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The fair division of scarce resources among agents is a challenging issue across

a range of applications, especially when there is competition among agents. One

application of resource division is in Air Traffic Management (ATM). During severe

weather, when there is a reduction in en-route capacity, a specialist using the TSD

(Traffic Situation Display) identifies a problem area by creating a Flow Constrained

Area (FCA). The air traffic flow management specialists at the Air Traffic Control

System Command Center can enter the capacity of the FCA, expressed as the num-

ber of flights that can be managed per hour, and an Airspace Flow Program (AFP)

will be run. Thus, affected flights will be delayed or rerouted.

Fair allocation of available resources among airlines is very challenging when

there is a reduction in en-route resources. Each airline will typically place a different



relative weight on delays, rerouting and cancelation. Whereas some airlines would

like to preserve the on-time performance for certain flights and cancel or reroute

many other flights, other airlines prefer to have less rerouting and cancelations while

tolerating higher total delay. Therefore, fairness concerns as well as the ability to

respond to different user priorities have played an important role throughout the

development of allocation procedures, and continue to be an essential factor. The

notion of fairness in air traffic management is largely left implicit and there is no

well-defined set of principles that defines what constitutes a fair distribution of

resources.

This dissertation is motivated by the fairness issues that arise in the resource

allocation procedures that have been introduced under Collaborative Decision Mak-

ing (CDM). Fair rationing and allocation of available en-route time slots are two

major challenges that we address in this research.

The first challenge, fair rationing, is about how to compute a fair share of

available resources among agents, when the available resources fall below the total

demand. Since the demand, (flights), are time dependent, we introduce a new

rationing method that includes the time dependency of demand. The new procedure

gives every flight that is disrupted by an AFP a share of available resources. This

is in contrast to Ration-By-Schedule (RBS), the allocation method currently in use,

where later scheduled flights do not receive any slots. We will discuss and prove the

fairness properties of our novel rationing procedure.

The second challenge, allocation of en-route resources, is about how to allocate

resources among competitive agents, (flight operators), when each agent has different



preferences over resources, (time slots). We design four randomized procedures

for allocating scarce resources when the airlines’ preferences are included. These

procedures use an exogenous fair share, which can be computed using the method

described above, as a fairness standard for the allocation of slots among airlines.

The first two procedures, Preference Based Proportional Random Allocation

(PBPRA) and Modified-PBPRA, implicity assume equal weight for each time slot.

Compared to RBS, PBPRA and M-PBPRA reduce the total internal cost of airlines

and also assign each airline a number of slots close (in expectation) to their fair

share. The fairness, efficiency and incentive properties of PBPRA and M-PBPRA

are evaluated.

The value (or cost of delay) an airline associates with a particular flight may

vary substantially from flight to flight. Airlines who wish to receive priority for

certain flights usually are willing to pay more for specific time slots. To address the

need to express varying priorities, we propose two procedures, Dual Price Propor-

tional Random Allocation (DP-PRA) and Modified-DP-PRA (MDP-PRA) , that

assign dual prices to resources, i.e. time slots, in order to capture the airlines’ pref-

erences over delays, rerouting and cancelations. We explore the fairness, efficiency

and incentive properties of DP-PRA and MDP-PRA.
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Chapter 1

Introduction

The air transportation system in the United States is one of the most complex

logistical systems in the world. Each day, there are approximately 60,000 flights of

commercial, military and general aviation aircraft, and as many as 10,000 aircraft

may simultaneously occupy the airspace. Current projections expect air traffic to

grow at annual rate of 4% to 5% over the next 15 years. Besides the sheer volume,

the air transportation system gets more stressed by significant variation in airspace

capacity, due to factors such as fluctuating weather conditions and equipment out-

ages. Therefore, the coordination of air traffic requires a multitude of processes and

involves large number of stake holders.

To manage airspace congestion better, the Federal Aviation Administration

(FAA) has implemented a number of initiatives such as Miles-in-Trail(MIT), Ground

Delay Program(GDP) and Metering . However, when there is an en-route capacity

reduction due to severe weather, none of these initiatives are sufficient to address

extended capacity reductions in the airspace, and the need for additional tool has

been recognized. In the spring of 2006, the FAA proposed a new initiative called

the Airspace Flow Program (AFP) to allow more efficient, effective, equitable, and

predictable management of airborne traffic in congested airspace.

However, there are several potential weaknesses with the way traffic is handled
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today. Several Traffic Management Initiatives (TMI’s) can create excessive delay.

For example, Miles-In-Trail restrictions can propagate, resulting in longer restric-

tions; and rerouting is manually intensive, consuming controller time and attention

while giving little consideration to NAS customer input. To address these problems,

the Collaborative Decision Making (CDM) community has recognized a more col-

laborative and dynamic capability. The CDM Future Concepts Team (FCT) has

focused on the development of two concepts over the past several years to address

these needs; Integrated Collaborative Rerouting (ICR) and System Enhancements

for Versatile Electronic Negotiation (SEVEN). ICR is an enhanced, more collabo-

rative version of rerouting that involves customers early in the process and allows

them to submit preferences for reroutes. SEVEN is a longer-term concept that al-

lows much more collaboration between FAA traffic managers and NAS customers.

SEVEN extends and makes more robust the current practice of AFP’s while retain-

ing the present capabilities.

The typical approach to managing airspace congestion today can be described

as follows. When there is a reduction in enroute capacity due to sever weather, a

traffic management specialist using the TSD (Traffic Situation Display), can identify

a problem area by creating a Flow Constrained Area (FCA). The TFM specialists

at the Air Route Traffic Control Center (ATCSCC) can enter the capacity of the

FCA, expressed as the number of flights that can be managed per hour, and Flight

Schedule Monitor (FSM) will then assign each flight a controlled departure time

that will provide a smooth managed flow of traffic to the FCA. These departure

times are sent to the customers for their planning and to the towers at the depar-
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ture airports for enforcement. The AFP uses GDP like procedures such as Ration

By Schedule(RBS), which is based on the first-scheduled-first-served principle, for

resource rationing. However, GDP procedures implicitly assume all flights must be

assigned an arrival slot. On the other hand, in the AFP or SEVEN setting, all

flights on the demand list need not be granted access to the enroute resource.

There are important differences between resource allocation for GDPs and

enroute resource allocation. In the GDP setting, demand is established based on the

set of flights scheduled to arrive at the GDP airport. Since the authority to cancel

a flight rests with the flight operator and not the FAA, GDP planning procedures

must allocate a slot to all flights within the GDP demand list. Of course, in severe

situations, the FAA will be forced to assign extreme flight delays, which may de facto

necessitate the cancellation of certain flights. However, GDP procedures implicitly

assume all flights must be assigned an arrival slot. On the other hand,in the AFP

or SEVEN setting, all flights on the demand list need not be granted access to the

enroute resource. The flight operator has the prerogative to cancel flights not given

access or reroute such flights around the restricted airspace. Thus, enroute resource

allocation decision models must both determine which flights gain access and assign

an access time (slot) for those flights that do gain access.

1.1 Motivation

Fair allocation of available resources among airlines is very challenging when

there is a reduction in en-route resources. Fairness concerns have played an im-
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portant role throughout the development of allocation procedures, and continue to

be an essential factor whenever extensions or modifications to these procedures are

proposed.

Each airline will typically place a different relative weight on delays, rerouting

and cancellation. Whereas some airlines would like to preserve the on-time perfor-

mance for certain flights and cancel or reroute other flights, other airlines prefer to

have less rerouting and cancellation while tolerating higher total delay.

Using fairness principles as a basis for allocating scarce resources provides

our research with a novel focus. In fact, some proposals address the rationing of

airport arrival capacity in the long run. Using methods ranging from auctions [52]

and congestion pricing [50] to bargaining schemes [4]. The allocation of slots under

CDM is different, in that slots must be assigned on a daily basis due to fluctuation

in airport or en-route capacity. The dynamic nature of the allocation process makes

it more complicated and fairness plays an important role in this environment.

Our research focuses on the development of new fair enroute resource rationing

methods with specific emphasis on mechanisms for airspace flow programs. Our

objective is to include airline preferences for trading-off delay and rerouting.

1.2 Research Contribution and Outline

Chapter 2 presents an overview of air traffic management, especially manage-

ment of daily operations. We also explain the current air traffic flow management

initiatives employed by the FAA. The new concept System Enhancement for Ver-

4



satile Electronic Negotiation (SEVEN) will be explained. Both Airspace Flow Pro-

grams and SEVEN represent potential application domains for our research. We

present an overview of slot allocation methods and discuss how fairness and user

preferences play an important role in resource allocation.

Chapter 3 introduces a new way for fair rationing of resources, which in our

context is the problem of how to compute a fair share of available resources among

agents, when the available resources fall below the total demand. The new rationing

is designed to consider time-based resources, time slots, and time-dependent de-

mand, flights. The proposed rationing procedure is based on Proportional Random

Assignment. We adapted fairness concepts from the economics literature as a basis

of our rationing procedures. The key advantage of our proposed rationing algorithm

is that it considers all flights disrupted by an AFP, which means all flights receive a

positive share of available slots. However, it should be noted that the current policy

used in practice, Ration-By-Schedule (RBS), provides a slot assignment only to the

earliest disrupted flights so that later scheduled flights do not receive any slots in

an AFP. We develop the new rationing algorithm, and also we present experimental

results to compare it vs. RBS. Additionally, in order to investigate the fairness of

the proposed rationing algorithm, we analytically prove fairness properties such as

impartiality, consistency, equal treatment of equals, and demand monotonicity.

Chapter 4 introduces novel methods for allocation of limited resources, which

in our context is the problem of how to allocate resources among competitive agents,

(flight operators), when each agent, (airline), has a different preference over re-

sources, (time slots). We design two randomized methods for allocating scarce

5



resources when the airlines’ preferences are included. They exploit an exogenous

fair share, which can be computed using the method described in the chapter 3, as

a fairness standard to drive the allocation. Our randomized procedures take into

account airline preference information, and they implicity assign equal weight to

each time slot. Key advantages of our algorithms are described: (1) they guarantee

that the total number of slots any carrier receives is between the floor and ceiling of

their fair share; (2) they assign each carrier a number of slots close (in expectation)

to their fair share; (3) they reduce the total internal cost of each carrier compared to

the existing resource allocation procedure, RBS. Our two proposed algorithms are

compared experimentally vs. each other and their fairness, efficiency and incentive

properties are analytically derived. We discuss the shortcomings of RBS, and we

compare the performance of our algorithms with RBS based on data derived from

a real application.

Chapter 5 defines and analysis two new alternative randomized allocation algo-

rithms that employ richer agent preference information. The value (or cost of delay)

an airline associates with a particular flight may vary substantially from flight to

flight. Airlines who wish to receive priority for certain flights usually are willing to

pay more for specific time slots. To accommodate richer carrier preferences so that

airlines can express the relative importance of delays, rerouting and cancelations,

new concepts of slot values and dual pricing are introduced. A key advantage of

these methods is the sophistication that they provide to carriers for capturing their

preferred slots. This provides flexibility to carriers to achieve their goals; and also

allows carriers to receive “premium” slots for an extra “charge”. The two designed

6



algorithms are compared vs. each other and their fairness, efficiency and incentive

properties are analytically derived. We analyze the performance of the new methods

and compare them with RBS based on based on data derived from a real application.

Chapter 6 provides conclusions and discusses future research areas.
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Chapter 2

Air Traffic Management

The air transportation system in the United States is one of the most complex

logistical systems in the world. Each day, there are approximately 60,000 flights of

commercial, military and general aviation aircraft, and as many as 10,000 aircraft

may simultaneously occupy the airspace. Besides the sheer volume, the air trans-

portation system gets more stressed by significant variation in airspace capacity, due

to factors such as fluctuating weather conditions and equipment outages. Therefore,

the coordination of air traffic requires a multitude of processes and involves large

number of stake holders.

This chapter presents a general overview of Air Traffic Management with par-

ticular focus on Air Traffic Flow Management (ATFM) initiatives. We explain at a

high level the characteristics of various initiatives. Next, we describe the importance

of fair allocation of scarce resources in ATFM [8]. Finally, we explain the motivation

behind this research.

2.1 Introduction

Air Traffic Management (ATM) consists of two major components. Air Traf-

fic Flow Management (ATFM) and Air Traffic Control (ATC). ATC consists of

processes that provide tactical separation services, that is, real-time separation pro-
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cedures for collision detection and avoidance. Thus, ATC primarily addresses im-

mediate safety concerns of airborne flights. On the other hand, Air Traffic Flow

Management (ATFM) includes all activities related to the management of the flow

of aircraft and related system resources from “block to block”, including strategic

system management of airport arrival and departure capacities, tactical enroute flow

management, near-terminal area flow management, and ground traffic flow manage-

ment. As such, ATC actions are of a more “microscopic” nature and have a very

short time horizon. The aim of ATFM is to resolve a capacity imbalances by ad-

justing aggregate traffic flows to match scarce resources.

Odoni [49] classified the Air Traffic Flow Management into three different

category: Long, Medium and Short-term:

• Long-Term approaches are mainly focused on increasing the capacity. This

can be done by constructing a new airport or a runway at an existing airports.

Such initiatives are usually very costly and subject to strict environmental

regulations. Thus they may be difficult to implement.

• Medium-Term approaches are more administrative or economic and try to

alleviate congestion by modifying spatial or temporal traffic patterns. For in-

stance, at some airports flight schedules are coordinated bi-annually according

to IATA guidelines [37]. Recent proposal suggests the use of slot auctions and

congestion pricing [49].

• Short-Term approaches mainly try to make adjustments to air traffic flows

to match demand with available capacity. Such short-term plans usually are

9



performed a few hours in advance of predictable disruptions (usually caused

by bad weather).

In the next section, we review the ATFM short-term initiatives. Through this

dissertation, we use ATFM to refer to only short-term initiatives.

2.2 Air Traffic Flow Management Initiatives

The primary task of the Federal Aviation Administration (FAA), the U.S. Air

Navigator Service produce, is to enforce the proper separation requirement in the

controlled airspace. The United States air space has been divided to 22 areas. The

Air Route Traffic Control Centers (ARTCCs) are responsible for aircraft separation

within each area. Each ARTCC is divided to 20 to 80 smaller areas called sectors.

Air Traffic Controllers (ATCs) guide aircrafts from one sector to another until they

arrive within almost 200 miles from their destination airports. A controller is only

responsible for the movement of aircraft within a specific sector and decisions are

based on nearly real-time flight information when the flight enters the sector. There

is coordination between controllers at adjacent sectors by transferring the responsi-

bility for an aircraft when it passes sector boundaries. Finally, the control of aircraft

is assumed by Terminal Radar Approach Control Facilities (TRACONs). The air-

port towers control aircraft while they taxi to and from runways and during takeoffs

and landings.

The FAA uses the Enhanced Traffic Management System (ETMS) at the Air

Traffic Control System Command Center (ATCSCC) and major Terminal Radar

10



Approach Control (TRACON) facilities to manage the flow of air traffic within the

National Airspace System (NAS). Other organizations (e.g., the airlines, Depart-

ment of Defense, NASA, and international sites) also have access to the ETMS

software and/or data. The ETMS provides Traffic Management Specialists with

tools such as Traffic Situation Display (TSD), and traffic counts for airspace sec-

tors, airports, and fixes. The ATCSCC continuously monitors current and projected

demand within the NAS. Whenever it is predicted that demand will exceed capacity

limits for at least a 15 minutes duration, FAA regulation mandates a response. In

that case, the ARTSCC generates and implements strategies to resolve the prob-

lem. The ATFM procedures that are used most often are ground delay programs or

ground stops , flow constraint area/ flow evaluation area, metering, rerouting and

recently air space flow programs(AFP’s); there is also a new concept called Sys-

tem Enhancements for Versatile Electronic Negotiation (SEVEN) . We give a brief

introduction to these initiatives in the following sections.

2.2.1 Ground Delay Program

Each airport is constrained by the rate at which they can land arriving air-

crafts. Generally, when airports operate under normal circumstances, the scheduled

aircraft flow does not exceed the arrival rate. But circumstances, most usually

poor weather conditions, can lower the arrival rate so that the expected number of

arriving aircrafts exceeds the capacity of the airport. In these circumstances, the

ATCSCC reacts by issuing a Ground Delay Program (GDP). A GDP issues depar-
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ture delay to aircraft expected to arrive at the constrained airport. These ground

delays are less costly and safer than airborne delays that would result without such

actions.

Flights destined for the affected airport are issued Controlled Departure Times

(CDT) at their points of departure. Flights that have been issued CDTs are not

permitted to depart until their Controlled Departure Times. These CDTs are cal-

culated in such a way as to meter the rate that traffic arrives at the affected airport,

ensuring that demand is equal to the acceptance rate. The length of delays that

result from the implementation of a GDP is a function of two factors: how much

greater than the acceptance rate the original demand was, and for what length of

time the original demand was expected to exceed the acceptance rate.

A Ground Stop (GS) is closely related to a GDP. When there is an unexpected

problem at an airport, e.g. a runway closure, the ATCSCC will stop all inbound

traffic , i.e. indefinitely delay their departure, to reduce traffic flows. When ground

stops become excessive or delay can be foreseen, a regular GDP often follows a

ground stop.

2.2.2 Flow Constraint Area/ Flow Evaluation Area

The Traffic Situation Display (TSD) and the Common Constraint Situation

Display (CCSD) provide traffic managers and flight dispatchers with the ability to

define and display FEAs and/or FCAs. An FEA/FCA is a user-defined volume of

airspace along with associated flight lists and filters. FEAs and FCAs are used to
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show areas where the traffic flow should be evaluated or where initiatives should

be taken due to severe weather or volume constraints. Traffic managers or flight

dispatchers define a geographic area of an FEA or an FCA by drawing a polygon

or a line on the display and defining the ceiling and floor of the FEA/FCA using

a dialog box. Alternatively, an FEA/FCA tool user can designate a NAS element

as an FEA/FCA (e.g., a fix, an airport, a sector, or a TRACON). The tool user

also defines criteria for filtering the flights that are predicted to intersect the drawn

FEA/FCA (e.g., by airports, by center traversed, or by departure or arrival points).

The FEA/FCA tool user also defines a time period for the FEA/FCA (maximum of

23 hours). It is useful here to distinguish FEAs from FCAs. A Flow Evaluation Area

(FEA) is a two dimensional line or three-dimensional volume of airspace, along with

filters and time boundaries, used to identify flights associated with a potential (or

actual) constraint. FEAs can be built by Traffic Management Coordinators (TMCs)

at Traffic Management Units (TMUs), Traffic Management Specialists (TMSs) at

the Air Traffic Control System Command Center (ATCSCC), or by flight dispatchers

at various flight operations centers (using CCSD). A Flow Constrained Area (FCA)

is an FEA subject to an actual constraint. FCAs are built by the ATCSCC and

require a traffic management initiative (TMI); for example, a reroute. Any FEA

tool user can create “private” FEAs for viewing on their workstation to monitor

traffic flows and evolving traffic flow situations. If it is determined that a develop-

ing constraint situation may impact any system stakeholder, an FEA/FCA tool user

can create a “Shared FEA” in order to exchange information and facilitate collab-

oration with other system stakeholders. At this point, some voluntary action may
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be suggested and taken by stakeholders to help avoid a more drastic requirement or

reroute initiative. The idea is to solicit “Operational Intent” information in order

for Traffic Managers to assess whether more restrictive initiatives are warranted.

Intent data can be submitted by NAS customers through the CCSD. [33]

2.2.3 Metering and Rerouting

Metering operations are mostly used in the context of en route Traffic Flow

Management (TFM). There are two kinds of metering: the first, time-based me-

tering, which controls the time at which an aircraft is to pass over the certain

geographical point. Second, distance-based metering, which is better known as

“Miles-in-Trail”(MIT) restriction. A MIT specifies a minimum separation (in miles)

between aircraft moving across an airspace way point.

The primary use of time-based metering is to regulate flows into the terminal

area of an airport. Here, time-based metering efficiently spaces aircraft for final

approach. On the other hand, MIT restrictions are typically into a congested portion

of enroute airspace (or terminal area) [35].

When bad weather is forecast to impact accessibility to a certain region of

airspace, rerouting can be used as an option. Severe Weather Avoidance Procedures

(SWAP) are applied to deal with such conditions. SWAP plans usually have a

major impact on air traffic, including metering restrictions and/or GDP’s along

with rerouting and/or AFP.
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2.2.4 Airspace Flow Programs

When there is a capacity reduction due to the severe weather, rerouting flights

is not sufficient to address extended capacity reductions in the airspace, and the

need for additional tools has long been recognized. To meet that need the FAA

introduced a new capability in the spring of 2006. The Airspace Flow Program

(AFP) combines the power of GDP’s and FCAs to allow more efficient, effective,

equitable, and predictable management of airborne traffic in congested airspace.

When TFM specialists at the ATCSCC, in consultation with FAA field man-

agers and customer representatives, decide that the weather conditions are appro-

priate they can plan and deploy an AFP. The first step is to use the Traffic Situation

Display (TSD) to examine predicted weather and traffic patterns and identify the

problem area by creating an FCA.

The Enhanced Traffic Management System (ETMS) takes the FCA descrip-

tion and produces a list of the flights that are expected to pass through the FCA and

the time they are expected to enter. This list, updated with fresh information every

five minutes, is sent to the Flight Schedule Monitor (FSM), which displays the pro-

jected demand in a number of formats designed to support effective planning. FSM

creates a common situational awareness among all users and service providers in the

National Airspace System. All parties need to be aware of NAS constraints in order

to make collaborative air traffic decisions. It is designed to effectively interact with

existing FAA systems, FSM displays the Aggregate Demand List (ADL) informa-

tion for both airport and airspace data elements for its users, which means everyone
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is looking at the same picture.. The TFM specialists at the ATCSCC can enter the

capacity of the FCA, expressed as the number of flights that can be managed per

hour, and FSM will then assign each flight a controlled departure time so that the

flow into the FCA does not exceed the declared capacity. These departure times are

sent to the customers for flight planning and to the towers at the departure airports

for enforcement.

The principal goal for the initial deployment of the AFP program is to bet-

ter manage en route traffic during severe weather events. Compared to previous

approaches, AFP’s reduce unnecessary delays while providing better control of de-

mand, more equity, and more flexibility for customers [43].

2.2.5 System Enhancements for Versatile Electronic Negotiation

As we mentioned in previous sections, the FAA has implemented a number of

initiatives to manage airspace congestion better. However, a remaining shortcoming

is the inability of carriers to express preferences based on their business needs. To

manage en route congestion better and enable National Airspace System (NAS)

customers to submit sets of alternative trajectory options for their flights, the CDM

Future Concepts Team (FCT) has focused on the development of two concepts over

the past several years to address these needs; Integrated Collaborative Rerouting

(ICR) and System Enhancements for Versatile Electronic Negotiation (SEVEN).

ICR is an enhanced, more collaborative version of rerouting that involves cus-

tomers early in the process and allows them to submit preferences for reroutes.
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Initial ICR capabilities were deployed with Enhanced Traffic Management System

(ETMS) version 8.3 (Fall 2006). SEVEN is a longer-term concept that allows much

more collaboration between FAA traffic managers and NAS customers.

There are two main enabling concepts in SEVEN:

1. Customers can submit prioritized lists of route options

2. Traffic managers create Interactive Dynamic Flight Lists (IDFL’s) that allow

them to monitor key system resources

The first concept is extremely flexible, customers can include any option they

like and can submit this list at any time. They can submit not only different physical

routes, but different temporal routes as well. That is, they can adjust the times they

are willing to fly certain routes or submit the same route flown at different times as

options. SEVEN adds a default last choice option of ground delay. Thus there are

always options in the system, and even without participation from the customers

SEVEN falls back to an AFP-like Traffic Management Initiative.

The second main concept in SEVEN is its instrument control mechanism.

Traffic managers create Interactive Dynamic Flight Lists (IDFL’s) that allow them

to monitor key system resources and adjust the demand on these resources quickly as

conditions change. They do this by choosing flights to allow or disallow in the FCA,

rather than manually rerouting flights. The IDFL provides an interface from which

to do this, either by choosing flights manually or by automatically suggesting flights

for the traffic manager. This functionality is combined with monitoring capability,

condensing these traffic management tools into a single interface. This ability to
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monitor and alter demand without worrying about individual reroutes gives traffic

managers finer and more efficient control over resource allocation [34].

The basic steps of SEVEN are explained as follows. These are not necessarily

sequential steps, but rather elements of the concept which may occur at different

times during operation.

1. Customers submit prioritized lists of route options. They submit this

list to the Traffic Management System (TMS). If they so choose, they may

edit the list at any time, because of changing weather conditions or changing

priorities. Potentially, customers will develop their own software to automat-

ically create the lists. Currently, customers can file a single route and they

have no control over weather or not it is accepted. If a situation arises in

which they cannot fly their current route, not only do they have little input

into their reroutes, but the burden of finding and choosing reroute options is

on the traffic manager.

2. Traffic managers identify areas of interest by creating IDFL’s. When

a region of airspace might become congested, traffic managers at the ARTCC

Traffic Management Unit (TMU), in collaboration with the ATCSCC, estab-

lish an FEA or FCA. Traffic managers share the FEA/FCA with the cus-

tomers, along with any additional constraints, remarks, and route guidance.

Once the constrained area is defined, traffic managers generate an IDFL iden-

tifying the flights with current routes that take them through the constrained

area. IDFL’s are dynamic and updated as changes occur. The IDFL dis-
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plays the pertinent data about these flights, including ACID (Aircraft ID),

current state, origin, destination, entry and exit time, altitude, and any other

data deemed necessary. The IDFL updates dynamically to reflect the changes

made either by the traffic manager or by the customers. As route options are

adjusted, flights will appear on or disappear from the list in real time. Once

the IDFL is created, traffic managers monitor the demand and the next step

is enacted.

3. Customers receive notification for flights on the IDFL. Once traffic

managers generate or share an IDFL, dispatchers are notified that their flights

are to be subject to the constraint associated with the IDFL. If a customer

has not loaded any options, they are notified that they are at risk of taking

ground delay if they are moved. This message also notifies dispatchers of the

potential ground delay time.

4. Traffic managers dynamically adjust demand up or down and choose

flights to move on or off the IDFL. Traffic managers have the ability

to adjust the demand on a constrained area. The capacity is dynamic, and

can change over time. Once the capacity is determined, the traffic managers

meet the capacity by checking or unchecking flights to allow or disallow them

from the constrained area, using their own operational knowledge to deter-

mine those flights which would have the least impact, be least affected by

their moving, or other criteria determined to be best. Equity and efficiency

concerns play a large role in this decision. Once a flight is removed from the
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IDFL, it is moved to its highest priority option that does not intersect the

constraint. In addition to manually selecting flights, IDFLs have a built in

function which traffic managers can use to adjust demand. Traffic managers

specify a reduction/expansion in demand to match capacity and rationing

algorithms automatically choose flights to remove from the IDFL. Once the

autosuggest function produces a recommended solution, traffic managers can

preview the solution and accept, reject, or fine tune it.

5. Automation assigns reroutes or ground delay for flights selected to

move. Once traffic managers select flights for removal, each moved flight is

automatically rerouted to its highest priority option which takes it out of the

constrained area (which may be ground delay). The system retains the route

option list, and customers can still update the list.

6. Traffic manages and ATCSCC monitor multiple constraints. In some

cases, such as a widespread weather pattern, traffic managers must create mul-

tiple IDFL’s simultaneously. In such situations, there may be IDFL’s interact-

ing or covering multiple sectors. These would require coordination amongst the

traffic managers responsible, as well as the ATCSCC. The ATCSCC special-

ists would monitor and control interactions amongst IDFL’s, detect conflicts

and redundant constraints, assign control in cases where an IDFL covered an

area spanning multiple centers or sectors, and any other coordination needed

amongst ARTCC’s.

SEVEN extends and makes more robust the current practice of AFPs while
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retaining the present capabilities. In the absence of user submitted routing options,

SEVEN emulates an AFP, but with options, SEVEN opens up a far more flexible

set of capabilities that automatically work around constraints to maximize flow and

minimize reaction time. In the IDFL, traffic managers are given a powerful tool to

control the situation as much or as little as is necessary. This control is exerted

without introducing excessive complexity into the controller environment. One of

the most significant benefits of SEVEN is the ability to recapture system capacity

that is currently lost when severe weather (or other capacity limiting factors) does

not materialize as predicted. Traffic managers can handle uncertainty in both ca-

pacity and demand more easily as SEVEN makes it easy to quickly adapt to the

situation as it unfolds [34].

2.2.6 Interaction

While the FAA is concerned about aggregate flows and capacity limits, the

ultimate goal of airlines is to maintain their published flight schedule, which reflects

its competitive strategy. Typically, Airlines coordinate their daily operation at cen-

tralized Airline Operational Control Centers (AOC’s), which interact with airports,

maintenance stations and pilots. Airline operations require a high degree of co-

ordination, because of potential propagation effects of flight delays. This presents

a challenge when airlines face irregular operations, usually caused by the need to

respond to ATFM restrictions imposed by the FAA. The important functions that

need to be performed by AOC’s are schedule adjustment, flight planning and dis-
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patch and flight monitoring ([1],[35]).

Any unpredicted events, such as delay or mechanical problems, may cause

flight schedule disruption. To prevent the cascading of delays, the AOC’s will adjust

operations to return to more balanced conditions. This may be done by delaying a

single flight, relocating the resources (aircraft, crew, airport arrival slots), canceling

flights or creating flights to balance the schedule. Balancing the schedule may be

interpreted differently by individual airlines: one airline’s objective might be the

ability to back to the normal schedule be the next day, while another might keep as

many of its schedule flights as possible [35].

To minimize the cost, one important aspect of airline operations is to determine

flight route and payload. Aircraft type, winds, complex trade-offs among speed,

altitude, payload and fuel load, all will affect the choice of route.

The AOC’s monitor all aspect of flights in progress, such as ensuring flights

stay within safe and legal limits, assessing weather conditions (en route and arrival

airport), and helping crews in solving problems that may arise.

It is necessary to have significant coordination between a number of stake

holders on the side of the FAA and the airlines. On the FAA’s side, the ATC-

SCC predicts aggregate traffic flows and monitors current and projected capacity

limits and demands. The ATCSCC usually initiates GDP’s, SWAP’s and AFP’s

and coordinates these ATFM initiatives with traffic management units at various

Air Traffic Control Centers (ARTCCs), Terminal Radar Approach Control facilities

(TRACON’s) and towers. Also, when the ATCSCC predicts a sustained period of

congestion, it responds to it with ATFM initiative, which is communicated to airlines
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AOC’s. Typically, these plans are formulated two to four hours in advance. The

ARTCC’s, TRANCON’s and Towers also interact to coordinate air traffic between

their regions. They delegate responsibilities to the individual air traffic controllers.

The controllers at adjacent sectors interact to transfer the control of aircraft. On

the airlines’ side, the AOC’s primary task is to coordinate the daily operations,

such as gate assignment, maintenance, and flight dispatch. They employ constant

communication with pilots to control and monitor the progress of individual flights.

2.3 Decentralized Air Traffic Management

As air traffic increases, significant change in ATM will be required. Airlines

often believe that the restrictions implemented by the FAA are overly severe, so that

unnecessary delays, congestion, and costs for the airlines result. The traditional

approach largely followed is a central planning paradigm, in which users have to

adhere to ATC decisions. The national air transportation system is moving toward

an unprecedented, paradigm-shifting change. The next 10 years promise to be a

pivotal time in the history of air transportation that will change the face of aviation.

It is called the Next Generation Air Transportation System NextGen for short and

it will forever redefine the management of national airspace system (NAS). To meet

future demand, there must be a comprehensive system upgrade that will allow a

fundamental change in the way that air traffic is managed. NextGen will enable

critical transitions:

• From ground based to satellite based navigation and surveillance
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• From voice communications to digital data exchange

• From a disparate and fragmented weather forecast delivery system to a system

that uses a single, authoritative source

• From operations limited by visibility to sustaining the pace of operations even

when impacted by adverse weather or difficult terrain.

Most significant, however, is the one transition that makes all the others pos-

sible moving from disconnected and incompatible information systems to a scalable,

network centric architecture. This will ensure that everyone using the system has

easy access to the same information at the same time, when needed. NextGen intro-

duces new analytic tools that more pro actively detect adverse trends and identify

precursors. These tools will allow to act on potential problems before they take

shape. In addition, airports will benefit from increased safety, better use of existing

capacity, greater design flexibility, and reduced environmental impacts. New tech-

nologies, standards, and procedures, in addition to new airside infrastructure, will

allow airports to realize the benefits of NextGen [32].

2.3.1 Collaborative Decision Making

Collaborative Decision Making (CDM) was initially conceived in the mid 1990s

within the FAA Airline Data Exchange (FADE) project. Under CDM, the AOC’s

have a significant decision making responsibilities about resource allocation and

traffic flow management (for more information about CDM see [9], [11], [73]). The

initial implementation of CDM, was focused on the development of new operational
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procedures and decision support tools for implementing and managing GDP’s.

2.3.1.1 GDP’s under CDM

The process of issuing GDP’s had existed before the Collaborative Decision

Making project got started. But the old system had many short comings that led

to inefficiencies in the use of the valuable arrival resources.

Under the old model for running a GDP, called Grover Jack, flights were allo-

cated slots by a priority based on their latest estimated time of arrival. This implied

that if an airline reported a delay, then that airline would be a larger total ground

delay than the airline did not share the information. This concept was referred to

as the “double penalty”. In addition, any canceled flights were not allocated arrival

slots. It was in the airlines’ best interests not to report a cancellation, wait until

the GDP was issued, then cancel the flight and substitute another flight up to the

vacant slot. To address this problem, a new algorithm was formulated called Ra-

tion By Schedule (RBS). Flights are now prioritized based on their original schedule

times, even if they are canceled or delayed. If a delayed flight is given an arrival slot

earlier that its delayed time, the airlines can use the substitution process to swap

another of their flights into the earlier slot. Also, RBD is a new proposed algorithm

[12] that prioritized flights based on their distance to the GDP airport.

Another problem was that very often valuable arrival slots were going unused

occasionally during a GDP. An airline had to cancel a flight but was unable to sub-

stitute another of its flights into the vacant slot. There had been no mechanism to
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fill in these holes in the schedule. This has been addressed by the Compression al-

gorithm. This is a rule-based algorithm that expands the idea of substitution across

airlines. The algorithm processes each slot, which is open due to flight cancellation

or delay. It first tries to find a flight operated by the same carrier to move up into

the vacated slot. If one does not exist, the slot is then opened to the next available

flight that can move up, regardless of which carrier operate the flight. The process

continues, meanwhile always checking after each slot move to see whether the airline

that owns the slot can now take the advantage of it. Compression results in reduc-

tion or no change to each flight’s delay. This has proved to be a win-win concepts

for both the FAA and airlines [10, 11, 70, 71].

The Ground Holding Problem (GHP) was first introduced in scientific litera-

ture by Odoni [49]. The GHP in its basic version [60] requires additional assumptions

such as, discrete time horizon, deterministic demand and deterministic capacity. At

the beginning of the planning horizon we need, a fixed and finite time period which

has been discretized into contiguous time periods (slots), a complete list of flights

bound to arrive at the congested airport and the airport arrival capacity in each

time period. If F , S are the set of flights and the set of available slots, xfs ∈ {0, 1}

for f ∈ F and s ∈ S is the integer decision variable for assigning a slots to a flight.

Cf (d) is cost of assigning delay d to flight f , the capacity do each slot is considered

to be one. Let ts be the time of slot s and af the scheduled arrival time of flight f .

The GHP can be formulated as an Integer Programming (IP) problem as:

Min
∑

f∈F ,s∈S,ts≥af
Cf (ts − af )xfs

subject to:
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∑
s∈S,ts≥af

xfs = 1 ∀f ∈ F
∑

f∈F ,ts≥af
xfs ≤ 1 ∀s ∈ S

This version of the GHP was studied in [7, 49]. More research on the GHP

can be found in [6, 13, 35, 53, 54, 61, 70, 71]. The form of the delay cost in objective

function is an important issue and most models employ a function in which marginal

cost increases as a function of delay.

When airlines face a GDP, they respond to resulting schedule disruptions by

trading-off flight cancellations and delays to minimize the cost of the disruption.

Disruptions in flight schedules may have a cascading effect. To overcome this prob-

lem, airlines may cancel flights and substitute flight-slot assignments. The models

that discuss resolving schedule disruption through slot swapping are proposed in

[36, 40, 41, 48, 68]. Other models ([15, 24, 25, 58, 59, 62, 63]) attempt to find an

operable, system-balanced flight schedule, that is they consider an airline’s entire

network of flights.

2.4 Slot Allocation

During severe weather, when there is a reduction in the en-route capacity,

traffic management specialist using the TSD (Traffic Situation Display), can identify

a problem area by creating a Flow Constrained Area (FCA). The TFM specialists at

the ATCSCC can enter the capacity of the FCA, expressed as the number of flights

that can be managed per hour, and FSM will then assign each flight a controlled

departure time that will provide a smooth managed flow of traffic to the FCA. These
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departure times are sent to the customers for their planning and to the towers at

the departure airports for enforcement.

Each airline will typically place a different relative weight on delays, rerouting

and cancellation. Whereas some airlines would like to preserve the on-time per-

formance for certain flights and cancel or reroute many other flights, other airlines

prefer to have less rerouting and cancellations while tolerating higher total delay.

Since the en-route capacity is reduced the fair allocation of available resources

among airlines arises. Fairness concerns have played an important role throughout

the development of allocation procedures, and continue to be an essential factor

whenever extensions or modifications to these procedures are proposed. The notion

of fairness in ATM is largely left implicit in the procedures. Howevr, some recent

research has developed fairness metrics and used these within TFM optimization

models that tradeoff fairness and efficiency (see [12], [70], [71]).

The use of fairness as a basis for allocating scarce resources presents is a

principal focus of our research. In fact, some proposals address the rationing of

airport arrival capacity in the long run using methods ranging from auctions [52]

and congestion pricing [50] to bargaining schemes [4]. The allocation of slots under

CDM is different, in that slots have to be assigned on daily basis due to fluctuation

in airport or en-route capacity. Fairness plays an important role in this environment.

Our research focuses on the development of a fair resource allocation mecha-

nism for an airspace flow program. Our objective is to include airlines preferences

for trading-off delay and rerouting. In our allocation procedures, each airline has

been assigned a limited budget. We analyze our procedures using fairness principles.
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The next chapter discusses the rationing of enroute resources. We propose a

new resource rationing method that is designed specifically for our problem. We

discuss the fairness of their new procedure.
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Chapter 3

Computing a Fair Share of Limited Resources

3.1 Introduction

The FAA introduced a new capability in the spring of 2006 known as the

Airspace Flow Program (AFP) that combines the power of Ground Delay Programs

(GDP’s) and Flow Constrained Areas (FCAs) to allow more efficient, effective, eq-

uitable, and predictable management of airborne traffic in congested airspace. The

principal goal for the initial deployment was to provide enhanced en route traffic

management during severe weather events.

In this research, we investigate a methodology to allocate available time slots

among carriers according to their preferences during the AFP. For example, one

carrier may want to increase its on time performance of certain flights, but reroute

more of its other flights while another carrier may be less concerned with the flight

delay, but prefer less rerouting, i.e. access to the FCA by more flights. Our model

assumes an air traffic service provider (FAA) seeks to assign the available time slots

among the carriers fairly while considering their preferences.

As discussed, the problem we address arises due to a capacity reduction in

a section of airspace for a period of time. Based on flight plans, each flight has a

scheduled arrival time at the boundary of the FCA. Since there is a reduction in

the capacity of part of the airspace, it is not feasible for all flights whose scheduled
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arrival time at the boundary of the FCA during that period of time to continue in

their preferred route and go through the FCA. Therefore, some of flights must be

rerouted. The challenge is which flights get rerouted and which flight pass through

the FCA. In this chapter, we propose a fair allocation method to determine a fair

share for each flight operator from available time slots. These fair shares will then

serve as allocation standards in the subsequent slot allocation processes developed

in chapters 4 and 5.

In the section 3.2, we review the literature on fair division of resources. Our

problem is described in section 3.3. In section 3.4 a method to determine the fair

share of carriers from available slots will be explained. Section 3.5 describes the

properties of our fair share methods. Experimental results based on our procedure

is provided in section 3.6. Finally, conclusions are given in the section 3.7.

3.2 Background

The problem of sharing somehow “fairly” a given amount of resources is per-

haps the oldest one faced by the economists. Brams’ books ([19, 20]) are full of

examples about divisions of goods. The fair division problem is simply stated in

general terms: given a set Ω, given n individuals and given some fairness require-

ments, find an opportune division. The challenge of dividing indivisible goods has

been studied in the literature [18, 22, 5].

When studying a simple model for the allocation of homogeneous indivisible

units of a commodity, the problem can be posed either as a rationing or a scheduling

31



“story”. The various models of the rationing problem have been addressed in [51,

75, 76] for divisible goods and in [31, 27] for discrete items. Allocating resources in

proportion to individual claims is the oldest formal rule of distributive justice. In

case of indivisibility, the probabilistic rationing method gives an expected share to

an agent proportional to his claim [44, 57]. The method meets the axiom of equity,

consistency and equal treatment of equals. In the proportional random allocation

method [44], the assumption is all items are homogeneous.

Two simple scheduling methods are discussed in the queuing literature. The

proportional method seeks to treat equally each unit of claim [47]. In other words,

the t-th unit goes to an agent with a probability proportional to unsatisfied demand.

The fair queuing method solves this problem by allocating one unit per agent,

irrespective of the size of individual demand, in a successive round-robin fashion.

In each round the active agents (whose demands is not yet fully met) are randomly

ordered (with uniform probability) and served one job in that order [46].

The problem of fair division when agents have heterogeneous preferences over

the objects is studied as well. The division problem with single-peaked preferences is

introduced in [55]. A considerable number of papers consider the ordinal extension

of preferences e.g. [2, 17, 28, 30]. In those papers a probabilistic approach to

the problem of assigning objects to the agents is suggested. The main normative

requirement in mechanism design for dividing objects among agents with preference

over the objects are efficiency and strategy-proofness; neither concept applies to

the preference-free environment. In the full preference domain ([38, 16]), when the

number of objects is equal to the number of agents, probabilistic rules are proposed
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based on a deterministic assignment.

In our problem, we face two difficulties. First, when the FAA as a coordinator

must decide about each carrier’s share, the underlying good, a time-slot, is not

homogeneous in nature. The second difficulty is how to include carriers’ preference

in the assignment problem. In the following section we address the first difficulty

while we try to meet fairness principles. The second difficulty is addressed in later

chapters.

3.3 Problem Description

During severe weather events, reduction in en-route capacity can lead to a

reduction in the number of flights that can pass through a portion of airspace.

The traffic flow management (TFM) specialists at the air traffic control systems

command center (ATCSCC) enter an FCA capacity, expressed as the number of

flights that can be managed per hour, and then the decision support tool, FSM,

assigns each flight a controlled departure time so that the flow into the FCA does

not exceed the declared capacity.

In our research we assume that flights pass the boundary of FCA one at a time

(this is consistent with current practice). Therefore we can express the capacity as

the number of available time slots. We consider those flights that are “scheduled” to

arrive at the boundary of FCA. Such a flight schedule can be derived based on each

flights scheduled departure time and filed flight plan. Employing such a schedule

can be problematic as it is not immune to gaming or strategic behavior on the part
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of flight operators.

For example, it could be worthwhile for a flight operator to file flight plans

through the FCA, even though these are not the best routes for those flights. Such

flights could improve that flight operators fair share. Later, these “extra” flights

could be rerouted onto their most preferred trajectories. Our use of these schedules

is consistent with current practice- we view finding an alternative standard as an

open research question.

The fair share for each carrier can be found in many different ways. A principal

goal we seek is to provide equity among carriers. The allocation of homogeneous

demands, when the total demand exceeds total available resources is addressed in

[51, 75, 76] and, in the case of scheduling problems, is treated in [47, 44, 46, 69](these

models correspond to the situation in which all flights arrive at the beginning of

the AFP). Vossen [69] uses a heterogeneous demand model to treat the different

arrival times of flights. To allocate slots to flights, he uses “proportional random

assignment” which randomly assigns slots to the carriers in proportion to the number

of a carrier’s flights that can use a slot. In his method, slots sequentially are assigned

to the carriers. The proportional random assignment method is a random allocation

method. It gives one feasible solution of flights-slots assignment. As we can see,

the procedure is time dependent. In the “proportional random allocation” method

proposed by Moulin [44] there is no time dependency, which means that all agents

can participate in the lottery at each time till their demand is met. In proportional

random assignment, agents participate in the lottery if they can use the slot. We can

use this method as a way to assign a fair share to each flight [66] (correspondingly
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each carrier). We will explain in the next section how to determine the fair share of

each flight from available slots.

3.4 Determining Fair Share of Available Slots for Each Carrier

The goal of this section is to determine a fair share of available slots owed to

each operator in expectation. We now define notation that we will use in this and

later chapters.

Let F = {f1, f2, . . . , fn} be the set of flights and S = {s1, s2, . . . , sm} be the

set of available slots (m < n) during the AFP. The capacity, cj, of each slot sj is

considered one. Suppose there are K carriers A = {A1, A2, ...AK}, and Fi is the set

of flights of carrier Ai such that

• Fi ⊂ F

• Fi ∩ Fj = φ ∀ 1 ≤ i, j ≤ K, i 6= j

• ∪K
i=1Fi = F

af is the time flight f is scheduled to arrive at the boundary of FCA and tj is the

time of slot sj. Flight f can be assigned to any slots sj with tj ≥ af .

Our objective is to find each carrier’s fair share from the available slots. It

should be emphasized that the models and axioms we introduce here are based on

the those proposed in the [44, 46, 69].

From the point of view of our allocation philosophy, two flights are equivalent

if they have the same af . Thus, we refer to the af values as type designators (τf )
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and say two flights are the same type if they have the same af value (τf = af ). Let

τ ∈ NF
+ be the vector of all flight types; associated with each set of flights F there

is a set of feasible allocations:

Q =



x ∈ {0, 1}|F|×m :

∑

f∈F
xf,j = 1 ∀ 0 ≤ j < m,

∑
tj≥τf

xf,j ≤ 1 ∀f ∈ F




Where the first constraint,
∑

f∈F xf,j = 1 ∀ 0 ≤ j < m, implies that all available

slots are used, and the second constraint,
∑

tj≥τf
xf,j ≤ 1 ∀f ∈ F , assigns a flight

to at most one slot.

For a given feasible set Q, any f ∈ F , and any slot index j : 0 ≤ j ≤ m, we

define the reduced feasible set Q(f, j) as follow:

Q(f, j) = {x ∈ Q : xf,j = 1}

Q(f, j) represents the set of feasible allocations for the flights in F −{f} while slot

j is unavailable.

By considering
∑

f∈F xf,j = 1 ∀ 0 ≤ j < m, the constraint that assigns all

slots, and
∑

tj≥τf
xf,j ≤ 1 ∀f ∈ F , the constraint that assigns at most one flight

to any slot, it can easily be seen that, in order for all slots to be used, for any given

slot time, the total number of slots up to that time must be less than or equal to the

total number of flights that can use those slots. In other words, if Fj = {f : af ≤ tj}

then |Fj| ≥ j for all j. If this condition does not hold, then it is not possible to

assign flights to all slots.

Therefore, we must “decompose” the set of flights-slots such that this condition

holds. We define the decomposition procedure as follows:
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Decomposition:

Step 0: Inputs: Set of flights F , set of slots S = {s1, s2, ..., sm}, j = 1

Step 1: while j ≤ m Do:

Step 1a: Fj = {f : af ≤ tj} if |Fj| < j then delete sj

Step 1b: j = j + 1

end while

This deletes ”excess” slots. It should be noted that we call the resultant flight-slot

non-decomposable but what the procedure really does is slot deletion.

We use a non-decomposable set of flights-slots to compute the fair share and

also, as we will see in the later sections, to allocate slots to flights. From now on,we

assume the set of flights-slots is not decomposable.

An allocation problem consists of a tuple (τ, Q), where τ represents the types

for flights in F . A probabilistic allocation rule P associates with each allocation

problem (τ, Q), a random allocation in the feasible set Q. Thus, any allocation can

be represented as a convex combination of the possible assignments, i.e.

P(τ,Q) =
∑

k

pkx
(k), pk ≥ 0,

∑

k

pk = 1

where x(k) represents a possible assignment of flights to slots. In other words, the

allocation rule P (τ,Q) selects each assignment x(k) with probability pk. P (τ, Q)f,j

may be interpreted as the probability that f is assigned to slot j if af ≤ tj. A

uniform allocation rule chooses each allocation x(k) with equal probability, pk = 1
|Q| .
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To find the pk, we need to know the total number of feasible flights to slots

assignments, |Q|. In general, counting perfect matchings in bipartite graphs is an

NP-hard [67] problem. As we show below, since there is time dependency between

flights and slots, we can find the total number of flight-to-slot assignments in poly-

nomial time.

To find the fair share of each carrier from the available slots, the original

scheduled FCA arrival time of flights is considered, af . The flights whose original

scheduled time is earlier than the latest available time slot, af ≤ tm, are considered

and other flights are discarded. Here, we present a time-dependent method to find

the share of each carrier from set of available slots. Our important equity principles

states that:

• Each flight can use at most one slot.

• All flights have equal share of each slot that they can use in any feasible

allocation.

• Each flight can be assigned to any slot later than its scheduled time of arrival.

3.4.1 Proportional Random Assignment

In a non-decomposable problem, there are many feasible flights-to-slots as-

signments. We use the allocation procedure called proportional random assignment,

PRA [69].

PRA:

Step 1 : Set F1 = {f ∈ F : af ≤ t1)} and i = 1
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Step 2 : Choose an f ∈ Fi with probability 1
|Fi| and assign f to si

Step 3 : Set i = i + 1

Step 4 : Set Fi = {f ∈ F : af ≤ ti} − {f}

Step 5 : If i ≤ m Then go to Step 2.

End.

PRA uses three principles of equity and randomly assigns flights to slots. Note that

PRA output is one assignment of flights-to-slots. However, we use PRA, viewed as

a random process with associated probabilities, as a basis for computing flights fair

share, FSf , which is the goal of this section.

The probability P (τ, Q)f,j can be interpreted as the (random) share of flight

f in slot j. This probability can be computed as:

P(τ, Q)f,j =
∑

k:xk
f,j=1

pk

Therefore, we need to compute pk in order to find the probability of assigning flight

f to slot j. We can see in the next proposition that pk can be found in a polynomial

time.

Proposition 3.4.1 PRA chooses a given flights-to-slots assignment with probabil-

ity of:

pk =
1∏m

i=1(ni − (i− 1))

Also the probability that slot j is assigned to flight f with af = tk can be obtained

as:

P(τ, Q)f,j =

∏j−1
i=k(ni − i)∏j

i=k(ni − (i− 1))

39



Proof Consider the following bipartite graph. There is an edge eij between any

Figure 3.1: Bipartite graph

flight fi and slot sj if afi
≤ t(sj). nj is the degree of node sj which is equal to the

number of edges connected to it.

Consider one particular assignment that assigns flights Fi = {fi1 , fi2 , . . . , fim}

to {s1, . . . , sm} (i.e. fi1 → s1, fi2 → s2, . . . , fim → sm).

Prob(Assigning Fi to S) = P (fi1 → s1)×
m∏

j=2

Prob(fij → sj|{fi1 , . . . , fij} → {s1, . . . , sm})

Start from s1: n1 flights can be assigned to slot s1, based on algorithm the Prob(fi1 →

s1) = 1
n1

. Remove fi1 and s1 and all of its connected edge from the graph. So, the

degree of all nodes s2, ..., sm is decreased by one. Now, there are n2 − 1 flights that

can be assigned to slot s2. Therefore, Prob(fi2 → s2) = 1
n2−1

. Again remove fi2 and

its connected edges and s2 from the graph. The degree of remaining slots reduced by

1. i.e the degree of sj is nj−2. Continue this procedure till we get to the last slot, sm,

where we just have n− (m− 1) flights available. So, Prob(fim → sm) = 1
nm−(m−1)

.

Therefore the probability of choosing any perfect matching is:

pk =
1∏m

i=1(ni − (i− 1))
(3.1)
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The probability that f can be assigned to sj can be computed as:

P (τ, Q)f,j =
∑

Number of assignemnt s.t. f is assigned to sj

pk =
∑

k:x(f,j)=1

pk (3.2)

We need to compute the number of flight-to-slot assignments such that f is assigned

to sj, in other words the size of Q(f, j). Suppose af ≥ t(sk), so there is an edge

between f and slots sk, ..., sm and k ≤ j ≤ m. Remove f and sj and all edges

connected to f from the graph. Therefore, the degree of all nodes after sk is reduced

by one. Start from s1, n1 flights can use the slot. Since one flight is already assigned

to s1, n2−1 flights can use the s2 and so on till sk−1 where nk−1−(k−2) can use sk−1.

Since the degree of nodes after sk is already reduced by one, so for k ≤ i ≤ (j − 1)

the number of flights that can use slot si is ni − 1− (i− 1). Just f can use sj. The

number of flights that can use sj+1 is nj+1 − 1 − (j − 1) (j − 1 flights is already

assigned to slots s1 to sj−1). Thus, for j + 1 ≤ i ≤ m the number of flights that can

use slot si is ni − 1− (i− 2). The size of set Q(f, j) is:

|Q(f, j)| = n1 × (n2 − 1)× ...× (nk−1 − (k − 2))× (nk − (k − 1)− 1)× ...

×(nj−1 − (j − 2)− 1)× 1× (nj+1 − (j − 1)− 1)× ...(nm − (m− 2)− 1) (3.3)

Substitute 3.3 and 3.1 in 3.2, we will have:

P (τ, Q)f,j =

∏j−1
i=k(ni − i)∏j

i=k(ni − (i− 1))
(3.4)

•

Corollary 3.4.1 PRA chooses each flight-to-slot assignment with equal probability,

and also the number of total flight-to-slot assignments is |Q| = ∏m
i=1(ni − (i− 1)).
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Proof Proposition 3.4.1 the probability of one assignment can be computed. It is

seen that computing the probability, pk, is independent of k (i.e. it is independent of

any assignment). Therefore PRA chooses each flight-to-slot assignment with equal

probability. Therefore, PRA can choose any flight-to-slot assignment with equal

probability then the number of feasible flight-to-slot assignment is 1/p. •

The probability P (τ, Q)f,j can be interpreted as the (random) share of flight

f in slot j, Sharef
sj

. The Fair Share of carrier Al from the available slots is:

FairShareAl
S =

∑
si∈S

∑

fj∈Fl

Sharefj
si

(3.5)

We denote FairShareAl
S as FSl for simplicity. We call this method Finding Fair

Share Based on PRA(FFS-PRA).

RBS considers only one possible flights-to-slots assignment, while in the new

method, all flights-to-slots assignments are considered. PRA chooses each of these

flights-to-slots assignment with equal probability. Therefore, it is possible for all

flights included in an AFP to have a positive share of available slots.

Corollary 3.4.2 In FFS-PRA, all flights have positive share from available slots.

Proof Since PRA considers all possible flights-to-slots assignments, therefore if a

flight,f , can use a slot, sj, it is considered in some of flights-to-slots assignments.

Since there is a probability associated to any feasible matching, and probability of

assigning f to sj is sum of probabilities of those flights-to-slots assignment in which

f is assigned to j. Then f has a positive share of j. •
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Flights f1A f1B f2A f2B f1C f2C

Airline A B A B C C

af 3:58 4:00 4:02 4:03 4:05 4:06

Table 3.1: Flight schedules of airline A, B and C

This is a very important point. Unlike RBS, that does not give any share to

later flights, FFS-PRA gives a positive share to any flight included in an AFP. Also,

it treats all flights with the same type equally. FFS-PRA chooses each flights-to-slots

assignment with equal probability. We should note that flights that are scheduled

earlier usually receive more share rather that later scheduled flights. Because the

number of feasible matchings for earlier flights is more that the number of feasible

matchings for the later flights. Therefore, FFS-PRA implicity gives higher share to

earlier scheduled flights.

3.4.2 Example

Suppose we have three carriers and six flights. Assume only four flights can

pass through the FCA. Table 3.1 shows the flights of three airlines, A, B and C,

and their scheduled arrival times at the boundary of FCA. The available time slots

are:

Slot: s1 s2 s3 s4

Time: 4:00 4:02 4:04 4:06
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Here we want to compare the result of FFS-PRA and RBS. Using RBS the

flight slot assignment is:

f1A → s1 f1B → s2 f2A → s3 f2B → s4

So the share of each airline form available slots is:

ShareA
S = 2 ShareB

S = 2 ShareC
S = 0

Figure 3.2: The earliest slot that each flight can use

Figure 3.2 shows the earliest slot that each flight can use.

The latest time slot is 4:06, hence the flights with scheduled time afterward

are discarded. We are interested in finding the fair share of each carrier with respect

to the four available slots, {s1, ..., s4}.

We would like to compute the (random) share of each flight from any slots.

As we explained, Q is the set of feasible assignment of flights to slots. Figure 3.3

shows the graph of all possible combinations of slot assignments. Each level of the

graph corresponds to one of the available four slots, and the numbers on the edges

of the graph indicate the probability of assigning fi to sj for a given path.

For example, we would like to compute the share of flight f1A from s1, s2, s3

and s4. The share of flight f1A from s1 is equal to the probability of assigning f1A to
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Figure 3.3: All possible allocations of slots to flights
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s1 that equals to 1
2
. We can see from figure 3.2 n1 = 2, n2 = 3, n3 = 4 and n4 = 6.

Using the 3.5 gives us the probability (share) of flight f1 from each slot:

Sharef1
s1

= 1
2

Sharef1
s2

= 1
2×(3−1)

= 1
2

Sharef1
s3

= 1
2×(3−1)×(4−2)

= 1
8

Sharef1
s4

= 1
2×(3−1)×(4−2)×(6−3)

= 1
24

f1A f1B f2A f2B f1C f2C

s1
1
2

1
2

0 0 0 0

s2
1
4

1
4

1
2

0 0 0

s3
1
8

1
8

1
4

1
2

0 0

s4
1
24

1
24

1
12

1
6

1
3

1
3

Table 3.2: Share of flights for each slot

A B C

s1
1
2

1
2

0

s2
3
4

1
4

0

s3
3
8

5
8

0

s4
3
24

5
24

2
3

Table 3.3: Fair share of airlines from each slot

Table 3.2 shows the share of each flight for any slot; the share of a carrier for

a slot is equal to the summation of the share of its flights for that slot (Table 3.3).

For example, the total fair share of airline A for s4 is 3
24

(i.e. 1
24

+ 1
12

). As we can see,

A, B and C have two flights, however, due to the scheduled time of these flights,
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their total share of slots are different. In addition, according to 3.5, the total share

of each airline for all the available slots is:

FairShareA
S =

21

12
FairShareB

S =
19

12
FairShareC

S =
8

12

¤

Thus, while under RBS the share of airline C was zero, airline C has a 2
3

share

under FFS-PRA. small carriers, which have fewer flights or carriers with flights

scheduled late, still receive a share of available slots. We will see in the later chapters

that we use the fair share of carriers as an input to our random allocation procedures.

Therefore, carriers with positive share will have chance to receive slots.

In the next section, the equity properties of FFS-PRA will be discussed.

3.5 Equity of FFS-PRA

There are SEVERAL principles used to determine the fairness of an alloca-

tion. The fundamental principles of fairness are impartially and consistency, Equal

Treatment of Equals and Demand Monotonicity [74]. The formal definition of each

of these axioms is defined as:

Definition 3.5.1 A probabilistic allocation rule P is impartial if for any allocation

problem (τF , Q) and any permutation π of F ,

P (τF ◦ π,Q ◦ π) = P (τF , Q) ◦ π

Impartiality states that allocation rule should not discriminate among the flights

except insofar as they differ in type. In other words, if two flights are indifferent in
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type and in the feasible set, they will receive the same slot shares.

The origins of consistency principle is studied in [74], p.173 and [65]. Variations

of the consistency were formulated independently on different allocation problems,

such as the apportionment problem [14], the cost sharing and rationing problem [45],

and bargaining problems [64]. The definition of consistency by Vossen [69] is based

on the definition of consistency by Moulin[46], which recognizes the probabilistic

nature of the underlying allocation problem. Define for a given feasible set Q, any

f ∈ F , and any slot index j : 0 ≤ j ≤ m the reduced feasible set Q(f, j)

Q(f, j) = {x ∈ Q : xf,j = 1}

which represents the set of feasible allocation for the flights in F − {f} with slot j

unavailable. So, the consistency can be defined as:

Definition 3.5.2 A probabilistic allocation rule P is consistent if for any allocation

problem (τ, Q) and any f, f ′ ∈ F

P (τ,Q)f ′,j′ =

j′∑
j=1

P (τ,Q)f,jP (τF−{f}, Q(f, j))f ′,j′

In other words, the consistency property states that the expected slot shares should

be independent of the order in which flights are assigned to the slots.

The other important axiom of fairness is called Equal Treatment of Equals

(ETE). In the random allocation method, ETE can take in two interestingly different

forms[46]. Define Yi as an integer valued random variable that gives the total number

of slots assigned to carrier i.

Definition 3.5.3 The random allocation rule P has Equal Treatment of Equals Ex
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Post(ETEP) property, if for any realization y of the random variable Y, we have

FairShareAi
S = FairShare

Aj

S ⇒ |Yi − Yj| ≤ 1

and It has Equal Treatment of Equals Ex Ante (ETEA)property if:

FairShareAi
S = FairShare

Aj

S ⇒ Yi ∼ Yj

(these two random variables have identical distribution)

Another important axiom is Demand Monotonicity(DM) that can be defined

as:

Definition 3.5.4 A probabilistic allocation rule P has Demand Monotonicity prop-

erty if for any allocation problem (τ, Q):

FairShareAi
S ≤ FairShareAi

S |F ′i=Fi+f∗

DM says that an increase in carrier i’s demand Fi(extra flight f∗), leaving number

of available slots and other flight sets unchanged, can not deteriorate carrier i’s

(random) share.

Another strong property is that every carrier has a chance of receiving one

slot, this property is called Positive Share. In other words, FairShareA
S > 0.

Theorem 3.5.1 FFS-PRA meets impartiality, Equal Treatment of Equals(Ex-Post),

consistency and Demand Monotonicity.

Proof We skip the easy proof of impartiality, equal treatment of equals and

consistency. Suppose airline Ai’s demand increased by one flight f ∗, where the
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earliest slot that f ∗ can use is sk. In other words, af∗ ≤ t(si) for all i ≥ k. Since

share of f ∗ from all slots which have af∗ ≤ t(si) is positive then there must be a

reduction in the share of all flights from slots which have af∗ ≤ t(si). Suppose δi is

the change in the share of flight fi. In other words, the new share of each flight is

going to be Share
′fi = Sharefi − δi. Thus, Sharef∗ =

∑
f∈F δi. We can write the

new share of airline i as:

FairShare
′Ai
S =

∑

f∈FAi

Share
′fi + Sharef∗

=
∑

f∈FAi

(Sharefi − δi) +
∑

f∈F
δi

= FairShareAi
S +

∑

f /∈FAi

δi

As you can see
∑

f /∈FAi
δi > 0 then the share of As is increased as its demand is

increased. •

3.6 Experimental Results

For our experiment, we used a test data set that had been employed by the

CDM Future Concepts Team to perform human in-the-loop experiments related

to SEVEN. It contained 386 flights with 38 flight operators. The data included

scheduled arrival arrival times at an FCA boundary. The FCA duration was from

18:00 pm to 21:00 pm.

We compared the results of ration-by-schedule(RBS), which is currently used

to allocate FCA access during airspace flow programs with the fair share that we

computed.
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Figure 3.4: Share of each airline form avialable slots for diffeent capacity reduction.
Comparing RBS with Fair Share
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In our experiment, we considered 40%, 50%, 60%, 70% and 80% en-route

capacity reduction for the FCA. Figure 3.4 shows the number of slots assigned to

each airline for a specific capacity reduction for the RBS.

The cells, which are highlighted, show when the difference between the FFS-

PRA allocation one and RBS exceed one

3.7 Discussion

So far, a method has been presented to determine the fair share of each carrier

from the available slots. Our fair Share assignment meets equity principles such

as impartiality, equal treatment of equals, consistency and demand monotonicity.

The current flight assignment procedure used during AFP’s uses ration-by-schedule

(RBS). RBS works based on first scheduled first served. Thus, under RBS flights,

which are scheduled late in the time horizon do not receive any share, while under

FFS-PRA all flights get a positive share.

As we will see in other chapters of this dissertation, we will use this fair share

as a parameter to assign flights to slots.
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Chapter 4

Allocation of Limited Resources in a Full Preference Domain

4.1 Introduction

In the previous chapter a method has been proposed to determine a fair share

of available slots for each carrier. Now, we would like to address how to assign slots

to carriers in a way that includes carriers’ preferences and maintains fairness. A

carrier’s FairShare, is interpreted as the number of slots the carrier should receive.

In section 4.2 we will review the literature of allocation of resources based

on agents’ preferences. Two algorithms will be proposed to assign slots to carriers

based on their preferences in section 4.3 . The equity of the proposed algorithms

will be discussed in section 4.4. Finally, we will provide some experimental results.

4.2 Background

The probabilistic allocation of indivisible objects has received significant re-

search attention. This problem can be considered in two main scenarios. The first

scenario, there are n objects and n agents and each agent receives exactly one ob-

ject. Each agent has a strict preference over the set of objects, objects are distinct.

In an application example agents can be workers and objects can be jobs in a com-

pany. In the second scenario there are k identical objects and n agents. Each agent
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receives a certain number of objects and each object is assigned to some agent. In

an application example, there are identical jobs that have to assigned to workers.

The problem of n agents and n objects has been studied by Abdulkadiroglu

and Sonmez [3], Bogomolnaia and Moulin [16], and Cres and Moulin [23]. Abdulka-

diroglu and Sonmez showed that the only Pareto-Efficient matching mechanisms is

a serial dictatorship, which are like random priority (RP), the priority ordering of

agents choose randomly, except that initial ordering of the agents is chosen in a

deterministic fashion. Svensson [56] showed that serial dictatorships are the only

rule satisfying strategyproofness, neutrality and nonbossiness. RP may not be effi-

cient if agents are endowed with utility functions consistent with their preferences.

The main contribution of Bogomolnaia and Moulin [16] is the definition of ordinal

efficiency. They showed that the probabilistic serial mechanism is weakly strategy

proof, and achieves an envy free, ordinarily efficient solution. In a result parallel

to Zhou’s impossibility theorem [77], the showed that no strategy proofness mech-

anism can achieve both ordinal efficiency and fairness, even in the weak sense of

equal treatment of equals. Katta and Sethuraman [38] addressed the problem in a

full preference domain. Cres and Moulin [23] show that in their model Probabilistic

Serial (PS) solution stochastically dominates the RP solution.

The second scenario has been addressed by Moulin [44] and Moulin and Stong

[46] where each agent demands a certain number of objects and total demand is

greater than the number of objects available. There is no preferences over the

objects in their model discussed. Ehlers and Klaus [29], Kureishi [39] studied the

case where each agents has a single peaked preference over the number of objects she
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may receive. A probabilistic rule chooses for each profile of preferences a probability

distribution over the set of allocations. An agent compares two distributions over

the set of allocations by evaluating the marginal distribution that are induced over

her allotments. Bogomolnaia and Moulin [17] studied the case when agents have

dichotomous preferences over the objects.

In our problem, we have set of slots, which can be considered as indivisible

heterogenous goods, and we have agents, carriers, that have different preferences

over the slots. We consider a full preference domain, where carriers can express

their preferences over the slots [66]. As we will discuss later, the preference domain

can be very rich and it is not as simple as ranking objects, slots.

4.3 Preference Based Proportional Random Allocation

As discussed, the problem of allocating of heterogeneous goods among agents

with different preferences has been studied in many papers. In our problem, we have

heterogeneous goods, slots, and agents, flight operators, with different preferences

over the slots.

The cost per minute of delay can vary substantially from flight to flight. For

example, the delay on a flight that has more passengers is more costly than a smaller

flight; delay on a flight with connecting passengers is more costly than a flight with

no connections. There are also significant cost implications of the status of the

flight’s crew. Thus, for each carrier the concept of preferences over slots is closely

related with the concept of preferences over the flights.
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Here we propose an algorithm that takes carriers’ preferences and flight sched-

ules as input, and allocates slots to carriers. Before explaining our algorithm we need

to explain two concepts, one is decomposition and the other is carriers’ preferences.

The algorithm needs a priority list of flights-to-slots assignments from carriers as

input.

4.3.1 Decomposition

As we explained in the previous chapter, when we compute the fair share for

each carrier, we need to insure that if Fj = {f : af ≤ tj} then |Fj| ≥ j for all j. We

provided a decomposition procedure based on deleting certain slots.

In the allocation problem that we will introduce here, we need a stronger form

of non-decomposability in order to prevent carriers from gaming the system. The

stronger version is called diverse non-decomposable.

In order to achieve a diverse non-decomposable set from original set of flights-

to-slots, we need to exclude two types of flights-to-slots subsets from the original

set. The first type of subset includes those flights-to-slots sets such that all flights

associated with the slots belong to the same carrier, i.e. there is no competition.

In this case, these slots are assigned to that particular carrier, thus this part of

the allocation problem is removed. The second type of subset is when |Fj| = j

which implies there are equal number of flights and slots. Allocation to each such

subset can be solved separately. After excluding these two types of subsets by

suitable decomposition, the remaining set of flights-to-slots satisfies the following
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Figure 4.1: (a) non-decomposable (b) diverse non-decomposable problem

two properties:

1- If Fj = {f : af ≤ tj} then |Fj| > j for all j < n

2- There is always more than one carrier that can use each slot.

We develop a procedure that excludes these two types of subsets from the

original set of flights-to-slots. Let us first clarify the concept of “non-decomposable”

and “diverse non-decomposable” using following example, and then we formally

define a procedure to achieve a diverse non-decomposable set from original set of

flights-to-slots.

Figure 4.1 illustrates an example to clarify concept of “non-decomposable” and

“diverse non-decomposable”. Figure 4.1 shows two configurations. The first config-

uration, (a), shows a set of flights-slots. It is seen than the set is non-decomposable,

but it is not diverse, because A is the only carrier that can use s1. The second

configuration, (b), is another set of flights-slots that is diverse non-decomposable.

The following procedure produces the appropriate decomposition.

Diverse Decomposition:

Step 0: Inputs: S = {s1, s2, ..., sm} and F = {f1, f2, ..., fm}, k = 1,j = 1, i = 1

Step 1: while j ≤ m, Do:
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Step 1a: Fj = {f : af ≤ tj}

Step 1b: if |Fj| = j then Si = {sk, ..., sj}, Fi = Fj, F = F − Fj, S =

S − Si, k = j + 1, i = i + 1

else if |Fj| < j then delete sj

else if f ∈ Fj all belong to one carrier then S = S −{sj}, F = F −Fj

Step 1c: j = j + 1;

end while

The output of this procedure are flight-slot sets (Fi,Si). Each of these should be

analyzed separately. Further, the final line in step 1b deletes certain flight-slot pairs.

In each case, the slot assigned to the associated carrier.

In the next section, we will explain how the decomposition procedure elimi-

nates certain incentives for non-truthful preferences.

4.3.2 Priority List

We employ FairShare as a standard that determines how many slots a carrier

should receive in our slot allocation procedure. As part of our suggested slot alloca-

tion procedure, the FAA would inform each carrier of their fair share. We will prove

later that our proposed slot allocation algorithms guarantee a carrier a will receive

at least bFairShareac slots and at most dFairShareae slots. This means carriers

know about the minimum and the maximum total number of slots they will receive

before applying the slot allocation procedures. Carriers have precise knowledge of

the number of slots they will receive, but they do not know which slots they will be
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receive.

As discussed earlier our slot allocation procedures require airline flight-slot

preference information. There are two types of preference lists.

In first type, carriers submit to the FAA an ordered list of flight-to-slot assign-

ments. For example, carriers submit an ordered list of (fi, sj) pairs. This type of list

can be very long when the number of slots is large. The second type of list can be

a compact version of the first type. Instead of submitting an ordered list of (fi, sj)

pairs separately, carriers submit the pair of flights and bundle of slots. For example,

if a carrier ordered preference list is (fi, sj), (fi, sj+1), (fi, sj+2) (fl, sk) then it can

be expressed as (fi, sj : sj+2), (fl, sk).

Under certain conditions, a carrier may prefer a later slot to an earlier one.

A benefit of our slot allocation procedures is they provide flexibility for carriers to

express such preferences. In the following example, we try to better clarify concept

of priority list, and also to see how this priority list of flights could be used in some

non-trivial cases (e.g. when a carrier can prefer a later slot to an earlier slot).

Suppose, carrier A has three flights A101, A102 and A103. And also assume

there are six available slots, s1, . . . , s6. The earliest slots, af , that each flight can be

assigned could be:

Slot: s1 s2 s3 s4 s5 s6

Flights: A101 A102 A103

af s1 s4 s6

The following table illustrates a possible flight priority list that carrier A sub-

mits to FAA.
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Preference List for A

Rank (Flight,Slot) Rank (Flight,Slot)

1 (A103, s6) 6 (A101, s3)

2 (A101, s1) 7 (A101, s4)

3 (A101, s2) 8 (A101, s5)

4 (A102, s4) 9 (A101, s6)

5 (A102, s5) 10 (A102, s6)

For simplicity, the flight priority list can be shown as:

Rank (Flight,Slot) Rank (Flight,Slot)

1 (A103, s6) 4 (A101, s3 : s4)

2 (A101, s1 : s2) 5 (A101, s5 : s6)

3 (A102, s4 : s5) 6 (A102, s6)

In this example, for carrier A, the highest preference is s6, and it prefers later

slots s4 and s5 to earlier slot s3. This could happen if flight A103 had much higher

delay and cancellation costs than A101 and A102. Further, it could be the case that

A101 is delayed beyond slot s2, its marginal delay cost become small so that saving

delay in flight A102 become a higher priority.

It can be seen that by submitting a priority list of flights, carriers have the

flexibility to express a range preferences based on their internal cost functions.

4.3.3 Preference-Based Proportional Random Allocation

In this section, we introduce a randomized allocation procedure, which we

call Preference-Based Proportional Random Allocation (PBPRA). PBPRA, has the

following objections/properties:
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1− Slot allocation process that based on a randomized procedure.

2− Slot allocation process that includes carrier preferences.

3− Slot allocation process that assigns slots to carries in a way that each

carrier receives a total number of slots as “close” to its fair share.

We first outline the steps of the PBPRA algorithm. Initially the diverse de-

composition algorithm described in section 4.3.1 is applied to make sure any set of

flights-to-slots is non-decomposable. The two primary inputs to PBPRA are: A fair

share for each carrier and a flight priority list that is provided by each carrier.

The PBPRA execution involves two phases:

Phase 1: In this phase, the procedure starts by considering the fractional part

of each carrier’s fair share. In Phase 1, carriers are chosen randomly in proportion to

these fractional parts. When a carrier is chosen, it is assigned the highest flight-to-

slot assignment on its priority list. Each flight operator is assigned at most one slot

during this phase. Small flight operators with FairSharei < 1 are only considered

in this phase.

Phase 2: The second phase also uses a randomized procedure where the

remaining slots are considered from earliest to latest. Flight operators, who can use

the slot in question, are chosen randomly in proportion to the integer part of the

FairSharei’s.

Our algorithm can be defined formally:

PBPRA:

Inputs: Carriers: A1, A2, ..., AK ,
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Carrier Fair Shares: FS1, FS2, ..., FSK ,

Carrier Preference Lists: PList1, PList2, ..., PListK

Step 0: Calculate FSF
1 , FSF

2 , ..., FSF
K and FSI

1 , FSI
2 , ..., FSI

K , the fractional parts

and integer parts of FS1, FS2, ..., FSK ; set Nfract =
∑

i FSF
i ;

Step 1: PHASE 1 while Nfract > 0 Do:

Step 1a: from among all carriers Ai with FSF
i > 0 choose Ai∗ randomly

in proportion to the value of FSF
i∗ .

Step 1b: Let (f ′, s′) be the highest priority assignment on PListi∗ . Assign

f ′ to s′ and set FSF
i∗ = 0

Step 1c: Delete all assignments of the form (f ′, ∗) from PListi; delete all

assignments of the form (∗, s′) from all lists PListk for k 6= i,

Step 1d: Set Nfract = Nfract − 1;

end while

Step 2: PHASE 2

Step 2a: Let s′ be the earliest unassigned slot. If no flights can be as-

signed to s′, then delete s′ and skip to Step 2d. Otherwise, from among

all carriers Ai with FSI
i > 0 that can use s′, choose Ai∗ randomly in

proportion to the value of FSI
i .

Step 2b: Let (f ′, s′) be the highest priority assignment on PListi∗ . As-

sign f ′ to s′.
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Step 2c: set FSI
i∗ = FSI

i∗ − 1; delete all assignments of the form (f ′, ∗)

from PListi; delete all assignments of the form (∗, s′) from all lists

PListk for k 6= i,

Step 2d: If all slots have been assigned then stop; otherwise repeat Step

2.

It can be seen that PBPRA algorithm has has an initial stage and two execution

phases. In the following, we are going to explain intuitively what PBPRA is trying

to accomplish at initial stage, phase one and phase two.

At the initial stage we perform the diverse decomposition procedure on the set

of flights-slots. This procedure reduces carrier gaming possibilities. Let us clarify

this gaming prevention in more detail with an example.

Suppose the true preference of A in Figure 4.1 is (f1A, s1) and (f2A, s2). Also

let FSa = 1.8 and FSB = 1.2. A may falsify its preferences, by indicating (f2A, s2) as

its highest preference. If we consider a non-decomposable problem (Figure 4.1(a)),

and if in the first phase A is chosen, then A receives s2 and in the second phase

it will receive s1. But in a diverse non-decomposable problem (Figure 4.1(b)), if A

lies, it receives s2 and it may loose its chance to receive s1. Thus, this is a penalty

for non-truthfulness. In example Figure 4.1(a), the initial decomposition step would

allocate s1 to A and then apply PBPRA to the remaining flights/slots. We will

prove later in this chapter, that PBPRA is resistent to gaming if we have a diverse

non-decomposable set of flights-slots.

PBPRA requires as input a fair share for each carrier. We proposed a fair
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share algorithm in the previous chapter 3, the output of the FFS-PRA can be used

as an input to PBPRA. There might be other methods to assign fair shares to

carriers. In this dissertation, we always use the output of FFS-PRA as input to our

procedures. The fair share can be used as a basis for allocating the slot to carriers.

As mentioned, one of the goals for PBPRA is to allocate a total number of slots to

carriers that is “close” to their fair shares. We will show in section 4.5, this goal

will be archived.

The third input to PBPRA consist of the carriers’ preferences lists. As ex-

plained in section 4.3.2 such flight priority lists provide flexibility for each carrier

to express its preferenceamong slots. PBPRA takes into account the preferences of

carriers when it allocates slots.

In the execution stage of PBPRA, there are two phases. The motivation

behind doing allocation in two phases is that we implicity give priority to the small

carriers ( i.e. carriers with FairShare < 1). Also, carriers more explicitly influence

the slots they receive.

In phase 1, we assign Nfract slots. In phase 2, every carrier a with FairSharea ≥

1 receives bFairShareac slot(s). Slots are assigned sequentially to carriers from

earlier to later ones. Indeed, we assign slots to carriers and then based on their

submitted priority list we assign the slot to the highest preferred flight according to

the carriers’ priority list.
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4.3.4 Modified- PBPRA

We now propose an alternative to PBPRA that is less complex, and also is

more immune to gaming. The modified PBPRA operates in just one phase, and we

call it M-PBPRA. The M-PBPRA is presented as follows. It can bee seen that step

1 of PBPRA is deleted and the step 2a is modified as below:

Step 2a: Let s′ be the earliest unassigned slot. If no flights can be assigned to s′,

then delete s′ and skip to Step 2d. Otherwise, from among all carriers that

can use s′, among all Ai with FSi ≥ 1 choose Ai∗ randomly in proportion to

the value of FSi else choose Ai∗ randomly in proportion to the value of FSi

among all carriers Ai with FSi > 0.

M-PBPRA successively assigns slots considering all carriers who can use that slot.

M-PBPRA starts from the earliest slot and assigns slots one by one to each carrier.

If a slot is assigned to a carrier, then its fair share is reduced by one. In each round,

only carriers with a positive share remaining will be considered.

We will prove in section 4.4 , that in order to be immune to gaming, having a

non-decomposable set is enough, while PBPRA needs a diverse non-decomposable

set. It should be noted that in the decomposition procedure described in section

3.4 we only delete slots while in the diverse decomposition procedure we delete slots

as well as assign and delete pairs of flight-to-slot assignemnt. This means PBPRA

requires a stronger constraint (i.e. diverse non-decomposable) to be resistent to

gaming. Let us clarify this in the following example.

65



Flights f1A f1B f2A f2B f3A f3B f4A f1C f4B f2C f5A f3C

Airline A B A B A B A C B C A C

af 3:58 4:00 4:01 4:02 4:03 4:03 4:05 4:06 4:07 4:08 4:09 4:09

Table 4.1: Flight schedules of airline A, B and C

As explained before, in Figure 4.1, suppose the true preference of A is (f1A, s1)

and (f2A, s2). And also FSa = 1.8 and FSB = 1.2. A may falsify its preferences.

This means A may declare (f2A, s2) its highest preference. In Figure 4.1, in both

configurations, (a) and (b), since slots are assigned successively A can not improve

its allocation through deception.

It can also be seen that M-PBPRA is performed in a single phase (i.e. easier

for practical implementation), while PBPRA requires two phases. However, one

limitation with M-PBPRA is that when a carrier is chosen its preference list only

influences its flight-to-slot assignment, not the slot it receives. In PBPRA, carriers

have the opportunity to choose the best proffered slot. We illustrate in the following

example that PBPRA can assign the best proffered slot to carriers.

Table 4.1 shows the flight schedules of three carriers A, B and C. The available

time slots are:

Slot: s1 s2 s3 s4 s5 s6

Time: 4:00 4:02 4:04 4:06 4:08 4:10

Table 4.2 shows the flight priority of each airline.

As we explained in chapter 3, the fair share of each airline can be computed:

FSA = 2.71, FSB = 2.43 and FSC = 0.86. Therefore Nfrac = 2.
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A B C

(f2A, s2 : s3) (f4B, s5 : s6) (f1C , s4 : s5)

(f3A, s3 : s4) (f2B, s2 : s4) (f2C , s5 : s6)

(f4A, s4 : s6) (f1B, s1 : s3) (f3C , s6)

(f1A, s1 : s6) (f3B, s3 : s6)

(f5A, s6)

Table 4.2: Preference list for airlines A, B and C

While executing PBPRA, if in the first phase A and B are chosen, then A and

B receive their first preferences, i.e. A receives (f2A, s2) and B receives (f4B, s5).

Instead if we run M-PBPRA and A and B are chosen, then A receives (f1A, s1)

and B receives (f2B, s2) which are not their first preferences. This shows that in

PBPRA, A and B have the opportunity to choose their best proffered slots while in

M-PBPRA they have not received their first preferences .

The M-PBPRA procedure is very similar to PRA except that the demand

(fair share of carriers) is not an integer value (In PRA, demand of each agent is an

integer value). At each round of the procedure, we implicity give priority to the

carriers with remaining fair share greater than 1. This helps to make sure every

carrier receives at least bFairSharec. If in one round of the procedure, say the jth,

there is no carrier with FS ≥ 1, then M-PBPRA considers all carriers that can use

slot sj with a positive remaining fair share.

In most of cases, PBPRA or M-PBPRA assigns all slots, however there are

very rare instances that some slots could remain unassigned. For example, Figure

4.2 shows a non-decomposable problem, in which 6 airlines A, B, C, D, E and G

67



Figure 4.2: Example of unused slots in PBPRA or M-PBPRA

compete for 6 slots. Suppose the highest preference for airlines A, B, C, D, E and

G are (f2A, s6), (f1B, s1), (f1C , s2), (f1D, s3), (f1E, s4) and (f2G, s5) respectively. As

explained in chapter 3, the fair share of each airlines can be computed: FSA = 0.99,

FSB = 0.9, FSC = 0.81, FSD = 0.63, FSE = 0.53 and FSG = 2.14. Therefore

Nfrac = 4. While executing PBPRA, if in the first phase, A, D, E and G are chosen,

then s6, s3, s4 and s5 are assigned to A, D, E and G respectively. In the second

phase PBPRA starts from first unassigned airline which is s1. The only two airlines

that can use s1 are A and B. Since A and B’s remaining fair share is zero then no

airlines can use s1. Therefore, s1 remains unused.

We provide the following example to explain how these two procedures work.

4.3.5 Example

Consider example 3.4.2; there are three carriers each having two flights; each

are competing for four available slots. We compute the fair share for each carrier:

FSA =
21

12
FSB =

19

12
FSC =

8

12
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A B C

(f2A, s2) (f2B, s3) (f1C , s4)

(f2A, s3) (f2B, s4) (f2C , s4)

(f1A, s1) (f1B, s1)

(f1A, s2) (f1B, s2)

(f2A, s4)

Table 4.3: Preference list for airlines A, B and C

Therefore the integer part and fraction part of each fair share is:

FSI
A = 1 FSI

B = 1 FSI
C = 0

FSF
A =

9

12
FSF

B =
8

12
FSF

C =
8

12

Thus Nfract = 2. Suppose carriers submit their priority list of flights based on Table

5.2. In the first step, we compute the probability based on fractional part of each

carrier, thus:

ProbA =
9

25
ProbB =

8

25
ProbC =

8

25

where Probi is the probability that carrier i is chosen. Suppose, B is chosen, so B

will receive its highest priority flight in its priority list, so B will receive s3, f2B → s3.

Now, any (∗, s3) is removed form preference tables. We reduce the Nfrac = 1 and

FSF
B = 0. Next, we randomly choose A and C with probabilities proportion to their

fraction part as follow:

ProbA =
9

17
ProbC =

8

17

Suppose C is selected, so f1C will be assigned to s4. Update the preference table

and remove any pair of (∗, s4). Phase one of algorithm is done and we start with
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the first unassigned slot, s1. A and B both can use s1, so with probability of 1
2

s1

will be assigned to one of those, suppose s1 assigned to A, based on A’s priority list,

f1A goes to s1. As you can see, f1A is not its highest priority flight, but it is the

only flight that can use s1 therefore it must take s1. Finally, B will receive s2 and

f1B assigned to s2.

M-PBPRA starts from s1, A and B are the two carriers that can use s1, both

have a fair share greater than one. Therefore, we compute the probabilities:

ProbA =
21

40
ProbB =

19

40

Suppose A is chosen then we reduce the fair share of A by one, FSA = FSA − 1 =

21
12
−1 = 9

12
and assign f1A to s1. We continue to the next slot, s2; both A and B can

use s2 while B is the only airline with FSB ≥ 1. Thus, we assign s2 to the highest

priority flight in PListB, so f1B goes to s2. Also, we reduce the B’s fair share by

one, FSB = FSB − 1 = 19
12
− 1 = 7

12
. In the next round, A and B compete for s3;

since both airlines can use s3 and both have positive share (no one has fair share

greater than one) . We compute the probabilities:

ProbA =
9

16
ProbB =

7

16

Suppose B is chosen, since its fair share is less than one, the fair share of B will

be set to zero and from PListB, f2B is assigned to s3. Finally, in the last round of

randomized procedure, A and C participate:

ProbA =
9

17
ProbB =

8

17

Suppose C is chosen then we assign f1C to s4.
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If we compare the result with RBS, we notice that under RBS, the flight-to-slot

assignment will ba:

f1A → s1 f1B → s2 f2A → s3 f2B → s4

Note that C receives nothing. In both PBPRA and M-PBPRA, C has a chance

to receive a slot. Of course, the second important point of allocation is that under

PBPRA and M-PBPRA the assignment is based on carriers’ preferences.

4.4 Equity of PBPRA and M-PBPRA

We assume that our problem is strictly non-decomposable. Let us define Q

as set of all possible assignments of carriers to slots. It is convenient to think of a

deterministic assignment as a 0-1 matrix, with rows indexed by carriers and columns

indexed by slots. Each slot is assigned only to one carrier, i.e. there is exactly a

single 1 in each column and the number of slots assigned to a carrier a does not

exceed its dFairShareae. Formally, set of all possible assignments of carriers to

slots, Q, is:

Q =

{
xi,j ∈ {0, 1}K×m :

∑
i

xi,j ≤ 1 ∀j, bFairShareic ≤
∑

j

xi,j ≤ dFairShareie ∀i
}

(4.1)

where ith row of each assignment matrix shows the slots assigned to carrier i and K

is the number of carriers.

We call a problem “strictly non-decomposable” if for all deterministic assign-

ment in Q,
∑

i xij = 1 ∀i. It means that all slot has been assigned.

71



Corollary 4.4.1 In a strictly non-decomposable set, PBPRA and M-PBPRA assign

to any carrier a, at least bFairShareac and at most dFairShareae slots.

Proof Since our problem is strictly non-decomposable which means all slots are as-

signed, all carriers are assigned bFairShareac slots in the second phase of PBPRA.

In the first phase, carriers with positive fractional part can participate once. There-

fore, in the first phase no carrier can receive more than one slot. Thus, any carrier

receives at most dFairShareae.

In M-PBPRA, at each step of the procedure, carriers with fair share greater or

equal one are considered first. Since our problem is strictly non-decomposable and

sum of all fair shares is equal to the number of available slots, each carrier, a, re-

ceives bFairShareac. During the those steps when carriers with remaining positive

fair share are considered, if a carrier receives a slot then its fair share is reduced to

zero. Thus, the total number of slots a carrier receives is at most bFairShareac+ 1

or dFairShareae. •

We call the problem “strictly diverse non-decomposable” if all slots have been

assigned and there is more than one carrier that can be assigned to any slot. In real-

ity, the number of fights and airlines are large enough so that the set of flights-slots

can always be considered strictly diverse non-decomposable. For example, based

on some experimental results that we will analyze in following section, involving a

set of 386 flights and 40 airlines, the problem always had the strictly diverse non-

decomposable property after 40% or more capacity reduction. To make sure that
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we have a strictly non-decomposable set of flights-to-slots at each step of PBPRA,

we may execute the diverse decomposition procedure after every round of slot allo-

cation. This means the following step should be added before Step 2a of PBPRA:

Step 2a: Run diverse decomposition procedure

A random feasible assignment, P , can be represented as a probability distri-

bution over all deterministic feasible assignments (Πi); the corresponding convex

combination of deterministic matrices is a matrix whose (i, j)th entry represents the

probability with which carrier i receives slot j can be represented as pij. Let P be

set of all random feasible assignments.

The set of all preference orderings is called a preference domain and denoted

by A. A random assignment mechanism is a mapping from AK to P . As we said,

our objective is to show some desirable fairness properties for PBPRA and also M-

PBPRA. To describe the fairness properties formally we need to extend the carriers’

preferences over the slots to preferences over the random assignment.

Given two random assignments P and Q, we say carrier i prefers P to Q (

P Âi Q ) if the allocation Pi stochastically dominates the allocation Qi ( where Pi

is the ith row, which represents the allocation for carrier i in the random assignment

P ). Thus, formally we can define:

Definition 4.4.1 Given two random assignments P and Q, P stochastically dom-

inates Q with respect to carrier’s i preference ordering if :

P Âi Q ⇔
∑

k:kºij

pik ≥
∑

k:kºij

qik, ∀j ∈ S (4.2)

Moreover, a random assignment P dominates random assignment Q if all carriers
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prefer P to Q, that is P Âi Q for all i ∈ A. If one carrier prefers P to Q and

another prefers Q to P then P � Q and also Q � P . Now we are ready to define

the efficiency and fairness properties.

There are three important properties : efficiency, fairness that includes Equal

treatment of equals and anonymity, and strategy proofness. We describe each of

these properties extensively as follows:

Efficiency - To understand the concept of efficiency we need to describe the

concept of Pareto Optimality. The formal definition of Pareto Optimality is:

Definition 4.4.2 A deterministic assignment Πi is Pareto optimal if there is no

other deterministic allocation, Π′, such that ∀ Ai Π′
i % Πi and at least for one Aj,

Π′
j Â Πj.

The Pareto optimality states that if one carrier can not do better unless another

carrier is worse off. It should be noted for Pareto-Optimality property that we

evaluate our procedures against it, slots are considered in an abstract form. This

means total number of slots that a carrier receives does matter , and also earlier

slots are better than later ones. This means utility of a carrier is not associated

with a slot. This implies a weak notion of Pareto optimality. The stronger form of

Pareto optimality is to look at the deterministic assignments that are aligned with

carriers’ preferences which does not hold for our procedures.

Proposition 4.4.1 In a strictly non-decomposable set, all Π in Q are Pareto Op-

timal.

Proof Case 1- Suppose in allocation Π carrier a receives its bFairShareac. Car-
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rier a strictly prefers allocation Π′ to Π if it receives its dFairShareae. In order for

carrier a to receive one more slot, then there must be another carrier, b, that looses

one slot. Since the total number of slots is constant, m. Thus, carrier b does not

prefers Π′ to Π. In other words, Π′
b � Πb. Case 2- Suppose in allocation Π carrier

a receives its dFairShareae. Since this is the most slots that carrier a can receive,

so it can not do better. Case 3- when the number of slots assigned to two carriers

a and b do not change and they just exchange an slot. Suppose in assignment Π,

sj and si are assigned to a and b respectively, and si is earlier than sj. Suppose a

receives si and b receives sj in assignment Π′. a prefers Π′ Â Πj since it receives an

earlier slot while b does not prefers Π′ to Π, Π′
b � Πb. •

We should have note that we look at the efficiency in an abstract way and we

don’t include the utility of the carriers. The random allocation is called efficient if:

Definition 4.4.3 P is :

(a) Ex post efficient iff it can be represented as a probability distribution over

Pareto optimal deterministic assignments.

(b) Ex ante efficient iff for any profile of utility functions consistent with the pref-

erence profile of the agents, the resulting expected utility vector is Pareto effi-

cient1.

(c) Ordinally efficient iff it is not dominated by any other assignment Q.

1For any random assignment in which the expected utility of some agent is strictly greater,

there must be another agent that whose expected utility is strictly lower.
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It can be shown that ex post efficiency implies ordinally efficiency, which implies ex

post efficiency. The relation between various notation of efficiency is explored in [2]

and [42].

Fairness As we said in the previous chapter, two important axioms of

fairness is called anonymity and Equal Treatment of Equals (ETE). You can refer

to the previous chapter for the formal definition of these two properties. A ran-

dom assignment mechanism is anonymous if the its out come is only depends on

the preference profile and it is independent of the type of agents. Equal treatment

of equals ex post states that carriers with the same schedule and same preference

profile should have the same probability distribution over slots. On the other hand

the stronger version of Equal treatment of equals is ETE-ex post: the outcome of

allocation, the actual total number of slots received by a carrier, to two carriers with

the same schedule flights should be different in at most one slot.

Incentive A random assignment mechanism is said to be strategy-proof if

for each agent the true preference ordering is a dominant strategy. If Bi is the true

valuation of slots for carrier i, then for any Bi compatible with true Âi , the expected

return for agent i is higher than any other Â∗i (false preference ordering). A weaker

notation of strategy-proofness can be defined: a mechanism is weakly strategy proof

if an agent by falsifying her preference list can not obtain an allocation that she

strictly prefers to her true allocation.

Definition 4.4.4 Given a mechanism P (.), we define:

strategy proofness: Pi(Â)sd(Âi)Pi(Â |i Â∗i ) ∀i ∈ N,Â∗∈ (P ),Â∈ PN
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Weak Strategy-proofness: Pi(Â |i Â∗i )sd(Âi)Pi(Â) ⇒ Pi(Â |i Â∗i ) = Pi(Â)

With all this explanation we can have the following theorem:

Theorem 4.4.1 (a) In a strictly non-decomposable problem, PBPRA and M-PBPRA

meet anonymity, Equal treatment of equals (ex-post), ex post efficiency and M-

PBPRA meets strategy proofness.

(b) In a strictly diverse non-decomposable problem PBPRA meets strategy proofness.

Proof It is easy to see that both procedures are anonymous.

Our problem is strictly non-decomposable which means all slots are assigned. In

PBPRA, we make sure that each carrier a receives its bFairShareac. The only

difference would be in the fractional part; thus the difference between two carriers

with same share will be at most one. In M-PBPRA, since in each round we give

priority to the carriers with a fair share greater than one, then eac carrier a will

receive at least bFairShareac. The rest of slots would be distributed based on a

randomization among carriers with positive share; no carriers can receive more than

one slot in this phase. Therefore, there will be at most one slot difference between

carriers with the same fair share.

We can write P as a probability distribution over all Pareto Optimal deter-

ministic assignments in Q so it is ex-post efficient.

To prove strategy proofness, we consider two procedures PBPRA and M–

PBPRA separately. M-PBPRA acts like as random priority method (or a serial dic-

tator). There is a known probability associated with each deterministic assignment.

Computing the probabilities are independent from carriers’ preferences. Thus, not
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telling the truth does not help a carrier to increase its chance of winning a better slot.

In other words, carriers can not have an assignment that stochastically dominates

another assignment by falsifying their preferences. Thus, there is no advantage for

a carrier to express an untrue preference.

In PBPRA, suppose airline a does not say the truth about its preferences

while other airlines are truthful. If FSa < 1, then a can only be considered in the

first phase, and if it is chosen it may receive an available slot it is proffered to the

one it receives. Therefore, it can not do better. If FSF
a = 0, then carrier a is only

considered in the second phase. Since the first phase has already been run, then

there is a known probability associated with each deterministic assignment. Also,

the set of flights-slots is strictly diverse non-decomposable, which means that there

is always more than one carrier compete for a slot. Therefore, a can not increase

its chance of wining a proffered slot by falsifying its preferences. The last scenario

is when FSF
a > 1, i.e. a participates in both phases. Without loss of generality,

suppose a prefers si to sj, si Âa sj, but it falsifies its preferences by sj Â∗a si. If in

the first phase a is chosen and the best available slot is si but it chooses sj instead

of si. Our problem is strictly diverse non-decomposable, which means si can be

claimed by another carrier. Then by falsifying its preference, a increases the chance

of another carrier wining slot si, i.e. it reduces its chance of wining si.

•
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4.5 Experimental Results

In our experiments, we use a test data set that had been employed by the

CDM Future Concepts Team to perform human-in-the-loop experiments related

to SEVEN. It contained 386 flights with 38 flight operators. The data included

scheduled arrival arrival times at an FCA boundary. The FCA duration was from

18:00 pm to 21:00 pm. We generated a flight cost function that is described below.

Given the cost function, we generated the priority list for each flight operator based

on the following principle:

Of all available flights that could use a slot, the flight operator preferred

allocating the slot to the flight with the highest marginal cost of delay.

We consider the cost of each flight as a function of the number of passengers

(actually number of aircraft seats) and the flight delay. The cost function (based

on generic advice from airline dispatchers) was constructed based on the following

general principles. First, the initial 15 minutes of delay is considered free. The Air

Transportation Association (ATA) estimates that direct operating cost during block

time is $64 per minute. We assume ground cost is 1/2 as expensive as air cost (and

this is an accepted practice in the literature), so $64/2 = $32. We can assume that

there is also the possibility of rerouting the flight. This effectively caps the delay

cost (once the delay cost curve exceeds the rerouting cost, the airline is better off

rerouting the flight). As with the airline cost, we have assumed that passengers are

willing to ignore the first 15 minutes of delay, that their time is worth $0.60 for each

minute thereafter, and that this linear function is capped after 15 hours [21]. The
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$0.60 figure again comes from the ATA web site, which cites $34.88 per hour as an

average cost of passenger time. This translates to $34.88/60 = $0.5813 per minute,

per passenger, which we rounded to $0.60 per minute. Our cost function should

represent internal airline costs. Airlines are interested in providing good customer

service but do not suffer the full brunt of passenger costs. We approximated this

customer service perspective by multiplying the passenger cost function by 1/6 and

adding the resultant cost to the flight delay costs as described above. Thus, we can

write the flight delay cost function as:

C(x, P ) =





0 x ≤ 15

(32 + 0.1P )(x− 15) 15 < x ≤ Mp

(32 + 0.1P )(Mp − 15) x > Mp

Where Mp is a flight specific max delay. That is, it is assumed that after Mp

minutes of delay, the flight operator would prefer to reroute the flight. Since the cost

effectiveness of rerouting will vary with flight characteristics we chose Mp randomly

with uniform likelihood between 30 to 90 minutes.

We compared the results of PBPRA and M-PBPRA against ration-by-schedule

(RBS), which is currently used to allocate FCA access during airspace flow programs.

Our version of RBS proceeded from the earliest to latest slot. At each step, it

assigned the available flight with the earliest scheduled arrival time (ties were broken

randomly with equal likelihood). Once we determined a flight-to-airline assignment,

if multiple flights from the chosen airline could be assigned to the same slot, then

we assigned the flight with the highest marginal cost of delay. In this way, at the

end of the procedure, the airlines could not improve their cost function by doing an
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“internal” flight-to-slot reassignment.

In our experiments, we considered 40%, 50%, 60%, 70% and 80% en-route

capacity reduction for the FCA. We performed 2000 repetitions of the procedure

(note that since PBPRA and M-PBPRA use randomization their “expected” im-

pacted can only be calculated by doing multiple repetitions). Table 4.4 shows the

average number of slots assigned to each airline for a specific capacity reduction.

A noteworthy point to be made is that many airlines received 0 slots under

RBS. Note that since RBS is a deterministic procedure if an airline receives 0 under

one recitation it receives 0 under all repetitions. Such airlines had only a single

flight demanding access to the FCA and that flight had a relatively late scheduled

arrival time. On the other hand, the fractional values achieved by PBPRA indicate

that on some repetitions PBPRA allocated such an airline a slot and on others it

did not. Few would probably dispute that this is a more equitable outcome.

An important related issue is the degree to which PBPRA or M-PBPRA

achieve (on the average) the flight operator fair shares (FSi’s). As stated earlier

we cannot formally prove that this is the case. As the results in the table indicates

experimentally both algorithms come very close achieving FSi values. As would be

expected, the RBS can diverge by fairly significant amounts. Table 4.5 shows the

mean square error of PBPRA, M-PBPRA and RBS compare to the fair share for

each capacity reduction.

Of course, a very fundamental implicit goal of our procedure is that flight op-

erators should be able to improve their internal performance based on an allocation

process that takes into account their preferences. The total cost saving over all

81



Table 4.4: Comparison of PBPRA, M-PBPRA and RBS allocations
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% Capacity reduction PBPRA M-PBPRA RBS

40 0.211 0.214 31.23

50 0.213 0.221 74.49

60 0.172 0.166 35.61

70 0.17 0.154 35.35

80 0.284 0.275 57.63

Table 4.5: Total mean square error from fair share, PBPRA and M-PBPRA vs.
RBS

airlines of PBPRA compared to RBS is shown in Fig 4.3. We note that PBPRA

consistently provides a significant savings. Table 4.5 provides the corresponding

percentage savings.

There is a reduction in total delay of both algorithms vs. RBS, we can see the

result in table 4.5. Note that PBPRA does a little bit better in terms of average

cost saving and average total delay. However, the advantage of M-PBPRA is it has

a smaller standard deviation than PBPRA. As can be seen in Figure 4.3 the average

cost plus standard deviation of M-PBPRA falls below both PBPRA and RBS.

4.6 Discussion

In this chapter two randomized procedures have been proposed to assign flights

to slots based on carriers’ preferences. In RBS, flights-to-slots assignment is based

on the flight schedule and later flights may not receive slots. We proposed random-

ized methods that use an exogenous fair share of carriers from available slots as a
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Figure 4.3: Total cost of all flight operators, RBS vs. PBPRA.

% Capacity reduction PBPRA M-PBPRA

40 15.96 14.76

50 14.53 13.3

60 12.22 11.33

70 9.97 9.198

80 7.36 6.42

Table 4.6: Total percent of cost savings PBPRA and M-PBPRA compared to RBS
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% Capacity reduction PBPRA M-PBPRA

40 25.07 21.14

50 28.26 24.1

60 30.9 26.94

70 33.27 28.15

80 35.3 28.9

Table 4.7: Total percent of average delay reduction, PBPRA and M-PBPRA com-
pared to RBS

parameter to assign flights to slots. Carriers are entitled to receive the number of

slots based on their fair share. It is guaranteed that any carrier receives at least

the floor of its fair share. These methods give carriers whose flights are scheduled

late chance of receiving a slot. We also explored the principles of our allocation

procedures. We showed that PBPRA and M-PBPRA meet equity principles and

also have ex-post efficiency and strategy proofness properties. Also, we tested our

algorithms on real data. Our algorithms showed improved performance compare to

the RBS. In PBPRA and M-PBPRA, expected total number of slots that a carrier

receives is very close to its fair share.

In PBPRA (or M-PBPRA), although slot preferences were employed we im-

plicity assumed that all slots had equal values. In reality, some slots are worth more

tan others. It is desirable for us that carriers can express their preference between

delay and rerouting. As we mentioned, some carriers prefer to receive fewer slots

but to preserve on-time performance for certain important fights while other ones
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prefer to receive more slots and can tolerate more delays. We will propose a new

algorithm in the next chapter to address this problem.
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Chapter 5

A New Randomized Allocation Using Dual Pricing of Resources

5.1 Introduction

In the case of capacity reduction in enroute resources we explained how to find

a fair share for each carrier based on scheduled arrival times at a FCA. Also, we

proposed probabilistic algorithms that assign slots to flights. In our algorithms we

took into account the preference of carriers for each flight. The algorithms allocate

slots successively to carriers while considering their fair shares. No carriers would

receive more than the ceiling of its fair share.We demonstrated that both algorithms,

meet fairness and efficiency properties.

In this chapter, we extend the allocation process to treat a new variant of the

problem. We describe the problem of allocation of slots in section 5.2. In section

5.3 a new algorithm will be proposed to allocate slots. The equity and incentive of

our algorithm will be discussed in section 5.4. Finally, we will explain the algorithm

by a numerical example.

5.2 Problem Description

In PBPRA (or M-PBPRA), although slot preferences were employed we im-

plicity assumed that all slots had equal values. Specifically, when measuring and
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allocation against a carrier’s fair share, we only considered the total number of slots

a carrier received. Clearly, given that a flight can use two slots, the earlier one is

always preferred. Further, those carriers that would like to maintain their on time

performance for key flights, may be willing to pay more than others for particular

slots. We wish to allow carriers to “pay more” for earlier slots when they wish to

do so.

Our objective here is somehow distinguish between those carriers who want

to maintain the on-time performance for certain flights and in return receive fewer

slots and those carriers who can tolerate more delay and would like to receive more

slots.

The methods we propose to accomplish these objectives employ a new prefer-

ence scheme. Our algorithm has two phases. We will explain each phase of algorithm

in the following section.

5.3 Dual Price Proportional Random Assignment

In general, each carrier will have different cost for delay and rerouting (or

cancellation). In PBPRA we include the carriers’ preferences to allocate slots based

on their exogenous fair share. We did not elicit preferences related to the trade off

between delay and rerouting .

Dual-Price Proportional Random Assignment (DP-PRA) is a new algorithm

that considers the carriers’ tradeoff between delay and rerouting (or cancellation).

The basic concept in the DP-PRA is : those airlines who want to receive fewer slots
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in order to get less delay should be able to do so in exchange for a reduction in the

total number of slots they receive. That is, if one views the fair share as currency

then they can pay more than one unit for highly desirable slots.

Consider the example of carrier A who prefers to receive priority for certain

flights in exchange for receiving fewer slots in total. The algorithm employs a pa-

rameter which is the “value” of the higher priority slots distributed. If carrier A’s

fair share is 5.5 then it can receive two “high-priority” slots based on 2 (b5.5
2
c). The

remainder of its fair share is 1.5, which can then be used to receive later slots. It is

very important to notice that only those carriers that can afford this trade off (have

a fair share ≥ 2) are considered. If a small carrier with a small fair share prefers to

receive good slots, if it does not have enough budget to give up a second flight, it

can not be considered.

5.3.1 Slot Values

For illustration purposes, suppose we have two sets of airlines. Let A1 be the

set of airlines that prefer less delay and A2 the set of airlines that prefer to receive

more slots. In our allocation algorithm we initially give priority to the airlines in

A1. Therefore, they must pay more for each slot they initially receive because of the

priority. Let us assume the price of each slot they receive is PH . Since airlines in A1

receive priority in the allocation process their exogenous fair share must be greater

than PH .

The FAA acts as an independent, fair moderator. The FAA announces the
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value of priority slots. This value must be greater than one. The process operates so

that the total value of slots given away equals the number of slots available. Since

the value of each slot for the airlines in set A1 is PH , we can compute the value of

remaining slots. Thus, later (less preferred) slots will have a value less than one.

Suppose there are m slots available, to compute the value of remaining slots, we

need to find the number of slots that are assigned to airlines in A1. Let us call this

number m1:

m1 = (
∑
a∈A1

[FSa − (FSa mod∗ PH)])/PH (5.1)

Where FSa is the fair share of carrier a. And (FSa mod∗ PH) is the reminder of

FSa from PH
1. Then the value of remaining slots can be computed as:

PL =
m− PH ×m1

m−m1

(5.2)

As we can see the value of the remaining slots is less than one. Note that higher

PH values result in a smaller m1. We will show the effect of varying PH in our

simulation results.

5.3.2 Flight Priority

Carries must submit a list of flight priorities. As we explained in the pre-

vious chapter, the priority list includes tuple of (f, s). To make the list somehow

shorter, carriers can submit the list of flights and a range of slots. For example,

(f, {si, si+1, ..., sk}).
1Note: we use mod for integer values. For example 7 mod 3 = 1. Here, we use mod∗ for positive

real values. Then, ∀a, b ∈ R+a mod∗ b = a− bba
b c. For example 2.5 mod∗ 0.2 = 2.5− 0.2b 2.5

0.2c =

0.1and9 mod∗ 2.5 = 9− 2.5b 9
2.5c = 1.
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5.3.3 DP-PRA

DP-PRA contains two phases: First phase allocates slots to the flights in the

set A1 and in the second phase all remaining slots are allocated from the earliest

available to the latest available. The second phase can use one one the procedures

in cahpter4, i.e. PBPRA or M-PBPRA.

As mentioned, we need to have a diverse non-decomposable set of flights-slots.

Therefore, we run strong decomposition algorithm before applying DP-PRA. We

define two policies. Policy P1, where carriers prefer to receive priority that means

these carriers prefer to receive fewer slots but less delay. Policy P2, where carriers

are not interested to receive priority instead they prefer to receive more slots. We

develop the DP-PRA procedure in the formal way as below:

Step 2: PHASE 0

Step 0a: Inputs: Set of flights F , set of carriers A, set of available slots

S, Carriers’ preference lists: PList1, PList2, ..., PListK also PH and

carriers set A1 = {a ∈ A : P1 Âa P2, FSa ≥ PH}.

Step 0b: Calculate the fair share of each airline FSa based on PRA

Step 0c: Calculate PL based on 5.1 and 5.2

Step 1: PHASE 1 while A1 6= ∅ Do:

Step 1a: ∀a ∈ A1, Randomly choose an a∗ ∈ A1 in proportion to FSa∗ .

Step 1b: From PLista∗ , assign the best slot available to the highest pri-

ority flight (f∗, s∗)
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Step 1c: FSa∗ = FSa∗−PH , PLista∗ = PLista∗−{f ∗} and S = S−{s∗}

and A1 = {a ∈ A1 : FSa ≥ PH}.

end while

Step 2: PHASE 2

Step 2a: A = {a ∈ A : FSa > 0}.

Step 2b: for all a in A, FSa = FSa/PL.

Step 2c: Run PBPRA.

The modified version of DP-PRA is MDP-PRA and in step 2-c we can run

M-PBPRA instead of PBPRA.

In the first phase of algorithm we consider just carriers in A1 who can afford

a slot with value of PH . A carrier will be chosen randomly based on its fair share,

FSa∗ . Then from PLista∗ we assign the best slot available to the highest priority

flight, f ∗. Assign f ∗ to s∗ then remove f ∗ from PLista∗ and s∗ from S. We reduce

the fair share of a∗ by PH . We repeat this phase until A1 becomes empty. Now, we

move to the second phase.

In the second phase of the algorithm all airlines with positive fair share will

be considered. The value of each slot in the second phase is PL. We make the value

of each slot one and increase the fair share of all airlines by 1/PL. Then, we execute

PBPRA or M-PBPRA. A carrier will be chosen randomly in proportion to its fair

share. From PLista the highest priority flight from carrier a will be chosen. Carrier

a’s fair share will be reduced by one.
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Flights f1A f1B f2A f2B f3A f3B f4A f1C f4B f2C f5A f3C

Airline A B A B A B A C B C A C

af 3:58 4:00 4:01 4:02 4:03 4:03 4:05 4:06 4:07 4:08 4:09 4:09

Table 5.1: Flight schedules of airline A, B and C

A B C

(f2A, s2 : s3) (f1B, s1 : s3) (f1C , s4 : s5)

(f3A, s3 : s4) (f2B, s2 : s4) (f2C , s5 : s6)

(f4A, s4 : s6) (f4B, s5 : s6) (f3C , s6)

(f1A, s1 : s6) (f3B, s3 : s6)

(f5A, s6)

Table 5.2: Preference list for airlines A, B and C

5.3.4 Example

Suppose we have 12 flights belonging to three airlines A, B and C. There

are 6 slots available which means there is 50% capacity reduction. Table 5.1 shows

the flights of three airlines and their scheduled arrival times at the boundary of the

FCA. The available time slots are:

Slot: s1 s2 s3 s4 s5 s6

Time: 4:00 4:02 4:04 4:06 4:08 4:10

Table 5.2 shows the flight priority of each airline. As we explained in chapter

3, the fair share of each airlines can be computed : FSA = 2.71, FSB = 2.43 and

FSC = 0.86.

Among these three airlines A and B choose policy P1 while C selects policy

P2. This means A and B prefer to receive priority in order to receive fewer slots but

less delay. In other words, C is not interested to receive priority instead it prefers
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to receive more slots. Assume the price of each slot in the first round is 2. Both

airlines have fair shares greater than two, then A1 = {A,B}. , so A and B each can

afford one slot. There are four slots available which will be allocated in the second

round. We can compute the value of remaining slots arePL = 6−4
6−2

= 0.5

In first phase of the algorithm, A and B participate. In the first round we

choose randomly A or B proportional to their fair share, so:

P (A) =
2.71

2.71 + 2.43
= 0.53 P (B) =

2.43

2.71 + 2.43
= 0.47

Suppose A is chosen, so FSA = 2.71− 2 = 0.71. From PListA the highest priority

flight, f2A, receives slot s2. We update the table and remove any (∗, s2). Now, B is

the only airline that can afford a slot. Thus, we will assign s1 to f1B. The fair share

of B is reduced by 2, FSA = 2.43− 2 = 0.43. We remove s1 from any tuple (∗, s1)

in the preference table. Now we move to the second phase. We can run PBPRA

and M-PBPRA. First, we adjust the fair shares by PL:

FSA =
0.71

0.5
= 1.42 FSB =

0.43

0.5
= 0.86 FSC =

0.86

0.5
= 1.72

If we run PBPRA: As explained, we only take into account the fractional part,

Nfrac = 2. Suppose B and C are chosen. We assign available slots to the highest

priority flights of B and C. Thus, f2B is assigned to s3 and f1C goes to s4. The fair

share of both airlines reduced. In the second part, the integer part of the fair shares

are considered. Therefore, A and C are considered. We first assign s5 and then s6.

Suppose A is chosen first and then C is chosen. Thus, f4A and f2C receive s5 and

s6 respectively.

94



Slots s1 s2 s3 s4 s5 s6

RBS f1A f1B f2A f2B f3A f3B

PBPRA f1A f2A f1B f1C f4B f5A

M-PBPRA f1A f1B f3A f2B f1C f1A

DP-PRA f1B f2A f2B f1C f4A f2C

MDP-PRA f1B f2A f3A f1C f4B f2C

Table 5.3: Flights-Slots assignments based on execution of different procedures

If instead of PBPRA, we run M-PBPRA. We start from s3, A and B can

use s3 while A has fair share of greater than one. Thus,we assign f3A to s3 and

remove any tuple (∗, s3) form the table. The fair share of A is reduced by one so

FSA − FSA − 1 = 0.42. The next slot is s4, C is the only airline that can use and

afford s4 so, f1C goes to s4 and FSA − FSA − 1 = 0.72. For s5, three airlines can

use the slot (none of them has fair share ≥ 1 and we consider all of them).One of

the airlines is chosen with probabilities:

P (A) =
0.42

0.42 + 0.86 + 0.72
= 0.21 P (B) =

0.86

2
= 0.43 P (B) =

0.72

2
= 0.36

Suppose B is chosen, therefore from PListB we assign f4B to s5. The fair

share of B is reduced to zero. The last slot, s6 is chosen by lottery between A and

C. Suppose C receives the slot. Thus, f2C goes to s6.

Table 5.3 provides the flights to slots assignment for the five procedures DP-

PRA, MDP-PRA, PBPRA, M-PBPRA and RBS. As you can see, in both DP-PRA

and MDP-PRA A and B receive their first priority while, in the other three proce-

dures, the airlines receive the second best preferences. In all proposed procedures

C received one slot, while in RBS it does not receive any slots.
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We will see in the experimental section of this chapter that DP-PRA and

MDP-PRA assign fewer slots but less delays to airlines in A1 who prefer to receive

priority. In the other words, these two procedures assign more slots to airlines in

A− A1 who are interested to receive more slot instead of receiving priority.

5.4 Equity of DP-PRA

As explained in the previous chapter, we evaluate the equity of a procedure

using three criteria : fairness, efficiency and incentive. One parameter to measure

the fairness is called Equal Treatment Of Equals. Below, we discuss which equity

principals are met by DP-PRA or MDP-PRA.

As we said, there are two sets of airlines. The first set of carriers, A1, includes

carriers who prefer to receive priority and receive fewer slots but less delay. The other

set, A−A1, includes carriers who are not interested to receive priority instead they

prefer to receive more slots. Carriers must have sufficient budget (FairShare ≥

PH) to be considered in the first set. Without loss of generality, suppose A1 =

{a1, ..., aL}. The number of slots that will be assigned to each carrier in the first

phase of algorithm is mi,1 = (FSi − (FSi mod∗ PH))/PH . Therefore, for each

a ∈ A1 the first mi,1 flight(s) in its priority list would be assigned slots in the first

phase. Thus, the total number of slots assigned in the first phase is m1 =
∑L

i=1 mi,1.

Formally, we can write Q(F ), the set of all deterministic allocations as:

Q(F ) =





x ∈ {0, 1}K×m :
∑

a∈A xij ≤ 1 ∀j ∈ S
bFSi

PL
c ≤ ∑

j xi,j ≤ dFSi

PL
e ∀i /∈ A1

mi,1 + bFSi mod∗ PH

PL
c ≤ ∑

j xi,j ≤ mi,1 + dFSi mod∗ PH

PL
e ∀i ∈ A1




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Denote by Πi ∈ Q(F ), one such allocation. Here, we assume that all slots can

be assigned, or in the other words our problem is strictly non-decomposable, which

means
∑

a∈A xij = 1 ∀j ∈ S.

The first constraint assigns one flight to one slot, the second constraint, assign

flights to the carriers that prefer more slots (not belonging to set A1). As explained,

in the second phase of the algorithm the fair share of all carriers increased by factor

of 1/PL. The last constraint is for carriers in A1: they must receive mi,1 slots during

the first phase of algorithm, the remaining slots are assigned in the second phase.

Our procedure chooses each deterministic assignment with a probability. To

see the efficiency of the algorithms, we have to show that every deterministic as-

signment is Pareto-Optimal.

Proposition 5.4.1 In a strictly non-decomposable problem , all deterministic as-

signments in Q(F ) are Pareto-optimal.

Proof Suppose carrier a prefers Π′ to Π. Without loss of generality, suppose all

carriers have the same allocation in Π and Π′ except carrier b. We investigate three

possible cases:

First case: a, b ∈ A − A1. If Π′ Âa Π then two options are possible: 1- a has

bFSa/PLc in Π and it receives one more slot in Π′. Since our problem is strictly

non-decomposable, therefore. there must be another carrier, b, to loose a slot. Then

Π′ �b Π. 2- If a exchanges slot sj, in allocation Π, with si, where ti < tj. Therefore,

Π′ Âa Π. Since our problem is strictly non-decomposable, it means all slots have

been used, then b has to loose earlier slot si and receive later slot sj. Thus, b does

97



not prefer Π′ to Π.

Second case: a ∈ A1, b ∈ A − A1. In order for a to prefers allocation Π′ to

Π, three options are possible. 1- a receives one more slot in Π′. In that case, since

the number of slots it receive in the priority is known, ma,1, then a must receives

one more slots in the second phase of algorithm. Since, our problem is strictly non-

decomposable then b has to loose a slot. Therefore, Π′ �b Π. 2- If a exchanges a slot

with b. Say, slot sj is exchanged with si, such that Π′ Âa Π. In this case, since a is

in high priority set, if sj is obtained by a in the first phase, then it is not possible to

exchange sj with any slot of b, since b is not in the priority set, and obtain a better

allocation. If sj is obtained in the second phase, then in order to receive a better

allocation, si has to be an earlier slot. Therefore, b has to loose si and receive sj,

since the problem is strictly non-decomposable. Thus, Π′ �b Π.

Third case: a, b ∈ A1. In this case two options are possible in order to Π′ Âa Π:

1- a has bFSa/PLc slots in Π and it receives one more slot in Π′. Because the num-

ber of slots a receives in the first phase is known, ma,1, thus, a has to receive the

extra slot in the second phase. Our problem in strictly non-decomposable therefore,

b has to loose a slot. Thus Π′ �b Π. 2- a receives si in Π′ instead of sj in Π. a

prefers Π′ to Π, therefore si Âa sj. Thus, if si is a slot that a receives in the first

phase in stead of sj then, it means that b has to loose si. But b prefers si, because

in allocation Π, it chooses si, therefore Π′ �b Π. If si is in the set of slots allocate

in the second phase, then si has to be an earlier slot in order to Π′ Âa Π. We know

that our problem is strictly non-decomposable, then b has to loose an earlier slot si

and receive sj. Therefore, Π′ �b Π. •
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Both DP-PRA and MDP-PRA are randomized procedures which means they

choose each deterministic allocation with a probability. Therefore:

Corollary 5.4.1 Both DP-PRA and MDP-PRA meet ex-post efficiency.

It is clear that both DP-PRA and MDP-PRA are anonymous procedures,

which means they assign flights to slots without taking into account the name of

carriers. And also it is clear that the ex-ante Equal Treatment of Equals property is

held by both of these procedures. However, behavior of DP-PRA and MDP-PRA on

total slot value assigned to a carrier and also ex-post property which deals with the

actual total number of slots assigned to the carrier are not clear or straight forward.

In the following, we explain and investigate these two in more details.

It is well known that the stronger form of ETE is ex-post. Validity of the ex-

post ETE property for a procedure implies if two carriers have equal fair share that

belong to the same set, then there should not be more than one slot difference in the

actual total number of slots the carriers will receive based on the procedure. Both

DP-PRA and MDP-PRA procedures are maintaining the ex-post ETE property and

it is proved in the next proposition.

We already defined concept of slot values, PH and PL, where PH is assigned

to a slot while PL is calculated based on the procedure. Now, the actual total slot

value for a carrier after using the procedure can be calculated based on wether slot

value is PH or PL, and based on actual total number of slots received by that carrier.

Both DP-PRA and MDP-PRA procedures are providing an interesting behavior on
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the actual total slot value for a carrier.

After applying any of DP-PRA and MDP-PRA, then for any two carriers

with equal fair share the difference in actual total slot value for two carriers with

the same fair share will be less than an upper bound of 2PL. To be more precise,

if two carriers with equal fair share belong to the same set, then the difference in

actual total slot value for each carrier is less than PL. And if two carriers with

equal fair share belong to two different sets, then the difference in actual total slot

value for each carrier is less than 2PL. This means after applying any of DP-PRA

and MDP-PRA procedures, then actual total slot value for airlines with equal fair

share will be in reasonable bound. In the next proposition, we first formulate this

behavior, and then we prove it.

If Yi and Vi are the actual number of slots and actual total slot value a carrier

receives then it follows :

Theorem 5.4.1 In a strictly non-decomposable problem for two carriers a and b

with the same fair share:

(a) a, b ∈ A1 |Ya − Yb| < 1 and also a, b ∈ A− A1 |Ya − Yb| < 1

(b) a, b ∈ A1 or a, b ∈ A− A1 then |Va − Vb| ≤ PL

(c) a ∈ A, a ∈ A− A1 then |Va − Vb| ≤ 2PL

where PL is the value of slots in the second phase of DP-PRA and MDP-PRA (note

PL < 1).

Proof
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Proof (a)- If we consider carriers a and b with the same share, FSa = FSb, in

the set A1 then the number of slots they receive in the first phase is equal to

ma,1 = (FSa − (FSa mod∗ PH))/PH and the remainder of their share would be

equal for the second phase. In the second phase, since the problem is strictly non

decomposable, then all slots have been assigned. Consequently, based on Theorem

4.4.1, if Yi is the number of slots that a carrier i receives in the second phase then:

|Ya − Yb| ≤ 1

Proof (b) and (c)- In terms of the value of slots that an airline receives, if :

(i) a ∈ A1 then Va = PH ×ma,1 + Ya × PL

(ii) a ∈ A− A1 then Va = Ya × PL

If two carriers belong to the same set, it can be concluded from (a) that |Va−Vb| <

PL. But if a and b belong to different sets then : Va = PH × ma,1 + Ya × PL

and Vb = Yb × PL. If we substitute the value of ma,1 then we have Va = (FSa −

(FSa mod∗ PH)) + Ya × PL. Define Ra = (FSa mod∗ PH).

In the second phase the number of slots that carrier a would definitely re-

ceive is: ma,2 = (Ra − (Ra mod∗ PL))/PL and for carrier b is mb,2 = (FSb −

(FSb mod∗ PL))/PL if we substitute these two values we have:

Va = (FSa −Ra) + Ra − (Ra mod∗ PL) + Y ′
a × PL

Vb = FSb − (FSb mod∗ PL) + Y ′
b × PL

where Y ′ is a random variable with the value of 0 or 1. Therefore:

|Va − Vb| = |Y ′
a × PL − (Ra mod∗ PL)− Y ′

b × PL + (FSb mod∗ PL)|
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If Y ′
a = Y ′

b then |Va− Vb| = |(Ra mod∗ PL)− (FSb mod∗ PL)|. If |Y ′
a − Y ′

b | = 1 then:

|Va − Vb| = |PL ± ((Ra mod∗ PL)− (FSb mod∗ PL))|

≤ PL + |(Ra mod∗ PL)− (FSb mod∗ PL)| ≤ 2PL. •

As we can see, if two carriers have the same fair share and belong to the same

set then ex post equal treatment of equals holds. However, there will be a difference

in the value the they receive. This difference however is guaranteed to be small.

We now need to investigate the degree to which our algorithms encourage

truthfulness relative to preference revelation. That is the degree to which carriers

can manipulate preferences in order to receive a better allocation. We explained

strategy-proofness in the previous chapter. Since we have a random allocation pro-

cedure, strategy proofness means that a carrier can not receive an allocation that

stochastically dominates the current allocation by using non-truthful preferences.

Proposition 5.4.2 In a strictly diverse non-decomposable problem both DP-PRA

and MDP-PRA procedures meet strategy proofness.

Proof Assume m1 is total number of slots that are going to be assigned in the first

phase. And suppose a ∈ A1 wants to manipulate its preference while other airlines

are truthful. Moreover, assume that a actually prefers si. There are there different

cases that we discuss strategy proofness for them as follow.

Case 1: a ∈ A and a falsifies its preference in the first phase. If a does not

say its true preference in the first phase, for example si Âa sj, but a falsifies its

preference by sj Â∗a si. Now in executing DP-PRA and MDP-PRA procedures, if
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a is chosen in the first phase, then a receives sj instead of si. So, a’s fair share

is reduced by value of PH . Considering set of flight-to-slot is strictly diverse non-

decomposable, so more than one airline competes for any slot. After receiving sj by

a at first phase, a has less faire share for next round if it is chosen by the procedures.

Consequently, a’s chance for wining si is decreased since a has to compete with some

other airlines on slot si.

Case 2: a ∈ A and a falsifies its preference in the second phase. The proof is

similar to Theorem 4.4.1.

•

5.5 Experimental Results

In our experiment, we use the same test data set as previous chapter. This

data set that had been employed by the CDM Future Concepts Team to perform

human-in-the-loop experiments related to SEVEN. It contained 386 flights with

38 flight operators. The data included scheduled arrival arrival times at an FCA

boundary. The FCA duration was from 18:00 pm to 21:00 pm. As we explained in

previous chapter a flight cost function can be generated as:

C(x, P ) =





0 x ≤ 15

(32 + 0.1P )(x− 15) 15 < x ≤ Mp

(32 + 0.1P )(Mp − 15) x > Mp

Where Mp is flight specific max delay. Given the cost function, we generated the

priority list for each flight operator based on all available flights that could use a
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slot; and the assumption is that the flight operator preferred allocating the slot to

the flight with the highest marginal cost of delay. The flight operators are randomly

assigned to set A1, the ones who prefer to receive better slots, or A − A1, flight

operators who prefer to receive more slots.

We compared the results of DP-PRA and MDP-PRA against ration-by-schedule

(RBS), which is currently used to allocate FCA access during airspace flow programs.

In our experiment, we considered 40%, 50%, 60%, 70% and 80% en-route capacity

reduction for the FCA. We performed 2000 repetitions of the procedure since both

procedures are random. In first part of all of our experiment we set PH = 2. We

% Capacity reduction List of Airlines Number of slots

40 {1,3,5,6,21,25,28,29,34} 45

50 {1,5,6,21,25,28,29,34} 37

60 {1,5,6,21,25,29,34} 27

70 {1,5,6,21,25,29,34} 21

80 {1,21,29} 12

Table 5.4: List of airlines that can participate in the first phase and the number of
slots are assigned

will show later the effect of changing PH . For each capacity reduction, the number

of carriers that can participate in the first phase of algorithm is different. It is clear

that as capacity increases the fair share of each airline increases, consequently the

number of airlines that can participate will increase as well. Airlines 1, 3, 5, 6, 7, 9,

17, 19, 20, 21, 25, 26, 28, 29, 30, 31, 34, 35 have the second policy. Table 5.5 shows
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Table 5.5: Comparison of Average number of slots and average slot values received
by each carrier
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the airlines and number of flights (or slots) that are assigned in the first phase for

each capacity reduction. The fair share of each airlines and the number of slots they

received is shown in table 5.5. The first part of table (above the bold line) shows

the airlines who like to receive less delay.

% Capacity reduction DP-PRA MDP-PRA

40 18.19 21.21

50 15.72 17.11

60 11.69 11.53

70 9.71 9.15

80 6.78 5.79

Table 5.6: Comparison of cost reduction for DP-PRA and MDP-PRA vs. RBS

We should note that for 40% capacity reduction our problem is not strictly non-

decomposable. Table 5.5 shows the percentage of cost savings for the two algorithms

when compared to RBS. If we compare this with the result of PBPRA or MPB-PRA

from previous chapter, we notice that the cost saving is almost the same. But if

we compare the total delay saving (Table 5.5) , DP-PRA and MDP-PRA are better

than PBPRA and M-PBPRA.

The main advantage of DP-PRA or MDP-PRA compared to previous proce-

dures is to meet carriers’ preference better. Figure 5.1(a) shows the average number

of slots carriers in A1 receives compare to previous procedures for 60% capacity re-

duction. We can see the comparison of delay in figure 5.1(b). As we can see, airlines

106



% Capacity reduction DP-PRA MDP-PRA

40 50.36 51.85

50 47.67 45.81

60 37.96 36.70

70 36.44 35.27

80 33.55 31.8

Table 5.7: Comparison of delay reduction for DP-PRA and MDP-PRA vs. RBS

in A1 save more delay and in return they receive fewer slots.

5.5.1 Effect of PH

So far we have used PH = 2 in all of our experiments. Here we want to

investigate the effect of PH in overall performance of DP-PRA and MDP-PRA.

Choosing the right PH is a challenge for the FAA. There can be many different

performance criteria; for example, deviation from carriers’ fair share, total internal

cost, how many slots should be assigned in the first phase. Here we explain the

effect of PH on some of performance criteria. In all of our examples we consider

40% capacity reduction in enroute resources.

As we expect, when PH increases the number of carriers in A1 decreases. Also,

the number of slots assigned in the first phase decreases as well (Figure 5.2). For

example, if the FAA decides to assign 25% or 15% of available slots in the first phase

then PH must be chosen 1.5 or 2.5 respectively (the solid line in the figure). As can
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(a)

(b)

Figure 5.1: (a) Comparison of number of slots received for airlines in A1. (b)
Comparison of delay for the airlines in A1 for all procedures
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be seen, the number of airlines is considered in the first phase is reduced from 8 to

7 airlines.

Figure 5.2: Effect of primary slot values on the number of slots assigned in the first
phase, the bars show number of airlines that can participate in the first phase

The second performance criteria is to minimize the total internal cost. This is

very hard for the FAA to measure because each carrier’s cost information is private.

Figure 5.3 shows the total internal cost of airlines for different primary slot values.

As it can be seen we have two local minima: one occurs at at the value of 1.25 for

DPPRA and 1.5 for MDP-PRA; the second local minimum occurs at PH = 3.25 and

PH = 3.0 for DPPRA and MDP-PRA respectively.

The FAA can also consider the deviation from fair share as a one criteria.

Figure 5.4(a) shows the total define Minimum Square Error (MSE) of slot values

from carriers’ fair share. As can be seen, a minimum occurs at PH = 2.75 and

PH = 3.5 for both procedures.

The other criterion is that, those carriers who are not in A1 they should receive

more slots instead. The second graph (on the left vertical axis of Figure 5.4(b))
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Figure 5.3: Effect of primary slot values on total internal cost

shows the total MSE of the difference between the number of slots and the carriers’

fair share (carriers who are not in A1 are considered). The maximum happens at

PH = 3 for both procedures.

We can also consider the combination of all criteria together. In this case

maybe choosing PH between 3 to 3.5 is a good choice.

5.6 Discussion

In this section a new procedure for slot allocation has been proposed. Unlike

PBPRA and M-PBPRA that assigns the same value to all slots. In DP-PRA and

MDP-PRA, we consider two values for slots. The main goal is to address carriers’

preferences better. As mentioned, carriers who wish to give priority to certain flights,

may be willing to pay more for some particular slots. In our procedures, we use two

prices for slots. Airlines, who wish to receive “premium” slots could do so but would
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(a)

(b)

Figure 5.4: (a) Effect of primary slot values on MSE of slot values. (b) Effect of
primary slot values on MSE of number of slots from fair share for airlines in A−A1
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be charged more for each premium slot they receive. Our procedures meets ETE,

efficiency and strategy proofness. As it was shown in our experiment carriers can

meet their preferences better than previous algorithms. A challenge here is to decide

about the primary slot values. There can be different criteria that must be decides

by the FAA.
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Chapter 6

Conclusion

This research was motivated by fair allocation of scarce resources among flight

operators, agents, especially when there is competition among agents. We specifi-

cally looked at problems that arise, when, due to bad weather, there is a capacity

reduction in a part of the airspace for a period of time and it is not possible for all

flights who are scheduled during that period of time to pass through constrained

area. Therefore, some of flights must be rerouted or receive a departure delay.

Each airline will typically place a different relative weight on delays, rerouting

and cancellation. Whereas some airlines would like to preserve on-time performance

for certain flights and cancel or reroute many other flights, other airlines prefer to

have less rerouting and cancellations while tolerating higher total delay. Therefore

a key challenge is to determine how many slots each airline should receive and how

we can include airlines’ preferences while maintaining fairness.

We proposed a new rationing procedure that is based on Proportional Random

Assignment. In contrast to RBS that gives access only to the earliest flights, the new

rationing algorithm considers all flights that are disrupted by an AFP. Therefore,

small carriers, which have fewer flights or carriers whose flights are scheduled late,

can still have a share of available slots. The new method for computing a fair share

of available resources implicity gives a larger share to the flights that are scheduled

113



earlier. However, no flight can receive more than one slot as its fair share. We use the

fair share of carriers as an input to our random allocation procedures. Therefore,

carriers with positive share will have chance to receive slots. Our approach for

computing a fair share achieves principles such as impartiality, equal treatment of

equals, consistency and demand monotonicity.

In chapter 4 of this dissertation, we proposed randomized methods, Preference

Based Proportional Random Allocation (PBPRA) and Modified PBPRA, that use

an exogenous fair share as a parameter to assign flights to slots. Carriers are entitled

to receive a number of slots based on their fair share. It is guaranteed that any carrier

receives at least the floor of its fair share. These methods give carriers whose flights

are scheduled late a chance of receiving a slot. Another main advantage of the new

algorithms is to include carriers’ preferences. Carriers’ can express their preferences

over slots and these preferences considered during the allocation process. We also

explored the principles of our allocation procedures. We showed that PBPRA and

M-PBPRA meet equity principles and also have ex-post efficiency and strategy

proofness properties. Also, we tested our algorithms on real data. Our algorithms

showed improved performance compare to the RBS. In PBPRA and M-PBPRA,

expected total number of slots that a carrier receives is very close to its fair share.

In PBPRA (or M-PBPRA), although slot preferences were employed we im-

plicity assumed that all slots had equal values. In reality, some slots are worth more

tan others. Those carriers that would like to maintain on time performance for key

flights may be willing to pay more than others for particular slots. It is typically the

case that carriers have higher preference for earlier slots, while the later slots are less
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favored. Thus, it does make sense that earlier slots, which have more demand, have

more weight than later slots, which are less preferred. In both algorithms, we did not

elicit preferences related to the trade off between delay and rerouting. We addressed

this problem with Dual Price Proportional Random Allocation(DP-PRA).

In DP-PRA and MDP-PRA, we consider two values for slots. The main goal

is to meet carriers’ preferences better. As mentioned, some carriers who like to

maintain their on time performance for certain flights may be willing to pay more

for some particular slots. Airlines who wish to receive better slots for select flights

can do so, but in return are charged more for such slot they receive. Our procedures

meets ETE, efficiency and strategy proofness. As it was shown in our experiments,

carriers can meet their preferences better than previous algorithms. Also, carriers

receive the expected total value of slots very close to their fair share.

In this dissertation, weather conditions are considered constant during the

AFP period. A potential research is to investigate resource allocation considering

dynamic weather. In reality, weather can change during the time horizon and so

there is a change in available resources as well. To much more efficient use of

available resources, it can be better to have a dynamic allocation that can adapts

over time.
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