for diffusion. In bulk α-Ti the activation barrier for octahedral

→ octahedral diffusion is approximately 1 eV higher than the activation barriers

for other paths [104, 117] and does not contribute significantly to diffusion. As a

result, diffusion in the bulk as well as in the 4L layer proceeds by indirect jumps

between the low energy octahedral sites via octahedral→ hexahedral, octahedral→

crowdion, and hexahedral → crowdion diffusion. The combinations of these jumps
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yield the minimum energy paths far from the twin. Conversely, in the 0L layer there

are several octahedral → octahedral jumps with activation barriers around 1.5 eV

which contribute to diffusion along with the assorted low energy paths via other

jumps. We have compiled the five lowest energy paths for a O interstitial to travel

across 0L (to the twin boundary) for comparison with the lowest energy pathways

for diffusion in the bulk. Other diffusion pathways near the twin exist, however

the peak energy of the five paths selected here is about 0.3 eV lower than the next

lowest energy path and thus this selection represents the most plausible options for

O diffusion. Further, the structure is symmetrical about the twin boundary, so a

diffusing O atom will experience the same energy landscape and activation barriers

in order to diffuse away from the twin boundary.

A comparison of the lowest energy diffusion pathways across the twin with the

lowest energy diffusion pathways in the bulk is provided in Figure 5.10. The peak

energy of the bulk paths varies from 1.97 eV to 2.02 eV, closely aligned with both

experimental [115] and DFT [104] results. The peak energy for diffusion across the

0L layer (and thus to, and across the twin boundary) varies from 1.53 eV to 1.68

eV, a reduction of 0.29 − 0.49 eV. Diffusivity scales with exp(−∆EB/kBT ), where

EB is the activation barrier energy, and a change in peak energy of this magnitude

therefore has a large impact on the rate of O diffusion near and across the twin.

Unimpeded, twin growth is observed to occur at rates approaching the speed

of sound in hcp metals (for example, [121, 122]). Hence despite accelerated kinetics,

O diffusion near the twin is still comparatively slow and twin growth rate may be

decreased by the presence of O. Compared to the activation barrier for O diffusion
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Figure 5.10: Minimum energy pathways for diffusion between two octahedral sites

across the 4L layer (purple lines) and the 0L layer (red lines). The peak energy of

the paths is also shown.

in the bulk, the reduced activation barrier for O diffusion across the twin boundary

is closer to the experimentally measured activation energy for twin growth [16, 17];

however, the activation barriers for these processes still differ by almost 1 eV, and

thus the interaction of twins and O interstitials likely occurs via a more compli-

cated mechanism than serial twin boundary motion/oxygen diffusion. Nonetheless,

the correct trend and relative similarity of the activation barrier for (101̄2) twin

growth and O diffusion near a (101̄2) twin boundary suggests that the interaction

mechanisms merit further study.

5.5 Conclusion

The interactions between alloying or impurity elements and twin growth are not well

understood, despite opportunities for performance improvements across the many

126



hcp metals where deformation twinning is prevalent. In the case of α-Ti, experimen-

tal evidence suggests that O interstitials could result in time-dependent twinning

by interfering with the twin growth process. As a first step towards understanding

the mechanisms of these interactions, we have applied a combination of DFT and

MEAM calculations to assess the effect of a (101̄2) twin boundary on the formation

energy of all unique O interstitial sites along with the diffusion activation barriers

between the sites.

The formation energy of octahedral, hexahedral, and crowdion O interstitials

is modified by as much as 0.5 eV near the twin boundary and returns to bulk-like

values at a distance of about 10 Å from the twin. Two unique tetrahedral interstitials

are stable in the twin boundary, despite being unstable in the bulk, with formation

energies comparable to hexahedral interstitials. The effect of the twin boundary

on formation energy is greatest for the hexahedral, crowdion, and tetrahedral sites,

which are all higher energy when compared to the octahedral sites; as a result, O

concentration near a twin boundary is similar to the bulk, however a larger fraction

of interstitials near the twin will occupy non-octahedral sites.

The diffusion activation barriers for O near the (101̄2) twin boundary are

uniformly lower than in the bulk. In some cases the barriers are reduced by more

than 1 eV due to a nearby twin boundary, creating many low energy diffusion

pathways. Of the two unique tetrahedral interstitials in the twin boundary, only

one contributes significantly to O diffusion while the other does not connect to a

low energy diffusion path. Our MEAM calculations indicate that the peak energy

for diffusion of O through bulk Ti is about 2 eV, corresponding well to measured
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and DFT-calculated values. After reviewing the available paths for an O interstitial

to move to and across a twin boundary, we find that the peak energy for diffusion

is between 1.53 eV and 1.68 eV. Such a large reduction in peak energy indicates

that O diffusion occurs much more readily across a twin boundary when compared

to the bulk. However, accelerated O diffusion near the twin is still much slower

than unimpeded twin growth and O is likely to play a role in strain-rate and time

dependence in (101̄2) twinning. That our newly reported activation barriers for

diffusion near a (101̄2) twin are still higher than the measured activation energy

from twin growth indicates that the mechanisms of O-twin interaction are more

complicated than a serial growth/diffusion process and merit further investigation.
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Chapter 6: Conclusions

The research summarized in this dissertation provides new, quantitative insight into

the interaction of phase boundaries and O interstitials with deformation twins in

Ti. The detailed results are summarized here into key conclusions.

Elastic and plastic interaction stresses combine to produce anisotropic mechanical

response during the onset of plasticity in the α-phase of dual-phase Ti alloys:

1. Elastic interaction stress significantly modifies the effective Schmid factor near

the α-β interface. This interaction stress, due to the elastic mismatch and

anisotropy of the α- and β-phases, resolves onto the available slip and twinning

systems in the α-phase, increasing the effective Schmid factor by up to 30%

and causing slip to occur at lower applied stress than would be expected from

Schmid’s Law. The elastic interaction stresses are strongly anisotropic and

affect independent slip and twinning systems differently.

2. As the α-phase begins to deform plastically, the relative shear moduli of the

α and β-phasees produce a repulsive force against dislocation motion in some

orientations. This repulsive force significantly increases the CRSS for slip near

the boundary for particular independent slip systems. Deformation twins are
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similarly affected, although the magnitude of the effect is smaller

3. Interaction stress affects the active deformation mechanism for some orienta-

tions and promotes, for example, basal 〈a〉 slip and (101̄2) twinning at the

expense of prismatic 〈a〉 slip.

4. Combined, the interaction stresses affect the observed CRSS for each indepen-

dent slip and twinning system. Our model results produce a distribution of

observed CRSS for the basal and prismatic system that matches experimental

results. This quantifies, for the first time, the source of CRSS varation and

provides a clear mechanistic description of anisotropic plastic response in α-β

Ti alloys.

A new validated and published modified embedded atom method (MEAM) potential

for the Ti-O system is valuable for studying interactions of interstitial O with Ti:

1. The MEAM potential is fit to DFT calculated lattice constants, cohesive ener-

gies, elastic constants, and a diffusion barrier for Ti-O structures exhibiting a

variety of bond distances, bond angles, and O concentrations. The quality of

the fit is quite high across the fitting set, with most characteristics reproduced

with less than 5% error.

2. The potential is validated by successfully reproducing the diffusion barriers for

O in hcp Ti, properties of hcp Ti as a function of increasing O concentration,

the lattice parameters and cohesive energies of many Ti-O structures, and the

hydrostatic strain versus cohesive energy relationships for several structures.
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3. The MEAM potential, fitting algorithms and Python scripts, and all related

computational input and output files are available to the public via the NIST

Computational Materials Data Repository, enabling other researchers to apply

these tools and advance the state-of-the-art in empirical potential modeling.

The presence of a twin boundary in Ti affects the thermodynamic and kinetic prop-

erties of O interstitials with implications for twin-interstitial interactions and time-

dependent twinning:

1. The formation energy of octahedral, hexahedral, and crowdion O interstitials

is modified by as much as 0.5 eV near the twin boundary and returns to bulk-

like values at a distance of about 10 Å from the twin. Two unique tetrahedral

interstitials are stable in the twin boundary, despite being unstable in the

bulk, with formation energies comparable to hexahedral interstitials.

2. The effect of the twin boundary on formation energy is greatest for the hex-

ahedral, crowdion, and tetrahedral sites, which are all higher energy when

compared to the octahedral sites; as a result, O concentration is unlikely differ

significantly near a twin boundary as compared to the bulk, however a larger

fraction of interstitials near the twin will occupy non-octahedral sites.

3. The diffusion activation barriers for O near the (101̄2) twin boundary are

uniformly lower than in the bulk. In some cases the barriers are reduced by

more than 1 eV due to a nearby twin boundary, creating many low energy

diffusion pathways.
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4. Our MEAM calculations indicate that the peak energy for diffusion of O

through a bulk Ti is about 2 eV, corresponding well to measured and DFT-

calculated values. After reviewing the available paths for an O interstitial to

move to and across a twin boundary, we find that the peak energy for diffusion

is between 1.53 eV and 1.68 eV. Such a large reduction in the peak energy

indicates that O diffusion occurs much more readily across a twin boundary

when compared to the bulk. However, diffusion of O is still slower than unim-

peded twin growth, suggesting that O interstitials can restrict twin growth

rate.
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Chapter 7: Recommendations for Future Work

Several interesting opportunities exist for future exploration of interaction stress

effects in α-β Ti alloys based on the results described in this work:

1. As plastic strain continues to increase, yield occurs in the β phase. The

interaction of α plasticity with β plasticity is not well modeled or understood.

Producing FEM models which include plastic response in both phases (e.g.

twinning in α and stress induced martensite in β) will support interrogation

of the system at large plastic strains.

2. A unique opportunity exists to apply atomistic modeling to the study of inter-

phase interaction stress. The current work provides a systematic quantification

of interaction stresses using continuum theory and modeling techniques; con-

ducting a similar study using atomistic models (particularly MEAM potential

models) would allow for local, atom-level redistribution of strains, development

of misfit dislocations, and a thorough investigation of dislocation-boundary in-

teractions without continuum theory assumptions.

Using the tools and techniques described here, continued work in MEAM poten-

tial development would be of great value to the materials science and engineering

community:
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1. The brute force MEAM fitting algorithm produced here is suitable for appli-

cation to other elements and systems. There are no published ternary MEAM

potentials for Ti-O, such as Ti-Al-O, Ti-V-O, Ti-Mo-O, or Ti-Mn-O. The prac-

tical relevance of these alloy systems suggests that they are worthy of further

study requiring new MEAM potentials.

Due to the vast landscape of possibilities, many interesting features of Ti-O inter-

action are left unexplored:

1. Generalized stacking fault energy (GSFE) curves for the (101̄2) plane are not

reported in the literature. Calculating the GSFE as a function of O concen-

tration would provide insight into the effects of interstitial impurities on the

shear process during twin growth.

2. While the (101̄2) twin nucleation and growth process has not been rigorously

defined, MEAM simulations of twinning dislocation motion under an applied

shear stress would provide the most direct insight into the effects of O intersti-

tials on twin growth in Ti. These calculations are extremely challenging and

should be approached with great care. The efficacy of the reported MEAM

potential in reproducing the correct dislocation characteristics must be deter-

mined, and careful consideration of calculation setting must occur in order to

model the real, physical system.

3. Experimental measurement of twin growth in Ti as a function of O concen-

tration would be of great value. For example, statistically significant mea-

surement of twin characteristics from samples of CP Ti grades 1 through 4

134



subjected to mechanical testing from creep through dynamic loading would

provide unique and currently unreported insight into the relationships between

twin growth and O interstitials.
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Appendix A: Appendix A: Calculation of Elastic Properties as Func-

tion of Orientation

Implementing orientation changes in the finite element models requires that we cal-

culate the correctly rotated elastic compliance tensors for each phase starting from

reported values of α phase compliance at room temperature (S11=0.958, S33=0.698,

S44=2.141, S12=-0.462, S13=-0.189, S66=2.841, x10-11 Pa) [35] and β phase com-

pliance at room temperature, in this case measured using samples of Ti-10Cr (wt%)

(S11=1.857, S44=2.3420, S12=-0.774, S66=2.342, x10-11 Pa) [19]. These compli-

ance tensors must be rotated to the (x′, y′, z′) coordinate system (Figure 3.3) for

each scenario to be input into ANSYS R©. Many aspects of this study – for example

rotating the elastic compliance tensors and resolving the stress onto different de-

formation systems – require tensor rotations between coordinate systems using the

corresponding direction cosines. However, the angles (and direction cosines) between

two points on the stereographic projection are difficult to determine when the points

are reported in different coordinate systems. To facilitate calculation of the direc-

tion cosines we perform three operations: (1) convert α indices from Miller-Bravais

(α-hex) to α-orthorhombic (α-orth), (2) convert β indices from Miller (β-mil) to

α-orth, and (3) calculate the α-orth indices of arbitrary points on the stereographic

136



projection.

A.1 Conversion of α-hex to α-orth

The Miller-Bravais four index notation for crystallographic planes and directions in

hexagonal crystal structures is a useful system that accurately portrays the sym-

metry in hexagonal materials. However, the use of a four index non-orthogonal

basis introduces significant complications where conventional tensor mathematics

and linear algebra are widely employed. To enable straightforward crystallographic

calculations in the hexagonal α-Ti phase, the four index Miller-Bravais indices must

be converted to a three index orthogonal system. To accomplish this, we use a tech-

nique outlined by Niewczas [123]. First, the α-hex indices are converted to three

index α rhombohedral (α-rhom) indices, which are non-orthogonal. Transforma-

tion from α-rhom to α-orth is then accomplished using the reported transformation

matrix, A,

A =


1 −1

2
0

0
√
3
2

0

0 0 c
a

 (A.1)

where a and c are the lattice parameters of the hexagonal material. Conver-

sion between a rhombohedral direction vector, R[UVW ], and an orthogonal direction

vector, R[xyz], is accomplished using the relationships

R[xyz] = AR[UVW ] (A.2)
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and

R[UVW ] = A−1R[xyz] (A.3)

Conversion between a rhombohedral plane normal, n(HKL), and an orthogonal

plane normal, n(xyz), is accomplished using the relationships

n[xyz] = n[HKL]A
−1 (A.4)

and

n[HKL] = n[xyz]A (A.5)

A.2 Conversion of β-mil to α-orth

The relative orientation of the β-phase and the α-phase in Ti is defined by the

(5̄140)α||(3̄34)β interface plane and a 〈12̄10〉(0001)α||〈11̄1〉(110)β Burgers orientation

relationship. This relationship dictates that any direction vector or plane-normal

vector in the β-phase is parallel to a unique vector in the α-phase. To enable easy

calculation of the angle between a β-phase direction and an α-phase direction it is

necessary to convert the β-phase vector into the α-orth system (this is equivalent

to finding the α-phase direction that is parallel to a given β-phase direction). We

accomplish this by calculating the direction cosines between the α-orth basis and

the β-mil basis, then using the cosines as the rotation tensor between the systems.

The components of the rotation tensor, Qij, are calculated as

Qij = αiβj (A.6)
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where αiβj is the cosine of the angle between the basis vectors αi and βj,

α1 = (21̄1̄0)α−hex = (100)α−orth

α2 = (011̄0)α−hex = (010)α−orth

α2 = (0001)α−hex = (001)α−orth

and

β1 = (100)β−mil

β2 = (010)β−mil

β3 = (001)β−mil

We calculated the angles between these vectors to generate the rotation tensor,

Q,

Q =


0.6449 −0.6449 −0.4099

−0.2899 0.2899 −0.9121

0.7071 0.7071 0

 (A.7)

which is then used to convert β − mil indices to α − orth indices using the

relationship

αorth = Qβmil (A.8)

A.3 Calculation of the Indices of an Arbitrary Plane

The analysis performed in this study includes arbitrary rotations of the crystal

orientation relative to the sample loading orientation; this is equivalent to moving

the position of the loading axis to an arbitrary point on the stereographic projection.
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The αorth indices of an arbitrary point are therefore necessary in order to perform

the rotations of the elastic compliance tensors and to calculate the resolved shear

stresses. For this study, the loading axis was rotated in 10◦ increments away from

the (5̄140)α−hex pole, then in 10◦ increments away from the (1̄32̄0)α−hex pole to

generate the set of loading axis locations shown in Figure 3.4.

The αorth indices of the orientations identified in Figure 3.4 were calculated

using the relationship between the dot product of two vectors, ~u and ~v , and the

angle between the vectors, namely

cos(θ) =
~u · ~v
|~u| |~v|

=
u1v1 + u2v2 + u3v3√

(u21 + u22 + u23)(v
2
1 + v22 + v23)

(A.9)

where θ is the angle between the vectors and ui and vj are the vector com-

ponents. A system of two equations is established for each arbitrary point using

the α − orth indices of the (5̄140)α−hex and (1̄32̄0)α−hex poles as the vectors ~u and

assigning the unknown indices of the arbitrary point to the vector ~v. The value

of θ from both the (5̄140)α−hex and (1̄32̄0)α−hex poles is known owing to the 10◦

increments of rotation employed here. While there are three components of ~v, a sys-

tem of two equations is sufficient if we consider the characteristics of the α (0001)

stereographic projection; for all points on the outer diameter of the stereographic

projection (which are at 90◦ from α (0001)) the value of v3 is 0. For all points inside

the outer diameter of the stereographic projection the value of v3 is something other

than zero. The actual values of the components vi are not important – only the

ratio between the components is significant when determining the indices of a point

on the stereographic projection. Therefore the value of v3 can be set to 1 for any
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point inside the outer diameter of the stereographic projection and 0 for any point

on the outside diameter. Hence the system of two equations using the angles from

the (5̄140)α−hex and (1̄32̄0)α−hex poles poles is sufficient to determine the vector ~v

and the indices of the arbitrary point. After calculating the indices for each of the

91 orientation scenarios the elastic compliance matrices and resolved stresses are

easily rotated to the required orientation as described above.
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Appendix B: Appendix B: Simulating Twinning in ANSYS

Deformation twinning occurs by an eigenstrain which is stress free in the absence

of a surrounding medium. However, real deformation twins grow while surrounded

by a matrix which constrains the twinning process and produces complicated stress

fields. Further, while real twins can take any number of complex shapes, they are

often modeled as an ellipsoidal volume. This approximation is used both because

the true shape of deformation twins is nearly ellipsoidal in many cases, and Eshelby

produced a convenient analytical solution for the stress field due to an ellipsoidal

volume experiencing a shear eigenstrain [54, 55]. However, Eshelby’s solution is only

valid for a twin deforming in an infinite matrix whereas twinning often occurs near

boundaries in a real microstructure. This section describes a method for simulating

twinning eigenstrain in ANSYS, as well as constructing a finite element model and

mesh of an ellipsoidal volume near a boundary.

B.1 Constructing and Meshing and Ellipsoidal Volume

The primary challenge in modeling and meshing an ellipsoidal volume in ANSYS is

to produce a twin volume that the ANSYS can successfully mesh without incurring

tremendous computational cost due to a very fine mesh. While other paths towards
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this outcome may exist, the following steps were applied in this study to produce a

working model and mesh. These instructions assume that the user is familiar with

the basics of modeling and meshing in ANSYS.

1. Select two element types in the preprocessor: the solid element for model-

ing (e.g. SOLID186) and the MESH200 element. In the MESH200 element

options, set the “Element shape and # of nodes K1” to “QUAD 8-NODE.”

2. Create a material model for the twin. First, input the elastic properties of

the twin (e.g. modulus and Poisson’s ratio). Second, add a “Thermal Expan-

sion” model, select “Secant Coefficient”, and select “Orthotropic.” Set the

reference temperature to 0 and create two temperature columns. In the first

temperature column, set the temperature to zero and set each of the secant

thermal expansion values to 0.0. In the second column, set the temperature

to 10, set ALPX to negative one-tenth of one-half of the twinning shear, set

ALPY to positive one-tenth of one-half of the twinning shear, and set ALPZ

to 0.0. The final result should appear as shown in Figure B.1. Note that in

this case the model simulates (101̄2) twinning which has a characteristic shear

of 0.174; one-tenth of one-half of this value is 0.0087. The purpose of this

step is to use the ANSYS thermal expansion functionality to model twinning.

Thermal expansion also occurs by an eigenstrain, and hence a carefully crafted

set of material characteristics can result in thermal expansion behavior that

produces a twinning shear eigenstrain.
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3. Create a new coordinate system using the CLOCAL command as follows:

“CLOCAL,20,0,0.0,0.0,0.0,45,0.0,0.0” then set the active coordinate system

back to Global Cartesian (menu → WorkPlane → Set Active WP to... →

Global Cartesian). As written here, the CLOCAL command assumes that the

global origin is at the center of the ellipsoid. Adjust the XL, YL, and ZL

values in the command to place the origin of the new coordinate system at the

center of the ellipsoid, if it is not the global origin.

4. Construct a sphere centered at the origin with a radius equal to the desired

length of the long axis for the ellipsoid.

5. Use the “scale” function to convert the sphere into an ellipsoid. For example,

to produce an oblate ellipsoid with an axial ratio of 1:10, scale the x distance

to 1, the y distance to 0.1, and the z distance to 1.

6. In order to facilitate meshing, it is necessary to slice the ellipsoid into sub-

volumes; in this study, slicing the ellipsoid into quarters was found to yield the

most computationally effective mesh. Create an area that passes through the

center of the ellipse in the x-y plane, then use the “VSBA” command to slice

the ellipse in half and delete the area. Repeat with an area passing through

the center of the ellipse in the z-y plane.

7. In order to facilitate meshing, it is also necessary to create a sub-volume in

the center of the ellipsoid. Create a cylindrical area that passes through the

center of the ellipsoid, then use the “VSBA” command to slice the ellipse and
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delete the cylindrical area. The final result of the slicing operations should

produce a set of volumes as shown in Figure B.2.

8. Construct a box around the ellipsoid. The purpose of this box is to generate

a region in the matrix, near the ellipsoid, that has a very fine mesh size; this

box will also make it easier to mesh the final model. The box should be larger

in all dimensions that the ellipsoid, however the extent of its size will depend

on the model at hand. For example, in this study an ellipsoid measuring 20 x

2 x 20 units was surrounded by a box measuring 42 x 4 x 42 units.

9. The box will be solid, overlapping with the volume of the ellipsoid. Subtract

the volume of the ellipsoid from the volume of the box in order to produce a

box with an ellipsoidal void using the “VSBV” command.

10. Construct the remaining volumes for the model around the ellipsoid and box.

11. Glue all of the model volumes together.

12. Select one of the cross-section areas of the sliced ellipse (Fig B.3), set the mesh

attributes to the MESH200 element, for the material model of the twin, in the

coordinate system created using the CLOCAL command (system number 20

in the above command). Select the outer ellipsoid volumes and set the mesh

attributes to the SOLID186 element for the material model of the twin in the

coordinate system created using the CLOCAL command from above.

13. Open the MeshTool, Turn off SmartSize meshing, set the Global mesh size to

a reasonable value, and mesh the cross-section area. Adjust the Global mesh
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Figure B.1: Screenshot of material property settings necessary to induce a shear

eigenstrain of 0.174 upon heating the material to a temperature of 10 (arbitrary

units).

size and re-mesh until you produce an acceptable mesh.

14. Sweep the area mesh through the first quarter of the ellipsoid using the

“VSWEEP” command. Repeat for each quarter of the ellipsoid.

15. Turn on SmartSize and mesh the center cylinder of the ellipsoid, adjusting the

size until a reasonable mesh is achieved.

16. Turn off SmartSize and mesh the box surrounding the ellipsoid using the same

mesh size as the ellipsoid.

17. Turn on SmartSize and mesh the remaining volumes in the model.

B.2 Simulating Twin Formation

After completing the model and mesh, the following steps will initiate a simulation of

twin deformation by imposing a shear eigenstrain in the twin volume while capturing
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Figure B.2: Result of modeling steps to produce an ellipsoidal volume that can be

meshed and simulated with reasonable computational effort.

Figure B.3: Area produced by modeling operations suitable for meshing with

MESH200 area elements. The resulting mesh should be swept around the short

axis of the ellipsoid.
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the influence of the surrounding volume on the twin.

1. Apply boundary conditions suitable for the particular scenario. In this study,

the following boundary conditions yielded FEM results very similar to Es-

helby’s solution for twinning in an infinite matrix: constrain nodes at x = 0

to 0 displacement in the x-direction, couple nodes at x = xmax to displace the

same amount in the x-direction, constrain nodes at y = 0 to 0 displacement

in the y-direction, couple nodes at y = ymax to displace the same amount in

the y-direction, constrain nodes at z = 0 to 0 displacement in the z-direction,

couple nodes at z = zmax to displace the same amount in the z-direction,

where xmax, ymax, and zmax are the boundaries opposite x = 0, y = 0, and

z = 0 boundaries.

2. In the solution menu, select Setting, Apply Loads, etc. Set the initial temper-

ature to 10. The actual temperature is arbitrary, but it must match the value

used in setting the thermal expansion properties.

3. Run the solution.
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Appendix C: Appendix C: Mathematical Details of the Modified Em-

bedded Atom Method

While the conceptual principles of the Modified Embedded Atom Method (MEAM)

are common, there are differences in the mathematical construction of various

MEAM implementations. He we provide the details of the MEAM implementa-

tion used in this study such that the reader can better understand and reproduce

our results. We have generally followed the technique as described by Lee et al.

[88, 89].

In the MEAM the total energy of a system is represented as the sum of energy

across all atoms, i, by

ETot =
∑
i

[Fi(ρi) + Φi(Rij)] (C.1)

where ρi is the charge density at the location of an atom and Rij is the distance

between atoms i and j; the energy of each atom is due to an embedding energy that

varies with charge density at an atom’s position, Fi(ρi), and an interatomic potential

that varies with the distance between neighboring atoms, Φi(Rij).

Charge density in the MEAM is computed in several steps. First, each atom

is surrounded by four components of atomic charge density ρα(h) for h = (0 − 3),
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described as a function of distance from the atom, R, by

ρα(h)(R) = exp

[
−β(h)

(
R

re
− 1

)]
(C.2)

where re is the equilibrium nearest neighbor distance in a reference structure

and the four β(h) parameters describe the decay of the electron density for increasing

R. The atomic electron densities from all atoms within a specific cutoff radius are

then combined into partial electron densities ρ
(h)
i for h = (0− 3) using the method

described in Lee [88]. Finally, the total charge density at atom i, ρ̄i, is calculated

as the combination of the partial charge densities by

ρ̄i = ρ
(0)
i G(Γ) (C.3)

where, from among several available methods, we use

G(Γ) =
2

1 + exp(−Γ)
(C.4)

and

Γ =
3∑

h=1

t
(h)
i

[
ρ
(h)
i

ρ
(0)
i

]2
(C.5)

where t
(h)
i are fitting constants. Finally, the embedding energy for each ion is

calculated from the charge density by

Fi(ρi) = AEc
ρ̄i
ρ̄0

ln
ρ̄i
ρ̄0

(C.6)

where A is a fitting parameter, Ec is the cohesive energy of the reference

structure, and ρ̄0 is a charge density scaling factor.

The interatomic potential in MEAM is given by considering the change in

system energy as a function of nearest neighbor distance, Rij. The change in energy
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is calculated using the universal equation of state for metals by Rose [124],

E(Rij) = −Ec(1 + a∗ + da∗3) exp(−a∗) (C.7)

where d is an adjustable parameter that we set to zero and

a∗ = α

(
Rij

re
− 1

)
(C.8)

The parameter α is a function of the bulk modulus, B, and the equilibrium

atomic volume, Ω, calculated as

α =

(
9BΩ

Ec

)1/2

(C.9)

We note for clarity that α in equation C.2 is unrelated to α in equations C.8

and C.9; we use the variable α in both cases for consistency with the standard

description of the MEAM.

Several parameters described here are only necessary for single-element MEAM

potentials; in this study we fit a new potential for the Ti-O system using a Ti

potential from Kim, Lee, and Baskes [91] and an O potential from Baskes [92].

Because we are using existing single-element potentials, we do not report new values

for the parameters β(h), t
(h)
i , and A, which can be found in the literature [91, 92];

however we include an explanation of these parameters here in order to provide

a more comprehensive description of the technique and to clarify the particular

implementation of the MEAM used in this study.
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