
Fast Fractional Cascading and Its Applications �(CS-TR-4502 & UMIACS-TR-2003-71)Qingmin Shi and Joseph JaJaInstitute for Advanced Computer Studies,Department of Electrical and Computer Engineering,University of Maryland, College Park, MD 20742fqshi,joseph@umiacs.umd.edugAbstractUsing the notions of Q-heaps and fusion trees developed by Fredman and Willard, wedevelop a faster version of the fractional cascading technique while maintaining the linearspace structure. The new version enables sublogarithmic iterative search in the case when wehave a search tree and the degree of each node is bounded by O(log� n), for some constant� > 0, where n is the total size of all the lists stored in the tree. The fast fractionalcascading technique is used in combination with other techniques to derive sublogarithmictime algorithms for the geometric retrieval problems: orthogonal segment intersection andrectangular point enclosure. The new algorithms use O(n) space and achieve a query timeof O(log n= log log n + f), where f is the number of objects satisfying the query. All ouralgorithms assume the version of the RAM model used by Fredman and Willard.1 IntroductionFractional cascading [5] is a powerful technique for dealing with the so called iterative searchproblem [5]. Let G be a graph such that a sorted list is associated with each of its vertices.Given a key q and a subgraph G0, the iterative search problem is to search for q in each ofthe lists associated with the vertices in G0. This problem appears to be crucial in developinge�cient algorithms for a wide variety of problems, and in particular for geometric retrievalproblems [4, 6, 17, 3, 7, 24].Let the overall size of the lists be n, and let the number of vertices in the subgraph G0be p such that the degree of each vertex is bounded by c. Then the fractional cascadingstructure enables searching for the key q in these lists in O(log n+ p log c) time. This resultis optimal under the pointer machine model [22]. However, its optimality in more powerfulcomputational models, such as the RAM model and its variations[1, 18, 10], is not clear. In�Supported in part by the National Science Foundation through the National Partnership for AdvancedComputational Infrastructure (NPACI), DoD-MDProcurement under contract MDA90402C0428, and NASAunder the ESIP Program NCC5300. 1

particular, Fredman and Willard showed in [10] that such search operations can be achievedin worst case sublogarithmic time, which is impossible on the pointer machine model. Animportant fact of the fractional cascading structure is that the complexity of the searchoperations on the vertices other than the �rst one is a�ected signi�cantly by the bound c onthe degree of each vertex in G. We show in this paper that, under the RAM model used byFredman and Willard, if G is a tree whose degree is bounded by a logarithmic function of n,i.e. c = log� n for some constant �, it is possible to search each list, except the one associatedwith the root, in constant time (independent of n) while still maintaining O(n) space for thedata structure. We call this new fractional cascading structure fast fractional cascading.We believe that, by applying the fast fractional cascading technique, one should be able toimprove the asymptotic upper bounds of a wide range of geometrical retrieval problems. Thisis due to the fact that binary search trees whose nodes are each equipped with sorted listsare often the crucial components in many data structures for geometrical retrieval problems.Ensuring that a constant amount of time is spent at each node is often critical in designingthese structures and can be accomplished using the standard fractional cascading technique.The fusion tree technique [10, 11] makes it possible to further reduce the search complexityof some of these structures by increasing the degree of the binary trees to log� n so that theheight of the tree is reduced to O(log n= log log n). Even though at query time the branchoperation at each node can be performed in constant time, the fact that the degree of the treeis now dependent on n makes the standard fractional cascading technique ine�ective. In fact,a search operation performed on the list associated with a tree node will require O(log log n)time, which negates the e�ect of the \fattened" tree. Only in some special cases, such aswhen the list of a node is a superset of that of its each children, constant search time canbe achieved by equipping with each element of the parent of log� n pointers interconnectingthe elements in the parent with those of its children, as Willard did in solving the three-dimensional dominance aggregation problem [24]. Even in such cases, the storage cost isincreased by a factor of log� n. On the other hand, our fast fractional cascading techniqueachieves the constant time search at each node while maintaining the linear space constraint.We apply our techniques to two well-known problems: orthogonal segment intersec-tion, and rectangular point enclosure. Each of our algorithms achieves O(n) space andO(log n= log log n+f) query time where f is the number of objects satisfying the query. Thebest previous results require query time O(log n+ f) when using linear space [4, 17].We now introduce these two problems formally. To facilitate our explanation, we willdenote a horizontal (resp. vertical) segment in a two-dimensional space as (x1; x2; y) (resp.(x; y1; y2)), where (x1; y) and (x2; y) (resp. (x; y1) and (x; y2)) are its two endpoints andx1 � x2 (resp. y1 � y2)).� Orthogonal segment intersection. Given a set S of n horizontal segments, report thesubset Q of segments that intersect a given vertical segment. We say a horizontalsegment (x1; x2; y) intersects a vertical segment (x; y1; y2) if and only if x1 � x � x2and y1 � y � y2. We call the segments in Q proper segments relative to the givenquery.� Rectangular point enclosure. Let (x1; x2; y1; y2) denote a rectangle in a two-dimensionalspace with edges parallel to the axes, where the intervals [x1; x2] and [y1; y2] are theprojections of this rectangle to the x-axis and y-axis respectively. Given a set of2

S of rectangles, report the subset Q of proper rectangles such that each rectangle(x1; x2; y1; y2) in Q contains a query point (x; y), i.e. x1 � x � x2 and y1 � y � y2.In this paper, we use the modi�ed RAM model described in [10]. In this model, it isassumed that each word contains w bits, and the size of a data set never exceeds 2w, i.e.w � log2 n. In addition to arithmetic operations, bitwise logical operations are also assumedto take constant time.The next section introduces some well-known techniques that will be heavily utilizedin the rest of the paper. In Section 3, we present the fast fractional cascading structure,while Sections 4, and 5 respectively give the improved algorithms for orthogonal segmentintersection and rectangular enclosure.2 PreliminariesGiven a set S of multi-dimensional points (x1; x2; : : : ; xd), a point with the largest xi-coordinate smaller than or equal to a real number � is called the xi-predecessor of � and theone with the smallest xi-coordinate larger than or equal to � is called the xi-successor of �.2.1 Cartesian TreesThe notion of a Cartesian tree was �rst introduced by Vuillemin [23] (and rediscovered bySeidel and Aragon [20]). A Cartesian tree is a binary tree de�ned over a �nite set of 2-Dpoints sorted by their x-coordinates, say (p1; : : : ; pn). Let pi be the point with the largesty-coordinate. Then pi is associated with the root w of C. The two children are respectivelythe root of the Cartesian trees built on p1; : : : ; pi�1 and pi+1; : : : ; pn. Note that the left (resp.right) child of w does not exist if i = 1 (resp. i = n). Figure 1 shows an example of theCartesian tree.
(1,8)

(2,4)

(3,6)

(4,3)

(5,5)

(6,1)

(7,7)

(8,2)

Figure 1: Cartesian tree.An important property of the Cartesian tree is given by the following observation [12]:Observation 2.1. Consider a set S of 2-D points and the corresponding (x,y)-Cartesian treeC. Let x1 � x2 be the x-coordinates of two points in S and let � and � be their respective nodes3

in C. Then the point with the largest y-coordinate among those points whose x-coordinatesare between x1 and x2 is stored in the nearest common ancestor of � and �.Using Observation 2.1, combined with the techniques to compute the nearest commonancestors [13] (see also [2]) in constant time, we have shown in [21] that we can handle theso-called 3-sided two dimensional range queries e�ciently. Brie
y, a point (a; b) satis�es the3-sided query (x1; x2; y), x1 � x2, if x1 � a � x2 and b � y.Lemma 2.1. By preprocessing a set of n two-dimensional points to construct a (x,y)-Cartesiantree C, we can handle any three-sided two-dimensional range query given as (x1; x2; y), withx1 � x2, in O(t(n) + f) time, where t(n) is the time it takes to �nd in C the leftmost andright most nodes whose x-coordinates fall within the range [x1; x2] and f is the number ofpoints reported.Note that C should be transformed into a suitable form to enable the computation ofnearest common ancestors in constant time.2.2 Q-heaps and Fusion TreesQ-heaps and fusion trees, developed by Fredman and Willard [10, 11], achieve sublogarithmicsearch time on one-dimensional data. While the Q-heap data structure was proposed laterthan fusion tree, it can be used as a building block for the fusion tree [24]. Using Q-heapsand fusion trees, Willard demonstrated in [24] theoretical improvements for a number ofrange search problems.Q-heap [11] supports insert, delete, and search operations in constant time for smallsubsets of a large data set of size n. Its main properties are given in the following lemma(the version presented here is taken from [24]).Lemma 2.2. Suppose S is a subset with cardinality m < log1=5 n lying in a larger databaseconsisting of n elements. Then there exists a Q-heap data structure of size O(m) that enablesinsertion, deletion, member, and predecessor queries on S to run in constant worst case time,provided access is available to a precomputed table of size o(n).Note that the look-up table of size o(n) referred to above is shared by all the Q-heapsbuilt on subsets of this larger database.The fusion tree built on the Q-heap achieves linear space and sublogarithmic search time.The following lemma is a simpli�ed version of Corollary 3.2 from [24].Lemma 2.3. Assume that in a database of n elements, we have available the use of precom-puted tables of size o(n). Then it is possible to construct a data structure of size O(n) space,which has a worst-case time O(log n= log log n) for performing member, predecessor and rankoperations.Notice that the assumptions of the RAM model introduced in Section 1 are critical toachieving the bounds claimed in the above lemmas.4

2.3 Adjacency Map and Hive GraphThe notion of the adjacency map was �rst introduced by Lipski and Preparata [15]. Given aset S of n horizontal segments, the vertical adjacency map G(S) is constructed by intercon-necting the horizontal segments in S using vertical (in�nite, semi-in�nite, or �nite) segmentsas follows: from each endpoint of the segments in S, draw two rays shooting upward anddownward respectively until they meet other segments in S except possibly at an endpoint.This creates a planar subdivision G(S) with O(n) vertices, which are the joints of the hor-izontal and vertical segments. G(S) can be represented in O(n) space using the adjacencylists associated with the vertices. We call the edges supported by the horizontal segmentshorizontal edges and those supported by the vertical segments vertical edges.Chazelle noticed in [4] that the adjacency map is a useful tool which, when modi�edappropriately, can be used to handle the orthogonal segment intersection problem e�ciently.His modi�cation of the vertical adjacency map is called the hive graph. A hive graph H(S)is derived from G(S) by adding only vertical segments to G(S) while maintaining O(n)vertices and O(n) space representation. However, it has the important property that eachface may have, in addition to its four (or fewer) corners, at most two extra vertices, one oneach horizontal edge. Figure 2 shows a vertical adjacency map and its corresponding hivegraph, in which the additional vertical edges are depicted as dashed lines. By assuming thatthe endpoints of the segments in S all have distinct x- and y-coordinates, as [4] did, one canconclude that each face of H(S) has O(1) vertices on its boundary. Given a query segment(x; y1; y2), the segment intersection query can be handled as follows. We �rst �nd the facein H(S) that contains the endpoint (x; y1) in O(log n) time by using one of the well knownplanar point location algorithms [8, 9, 14, 16, 19]. Then we traverse a portion of H(S) frombottom up following the direction from (x; y1) to (x; y2). Only a constant number of verticesare visited between two consecutive encounters of the horizontal edges that intersect thequery segment.
Figure 2: A hive graphNote that the vertical boundary of a face of the hive graph corresponding to a verticaladjacency map will not necessarily contain a constant number of vertices if the assumptionthat the endpoints of the segments in S have distinct x coordinates does not hold. Since5

we will need to deal later with such a case, we get around this problem by associating witheach vertex pointers to the upper-right or upper-left corner in the same face as follows. Wemodify H(S) by associating with each vertex � two additional pointers p(�) and q(�). Let� = �1; �2; : : : ; �l =
 be the maximal chain of vertices such that each pair of consecutivevertices �i and �i+1 is connected by a vertical edge ei and �i+1 is above �i, for i = 1; : : : ; l�1.Note that this chain can be empty (l = 1) in which case both p(�) and q(�) are null. If thereexists a vertex in f�2; �3; : : : ; �lg which has a horizontal edge connecting it to a vertex tothe left of it, then p(�) points to the lowest such vertex. Otherwise, p(�) is null. Similarly,if there exists a vertex that has a horizontal edge connecting it to a vertex to the right ofit, then q(�) points to the lowest such vertex. Otherwise, q(�) is null. It is easy to seethat, using these additional pointers, we can in constant time reach the next proper segmentwithout the distinct x coordinates assumption. Figure 3 shows such a modi�ed hive graph.The additional pointers p(�) and q(�) are depicted respectively as dashed and dotted arrows.To simplify the drawing, we omit the pointer � = p(�) or � = q(�) if � is null or (�; �)is an edge in H(s). This �gure also illustrates the search path of an exemplary segmentintersection query by highlighting the pointers involved.
query segmentFigure 3: Modi�ed hive graph.As noted in [4], when the query segment is semi-in�nite, that is, consists of a ray(x;�1; y2) shooting downward, there is no need to perform the initial planar point lo-cation query. Instead, we can, during preprocessing, sort the x-coordinates of the verticaledges of the faces unbounded from below, and perform as the �rst step at query time asearch on the sorted x-coordinates to locate the face that contains the point (x;�1). Thefollowing lemma is a restatement of Corollary 1 in [4].Lemma 2.4. Given a set S of n horizontal segments in the plane, an O(n) space hive graphcan be used to determine all the intersections of the horizontal segments with a semi-in�nitevertical query segment s = (x;�1; y2) in O(t(n) + f) time, where f is the number ofintersections, and t(n) is the time it takes to search the sorted list of x-coordinates.Combining Lemmas 2.3 and 2.4, we have the following Corollary.6

Corollary 2.1. Given a set S of n horizontal segments in the plane and a vertical querysegment in the form of (x;�1; y2), it is possible to report all f proper segments of S inO(log n= log log n+ f) time using O(n) space.Clearly, by rotating the hive graph 90� clockwise (resp. counterclockwise), the same typeof techniques will yield a solution for handling any orthogonal segment intersection query thatinvolves a set S of vertical segments and a horizontal query segment of the form (�1; x2; y)(resp. (x1;+1; y)). We will denote this rotated hive graph HL(S) (resp. HR(S)).3 Fast Fractional CascadingSuppose we have a tree T = (V;E) rooted at w such that each node v has a degree boundedby c and contains a catalog L(v) of sorted elements. Let n denote the total number ofelements in these catalogs. A key value k(g) from < [f�1;+1g is associated with eachelement g in L(v). The elements in L(v) do not need to have distinct key values. We callsuch a tree a catalog tree. Let x be a real number and F be an arbitrary forest with p nodesconsisting of subtrees of T determined by some of the children of w. Both x and F can bespeci�ed online, i.e., not necessarily at preprocessing time. Let �L(x) denote the successorof x in a catalog L. The iterative search problem is de�ned as follows [5]: report �L(v)(x)for each v in F . Fractional cascading is a technique for solving the iterative search probleme�ciently, and is brie
y introduced next.3.1 Fractional CascadingThe following lemma is a direct derivation from the one given by Chazelle and Guibas foridentifying the successor of a value x in each of the catalogs in F [5].Lemma 3.1. There exists a linear size fractional cascading data structure that can be usedto determine the successors of a given value x in the catalogs associated with F in O(p log c+t(n)) time, where t(n) is the time it takes to identify the successor of x in L(w).The main component of a fractional cascading structure is the notion of the augmentedcatalogs. At each node v in T , in addition to the original catalog L(v), we store another aug-mented catalog A(v), which is a superset of L(v) and contains additional copies of elementsfrom the augmented lists associated with its parent and children. With each element h inA(v), we associate a pointer to its successor �L(v)(h) in L(v). Since A(v) is a superset ofL(v), we have �L(v)(g) = �L(v)(�A(v)(g)). Note that the elements in an augmented list A(v)form a multiset S(v), that is, a single element can appear multiple times in an augmentedlist. The elements in an augmented list are chained together to form a doubly linked list.As illustrated in Figure 4, let u and v be two neighboring nodes in T , u being v'sparent. There exists a subset B(u; v) of A(u) � A(v) such that, for each pair of elements(g; h) 2 B(u; v), k(g) = k(h). The pair of elements (g; h) are called a bridge. There is apointer to h associated with the element g, and similarly a pointer to g is associated withh. We will call g a down-bridge, and h an up-bridge, associated with the edge (u; v). It isimportant to point out that each element in an augmented list can serve as at most one7

up-bridge or one down-bridge, but not both. Bridges respect the ordering of equal-valuedelements and thus do not \cross". This guarantees that B(u; v) can be ordered and theconcept of gap presented next is well de�ned. In this ordered set B(u; v), the bridge (g; h)appears after the (g0; h0) if and only if g appears after g0 in A(u). A gap G(u;v)(g; h) of bridge(g; h) is de�ned as the multiset of elements from both A(u) and A(v) which are strictlybetween two bridges (g; h) and (g0; h0), where (g0; h0) is the bridge that appears immediatelybefore (g; h) in B(u; v). Accordingly, we de�ne the up-gap (resp. down-gap) G(u;v)(g) (resp.G(u;v)(h)) as the subset of G(u;v)(g; h) containing elements fromA(u) (resp. A(v)), preservingtheir orders in the respective augmented catalogs.
G(u,v) (h)

g’ g

h

G(u,v) (g)

v

u

h’
A(v)

A(u)

Figure 4: Fractional cascading.The fractional cascading structure maintains the invariant that the size of any gap cannotexceed 6c � 1. Chazelle and Guibas provided in [5] an algorithm that can in O(n) timeconstruct such a data structure; and they prove that it requires O(n) space.Given a parent-child pair (u; v) 2 E, suppose we know the successor �A(u)(x) of a valuex in A(u), we follow A(u) along the direction of increasing values to the next down-bridgeg connecting u and v (it could be �A(u)(x) itself if it is a down-bridge), cross it to itscorresponding up-bridge h, and scan A(v) in the opposite position until the successor of xin A(v) is encountered. Clearly, �A(v)(x) is guaranteed to be found by this process. Theconstraint on the gap size ensures that the number of comparisons required is O(c).When c is a constant, the above result is optimal. When c is large, Chazelle and Guibasused the so called star tree to achieve O(log c) search time on each catalog except the onestored at the root.3.2 Fast Fractional CascadingThe fractional cascading structure described above is strictly list based, and hence all therelated algorithms can run on a pointer machine within the complexity bounds stated. Us-ing the variation of the RAM model introduced in Section 1 and the Q-heap techniqueof Fredman and Willard [11], summarized in Section 2.2, we can achieve constant searchtime (independent of c) per node for the class of catalog trees whose degree is boundedby c = log� n, while simultaneously maintaining a linear size data structure. We call thisversion fast fractional cascading. This result improves over our previous result in [21], whichachieves the same search complexity but requires non-linear space. We will �rst revisit thenon-linear space solution and then explain how to reduce the storage cost to linear.8

3.2.1 Fast Fractional Cascading with Non-linear SpaceWe augment the fractional cascading structure described in Section 3.1 by adding two typesof components to each augmented catalog A(v). First, we associate c additional pointersp1(g); p2(g); : : : ; pc(g) with each element g in A(v) such that pi(g) points to the next down-bridge (possibly g itself) connecting v to wi, where wi is the ith children of v from the left.Second, we build for each up-gap G(u;v)(h) a Q-heap Q(h), containing elements in G(u;v)(h)with distinct values (choosing the �rst one if multiple elements have the same value). Forlarge enough n we have 6c � 1 < log1=5 n; and therefore Lemma 2.2 is applicable. We haveadded c pointers for each of the elements in the augmented catalogs, whose overall sizecannot exceed O(n). In addition, a global look-up table of size O(n) is used to serve allthe Q-heaps. And �nally, since no two up-gaps in an augmented catalog overlap, since theycorrespond to the same edge in T (which is not true for a general graph) the Q-heaps cannotconsume more than O(n) space.Now suppose we have found g = �A(u)(x) in A(u). Let v be the ith child of u. Byfollowing the pointer pi(g), we can reach in constant time the next down-bridge in u andthen its companion up-bridge h in v. Using Q(h), we can �nd the successor of x in G(u;v)(h)in constant time.Lemma 3.2. Let c = O(log� n). The fast fractional cascading structure described aboveallows the identi�cation of the successors of a given value x in the catalogs associated with Fin O(p + t(n)) time, where t(n) is time it takes to identify the successor of x in L(w). Thisstructure requires O(cn) space.3.2.2 Fast Fractional Cascading with Linear SpaceWe partition each augmented catalog A(u) into p = djA(u)j=ce blocks B1; B2; : : : ; Bp each,except possibly the last one, containing c elements. For each block Bi starting from the lthelement of A(u), we construct a set Ci of t � 7c�1 records as follows. For each down-bridgeg that is the dth element in A(u), where l � d � l+ 7c� 2, we include in Ci a record r thatcontains two entries r:ptr and r:key. The entry r:ptr is a pointer to g, and r:key is the keyof r whose value is de�ned as r:key = j � (7c � 1) + (d � l) if g is associated with the edgeconnecting u and its (j + 1)th child (note that r:key can �t in a word). The records in Ciare sorted in increasing order by their key values. Now let g be the successor of a value xin A(u) and suppose we want to �nd the successor of x in the augmented catalog associatedwith the (j + 1)th child v of u. It is easy to determine in constant time the block Bi towhich g belongs and its position f relative to the starting position of Bi (f = 0 if g is the�rst element in Bi). If g is itself a down-bridge associated with (u; v), then we are done.Otherwise, due to the invariant regarding the gap size, the next down-bridge h associatedwith (u; v) must have a corresponding record in Ci. The following lemma transforms theproblem of �nding h to a successor search in Ci.Lemma 3.3. The record in Ci that corresponds to h is the successor of the value y =j � (7c� 1) + f .Proof. First we notice the fact that all the keys of the records in Ci are distinct. Lety0 = j � (7c� 1) + f 0 be the key of the record in Ci that corresponds to h. It is obvious that9

y < y0. Now let y00 = j00 � (7c + 1) + f 00 be the key of a record r in Ci such that y � y00.We only need to show that y0 � y00. Since both f 00 and f are non-negative integers less than7c � 1, the fact that y � y00 leads to either j < j 00, or j = j00 and f � f 00. If j < j00, weimmediately have y0 < y00. On the other hand, if j = j 00, then the record r also correspondsto a down-bridge associated with the edge (u; v). Since h is the leftmost down-bridge closestto g, we have f 0 � f 00. Thus y0 � y.The problem of �nding the successor of an integer value in a small set Ci can be solved,again using the Q-heap data structure. The following straightforward observations ensurethe applicability of Lemma 2.2:� jCij < log1=5 n for n large enough; and� The total number of distinct keys created for all the augmented catalogs is boundedby O(n).Finally, it is easy to see that the overall additional space introduced by the new Q-heaps isO(n), and thus we have the following theorem.Theorem 3.1. For c = O(log� n) for some � < 15, our fast fractional cascading structureallows the identi�cation of the successors of a given value x in the catalogs associated with Fin O(p + t(n)) time, where t(n) is time it takes to identify the successor of x in L(w). Thisstructure requires O(n) space.4 Orthogonal Segment IntersectionBefore tackling the general orthogonal segment intersection problem, we develop a linear sizedata structure to handle a special case in which the x-coordinates of the endpoints of thesegments and the query segment can only take integer values over a small range of values.We will later show how to use the solution of the special case to derive a solution to thegeneral problem.4.1 Modi�ed Vertical Adjacency MapAssume that the x-coordinates of the endpoints of each segment (k1; k2; y) in the given setR of n horizontal segments can take values from the set of integers f1; 2; : : : ; cg, wherec = log� n is an integer, and furthermore, assume that the x-coordinate k of the querysegment r = (k; z1; z2) is an integer between 1 and c. Let Y (R) = (y1(R); y2(R); : : : ; yn0(R))be the list of distinct y-coordinates of the segments in R sorted in increasing order.Our overall strategy consists of augmenting the vertical adjacency map with auxiliarystructures so that we will be able to identify the lowest segment in R intersecting r veryquickly, followed by progressively determining the next sequence of lowest segments, each inO(1) time. The details of this strategy are described next.Our indexing structure D(R) consists of two major components: H(R) and M(R). H(R)is a directed vertical adjacency map with auxiliary information attached to it. We de�ne thedirection of the horizontal edges to be from right to left and that of the vertical edges to be10

from bottom up. Note that we do not require that each face of H(R) has a constant numberof vertices on its boundary.Each vertex of H(R) is naturally associated with a pair of x, y-coordinates. We callthe vertex with an outgoing horizontal edge a tail. We augment H(R) with three types ofcomponents as follows:� For each distinct y-coordinate yj(R) of Y (R), we create a Q-heap Qj(R) to index thex-coordinates of the vertices whose y-coordinates are equal to yj(R).� For each integer 1 � i � c that serves as the x-coordinate of at least one tail, we createa list Pi(R) of records. Each record g corresponds to a tail � whose x-coordinate is iand contains two elements: g:key, which is the y-coordinate of �, and g:ptr, which isa pointer to �. This list is sorted in increasing order by the key values.� With each node � we associate two pointers p(�) and q(�). Let yj(R) be the y-coordinate of �. Then p(�) points to the Q-heap Qj(R). If � is not a tail, q(�) is null.Otherwise, there is at least one vertex with the same y-coordinate as � that has anoutgoing vertical edge and is to the strict left of �. Let
 be the rightmost such vertex,and e1; e2; : : : ; el be the shortest chain of vertical edges starting from
 such that thehead � of el has an incoming horizontal edge. If such a chain exists, then q(�) pointsto �. If not, q(�) is null. Note that intuitively q(�) is the top left corner (if it exists)of a face containing �.It is clear that H(R) is of size O(n).In addition to H(R), we have a bitmap M(R) consisting of a list of bit-vectors. Eachvector Vj(R) corresponds to a distinct y-coordinate yj(R) and contains c bits. The ith bit,starting from the most signi�cant one, is set to one if there is a vertical edge in H(R) passingthrough the point (i; yj(R)) and zero otherwise. Each vector can easily �t in a single wordand thus the storage cost of M(R) is O(n). These vectors are aligned with the lower end ofthe words and are stored in increasing order by the values of the corresponding y-coordinates.As an example, Figures 5(a) and 5(b) illustrate the structures H(R) and M(R). InFigure 5(a), the dotted lines depict the c possible x-coordinates, the dashed pointers are theq-pointers that are not null, and the thick line represents the query segment.Given a vertical segment r = (k; z1; z2), we �rst identify the lowest segment that intersectsr and then report each of the remaining proper segments in the direction of increasing y-coordinates.Locating the lowest segment that intersects r is performed using M(R). Let yj(R) be thesmallest y-coordinate greater than or equal to z1. If no such y exists, then there is no segmentin R which intersects r. Otherwise, we �nd the largest value i � k such that the ith bit inVj(R) is one. (This number always exists because the vertical edges whose x-coordinates areequal to c form a in�nite line and therefore the lowest bits of all the vectors are set to one.)This can be accomplished by �rst masking out the highest w� k bits of Vj(R), w being thenumber of bits in a word, and then locating its most signi�cant bit. In [10], Fredman andWillard describe how to compute the most signi�cant bit of a word in constant time.After identifying i, we use Pi(R) to determine the record g with the smallest key largerthan or equal to z1. We can then immediately obtain the vertex � pointed to by g:ptr.11

6 5 4 3 2 1V6(R) 1 1 0 0 1 1V5(R) 1 1 0 0 1 1V4(R) 1 1 0 1 1 1V3(R) 1 1 0 1 1 1V2(R) 1 0 0 1 1 1V1(R) 1 0 0 1 1 1(a) (b)Figure 5: H(R) and M(R).Lemma 4.1. Let (k�; y�) be the coordinates of �. Then for any segment (k1; k2; y) in Rsuch that k1 � k and y� > y � y1, we have k2 < k. That is, any horizontal segment betweeny� and y which starts to the left of r ends before meeting r.Proof. The proof is by contradiction. Suppose k2 � k. We then have k2 < k�, becauseotherwise the vertical line passing through � would have had at least one vertex �0 lyingon it with its coordinates (k�0 ; y�0) satisfying k�0 = k� = i and y�0 < y�, which contradictsthe way we chose �. Now consider the vertical line passing through the endpoint (k2; y).Either it passes through the point (k2; yj(R)) or intersects a horizontal segment whose leftendpoint is to the left of � and whose y-coordinate is strictly between y and yj(R). In the�rst case, we have a contradiction because there would have been a more signi�cant one-bitthan i in Vj(R). In the second case, the right endpoint of that horizontal segment has to beto the strict left of �, following the same argument for the segment (k1; k2; y). By repeatedlyapplying this argument, we can show that either there is a one-bit in Vj(R) more signi�cantthan the i, or there is a record in Pi(R) whose key is smaller than y� but larger than y1,each leading to a contradiction.Lemma 4.2. If y� � y2, then the horizontal segment t = (k1; k2; y) on which � lies intersectsr.Proof. The only possible scenario in which t does not intersect r is when k1 > k. If thisis the case, then there has to be a vertical segment (k1; y01; y02) consisting of several edgesin H and passing through the point (k1; y). This segment cannot cross the horizontal linecorresponding to Vj(R) because otherwise there would have been a more signi�cant one-bitthan the ith in Vj(R). Therefore there has to be a horizontal segment t0 = (k01; k02; y01) withk02 > k1 > k. Lemma 4.1 implies that k01 > k. Repeating this argument will ultimately leadto a contradiction.Lemmas 4.1 and 4.2 show that the horizontal segment t on which � lies is the lowestsegment that intersects r. Using the Q-heap pointed to by p(�), we can �nd the vertex �12

with the same y-coordinate as � and the smallest x-coordinate greater than or equal to k.Since t intersects r, we are sure that � is also on t. The following lemma explains how toiteratively �nd the remaining segments that intersect r.Lemma 4.3. Let t be a horizontal segment that intersects r and suppose we know the vertex� of H(R) on t with the smallest x-coordinate k� larger than or equal to k. We can in constanttime decide whether there is another segment t0 above t that intersects r, and furthermore, ifthere is one, identify in constant time such a t0 having the smallest y-coordinate larger thanthat of t.Proof. We �rst give the algorithm to compute the vertex � 0 on t0 with the smallest x-coordinate k�0 larger than or equal to k. Consider the following cases.Case 1 � has an outgoing vertical edge e and k = k�.Case 1.1 e is an in�nite edge, i.e. e is a ray shooting upwards. Then there are noother segments intersecting r.Case 1.2 The edge e is �nite. In this case, the vertex �0 is the head of e and t0 isthe horizontal segment on which �0 lies.Case 2 � does not have an outgoing vertical edge e or k 6= k�.Case 2.1 q(�) is null. There are no other segments intersecting r.Case 2.2 q(�) is not null. �0 corresponds to the successor of k in the Q-heappointed to by p(q(�)) and t0 is the horizontal segment on which �0 lies.We now show the correctness of this algorithm. We only discuss Case 2, as the correctnessof our algorithm for Case 1 is obvious. First consider the case when q(�) is null. Since � hasto be a tail, the vertical ray starting from
 (introduced in the de�nition of q(�)) shootingupward does not contain a vertex with an incoming horizontal edge. Hence if there were ahorizontal segment above t that intersects r,
 would not be the rightmost vertex to the leftof � that has an outgoing vertical edge. Hence no segment above t intersects r.We now consider Case 2.2. In this case,
 and the chain starting from it always exist. Lete1; e2; : : : ; el be the chain of vertical edges used to de�ne q(�), and
 = �1; �2; : : : ; �l+1 = � bethe sequence of vertices such that for each 1 � j � l, ej = (�j; �j+1), and (k0; y
) and (k0; y�)be the respective coordinates of
 and �. We claim that: (i) no horizontal segment whosey-coordinate are strictly between those of t and t0 intersects r; (ii) the horizontal segment t0on which � lies does intersect r; and (iii) the successor � 0 of k in the Q-heap pointed to byp(q(�)) always exists.To see why the �rst claim is true, suppose there is a horizontal segment (k01; k02; y0) in-tersecting r that satis�es y
 < y < y�. Then it has to be true that k0 < k01 � k. Sincewe are discussing Case 2, there has to be another horizontal segment (k001 ; k002 ; y00) such thatk0 < k001 < k and y
 < y00 < y�. Following similar arguments as in the proof of Lemma 4.1,we can show that either there exist a vertex on t between � and
 with an outgoing verticaledge, or there exists a vertex �0 with an incoming horizontal edge such that its coordinate(k�0; y�0) satis�es k�0 = k0 and y
 < y�0 < y�. Either case leads to a contradiction.13

To show that t0 indeed intersects r, we notice that the right endpoint of the horizontalsegment of which the horizontal incoming edge of � is a part cannot be to the (strict) leftof s, because otherwise either there would be a chain of vertical edges closer to � than theone we have, or there would be a horizontal segment lying vertically between t and t0 thatintersects r, each leading to a contradiction. This also justi�es the last claim (iii), and theproof of the lemma is complete.Lemma 4.4. Given a set R of n horizontal segments in the plane, whose endpoints can onlyhave c = log� n possible x-coordinates f1; 2; : : : ; cg, it is possible to report using O(n) spaceall f proper segments of R which satisfy a query r = (k; y1; y2), where k = 1; 2; : : : ; c, inO(t(n)+ f) time, where t(n) is the time it takes to compute the successor of y1 in Z(R) andPi(R) for some i = 1; 2; : : : ; c.Note that we can apply the fusion tree technique to index the distinct y-coordinates usinglinear space so that t(n) = O(log n= log log n). In the next section, we will show how to usethe algorithm of Lemma 4.4 to solve the general orthogonal segment intersection problem.By applying the fast fractional cascading technique, The time t(n) in Lemma 4.4 can bereduced to O(1) except for the initial search, in which t(n) = O(log n= log log n).4.2 Handling the General Orthogonal Segment Intersection Prob-lemIn this section we consider the general orthogonal segment intersection problem involving aset S of n horizontal segments. To simplify the presentation, we assume that the endpointsof the segments in S have distinct x-coordinates. The primary data structure is a tree T ofdegree c = log� n, built on the endpoints of the n segments sorted in increasing order of the x-coordinates. Each leaf node v is associated with c endpoints. Let xl and xr be respectively thex-coordinates of the leftmost endpoints associated with v and the leaf node to its immediateright (xr = +1 if v is the rightmost leaf node); then the x-range of v is de�ned as [xl; xr).For an internal node u with c children v0; v1; : : : ; vc�1, whose corresponding x-ranges are[x0; x1); [x1; x2); : : : ; [xc�1; xc), its x-range is [x0; xc). The set of c� 1 in�nite horizontal linesb1(u); b2(u); : : : ; bc�1(u), whose x-coordinates are x1; x2; : : : ; xc�1 respectively, are called theboundaries of u. When the context is clear, we will use bi(u) to represent its correspondingx-coordinate as well.The segments in S are distributed among the nodes of T as follows. A horizontal segmentis associated with an internal node u if it intersects one of the boundaries of u but none ofthe boundaries of u's ancestors. A segment is associated with a leaf node v if its endpointsboth lie within the x-range of v.The set S(v) of segments associated with an internal node v is organized into severalsecondary data structures as described below and illustrated in Figure 6.� The c�1 boundaries of each node v are indexed by a Q-heap so that given an arbitraryvalue x the left most boundary bi(v) that satis�es x � bi(v) can be identi�ed in constanttime. 14

L1(v)

[)[)[)
x x x x x0 1 2 c-1 c

v

)[

u

D(v)
R (v)2

b b b1 2 c-1(v) (v)(v)Figure 6: Data structures for the segments associated with node v.� With each boundary bi(v) with 1 � i � c�1, we associate two Cartesian trees Li(v) andRi(v). The Cartesian tree Li(v) contains the endpoints of those segments (x1; x2; y)in S(v) which satisfy bi�1(v) < x1 � bi(v) (b0(v) = �1) and x2 � bi(v), and isused to the answer the three-sided range query of the form: (x1 � a; b � y � d);and Ri(v) contains the endpoints of those segments that satisfy bi(v) � x2 < bi+1(v)(bi+1(v) = +1 for i = c � 1) and x1 � bi(v), and is used to answer the three-sidedrange query of the form: (x2 � a; b � y � d). Each Cartesian tree thus created has itsnodes doubly linked in the order of increasing y-coordinates.� Let S0(v) be a subset of S(v) containing segments that each intersects at least twoboundaries of v. We organize these segments using the data structure D(v) discussedin Section 4.1. We will later explain how to transform the problem corresponding toS0(v) to the one discussed in Section 4.1.The number of horizontal segments associated with a leaf node is at most c=2 since thereare only c di�erent endpoints associated with a leaf node, which are simply stored in a list.We analyze the storage cost of the structures involved in our overall data structure.Obviously, each segment in S is associated with exactly one node v of T . For any segmentassociated with an internal node v, it appears in at most three secondary structures, oncein Li(v) associated with the left most boundary bi(v) it intersects, once in Rj(v) associatedwith the rightmost boundary bj(v) it intersects, and possibly once in D(v). Any segmentassociated with a leaf node is stored exactly once. Note that all these data structures arelinear-space. Hence the total amount of space used by these structures is O(n)..We next outline our search algorithm and then �ll in the details as we go along. Lets = (a; b; d) be a vertical segment. To avoid the tedious but not di�cult task of treatingspecial cases, we make the assumption that the endpoints of s is di�erent from any of theendpoints of the segments in S. To compute the set of proper segments in Q, we recursivelysearch the tree T , starting from the root. Let v be the node we are currently visiting. Wesearch v as follows.1 If v is a leaf node, check each segment associated with v and report those that intersects, after which the algorithm terminates.15

2 If x lies outside the x-range of v, then no segment in S intersect s and the algorithmterminates. (This can only happen at the root, when s is to the left of all the segmentsin S.)3 Otherwise do the following:3.1 Find the pair of consecutive boundaries bi(v) and bi+1(v) of v such that bi(v) <a < bi+1(v). (The boundary bi(v) does not exit if x < b1(v); and bi+1(v) does notexist if a > bc�1(v).)3.2 If bi(v) exist, use Ri(v) to report segments (x1; x2; y) that satisfy x2 � a andb � y � d.3.3 If bi+1(v) exist, use Li+1(v) to report those segments (x1; x2; y) that satisfy x1 � aand b � y � d.3.4 If both bi(v) and bi+1(v) exist, use D(v) to report those proper segments with noendpoints in the interval (bi(v); bi+1(v)).3.5 Recursively visit the (i+ 1)th child of v (the �rst child being the leftmost).The correctness of the algorithm is obvious, provided that Step 3.4 can be performedcorrectly, a fact we will show shortly. First we note that Step 3.1 can be done in constanttime using the Q-heap. Furthermore the access of the Cartesian trees in Steps 3.2 and 3.3can be done in time proportional to the number of segments reported if the successor ofb and the predecessor of d in the list of nodes for each Cartesian tree can be identi�ed inconstant time. We will show later that we can indeed achieve this goal by applying the fastfractional cascading structure. Finally, it is clear that only one node is visited at each levelof T , which consists of O(log n= log log n) levels.Now we focus on Step 3.4. The di�culty is to keep the size of D(v) linear and at the sametime be able to execute this step in time proportional to the number of segments reported.Let n0 be the size of S0(v). One obvious choice is to keep as D(v) as O(c2) lists of segments.Each list corresponds to a pair of boundaries and consists of segments sorted by their y-coordinates that cross both boundaries. The storage cost is obviously O(n0). However, wewill have to visit each list to report the proper segments, since there is no obvious way todecide beforehand which lists contain at least one proper segment (as Willard cleverly did inthe design of the fusion priority tree [24]). At least
(log2� n) time seems to be required asa result. On the other hand, we can associate with each pair of consecutive boundaries thesorted list of segments that crosses both of them. This approach satis�es the requirementon the query complexity but increases the storage cost by a factor of log� n.We now present our solution to handle these segments. We �rst transform the x-coordinates x1 and x2 of the endpoints of each segment s into two integers k1 and k2 between1 and c�1. More speci�cally, k1 and k2 are the indices of the leftmost and rightmost bound-aries of v crossed by s. By doing this, we transform S0(v) into another setW (v), in which thesegments have their y-coordinates unchanged but their x-coordinates replaced by the indicesof the boundaries. At query time, we also transform the query segment s = (x; y1; y2) intoanother segment r by replacing its x-coordinate with the index k of the boundary to itsimmediate right. It is straightforward to see that a segment in S0(v) is proper if and only if16

its corresponding segment (k1; k2; y) in W (v) satis�es k1 < k � k2 and y1 � y � y2. (In thecase where k1 = k, the original segment corresponding to (k1; k2; y) is already found usingLk1(v) and thus need not be reported here.) We now have exactly the problem we tackledin Section 4.1. Hence by Lemma 4.4, we can �nd the f 0 proper segments in W (v) in O(f 0)time, provided that we can in constant time identify the successor of b in the various sortedlists of y-coordinates associated with H(v).To complete the description of our algorithm, we show how to apply the fast fractionalcascading structure to search the sorted lists at di�erent levels of the tree. The sorted listsstored at each node v consist of the 2(c � 1) lists Ri(v) and Li(v) for i = 1; : : : ; c � 1, thelist of vectors in M(v), and up to c � 1 lists of Pi(v). Note that during the query time, weonly need to search O(1) such lists at each level. Using the fusion tree, we can search therelevant list at the root of T in O(log n= log log n) time.To see how the various lists are linked through fast fractional cascading, We can imaginea virtual forest F consisting of c \virtual" trees T1; T2; : : : ; Tc of degree 3c � 2, such thatthe lists stored at the roots are respectively L1(v); L2(v); : : : ; Lc�1(v); Rc�1(v), where v isthe root of our search tree. The children of the root containing Li(u) contain the lists inthe ith children of u from the left; and the children of Rc�1(u) are the lists in the cthchildren. Figure 7 illustrates the concept of the virtual forest. It is straightforward to seethat a node in F is searched only if its parent is searched. Since c = log� n with � < 1=5,3c � 2 < log1=5 n for large enough n. Therefore we can apply the fast fractional cascadingtechnique to interconnect the lists according to the topology of the virtual forest so thatwe can search in constant time each list after the initial search at the root of F withoutincreasing the space requirements.
�
�
�
�
�

�
�
�
�
�

RL (v) (v) (v) (v)Pi i iM

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�Figure 7: The virtual forest.In summary, handling a query consists of processing the nodes on a path from the rootto a leaf node. Processing the root w of T takes O(log n= log log n + f(w)) time. The timespent at processing any other internal node u is O(f(u)). To search the leaf node w, wesimply check each segment stored there. Since there are at most O(c) such segments andc = log� n < log n= log log n for large enough n, the overall query time is O(log n= log log n)and therefore we have the following theorem.Theorem 4.1. There exists a linear-space algorithm to handle the orthogonal segment in-tersection problem in O(log n= log log n + f) query time, where f is the number of segmentsreported. 17

5 Rectangle Point EnclosureTo simplify our presentation, we assume that the corners of the rectangles in S all havedistinct x- and y-coordinates. As in the case of the segment intersection problem, theprimary data structure consists of a tree T of degree c = log� n. Let v be the root of Tand b1(v); b2(v); :::; bc�1(v) be a set of in�nite vertical lines, called the boundaries of v, whichpartition the set of 2n vertical edges of the rectangles in S into c subsets of equal size, therebycreating c stripes P1(v); P2(v); : : : ; Pc(v). We de�ne the c subtrees rooted at the children ofv recursively, each with respect to the vertical edges that fall into the same stripe. If thenumber of vertical edges is less than log� n in a stripe, the child node corresponding to thisstripe becomes a leaf node. Clearly the height of this tree is O(log n= log log n). A Q-heapQ(v) holding the boundaries of v is built for each node v, which will enable a constant timeidenti�cation of the stripe of v the query point belongs to. In addition, for each node v,except for the root, we de�ne its x-range as the the stripe Pi(u) of its parent u, assuming vis the ith child of u from the left.We associate with each internal node v the rectangles that intersect at least one of itsboundaries but none of the boundaries of its ancestors. Each leaf node contains the set ofrectangles both of whose vertical edges lie within its x-range. Hence at most O(log� n) =O(log n= log log n) rectangles are associated with a leaf node, and no preprocessing will berequired for these rectangles.Now consider the set S(v) of rectangles associated with an internal node v. As in [4],we build two hive-graphs HLi(v) and HRi(v), as de�ned in Section 2.3, for each boundarybi(v), i = 1; : : : ; c � 1. The hive-graph HLi(v) is built on left vertical edges lying insidestripe Pi and is used to answer the semi-in�nite segment intersection queries of the form:(x1 � x; y1 � y � y2); and HRi(v) is built on the right vertical edges lying inside stripePi+1 and is used to answer the semi-in�nite segment intersection queries of the form: (x2 �x; y1 � y � y2). In addition, let S 0(v) be a subset of S(v) such that each rectangle inS0(v) crosses at least two boundaries. We transform the coordinates of S0(v) from the space< � < to W (v) in the space [1; 2; : : : ; c � 1] � < as follows. We transform each rectangle[x1; x2; y1; y2] in S 0(v) into the rectangle [k1; k2; y1; y2] in W (v), where bk1(v) and bk2(v) arethe leftmost and rightmost boundaries it crosses.We now turn our attention to the query algorithm and postpone the description of thedata structure for W (v) until the end of this section. Using the Q-heaps stored at theinternal nodes, we can in O(log n= log log n) determine the path from the root to the leafnode whose x-range contains the query point p = (x; y). (We assume for simplicity that thex- and y-coordinates of p are di�erent from that of the corners of the rectangles in S.) It isclear that only the rectangles associated with the nodes on this path can possibly containthe query point.Consider a node v on this path. If v is a leaf node, we simply examine each rectanglesassociated with it, a process that takes O(log n= log log n + f(v)) time, where f(v) denotesthe number of rectangles reported at node v.If v is an internal node, we �rst decide which stripe of v the query point p belongs to, atask that can be done in O(1) time, say it belongs to Pi(v). The rectangles stored at nodev and which contain p can be classi�ed into three groups: (i) the set L(v) that containsthe rectangles whose left vertical edges lie inside Pi(v); (ii) the set R(v) that contains the18

rectangles whose right vertical edges lie inside Pi(v); and (iii) the set F (v) consisting of thoserectangles whose horizontal edges cross Pi(v) entirely. If i = 1, R(v) and F (v) do not exist.Similarly, if i = c, L(v) and F (v) do not exist.By Lemma 2.4, the rectangles that belong to the �rst two groups can be identi�ed inO(1) time per rectangle reported if we apply the fast fractional cascading technique on thelists of the sorted y-coordinates of the vertices of the corresponding hive-graph. For example,we know that each rectangle (x1; x2; y2; y2) associated with the hive-graph HLi(v) satis�esx2 � x. Therefore, to �nd rectangles in L(v), we only need to check the criteria: x1 � x andy1 � y � y. Also note that a proper rectangle can be reported at most once in this process.The remaining task is to determine the rectangles in group F (v), which requires anadditional data structure. We start from the set W (v) consisting of rectangles of the form(k1; k2; y1; y2), where k1 and k2 are integers between 1 and c � 1. For each pair of di�erentintegers i < j between 1 and c�1, we construct a cartesian tree Ci;j(v) consisting of rectangles(i; j; y1; y2) in W (v) to answer the two-sided range queries in the form y1 � y � y2. Notethat the total space is still linear and the use of the fast fractional cascading technique willenable us to access the appropriate nodes in time proportional to the number of rectanglesreported.However, we still need to resolve the problem of identifying which of these Cartesian treesshould be accessed when handling a query. We cannot a�ord to access such a tree unlesswe are guaranteed to �nd at least one proper rectangle. To address this problem, we do thefollowing.We construct a look-up table M(v) with n0 rows, each corresponding to a distinct y-coordinate of the horizontal edges of the rectangles inW (v) and occupying one word (of log nbits). The rows are sorted by increasing order of the y-coordinates. Let y1(v) < y2(v) < � � � <yn0(v) be the set of distinct y-coordinates of the horizontal edges. Let Vj(v) = (bc3; bc3�1; b1)be a sequence of c3 bits, where bi is the ith bit from the lower end of the word representingthe jth row of M(v) (note that c3 < log n). The word Vj(v) is evenly divided into c sections,each corresponding to a stripe of v (actually we only use c � 2 of them which correspondto P2(v); : : : ; Pc�1(v)). Let (bl+c2bl+c2�1 � � � bl+1) be one of them that corresponds to Pi(v),i = 2; : : : ; c � 1. For each pair of integers k1 < i � k2 between 1 and c � 1, we set the bitbl+k1�c+k2 to one if there is a rectangle (k1; k2; y1; y2) in R such that y1 < yj(v) � y2. All theother bits are set to zero.To �nd the proper rectangles in S 0(v), we �rst transform in O(1) time using Q(v) thequery point (x; y) to the point (k; y) in the same space as W (v). Let bk(v) be the leftmostboundary of v whose x-coordinate is greater than or equal to x. It is clear that a rectangle(x1; x2; y1; y2) in S 0(v) contains (x; y) if and only if its corresponding rectangle (k1; k2; y1; y2)in W (v) contains (k; y). Let yj(v) = minfyl(v)j1 � l � n0; yl(v) � yg. We have the followinglemma.Lemma 5.1. Let (bl+c2bl+c2�1 � � � bl+1) be the section of Vj(v) which corresponds to Pk(v).Then for each pair of integers 1 � k1 < k2 � c � 1 such that k1 < k � k2, bl+k1�c+k2 = 1 ifand only if there exists a rectangle (k1; k2; y1; y2) 2 W (v) which contains (k; y).Proof. By the de�nition of Vj(v), bl+k1�c+k2 = 1 if and only if there exists a rectangle(k1; k2; y1; y2), such that y1 < yj(v) � y2. If this rectangle indeed exists, we have k1 � k � k2and y2 � yj(v) � y. The de�nition of yj(v) ensures that y � y1. Therefore (k1; k2; y1; y2)19

contains (k; y). Now suppose there is a (k1; k2; y1; y2) inW (v) which satis�es k1 � k � k2 andcontains (k; y). The only scenario in which (k1; k2; y1; y2) does not satisfy y1 < yj(v) � y2 isyj(v) = y = y1. This is not possible given the assumption that y can not be the y-coordinateof any horizontal edge1.Lemma 5.1 shows that the section B of Vj(v) which corresponds to the stripe containing(k; y) indicates correctly the Cartesian trees in fCi;jj2 � i < j � c � 1g which should bevisited. Using a look-up table of size O(n), similar to the one described in [21], we cantransform B into a list of integers (m; I1; I2; : : : ; Im), where m is the number of 1-bits in Band Il is the index of a unique Cartesian Ci;j(v), for l = 1; 2; : : : ;m. Then we simply visitthese Cartesian trees one by one.Searching the sorted lists associated with non-root nodes can be done using fast fractionalcascading. The correctness proof and complexity analysis for this part is similar to that inSection 4 and thus is omitted here.Theorem 5.1. There exists a linear-space algorithm to handle the rectangle point enclosurequeries in O(log n= log log n + f) time, where f is the number of segments reported.References[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The design and analysis of computeralgorithms. Addison-Wesley, Reading, MA, 1974.[2] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Proceedings ofLatin American Theoretical Informatics, pages 88{94, 2000.[3] S. Bespamyatnikh and J. Snoeyink. Queries with segments in Voronoi diagrams. InProceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, pages122{129, Baltimore, MD, 1999.[4] B. Chazelle. Filtering search: A new approach to query-answering. SIAM Journal onComputing, 15(3):703{724, Aug. 1986.[5] B. Chazelle and L. J. Guibas. Fractional Cascading: I. A data structure technique.Algorithmica, 1(2):133{162, 1986.[6] B. Chazelle and L. J. Guibas. Fractional Cascading: II. Applications. Algorithmica,1(2):163{191, 1986.[7] S.-W. Cheng, H. Everett, O. Cheong, and R. van Oostrum. Hierarchical vertical decom-positions, ray shooting, and circular arc queries in simple polygons. In Proceedings ofthe 15th Annual Symposium on Computational Geometry, pages 227{236, Miami Beach,FL, 1999.1This assumption might seem to be crucial to the correctness of the Lemma. However, without thisassumption, the only case that needs a special care is when (k; y) is contained in no rectangle of the formof (k1; k2; y1; y2) except those satisfying y2 = y. This can be �xed by modifying L(v) to make sure that thisspecial case is not missed. 20

[8] R. Cole. Searching and storing similar lists. Journal of Algorithms, 7(2):202{220, 1986.[9] H. Edelsbrunner, L. Guibas, and J. Stol�. Optimal point location in a monotone sub-division. SIAM Journal on Computing, 15(2):317{340, 1986.[10] M. L. Fredman and D. E. Willard. Surpassing the information theoretic bound withfusion trees. Journal of Computer and System Sciences, 47:424{436, 1993.[11] M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimumspanningtrees and shortest paths. Journal of Computer and System Sciences, 48:533{551, 1994.[12] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques forgeometry problems. In Proceedings of the 16th Annual ACM Symposium on Theory ofComputing, pages 135{143, Washington, DC, 1984.[13] D. Harel and R. E. Tarjan. Fast algorithms for �nding nearest common ancestors. SIAMJournal on Computing, 13(2):338{355, 1984.[14] D. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing,12(1):28{35, 1983.[15] W. Lipski and F. P. Preparata. Segments, rectangles, contours. Journal of Algorithms,2(1):63{76, 1981.[16] R. J. Lipton and R. E. Tarjan. Applications of a planar separator theorem. SIAMJournal on Computing, 9(3):615{627, 1980.[17] C. Makris and A. K. Tsakalidis. Algorithms for three-dimensional dominance searchingin linear space. Information Processing Letters, 66(6):277{283, 1998.[18] F. P. Preparata and M. I. Shamos. Computational Geometry { An Introduction.Springer-Verlag, 1985.[19] N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees. Com-munications of the ACM, 29(7):669{679, 1986.[20] R. Seidel and C. R. Aragon. Randomized search trees. Algorithmica, 16(4/5):464{497,1996.[21] Q. Shi and J. JaJa. Fast algorithms for 3-d dominance reporting and counting. TechnicalReport CS-TR-4437, Institute of Advanced Computer Studies (UMIACS), Universityof Maryland, 2003.[22] R. E. Tarjan. A class of algorithms which require nonlinear time to maintain disjointsets. Journal of Computer and System Sciences, 18(2), 1979.[23] J. Vuillemin. A unifying look at data structures. Communications of the ACM,23(4):229{239, 1980. 21

[24] D. E. Willard. Examining computational geometry, van Emde Boas trees, and hashingfrom the perspective of the fusion three. SIAM Journal on Computing, 29(3):1030{1049,2000.

22

