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Engineers have witnessed much advancement in the study of fatigue crack detection and 

propagation (CPD) modeling.  More recently the use of certain damage precursors such as 

acoustic emission (AE) signals to assess the integrity of structures has been proposed for 

application to prognosis and health management of structures. However, due to 

uncertainties associated with small crack detection of damage precursors as well as crack 



size measurement errors of the detection technology used, applications of prognosis and 

health management assessments have been limited. 

This dissertation defines a new methodology for the assessment of CPD parameters and 

the minimization of uncertainties including detection and sizing errors associated with a 

series of known CPD models that use AE as the precursor to fatigue cracking.  The first 

step of the procedure is defining the separate crack propagation and crack detection models 

that are to be used for the testing of a joint-CPD model. The two propagation models for 

this study are based on a Gaussian process regression model that correlates crack shaping 

factors (CSFs) to the propagation of the crack.  One of these propagation models includes 

a particle filtering technique that includes several AE data.  The testing of this joint-CPD 

model is facilitated by the Bayesian inference of the CPD likelihood where the posterior 

models are extracted and tested for correctness. 

The CSFs, the CPD data, and the AE signal data used for testing of this methodology come 

from a series of fatigue tests done on dog-bone Al 7075-T6 specimens. The data is first 

corrected for measurement error that is present based on the initial crack measurements.  

Then the data is used to generate the prior CPD models that is needed for the Bayesian 

inference procedure.  With the resulting posterior CPD models, a correlation procedure that 

estimates the CPD model parameters of validation specimens based on the relationship that 

exists between the CSFs and the CPD model parameters is performed as well as a model 

error correction procedure.  The result of this correlation provides reasonable estimates for 

the remaining useful life of a given validation specimen. 
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Chapter 1: Introduction 

1.1 Background and Motivation of Research 

Fatigue crack propagation and detection (CPD) research has seen significant progress in 

the field of prognosis and health management (PHM) over the past sixty years.  From the 

crack propagation (CP) model by Paris and Erdogan (Paris & Erdogan, 1963), many other 

models such as those of Forman (Forman, Kearney, & Eagle, 1967) and Walker (Walker, 

1970) have been developed to model CP as a function of material and/or test properties.  

Some more recent applications directly correlated CP as a function of non-destructive 

testing (NDT) fatigue markers.  For example Keshtgar (Keshtgar, 2013) has established a 

correlation between initiating CP and certain acoustic emission (AE) signal indices  

(Keshtgar, 2013)  while Naderi et. al. established a correlation with dissipated thermal 

energy (Naderi, Kahirdeh, & Khonsari, 2012).  Similarly, many crack detection models 

have been proposed as cumulative density functions (CDFs) of the detected crack length.  

Early works in probability of detection (POD) research assigned a binomial probability 

distribution to represent POD (Rummel & Matzkanin, 1997), but because POD data highly 

depend on the type of NDT technique used (Georgiou, 2006), other probability density 

function (PDF) models such as lognormal and logistic have been proposed among others 

(Georgiou, 2006).  Such variety in CPD modeling has resulted in a lot of options for PHM, 

the majority of which are based on empirical models, assumptions, and uncertain data and 

observations. 

However, because empirical models are often assumed as a form of CP behavior, many 

PHM assessments include uncertainties, several of which may not be accounted for.  As 

consequence, engineers may fail to characterize uncertainties and take the observed data 
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and the model output as the true representation of observed damage.  There are three 

principle types of uncertainties to consider (Sankararaman, Ling, Shantz, & Mahadevan, 

2009): 

1. Data uncertainty 

2. Physical variability uncertainty 

3. Model uncertainty/error 

Data uncertainty comes from the NDT methods used for crack detection purposes which 

are notorious for missing extremely small flaw sizes (Thornton & Tiffany, 1970) and for 

detecting different flaw sizes depending on the method (Georgiou, 2006).  This uncertainty 

in NDT is part of the reason why initial crack sizes are generally unknown (Sankararaman, 

Ling, Shantz, & Mahadevan, 2009), which Sankararaman, et al. (Sankararaman, Ling, 

Shantz, & Mahadevan, 2009) consider as being a major reason for inaccuracies associated 

with the empirical crack growth models.  Additional uncertainty comes from the variation 

in material properties which directly affect the shape and length of the crack such as grain 

size or inclusions.  Variation is also inherent in supposedly static test properties such as 

loading conditions and test frequency.  The final source of uncertainty comes from 

modeling error or uncertainty, which is the direct result of the selected CP model.  When 

addressing the validity of models in general, British statistician George Box stated: 

“Is the model true?”  If “truth” is to be the “whole truth” the answer must be “No.”  

The only question of interest is “Is the model illuminating and useful?” (Box, 1979) 

which in the context of this study can be taken to mean that all CP models are going to 

have modeling error, but some will have less error than others.  For example, the AE 
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intensity dependent CP model possesses a significantly high modeling error precision of 

85% (Keshtgar, 2013). 

An accounting of all uncertainties within PHM assessments is necessary in order to 

improve upon existing empirical models.  Sankararaman, et al. (Sankararaman, Ling, 

Shantz, & Mahadevan, 2009) proposed several methodologies for accounting these 

uncertainties, including applying measurement error correction upon collected data and 

representing the variation in material properties as distributions.  Another key step is the 

selection of an appropriate CP model that best represents historical fatigue crack data.  But 

Moore and Doherty (Moore & Doherty, 2005) cite that unless model input properties that 

have a direct bearing on the output are considered, predictions made by that model may 

still possess model error.  Therefore, the appropriate CP model needs to include a firm 

correlation between observed CP data and test and material properties relevant to that 

propagation or crack shaping factors (CSFs).  Such a model was developed by Mohanty 

(Mohanty, Chattopadhyay, & Peralta, 2011; Mohanty S. , Chattopadhyay, Peralta, Das, & 

Willhauck, 2007) that correlates CSFs to the detected crack length by way of a machine 

learning tool called multivariate Gaussian Process Regression (GPR) (Rasmussen, 

Evaluation of Gaussian Processes and other Methods for Non-Linear Regression, 1996).  

Mohanty’s input data was limited to fatigue cycles, minimum load, and maximum load and 

load ratio (Mohanty S. , Chattopadhyay, Peralta, Das, & Willhauck, 2007).  The advantage 

that the GPR model has over most CP models is a stricter adherence to the characteristics 

of the source data depending on the kernel functions used to train the GPR model 

(Rasmussen, Evaluation of Gaussian Processes and other Methods for Non-Linear 

Regression, 1996).  The drawback to this model, however, is that its effectiveness is 
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dependent on the presence of relevant CSFs and the variety therein (Smith & Modarres, 

2017) so a generous number of properties and data is usually required. 

For this research, the main motivation is to design a methodology that can determine the 

level of realism that is present in CPD models.  For example, when performing a detection 

analysis on a singular aircraft or a fleet of aircrafts, one needs to address which CPD models 

best represent the actual rate of growth of a crack in the beam or frame.  Naturally, the 

answer to this will vary from case to case due to differences in material, environmental 

conditions, or the time of operation.  The means to which this determination of realism is 

implemented takes into account the fact that crack propagation and detection are otherwise 

related, and should therefore be examined as an integrated model.  This relation will aid in 

determining the realism in CPD models.  In addition to this, the methodology will take an 

adequate account of the uncertainties that CPD models possess and address them as the 

methodology is implemented. 

1.2 Research Contributions 

The following is a list of contributions from this research project. 

1. Development and validation of a new methodology that will model more 

realistically an integrated CPD model 

2. Introduction and assessment of a list of relevant CSFs that contribute to CPD 

3. Establishment of a relationship between CSFs and CPD and the CPD model 

4. Demonstrate the relationship between CSFs to the remaining-useful-life (RUL)  
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1.3 Methodology and Scope of Research 

This research is dependent upon the acquisition of a large number of data from a series of 

fatigue life tests.  The first set of data comes from fatigue tests from previous research 

(Keshtgar, 2013) while additional data comes from new fatigue tests using the same data 

acquisition methods with some differences (Smith, Modarres, & Droguett, 2017).  

Therefore, this research continues previous research in order to explore certain aspects that 

are related to the AE studies (Keshtgar, 2013).  In particular, the AE related CP model that 

was developed by (Keshtgar, 2013) is an important part of this study.  The data from that 

study is made up of a set of CP measurements as well as AE signal data and CSF data 

(loading conditions and material conditions) that have been identified and selected for this 

research.  A broader probabilistic Bayesian estimation methodology is performed on the 

acquired data to develop an integrated likelihood model consisting of a CP model and a 

crack detection model.  For example, the likelihood can consist of an exponential (log-

linear) CP model (Molent, Barter, & Jones, 2008) and a lognormal crack detection (or 

POD) model (Georgiou, 2006).  All CPD models are chosen from existing models and each 

CPD pair undergoes the Bayesian analysis.  The output from each analysis yields the 

posterior CPD model parameters and models, the model error, and the remaining useful 

life (RUL) estimates for each fatigue test specimen.  This proposed methodology is 

depicted in Figure 1-1, where the options for the CP models and the POD models have 

previously been proposed and tested in other literature (Smith & Modarres, 2017; Smith, 

Modarres, & Droguett, 2017) including this dissertation.  The flowchart outlines the routine 

used for the processing of the input data (CSFs, CP data, AE signal data, and measurement 
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error) through the Bayesian inference of a unique CPD model, to produce the desired 

output. 

 

Figure 1-1: Outline of the methodology 
 

1.4 Dissertation Overview 

The remainder of this dissertation is divided into five principal chapters.  Chapter 2 presents 

an overview of some of the existing models used for CPD.  This literature review includes 

a comprehensive list of material and test properties that are known to contribute to CPD as 

well as some of the known uncertainties involved.  In Chapter 3 the experimental procedure 

used for this research is outlined and the Bayesian procedure that is used to process the 

integrated models is introduced.  The test parameters of all of the specimens used to collect 

the data from the two rounds of tests are defined as well as certain definitions with regard 

to different crack lengths and measurement errors.  The chapter also introduces the 

Gaussian procedure and components that are necessary for this methodology.  Chapter 4 

explores further some aspects of the shaping factors including their correlative effect on 

the model parameters and the uncertainties.  It is here that the recursive Bayesian CP 
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modeling procedure will be expanded as well as the final check for modeling error.  The 

results from the total methodology are presented in Chapter 5 which include the posterior 

propagation and detection models, the shaping factor to model parameter correlation 

effects, the validation of this correlation, and finally the end-of-life analysis.  Finally, 

Chapter 6 concludes the dissertation with final thoughts, contributions to the PHM 

community, and suggestions for future work. 
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Chapter 2: Background on Crack Modeling 
 

2.1 Overview 

To understand where CPD modeling is going, it is often necessary to understand where it 

has been.  CP research has been a study within the PHM community for many years.  It is 

based on the findings of several engineers who subsequently developed and designed CP 

models based on those findings.  Several of these findings relate CP as a function of several 

shaping factors (CSFs) that are inherent in testing and material properties.  We define the 

CSFs as correlated properties that directly affect the size, shape, and propagation of a crack.  

As CP research developed, the necessity to detect cracks soon became apparent and 

research around that advanced in conjunction to CP research.  Many techniques in CPD 

modeling have been designed and while there are inherent strengths in them, there are also 

considerable weaknesses as well such as inherent modeling uncertainties (Sankararaman, 

Ling, Shantz, & Mahadevan, 2009).  It is when these weaknesses are recognized that these 

existing models may be improved for the benefit of PHM research. 

This chapter is dedicated to a brief overview of the history of CP research as well as how 

it led to and connects to crack detection research.  Models and techniques that have been 

designed for both will be discussed including what their strengths and weaknesses are in 

CPD modeling.  Additionally, this chapter will cover a list of CSFs that are known to 

contribute to the shape, propagation, and thus detection of a crack. 
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2.2 Crack Propagation 

2.2.1 Overview and History 

The foundation for modern fatigue CP research, more specifically metal fatigue CP 

research, began in the 1920s under Alan Griffith.  He was the first engineer at the time to 

discover the presence of microscopic cracks as a result of common surface treatment and 

specimen preparation techniques such as sanding, polishing, and milling; and he was also 

the first to hypothesize the correlation between fatigue CP and increasing surface energy 

(Griffith, 1921).  George Irwin later linked Griffith’s findings to ductile materials as well 

as brittle metals and further linked CP to increasing strain energy (Irwin, Fracture 

Dynamics, 1948).  The more groundbreaking of his contributions was finding the local 

stress values 𝜎𝜎𝑥𝑥/𝑦𝑦 near the tip of a crack (Irwin, Analysis of Stresses and Strains Near the 

End of a Crack Traversing a Plate, 1957), 

𝜎𝜎𝑥𝑥
𝑦𝑦

=
𝐾𝐾

√2𝜋𝜋𝜋𝜋
�cos

𝜃𝜃
2
� �1 ∓ sin

𝜃𝜃
2

sin
3𝜃𝜃
2
� + ⋯ (2.1) 

where 𝐾𝐾 is the stress intensity factor and 𝑟𝑟 and 𝜃𝜃 are the cylindrical coordinates radius and 

angle respectively in accordance to the position of a point with respect to the tip of the 

crack.  The foundation of Equation (2.1) is where the equation for stress intensity factor 𝐾𝐾 

comes from. 

𝐾𝐾 = 𝑓𝑓(𝑔𝑔)𝜎𝜎√𝜋𝜋𝜋𝜋 (2.2) 

Note that the term 𝑓𝑓(𝑔𝑔) is a material constant and 𝑎𝑎 represents the crack length. 

In time this initial research spurred exploration into other equations for CP which is often 

denoted as a rate function 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 where 𝑁𝑁 is the number of fatigue cycles at a given 𝑎𝑎 and 

𝑑𝑑𝑑𝑑 is the rate change in fatigue cycles (Bannantine, Comer, & Handrock, 1990).  The 
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behavior of CP came to be known as the relation between CP rate and the stress intensity 

factor range ∆𝐾𝐾.  Typically this sigmoidal curve is divided into three regions because they 

represent different phases of the crack’s life depicted in Figure 2-1. 

 

Figure 2-1: A crack propagation rate curve outlining the three principle regions of crack 

propagation 

Region I is known as the threshold region where very minimalist crack growth is exhibited.  

That is the crack is just beginning to grow at this early phase in life.  According to studies, 

cracks cannot propagate (or propagate extremely slowly) at or below the stress intensity 

factor range threshold ∆𝐾𝐾𝑡𝑡ℎ.  Region II is the region of the most stable crack growth in that 

the log-log relation between ∆𝐾𝐾 and 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 is linear.  This region is famously 
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characterized by the Paris Law which was developed in the early 60’s (Paris & Erdogan, 

1963). 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐶𝐶(∆𝐾𝐾)𝑚𝑚 (2.3) 

Note that 𝐶𝐶 and 𝑚𝑚 are material constants and that the Paris Law is simply a power relation 

between ∆𝐾𝐾 and 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑.  Region III is the last region where the most rapid and most 

unstable crack growth occurs.  This is usually as the sample is getting ready to fail or when 

the crack rapidly approaches its end of life.  The term 𝐾𝐾𝑐𝑐 stands for the fracture toughness 

of the material, at which point the crack is at the end of life. 

Of particular importance in CP studies is the small crack growth Region I, because it is the 

region where the earliest stages of CP take place.  Part of this study requires the definition 

of a “small crack” in regards to the research or material used for the research.  However, 

according to Keshtgar, there is no consensus as to what crack length qualifies as a “small 

crack,” (Keshtgar, 2013) so this value must be arbitrarily selected based on the researchers 

(Kujawski & Ellyin, 1992).  Kujawski and Ellyin state that this measure is based on the 

diameter of material grains which is variable for different materials (Kujawski & Ellyin, 

1992).  Keshtgar for example, used 50 µm as her upper threshold for small crack 

measurement (Keshtgar, 2013). 

2.2.2 Models for Crack Propagation 

The majority of CP research since the inception of Paris Law is focused on modeling the 

rate of CP.  For example, Walker’s equation is a variation of Paris Law, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐶𝐶 �
∆𝐾𝐾

(1 − 𝑅𝑅)1−𝑏𝑏�
𝑚𝑚

 (2.4) 
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where 𝑏𝑏 is another material constant, except that it also considers the effect of load ratio 𝑅𝑅 

as well as the effect of stress intensity factor range ∆𝐾𝐾 on CP rate 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 (Walker, 1970).  

And this is just one of many CP rate models that exist (Forman, Kearney, & Eagle, 1967).  

The majority of CP models may also adhere to a time series.  When a CP model is 

characterized as an integrated probabilistic model, a lognormal PDF, 

𝑓𝑓�𝑎𝑎|𝐴𝐴, 𝑥⃑𝑥� =
1

𝑎𝑎𝑎𝑎√2𝜋𝜋
exp �−

1
2
�

ln 𝑎𝑎 − ln𝑔𝑔�𝐴𝐴, 𝑥⃑𝑥�
𝜎𝜎

�
2

� (2.5) 

can be used to account for it where 𝜎𝜎 is the lognormal standard deviation parameter, 𝐴𝐴 is a 

vector of parameters that make up the CP model, and the vector 𝑥⃑𝑥 is a set of CSFs.  

However, CP models are not limited to models depicting CP rate.  Many CP models operate 

as simple functions of CSFs, such as the four following models that were given as options 

in the methodology flowchart in Figure 1-1 (Smith, Modarres, & Droguett, 2017). 

2.2.2.1 Mechanistic Approach 

The log-linear or exponential CP model (Molent, Barter, & Jones, 2008; Rusk, 2011; 

Davidson & Lankford, 2013; Smith, Modarres, & Droguett, 2017) is one of these models 

which may be expressed as, 

ln[𝑎𝑎(𝑁𝑁)] = 𝑏𝑏 + 𝑚𝑚 ln𝑁𝑁 (2.6) 

where, 𝑚𝑚 and 𝑏𝑏 are parameters representing the slope and intercept of this relationship, 

respectively.  In this form, the initial crack length (𝑎𝑎0 = 𝑎𝑎(𝑁𝑁 = 0)) may also be defined 

as 𝑒𝑒𝑏𝑏.  The slope 𝑚𝑚 is actually a parameter that is dependent upon the geometry and the 

load of and on the crack (Jones, Peng, Huang, & Singh, 2015).  Several studies support the 

position that CP curves can be expressed in exponential form (Molent, Barter, & Jones, 
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2008; Davidson & Lankford, 2013).  Jones et. al for example supports this position by 

plotting simulated flight hours vs. crack length curves from a range of Australian military 

aircraft (Jones, Peng, Huang, & Singh, 2015). 

2.2.2.2 Acoustic Emission 

The AE propagation model is a recently proposed model based on a weighted measure of 

Keshtgar’s (Keshtgar, 2013) AE signal the AE intensity 𝐼𝐼(𝑁𝑁), which is a function of two 

AE signal readings: cumulative counts 𝐶𝐶(𝑁𝑁) and cumulative signal amplitude 𝐴𝐴(𝑁𝑁). 

 

Figure 2-2: A standard depiction of an AE signal waveform  (Kappatos & Dermatas, 2007) 

The “counts” (or ring-down counts) (Kappatos & Dermatas, 2007) are defined as the 

number of times the AE signal amplitude rises above a predefined detection threshold 

amplitude 𝐴𝐴0 within the signal waveform duration.  The signal duration is the time between 

when the signal waveform first exceeds the detection threshold and when the waveform 

goes back under the threshold.  The detection threshold amplitude also functions as a noise 

reduction mechanism as the testing facilities generates a lot of background noise that can 
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be taken as data.  The AE signal represented in Figure 2-2, for example, shows that the 

signal passes the detection threshold 25 times within the defined signal duration.  For this 

signal duration therefore, there are 25 cumulative AE counts.  Both the time-based counts 

and amplitudes are normalized and cumulative as functions of fatigue cycle 𝑁𝑁 (Keshtgar, 

2013).  The AE intensity 𝐼𝐼(𝑁𝑁) is defined (Keshtgar, 2013)  as, 

𝐼𝐼(𝑁𝑁) =
𝐶𝐶(𝑁𝑁)𝐴𝐴(𝑁𝑁)

𝐴𝐴0
 (2.7) 

where,  

𝑎𝑎(𝑁𝑁) = ℎ[𝐼𝐼(𝑁𝑁)] (2.8) 

Depending on the behavior of the data, Equation (2.8) can take several forms including but 

not limited to the linear form, 

𝑎𝑎(𝑁𝑁) = 𝛼𝛼𝛼𝛼(𝑁𝑁) + 𝛽𝛽 (2.9) 

the exponential form, 

𝑎𝑎(𝑁𝑁) = 𝛼𝛼 exp[𝛽𝛽𝛽𝛽(𝑁𝑁)] (2.10) 

or the power form, 

𝑎𝑎(𝑁𝑁) = 𝛼𝛼𝐼𝐼(𝑁𝑁)𝛽𝛽 (2.11) 

where 𝛼𝛼 and 𝛽𝛽 are unknown parameters.  Initial study of this model shows that AE intensity 

can effectively detect and potentially measure crack length (Keshtgar, 2013).  However, 

because it is an NDT technique, AE readings are still likely to miss very small crack lengths 

(Thornton & Tiffany, 1970).  Additionally, as stated in the Introduction (Section 1.1) the 

model has been known to possess a high relative model error (Keshtgar, 2013). 
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2.2.2.3 Gaussian Process Regression 

A more complex propagation model is the GPR propagation model, which is based on 

Mohanty’s (Mohanty S. , Chattopadhyay, Peralta, Das, & Willhauck, 2007) work of 

correlating a set of input variables (fatigue cycles, minimum load, maximum load and load 

ratio (Mohanty S. , Chattopadhyay, Peralta, Das, & Willhauck, 2007)) to the output 

variable (fatigue crack length) through multivariate GPR (Mohanty, Chattopadhyay, & 

Peralta, 2011).  Note that the previously mentioned CP models (the power and AE models) 

only use one CSF: fatigue cycles.  This crack length model is a function of a set of CSFs 

such as: fatigue cycles, load ratio, minimum and maximum loads, frequency, mean grain 

diameter, and mean inclusion diameter.   

𝑎𝑎 = 𝑔𝑔(𝑥⃑𝑥) = 𝑔𝑔([𝐶𝐶𝐶𝐶𝐶𝐶1 𝐶𝐶𝐶𝐶𝐶𝐶2 ⋯ 𝐶𝐶𝐶𝐶𝐶𝐶𝑄𝑄]) (2.12) 

where 𝑄𝑄 is the number of input CSFs being considered for the output crack length 𝑎𝑎. Note 

that for each observation data 𝑖𝑖, there is an output/input data pair of crack length 

measurement 𝑎𝑎𝑖𝑖 and CSF vector 𝑥⃑𝑥𝑖𝑖.  The complete set of observation data is typically 

divided into two groups when developing a multivariate GPR model: (1) the training data 

which establishes the initial model parameters, and (2) the validation data which validates 

the model.  A multivariate GPR function may now be built primarily for application to the 

training data.  When arranged as a group of 𝑀𝑀 training data, the relations between the 𝑀𝑀 ×

1 crack growth training data vector 𝑎⃑𝑎𝑡𝑡 and the 𝑀𝑀 × 𝑄𝑄 CSF training data matrix [𝑋𝑋]𝑡𝑡 can be 

defined as follows. 

𝑎⃑𝑎𝑡𝑡 = 𝑔𝑔([𝑋𝑋]𝑡𝑡) (2.13) 
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 (2.14) 

The Gaussian crack length PDF, therefore, is depicted as, 

𝑓𝑓�𝑎𝑎𝑣𝑣|[𝑋𝑋]𝑡𝑡, 𝑎⃑𝑎𝑡𝑡, 𝑥⃑𝑥𝑣𝑣,𝐴𝐴� (2.15) 

for any validation crack length 𝑎𝑎𝑣𝑣 and its validation CSF vector 𝑥⃑𝑥𝑣𝑣.  The basis for the 

input/output relation comes from a simple Gaussian relationship 𝐺𝐺(0,𝐾𝐾), where 𝐾𝐾 is the 

𝑀𝑀 × 𝑀𝑀 covariance matrix or kernel matrix that correlates 𝑎⃑𝑎𝑡𝑡 and [𝑋𝑋]𝑡𝑡.  Kernel matrices are 

made up of kernel functions 𝑘𝑘(𝑥⃑𝑥𝑖𝑖, 𝑥⃑𝑥𝑗𝑗 ,𝐴𝐴) which take two sets of CSF data 𝑥⃑𝑥𝑖𝑖 and 𝑥⃑𝑥𝑗𝑗 and the 

Gaussian crack length model parameters 𝐴𝐴 to produce one element of the kernel matrix.  In 

Gaussian modeling the objective is to develop a kernel function 𝑘𝑘 based on the assumptions 

of the input and output relation being modeled (Mohanty S. , Chattopadhyay, Peralta, Das, 

& Willhauck, 2007).  There is an extensive list of kernel functions that can be used to fit a 

given model (Rasmussen, 1996; Rasmussen, Nickisch, & Williams, 2015 ), however, 

proper development requires trial and error as well as validation to see whether or not the 

kernel function is the best fit to the data (Mohanty S. , Chattopadhyay, Peralta, Das, & 

Willhauck, 2007).  The 𝑀𝑀 × 𝑀𝑀 training kernel matrix may be denoted as [𝐾𝐾]𝑡𝑡�[𝑋𝑋]𝑡𝑡,𝐴𝐴�. 

2.2.2.4 Particle Filtering 

The final CP model based on particle filtering (PF), a recursive Bayesian estimation 

technique that is suited for non-linear processes.  Recursive Bayes estimation is a 

probabilistic inference method in which a set of unobserved values are estimated based on 
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a set of observed values (Rabiei M. , 2011; Rabiei & Modarres, 2013).  The PF propagation 

model can be characterized by the state-space model illustrated in Figure 2-3. 

 

Figure 2-3: The dynamic state-space representation of the particle filtering propagation model 
where 𝑟𝑟 is a time-step 

Since crack length 𝑎𝑎 is largely unknown, it is the unobserved value in this model. Whereas 

the AE variables cumulative count 𝐶𝐶 and cumulative amplitude 𝐴𝐴 are known, so these are 

the observed values in the model.  The mathematical form for this probabilistic propagation 

model therefore is, 

𝜋𝜋(𝑎𝑎𝑟𝑟|𝐶𝐶1:𝑟𝑟 ,𝐴𝐴1:𝑟𝑟) (2.16) 

which estimates the distribution of crack length 𝑎𝑎 at time-step 𝑟𝑟 based on all 𝐶𝐶 and 𝐴𝐴 values 

up to that time-step.   Equation (2.16) is obtained by way of Bayes Rule,  

𝜋𝜋(𝑎𝑎𝑟𝑟|𝐶𝐶1:𝑟𝑟 ,𝐴𝐴1:𝑟𝑟) =
𝜋𝜋(𝐶𝐶𝑟𝑟 ,𝐴𝐴𝑟𝑟|𝑎𝑎𝑟𝑟) × 𝜋𝜋(𝑎𝑎𝑟𝑟|𝐶𝐶1:𝑟𝑟−1,𝐴𝐴1:𝑟𝑟−1)

𝜋𝜋(𝐶𝐶𝑟𝑟 ,𝐴𝐴𝑟𝑟|𝐶𝐶1:𝑟𝑟−1,𝐴𝐴1:𝑟𝑟−1)  (2.17) 

where the prior distribution is given as, 
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𝜋𝜋(𝑎𝑎𝑟𝑟|𝐶𝐶1:𝑟𝑟−1,𝐴𝐴1:𝑟𝑟−1) = �𝜋𝜋(𝑎𝑎𝑟𝑟|𝑎𝑎𝑟𝑟−1) × 𝜋𝜋(𝑎𝑎𝑟𝑟−1|𝐶𝐶1:𝑟𝑟−1,𝐴𝐴1:𝑟𝑟−1)𝑑𝑑𝑎𝑎𝑟𝑟−1 (2.18) 

and the normalizing factor is, 

𝜋𝜋(𝐶𝐶𝑟𝑟 ,𝐴𝐴𝑟𝑟|𝐶𝐶1:𝑟𝑟−1,𝐴𝐴1:𝑟𝑟−1) = �𝜋𝜋(𝐶𝐶𝑟𝑟 ,𝐴𝐴𝑟𝑟|𝑎𝑎𝑟𝑟) × 𝜋𝜋(𝑎𝑎𝑟𝑟|𝐶𝐶1:𝑟𝑟−1,𝐴𝐴1:𝑟𝑟−1)𝑑𝑑𝑎𝑎𝑟𝑟 (2.19) 

Because exact calculation of Equations (2.17)–(2.19) is either not possible or very 

complex, the propagation model is approximated by generating a set of 𝑁𝑁𝑝𝑝 crack length 

samples (or particles) and their associated weights 𝑤𝑤𝑟𝑟𝑖𝑖 for each time step 𝑟𝑟.  This 

approximation is depicted as, 

𝜋𝜋(𝑎𝑎𝑟𝑟|𝐶𝐶1:𝑟𝑟,𝐴𝐴1:𝑟𝑟) ≈�𝑤𝑤𝑟𝑟𝑖𝑖𝛿𝛿�𝑎𝑎0:𝑟𝑟 − 𝑎𝑎0:𝑟𝑟
𝑖𝑖 �

𝑁𝑁𝑝𝑝

𝑖𝑖=1

 (2.20) 

where 𝛿𝛿 is the Dirac delta function and the weights are normalized such that sum from 𝑖𝑖 =

1 …𝑁𝑁𝑝𝑝 is 1.  The weights for each of these particles are chosen by sequential importance 

sampling (SIS) a Monte Carlo method (Doucet, De Freitas, & Gordon, 2001; 

Arulampalam, Maskell, Gordon, & Clapp, 2002).  The method is based on the idea that 

while direct particle extraction from the target distribution Equation (2.20) is difficult, 

extraction is possible from a proposed distribution 𝑞𝑞(𝑎𝑎𝑟𝑟|𝐶𝐶1:𝑟𝑟,𝐴𝐴1:𝑟𝑟) called the importance 

distribution.  From this idea the weights (called importance weights) may be defined as the 

ratio between the target distribution and importance distribution. 

𝑤𝑤𝑟𝑟𝑖𝑖 ∝
𝜋𝜋(𝑎𝑎𝑟𝑟|𝐶𝐶1:𝑟𝑟,𝐴𝐴1:𝑟𝑟)
𝑞𝑞(𝑎𝑎𝑟𝑟|𝐶𝐶1:𝑟𝑟,𝐴𝐴1:𝑟𝑟) (2.21) 

The importance weight Equation (2.21) may be further simplified by factorizing the 

importance distribution, 
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𝑞𝑞(𝑎𝑎𝑟𝑟|𝐶𝐶1:𝑟𝑟 ,𝐴𝐴1:𝑟𝑟) = 𝑞𝑞(𝑎𝑎𝑟𝑟|𝑎𝑎1:𝑟𝑟−1,𝐶𝐶1:𝑘𝑘,𝐴𝐴1:𝑟𝑟) × 𝑞𝑞(𝑎𝑎𝑟𝑟|𝐶𝐶1:𝑟𝑟−1,𝐴𝐴1:𝑟𝑟−1) (2.22) 

and the Bayes form of the PF propagation model Equation 2.17, 

𝜋𝜋(𝑎𝑎𝑟𝑟|𝐶𝐶1:𝑟𝑟,𝐴𝐴1:𝑟𝑟) =
𝜋𝜋(𝐶𝐶𝑟𝑟,𝐴𝐴𝑟𝑟|𝑎𝑎𝑟𝑟) × 𝜋𝜋(𝑎𝑎𝑟𝑟|𝑎𝑎𝑟𝑟−1)
𝜋𝜋(𝐶𝐶𝑟𝑟 ,𝐴𝐴𝑟𝑟|𝐶𝐶1:𝑟𝑟−1,𝐴𝐴1:𝑟𝑟−1) × 𝜋𝜋(𝑎𝑎𝑟𝑟|𝐶𝐶1:𝑟𝑟−1,𝐴𝐴1:𝑟𝑟−1) (2.23) 

or, 

𝜋𝜋(𝑎𝑎𝑟𝑟|𝐶𝐶1:𝑟𝑟,𝐴𝐴1:𝑟𝑟) ∝ 𝜋𝜋(𝐶𝐶𝑟𝑟 ,𝐴𝐴𝑟𝑟|𝑎𝑎𝑟𝑟) × 𝜋𝜋(𝑎𝑎𝑟𝑟|𝑎𝑎𝑟𝑟−1) × 𝜋𝜋(𝑎𝑎𝑟𝑟|𝐶𝐶1:𝑟𝑟−1,𝐴𝐴1:𝑟𝑟−1) (2.24) 

Therefore, Equation (2.21) is redefined as, 

𝑤𝑤𝑘𝑘
𝑖𝑖 ∝

𝜋𝜋(𝑎𝑎𝑟𝑟|𝐶𝐶1:𝑟𝑟−1,𝐴𝐴1:𝑟𝑟−1)
𝑞𝑞(𝑎𝑎𝑟𝑟|𝐶𝐶1:𝑟𝑟−1,𝐴𝐴1:𝑟𝑟−1) ×

𝜋𝜋(𝐶𝐶𝑟𝑟 ,𝐴𝐴𝑟𝑟|𝑎𝑎𝑟𝑟) × 𝜋𝜋(𝑎𝑎𝑟𝑟|𝑎𝑎𝑟𝑟−1)
𝑞𝑞(𝑎𝑎𝑟𝑟|𝑎𝑎1:𝑟𝑟−1,𝐶𝐶1:𝑟𝑟,𝐴𝐴1:𝑟𝑟)  (2.25) 

and simplified to, 

𝑤𝑤𝑟𝑟𝑖𝑖 ∝ 𝑤𝑤𝑟𝑟−1
𝑖𝑖 ×

𝜋𝜋(𝐶𝐶𝑟𝑟 ,𝐴𝐴𝑟𝑟|𝑎𝑎𝑟𝑟) × 𝜋𝜋(𝑎𝑎𝑟𝑟|𝑎𝑎𝑟𝑟−1)
𝑞𝑞(𝑎𝑎𝑟𝑟|𝑎𝑎1:𝑟𝑟−1,𝐶𝐶1:𝑟𝑟 ,𝐴𝐴1:𝑟𝑟)  (2.26) 

Further simplification of Equation (2.21) results from assuming that the importance 

distribution 𝑞𝑞(𝑎𝑎𝑟𝑟|𝑎𝑎1:𝑟𝑟−1,𝐶𝐶1:𝑟𝑟 ,𝐴𝐴1:𝑟𝑟) is equal to the prior distribution 𝜋𝜋(𝑎𝑎𝑟𝑟|𝑎𝑎𝑟𝑟−1) such that, 

𝑤𝑤𝑟𝑟𝑖𝑖 ∝ 𝑤𝑤𝑟𝑟−1
𝑖𝑖 × 𝜋𝜋(𝐶𝐶𝑟𝑟 ,𝐴𝐴𝑟𝑟|𝑎𝑎𝑟𝑟) (2.27) 

It has to be noted though that the traditional SIS approach eventually iterates to a point 

when all but one importance weight is negligible.  This is called the “degeneracy problem” 

(Doucet, Godsill, & Andrieu, 2000) and is generally rectified by generating new particles 

to replace those with negligible weight.  

The resulting propagation is then treated as output for the GPR propagation model with the 

CSFs as input again, so in that sense this is really a PF/GPR Propagation Model.  This 

iteration of the GPR propagation model is more effective than the three first models.  CP 
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is approximated as a Bayesian function of AE readings and then that same propagation is 

correlated to the CSFs by way of the GPR model. The PF/GPR propagation model takes 

the most effective aspects of existing models (AE data and CSFs) and relates CP with them 

all (Smith, Modarres, & Droguett, 2017). 

2.3 Crack Detection 

2.3.1 Overview and History 

As CP study was developing in the late ‘60s, at the same time that the space exploration 

program was steadily developing, it was becoming more and more pertinent to study the 

probability of detecting cracks (Georgiou, 2006).  The majority of the groundwork in this 

field was conducted by the aerospace industry, most notably the National Aeronautics and 

Space Administration (NASA), as the need to ensure structural integrity of critical 

components became more and more important (Petrin Jr., Annis Jr, & Vukelich, 1993).  

This was because NASA was beginning development of the space shuttle program where 

flaw detection and fracture control protocol was of utmost importance in order to prevent 

catastrophic structural failure due to crack initiated fractures (National Aeronautics and 

Space Administration, 1971).  The early studies of flaw detection probability placed 

emphasis on finding the smallest detectable crack or flaw length by means of existing NDT 

methods like radiographic, ultrasonic, X-Ray, and magnetic particles.  However, it was 

becoming more apparent that very small flaws are extremely difficult to detect using NDT 

methods.  As a consequence of this, it was made bad policy to assume that potentially 

catastrophic flaws would be able to be found or detected at all times (Thornton & Tiffany, 

1970).  This all led to NASA seeking information about the largest flaw that could possibly 
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be missed as it is easier to detect a large flaw by way of NDT methods (notably well before 

critical flaw size) (Georgiou, 2006; Thornton & Tiffany, 1970). 

These early flaw detection probability concepts were called POD by NASA in 1973 

(Rummel & Matzkanin, 1997).  Since this inception, aerospace researchers have worked 

to obtain POD data for the various NDT methods although initially the distribution for the 

POD of all flaw types and sizes for all NDT methods was assumed to be binomial 

(Georgiou, 2006; Rummel & Matzkanin, 1997).  By the mid-80s however, POD soon 

became known as a function of flaw size 𝑎𝑎 or 𝑃𝑃𝑃𝑃𝑃𝑃(𝑎𝑎), thus additional POD distribution 

types were considered including the lognormal distribution and the log-logistic distribution 

(Georgiou, 2006).  Furtherance of CPD modeling has gone hand-in-hand as a result. 

2.3.2 Models for Crack Detection 

The crack detection models (or POD models for crack) are all in form of cumulative density 

functions of crack length 𝑎𝑎.  Finding the model parameters is done by identifying the crack 

lengths between 𝑎𝑎𝑙𝑙𝑙𝑙ℎ and 𝑎𝑎ℎ𝑡𝑡ℎ,  

𝑎𝑎𝑙𝑙𝑙𝑙ℎ < 𝑎𝑎 < 𝑎𝑎ℎ𝑡𝑡ℎ (2.28) 

where 𝑎𝑎𝑙𝑙𝑙𝑙ℎis the smallest crack length that can be detected and 𝑎𝑎ℎ𝑡𝑡ℎ is largest crack length 

that can be missed using the an NDT technique (Georgiou, 2006).  These crack lengths can 

then fit to a signal response POD function for NDT variable 𝑍𝑍 (Georgiou, 2006), 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑎𝑎) = 1 − 𝐹𝐹 �
ln 𝑍̂𝑍𝑡𝑡ℎ − ln[𝑍𝑍(𝑎𝑎)]

𝜎𝜎𝑍𝑍
� (2.29) 
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where  𝜎𝜎𝑍𝑍 represents the standard deviation associated with the error between log forms of 

model NDT variable 𝑍̂𝑍 and the true NDT variable 𝑍𝑍 (Georgiou, 2006; Keshtgar, 2013) 

written as, 

ln 𝑍̂𝑍 = ln𝑍𝑍 + 𝑁𝑁𝑁𝑁𝑁𝑁(0,𝜎𝜎𝑍𝑍) (2.30) 

The 𝑍̂𝑍𝑡𝑡ℎ term in Equation (2.29) is the NDT threshold where above this value cracks are 

detected and below this value the crack goes undetected.  For example, in the case of an 

AE based analysis, AE Intensity 𝐼𝐼 may be used as the NDT variable to estimate the POD 

based on Equations (2.29) and (2.30). 

2.3.2.1. Lognormal 

As stated, the lognormal POD model was one of the first standards developed after the 

binomial model became impractical (Georgiou, 2006). The form of this model may be 

represented as, 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑎𝑎|𝜁𝜁0, 𝜁𝜁1,𝑎𝑎𝑙𝑙𝑙𝑙ℎ)

= �
1

(𝑥𝑥 − 𝑎𝑎𝑙𝑙𝑙𝑙ℎ)�2𝜋𝜋𝜁𝜁12
exp �−

1
2
�
ln(𝑥𝑥 − 𝑎𝑎𝑙𝑙𝑙𝑙ℎ) − 𝜁𝜁0

𝜁𝜁1
�
2

� 𝑑𝑑𝑑𝑑
𝑎𝑎

𝑎𝑎𝑙𝑙𝑙𝑙ℎ
 (2.31) 

where the parameters 𝜁𝜁0 and 𝜁𝜁1 represent the log mean and standard deviation elements.   

The random variable 𝑎𝑎 has to be additively adjusted as (𝑎𝑎 − 𝑎𝑎𝑙𝑙𝑙𝑙ℎ) for all POD models 

because 0 ≤ 𝑃𝑃𝑃𝑃𝑃𝑃(𝑎𝑎) ≤ 1 for crack lengths greater or equal to the lower crack length 

threshold 𝑎𝑎𝑙𝑙𝑙𝑙ℎ.   
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2.3.2.2. Log-logistic 

The log-logistic POD model (sometimes dubbed the “log-odds” model) was also among 

the first standards developed after the binomial POD model (Georgiou, 2006) and is 

defined as, 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑎𝑎|𝛽𝛽0,𝛽𝛽1,𝑎𝑎𝑙𝑙𝑙𝑙ℎ) =
exp[𝛽𝛽0 + 𝛽𝛽1 ln(𝑎𝑎 − 𝑎𝑎𝑙𝑙𝑙𝑙ℎ)]

1 + exp[𝛽𝛽0 + 𝛽𝛽1 ln(𝑎𝑎 − 𝑎𝑎𝑙𝑙 𝑡𝑡ℎ)] 
(2.32) 

where 𝛽𝛽0 and 𝛽𝛽1 are model parameters.  The log-logistic and the lognormal detection 

models are among the most commonly used POD models (Georgiou, 2006).  The log-

logistic model is especially prevalent primarily because of its simple mathematical form, 

and because of its ease of use when dealing with censored data (Georgiou, 2006; Singh, 

Warsono, & Bartolucci, 1997).  However, just because they are common does not make 

them the norm for all fits. 

2.3.2.3 Logistic 

The “logistic” POD model for example was first proposed by Yuan et al. as a model to 

represent in-service inspection data (Yuan, Mao, & Pandey, 2009).  This model takes a 

different form than the standard logistic CDF function as shown by the equation, 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑎𝑎|𝜂𝜂0, 𝜂𝜂1, 𝑎𝑎𝑙𝑙𝑙𝑙ℎ) = 1 −
1 + exp(−𝜂𝜂0𝜂𝜂1)

1 + exp[𝜂𝜂0(𝑎𝑎 − 𝜂𝜂1 − 𝑎𝑎𝑙𝑙𝑙𝑙ℎ)] 
(2.33) 

where  𝜂𝜂0 and 𝜂𝜂1 are the model parameters or more specifically parameters that control the 

detection quality of crack lengths (Yuan, Mao, & Pandey, 2009).  As with all POD models, 

the nature of these model parameters will depend on the NDT procedure being used for 

detection (Georgiou, 2006). 
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2.3.2.4. Weibull 

The Weibull POD model is another out of the norm detection model represented by, 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑎𝑎|𝛼𝛼0,𝛼𝛼1,𝑎𝑎𝑙𝑙𝑙𝑙ℎ) = 1 − exp �− �
𝑎𝑎 − 𝑎𝑎𝑙𝑙𝑙𝑙ℎ
𝛼𝛼0

�
𝛼𝛼1
� (2.34) 

where 𝛼𝛼0 and 𝛼𝛼1 are the scale and shape Weibull parameter respectively.  It was Bencala 

and Seinfeld who brought to attention that the Weibull distribution (as well as the Gamma 

distribution) is capable of replicating lognormal distribution data to some degree (Bencala 

& Seinfeld, 1976).  Since both the lognormal and log-logistic distributions have been 

adopted as principle POD models, other researchers such as Sekine, Mao, and Rountree 

(Rountree, 1990; Sekine & Mao, 1990) have adopted the Weibull distribution as a viable 

POD model.  Disregarding the similarity between the lognormal and Weibull distributions 

however (Bencala & Seinfeld, 1976), Rountree cites Schleher’s research (Schleher, 1976) 

which states that the lognormal POD tends to overestimate some detections making it often 

the worst-case scenario POD model to use (Rountree, 1990).  Hence the Weibull 

distribution was seen as an option for representing flaw detection in this case (Rountree, 

1990). 

2.3.3 False Detection  

Unlike the governing models for detection which consist of two or more parameters, the 

probability of false detection 𝑃𝑃𝐹𝐹𝐹𝐹 can be represented by a single parameter.  “False 

detection probability” is a term that is synonymous with “false positive probability 

(Wacholder, Chanock, Garcia-Closas, El Ghormli, & Rothman, 2004)” which in this case 

means the probability that a detected crack or flaw isn’t really there or that it was a false-

alarm detection.  Some very basic probability analysis is applied to obtain 𝑃𝑃𝐹𝐹𝐹𝐹.  First two 
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hypotheses are defined as 𝐻𝐻0 and 𝐻𝐻1.  𝐻𝐻0, the null hypothesis is when a crack is detected 

(𝐷𝐷 = 1) whereas 𝐻𝐻1 the alternate hypothesis, is if the crack measurement is actually bigger 

than the low crack threshold 𝑎𝑎𝑙𝑙𝑙𝑙ℎ.  Second, the truth and falsity of these hypotheses are the 

basis for the probability of false detection as well as the probabilities of true detection, false 

non-detection, and true non-detection; all of which are presented as follows: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = Pr(𝐷𝐷 = 1|𝑎𝑎 > 𝑎𝑎𝑙𝑙𝑙𝑙ℎ) Pr(𝑎𝑎 > 𝑎𝑎𝑙𝑙𝑙𝑙ℎ) (2.35) 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = Pr(𝐷𝐷 = 1|𝑎𝑎 < 𝑎𝑎𝑙𝑙𝑙𝑙ℎ) Pr(𝑎𝑎 < 𝑎𝑎𝑙𝑙𝑙𝑙ℎ) (2.36) 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = Pr(𝐷𝐷 = 0|𝑎𝑎 < 𝑎𝑎𝑙𝑙𝑙𝑙ℎ) Pr(𝑎𝑎 < 𝑎𝑎𝑙𝑙𝑙𝑙ℎ) (2.37) 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = Pr(𝐷𝐷 = 0|𝑎𝑎 > 𝑎𝑎𝑙𝑙𝑙𝑙ℎ) Pr(𝑎𝑎 > 𝑎𝑎𝑙𝑙𝑙𝑙ℎ) (2.38) 

Note that the sum of Equations (2.35) and (2.36) represent the total probability that 𝐷𝐷 = 1 

or Pr(𝐷𝐷 = 1); likewise, the sum of Equations (2.37) and (2.38) represent the total 

probability that 𝐷𝐷 = 0 or Pr(𝐷𝐷 = 0).  The probability of false detection 𝑃𝑃𝐹𝐹𝐹𝐹 is depicted 

simply as, 

𝑃𝑃𝐹𝐹𝐹𝐹 = Pr(𝐷𝐷 = 1|𝑎𝑎 < 𝑎𝑎𝑙𝑙𝑙𝑙ℎ) Pr(𝑎𝑎 < 𝑎𝑎𝑙𝑙𝑙𝑙ℎ) (2.39) 

 

2.4 Crack Shaping Factors 

The term “crack shaping factor” (CSF) is a terminology that comes from the term 

performance shaping factor (PSF), a term typically used in human reliability assessment 

(HRA) when gaging the performance of a worker.  Here “crack shaping factor” refers to a 

unique property that gages the performance or propagation and detectability of a fatigue 

crack (Smith, Modarres, & Droguett, 2017).  Although the term is fairly new, the study of 
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determining CSFs goes back to the time inception of fatigue CP research.  The following 

is a comprehensive list of several CSFs: 

• Fatigue Cycles–Time is among the most prevalent of units in modeling the 

propagation of a crack.  Therefore, any time-dependent variable (fatigue cycles, 

minutes, flight hours, days, etc.…) may be used to model CP.  All CP models are 

governed by a time-dependent variable whether it is propagation form 𝑎𝑎(𝑁𝑁) or 

propagation rate form 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑. 

• Load Ratio Effects–As Forman (Forman, Kearney, & Eagle, 1967) and Walker’s 

(Walker, 1970) research details, the applied load ratio 𝑅𝑅 has a very significant effect 

on CP rate and thus the crack length or shape.  Since the load ratio is a ratio of the 

minimum and maximum loads, (or a ratio of the minimum and maximum stress 

intensity factors) they are considered to be CSFs (Paris & Erdogan, 1963; Mohanty 

S. , Chattopadhyay, Peralta, Das, & Willhauck, 2007).  Generally, the higher the 

load ratio is, the faster CP takes place; however, this is dependent upon material 

CSFs. 

• Load Frequency–Load frequency is a major CSF that affects CP; however, its 

effect has been known to vary depending on the material.  In general decreasing 

load frequency causes an increase in CP rate and a decrease in fatigue life 

(Bannantine, Comer, & Handrock, 1990).  However, in some instances (such as in 

polymers) increasing load frequency can result in the CP rate being increased 

(Hertzberg, Manson, & Skibo, 1980), decreased (Skibo, 1977), or unchanged 

(Hertzberg, Manson, & Skibo, 1975). 
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• Material Grain Size–Neindorf and Halon et. al. have cited that the overall CP rate 

is known to decrease as the grain size increases and vice versa (Niendorf, 

Rubitschek, Maier, Canadinc, & Karaman, 2010; Hanlon, Kwon, & Suresh, 2003). 

• Inclusions–Inclusions are defined as type of non-metallic deformity or aberration 

in metallic materials that can be harmful to fatigue properties. For example, 

MacKenzie cites that the concentration and size of material inclusions can reduce 

the ductility of steels (MacKenzie, 2008).  As inclusions are based on a corrosive 

effect which occurs either by handling or preparation of the material, they are 

known to adversely affect CP (Randelius, 2008; Ekengren, 2008). 

• Temperature–The temperature of the environment has a strong effect on CP 

particularly in the Region II area.  The studies of Nelson et. al. for example show 

that the CP rate 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 has a log-linear relationship with the inverse of temperature 

(Nelson, Williams, & Tetelman, 1971).  That is for rising temperature the CP rate 

also increases thus reducing fatigue life. 

• Pressure–Williams cites his own research which correlates pressure, as well as 

temperature, to CP (Williams, 1973).  Along with increasing temperature, 

increasing pressure contributes to a deterioration in fatigue life and 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 can be 

simplified to an exponential function of temperature and pressure (Williams, 1973). 

• Dissipated Energy/Entropy–Although it is a product of CP, dissipated energy or 

entropy is still correlated to it, and therefore may be used as a means to tracking 

CP.  Early research by Bao et. al. concluded that entropy may be treated as a 

cumulative value (like the cumulative AE count and AE amplitude) in relating to 

CP behavior (Bao, Peng, Cong, & Wang, 2010). 
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2.5 Uncertainties 

As stated in Chapter 1, CPD modeling has always been prone to several uncertainties for 

various reasons.  Identifying the three principle uncertainties associated with CPD 

modeling (Sankararaman, Ling, Shantz, & Mahadevan, 2009) is a necessary step in any 

PHM research.  CPD models are primarily affected by the detected data gathered from 

NDT methods which is a prominent data uncertainty.  This is confirmed in Georgiou’s 

assessment of flaw detection data obtained by the Nondestructive Testing Information 

Analysis Center (NTIAC) in which several types of NDT methods are used to detect crack 

lengths from the same flaw specimens (Rummel & Matzkanin, 1997; Georgiou, 2006).  In 

that assessment, the different NDT method results from the same operator given the same 

flaw specimen is documented.  The result of that assessment shows that the POD curves 

are different for each NDT method used (Rummel & Matzkanin, 1997; Georgiou, 2006).  

Despite the differences Georgiou insists that one should not claim that on POD curve or 

set of data is better than another (Georgiou, 2006).  It is important however, to have a 

sufficient collection of data since a lack thereof can contribute to data uncertainty in 

modeling (Sankararaman, Ling, Shantz, & Mahadevan, 2009).  A good example comes 

from this research, where some specimens only possess five to seven AE data while others 

provide up to twenty-thousand AE data for the purpose of modeling.  It is also important 

to see that the data detected is correctly measured.  While different NDT methods may 

detect and measure different crack sizes, there is a definite size of the detected crack which 

needs to be confirmed in order to address this data uncertainty.  This is also true for the 

measured CSFs and other material properties which require accurate instrumentation in 

order to minimize data uncertainty. 
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Physical variability uncertainty applies to the material properties that contribute to CP.  

CSFs such as material grain sizes and inclusions are neither constant throughout a single 

sample, nor throughout a set of samples.  Because of this it is strongly advised that these 

CSFs be represented as probabilistic distributions (McDonald, Zaman, & Mahadevan, 

2009; Sankararaman, Ling, Shantz, & Mahadevan, 2009).  This also applies to all the 

environmental CSFs (temperature, pressure, etc.) that are entirely subject to fluctuation 

during fatigue testing.  In some cases, this is also an applicable step in reducing physical 

variability uncertainty in CP models.  The log-linear CP model for example the initial crack 

length 𝑎𝑎0 at 𝑁𝑁 = 0 is 𝑒𝑒𝑏𝑏.  This initial crack length may be represented as a distribution due 

to the small size and the uncertainty associated with it (Sankararaman, Ling, Shantz, & 

Mahadevan, 2009). 

Model uncertainty comes down to the selection of the CPD model.  As stated by Georgiou 

however, one model cannot and should not be discounted in favor of anther in spite of the 

uncertainty attached (Georgiou, 2006).  That said the model uncertainty of each model 

should be documented for use in the field. 

2.6 Summary 

The CPD models presented in this chapter have been developed for the same purposes: To 

estimate the life expectancy of certain materials and structures that are prone to fatigue 

cracking, to estimate the POD of a crack or flaw under a given NDT methodology, and to 

identify weaknesses and uncertainties associated with each CPD models.  Isolation of these 

weaknesses and uncertainties is essential in producing more fact-based modeling 

methodology that are used in the PHM field.  In the process, proper accounting of CSF 

variability through representation as probabilistic distributions robustness to the models. 
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Chapter 3: Development of an Integrated Probabilistic Crack 
Propagation and Detection Modeling Methodology Based on Gaussian 

Process Regression 
 

3.1 Overview 

The CPD models and their association with various CSFs forms the basis for this research.  

CP models are already directly related to CSFs, and by extension crack detection models 

are also related to CSFs.  Thus a joint-modeling methodology can be designed by treating 

the separate CPD models as one model.  This is done thorough a likelihood function that 

is made up of a given CPD model set and by way of Bayesian parameter estimation of the 

parameters.  By way of this Bayesian parameter estimation approach, the CP model 

parameter vector 𝐴𝐴, the crack detection parameter vector 𝐵𝐵�⃑ , and the false crack detection 

probability parameter 𝑃𝑃𝐹𝐹𝐹𝐹, can be estimated for a given CPD model set.  The research 

described in this dissertation tested this Bayesian analysis on several CPD model sets 

including the four CP assessment models from Chapter 2 Section 2.2.2 and the four crack 

detection models from Chapter 2 Section 2.3.2 (Smith, Modarres, & Droguett, 2017). 

This chapter introduces the integrated probabilistic CPD modeling methodology and 

discusses its development with regard to the sub-models selection and the proposed 

Bayesian inference methodology used to extract the parameters.  The majority of the 

chapter is devoted to the experimental methods used to obtain and process the data used 

for the Bayesian analysis. 
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3.2 The CPD Likelihood Function 

The integrated probabilistic CPD modeling methodology starts with development and 

definition of the likelihood function.  A simple statement of the likelihood function is 

presented as, 

𝑙𝑙 �
𝐷𝐷 = 0,1; 𝑥⃑𝑥𝑖𝑖=1, … , 𝑥⃑𝑥𝑛𝑛𝐷𝐷 ,
𝑥⃑𝑥𝑗𝑗=1, … , 𝑥⃑𝑥𝑚𝑚𝑁𝑁𝑁𝑁|𝐴𝐴,𝐵𝐵�⃑ ,𝑃𝑃𝐹𝐹𝐹𝐹

� = �
𝑑𝑑
𝑑𝑑𝑑𝑑

𝑃𝑃�𝐷𝐷 = 1; 𝑥⃑𝑥𝑖𝑖|𝐴𝐴,𝐵𝐵�⃑ ,𝑃𝑃𝐹𝐹𝐹𝐹�
𝑛𝑛𝐷𝐷

𝑖𝑖=1

× 

��1 − 𝑃𝑃�𝐷𝐷 = 1; 𝑥⃑𝑥𝑗𝑗|𝐴𝐴,𝐵𝐵�⃑ ,𝑃𝑃𝐹𝐹𝐹𝐹��
𝑚𝑚𝑁𝑁𝑁𝑁

𝑗𝑗=1

 

(3.1)  

which stands for the likelihood of a set of 𝑛𝑛𝐷𝐷 detection data points 

(𝑥⃑𝑥𝑖𝑖=1, … , 𝑥⃑𝑥 𝑛𝑛𝐷𝐷;𝑎𝑎𝑖𝑖=1, … ,𝑎𝑎 𝑛𝑛𝐷𝐷) and  𝑚𝑚𝑁𝑁𝑁𝑁 non-detection (missed) data points 

(𝑥⃑𝑥𝑗𝑗=1, … , 𝑥⃑𝑥𝑚𝑚𝑁𝑁𝑁𝑁;𝑎𝑎𝑗𝑗=1 = 0, … ,𝑎𝑎𝑚𝑚𝑁𝑁𝑁𝑁 = 0), where detection state 𝐷𝐷 is 1 for positive detection 

and 0 for non-detection.  The CDF 𝑃𝑃(𝐷𝐷 = 1) is the probability of detecting a crack of 

length 𝑎𝑎 given a CSF vector 𝑥⃑𝑥. The full expression for 𝑃𝑃(𝐷𝐷 = 1) integrates both a CP 

model and a POD model.  This is expressed as, 

𝑃𝑃�𝐷𝐷 = 1; 𝑥⃑𝑥|𝐴𝐴,𝐵𝐵�⃑ ,𝑃𝑃𝐹𝐹𝐹𝐹� = � 𝑃𝑃𝑃𝑃𝑃𝑃�𝐷𝐷 = 1|𝐵𝐵�⃑ ,𝑎𝑎 > 𝑎𝑎𝑙𝑙𝑙𝑙ℎ�𝑓𝑓�𝑎𝑎|𝐴𝐴, 𝑥⃑𝑥�𝑑𝑑𝑑𝑑
∞

𝑎𝑎𝑙𝑙𝑙𝑙ℎ

+ 

� 𝑃𝑃𝐹𝐹𝐹𝐹(𝐷𝐷 = 1|𝑎𝑎 < 𝑎𝑎𝑙𝑙𝑙𝑙ℎ)𝑓𝑓�𝑎𝑎|𝐴𝐴, 𝑥⃑𝑥�𝑑𝑑𝑑𝑑

𝑎𝑎𝑙𝑙𝑙𝑙ℎ

0

 

(3.2)  

Equation (3.2) is inclusive of the detection probability of cracks longer than the threshold 

𝑎𝑎𝑙𝑙𝑙𝑙ℎ as well as false detections of cracks below that threshold.  However, the CP model 

Equation (2.5) is a represented as a lognormal distribution, so the integration from 0 to 𝑎𝑎𝑙𝑙𝑙𝑙ℎ 

would have no analytical solution.  Therefore Equation (3.2) is restated as Equation (3.3), 
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𝑃𝑃�𝐷𝐷 = 1; 𝑥⃑𝑥|𝐴𝐴,𝐵𝐵�⃑ ,𝑃𝑃𝐹𝐹𝐹𝐹�

= (1 − 𝑃𝑃𝐹𝐹𝐹𝐹) × � 𝑃𝑃𝑃𝑃𝑃𝑃�𝐷𝐷 = 1|𝐵𝐵�⃑ ,𝑎𝑎 > 𝑎𝑎𝑙𝑙𝑙𝑙ℎ�𝑓𝑓�𝑎𝑎|𝐴𝐴, 𝑥⃑𝑥�𝑑𝑑𝑑𝑑
∞

𝑎𝑎𝑙𝑙𝑙𝑙ℎ

 
(3.3)  

The left hand side of the likelihood Equation (3.1) has to be stated as the product of a PDF 

function by definition of a standard likelihood composed of detections and non-detections1, 

therefore, the derivative of the CDF Equation (3.3) is computed with respect to the crack 

length 𝑎𝑎 resulting in,  

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑃𝑃�𝐷𝐷 = 1; 𝑥⃑𝑥, 𝑎𝑎�𝐴𝐴,𝐵𝐵�⃑ ,𝑃𝑃𝐹𝐹𝐹𝐹� = (1 − 𝑃𝑃𝐹𝐹𝐹𝐹) × 𝑃𝑃𝑃𝑃𝑃𝑃�𝐷𝐷 = 1|𝐵𝐵�⃑ ,𝑎𝑎 > 𝑎𝑎𝑙𝑙𝑙𝑙ℎ�𝑓𝑓�𝑎𝑎|𝐴𝐴, 𝑥⃑𝑥� (3.4)  

Finally, the likelihood function Equation (3.1) can be redefined as the CPD likelihood 

function:   

𝑙𝑙 �
𝐷𝐷 = 0,1; 𝑥⃑𝑥𝑖𝑖=1, … , 𝑥⃑𝑥𝑛𝑛𝐷𝐷 ,
𝑥⃑𝑥𝑗𝑗=1, … , 𝑥⃑𝑥𝑚𝑚𝑁𝑁𝑁𝑁|𝐴𝐴,𝐵𝐵�⃑ ,𝑃𝑃𝐹𝐹𝐹𝐹

� = ��
(1 − 𝑃𝑃𝐹𝐹𝐹𝐹) ×

𝑃𝑃𝑃𝑃𝑃𝑃�𝐷𝐷 = 1|𝐵𝐵�⃑ ,𝑎𝑎𝑖𝑖 > 𝑎𝑎𝑙𝑙𝑙𝑙ℎ�𝑓𝑓�𝑎𝑎𝑖𝑖|𝐴𝐴, 𝑥⃑𝑥𝑖𝑖�
�

𝑛𝑛𝐷𝐷

𝑖𝑖=1

× 

�

⎩
⎨

⎧
1 − (1 − 𝑃𝑃𝐹𝐹𝐹𝐹) ×

� �
𝑃𝑃𝑃𝑃𝑃𝑃�𝐷𝐷 = 1|𝐵𝐵�⃑ ,𝑎𝑎 > 𝑎𝑎𝑙𝑙𝑙𝑙ℎ� ×

𝑓𝑓�𝑎𝑎|𝐴𝐴, 𝑥⃑𝑥𝑗𝑗�𝑑𝑑𝑑𝑑
�

∞

𝑎𝑎𝑙𝑙𝑙𝑙ℎ ⎭
⎬

⎫𝑚𝑚𝑁𝑁𝑁𝑁

𝑗𝑗=1

 

(3.5)  

Bayesian inference for the posterior CPD model parameters is written according to Bayes’ 

Theorem (Bayes, 1763) as follows, 

𝜋𝜋 �𝐴𝐴,𝐵𝐵�⃑ ,𝑃𝑃𝐹𝐹𝐹𝐹�
𝐷𝐷 = 0,1;𝑎𝑎𝑖𝑖=1, … , 𝑎𝑎𝑛𝑛𝐷𝐷 ,

𝑥⃑𝑥𝑖𝑖=1, … , 𝑥⃑𝑥𝑛𝑛, 𝑥⃑𝑥𝑗𝑗=1, … , 𝑥⃑𝑥𝑚𝑚𝑁𝑁𝑁𝑁
� = 

𝑙𝑙 �
𝐷𝐷 = 0,1;𝑎𝑎𝑖𝑖=1, … , 𝑎𝑎𝑛𝑛𝐷𝐷 , 𝑥⃑𝑥𝑖𝑖=1, … , 𝑥⃑𝑥𝑛𝑛𝐷𝐷 ,

𝑥⃑𝑥𝑗𝑗=1, … , 𝑥⃑𝑥𝑚𝑚𝑁𝑁𝑁𝑁|𝐴𝐴,𝐵𝐵�⃑ ,𝑃𝑃𝐹𝐹𝐹𝐹
� × 𝜋𝜋 �𝐴𝐴,𝐵𝐵�⃑ ,𝑃𝑃𝐹𝐹𝐹𝐹�

∭𝑙𝑙 �
𝐷𝐷 = 0,1;𝑎𝑎𝑖𝑖=1, … ,𝑎𝑎𝑛𝑛𝐷𝐷 , 𝑥⃑𝑥𝑖𝑖=1, … , 𝑥⃑𝑥𝑛𝑛𝐷𝐷 ,

𝑥⃑𝑥𝑗𝑗=1, … , 𝑥⃑𝑥𝑚𝑚𝑁𝑁𝑁𝑁|𝐴𝐴,𝐵𝐵�⃑ ,𝑃𝑃𝐹𝐹𝐹𝐹
� × 𝜋𝜋 �𝐴𝐴,𝐵𝐵�⃑ ,𝑃𝑃𝐹𝐹𝐹𝐹�𝑑𝑑𝐴𝐴𝑑𝑑𝐵𝐵�⃑ 𝑑𝑑𝑃𝑃𝐹𝐹𝐹𝐹

 

 

(3.6)  

                                                           
1 A full likelihood function can be defined as 𝑙𝑙 = ∏ 𝑝𝑝�𝐷𝐷 = 1; 𝑥⃑𝑥𝑖𝑖|𝐴𝐴,𝐵𝐵�⃑ ,𝑃𝑃𝐹𝐹𝐹𝐹�

𝑛𝑛𝐷𝐷
𝑖𝑖=1 ∏ �1 − 𝑃𝑃�𝐷𝐷 = 1; 𝑥⃑𝑥𝑗𝑗|𝐴𝐴,𝐵𝐵�⃑ ,𝑃𝑃𝐹𝐹𝐹𝐹��

𝑚𝑚𝑁𝑁𝑁𝑁
𝑗𝑗=1  

where 𝑃𝑃�𝐷𝐷 = 1; 𝑥⃑𝑥|𝐴𝐴,𝐵𝐵�⃑ ,𝑃𝑃𝐹𝐹𝐹𝐹� is the CDF and 𝑝𝑝�𝐷𝐷 = 1; 𝑥⃑𝑥|𝐴𝐴,𝐵𝐵�⃑ ,𝑃𝑃𝐹𝐹𝐹𝐹� is the PDF 
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𝜋𝜋 �𝐴𝐴,𝐵𝐵�⃑ ,𝑃𝑃𝐹𝐹𝐹𝐹�
𝐷𝐷 = 0,1;𝑎𝑎𝑖𝑖=1, … ,𝑎𝑎𝑛𝑛𝐷𝐷 ,

𝑥⃑𝑥𝑖𝑖=1, … , 𝑥⃑𝑥𝑛𝑛, 𝑥⃑𝑥𝑗𝑗=1, … , 𝑥⃑𝑥𝑚𝑚𝑁𝑁𝑁𝑁
� ∝ 

𝑙𝑙 �
𝐷𝐷 = 0,1;𝑎𝑎𝑖𝑖=1, … , 𝑎𝑎𝑛𝑛𝐷𝐷 , 𝑥⃑𝑥𝑖𝑖=1, … , 𝑥⃑𝑥𝑛𝑛𝐷𝐷 ,

𝑥⃑𝑥𝑗𝑗=1, … , 𝑥⃑𝑥𝑚𝑚𝑁𝑁𝑁𝑁|𝐴𝐴,𝐵𝐵�⃑ ,𝑃𝑃𝐹𝐹𝐹𝐹
� × 𝜋𝜋 �𝐴𝐴,𝐵𝐵�⃑ ,𝑃𝑃𝐹𝐹𝐹𝐹� 

 

(3.7)  

where 𝜋𝜋(𝐴𝐴,𝐵𝐵�⃑ ,𝑃𝑃𝐹𝐹𝐹𝐹|𝐷𝐷 = 0,1;𝑎𝑎𝑖𝑖=1, … , 𝑎𝑎𝑛𝑛, 𝑥⃑𝑥𝑖𝑖=1, … , 𝑥⃑𝑥𝑛𝑛, 𝑥⃑𝑥𝑗𝑗=1, … , 𝑥⃑𝑥𝑚𝑚𝑁𝑁𝑁𝑁) is the posterior PDF 

for the model parameters 𝐴𝐴,𝐵𝐵�⃑ , and 𝑃𝑃𝐹𝐹𝐹𝐹, and 𝜋𝜋(𝐴𝐴,𝐵𝐵�⃑ ,𝑃𝑃𝐹𝐹𝐹𝐹) is the joint prior PDF for the 

model parameters. 

3.3 Model Development 

The Bayesian inference on the CPD Likelihood was tested on combinations of the 

propagation models listed in Section 2.2.2 and detection models listed in Section 2.3.2.  

Ultimately, this research will only be exploring the effectiveness of the GPR CP model 

(Smith & Modarres, 2017) in conjunction with a recursive Bayesian representation of CP 

based on AE readings and PF (Smith, Modarres, & Droguett, 2017).  This particular CP 

model expands upon previous research in the GPR methodology stated by Mohanty et. al. 

(Mohanty S. , Chattopadhyay, Peralta, Das, & Willhauck, 2007; Mohanty, Chattopadhyay, 

& Peralta, 2011), the AE methodology proposed by Keshtgar (Keshtgar, 2013), and PF 

(Doucet, Godsill, & Andrieu, 2000) methodologies proposed by several researchers 

(Rabiei & Modarres, 2013; Rabiei, Droguett, & Modarres, 2016). 

All detection models listed in Chapter 2 Section 2.3.2 are used in conjunction with the GPR 

CP model based on the overall ambiguity that is inherent in POD research (Mage, 1981; 

Ott, 1995; Singh, Warsono, & Bartolucci, 1997).  For example, Singh et. al. cites that when 

modeling their data using both the lognormal POD model and the log-logistic POD model, 

the two curves look extremely similar to each other (Singh, Warsono, & Bartolucci, 1997).  
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However, a researcher may take a different set of data and conclude that a gamma 

distribution may be a better representation than a lognormal distribution (Berger, Melice, 

& Demuth, 1982; Jakeman & Taylor, 1985).  Based on this ambiguity, each of the four 

listed detection models will be used for this research and compared based on the behavior 

of the data. 

As for the probability of false detection 𝑃𝑃𝐹𝐹𝐹𝐹, this will be represented as a beta distribution 

because it is bounded between 0 and 1 at all times which is representative of a probability. 

3.4 Experiment Procedure 

The following is a detailed description of the equipment, materials, and procedures used to 

obtain the data needed to execute the Bayesian inference of the CPD Likelihood model.  

The majority of the data collected came from a series of fatigue tests which consisted of: 

• Time-based and end-state crack length measurements (and CP) 

• AE readings 

• Loading conditions for the tests 

• Material properties and dimensions of the specimens 

The loading conditions and material properties were used as the defined CSFs for the GPR 

and PF/GPR based CP models.  From these CSFs, as well as the CP data, a kernel function 

by which the two data are correlated is defined. 

3.4.1 Experimental Setup and Fatigue Testing 

The data for this research was gathered from twenty-one fatigue life tests on Al 7075-T6 

dog-bone specimens (Keshtgar, 2013; Sauerbrunn, 2016).  All of the fatigue tests were 
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conducted on a uniaxial 22 kilo-Newton Material Testing System (MTS) 810 load frame 

and divided into three specimen groups. 

The first group consists of six tests where the specimens fit the geometry presented in 

Figure 3-1a (Keshtgar, 2013).  The second and third groups of specimens consists of two 

and thirteen specimens respectively as shown in Figure 3-1b (Sauerbrunn, 2016). 

 

Figure 3-1: Dogbone specimen geometry 

The dimensions of the three groups are listed in Table 3-1 (Keshtgar, 2013; Sauerbrunn, 

2016). 

Table 3-1. The dimensions for the three dog-bone specimen groups in millimeters (Keshtgar, 2013; 
Sauerbrunn, 2016) 

 Group 1 (mm) Group 2 (mm) Group 3 (mm) 

𝑾𝑾 31.44 45 45 

𝑫𝑫 10 10 18 

𝑯𝑯𝑯𝑯 80 124.88 175.74 

𝑯𝑯𝑯𝑯 30 35 45 

𝑻𝑻 3.175 3.175 3.175 

𝑹𝑹 80 80 144 

𝒓𝒓 0.5 0.5 1 
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These “dog-bone” geometries were selected based on the ASTM-E466-2015 standard 

(ASTM E466-15, 2015).  Each specimen was tested at different values of load frequencies, 

load ratios, and load ranges listed in Table 3-2 through Table 3-42. 

Table 3-2: Loading conditions for Group 1 specimens (Keshtgar, 2013) 

Specimen Designation Loading Frequency (Hz) Load Ratio Min Force (kN) Max Force (kN) 

DB3 3 0.1 0.8 8 

DB4 3 0.1 0.8 8 

DB5 2 0.5 6.5 13 

DB6 3 0.1 0.8 8 

DB7 2 0.5 6.5 13 

DB15 2 0.3 3 10 

 

Table 3-3: Loading Conditions for Group 2 specimens (Sauerbrunn, 2016) 

Specimen Designation Loading Frequency (Hz) Load Ratio Min Force (kN) Max Force (kN) 

1B3 5 0.1 0.8 8 

1A2 5 0.1 0.75 7.5 

 

  

                                                           
2 Specimen Group is denoted by: Group 1 “*”, Group 2 “+”, and Group 3 “#”. 
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Table 3-4: Loading conditions for Group 3 specimens (Sauerbrunn, 2016) 

Specimen Designation Loading Frequency (Hz) Load Ratio Min Force (kN) Max Force (kN) 

5A2 5 0.1 1.2 12 

5A3 5 0.1 1.1 11 

5A4 5 0.1 1.1 11 

5A6 5 0.1 1.05 10.5 

5A8 5 0.1 1.05 10.5 

5A9 5 0.1 1.05 10.5 

5A10 5 0.1 1.1 11 

5A20 5 0.1 1.5 15 

5A21 5 0.1 1 10 

5A22 5 0.1 1.3 13 

5A23 5 0.1 0.9 9 

5A24 5 0.1 1.2 12 

5A25 5 0.1 0.9 9 

5A26 5 0.1 1 10 

Each fatigue test ran under these conditions until a crack of large enough size was formed.  

This typically went well past the first detection and sometimes all the way up until the 

specimen was destroyed or failed. 

Through the course of each test, a series of time-lapse photographs are taken at the notch 

of the sample in order to monitor the cracks as they grow.  It is by these photographs that 

the CP data is obtained. This is accomplished through a complex optical measurement 

system that allowed a magnification of 100 × to effectively spot and measure small cracks 

measuring as small as 5 μm (Keshtgar, 2013).  The system was first designed by Keshtgar 

(Keshtgar, 2013) and then used again in an updated setting by Sauerbrunn (Sauerbrunn, 

2016). 



39 
 

 

Figure 3-2: The optical microscopy and measurement system constructed to capture fatigue 

cracks and measurements.  (Photo courtesy of Keshtgar (Keshtgar, 2013)) 

The system, pictured in Figure 3-2, is made up of the following components: 

• A high magnification microscope 

• A video camera 

• A dual arm fiber optic illuminator 

• A high resolution monitor 

• Image processing software, and 

• A micrometer scale 

Hundreds of high frequency photograph data was taken in this fashion and marked at its 

given test time such that they can be correlated to the number of fatigue cycles into the test.  

Photographic or visual detection was noted only when there is physical evidence of a part 
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of the final crack path.  That is, if a previous picture can be compared to a picture of the 

final crack and show that it has part of that final crack, then it is seen as a positive detection.  

The detected cracks are measured along the path using Java-based imaging software called 

ImageJ (NIH, 2015). 

3.4.2 Acoustic Emission Specifications 

Likewise, AE detection acts as a signal response correlating factor to the length of the 

detected crack hence the necessity to apply an AE sensor to each specimen (pictured in 

Figure 3-2).  An advanced AE system (Physical Acoustic Corporation., 2007) was used to 

obtain the two AE signals of interest cumulative count 𝐶𝐶(𝑁𝑁) and cumulative amplitude 

𝐴𝐴(𝑁𝑁), both of which are defined in Chapter 2 Section 2.2.2.2.  Keshtgar and Sauerbrunn 

both used different AE instrumentation settings to obtain their AE signal data which is 

summarized in Table 3-5 (Keshtgar, 2013; Sauerbrunn, 2016). 

Table 3-5: Acoustic emission software settings from Keshtgar and Sauerbrunn’s tests (Keshtgar, 
2013; Sauerbrunn, 2016) 

Parameter 
Values 

Group 1 Specimens Group 3 Specimens 
Preamplifier 40 dB 40 dB 

Detection Threshold 𝑨𝑨𝟎𝟎 35 dB 45 dB 
Sampling Rate 5 MSPS3 1 MSPS 

Peak Definition Time (PDT) N/A 300 μs 
Hit Definition Time (HDT) N/A 600 μs 
Hit Lockout Time (HLT) N/A 1,000 μs 

Pre-trigger length 100 μs 256 μs 
Hit length 614 μs 2,048 μs 

High-pass analogue filter 200 KHz 1 kHz 
Low-pass analogue filter 3 MHz 3 MHz 

                                                           
3 MSPS means “million samples per second” 
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Keshtgar’s settings (Keshtgar, 2013) were based on standards set by the Physical Acoustic 

Corporation, while Sauerbrunn’s settings (Sauerbrunn, 2016) were based on standards set 

by pencil lead break tests (ASTM, 2015).   

 

Figure 3-3: The normalized cumulative count and cumulative amplitude data from fatigue tests of 

specimen Set 1 
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Figure 3-4: The normalized cumulative count and cumulative amplitude data from fatigue tests of 

specimen Set 3 

As seen in Figure 3-3, the AE data was only available from five of the six tests from the 

first group of data with between five and seven AE index data points per test.  However, 

as seen in Figure 3-4 the third group of specimen tests had up to twenty-thousand AE index 

data points per test. 

3.4.3 Acquisition of Crack Length Data and Uncertainties 

The following section goes into the detail of the processes involved in measuring and 

preconditioning the fatigue crack data and the AE data.  This preconditioning is done by 

way of a simple measurement error correction based on three length variables used in this 

research (Smith & Modarres, 2017): (1) the experimental-based crack length (2) the “true” 

crack length, and (3) the model-based crack length.  These crack length representations and 

their correlation to the AE data are further discussed in the following subsections. 
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3.4.3.1 Experimental-Based Crack Length 

Experimental-based crack lengths 𝑎𝑎𝑒𝑒 are the sized and detected lengths online as the 

experiment progresses.  The lengths are denoted as 𝑎𝑎𝑒𝑒,𝑚𝑚 in this research which stands for 

“experimental measurement.” 

 
Figure 3-5: An example of an experimental-based crack measurement taken from the ImageJ 

program (NIH, 2015) 

As illustrated in Figure 3-5, this crack length is subject to detection probability and 

measurement error because the best online images captured are not very clear because: 

1. Due to inherent vibration of the specimen, in-test images at best can be taken at a 

magnification of 100 × 

2. Images are subject to motion blur 

3. Crack initiation detection probability and errors in measurement tools 
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Figure 3-6: A time-lapse display representing fatigue crack propagation in Specimen DB7 

In some specimens where the crack path was not apparent for each individual photo a time-

lapse animation needed to be developed by overlaying several images in order to detect 

and isolate the crack path.  An example of this is presented in Figure 3-6. 

3.4.3.2 True Crack Length 

The “true” crack lengths 𝑎𝑎 are sized at the highest reasonable magnification after the 

completion of the fatigue tests. This is done to eliminate the motion blur and the specimens 

are polished and etched around the propagation region.  The magnification scale of 200 × 

was selected as a result of a (stochastic) percent error analysis listed in Table 3-6. While 

there is still a small measurement error remaining, this can be tolerated and taken as the 

true measurement.   
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Table 3-6: Percent error of sample crack length measurement between different magnification 
scales 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐞𝐞𝐢𝐢 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐞𝐞𝐣𝐣 Percent Error between Scalei and Scalej 

𝟏𝟏𝟏𝟏𝟏𝟏 × 200 × 46.79% 

𝟐𝟐𝟐𝟐𝟐𝟐 × 400 × 2.28% 

𝟒𝟒𝟒𝟒𝟒𝟒 × 1,000 × 2.07% 

The post-test specimens were cut and polished at the CP area to prepare for the 

magnification procedure.  When under the microscope several high-definition photographs 

were taken at different areas of the specimen around the fatigue crack.  Afterwards the 

photos of each specimen were spliced together in Adobe Photoshop to create a single 

200 × magnification image of the fatigue CP area. 

 
Figure 3-7: An example of a true crack measurement taken from the ImageJ program (NIH, 2015) 

It is from photos such as in Figure 3-7 where the true crack lengths are acquired.  Because 

this photo is taken after the test however, an overlay of some of the experiment-based crack 

measurements have to be made in order to obtain an approximation of the true crack length 

at a given in-test fatigue cycle.  Forty such measurements were obtained. 
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3.4.3.3 Model-Based Crack Length 

Model-based crack lengths 𝑎𝑎𝑚𝑚 are predictively sized using the crack length data fit into a 

given propagation model (see Section 2.1).  For example, crack lengths obtained from the 

GPR model are denoted as 𝑎𝑎𝑚𝑚,𝐺𝐺𝐺𝐺𝐺𝐺 (See Section 2.1.3 and the CSFs defined in Section 3.1). 

3.4.3.4 Acoustic Emission Data Conditioning 

The camera used in testing to take time-lapse photos of the CP in progress is out of phase 

with the AE recording equipment, so the AE signals need to be approximated to the fatigue 

cycles of detection.  The AE software settings for the two groups of specimens were 

different (see Table 3-5), so the procedure for synchronization was different as well.  For 

Keshtgar’s tests (the first group) (Keshtgar, 2013) the data is limited to five to seven data 

points of AE indices.  As a result, both indices are modeled using an empirical form of the 

power law such that 𝐶𝐶(𝑁𝑁) = 𝛼𝛼𝐶𝐶𝑁𝑁𝛽𝛽𝐶𝐶 and 𝐴𝐴(𝑁𝑁) = 𝛼𝛼𝐴𝐴𝑁𝑁𝛽𝛽𝐴𝐴 where [𝛼𝛼𝐶𝐶 ,𝛽𝛽𝐶𝐶] and [𝛼𝛼𝐴𝐴,𝛽𝛽𝐴𝐴] are 

the model parameter pairs for the cumulative count function and the amplitude function 

respectively.  However, because of the large number of data points from Sauerbrunn’s tests 

(the third group) (Sauerbrunn, 2016) linear interpolation was used to synchronize the AE 

data to the respective crack lengths and fatigue cycles. 

3.4.3.5 Measurement Error and Analysis 

As only forty true crack length measurements were taken, the rest of the measurements are 

adjusted by way of measurement error correction.  The measurement errors of true crack 

length with respect to the experimental-based and model-based crack lengths, 𝑎𝑎𝑒𝑒 and 𝑎𝑎𝑚𝑚, 

are defined as: 

𝐸𝐸𝑎𝑎,𝑒𝑒 =
𝑎𝑎𝑒𝑒
𝑎𝑎

 (3.8)  
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𝐸𝐸𝑎𝑎,𝑚𝑚 =
𝑎𝑎𝑚𝑚
𝑎𝑎

 (3.9)  

 

 

Figure 3-8: Crack length data that compares the true length to the experimental length 

The forty true measurements compared to their experiment-based measurements are 

depicted in Figure 3-8. A mean experiment-based measurement error of 0.75 is obtained 

(Smith & Modarres, 2017) and is used as the correction ratio for the remaining experiment-

based measurements.  Alternately, the relation between 𝑎𝑎𝑒𝑒 and 𝑎𝑎 may be defined as the 

probabilistic model, 
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𝑎𝑎 =
𝑎𝑎𝑒𝑒

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(−0.36,0.38) (3.10)  

The mean measurement error is used for preconditioning the data because the probabilistic 

measurement error would have been more expensive computationally as more crack length 

data per detection cycle would be generated.  However, probabilistic measurement error 

with respect to both the model and experimental lengths is applied in the Bayesian 

estimation and validation phases as will be seen in Chapters 4 and 5. 

 
Figure 3-9: The crack propagation against fatigue cycles for all Al 7075-T6 specimens 

The CP data in Figure 3-9 is the result of this mean measurement error correction procedure 

and is used for the remainder of the methodology demonstration. 

3.4.4 Crack Shaping Factors 

The CSFs for this research are selected from among the list presented in Chapter 2 Section 

2.4.  The following CSFs are extracted from the testing specimens for this purpose: 

1) Fatigue cycles 

2) Minimum force 

3) Maximum force 

4) Load ratio 

5) Test frequency 
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6) Mean grain diameter 

7) Mean inclusion diameter 

The first CSF, fatigue cycle, is extracted from the time-stamp of the photographs and the 

loading frequency.  The minimum and maximum force as well as the load ratio and test 

frequencies for each fatigue test are given from Table 3-2 through Table 3-4.  The last two 

CSFs, mean grain diameter and mean inclusion diameter, are represented as distributions 

because of the variability that is present in these material properties. 

 
Figure 3-10: Example of a material grain (outlined in blue) and a material inclusion (outlined in 

red) 

As exemplified in Figure 3-10, the documentation of mean grain diameter and mean 

inclusion diameter is done in the post-test phase as with the true crack length 

measurements.  The procedure requires roughly twenty mean grain diameters and mean 

inclusion diameters to be measured and recorded for the data.  A mean diameter for each 
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grain and inclusion is obtained by four multiaxial measurements followed by an averaging 

of those measurements (see Figure 3-11). 

 
Figure 3-11: Mean diameter measuring procedure for grains and inclusions 

The Weibull (WBL) distribution is assumed as the best fit to represent the random 

variability of these CSFs whose parameters are listed in Table 3-7 through Table 3-9 for 

each specimen.  Both lognormal and Weibull distributions were considered for modeling 

these CSFs, but the Weibull distribution was selected based on a goodness-of-fit analysis. 
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Table 3-7: Material Properties for Group 1 specimens (Keshtgar, 2013) 

Sample Designation 
Mean Grain Diameter WBL Distribution Mean Inclusion Diameter WBL Distribution 

αg βg αi βi 

DB3 100 1.3 10 3.5 

DB4 103 1.7 14 1.9 

DB5 98 1.5 11 1.2 

DB6 71 1.3 8 2.1 

DB7 70 1.6 10 1.7 

DB15 95 1.3 6 1.8 

 

Table 3-8: Material Properties for Group 2 specimens (Sauerbrunn, 2016) 

Sample Designation 
Mean Grain Diameter WBL Distribution Mean Grain Diameter WBL Distribution 

αg αg αi βi 

1B3 111 1.4 12 2.7 

1A2 101 1.2 11 1.6 

 

Table 3-9: Material Properties for Group 3 specimens (Sauerbrunn, 2016) 

Sample Designation 
Mean Grain Diameter WBL Distribution Mean Grain Diameter WBL Distribution 

αg αg αi βi 

5A2 133 1.2 8 2.0 

5A3 95 0.95 11 2.2 

5A4 147 1.3 10 2.1 

5A6 185 1.2 18 1.5 

5A8 158 1.3 18 1.5 

5A9 149 1.1 12 2.3 

5A10 175 1.4 12 1.8 

5A20 139 1.5 10 2.4 

5A21 122 1.4 15 1.8 

5A22 130 2.2 11 3.0 

5A23 140 1.9 16 3.3 

5A24 116 1.4 10 3.8 

5A25 120 2.4 11 4.0 

5A26 146 2.5 15 2.5 

 

Thus, a total of nine CSFs (𝑄𝑄 = 9) are used in this research to correlate to crack growth 

propagation: (CSF #1) the variable fatigue cycles 𝑁𝑁, (CSFs #2-5) the four loading 
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conditions, and (CSFs #5-9) the two material properties each represented as Weibull 

distributions.  It must be noted that the loading conditions are also subject to variation 

within the test and could, therefore, be represented in form of a distribution function as 

well.  However, for this research the variation is assumed to be minimal so they are treated 

as constants.  It would be suggested that for future work, a similar study should be 

conducted where the loading conditions are also treated as random variables represented 

by probabilistic distributions. 

3.4.5 GPR and PF/GPR Crack Propagation Gaussian Kernel Function 

As stated in Chapter 2, a multivariate GPR function is characterized by its input and output 

data and the kernel function designed to correlate the two data.  In this research there are 

two input/output relations that need to be characterized by a kernel.  The first is the CSF/CP 

relation which is used for the GPR and PF/GPR propagation models (Section 2.2.2.3 and 

2.2.2.4 respectively). 

Development of these kernel functions has to be based on the behavior of the data involved.  

One such kernel function, a “standard kernel function” is very well-known in GPR 

literature (Rasmussen, 1996; Chen, Morris, & Martin, 2007). 

𝑘𝑘�𝑥⃑𝑥𝑖𝑖, 𝑥⃑𝑥𝑗𝑗 ,𝐴𝐴� = 𝑔𝑔1 + �𝑔𝑔𝑞𝑞+1𝑥⃑𝑥𝑖𝑖,𝑞𝑞𝑥⃑𝑥𝑗𝑗,𝑞𝑞

𝑄𝑄

𝑞𝑞=1

+ 𝑔𝑔2+2𝑄𝑄 exp �−�𝑔𝑔𝑞𝑞+𝑄𝑄+1�𝑥⃑𝑥𝑖𝑖,𝑞𝑞 − 𝑥⃑𝑥𝑗𝑗,𝑞𝑞�
2

𝑄𝑄

𝑞𝑞=1

�

+ 𝑔𝑔3+2𝑄𝑄𝛿𝛿𝑖𝑖,𝑗𝑗 

(3.40) 

Its components include: 

• A constant bias or offset term 𝑔𝑔1 

• A linear component  ∑ 𝑔𝑔𝑞𝑞+1𝑥⃑𝑥𝑖𝑖,𝑞𝑞𝑥⃑𝑥𝑗𝑗,𝑞𝑞
𝑄𝑄
𝑞𝑞=1  
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• A squared exponential function that accounts for the correlation between output and 

input 𝑔𝑔2+2𝑄𝑄 exp �−∑ 𝑔𝑔𝑞𝑞+𝑄𝑄+1�𝑥⃑𝑥𝑖𝑖,𝑞𝑞 − 𝑥⃑𝑥𝑗𝑗,𝑞𝑞�
2𝑄𝑄

𝑞𝑞=1 � 

• A noise or random effect error function 𝑔𝑔3+2𝑄𝑄𝛿𝛿𝑖𝑖,𝑗𝑗 where 𝛿𝛿𝑖𝑖,𝑗𝑗 is a Dirac delta function 

that equals 1 when 𝑖𝑖 = 𝑗𝑗 and 0 elsewhere (Chen, Morris, & Martin, 2007) 

This is often selected as an initial kernel because of its tendency to model the linearity, the 

curvatures, and randomness of most sets of data (Chen, Morris, & Martin, 2007).  As such, 

the standard kernel function is the foundation of the two kernels for this research. 

The kernel correlating CSFs to CP is developed based on the following conditions: 

1. The CP function has to be a positive monotonically increasing function at all times.  

That is 𝑎𝑎(𝑥⃑𝑥) must be a strictly increasing function. 

2. The upper and lower confidence bounds of the crack length outside of the region where 

data exists (before first crack data point detected and after last data point) must also be 

strictly positive and increasing. 

3. The mean CP model must be a good fit to its training and validation data. 

Setting the output data as ln(𝑎𝑎) rather than 𝑎𝑎 maintains half of Condition 1.  The other half 

of Condition 1 as well as Condition 2 are satisfied under the standard kernel function.  

However, Condition 3 is satisfied with fitness, and this is tested by the normalized mean 

square error (NMSE), 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
1

𝑀𝑀𝜎𝜎𝑡𝑡2
��𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺,𝑖𝑖 − 𝑎𝑎𝑖𝑖�

2
𝑀𝑀

𝑖𝑖=1

 (3.41) 
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between the true crack lengths 𝑎𝑎𝑖𝑖 and the GPR model crack length estimates 𝑎𝑎𝑚𝑚,𝐺𝐺𝐺𝐺𝐺𝐺.  The 

term 𝜎𝜎𝑡𝑡2 is the variance of the true crack lengths. New kernel functions are typically 

designed by adding or subtracting certain kernel function components to or from the overall 

function.  The neural network function 𝑔𝑔3 sin−1
𝑔𝑔2 ∑ 𝑥𝑥𝑖𝑖,𝑞𝑞𝑥𝑥𝑗𝑗,𝑞𝑞

𝑄𝑄
𝑞𝑞=1

��1+𝑔𝑔2 ∑ 𝑥𝑥𝑖𝑖,𝑞𝑞𝑥𝑥𝑗𝑗,𝑞𝑞
𝑄𝑄
𝑞𝑞=1 �

2, for example 

(Rasmussen, 1996) was considered as a potential addition to the standard kernel function.  

This is the list of kernel functions selected for review: 

• Kernel 1: the standard kernel function 

• Kernel 2: a kernel consisting of a constant, neural network (Rasmussen, 1996), and 

noise component 

• Kernel 3: the standard kernel function with the neural network component (Rasmussen, 

Nickisch, & Williams, 2015 ) 

These kernel functions were tested on data from the first set of specimens (Geometry 1) 

with the results presented in Table 3-10. 

Table 3-10: Kernel analysis showing increasing function possibilities and normalized mean square 
error 

 Increasing Function NMSE 

Kernel 1 Yes 1.78 × 10−2 

Kernel 2 No 5.17 × 10−4 

Kernel 3 Yes 5.05 × 10−4 

The addition of the neural network component produces a kernel with a smaller NMSE 

than the other kernel options.  Furthermore this kernel maintains adherence to the three 

stated conditions.  Therefore the following kernel function,  
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𝑘𝑘�𝑥⃑𝑥𝑖𝑖, 𝑥⃑𝑥𝑗𝑗 ,𝐴𝐴� = 𝑔𝑔1 + �𝑔𝑔𝑞𝑞+1𝑥⃑𝑥𝑖𝑖,𝑞𝑞𝑥⃑𝑥𝑗𝑗,𝑞𝑞

9

𝑞𝑞=1

+ 𝑔𝑔20 exp �−�𝑔𝑔𝑞𝑞+10�𝑥⃑𝑥𝑖𝑖,𝑞𝑞 − 𝑥⃑𝑥𝑗𝑗,𝑞𝑞�
2

9

𝑞𝑞=1

�

+ 𝑔𝑔22 sin−1
𝑔𝑔21 ∑ 𝑥𝑥𝑖𝑖,𝑞𝑞𝑥𝑥𝑗𝑗,𝑞𝑞

9
𝑞𝑞=1

��1 + 𝑔𝑔21 ∑ 𝑥𝑥𝑖𝑖,𝑞𝑞𝑥𝑥𝑗𝑗,𝑞𝑞
9
𝑞𝑞=1 �

2
+ 𝑔𝑔23𝛿𝛿𝑖𝑖,𝑗𝑗 

(3.42) 

is used for the GPR (and PF/GPR) CP analysis of this research.  Therefore, the GPR (and 

PF/GPR) propagation model parameter set 𝐴𝐴 is a twenty-three-parameter vector 

[𝑔𝑔1,𝑔𝑔2, … ,𝑔𝑔23]. 

3.4.6 Estimation of Bayesian Prior Model and Parameters 

The test data that has been defined so far is used to obtain the prior distribution for Θ��⃑  which 

is the collection of all the model parameter sets of interest: The CP parameter set 𝐴𝐴, the 

POD parameter set 𝐵𝐵�⃑ , and the false detection probability 𝑃𝑃𝐹𝐹𝐹𝐹.  At the beginning of the 

research only specimen Sets 1 and 2 were available, so the prior parameters described in 

this section only applies to them.  The posterior parameter distributions that result from 

following the Bayesian analysis methodology cited in section 3.3 of this chapter are used 

as prior parameter distributions for analysis of specimen Set 3.  This will be covered more 

in Chapter 6 of this dissertation. 

The first parameter set 𝐴𝐴 is obtained for each specimen based on a GPR propagation model 

(Section 2.2.2.3) using the CP data (seen in Figure 3-9), the CSF data (seen in Table 3-2, 

Table 3-3, Table 3-7, and Table 3-8), and the GPR kernel function (seen in Equation 

(3.39)).  However, because of the probabilistic measurement error relation stated in 

Equation (3.10), the CP data as well as the prior CP parameters 𝐴𝐴 are also probabilistic.  

Thus for each variant of the CP data, the prior CP parameters 𝐴𝐴 are obtained by way of a 
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MATLAB (MathWorks, 2016) software package called GPML (Rasmussen, Nickisch, & 

Williams, 2015 ). 

 

Figure 3-12: CP data of dog-bone specimen DB7 based on the distribution of the experimental 

measurement error 

This then produces a specimen-specific distribution for the CP prior parameter set 𝐴𝐴.  As 

stated in Section 3.4.3.5 of this chapter, the mean fit line (Figure 3-12) is used for the 

complete Bayesian analysis of the CPD likelihood function Equation (3.5).  The parameters 

for the mean for each specimen is presented in Table 3-11. 
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Table 3-11: The prior mean parameter sets 𝑨𝑨��⃑  for all specimens of Sets 1 and 2 
Hyper 

parameter DB3 DB4 DB5 DB6 DB7 DB15 1B3 1A2 

𝑔𝑔1 0.0485 1.05 0.999 0.0179 0.161 1.00 0.882 1.00 

𝑔𝑔2 2.52 × 106 1.94 × 1012 115 382 980 164 641 502 

𝑔𝑔3 1.43 × 104 5.71 × 109 418 5.27 × 104 1.11 × 108 203 1.61 × 103 1.96 × 109 

𝑔𝑔4 2.13 × 106 1.4 × 1012 1.09 × 103 5.30 × 105 1.22 × 107 590 1.45 × 105 2.55 × 104 

𝑔𝑔5 1.69 0.999 1.00 6.38 2.75 1.00 1.00 1.00 

𝑔𝑔6 60.1 0.644 1.00 368 13.2 1.00 4.74 0.963 

𝑔𝑔7 4.10 × 103 835 5.09 4.83 × 103 2.30 × 103 2.62 87.9 1.43 × 103 

𝑔𝑔8 25.3 0.861 1.00 68.4 10.6 1.00 1.27 0.997 

𝑔𝑔9 196 4.85 1.08 475 64.4 1.01 36.2 1.03 

𝑔𝑔10 72.9 0.831 1.00 211 11.1 1.00 1.98 0.995 

𝑔𝑔11 1.00 2.54 × 104 33.8 1.00 0.0731 57.3 1.00 1.00 

𝑔𝑔12 …𝑔𝑔19 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

𝑔𝑔20 0.0239 7.84 × 10−7 0.449 0.0740 0.00463 0.421 1.19 × 10−7 3.36 × 10−6 

𝑔𝑔21 39.9 13.0 0.164 0.113 63.4 0.995 22.4 3.23 

𝑔𝑔22 5.90 1.97 0.586 1.61 3.70 0.0152 1.81 1.81 

𝑔𝑔23 0.0239 0.0139 0.0298 0.0740 0.0312 0.0713 1.19 × 10−7 3.36 × 10−6 

Note however that the applied measurement error is still subject to some random error 

which may be detected as noise.  This noise, when applied to the CP data curves, creates 

an additional uncertainty in this example of the proposed methodology.  In future use of 

this methodology, this random noise should be addressed and corrected prior to the step 

that establishes the CP prior parameter sets 𝐴𝐴. 

The next parameter set 𝐵𝐵�⃑  is obtained based on the signal-response POD outlined in 

Equation (2.29) and (2.30).  The true crack length data and their AE intensities (the signal 

response index) when fit to this signal response POD and the POD models defined in 

Chapter 2 Sections 2.3.2.1-2.3.2.4 (and the POD model decision block in Figure 1-1), 

produce the prior POD parameter sets 𝐵𝐵�⃑ . 

A crack detection threshold of, 
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5 𝜇𝜇𝜇𝜇 < 𝑎𝑎 < 48 𝜇𝜇𝜇𝜇 (3.43) 

was chosen for this extraction procedure and as the definition of the small CP region. The 

basis for this selection comes from both literature and test results.  The data obtained for 

this research places crack detection to as small as about 5 𝜇𝜇𝜇𝜇.  While literature states that 

the upper bound of detection typically falls between 48 and 50 𝜇𝜇𝜇𝜇 for most aluminums 

(Keshtgar, 2013).  Thus, this crack detection threshold is used as the definition for the small 

CP region for this research.  Only ten measurements within the threshold Equation (3.43) 

were identified.  Combining Equation (2.11) and Equation (2.30) gives the following signal 

response POD equation, 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑎𝑎) = 1 − 𝐹𝐹 �
ln 𝐼𝐼𝑡𝑡ℎ + 1

𝛽𝛽 (ln𝛼𝛼 − ln 𝑎𝑎)

𝜎𝜎𝑍𝑍
� (3.44) 

where AE intensity is the index in question and 𝐼𝐼𝑡𝑡ℎ is the AE intensity threshold where the 

cumulative amplitude 𝐴𝐴(𝑁𝑁) is set to the amplitude threshold 𝐴𝐴0.  Calculation of the 

threshold 𝐼𝐼𝑡𝑡ℎ is based on the power relationship between AE intensity and the true crack 

length as shown in Figure 3-13 and Table 3-12. 
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Figure 3-13: True crack length versus acoustic emission intensity 

Table 3-12: Signal response parameters for five specimens from Set 1 

 𝜶𝜶 𝜷𝜷 𝑰𝑰𝟎𝟎 
DB3 3.12 × 10−28 0.0752 251 
DB5 3.07𝐸𝐸 × 10−9 0.255 1345 
DB6 4.88 × 10−7 0.111 499 
DB7 7.20 −0.110 532 

DB15 1.32 × 10−15 0.0942 1280 

While each specimen has its own intensity threshold value, the total set of signal response 

PODs are used to fit to each POD model option defined in Chapter 2 Sections 2.3.2.1-

2.3.2.4.  The fits for these POD models and thus the prior sets 𝐵𝐵�⃑  are presented in Figure 

3-14 and Table 3-13. 
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Figure 3-14: The prior logistic, log-logistic, lognormal, and Weibull POD curves 

Table 3-13: The prior POD parameter distributions for each POD model type 

 Hyper parameter Mean SD 2.50% Median 97.50% 

Lognormal 
𝜁𝜁0 1.46 0.863 0.0395 1.47 2.88 

𝜁𝜁12 8.29 5.30 1.15 7.35 18.4 

Log-logistic 
𝛽𝛽0 2.11 0.640 1.05 2.11 3.16 

𝛽𝛽1 0.0735 0.460 −1.01 0.177 0.648 

Logistic 
𝜂𝜂0 0.133 0.169 0.0502 0.0612 0.674 

𝜂𝜂1 13.22 7.65 0.666 13.2 0.674 

Weibull 
𝛼𝛼0 15.76 9.08 0.0395 15.8 30.6 

𝛼𝛼1 0.539 0.335 0.127 0.451 1.38 

 

The coefficients of determination 𝑅𝑅2 for the four POD prior models are, 

• 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2 = 0.39 

• 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2 = 0.25 

• 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2 = 0.088 
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• 𝑅𝑅𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
2 = 0.29 

The prior parameter for the false crack detection probability 𝑃𝑃𝐹𝐹𝐹𝐹, has been defined as a 

beta distribution 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(0.25,4.17) by way of the equations set in Chapter 2 Section 2.3.3.  

The three sets of priors form the basis for the complete prior distribution of the target 

parameter set Θ��⃑  for specimen Sets 1 and 2. 

3.5 Summary 

This chapter defined the Bayesian procedure and development of the new CPD likelihood 

model that is essential in this methodology.  The primary focus of this test of this 

methodology will be the Bayesian analysis of the joint-CPD models of the GPR and 

PF/GPR CP models with the four POD models from Chapter 2 Section 2.3.2.  Using an 

intricate experimental procedure, the needed data is acquired which includes detected crack 

length data, AE signals, and the CSFs selected for this research.  The data in its 

preconditioned forms of measurement error corrected CP data and prior parameter 

distributions for the joint GPR propagation and detection models is to be used in the 

Bayesian analysis stage of the methodology. 
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Chapter 4: Effect of Crack Shaping Factors on Model Uncertainty 
 

4.1 Overview 

A major part of this research relies upon the CSFs that contribute to the CPD model; as 

such there is a need to understand the nature of the effect that each CSF has on the CPD 

model parameters.  This understanding comes in the form of a CSF-to-CPD correlation 

technique that also makes use of the input-output relation found in GPR analysis.  The 

scope of the GPR correlation is extended beyond a single correlation and tested through a 

validation procedure in which the CPD can be predicted with additional model error 

correction. 

This chapter will cover the procedures that are used to correlate the CSFs to the CPD model 

parameters as well as estimate the model error and perform validation.  It concludes with 

a more in-depth explanation will be provided on the recursive Bayes estimation procedure 

that is specific to this research where the known variables are the AE signals cumulative 

count and cumulative amplitude, and the unknown variable is the true crack length. 

4.2 Crack Shaping Factor to Model Parameter Correlation 

As stated in Chapter 3 Section 3.4.5, there are two input/output relations that need to be 

characterized by a kernel for this research.  The second input/output relation is the 

CSF/CPD model parameter relation which is used primarily for validation of the posterior 

CP model parameters.  This relation is based on the idea that CP of a material can be 

predicted by a limited set of detected cracks and a unique set of CSFs.  The CSFs for the 

training input are chosen from among the specimens specific CSFs listed in the loading 

condition tables (Table 3-2, Table 3-3, and Table 3-4) and the material property tables 
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(Table 3-8, Table 3-9, and Table 3-10) in Chapter 3 Section 3.4.1 and 3.4.4.  Thus the CSFs 

are correlated to each output posterior CPD parameter within the output vector of a training 

set; and the validation set is used to test this correlation.   

4.2.1 CSF-to-CPD Correlation Gaussian Kernel Function 

The conditions guiding the kernel correlating CSFs to the CPD parameters ℎ are as follows: 

1. The training set of CPD parameters must fall in the same range as the validation set of 

propagation parameters (positive, negative, or positive/negative) 

2. The CPD parameter mean must be a good fit to its training and validation data 

As with the GPR propagation kernel defined in Chapter 3 Section 3.4.5, Condition 1 is kept 

by setting the output data for CPD parameters ℎ to ln(ℎ) or ln(−ℎ), which keeps the 

validation estimates in the positive or negative range respectively.  Keeping the output data 

ℎ as is frees the validation estimates to a positive/negative range.  Condition 2 for fitness 

is also satisfied by finding the smallest NMSE between the estimated and actual posterior 

CPD parameters.  The test is done on variants of Kernels 1 and 3 that removed the constant 

bias term 𝑔𝑔1.  Each kernel option produces twenty-five NMSE estimates where the means 

for Kernels 1 and 3 are 0.59 and 0.58 respectively.  Both averages are very small, however, 

looking at the NMSE for each ℎ parameter in �𝐴𝐴,𝐵𝐵�⃑ � shows that the NMSE for Kernel 3 is 

less than that of Kernel 1 for fifteen of the twenty-five parameters (60% of the CPD 

parameters).  So the CSF/CPD correlation kernel for this research is defined as, 
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𝑘𝑘�𝑥⃑𝑥𝑖𝑖, 𝑥⃑𝑥𝑗𝑗 ,𝑉𝑉�⃑ � = �𝑣𝑣𝑞𝑞𝑥⃑𝑥𝑖𝑖,𝑞𝑞𝑥⃑𝑥𝑗𝑗,𝑞𝑞

8

𝑞𝑞=1

+ 𝑣𝑣17 exp �−�𝑣𝑣𝑞𝑞+9�𝑥⃑𝑥𝑖𝑖,𝑞𝑞 − 𝑥⃑𝑥𝑗𝑗,𝑞𝑞�
2

8

𝑞𝑞=1

�

+ 𝑣𝑣19 sin−1
𝑣𝑣18 ∑ 𝑥𝑥𝑖𝑖,𝑞𝑞𝑥𝑥𝑗𝑗,𝑞𝑞

8
𝑞𝑞=1

��1 + 𝑣𝑣18 ∑ 𝑥𝑥𝑖𝑖,𝑞𝑞𝑥𝑥𝑗𝑗,𝑞𝑞
8
𝑞𝑞=1 �

2
+ 𝑣𝑣20𝛿𝛿𝑖𝑖,𝑗𝑗 

(4.1) 

where 𝑉𝑉�⃑  is the correlation parameter vector [𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣20]. 

4.2.2 Validation and Model Error 

The validation methodology for this research is based on a methodology proposed by 

Ontiveros et. al. (Ontiveros, Cartillier, & Modarres, 2010) which makes use of the 

reciprocal measurement errors associated between the experiential and true lengths 

Equation (3.8) and the model true lengths Equation (3.9).  These measurement errors 𝐸𝐸𝑎𝑎′,𝑒𝑒 

and 𝐸𝐸𝑎𝑎′,𝑚𝑚 both fall into a distribution which then translate to a combined effect 

measurement error 𝐸𝐸𝑎𝑎′,𝑡𝑡, 

𝑎𝑎 = 𝐸𝐸𝑎𝑎′,𝑒𝑒𝑎𝑎𝑒𝑒 = 𝐸𝐸𝑎𝑎′,𝑚𝑚𝑎𝑎𝑚𝑚 ⟹
𝐸𝐸𝑎𝑎′,𝑚𝑚
𝐸𝐸𝑎𝑎′,𝑒𝑒

=
𝑎𝑎𝑒𝑒
𝑎𝑎𝑚𝑚

= 𝐸𝐸𝑎𝑎′,𝑡𝑡 (4.2) 

which would also fall into that same distribution.  Originally this distribution was assumed 

to be lognormal  (Ontiveros, Cartillier, & Modarres, 2010).  However, it was hypothesized 

that there was another distribution that modeled measurement error better.  The log-logistic 

distribution was tested against the lognormal distribution as shown in Figure 4-1. 
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Figure 4-1: Comparison of the non-parametric CDF of measurement error (of a GPR/Logistic 

CPD model) against the parametric CDF of the lognormal distribution and the log-logistic 

distribution 

The fitness test of the two showed that the log-logistic distribution has a higher average 

coefficient of determination (𝑅𝑅2 = 0.93) than the lognormal distribution (𝑅𝑅2 = 0.30) 

when checking against the raw measurement error distribution.  As a result, this research 

adopts a log-logistic format of the distributions for the measurement errors 𝐸𝐸𝑎𝑎′,𝑒𝑒, 𝐸𝐸𝑎𝑎′,𝑚𝑚, and 

𝐸𝐸𝑎𝑎′,𝑡𝑡, 

𝑓𝑓�𝐸𝐸𝑎𝑎′,𝑒𝑒�~𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝜇𝜇𝑒𝑒,𝜎𝜎𝑒𝑒) (4.3) 

 

𝑓𝑓�𝐸𝐸𝑎𝑎′,𝑚𝑚�~𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝜇𝜇𝑚𝑚,𝜎𝜎𝑚𝑚) (4.4) 
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𝑓𝑓�𝐸𝐸𝑎𝑎′,𝑡𝑡�~𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 �𝜇𝜇𝑚𝑚 − 𝜇𝜇𝑒𝑒 ,�𝜎𝜎𝑚𝑚2 + 𝜎𝜎𝑒𝑒2� (4.5) 

where 𝜇𝜇𝑒𝑒 and 𝜎𝜎𝑒𝑒 are the experimental log-logistic parameters for 𝐸𝐸𝑎𝑎′,𝑒𝑒 and 𝜇𝜇𝑚𝑚 and 𝜎𝜎𝑚𝑚 are 

the model log-logistic parameters for 𝐸𝐸𝑎𝑎′,𝑚𝑚.  This holds true for the following likelihood 

function from which Bayesian parameter estimation is used to estimate the model 

parameters 𝜇𝜇𝑚𝑚 and 𝜎𝜎𝑚𝑚 from a total of 𝑛𝑛 validation points for each CPD model pair. 

𝑙𝑙 �
𝑎𝑎𝑒𝑒
𝑎𝑎𝑚𝑚

, 𝜇𝜇𝑒𝑒 ,𝜎𝜎𝑒𝑒|𝜇𝜇𝑚𝑚,𝜎𝜎𝑚𝑚�

= �
1

�
𝑎𝑎𝑒𝑒,𝑖𝑖
𝑎𝑎𝑚𝑚,𝑖𝑖

��𝜎𝜎𝑚𝑚2 + 𝜎𝜎𝑒𝑒2

exp �
ln �

𝑎𝑎𝑒𝑒,𝑖𝑖
𝑎𝑎𝑚𝑚,𝑖𝑖

� − (𝜇𝜇𝑚𝑚 − 𝜇𝜇𝑒𝑒)

�𝜎𝜎𝑚𝑚2 + 𝜎𝜎𝑒𝑒2
�

�1 + exp �
ln �

𝑎𝑎𝑒𝑒,𝑖𝑖
𝑎𝑎𝑚𝑚,𝑖𝑖

� − (𝜇𝜇𝑚𝑚 − 𝜇𝜇𝑒𝑒)

�𝜎𝜎𝑚𝑚2 + 𝜎𝜎𝑒𝑒2
��

2

𝑛𝑛

𝑖𝑖=1

 
(4.6) 

 

The forty measurements described in Chapter 3 Section 3.4.3.5 (see Figure 3-8) and their 

conjoining model and experimental lengths are used to obtain the experimental log-logistic 

parameters by way of Bayesian parameter estimation using the likelihood function, 

𝑙𝑙 �
𝑎𝑎𝑖𝑖
𝑎𝑎𝑒𝑒,𝑖𝑖

|𝜇𝜇𝑒𝑒 ,𝜎𝜎𝑒𝑒� = �
1

� 𝑎𝑎𝑖𝑖𝑎𝑎𝑒𝑒,𝑖𝑖
� 𝜎𝜎𝑒𝑒

exp �
ln � 𝑎𝑎𝑖𝑖𝑎𝑎𝑒𝑒,𝑖𝑖

� − 𝜇𝜇𝑒𝑒
𝜎𝜎𝑒𝑒

�

�1 + exp �
ln � 𝑎𝑎𝑖𝑖𝑎𝑎𝑒𝑒,𝑖𝑖

� − 𝜇𝜇𝑒𝑒
𝜎𝜎𝑒𝑒

��

2

40

𝑖𝑖=1

 (4.7) 

based on Equation (4.3).  Bayesian parameter estimation of Equation (4.7) produced a 𝜇𝜇𝑒𝑒 

of 0.074 and a 𝜎𝜎𝑒𝑒 of 0.071 as the experimental log-logistic parameters. 
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4.3 Recursive Bayesian Estimation 

The crack length data used for the GPR CPD model analysis is often limited in quantity.  

As stated in Chapter 3 Section 3.4.1, many of the photos used for data extraction are subject 

to motion blur so an average of twenty CP data may be obtained.  Regardless, this data is 

sufficient in processing the GPR CPD model.  However, for the PF/GPR CPD model, the 

full CP path can be extracted from a few CP data in addition to the AE signals cumulative 

count 𝐶𝐶 and cumulative amplitude 𝐴𝐴, and the methodology described in Chapter 2 Section 

2.2.2.4.  This results in as many CP data as there are AE data, where for the Group 3 

specimens can number between four hundred to twenty thousand data. 

 

4.3.1 AE Intensity Based Crack Propagation 

The approximation for the CP data extraction under PF is as follows.  First an initial set of 

particles (𝑁𝑁𝑝𝑝 = 1,000) is generated based on the lognormal crack length distribution at the 

first cycle of detection.  This distribution is based on a set of measurement estimates being 

taken at the first cycle of detection. 

The next step is propagation of each particle based on the assumed propagation model of 

the crack.  Since the previous study shows that the GPR CP model was the more realistic 

of the first three models of this research (Smith & Modarres, 2017) this will be the assumed 

CP model for this step of the PF analysis.  Each particle is propagated to the next cycle by 

way of the following, 

𝑎𝑎𝑟𝑟𝑖𝑖 = 𝑎𝑎𝑟𝑟−1𝑖𝑖 + ∆𝑎𝑎𝑟𝑟−1 × exp[𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(1,0,𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)] (4.8) 
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where exp[𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(1,0,𝜎𝜎𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖)] is a random noise parameter selected for each particle 

𝑖𝑖, and 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the noise standard deviation extracted from parameter 𝑔𝑔23 of the GPR CP 

parameter set 𝐴𝐴 (see Chapter 3 Section 3.4.5) which represents noise.  As stated in Chapter 

Section 3.4.6, this noise 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 may also be a source of uncertainty in this particular CP 

model. 

The third step of the PF analysis is computing the updated distribution and weight of each 

of the propagated particles.  The updated distribution is based on the two AE signals which 

can also be defined as AE Intensity Equation (2.7).  Both signals as well as the intensity 

follow a power trend based on the AE data available, so the updated distribution may be 

defined as a lognormal distribution where, 

ln �
𝐴𝐴𝑟𝑟𝐶𝐶𝑟𝑟
𝐴𝐴0

� =
1
𝛽𝛽

ln(𝑎𝑎𝑟𝑟) −
1
𝛽𝛽

ln(𝛼𝛼) + 𝑁𝑁𝑁𝑁𝑁𝑁(0,𝜎𝜎𝑣𝑣) (4.9) 

Equation (4.40) is acquired by taking the natural log of both sides of Equation (2.9) and 

replacing AE intensity with Equation (2.7).  With the log-mean 𝜇𝜇𝑟𝑟 defined as 1
𝛽𝛽

ln(𝑎𝑎𝑟𝑟) −

1
𝛽𝛽

ln(𝛼𝛼) and the log-standard deviation defined as 𝜎𝜎𝑣𝑣, the updated distribution is stated as, 

𝜋𝜋(𝐶𝐶𝑟𝑟 ,𝐴𝐴𝑟𝑟|𝑎𝑎𝑟𝑟) =
1

𝐴𝐴𝑟𝑟𝐶𝐶𝑟𝑟𝜎𝜎𝑣𝑣√2𝜋𝜋
× exp

⎩
⎨

⎧
−

1
2
�
ln �𝐴𝐴𝑟𝑟𝐶𝐶𝑟𝑟𝐴𝐴0

� − 𝜇𝜇𝑟𝑟
𝜎𝜎𝑣𝑣

�

2

⎭
⎬

⎫
 (4.10) 

and the weights are updated directly by Eq. (2.27). 

The final step is adjusting for the degeneracy problem that was addressed in Chapter 2 

Section 2.2.2.4.  This is done by resampling to generate a new set of particles based on the 

updated weight.  This is done by checking if the probability Pr�𝑥𝑥𝑟𝑟𝑖𝑖∗ = 𝑥𝑥𝑟𝑟
𝑗𝑗� is equal to 𝑤𝑤𝑟𝑟

𝑗𝑗.  
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If this condition is true then the weight for this step 𝑟𝑟  and particle 𝑗𝑗 is reset to 1
𝑁𝑁𝑝𝑝

.  Then 

the total weights for step 𝑟𝑟 are normalized by 𝑤𝑤��⃑ 𝑟𝑟 = 𝑤𝑤��⃑ 𝑟𝑟/∑𝑤𝑤��⃑ 𝑟𝑟 so that the sum of the weights 

is equal to 1. 

 

Figure 4-2: The PF analysis on raw crack length data from dog-bone specimen 5A3 

This process is repeated for all steps 𝑟𝑟 until all the AE data has been used.  Figure 4-2 

provides an example of the output from the PF updating process.  The mean PF propagation 

curve is what is used for the PF/GPR CPD analysis. 

4.4 Summary 

The topics and methodologies covered in this chapter deals primarily with the relation 

between the CSFs and the CP and validation of the models and CSFs chosen.  This relation 

has been proven to predict probable CP based on a known CSF-to-CPD correlation within 

a reasonable modeling error range (Smith, Modarres, & Droguett, 2017).  Proof of this 

came from a utilization of the Ontiveros et. al methodology (Ontiveros, Cartillier, & 
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Modarres, 2010) where model error is estimated.  A new development to this particular 

methodology is the finding that there are other distributions besides the lognormal 

distribution that better represent model error.   For this research it is the log-logistic 

distribution, but for other research this might be a completely different distribution. 

The CSF-to-CPD PF/GPR CP methodology where the GPR CP step model used for the 

procedure.  Because of the wealth of AE data, the PF/GPR CP model is able to be estimated 

to a higher degree of completeness than the GPR CP model which is limited to the few 

detected crack measurements.  All of the methodologies covered are used for the validation 

phase of this research and whose results are covered in the next chapter of this dissertation. 
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Chapter 5: Results and Discussion 
 

5.1 Overview 

The final step in this research is the completed analysis of the specimen data using the 

models and methodologies defined from Chapter 2 through Chapter 5.  The first step is 

performing the Bayesian analysis on each specimen on each of the pertinent CPD model 

pairs.  These results are then divided into training and validation data in order to check for 

the relations that exist between the CSFs and the CPD model posterior parameters.  In 

addition to this the model error is computed and checked for correctness in the specimen 

data set aside for validation.  Finally, through the model error results as well as the CSF-

to-CPD correlation, an end-of-life analysis is performed which will estimate the 

approximate cycle of failure. 

5.2 Bayesian Parameter Analysis 

The Bayesian analysis for the CPD parameters is done by a routine designed in MATLAB 

(Mathworks, 2015).  This routine (see Appendix B.1) makes use of the Metropolis-

Hastings (MH) (Hastings, 1970) Sampling command4 to process the Bayesian inference 

defined in Equation (3.7).  The routine also makes use of a MATLAB software package 

called GPML (Rasmussen, Nickisch, & Williams, 2015 ) for the GPR (Chapter 2 Section 

2.2.2.3) and PF/GPR (Chapter 2 Section 2.2.2.4) CP models and for the validation of the 

posterior CP parameters with respect to the CSFs.  The target parameter set Θ��⃑  for updating 

has been defined as, 

                                                           
4 The MATLAB command mhsample performs the Metropolis-Hastings algorithm 
https://au.mathworks.com/help/stats/mhsample.html 



72 
 

Θ��⃑ = �𝐴𝐴,𝐵𝐵�⃑ ,𝑃𝑃𝐹𝐹𝐹𝐹�
𝑇𝑇
 (5.1) 

in Chapter 2. 

The posterior CPD model parameters are obtained for two training sets of data (defined in 

the next section) which are used for the correlation methodology (see Chapter 4 Section 

4.2.1) for the validation sets.  After the validation and model error methodology (Chapter 

4 Section 4.2.2) is performed, the following results are gathered: The posterior CP and 

POD curves, the model error between the different CPD models, and the estimated end-of-

life for the specimens. 

5.2.1 Training and Validation Data Sets 

The specimen data is divided into a training data set and a validation data set where a larger 

proportion of the data is reserved for the training data set.  In analyzing the GPR CPD 

models, the specimens are divided as follows: 

• Training Set: DB3, DB4, DB5, DB6, DB7, DB15, 1A2, 1B3, 5A2, 5A3, 5A4, 5A6, 

5A8, 5A9, 5A20, 5A22, 5A23 

• Validation Set: 5A10, 5A21, 5A24, 5A26 

Meanwhile in analyzing the PF/GPR CPD models, the specimens are divided as follows: 

• Training Set: 5A2, 5A3, 5A4, 5A6, 5A8, 5A9, 5A20, 5A22, 5A23 

• Validation Set: 5A10, 5A21, 5A24, 5A26 

The number of training data per specimen for the Bayesian analyses for the CPD models 

varies as shown in Table 5-1. 
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Table 5-1: Count of training data (𝐷𝐷 = 1) per specimen per CPD model 

 Training Data 

GPR PF/GPR 

DB3 30 𝑁𝑁/𝐴𝐴 

DB4 16 𝑁𝑁/𝐴𝐴 

DB5 45 𝑁𝑁/𝐴𝐴 

DB6 7 𝑁𝑁/𝐴𝐴 

DB7 108 𝑁𝑁/𝐴𝐴 

DB15 14 𝑁𝑁/𝐴𝐴 

1A2 20 𝑁𝑁/𝐴𝐴 

1B3 42 𝑁𝑁/𝐴𝐴 

5A2 20 650 

5A3 64 226 

5A4 28 225 

5A6 28 225 

5A8 72 225 

5A9 24 225 

5A20 48 225 

5A22 32 225 

5A23 20 225 

 

In the case of the GPR CPD models, data was limited to the detected data only as explained 

in Chapter 3 Section 3.4.3.  For the PF/GPR CPD models, a larger amount of data could be 

generated per sample.  However, this too had to be limited because the GPML MATLAB 

code (Rasmussen, Nickisch, & Williams, 2015 ) has an upper limit to how much training 

data it can process at a time. 

5.2.2 Posterior Distribution for Sets 1 and 2 

The Bayesian analysis for the first two specimen sets take the priors defined in Chapter 3 

Section 3.2.6.  It was discovered that the hyper-parameters for the CP models throughout 

the test results don’t show much difference from one result to another.  In the case of 

specimen DB7 for example, the standard deviation between the GPR CP model hyper-

parameters 𝐴𝐴1 and 𝐴𝐴2 are 0.0318 and 0.414, respectively.  This is further exemplified by 
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the mean CP models for specimen DB7 presented in Figure 5-1, where the difference is 

highly minimal. 

 
Figure 5-1: The CP posterior models for each of the four GPR CPD model pairs for specimen 

DB7 

Thus the mean value of the posterior CPD parameter sets Θ��⃑  are presented in Table 5-2 and 

Table 5-3 and pictorially in Figure 5-2 and Figure 5-3. 
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Table 5-2: The mean GPR propagation model posterior hyper parameter values for specimen Sets 
1 and 2 

Hyper 
parameter DB3 DB4 DB5 DB6 DB7 DB15 1B3 1A2 

𝑔𝑔1 1.02 0.98 1.00 0.04 1.05 1.00 0.01 0.08 

𝑔𝑔2 501 642 164 7.20 × 106 1.97 × 1012 115 374 977 

𝑔𝑔3 2.46 × 107 4.46 × 103 202 1.90 × 104 5.80 × 109 2.30 × 103 1.07 × 105 3.62 × 105 

𝑔𝑔4 1.46 × 104 2.75 × 105 590 6.02 × 106 1.39 × 1012 6.67 × 103 1.34 × 106 8.34 × 105 

𝑔𝑔5 1.00 1.15 1.00 2.31 1.00 1.00 12.2 5.56 

𝑔𝑔6 0.60 20.5 1.00 71.7 0.66 1.00 3.60 × 103 24.9 

𝑔𝑔7 1.76 × 103 90.0 2.62 2.59 × 103 7.57 × 103 4.07 1.07 × 104 1.07 × 103 

𝑔𝑔8 0.95 3.82 1.00 31.89 0.87 1.00 149 25.3 

𝑔𝑔9 11.5 27.3 1.01 496 4.97 0.97 931 167 

𝑔𝑔10 0.96 4.90 1.00 88.4 0.83 1.00 281 19.2 

𝑔𝑔11 1.08 21.3 57.31 1.00 2.55 × 104 36.8 1.00 0.08 

𝑔𝑔12 …𝑔𝑔19 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

𝑔𝑔20 1.02 × 10−4 1.75 × 10−8 0.42 0.02 7.82 × 10−7 0.44 0.08 4.63 × 10−3 

𝑔𝑔21 3.19 23.9 0.99 39.9 13.7 0.13 0.06 86.6 

𝑔𝑔22 1.77 1.62 0.01 5.90 1.94 0.58 0.57 2.90 

𝑔𝑔23 1.02 × 10−4 1.80 × 10−8 0.07 0.02 0.01 0.03 0.08 0.03 

 

Table 5-3: The mean POD model posterior hyper parameter values for specimen Sets 1 and 2 based 
on GPR CP model 

CPD Hyper parameter DB3 DB4 DB5 DB6 DB7 DB15 1B3 1A2 

GPR/Logistic 

𝜂𝜂0 0.12 2.28 0.12 0.12 0.17 3.24 2.13 2.11 

𝜂𝜂1 0.20 −0.14 0.20 0.20 0.19 −0.12 −0.0023 −0.074 

𝑃𝑃𝐹𝐹𝐹𝐹 0.21 0.29 0.20 0.20 0.09 0.13 0.040 0.060 

GPR/Log-logistic 

𝛽𝛽0 0.12 2.28 0.12 0.12 0.17 3.24 2.13 2.11 

𝛽𝛽1 0.20 −0.14 0.20 0.20 0.19 −0.12 −0.0023 −0.074 

𝑃𝑃𝐹𝐹𝐹𝐹 0.21 0.29 0.20 0.20 0.09 0.13 0.040 0.060 

GPR/Lognormal 

𝜁𝜁0 0.14 0.65 0.12 0.12 0.12 0.51 −0.15 0.41 

𝜁𝜁1 0.21 1.27 0.20 0.20 0.20 0.81 0.67 1.04 

𝑃𝑃𝐹𝐹𝐹𝐹 0.38 0.67 0.20 0.20 0.20 0.67 0.042 0.063 

GPR/Weibull 

𝛼𝛼 0.12 1.09 0.12 0.12 0.12 8.30 3.03 6.83 

𝛽𝛽 0.17 0.34 0.20 0.20 0.21 0.53 0.49 0.63 

𝑃𝑃𝐹𝐹𝐹𝐹 0.25 0.72 0.20 0.20 0.20 0.41 0.058 0.064 
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Figure 5-2: The GPR CP posterior mean models for specimen Sets 1 and 2 

 
Figure 5-3: The POD posterior mean models for specimen Sets 1 and 2 

5.2.3 Prior Distribution for Set 3 

Obtaining the prior distribution for the third set of specimens involves an intensive 

goodness-of-fit analysis to determine which density functions best represents the behavior 
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of the posterior distributions of parameters from the first and second sets of the specimens 

from the previous section.   The process involves first grouping all the like-posterior 

parameters from the Θ��⃑  sets (for example 𝑔𝑔1 with 𝑔𝑔1 and 𝑔𝑔2 with 𝑔𝑔2).  Then from each 

parameter group the non-parametric cumulative distribution is obtained and compared to a 

set of likely density functions as seen in the example in Figure 5-4. 

 

Figure 5-4: Non-parametric CDF of GPR/Logistic CPD parameter ln𝑔𝑔2 and parametric CDF 

distribution fits 

Selection of the appropriate distribution was based on two things.  The first is the given 

range of the parameter groups.  For instance, in the example in Figure the GPR/Logistic 

CPD parameter ln𝑔𝑔2 ranges in the positive region so distributions such as lognormal, 
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Weibull, log-logistic, and Birnbaum-Saunders would be considered.  While another 

parameter (GPR/Logistic CPD parameter ln𝑔𝑔4) that ranges between the positive and 

negative region would consider the normal or logistic distributions as options.  Second, the 

coefficient of determination 𝑅𝑅2 is computed for each option and the density function that 

yields the highest value is selected as the prior distribution fit for the second group.  The 

proposed distributions in Figure 5-4 for example have the 𝑅𝑅2 values: 

• 𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2 = 0.616 

• 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2 = 0.660 

• 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2 = −5.325 

• 𝑅𝑅𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
2 = −6.115 

Thus based on the values, the log-logistic would be the best fit for that CPD parameter.  

Each CPD model therefore has its own unique prior distribution.  The second group prior 

distributions for the thirteen specimens fitting specimen Set 3 are shown in Table 5-3, Table 

5-4, Table 5-5, and Table 5-6 by CPD model. 

  

                                                           
5 The general definition of the coefficient of determination is used where a negative value means that the data is a poor 
fit to the proposed model https://en.wikipedia.org/wiki/Coefficient_of_determination 
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Table 5-4: Prior distribution for GPR/logistic and PF/GPR/logistic CPD Model 

Parameter Distribution Hyper-Parameter 1 Hyper-Parameter 2 

𝜂𝜂0 Birnbaum-Saunders 0.084 0.96 

𝜂𝜂1 Lognormal −0.47 1.25 

𝑙𝑙𝑙𝑙 𝑔𝑔1 Logistic −1.15 1.12 

𝑙𝑙𝑙𝑙 𝑔𝑔2 Log-logistic 1.98 0.32 

𝑙𝑙𝑙𝑙 𝑔𝑔3 Extreme Value 14.94 5.94 

𝑙𝑙𝑙𝑙 𝑔𝑔4 Gamma 5.55 2.45 

𝑙𝑙𝑙𝑙 𝑔𝑔5 Normal 0.56 1.12 

𝑙𝑙𝑙𝑙 𝑔𝑔6 Logistic 1.68 1.51 

𝑙𝑙𝑙𝑙 𝑔𝑔7 Gamma 2.09 2.70 

𝑙𝑙𝑙𝑙 𝑔𝑔8 Logistic 1.37 1.22 

𝑙𝑙𝑙𝑙 𝑔𝑔9 Logistic 2.89 1.59 

𝑙𝑙𝑙𝑙 𝑔𝑔10 Logistic 1.26 1.27 

𝑙𝑙𝑙𝑙 𝑔𝑔11 Logistic 1.35 2.08 

𝑙𝑙𝑙𝑙 𝑔𝑔12 Extreme Value 3.19 × 10−9 4.11 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔13 Extreme Value −4.38 × 10−10 1.69 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔14 Extreme Value −4.02 × 10−10 1.70 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔15 Extreme Value −5.58 × 10−10 1.62 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔16 Extreme Value 1.02 × 10−9 1.62 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔17 Extreme Value 5.34 × 10−10 2.40 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔18 Extreme Value 2.51 × 10−9 3.72 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔19 Extreme Value 2.64 × 10−9 4.00 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔20 Extreme Value −4.31 4.62 

𝑙𝑙𝑙𝑙 𝑔𝑔21 Normal 1.23 2.63 

𝑙𝑙𝑙𝑙 𝑔𝑔22 Normal −0.080 1.70 

𝑙𝑙𝑙𝑙 𝑔𝑔23 Logistic −5.16 2.77 

𝑃𝑃𝐹𝐹𝐹𝐹 Beta 0.44 2.80 
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Table 5-5: Prior distribution for GPR/log-logistic and PF/GPR/log-logistic CPD Model 

Parameter Distribution Hyper-Parameter 1 Hyper-Parameter 2 

𝛽𝛽0 Lognormal −0.60 1.46 

𝛽𝛽1 Extreme Value 0.15 0.16 

𝑙𝑙𝑙𝑙 𝑔𝑔1 Extreme Value −0.32 1.62 

𝑙𝑙𝑙𝑙 𝑔𝑔2 Log-logistic 1.97 0.32 

𝑙𝑙𝑙𝑙 𝑔𝑔3 Extreme Value 14.4 5.85 

𝑙𝑙𝑙𝑙 𝑔𝑔4 Gamma 5.42 2.49 

𝑙𝑙𝑙𝑙 𝑔𝑔5 Normal 0.69 1.11 

𝑙𝑙𝑙𝑙 𝑔𝑔6 Logistic 1.68 1.51 

𝑙𝑙𝑙𝑙 𝑔𝑔7 Gamma 2.15 2.59 

𝑙𝑙𝑙𝑙 𝑔𝑔8 Logistic 1.31 1.25 

𝑙𝑙𝑙𝑙 𝑔𝑔9 Logistic 3.27 1.78 

𝑙𝑙𝑙𝑙 𝑔𝑔10 Logistic 1.60 1.45 

𝑙𝑙𝑙𝑙 𝑔𝑔11 Extreme Value 3.95 4.33 

𝑙𝑙𝑙𝑙 𝑔𝑔12 Extreme Value 2.06 × 10−9 2.54 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔13 Extreme Value −9.35 × 10−10 2.60 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔14 Extreme Value 3.51 × 10−9 6.05 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔15 Extreme Value −2.15 × 10−12 2.10 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔16 Extreme Value 1.08 × 10−9 2.23 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔17 Extreme Value 1.45 × 10−9 2.96 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔18 Extreme Value 1.92 × 10−9 2.82 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔19 Extreme Value 3.20 × 10−9 5.55 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔20 Extreme Value −4.21 4.46 

𝑙𝑙𝑙𝑙 𝑔𝑔21 Extreme Value 2.47 2.06 

𝑙𝑙𝑙𝑙 𝑔𝑔22 Normal −0.08 1.70 

𝑙𝑙𝑙𝑙 𝑔𝑔23 Extreme Value −4.07 2.78 

𝑃𝑃𝐹𝐹𝐹𝐹 Beta 0.47 2.70 
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Table 5-6: Prior distribution for GPR/lognormal and PF/GPR/lognormal CPD Model 

Parameter Distribution Hyper-Parameter 1 Hyper-Parameter 2 

𝜁𝜁0 Logistic 0.20 0.16 

𝜁𝜁1 Weibull 0.63 1.28 

𝑙𝑙𝑙𝑙 𝑔𝑔1 Extreme Value −0.41 1.55 

𝑙𝑙𝑙𝑙 𝑔𝑔2 Log-logistic 1.97 0.32 

𝑙𝑙𝑙𝑙 𝑔𝑔3 Gamma 5.78 1.90 

𝑙𝑙𝑙𝑙 𝑔𝑔4 Log-logistic 2.49 0.26 

𝑙𝑙𝑙𝑙 𝑔𝑔5 Logistic 0.45 0.52 

𝑙𝑙𝑙𝑙 𝑔𝑔6 Logistic 1.97 1.82 

𝑙𝑙𝑙𝑙 𝑔𝑔7 Gamma 2.21 2.36 

𝑙𝑙𝑙𝑙 𝑔𝑔8 Logistic 1.35 1.18 

𝑙𝑙𝑙𝑙 𝑔𝑔9 Logistic 2.52 1.52 

𝑙𝑙𝑙𝑙 𝑔𝑔10 Logistic 1.23 1.33 

𝑙𝑙𝑙𝑙 𝑔𝑔11 Logistic 2.05 2.22 

𝑙𝑙𝑙𝑙 𝑔𝑔12 Extreme Value −1.13 × 10−11 3.19 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔13 Extreme Value 3.26 × 10−10 6.38 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔14 Extreme Value 1.34 × 10−10 3.73 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔15 Extreme Value 9.41 × 10−11 2.81 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔16 Extreme Value 3.23 × 10−10 4.68 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔17 Extreme Value 1.85 × 10−10 2.88 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔18 Extreme Value 1.14 × 10−10 2.84 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔19 Extreme Value 2.86 × 10−10 3.81 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔20 Extreme Value −4.00 4.14 

𝑙𝑙𝑙𝑙 𝑔𝑔21 Extreme Value 2.53 1.96 

𝑙𝑙𝑙𝑙 𝑔𝑔22 Extreme Value 0.64 1.15 

𝑙𝑙𝑙𝑙 𝑔𝑔23 Extreme Value −3.95 2.39 

𝑃𝑃𝐹𝐹𝐹𝐹 Beta 0.54 1.32 
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Table 5-7: Prior distribution for GPR/Weibull and PF/GPR/Weibull CPD Model 

Parameter Distribution Hyper-Parameter 1 Hyper-Parameter 2 

𝛼𝛼 Lognormal −0.47 1.80 

𝛽𝛽 Birnbaum-Saunders 0.30 0.59 

𝑙𝑙𝑙𝑙 𝑔𝑔1 Logistic −1.07 1.14 

𝑙𝑙𝑙𝑙 𝑔𝑔2 Log-logistic 1.97 0.32 

𝑙𝑙𝑙𝑙 𝑔𝑔3 Extreme Value 14.6 5.83 

𝑙𝑙𝑙𝑙 𝑔𝑔4 Gamma 5.45 2.48 

𝑙𝑙𝑙𝑙 𝑔𝑔5 Normal 0.67 1.10 

𝑙𝑙𝑙𝑙 𝑔𝑔6 Logistic 1.43 1.49 

𝑙𝑙𝑙𝑙 𝑔𝑔7 Extreme Value 7.04 2.57 

𝑙𝑙𝑙𝑙 𝑔𝑔8 Logistic 1.29 1.22 

𝑙𝑙𝑙𝑙 𝑔𝑔9 Normal 3.05 2.63 

𝑙𝑙𝑙𝑙 𝑔𝑔10 Normal 1.91 2.50 

𝑙𝑙𝑙𝑙 𝑔𝑔11 Normal 1.86 3.83 

𝑙𝑙𝑙𝑙 𝑔𝑔12 Extreme Value 2.46 × 10−9 3.52 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔13 Extreme Value −5.01 × 10−11 1.66 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔14 Extreme Value 3.44 × 10−9 5.47 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔15 Extreme Value 1.73 × 10−9 5.21 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔16 Extreme Value 1.86 × 10−9 3.75 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔17 Extreme Value 6.66 × 10−10 1.82 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔18 Extreme Value 1.47 × 10−9 3.31 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔19 Extreme Value 4.94 × 10−9 7.82 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔20 Normal −7.08 6.12 

𝑙𝑙𝑙𝑙 𝑔𝑔21 Normal 1.23 2.65 

𝑙𝑙𝑙𝑙 𝑔𝑔22 Normal −0.16 1.83 

𝑙𝑙𝑙𝑙 𝑔𝑔23 Normal −6.19 5.22 

𝑃𝑃𝐹𝐹𝐹𝐹 Beta 0.53 1.56 

As a point of reference to the first group prior (Figure 3-14), the second prior distribution 

for the CD models are presented in Figure 5-5. 
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Figure 5-5: The second group prior logistic, log-logistic, lognormal, and Weibull POD mean 

curves for GPR and PF/GPR CP models 

5.2.4 Posterior Results from CPD Analysis 

Similarly to Section 5.2.2, the Bayesian posterior distributions for the third set of specimen 

tests are laid out in the following tables and figures where Table 5-8, Table 5-10, and Figure 

5-6 represent the results from GPR based CPDs and Table 5-9, Table 5-11, and Figure 5-7 

represent the results from the PF/GPR based CPDs.  These posterior results only include 

the training parameter sets and models however. 
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Table 5-8: The mean GPR propagation model posterior hyper parameter values for specimen Set 3 

Hyper 
parameter 5A2 5A3 5A4 5A6 5A8 5A9 5A20 5A22 5A23 

𝑔𝑔1 0.236 0.347 0.289 0.239 0.334 0.627 0.869 0.357 0.296 

𝑔𝑔2 681 1.24
× 107 

6.25
× 107 443 416 7.76

× 103 
2.45
× 103 

1.91
× 103 

9.10
× 104 

𝑔𝑔3 2.91
× 106 

2.38
× 105 

3.55
× 105 

4.90𝐸𝐸
× 106 

3.49
× 106 

8.68
× 103 

4.51
× 106 

6.72
× 104 

4.80
× 105 

𝑔𝑔4 1.76
× 106 

1.51
× 107 

3.75
× 105 

1.33
× 106 

3.53
× 106 

4.11
× 105 

2.09
× 105 

4.27
× 104 

2.72
× 107 

𝑔𝑔5 1.86 1.74 1.65 1.86 2.00 1.45 1.16 1.56 30.4 

𝑔𝑔6 12.7 5.04 8.36 10.7 5.30 2.26 1.78 5.76 10.1 

𝑔𝑔7 4.62
× 103 227 271 1.02

× 103 380 100 272 335 678 

𝑔𝑔8 7.90 3.55 3.38 4.08 3.38 2.04 1.18 5.32 5.44 

𝑔𝑔9 76.6 15.9 29.3 20.9 29.6 8.12 1.70 18.1 79.2 

𝑔𝑔10 13.2 4.79 5.96 11.0 6.80 1.45 3.90 4.32 21.4 

𝑔𝑔11 5.14 5.19 113 1.25 1.11
× 103 109 0.875 4.18 1.61 

𝑔𝑔12 …𝑔𝑔19 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

𝑔𝑔20 
1.43
× 10−4 0.0118 0.0325 9.26

× 10−5 0.0746 0.112 4.95
× 10−4 

2.47
× 10−4 0.0191 

𝑔𝑔21 9.52 16.3 97.3 3.54 64.5 4.33 58.1 90.3 198 

𝑔𝑔22 0.581 1.49 1.11 0.078 0.772 0.711 0.465 1.07 2.32 

𝑔𝑔23 0.0437 0.0153 0.0145 0.0251 0.0126 5.25
× 10−3 

5.42
× 10−3 

9.61
× 10−3 0.0125 
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Table 5-9: The mean PF/GPR propagation model posterior hyper parameter values for specimen 
Set 3 

Hyper 
parameter 5A2 5A3 5A4 5A6 5A8 5A9 5A20 5A22 5A23 

𝑔𝑔1 
1.05
× 103 

5.17
× 108 

4.56
× 104 

1.17
× 106 649 83.2 699 646 7.51

× 103 

𝑔𝑔2 1.34
× 105 

3.50
× 106 

5.45
× 105 

1.13
× 105 

5.28
× 105 

9.46
× 104 

4.65
× 104 

9.42
× 103 

2.81
× 106 

𝑔𝑔3 1.29
× 106 

2.79
× 106 

5.16
× 104 

2.39
× 105 

9.51
× 105 

7.66
× 106 

3.84
× 105 

3.03
× 105 

1.56
× 107 

𝑔𝑔4 1.85 1.40 1.56 2.29 4.52 1.42 1.20 1.42 1.16 

𝑔𝑔5 6.05 8.58 5.26 3.39 122 2.44 26.0 7.64 21.1 

𝑔𝑔6 1.33
× 103 101 404 792 194 124 582 1.18

× 103 457 

𝑔𝑔7 3.81 8.39 3.24 6.75 3.97 2.36 1.75 2.57 3.97 

𝑔𝑔8 43.4 26.6 37.9 13.9 30.1 1.38 3.28 13.9 319 

𝑔𝑔9 5.38 7.13 3.11 11.6 5.20 2.86 1.51 4.36 4.30 

𝑔𝑔10 333 23.1 7.38
× 103 0.822 2.99 2.91 2.95 1.19

× 103 1.02 

𝑔𝑔11 …𝑔𝑔19 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

𝑔𝑔20 0.302 1.50
× 10−4 0.181 4.56

× 10−6 
1.29
× 10−9 0.0513 2.16

× 10−5 5.93 0.0358 

𝑔𝑔21 24.9 53.6 32.5 391 19.7 2.59 79.7 19.5 3.94 

𝑔𝑔22 0.610 3.45 0.215 0.598 0.333 0.577 1.16 0.283 3.00 

𝑔𝑔23 0.0276 9.75
× 10−3 0.0177 6.65

× 10−3 0.0154 0.0273 4.52
× 10−3 

8.94
× 10−3 

2.83
× 10−3 

 

Table 5-10: The mean POD model posterior hyper parameter values for specimen Set 3 based on 
GPR CP model 

CPD Hyper parameter 5A2 5A3 5A4 5A6 5A8 5A9 5A20 5A22 5A23 

GPR/Logistic 

𝜂𝜂0 0.069 0.091 0.13 0.062 0.065 0.14 0.058 0.072 0.066 

𝜂𝜂1 0.60 1.10 0.63 0.64 0.54 0.53 0.34 0.29 0.48 

𝑃𝑃𝐹𝐹𝐹𝐹 0.43 0.34 0.18 0.63 0.81 0.14 0.21 0.20 0.19 

GPR/Log-logistic 

𝛽𝛽0 0.42 0.89 3.62 0.49 1.59 0.97 0.77 0.58 0.53 

𝛽𝛽1 0.06 0.10 0.10 0.10 0.10 0.09 0.05 0.07 0.12 

𝑃𝑃𝐹𝐹𝐹𝐹 0.63 0.39 0.29 0.81 0.91 0.27 0.33 0.28 0.29 

GPR/Lognormal 

𝜁𝜁0 0.49 0.34 0.37 0.25 0.37 0.34 0.32 0.16 0.10 

𝜁𝜁1 0.56 0.59 0.81 2.01 5.61 0.50 0.60 0.32 0.54 

𝑃𝑃𝐹𝐹𝐹𝐹 0.78 0.64 0.72 0.89 0.96 0.62 0.37 0.55 0.96 

GPR/Weibull 

𝛼𝛼 0.33 0.33 1.08 0.17 0.36 1.20 0.83 0.62 0.17 

𝛽𝛽 0.33 0.32 0.38 0.24 0.36 0.28 0.37 0.33 0.40 

𝑃𝑃𝐹𝐹𝐹𝐹 0.76 0.59 0.86 0.90 0.96 0.54 0.38 0.47 0.96 
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Table 5-11: The mean POD model posterior hyper parameter values for specimen Set 3 based on 
PFGPR CP model 

CPD Hyper parameter 5A2 5A3 5A4 5A6 5A8 5A9 5A20 5A22 5A23 

PF/GPR/Logistic 

𝜂𝜂0 0.074 0.036 0.084 0.091 0.056 0.080 0.08 0.11 0.080 

𝜂𝜂1 0.62 0.28 0.38 0.20 0.90 0.65 0.56 1.35 1.67 

𝑃𝑃𝐹𝐹𝐹𝐹 0.56 0.30 0.48 0.91 0.80 0.16 0.19 0.15 0.88 

PF/GPR/Log-logistic 

𝛽𝛽0 0.60 2.30 1.36 0.71 0.78 1.52 0.30 0.36 1.52 

𝛽𝛽1 0.04 0.09 −0.02 0.12 0.03 0.06 −0.01 0.08 1.22 

𝑃𝑃𝐹𝐹𝐹𝐹 0.63 0.15 0.30 0.76 0.89 0.30 0.17 0.18 0.67 

PF/GPR/Lognormal 

𝜁𝜁0 0.23 0.44 0.18 0.18 0.23 0.21 0.19 0.21 0.21 

𝜁𝜁1 7.43 0.56 0.53 3.45 4.96 0.61 0.50 0.58 0.35 

𝑃𝑃𝐹𝐹𝐹𝐹 0.78 0.72 0.80 0.92 0.96 0.54 0.38 0.39 0.95 

PF/GPR/Weibull 

𝛼𝛼 0.91 1.81 0.18 3.61 0.25 1.25 0.27 0.61 0.47 

𝛽𝛽 0.38 0.34 0.62 0.38 0.31 0.39 0.32 0.36 0.36 

𝑃𝑃𝐹𝐹𝐹𝐹 0.81 0.25 0.78 0.85 0.96 0.47 0.43 0.38 0.96 

 

 

Figure 5-6: The GPR CP posterior mean models for specimen Set 3 
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Figure 5-7: The PF/GPR CP posterior mean models for specimen Set 3 

 
Figure 5-8: The POD posterior mean models for specimen Set 3 

5.3 Crack Shaping Factor Correlation Analysis and Model Validation 

The posterior parameters obtained from the Bayesian parameter analysis defined in Section 

5.2 will now be used for the correlation and validation stage in this section. 
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5.3.1 Crack Shaping Factor-to-Crack Propagation and Detection Correlation 

The CSF-to-CPD correlation step is performed according to the methodology defined in 

Chapter 4 Section 4.2.1.  This is necessary for the validation step because the correlation 

parameter set 𝑉𝑉�⃑  for each CPD parameter will estimate the GPR and PF/GPR parameters 

for the validation specimens.  The CSF vs. CPD parameter plots generated (such as the one 

shown in Figure 5-8) shows that the kernel function Equation (4.1) designed for the 

methodology is effective. 

 

Figure 5-9: CSF vs. GPR/Logistic CPD parameter ln𝑔𝑔1 

The complete collection of correlation parameter sets are comprised of eight 20 × 25 size 

correlation matrices representing the eight CPD model sets under study (GPR or 

PFGPR/Logistic, Log-logistic, Lognormal, or Weibull).  These correlation parameter sets 

are used to estimate the model parameters for the validation specimens.  Table 5-12 through 
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Table 5-19 show the estimated CPDs parameters (𝑃𝑃𝐹𝐹𝐹𝐹 estimate omitted for the results) for 

these validation specimens. 

Table 5-12: The estimated GPR/Logistic CPD parameters for the validation specimens 

Parameter 5A10 5A20 5A24 5A26 

𝜂𝜂0 0.0716 0.0818 0.0628 0.0818 

𝜂𝜂1 0.508 0.745 0.805 0.620 

𝑙𝑙𝑙𝑙 𝑔𝑔1 −1.01 −1.05 −2.17 −1.45 

𝑙𝑙𝑙𝑙 𝑔𝑔2 8.64 7.96 7.85 26.13 

𝑙𝑙𝑙𝑙 𝑔𝑔3 15.8 12.1 11.6 16.5 

𝑙𝑙𝑙𝑙 𝑔𝑔4 12.2 15.0 13.8 13.6 

𝑙𝑙𝑙𝑙 𝑔𝑔5 0.562 0.511 0.613 0.511 

𝑙𝑙𝑙𝑙 𝑔𝑔6 1.24 1.30 2.67 1.78 

𝑙𝑙𝑙𝑙 𝑔𝑔7 5.33 5.47 5.24 5.45 

𝑙𝑙𝑙𝑙 𝑔𝑔8 1.11 1.16 2.39 1.59 

𝑙𝑙𝑙𝑙 𝑔𝑔9 2.83 2.91 5.02 3.65 

𝑙𝑙𝑙𝑙 𝑔𝑔10 1.17 1.22 2.51 1.67 

𝑙𝑙𝑙𝑙 𝑔𝑔11 0.942 0.942 0.942 0.942 

𝑙𝑙𝑙𝑙 𝑔𝑔12 −9.20 × 10−10 −1.16 × 10−10 −9.82 × 10−11 5.38 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔13 −4.27 × 10−10 −1.13 × 10−9 −1.20 × 10−9 4.28 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔14 1.62 × 10−10 −1.35 × 10−9 3.33 × 10−10 −1.50 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔15 −5.92 × 10−10 −1.56 × 10−9 −1.22 × 10−9 −3.39 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔16 −8.07 × 10−10 4.12 × 10−10 3.78 × 10−10 4.78 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔17 1.81 × 10−9 −5.58 × 10−10 −1.86 × 10−10 1.70 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔18 5.07 × 10−10 8.05 × 10−10 −1.29 × 10−9 1.08 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔19 1.45 × 10−9 −3.21 × 10−10 3.02 × 10−10 −1.03 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔20 −7.19 −7.74 −6.55 −12.67 

𝑙𝑙𝑙𝑙 𝑔𝑔21 2.96 2.96 2.96 2.96 

𝑙𝑙𝑙𝑙 𝑔𝑔22 −1.73 × 10−4 −1.50 × 10−4 −1.61 × 10−4 −1.66 × 10−4 

𝑙𝑙𝑙𝑙 𝑔𝑔23 −3.97 −4.52 −6.02 −5.28 
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Table 5-13: The estimated GPR/Log-logistic CPD parameters for the validation specimens 

Parameter 5A10 5A20 5A24 5A26 

𝛽𝛽0 1.68 1.60 1.26 1.60 

𝛽𝛽1 0.0788 0.0754 0.106 0.0755 

𝑙𝑙𝑙𝑙 𝑔𝑔1 −1.10 −1.15 −2.36 −1.57 

𝑙𝑙𝑙𝑙 𝑔𝑔2 7.32 7.56 6.90 7.65 

𝑙𝑙𝑙𝑙 𝑔𝑔3 11.7 11.8 11.7 11.7 

𝑙𝑙𝑙𝑙 𝑔𝑔4 13.0 14.6 13.0 14.7 

𝑙𝑙𝑙𝑙 𝑔𝑔5 0.622 0.625 0.627 0.623 

𝑙𝑙𝑙𝑙 𝑔𝑔6 0.79 1.24 3.50 1.86 

𝑙𝑙𝑙𝑙 𝑔𝑔7 6.13 7.14 7.36 6.49 

𝑙𝑙𝑙𝑙 𝑔𝑔8 1.15 1.20 2.48 1.65 

𝑙𝑙𝑙𝑙 𝑔𝑔9 2.40 2.51 5.17 3.44 

𝑙𝑙𝑙𝑙 𝑔𝑔10 1.20 1.26 2.59 1.73 

𝑙𝑙𝑙𝑙 𝑔𝑔11 0.900 0.913 0.873 1.621 

𝑙𝑙𝑙𝑙 𝑔𝑔12 −6.21 × 10−10 −7.01 × 10−10 −2.85 × 10−9 2.21 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔13 −1.27 × 10−11 −2.08 × 10−9 −7.31 × 10−10 −1.98 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔14 −2.61 × 10−9 2.02 × 10−9 1.00 × 10−9 2.32 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔15 −1.72 × 10−9 5.71 × 10−11 1.43 × 10−9 −1.37 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔16 5.75 × 10−10 5.22 × 10−10 −6.12 × 10−10 1.29 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔17 3.58 × 10−10 2.67 × 10−10 4.24 × 10−10 −2.64 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔18 −6.50 × 10−10 7.48 × 10−10 7.65 × 10−10 1.51 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔19 −1.34 × 10−9 1.28 × 10−9 1.37 × 10−9 −5.23 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔20 −6.94 −7.10 −6.78 −9.21 

𝑙𝑙𝑙𝑙 𝑔𝑔21 1.94 2.02 4.17 2.78 

𝑙𝑙𝑙𝑙 𝑔𝑔22 −3.05 × 10−3 −1.54 × 10−7 −1.82 × 10−1 −1.56 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔23 −4.55 −4.90 −5.82 −5.37 
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Table 5-14: The estimated GPR/Lognormal CPD parameters for the validation specimens 

Parameter 5A10 5A20 5A24 5A26 

𝜁𝜁0 0.252 0.251 0.252 0.251 

𝜁𝜁1 1.00 0.974 0.501 0.768 

𝑙𝑙𝑙𝑙 𝑔𝑔1 −0.97 −1.01 −2.09 −1.39 

𝑙𝑙𝑙𝑙 𝑔𝑔2 8.46 8.62 8.46 8.54 

𝑙𝑙𝑙𝑙 𝑔𝑔3 11.3 11.6 11.4 11.3 

𝑙𝑙𝑙𝑙 𝑔𝑔4 12.8 13.3 13.0 13.0 

𝑙𝑙𝑙𝑙 𝑔𝑔5 0.572 0.597 1.230 0.820 

𝑙𝑙𝑙𝑙 𝑔𝑔6 1.30 1.35 2.79 1.86 

𝑙𝑙𝑙𝑙 𝑔𝑔7 5.04 5.04 5.05 5.03 

𝑙𝑙𝑙𝑙 𝑔𝑔8 0.99 1.04 2.14 1.42 

𝑙𝑙𝑙𝑙 𝑔𝑔9 1.85 1.93 3.99 2.66 

𝑙𝑙𝑙𝑙 𝑔𝑔10 1.14 1.19 2.45 1.64 

𝑙𝑙𝑙𝑙 𝑔𝑔11 0.419 0.425 0.407 0.755 

𝑙𝑙𝑙𝑙 𝑔𝑔12 −2.75 × 10−10 −4.50 × 10−11 −1.25 × 10−11 −2.11 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔13 −1.57 × 10−10 −1.52 × 10−10 −2.22 × 10−10 1.55 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔14 1.79 × 10−10 −3.66 × 10−10 −1.27 × 10−10 −2.57 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔15 −2.54 × 10−10 2.28 × 10−10 6.68 × 10−11 1.63 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔16 9.60 × 10−11 1.44 × 10−10 −1.02 × 10−12 −1.28 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔17 2.08 × 10−10 2.50 × 10−11 −5.38 × 10−11 −4.36 × 10−11 

𝑙𝑙𝑙𝑙 𝑔𝑔18 −6.45 × 10−11 2.00 × 10−10 −4.12 × 10−11 1.78 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔19 −2.20 × 10−11 −2.82 × 10−10 6.59 × 10−12 −6.52 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔20 −8.90 −8.90 −8.90 −8.90 

𝑙𝑙𝑙𝑙 𝑔𝑔21 1.73 1.81 3.73 2.48 

𝑙𝑙𝑙𝑙 𝑔𝑔22 −0.542 −0.487 −0.559 −0.487 

𝑙𝑙𝑙𝑙 𝑔𝑔23 −6.99 −7.01 −7.28 −7.10 

 

  



92 
 

Table 5-15: The estimated GPR/Weibull CPD parameters for the validation specimens 

Parameter 5A10 5A20 5A24 5A26 

𝛼𝛼 0.939 0.921 0.988 0.917 

𝛽𝛽 0.267 0.341 0.388 0.298 

𝑙𝑙𝑙𝑙 𝑔𝑔1 −0.90 −0.93 −1.81 −1.24 

𝑙𝑙𝑙𝑙 𝑔𝑔2 9.80 9.00 7.67 9.06 

𝑙𝑙𝑙𝑙 𝑔𝑔3 12.0 12.3 11.6 17.9 

𝑙𝑙𝑙𝑙 𝑔𝑔4 14.7 15.4 13.2 15.4 

𝑙𝑙𝑙𝑙 𝑔𝑔5 0.476 0.476 0.477 0.476 

𝑙𝑙𝑙𝑙 𝑔𝑔6 1.46 1.52 3.17 2.10 

𝑙𝑙𝑙𝑙 𝑔𝑔7 6.08 6.10 6.09 6.69 

𝑙𝑙𝑙𝑙 𝑔𝑔8 0.95 0.99 2.04 1.36 

𝑙𝑙𝑙𝑙 𝑔𝑔9 2.16 2.26 4.65 3.10 

𝑙𝑙𝑙𝑙 𝑔𝑔10 1.54 1.61 3.31 2.21 

𝑙𝑙𝑙𝑙 𝑔𝑔11 1.13 1.13 1.13 1.13 

𝑙𝑙𝑙𝑙 𝑔𝑔12 −3.04 × 10−9 1.39 × 10−9 9.77 × 10−10 −1.22 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔13 1.40 × 10−9 −1.92 × 10−9 −1.58 × 10−9 −1.81 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔14 1.72 × 10−9 1.11 × 10−9 −7.09 × 10−10 2.86 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔15 5.59 × 10−11 1.22 × 10−9 −3.86 × 10−10 3.59 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔16 −3.32 × 10−10 1.39 × 10−10 −8.16 × 10−10 1.44 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔17 2.35 × 10−10 −1.94 × 10−9 −2.23 × 10−9 −2.73 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔18 −1.30 × 10−9 −2.77 × 10−10 1.09 × 10−9 5.79 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔19 −3.73 × 10−10 2.24 × 10−9 8.03 × 10−10 2.03 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔20 −8.48 −8.48 −8.48 −8.48 

𝑙𝑙𝑙𝑙 𝑔𝑔21 1.59 1.66 3.42 2.28 

𝑙𝑙𝑙𝑙 𝑔𝑔22 −0.403 −0.294 −0.452 −0.294 

𝑙𝑙𝑙𝑙 𝑔𝑔23 −6.76 −6.76 −6.76 −6.76 
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Table 5-16: The estimated PF/GPR/Logistic CPD parameters for the validation specimens 

Parameter 5A10 5A20 5A24 5A26 

𝜂𝜂0 0.0679 0.0654 0.0698 0.0656 

𝜂𝜂1 0.828 0.828 0.828 0.828 

𝑙𝑙𝑙𝑙 𝑔𝑔1 −0.95 −0.96 −0.96 −0.95 

𝑙𝑙𝑙𝑙 𝑔𝑔2 8.07 8.07 8.07 8.07 

𝑙𝑙𝑙𝑙 𝑔𝑔3 8.8 8.8 8.8 8.8 

𝑙𝑙𝑙𝑙 𝑔𝑔4 9.3 14.3 13.3 11.4 

𝑙𝑙𝑙𝑙 𝑔𝑔5 0.997 0.558 −0.087 0.500 

𝑙𝑙𝑙𝑙 𝑔𝑔6 1.53 1.54 1.54 1.54 

𝑙𝑙𝑙𝑙 𝑔𝑔7 6.66 6.66 6.66 6.66 

𝑙𝑙𝑙𝑙 𝑔𝑔8 1.43 1.43 1.43 1.43 

𝑙𝑙𝑙𝑙 𝑔𝑔9 2.88 2.88 2.88 2.88 

𝑙𝑙𝑙𝑙 𝑔𝑔10 1.15 1.64 0.84 1.09 

𝑙𝑙𝑙𝑙 𝑔𝑔11 2.38 2.17 2.60 2.17 

𝑙𝑙𝑙𝑙 𝑔𝑔12 −3.00 × 10−9 −3.06 × 10−10 −3.03 × 10−9 7.28 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔13 −1.37 × 10−9 3.20 × 10−10 −2.15 × 10−9 −8.59 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔14 2.91 × 10−11 −8.44 × 10−10 −4.66 × 10−10 −8.15 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔15 8.44 × 10−10 −1.02 × 10−9 −3.49 × 10−9 −1.19 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔16 4.80 × 10−10 2.37 × 10−9 −3.49 × 10−10 3.86 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔17 1.64 × 10−9 1.30 × 10−9 1.63 × 10−9 1.00 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔18 2.47 × 10−9 7.86 × 10−10 3.67 × 10−9 6.40 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔19 1.82 × 10−9 1.64 × 10−9 8.73𝐸𝐸 − 10 3.55 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔20 −11.12 −10.11 −12.13 −10.11 

𝑙𝑙𝑙𝑙 𝑔𝑔21 3.24 2.94 3.53 2.94 

𝑙𝑙𝑙𝑙 𝑔𝑔22 −0.857 −0.856 −0.857 −0.858 

𝑙𝑙𝑙𝑙 𝑔𝑔23 −3.93 −4.21 −5.13 −4.62 
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Table 5-17: The estimated PF/GPR/Log-logistic CPD parameters for the validation specimens 

Parameter 5A10 5A20 5A24 5A26 

𝛽𝛽0 1.12 1.11 1.14 0.690 

𝛽𝛽1 −0.005 0.121 0.472 0.309 

𝑙𝑙𝑙𝑙 𝑔𝑔1 −0.91 −0.95 −1.96 −1.31 

𝑙𝑙𝑙𝑙 𝑔𝑔2 6.12 6.32 6.00 6.30 

𝑙𝑙𝑙𝑙 𝑔𝑔3 9.8 9.8 9.8 9.8 

𝑙𝑙𝑙𝑙 𝑔𝑔4 12.9 12.9 12.9 12.9 

𝑙𝑙𝑙𝑙 𝑔𝑔5 0.463 0.463 0.463 0.463 

𝑙𝑙𝑙𝑙 𝑔𝑔6 0.68 0.71 1.47 0.98 

𝑙𝑙𝑙𝑙 𝑔𝑔7 4.67 4.24 5.09 4.24 

𝑙𝑙𝑙𝑙 𝑔𝑔8 1.94 1.08 0.73 1.53 

𝑙𝑙𝑙𝑙 𝑔𝑔9 1.88 1.96 4.04 2.69 

𝑙𝑙𝑙𝑙 𝑔𝑔10 1.40 1.36 0.80 0.44 

𝑙𝑙𝑙𝑙 𝑔𝑔11 1.64 1.49 1.79 1.49 

𝑙𝑙𝑙𝑙 𝑔𝑔12 1.13 × 10−9 −1.86 × 10−9 −1.01 × 10−9 6.80 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔13 −9.31 × 10−10 1.19 × 10−9 −2.07 × 10−9 3.93 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔14 1.21 × 10−9 5.38 × 10−10 −8.00 × 10−10 2.43 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔15 −1.21 × 10−9 −1.32 × 10−9 8.73 × 10−11 −3.97 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔16 4.95 × 10−10 3.29 × 10−9 −4.07 × 10−10 3.01 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔17 −8.29 × 10−10 3.49 × 10−10 −3.17 × 10−9 3.20 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔18 −1.14 × 10−9 −1.57 × 10−9 1.31 × 10−9 7.57 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔19 3.20 × 10−10 1.43 × 10−9 −9.90 × 10−10 2.10 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔20 −5.80 −8.07 −5.77 4.30 

𝑙𝑙𝑙𝑙 𝑔𝑔21 3.81 2.95 −1.88 2.45 

𝑙𝑙𝑙𝑙 𝑔𝑔22 −1.74 × 10−7 −1.66 × 10−7 −1.85 × 10−7 −1.65 × 10−7 

𝑙𝑙𝑙𝑙 𝑔𝑔23 −4.05 −4.11 −6.71 −5.06 
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Table 5-18: The estimated PF/GPR/Lognormal CPD parameters for the validation specimens 

Parameter 5A10 5A20 5A24 5A26 

𝜁𝜁0 0.224 0.224 0.224 0.224 

𝜁𝜁1 2.41 2.39 1.91 2.20 

𝑙𝑙𝑙𝑙 𝑔𝑔1 −0.92 −0.94 −0.89 −1.66 

𝑙𝑙𝑙𝑙 𝑔𝑔2 5.44 9.76 9.67 7.55 

𝑙𝑙𝑙𝑙 𝑔𝑔3 10.8 10.8 10.8 10.8 

𝑙𝑙𝑙𝑙 𝑔𝑔4 12.1 12.7 13.4 13.2 

𝑙𝑙𝑙𝑙 𝑔𝑔5 0.155 0.154 0.154 0.155 

𝑙𝑙𝑙𝑙 𝑔𝑔6 2.11 2.54 1.83 2.50 

𝑙𝑙𝑙𝑙 𝑔𝑔7 5.08 4.60 5.62 4.60 

𝑙𝑙𝑙𝑙 𝑔𝑔8 1.19 1.19 1.19 1.19 

𝑙𝑙𝑙𝑙 𝑔𝑔9 1.19 1.21 1.15 2.14 

𝑙𝑙𝑙𝑙 𝑔𝑔10 0.98 0.98 0.98 0.98 

𝑙𝑙𝑙𝑙 𝑔𝑔11 2.29 0.33 2.25 1.24 

𝑙𝑙𝑙𝑙 𝑔𝑔12 −6.26 × 10−10 −4.22 × 10−10 −4.15 × 10−10 −3.06 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔13 −2.10 × 10−9 −1.16 × 10−9 2.33 × 10−10 −2.10 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔14 −3.92 × 10−10 −1.04 × 10−10 −1.70 × 10−10 −5.84 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔15 −2.76 × 10−10 −3.35 × 10−10 −6.55 × 10−11 −3.13 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔16 −5.97 × 10−10 −2.84 × 10−10 −5.75 × 10−10 −5.09 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔17 −1.16 × 10−10 −3.49 × 10−10 −2.91 × 10−10 −1.31 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔18 −1.80 × 10−9 −2.16 × 10−9 −1.64 × 10−9 −1.80 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔19 2.73 × 10−10 4.37 × 10−10 1.22 × 10−10 3.44 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔20 −9.17 −12.6 −3.86 −10.97 

𝑙𝑙𝑙𝑙 𝑔𝑔21 2.89 2.67 3.11 2.67 

𝑙𝑙𝑙𝑙 𝑔𝑔22 −0.249 −0.244 −0.269 −0.366 

𝑙𝑙𝑙𝑙 𝑔𝑔23 −4.66 −4.68 −4.83 −4.63 
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Table 5-19: The estimated PF/GPR/Weibull CPD parameters for the validation specimens 

Parameter 5A10 5A20 5A24 5A26 

𝛼𝛼 1.55 1.53 1.58 0.90 

𝛽𝛽 0.403 0.388 0.406 0.391 

𝑙𝑙𝑙𝑙 𝑔𝑔1 −0.86 −0.86 −0.86 −0.86 

𝑙𝑙𝑙𝑙 𝑔𝑔2 7.23 7.23 7.23 7.23 

𝑙𝑙𝑙𝑙 𝑔𝑔3 9.8 13.4 12.4 8.0 

𝑙𝑙𝑙𝑙 𝑔𝑔4 13.2 13.2 12.6 13.0 

𝑙𝑙𝑙𝑙 𝑔𝑔5 0.453 0.562 0.380 0.553 

𝑙𝑙𝑙𝑙 𝑔𝑔6 1.50 1.86 1.26 1.83 

𝑙𝑙𝑙𝑙 𝑔𝑔7 5.09 5.43 4.86 5.53 

𝑙𝑙𝑙𝑙 𝑔𝑔8 0.62 0.75 0.53 0.80 

𝑙𝑙𝑙𝑙 𝑔𝑔9 2.40 2.40 2.40 2.40 

𝑙𝑙𝑙𝑙 𝑔𝑔10 1.46 1.55 1.41 1.55 

𝑙𝑙𝑙𝑙 𝑔𝑔11 2.21 2.21 2.18 3.73 

𝑙𝑙𝑙𝑙 𝑔𝑔12 −4.37 × 10−10 −1.44 × 10−9 1.30 × 10−9 −1.31 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔13 −1.75 × 10−10 −1.60 × 10−9 1.19 × 10−9 −4.35 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔14 −1.30 × 10−9 1.25 × 10−9 −3.12 × 10−9 −4.07 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔15 4.66 × 10−10 1.86 × 10−9 −6.64 × 10−9 −1.43 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔16 5.60 × 10−10 −3.24 × 10−9 2.52 × 10−9 −2.07 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔17 −6.04 × 10−10 −2.91 × 10−11 2.11 × 10−10 3.93 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔18 2.23 × 10−9 −1.90 × 10−9 3.75 × 10−9 1.02 × 10−10 

𝑙𝑙𝑙𝑙 𝑔𝑔19 −3.20 × 10−10 2.02 × 10−9 −3.06 × 10−10 1.31 × 10−9 

𝑙𝑙𝑙𝑙 𝑔𝑔20 −8.55 −10.62 −7.18 −10.44 

𝑙𝑙𝑙𝑙 𝑔𝑔21 1.49 1.49 1.49 1.49 

𝑙𝑙𝑙𝑙 𝑔𝑔22 −2.08 −1.45 −1.38 −1.74 

𝑙𝑙𝑙𝑙 𝑔𝑔23 −4.81 −4.61 −5.07 −4.60 

 

 

5.3.2 Model Error and Validation Analysis 

The validation analysis method described in Chapter 4 Section 4.2.2 is performed on one-

hundred-forty-four validation points from the validation specimens listed in Section 5.2.1.  

Under the PF/GPR CP model, two-to-four-hundred validation points are extracted for the 

validation analysis.   The results of the Bayesian estimations for 𝜇𝜇𝑚𝑚, 𝜎𝜎𝑚𝑚, and 𝐸𝐸𝑎𝑎′,𝑡𝑡 of 

Equation (4.7) are presented in Table 5-20. 
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Table 5-20: Posterior mean and standard deviation for model log-logistic parameters and 
measurement error 𝑬𝑬𝒂𝒂,𝒕𝒕

′  

CPD Model ME Parameter 
PF/GPR GPR 

Mean SD Mean SD 

Logistic 

𝜇𝜇𝑚𝑚 0.069 0.014 0.069 0.022 
𝜎𝜎𝑚𝑚 4.56 × 10−4 4.58 × 10−4 1.37 × 10−3 1.38 × 10−3 
𝐸𝐸𝑎𝑎′,𝑡𝑡 1.071 0.027 1.072 0.046 

Log-logistic 

𝜇𝜇𝑚𝑚 0.067 0.019 0.069 0.022 
𝜎𝜎𝑚𝑚 7.83 × 10−4 7.95 × 10−4 1.35 × 10−3 1.36 × 10−3 
𝐸𝐸𝑎𝑎′,𝑡𝑡 1.070 0.037 1.071 0.046 

Lognormal 

𝜇𝜇𝑚𝑚 0.069 0.019 0.068 0.023 
𝜎𝜎𝑚𝑚 8.54 × 10−4 8.64 × 10−4 1.94 × 10−3 1.94 × 10−3 
𝐸𝐸𝑎𝑎′,𝑡𝑡 1.071 0.037 1.071 0.053 

Weibull 

𝜇𝜇𝑚𝑚 0.068 0.019 0.068 0.023 
𝜎𝜎𝑚𝑚 2.34 × 10−3 2.29 × 10−4 1.76 × 10−3 1.78 × 10−3 
𝐸𝐸𝑎𝑎′,𝑡𝑡 1.072 0.056 1.072 0.051 

These results then directly translate to the 95% confidence intervals for the overall model 

error between the different CPD models in addition to the median estimate presented in 

Table 5-21. 

Table 5-21: The model error confidence bounds between the different CPD models 

CPD Model 
PF/GPR GPR 

2.50% 50% 97.50% 2.50% 50% 97.50% 

Logistic 1.8% 7.11% 12.7% 1.8% 7.1% 17.1% 
Log-logistic 0.2% 6.9% 14.7% 1.9% 7.0% 17.0% 

Lognormal 0.3% 7.10% 14.9% 3.5% 7.0% 18.5% 

Weibull 3.7% 7.11% 19.2% 2.8% 7.0% 18.1% 

The primary findings from this part of the results is in improvement in model error from 

previous findings in this research (Smith & Modarres, 2017).  The same validation 

procedure performed on specimen Sets 1 and 2 produced an average relative model error 

of 4% and a model error precision between 55% and 57% under the GPR CP model (Smith 

& Modarres, 2017).  This result was already documented as a significant advantage that 

the GPR CP model has over other models including the AE (77–85%) and log-linear (58– 

59%) CP models (Smith & Modarres, 2017; Keshtgar, 2013). 
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From the recent analysis, the average GPR relative model error increased to 7.0% which is 

still an acceptable number for good model error.  The GPR model error precision however, 

showed drastic improvement to between 15.0% and 15.4%.  For the PF/GPR CP model 

these values improved further to an average PF/GPR relative model error of 7.1% and a 

PF/GPR model error precision range between 10.9% and 15.4%. 

These findings lend to the previous conclusion that the GPR CP model is among the most 

realistic representations of propagation.  However, the findings from the newly tested 

PF/GPR CP model shows that the fourth CP model may be more realistic than even the 

GPR CP model.  This is likely a result of the stated advantage (Chapter 2 Section 2.2.2.4) 

that the PF/GPR CP model has over the GPR CP model.  The PF/GPR is tied to nine CSF 

data as well as two AE data resulting in a CP model that relates propagation to eleven input.  

This further validates the other finding from the previous study which is that model input 

directly correlates to model error precision and CP realism (Smith & Modarres, 2017).  

Additionally the PF/GPR CP model takes advantage of much more input/output data due 

to the abundance of AE data that is gathered for the second set of tests.  Finally, the CPD 

model pair with the smallest model error precision range is the PF/GPR/logistic model pair 

whereas the pair with the smallest model error average is the PF/GPR/log-logistic pair.  

This finding is similar to a previous analysis of the first two specimen set data as a 

standalone set (the GPR/log-logistic was originally the smallest for model error precision 

range and average) (Smith & Modarres, 2017). 
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5.3.3 End-of-Life Analysis 

The results from the previous two sections of Section 5.3 are used in the end-of-life analysis 

for this research where model correction is used by applying the model error correction to 

the estimated CPD models. 

5.3.3.1 Methodology for End-of-Life Analysis 

The “end-of-life” for this research is defined as the time when a specimen’s crack reaches 

the critical length 𝑎𝑎𝑐𝑐𝑐𝑐.  For simplicity this is when critical plane stress intensity factor or 

fracture toughness 𝐾𝐾𝐼𝐼𝐼𝐼 is reached where, 

𝐾𝐾𝐼𝐼𝐼𝐼 ≥ 𝑓𝑓(𝑔𝑔)𝜎𝜎�𝜋𝜋𝑎𝑎𝑐𝑐𝑐𝑐 = 𝑓𝑓(𝑔𝑔)
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚
𝐾𝐾𝑓𝑓

  �𝜋𝜋𝑎𝑎𝑐𝑐𝑐𝑐 (5.2) 

𝐾𝐾𝑓𝑓 is the fatigue notch factor, 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum testing load on the specimen (see 

Tables 3 and 4), and 𝑓𝑓(𝑔𝑔) is the geometry correction factor, 

𝑓𝑓(𝑔𝑔) = 1.12 − 0.231 �𝑎𝑎+𝑟𝑟
𝐷𝐷
� + 10.55 �𝑎𝑎+𝑟𝑟

𝐷𝐷
�
2
− 21.72 �𝑎𝑎+𝑟𝑟

𝐷𝐷
�
3

+ 30.39 �𝑎𝑎+𝑟𝑟
𝐷𝐷
�
4
  (5.3) 

The eFatigue calculator (eFatigue LLC, 2017) is used to approximate the 𝐾𝐾𝑓𝑓 value from 

the theoretical stress concentration factor 𝐾𝐾𝑡𝑡 which is 2.61 for the validation specimens.  

The 𝐾𝐾𝑓𝑓 value is calculated from, 

𝐾𝐾𝑓𝑓 = 1 +
𝐾𝐾𝑡𝑡

�1 + 0.025
𝑟𝑟 �2,070 MPa

𝑆𝑆𝑢𝑢
�
1.8
�
 (5.4) 

where 𝑟𝑟 is in millimeters and an Al 7075-T6 ultimate strength 𝑆𝑆𝑢𝑢 of 560 MPa 

(MakeItFrom.com, 2016) is used resulting in a 𝐾𝐾𝑓𝑓 of 2.2696.  The fracture toughness 𝐾𝐾𝐼𝐼𝐼𝐼 

is represented as a distribution 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(3.18,0.063) MPa√m because of the variability in 

source estimates for this value (Clinton Aluminum & Stainless Steel, 2014; CRP 
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MECCANICA S.r.l., 2017).  A separate MATLAB routine is used to match a range of 𝐾𝐾𝐼𝐼𝐼𝐼 

values to a range of computed stress intensity values which are functions of the estimated 

true CP curves.  This is the procedure that generates the end-of-life distribution for the 

specimens. 

5.3.3.2 End-of-Life Analysis Results 

Figure 5-10 through Figure 5-13 present both the estimated true CP based on Table 5-20 

and the estimated end-of-life distributions for the four validation specimens. 

 

Figure 5-10: The validation median true crack length estimate and life distributions for logistic-

based CPD models 
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Figure 5-11: The validation median true crack length estimate and life distributions for log-

logistic-based CPD models 

 

Figure 5-12: The validation median true crack length estimate and life distributions for 

lognormal-based CPD models 
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Figure 5-13: The validation median true crack length estimate and life distributions for Weibull-

based CPD models 

From the non-parametric distributions the mean-cycles-to-failure (MCTF) are extracted 

and presented in Table 5-22 and Table 5-23. 

Table 5-22: The estimated CPD specific MCTFs in Fatigue Cycles (GPR based) 

CPD Model 
MCTF (Fatigue Cycles) 

Specimen 5A10 Specimen 5A21 Specimen 5A24 Specimen 5A26 

GPR/Logistic 1.65 × 104 3.36 × 104 1.87 × 104 N/A 

GPR/Log-logistic 1.63 × 104 3.36 × 104 1.87 × 104 3.19 × 104 

GPR/Lognormal 1.65 × 104 3.35 × 104 1.87 × 104 3.18 × 104 

GPR/Weibull 1.92 × 104 3.36 × 104 1.87 × 104 3.21 × 104 
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Table 5-23: The estimated CPD specific MCTFs in Fatigue Cycles (PF/GPR based) 

CPD Model 
MCTF (Fatigue Cycles) 

Specimen 5A10 Specimen 5A21 Specimen 5A24 Specimen 5A26 

PF/GPR/Logistic 1.62 × 104 3.34 × 104 1.86 × 104 3.16 × 104 

PF/GPR/Log-logistic 1.60 × 104 3.34 × 104 1.86 × 104 3.14 × 104 

PF/GPR/Lognormal 1.61 × 104 3.42 × 104 1.89 × 104 3.16 × 104 

PF/GPR/Weibull 1.63 × 104 3.33 × 104 1.86 × 104 3.15 × 104 

 

As a point of comparison, the actual CTFs for specimens 5A10, 5A21, 5A24, and 5A26 

are 1.59 × 104, 3.41 × 104, 1.95 × 104, and 3.24 × 104 fatigue cycles respectively.  The 

one deviation that occurs in the predicted CP results as well as the MCTF is the 

GPR/logistic estimate for specimen 5A26 as seen in Figure 5-10 where the growth is not 

strictly increasing.  This lends further credence to the finding that including the AE data as 

part of the GPR CP model contributes to the realism of the overall model.  However, it is 

also likely a result of the PF/GPR model having more data to represent CP than the GPR 

model.  The deviation in the case of the GPR/log-logistic estimate for specimen 5A26 may 

be a result of a shortage of CP data.  In effect, the results of the PF/GPR CPD models 

further validate that in its addition of AE output.  Where the GPR CP model is limited in 

the number of detected CP data, the PF/GPR CP model implements the abundant AE data 

in generating additional CP data for a more thorough and effective Bayesian analysis and 

a better CP estimate and end-of-life estimate.  There are however, two notable drawbacks 

to this model as it applies to the CPD Bayesian methodology.  The first is that the GPML 

routine (Rasmussen, Nickisch, & Williams, 2015 ) was limited on processing PF CP data 

for the Bayesian analysis, so there is an upper limit as to how many input/output data the 

code can process.  Second, is that the PF/GPR CP model proved to be computationally 

expensive than the GPR model which itself is expensive. 
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Another finding based on this is that PF/GPR CPD models usually predict a more 

conservative estimate for MCTF than the GPR CPD models.  The only times when the 

GPR CPD model is more conservative is for two specimens under the GPR/lognormal CPD 

model as seen by Table 5-22 and Table 5-23.  These instances likely occur as a result of 

the correlated estimates for the CP curves.  However, the CPD model is developed as one 

joint model.  Therefore these instances may also be connected with the POD models.  As 

seen in Figure 5-14, the correlated estimates for the posterior POD have the lognormal 

POD as the most liberal of the four POD models and both logistic and log-logistic exhibit 

the most conservative behavior. 

 

Figure 5-14: The validation median POD curves for the GPR and PF/GPR CPD models (𝑎𝑎𝑙𝑙𝑙𝑙ℎ =

5 𝜇𝜇𝜇𝜇) 

That is, it is more likely that cracks will be detected early in the crack’s life-cycle, rather 

than more conservative POD models (logistic and log-logistic) where cracks are more 

likely to be detected later.  With this, it is concluded that combination of relevant and high 

quantity CSFs and conservative POD model result in a conservative MCTF estimate.   
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5.4 Summary 

In this chapter, the results from the Bayesian analysis of the CPD model and CSF 

correlations are discussed.  The Bayesian parameter analysis of the CPD likelihood model 

has produced the updated posterior CPD models for the training specimens which are then 

used for designing the correlation between CPD models and CSFs.  Through this 

correlation as well as model error correction, the CPD models and the RUL for validation 

specimens with their own unique CSFs are estimated.  Although the procedure for the 

methodology was computationally expensive due to the complexity of GPR modeling, the 

end-of-life estimates for the validation specimens are very close to the actual end-of-life 

cycles. 
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Chapter 6: Conclusions, Contributions, and Future Work 
 

6.1 Summary 

The area of PHM has seen many advances in the study of CPD research.  Among them is 

the correlation between AE signals to fatigue markers (Keshtgar, 2013), an enhanced 

correlation model that relates CP to a series of CSFs through a multivariate Gaussian 

relationship (Mohanty, Chattopadhyay, & Peralta, 2011), and the furtherance of 

identification of uncertainties in CPD modeling (Sankararaman, Ling, Shantz, & 

Mahadevan, 2009).  The methodology described in this dissertation further validates the 

usefulness and effectiveness of a Bayesian analysis methodology performed on a joint-

CPD model that is composed of a CP and a detection model. 

For this research a set of CPD models were chosen and designed for the testing of the joint-

CPD model.  This included four POD models that are prevalent in the PHM field and two 

variations of the GPR CP model.  The first variant was a direct correlation of CP to CSFs 

while the second variant implemented a PF technique that included AE indices as a means 

of modeling CP.  Through PF generation of a CP-path based on AE data, the PF/GPR CP 

model successfully combined elements of the two CPD models tested in this research: the 

AE CP model and the GPR CP model.  Fatigue test data gathered from previous research 

(Keshtgar, 2013; Smith & Modarres, 2017) provided the initial data for the methodology 

and modeling and this was later updated by new fatigue test data and AE data (Sauerbrunn, 

2016; Smith, Modarres, & Droguett, 2017).  This data was preconditioned through 

measurement error correction based on high-magnification analysis of the final crack and 

in-test documentation of CP. 



107 
 

The data was put through a rigorous Bayesian analysis methodology that was produced via 

a series of MATLAB routines developed and obtained for this research.  The methodology 

updated a series of joint-CPD models and then the posterior models were put through a 

validation and RUL methodology that along with measurement error correction, 

successfully predicted the CP, POD, and RUL based on a CSF/CPD parameter correlation 

methodology.  The effectiveness of this methodology is a result of the overabundance of 

data that was made available, especially for the PF/GPR based CPD models where data 

sets were built from over twenty-thousand AE data sets per specimen.  While the increase 

in data contributed to a model with less uncertainties, it also results in a much more 

expensive Bayesian analysis through the data processing software used for the research.  

Despite this, the onset of this new methodology opens up the possibilities of combining 

this methodology with other Bayesian methodologies, such as the one proposed by Rabiei 

et. al. (Rabiei, Droguett, & Modarres, 2016), in order to produce a more effective Bayesian 

analysis of RUL estimation. 

6.2 Principal Contributions 

During the course of this research, a number of significant findings were discovered thus 

the list of contributions to CPD modeling, RUL estimation, and the PHM field is presented 

as follows: 

1. A new approach was proposed which groups models (crack propagation and detection) 

into a single integrated model for a singular Bayesian analysis. 

2. A set of correlations was developed between CPD model uncertainty and a concept 

introduced in this research as CSFs that can be used to assess CP.  These correlations 

can be used to predict the CP, POD, RUL of specimens with a unique CSF set. 
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3. The effect of the POD of sensor data on the CP mode was considered, resulting in the 

need for a joint-CPD model. 

4. It was discovered that with regard to a validation methodology used by Ontiveros et al. 

(Ontiveros, Cartillier, & Modarres, 2010), the modeling of measurement error is not 

specifically modeled as a lognormal distribution at all times.  For this research, it was 

found that the log-logistic distribution is a better model for measurement error, but this 

proves that the distribution used for measurement error is not restricted to one 

distribution. 

5. An improved application of the GPR CP model was designed in which a path-wise CP 

model captures the true crack path and fits it to a large set of CSFs. 

6. A new CP model was developed that combines elements of GPR CP modeling based 

on CSF-to-CP relation and PF techniques in which AE indices were utilized for the 

modeling. 

 

6.3 Recommendation for Future Work 

The following are some recommendations that can improve on this methodology: 

• As mentioned in Chapter 3 Section 3.4.4, the loading condition CSFs were treated 

as constant values because the variation was considered to be minimal.  However, 

the material CSFs were treated as variable because of the variety of grain and 

inclusion sizes on each specimen.  That said, for future application of this 

methodology there should be a consideration for the variation of loading CSFs in a 

similar fashion as the material grain and inclusion diameters in this study. 
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• One of the drawbacks to using big data is that the methodology is considerably 

expensive computationally.  Likely this is a result of the data set size as well as the 

processing speed of the MATLAB software used for development of the code.  

There are two recommendations based on this: 

o The MATLAB routine should be reexamined and revised in an effort to 

minimize the processing time and make it less expensive. 

o The methodology should be made available in additional programming 

languages such as OpenBUGS, R, and C++ as an alternative to the 

MATLAB routine. 

• The demonstration of the methodology in this dissertation only considered nine 

CSFs in the GPR modeling.  For future studies, additional CSFs should be checked 

to see their effect on the CPD model uncertainty.  This should be followed up by a 

sensitivity analysis of all CSFs in order to determine which CSFs have more of an 

effect on CP and POD. 

• The demonstration of the methodology used GPR based CP models to demonstrate 

its usefulness; but GPR has a known issue of overfitting the input and output data 

that it is correlating.  Therefore it is suggested that an alternative model, Artificial 

Neural Network (ANN) (McCulloch & Pitts, 1943; Kleene, 1956), be explored as 

it also serves as an effective machine learning model. 
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Appendix A: Fatigue Crack Data 

This appendix lists only the fatigue crack lengths at the cycles where they were detected.  

Cycles prior to this did not exhibit any crack detections. 

Appendix A.1 Specimen DB3 

Fatigue Cycles Detected Crack Length (μm) Fatigue Cycles Detected Crack Length (μm) 

5307 41 6090 270 

5346 75 6117 283 

5580 89 6126 314 

5670 99 6135 324 

5709 113 6144 358 

5736 117 6153 391 

5763 122 6162 404 

5772 124 6171 422 

5781 141 6180 425 

5790 155 6189 538 

5799 155 6198 557 

5808 184 6207 594 

5988 189 6243 632 

5997 212 6252 656 

6015 228 6279 743 

6036 243 6306 972 

6063 256 6315 1019 

6072 261   
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Appendix A.2 Specimen DB4 

Fatigue Cycles Detected Crack Length (μm) Fatigue Cycles Detected Crack Length (μm) 

4527 447 5238 875 

5169 656 5250 901 

5172 674 5265 903 

5184 676 5280 922 

5187 682 5283 954 

5196 686 5295 978 

5208 687 5322 1003 

5211 702 5343 1023 

5223 737 5346 1070 

5226 809 5349 1167 
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Appendix A.3 Specimen DB5 

Fatigue Cycles Detected Crack Length (μm) Fatigue Cycles Detected Crack Length (μm) 

3816 14 4082 415 

3830 18 4084 423 

3844 26 4096 471 

3890 57 4106 473 

3914 74 4124 504 

3922 109 4126 518 

3924 130 4148 606 

3934 145 4154 608 

3936 185 4166 628 

3938 193 4178 630 

3952 226 4180 631 

3956 235 4186 639 

3970 243 4190 652 

3972 246 4192 680 

3982 248 4194 682 

3998 269 4212 794 

4002 279 4220 798 

4012 289 4222 799 

4018 308 4228 820 

4026 320 4230 825 

4030 325 4242 835 

4032 336 4244 853 

4044 346 4252 867 

4054 378 4260 914 

4056 380 4262 928 

4064 399 4264 942 

4078 414   
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Appendix A.4 Specimen DB6 

Fatigue Cycles Detected Crack Length (μm) Fatigue Cycles Detected Crack Length (μm) 

2019 24 2583 149 

2136 51 2790 378 

2343 69 2982 434 

2370 83 3090 631 

2553 106   

 

Appendix A.5 Specimen DB7 

Fatigue 
Cycles 

Detected Crack Length 
(μm) 

Fatigue 
Cycles 

Detected Crack Length 
(μm) 

Fatigue 
Cycles 

Detected Crack Length 
(μm) 

5950 5.1 7232 122.1 7998 238.1 

5984 6.4 7258 124.4 8014 238.1 

6024 9.4 7264 124.6 8028 251.3 

6040 14.3 7288 131.2 8036 273.4 

6056 15.8 7298 140.4 8062 278.5 

6078 16.9 7304 142.8 8070 285.5 

6116 17.6 7312 144.0 8108 307.4 

6148 18.9 7320 150.8 8120 315.7 

6176 21.0 7328 152.9 8136 315.9 

6200 22.7 7344 159.1 8144 322.9 

6226 22.9 7350 168.5 8152 323.9 

6256 22.9 7360 169.0 8160 330.2 

6370 23.5 7368 169.7 8168 337.2 

6826 23.9 7376 170.2 8178 338.8 

6834 25.2 7392 171.2 8196 339.3 

6846 25.9 7400 173.7 8202 344.7 

6854 26.7 7408 174.7 8216 369.3 

6860 26.9 7414 176.1 8224 369.6 

6876 27.2 7422 176.5 8248 370.8 

6892 29.7 7430 178.3 8260 391.3 

6900 35.1 7454 183.7 8268 399.0 

6908 36.5 7462 183.8 8286 400.9 

6936 37.9 7500 186.8 8294 408.5 

6944 38.4 7508 194.9 8300 409.7 

6956 39.9 7524 200.4 8308 423.4 

6964 40.9 7540 208.3 8314 427.6 

6970 53.3 7580 209.3 8318 433.7 
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7010 56.5 7588 212.8 8324 441.3 

7036 58.4 7600 214.1 8328 443.4 

7042 59.3 7746 214.3 8338 443.6 

7044 68.4 7794 214.4 8344 448.9 

7048 76.0 7802 215.3 8354 452.7 

7064 78.4 7810 215.7 8362 469.8 

7104 83.1 7834 217.8 8372 478.2 

7120 97.9 7850 218.4 8378 482.2 

7164 98.2 7858 222.6 8388 486.2 

7170 112.5 7874 224.2 8398 491.7 

7204 117.1 7894 225.9 8406 505.6 

7212 117.7 7976 228.0 8416 513.4 

7220 118.2 7990 236.0 8486 550.1 

 

Appendix A.6 Specimen DB15 

Fatigue Cycles Detected Crack Length (μm) Fatigue Cycles Detected Crack Length (μm) 

7770 36.4 7998 347 

7818 36.8 8070 364 

7824 56 8136 431 

7892 167 8138 466 

7906 180 8152 518 

7918 214 8208 527 

7952 228 8224 548 

7954 238 8250 568 

7978 283   
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Appendix A.7 Specimen 1A2 
Fatigue Cycles Detected Crack Length (μm) Fatigue Cycles Detected Crack Length (μm) 

8320 100 8920 651 

8370 159 8970 733 

8420 180 9020 734 

8470 214 9070 755 

8520 218 9120 764 

8570 229 9170 790 

8620 295 9220 963 

8670 334 9270 972 

8720 359 9320 1160 

8770 407 9370 1306 

8820 589 9420 1362 

8870 611 9470 1370 

Appendix A.8 Specimen 1B3 
Fatigue Cycles Detected Crack Length (μm) Fatigue Cycles Detected Crack Length (μm) 

4120 16 5320 585 

4170 27 5370 616 

4220 31 5420 624 

4270 39 5470 630 

4320 49 5520 642 

4370 61 5570 674 

4420 87 5620 683 

4470 102 5670 710 

4520 124 5720 715 

4570 142 5770 741 

4620 175 5820 753 

4670 213 5870 768 

4720 337 5920 794 

4770 351 5970 927 

4820 411 6020 994 

4870 427 6070 1006 

4920 481 6120 1013 

4970 490 6170 1042 

5020 514 6220 1044 

5070 522 6270 1051 

5120 531 6320 1090 

5170 536 6370 1169 

5220 544 6420 1196 

5270 577 6470 1354 
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Appendix A.9 Specimen 5A2 
Fatigue Cycles Detected Crack Length (μm) Fatigue Cycles Detected Crack Length (μm) 

9645 181 9995 761 

9645 173 9995 760 

9645 146 10120 1084 

9645 162 10120 1061 

9770 211 10120 1071 

9770 198 10120 1010 

9770 201 10245 1385 

9770 195 10245 1402 

9895 319 10245 1388 

9895 298 10245 1385 

9895 301 10350 1558 

9895 359 10350 1516 

9995 758 10350 1502 

9995 749 10350 1501 
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Appendix A.10 Specimen 5A3 
Fatigue Cycles Detected Crack Length (μm) Fatigue Cycles Detected Crack Length (μm) 

11120 164 11495 1374 

11120 155 11495 1425 

11120 170 11495 1418 

11120 148 11495 1445 

11195 385 11520 1455 

11195 355 11520 1471 

11195 409 11520 1423 

11195 411 11520 1390 

11220 569 11550 1521 

11220 537 11550 1519 

11220 543 11550 1515 

11220 523 11550 1518 

11245 665 11575 1598 

11245 618 11575 1580 

11245 612 11575 1540 

11245 590 11575 1556 

11270 739 11600 1644 

11270 677 11600 1675 

11270 715 11600 1678 

11270 694 11600 1661 

11320 1001 11630 1751 

11320 1009 11630 1740 

11320 1032 11630 1749 

11320 966 11630 1751 

11370 1330 11705 1881 

11370 1323 11705 1887 

11370 1316 11705 1842 

11370 1326 11705 1834 

11395 1354 11730 1912 

11395 1354 11730 1878 

11395 1347 11730 1941 

11395 1356 11730 1955 

11445 1348 11755 2163 

11445 1379 11755 2131 

11445 1377 11755 2248 

11445 1379 11755 2273 
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Appendix A.11 Specimen 5A4 
Fatigue Cycles Detected Crack Length (μm) Fatigue Cycles Detected Crack Length (μm) 

11730 231 11835 1165 

11730 198 11835 1172 

11730 213 11885 1374 

11730 220 11885 1366 

11755 394 11885 1383 

11755 403 11885 1396 

11755 387 11910 1563 

11755 367 11910 1600 

11780 564 11910 1607 

11780 527 11910 1605 

11780 516 11935 1832 

11780 490 11935 1794 

11805 825 11935 1813 

11805 788 11935 1797 

11805 743 11960 1930 

11805 759 11960 1919 

11835 1196 11960 1914 

11835 1159 11960 1937 

Appendix A.12 Specimen 5A6 
Fatigue Cycles Detected Crack Length (μm) Fatigue Cycles Detected Crack Length (μm) 

17460 158 19965 688 

17460 158 19965 714 

17460 152 20215 756 

17460 159 20215 788 

18285 279 20215 773 

18285 283 20215 770 

18285 309 20470 801 

18285 315 20470 800 

18940 517 20470 808 

18940 529 20470 818 

18940 528 21145 1270 

18940 573 21145 1251 

19240 550 21145 1255 

19240 576 21145 1246 

19240 571 21520 1643 

19240 569 21520 1639 

19965 687 21520 1634 

19965 694 21520 1642 
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Appendix A.13 Specimen 5A8 
Fatigue Cycles Detected Crack Length (μm) Fatigue Cycles Detected Crack Length (μm) 

23510 157 39705 1239 

23510 156 39705 1238 

23510 143 39705 1236 

23510 141 39705 1249 

23760 181 40310 1255 

23760 164 40310 1269 

23760 172 40310 1261 

23760 182 40310 1285 

24790 204 40885 1444 

24790 201 40885 1447 

24790 197 40885 1434 

24790 189 40885 1440 

37445 438 41290 1533 

37445 433 41290 1535 

37445 447 41290 1518 

37445 438 41290 1526 

37470 530 41540 1919 

37470 479 41540 1936 

37470 525 41540 1950 

37470 517 41540 1971 

37520 616 42065 2192 

37520 629 42065 2206 

37520 634 42065 2239 

37520 610 42065 2224 

37620 635 42245 2234 

37620 649 42245 2223 

37620 631 42245 2231 

37620 643 42245 2274 

38400 782 42820 2506 

38400 749 42820 2495 

38400 770 42820 2460 

38400 792 42820 2443 

38905 994 43170 2752 

38905 1016 43170 2566 

38905 996 43170 2578 

38905 1021 43170 2557 

39380 1067 43020 2738 

39380 1082 43020 2766 

39380 1058 43020 2685 
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39380 1083 43020 2676 

39405 1109 43375 3029 

39405 1137 43375 2999 

39405 1138 43375 2975 

39405 1110 43375 3018 

 

Appendix A.14 Specimen 5A9 
Fatigue Cycles Detected Crack Length (μm) Fatigue Cycles Detected Crack Length (μm) 

35740 397 36040 1652 

35740 383 36040 1634 

35740 384 36065 2108 

35740 409 36065 2078 

35965 464 36065 2087 

35965 476 36065 2079 

35965 452 36090 2360 

35965 456 36090 2411 

35990 981 36090 2377 

35990 967 36090 2397 

35990 979 36115 2592 

35990 979 36115 2552 

36015 1413 36115 2563 

36015 1457 36115 2577 

36015 1468 36140 2821 

36015 1477 36140 2836 

36040 1638 36140 2844 

36040 1652 36140 2869 
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Appendix A.15 Specimen 5A10 
Fatigue Cycles Detected Crack Length (μm) Fatigue Cycles Detected Crack Length (μm) 

15765 380 15865 1423 

15765 358 15865 1410 

15765 381 15865 1379 

15765 353 15865 1368 

15790 626 15890 1689 

15790 608 15890 1725 

15790 634 15890 1720 

15790 640 15890 1760 

15815 756 15915 1805 

15815 765 15915 1802 

15815 764 15915 1797 

15815 751 15915 1799 

15840 919 15940 2166 

15840 935 15940 2149 

15840 936 15940 2167 

15840 933 15940 2074 
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Appendix A.16 Specimen 5A20 
Fatigue Cycles Detected Crack Length (μm) Fatigue Cycles Detected Crack Length (μm) 

6400 130 6700 684 

6400 123 6700 682 

6400 120 6700 677 

6400 126 6700 679 

6425 149 6750 945 

6425 142 6750 945 

6425 142 6750 938 

6425 146 6750 939 

6500 166 6825 1296 

6500 169 6825 1281 

6500 165 6825 1271 

6500 166 6825 1287 

6525 212 6875 1616 

6525 210 6875 1610 

6525 215 6875 1610 

6525 203 6875 1609 

6550 241 6900 1641 

6550 249 6900 1642 

6550 247 6900 1656 

6550 251 6900 1669 

6600 384 7000 2131 

6600 374 7000 2167 

6600 374 7000 2103 

6600 380 7000 2074 

6625 469 7025 2354 

6625 479 7025 2363 

6625 466 7025 2322 

6625 463 7025 2342 
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Appendix A.17 Specimen 5A21 
Fatigue Cycles Detected Crack Length (μm) Fatigue Cycles Detected Crack Length (μm) 

27760 393 30595 1104 

27760 429 30595 1075 

27760 440 30845 1346 

27760 443 30845 1346 

28865 630 30845 1336 

28865 598 30845 1334 

28865 601 31270 1579 

28865 618 31270 1540 

29720 659 31270 1542 

29720 637 31270 1537 

29720 655 31470 1784 

29720 666 31470 1777 

30095 719 31470 1762 

30095 700 31470 1725 

30095 705 31795 1927 

30095 721 31795 1936 

30170 751 31795 1973 

30170 734 31795 1926 

30170 726 32425 2188 

30170 758 32425 2171 

30595 1112 32425 2166 

30595 1093 32425 2179 
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Appendix A.18 Specimen 5A22 
Fatigue Cycles Detected Crack Length (μm) Fatigue Cycles Detected Crack Length (μm) 

15700 145 16130 2053 

15700 125 16130 2087 

15700 134 16130 2078 

15700 147 16130 2085 

15880 979 16155 2248 

15880 997 16155 2224 

15880 1003 16155 2219 

15880 1022 16155 2199 

15980 1417 16180 2349 

15980 1400 16180 2329 

15980 1405 16180 2305 

15980 1397 16180 2316 

16005 1575 16230 2571 

16005 1592 16230 2536 

16005 1619 16230 2526 

16005 1617 16230 2539 

16105 1988 16255 2631 

16105 1999 16255 2689 

16105 2008 16255 2685 

16105 2007 16255 2708 

 

Appendix A.19 Specimen 5A23 
Fatigue Cycles Detected Crack Length (μm) Fatigue Cycles Detected Crack Length (μm) 

36120 602 39185 1146 

36120 582 39185 1145 

36120 603 40410 1821 

36120 579 40410 1791 

37230 652 40410 1785 

37230 646 40410 1806 

37230 652 40885 2223 

37230 659 40885 2264 

38485 1076 40885 2236 

38485 1094 40885 2247 

38485 1072 41390 2496 

38485 1088 41390 2463 

39185 1221 41390 2457 

39185 1199 41390 2472 
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Appendix A.20 Specimen 5A24 
Fatigue Cycles Detected Crack Length (μm) Fatigue Cycles Detected Crack Length (μm) 

17720 572 18170 1726 

17720 587 18170 1728 

17720 599 18170 1727 

17720 560 18170 1728 

18045 1437 18325 2081 

18045 1460 18325 2067 

18045 1429 18325 2080 

18045 1481 18325 2088 

18095 1560 18500 2365 

18095 1580 18500 2346 

18095 1558 18500 2361 

18095 1554 18500 2379 

18145 1692 18600 2714 

18145 1670 18600 2683 

18145 1674 18600 2646 

18145 1657 18600 2724 
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Appendix A.21 Specimen 5A26 
Fatigue Cycles Detected Crack Length (μm) Fatigue Cycles Detected Crack Length (μm) 

6075 239 6145 1259 

6075 236 6145 1246 

6075 228 6160 1357 

6075 226 6160 1354 

6085 575 6160 1324 

6085 574 6160 1325 

6085 586 6210 1801 

6085 595 6210 1793 

6125 1031 6210 1819 

6125 1025 6210 1817 

6125 1031 6240 2200 

6125 1023 6240 2173 

6135 1159 6240 2190 

6135 1139 6240 2195 

6135 1132 6265 2409 

6135 1149 6265 2392 

6145 1261 6265 2456 

6145 1264 6265 2418 
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Appendix B: MATLAB Codes 
 

Appendix B.1 Full CPD Bayesian Analysis Code for GPR Analysis 

The code provided is the Bayesian analysis for the GPR/Log-logistic CPD model where 

the specimen of interest is specimen 5A2 (Sauerbrunn, 2016).  To use the routine, it is 

necessary to download the GPML MATLAB package (Rasmussen, Nickisch, & Williams, 

2015 ) and link it to the run file on line 18.  The kernel function also has to be defined as 

both an outside-routine function (Appendix B.2) and as an in-routine function.  The load 

command loads files that will have to be generated by the user or requested of the author. 

% ===================================================================== 
% Full POD Likelihood 
% POD Processing Method - Hit-or-Miss 
% POD CDF Definition - Log-logistic 
% Crack growth PDF Definition - MVNormal Kernel 4 (K4) 
% ===================================================================== 
% by Reuel Smith 
% ===================================================================== 
% 23 GPR parameters plus 2 logistic POD parameters 
% Parameter Definitions 
% x(1) - Logistic POD alpha1 parameter 
% x(2) - Logistic POD alpha2 parameter 
% x(3)-x(25) - the log of the GPR parameters 
% x(26) - the false call or false positive probability parameter 
% (D=1|a<alow) 
clear 
clc 
run('C:\Users\ReuelS\Desktop\POD Research\gpml-matlab-v3.6\startup.m') 
 
% ==================================================== 
% Signal Response (Total Data) Based POD Parameters 
% ==================================================== 
load('DBdata','Data_5A2','init_a') 
load('PriordistGPR','ParamsetGPRloglogistic') 
load('measurementerror','ME') 
  
%% Constants 
% ===================================================== 
significance=0.05; 
alow = 5;           % lower threshold of crack detection (micrometers) 
Ea = ME(1);             % 50% measurement error 
  
nsamples=20000;     %Number of samples (higher number of samples 
increases the acceptance rate) 
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K = 1000;           %this value can remain as it is even if model 
parameters or model change 
M = 10;            % This parameter controls the size of the new markov 
chain which omits M-1 out of M values.  This will curb the effect of 
autocorrelation 
n=26;                % Number of parameters 
priors = ParamsetGPRloglogistic; 
% ===================================================== 
% Kernel 4 covariance function determination 
% ===================================================== 
D = 9; 
covfuncPOST = 
{@covSum,{@covConst,@covLINard,@covSEard,@covNNone,@covNoise}}; 
% mean function determination 
meanfuncPOST = @meanZero; 
% likelihood function determination 
likfuncPOST = @likGauss; 
% intial guess of hyperparameters of likelihood function 
hypPOST.lik = log(0.1); 
  
% ===================================================== 
% Gather the inputs (X) and the outputs (Y) for DB 5A2 
% ===================================================== 
% X and Y will be taken from Sample 5A2 
Xfull = Data_5A2(:,3:11);       % All Cycle data 
Yfull = Data_5A2(:,1);          % All Crack Length data (um) 
  
% Detected Data D = 1 
X_5A2 = Xfull(20:39,:); 
Y_5A2 = Yfull(20:39)./Ea; 
Z_5A2 = X_5A2; 
Z_5A2b = [linspace(1,11000,1001)',ones(1001,1)*Xfull(1,2:end)]; 
XtrainD1 = X_5A2; 
YtrainD1 = Y_5A2; 
XnewD1 = Xfull(40:end,:); 
YnewD1 = Yfull(40:end)./Ea; 
XnewD1test = XnewD1; 
YnewD1test = YnewD1; 
  
% Undetected Data D = 0 
XnewD0 = Xfull(1:19,:); 
  
% Data input for prior 
Znew = XnewD1; 
Znewb = [linspace(1,11000,1001)',ones(1001,1)*Xfull(1,2:end)]; 
%% GPML Analysis 
% ===================================================== 
[DB5A2nlml, DB5A2result, DB5A2newm, DB5A2news2,DB5A2K,DB5A2f]= 
kernel7(XtrainD1,YtrainD1,Z_5A2,significance); 
init_param=[2 -0.2 0.2 10 5.5 6 0.2 0.2 3.4 -2.5 3.5 -2 5.95 0 0 0 0 0 
0 0 0 0.65 1.5 1.35 -2.75 0.2];   % initial parameter guess 
init_param(3:25) = log(DB5A2result)'; 
% ================================ 
% NEW DB DATA 
% ================================ 
% This establishes our prior data for the crack growth curve 
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[DBnew_nlml, DBnew_result, DBnew_newm, DBnew_news2,DBnew_K,DBnew_f]= 
kernel7(XtrainD1,YtrainD1,Znew,significance); 
[DBnew_nlmlb, DBnew_resultb, DBnew_newmb, 
DBnew_news2b,DBnew_Kb,DBnew_fb]= 
kernel7(XtrainD1,YtrainD1,Znewb,significance); 
  
% convert to lognormal parameters 
mu_y = log(DBnew_newm./sqrt(1+DBnew_news2./(DBnew_newm.^2))); 
SD_y = sqrt(log(1+DBnew_news2./(DBnew_newm.^2))); 
%% MHSAMPLING AND LIKELIHOOD SETUP 
% ===================================================== 
prop_sig=eye(n);            % sigma for the proposed PDF 
% The log-logistic POD CDF function 
loglogisticpodcdf=@(x2,mu,logsig) 1./(1+exp(-((log(x2-alow)-
mu)./exp(logsig)))); 
  
% Kernel 4 calculation 
KN = @(x,XN) covConst(x(3),XN)+... 
    covLINard([x(4) x(5) x(6) x(7) x(8) x(9) x(10) x(11) 
x(12)]',XN)+... 
    covSEard([x(13) x(14) x(15) x(16) x(17) x(18) x(19) x(20) x(21) 
x(22)]',XN)+... 
    covNNone([x(23) x(24)]',XN)+covNoise(x(25), XN); 
kNP1 = @(x,XN,XNP1) covConst(x(3),XN,XNP1)+... 
    covLINard([x(4) x(5) x(6) x(7) x(8) x(9) x(10) x(11) 
x(12)]',XN,XNP1)+... 
    covSEard([x(13) x(14) x(15) x(16) x(17) x(18) x(19) x(20) x(21) 
x(22)]',XN,XNP1)+... 
    covNNone([x(23) x(24)]',XN,XNP1)+covNoise(x(25), XN,XNP1); 
  
% Mean and Variance of new test data 
MU_K = @(x,XN,YN,XNP1) kNP1(x,XN,XNP1)'*(KN(x,XN)\log(YN)); 
S2_K = @(x,XN,XNP1) diag(KN(x,XNP1)-
kNP1(x,XN,XNP1)'*(KN(x,XN)\kNP1(x,XN,XNP1))); 
  
pdfD1 = @(x,XN,YN,XNP1,YNP1)(1./(1+exp(-((log(YNP1-alow)-
x(1))./exp(x(2)))))).*1./(YNP1.*sqrt(2.*pi.*S2_K(x,XN,XNP1))).*exp(-
((log(YNP1)-MU_K(x,XN,YN,XNP1)).^2)./(2.*S2_K(x,XN,XNP1))); 
pdfD0b = @(x,MU_K1,S2_K1)(1-quadgk(@(a)(1-x(26)).*(1./(1+exp(-((log(a-
alow)-x(1))./exp(x(2)))))).*1./(a.*sqrt(2.*pi.*S2_K1)).*exp(-((log(a)-
MU_K1).^2)./(2.*S2_K1)),alow,Inf)); 
pdfD0 = @(x,XN,YN,XNP1) arrayfun(@(q1,q2) 
pdfD0b(x,q1,q2),MU_K(x,XN,YN,XNP1),S2_K(x,XN,XNP1)); 
  
PODpriors = @(x) pdf(priors(1,1),x(1))*pdf(priors(2,1),x(2)); 
GPRpriors = @(x) 
pdf(priors(3,1),x(3))*pdf(priors(4,1),x(4))*pdf(priors(5,1),x(5))*... 
    
pdf(priors(6,1),x(6))*pdf(priors(7,1),x(7))*pdf(priors(8,1),x(8))*... 
    
pdf(priors(9,1),x(9))*pdf(priors(10,1),x(10))*pdf(priors(11,1),x(11))*.
.. 
    
pdf(priors(12,1),x(12))*pdf(priors(13,1),x(13))*pdf(priors(14,1),x(14))
*... 



130 
 

    
pdf(priors(15,1),x(15))*pdf(priors(16,1),x(16))*pdf(priors(17,1),x(17))
*... 
    
pdf(priors(18,1),x(18))*pdf(priors(19,1),x(19))*pdf(priors(20,1),x(20))
*... 
    
pdf(priors(21,1),x(21))*pdf(priors(22,1),x(22))*pdf(priors(23,1),x(23))
*... 
    pdf(priors(24,1),x(24))*pdf(priors(25,1),x(25)); 
Pfcprior = @(x) pdf(priors(26,1),x(26)); 
pdf = @(x) 
PODpriors(x)*GPRpriors(x)*Pfcprior(x)*prod(pdfD1(x,XtrainD1,YtrainD1,Xn
ewD1,YnewD1))*prod(pdfD0(x,XtrainD1,YtrainD1,XnewD0)); 
 
% define proposal distribution and r.n. generator 
proppdf = @(x,y) mvnpdf(x,y,prop_sig); 
proprnd = @(y) [normrnd(y(1),0.01),normrnd(y(2),0.01),... 
    normrnd(y(3),0.1),normrnd(y(4),0.1),normrnd(y(5),0.1),... 
    normrnd(y(6),0.1),normrnd(y(7),0.1),normrnd(y(8),0.1),... 
    normrnd(y(9),0.1),normrnd(y(10),0.1),normrnd(y(11),0.1),... 
    normrnd(y(12),0.1),normrnd(y(13),0.1),normrnd(y(14),1e-11),... 
    normrnd(y(15),1e-11),normrnd(y(16),1e-11),normrnd(y(17),1e-11),... 
    normrnd(y(18),1e-11),normrnd(y(19),1e-11),normrnd(y(20),1e-11),... 
    normrnd(y(21),1e-11),normrnd(y(22),0.001),normrnd(y(23),0.1),... 
    normrnd(y(24),0.1),normrnd(y(25),0.001),normrnd(y(26),0.1)]; 
  
 [result,accept] = 
mhsample(init_param,nsamples,'pdf',pdf,'proppdf',proppdf,'proprnd',prop
rnd,'burnin',K,'thin',M); 
 
% =========================================================== 
% Calculation of the autocorrelation values for lagged values 
% =========================================================== 
AC = zeros(n,1); 
lag = 1; 
for i=1:n 
    me = mean(result(:,i)); 
    v = var(result(:,i)); 
    m2 = result(:,i)-me; 
    ACfactor = zeros(nsamples-lag,1); 
    for j=1:(nsamples-lag) 
        ACfactor(j) = m2(j)*m2(j+lag); 
    end 
    AC(i) = 1/(v*(nsamples-lag))*sum(ACfactor); 
end 
%% POSTERIOR PARAMETERS AND CALCULATIONS 
% ======================================== 
[F1,x1] = ecdf(result(:,1));[F2,x2] = ecdf(result(:,2)); 
[F3,x3] = ecdf(result(:,3));[F4,x4] = ecdf(result(:,4)); 
[F5,x5] = ecdf(result(:,5));[F6,x6] = ecdf(result(:,6)); 
[F7,x7] = ecdf(result(:,7));[F8,x8] = ecdf(result(:,8)); 
[F9,x9] = ecdf(result(:,9));[F10,x10] = ecdf(result(:,10)); 
[F11,x11] = ecdf(result(:,11));[F12,x12] = ecdf(result(:,12)); 
[F13,x13] = ecdf(result(:,13));[F14,x14] = ecdf(result(:,14)); 
[F15,x15] = ecdf(result(:,15));[F16,x16] = ecdf(result(:,16)); 
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[F17,x17] = ecdf(result(:,17));[F18,x18] = ecdf(result(:,18)); 
[F19,x19] = ecdf(result(:,19));[F20,x20] = ecdf(result(:,20)); 
[F21,x21] = ecdf(result(:,21));[F22,x22] = ecdf(result(:,22)); 
[F23,x23] = ecdf(result(:,23));[F24,x24] = ecdf(result(:,24)); 
[F25,x25] = ecdf(result(:,25));[F26,x26] = ecdf(result(:,26)); 
pd1 = fitdist(x1,'Lognormal');pd2 = fitdist(x2,'ExtremeValue'); 
pd3 = fitdist(x3,'ExtremeValue');pd4 = fitdist(x4,'Loglogistic'); 
pd5 = fitdist(x5,'ExtremeValue');pd6 = fitdist(x6,'Gamma'); 
pd7 = fitdist(x7,'Normal');pd8 = fitdist(x8,'Logistic'); 
pd9 = fitdist(x9,'Gamma');pd10 = fitdist(x10,'Logistic'); 
pd11 = fitdist(x11,'Logistic');pd12 = fitdist(x12,'Logistic'); 
pd13 = fitdist(x13,'ExtremeValue');pd14 = fitdist(x14,'ExtremeValue'); 
pd15 = fitdist(x15,'ExtremeValue');pd16 = fitdist(x16,'ExtremeValue'); 
pd17 = fitdist(x17,'ExtremeValue');pd18 = fitdist(x18,'ExtremeValue'); 
pd19 = fitdist(x19,'ExtremeValue');pd20 = fitdist(x20,'ExtremeValue'); 
pd21 = fitdist(x21,'ExtremeValue');pd22 = fitdist(x22,'ExtremeValue'); 
pd23 = fitdist(x23,'ExtremeValue');pd24 = fitdist(x24,'Normal'); 
pd25 = fitdist(x25,'ExtremeValue');pd26 = fitdist(x26,'Beta'); 
% POD POSTERIOR PARAMETERS 
[b1muPOST,b1SDPOST] = normfit(result(:,1)); 
[b2muPOST,b2SDPOST] = normfit(result(:,2)); 
PODMCerror = [b1SDPOST;b2SDPOST]./sqrt(nsamples); 
  
% GPR POSTERIOR PARAMETERS 
for i=1:n-3 
    GPRPOST(i,1)=mean(result(:,i+2)); 
    GPRPOST(i,2)=std(result(:,i+2)); 
    GPRMCerror(i,1) = std(result(:,i+2))/sqrt(nsamples); 
end 
  
hypPOST.cov = 
[mean(result(:,3));mean(result(:,4));mean(result(:,5));mean(result(:,6)
);... 
    
mean(result(:,7));mean(result(:,8));mean(result(:,9));mean(result(:,10)
);... 
    
mean(result(:,11));mean(result(:,12));mean(result(:,13));mean(result(:,
14));... 
    
mean(result(:,15));mean(result(:,16));mean(result(:,17));mean(result(:,
18));... 
    
mean(result(:,19));mean(result(:,20));mean(result(:,21));mean(result(:,
22));... 
    mean(result(:,23));mean(result(:,24));mean(result(:,25))]; 
% predictive output mean and std dev 
[logmuPOST,logs2POST] = gp(hypPOST,@infExact, meanfuncPOST, 
covfuncPOST, likfuncPOST, XtrainD1, log(YtrainD1), Znewb); 
[logmuPOSTD1,logs2POSTD1] = gp(hypPOST,@infExact, meanfuncPOST, 
covfuncPOST, likfuncPOST, XtrainD1, log(YtrainD1), XnewD1); 
  
%transform back to strictly positive domain 
muPOST = exp(logmuPOST+0.5*logs2POST); 
s2POST = (exp(logs2POST)-1).*exp(2*logmuPOST+logs2POST); 
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fPOST = [exp(logmuPOST-norminv(1-
significance/2)*sqrt(logs2POST));flipdim(exp(logmuPOST+norminv(1-
significance/2)*sqrt(logs2POST)),1)]; 
  
muPOSTD1 = exp(logmuPOSTD1+0.5*logs2POSTD1); 
s2POSTD1 = (exp(logs2POSTD1)-1).*exp(2*logmuPOSTD1+logs2POSTD1); 
fPOSTD1 = [exp(logmuPOSTD1-norminv(1-
significance/2)*sqrt(logs2POSTD1));flipdim(exp(logmuPOSTD1+norminv(1-
significance/2)*sqrt(logs2POSTD1)),1)]; 
  
% FALSE CALL POSTERIOR PARAMETER 
FCPOST = betafit(result(:,26)); 
[FCmuPOST,FCSDPOST] = normfit(result(:,26)); 
FCMCerror = FCSDPOST./sqrt(nsamples); 
  
% ======================================== 
%% PLOTS 
% ======================================== 
% The prior crack growth curve 
% ======================================== 
figure(1) 
fill([Znewb; flipdim(Znewb,1)], DBnew_fb, [7 7 2]/8) 
hold on;  
plot(Znewb, DBnew_newmb,'k:');  
dat = plot(XtrainD1(:,1),YtrainD1, 
'b*',XnewD1test(:,1),YnewD1test,'r*',XnewD0(:,1),zeros(length(XnewD0(:,
1)),1),'r+',Znewb(:,1), DBnew_newmb,'k:'); 
xlabel('Fatigue Cycles') 
ylabel('Crack Length (\mum)') 
hold off 
xlim([8000,10500]) 
ylim([0,2200]) 
legend(dat,'D = 1 Training','D = 1 Test','D = 0','Prior Growth 
Curve','location','Northwest') 
  
% ======================================== 
% the posterior crack growth curve 
% ======================================== 
figure(2) 
fill([Znewb; flipdim(Znewb,1)], fPOST, [7 7 2]/8) 
hold on;  
plot(Znewb(:,1), muPOST,'k:');  
datb = plot(XtrainD1(:,1),YtrainD1, 
'b*',XnewD1test(:,1),YnewD1test,'r*',XnewD0(:,1),zeros(length(XnewD0(:,
1)),1),'r+',Znewb(:,1), muPOST,'k:'); 
xlabel('Fatigue Cycles') 
ylabel('True Crack Length (\mum)') 
hold off 
xlim([8000,10500]) 
ylim([0,2200]) 
legend(datb,'D = 1 Training','D = 1 Test','D = 0','Posterior Growth 
Curve','location','Northwest') 
  
% ======================================== 
% Prior and Posterior POD Curves 
% ======================================== 
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atrue=linspace(alow,240,1000); 
[bet0]=icdf(priors(1,1),[.025 .50 .975]); 
[bet1]=icdf(priors(2,1),[.025 .50 .975]); 
[bet0POST]=icdf(pd1,[.025 .50 .975]); 
[bet1POST]=icdf(pd2,[.025 .50 .975]); 
logist_lowPRIOR=loglogisticpodcdf(atrue,bet0(1),bet1(1)); 
logist_meanPRIOR=loglogisticpodcdf(atrue,bet0(2),bet1(2)); 
logist_highPRIOR=loglogisticpodcdf(atrue,bet0(3),bet1(3)); 
logist_lowPOST=loglogisticpodcdf(atrue,bet0POST(1),bet1POST(1)); 
logist_meanPOST=loglogisticpodcdf(atrue,bet0POST(2),bet1POST(2)); 
logist_highPOST=loglogisticpodcdf(atrue,bet0POST(3),bet1POST(3)); 
  
figure(3) 
plot(atrue,logist_meanPRIOR,'b-
',atrue,logist_lowPRIOR,'b:',atrue,logist_highPRIOR,'b--') 
title('Prior Logistic POD CDF') 
xlabel('True crack size (\mum)') 
ylabel('POD CDF') 
legend('mean','2.5% bound','97.5% bound') 
ylim([0 1]) 
  
figure(4) 
plot(atrue,logist_meanPOST,'b-
',atrue,logist_lowPOST,'b:',atrue,logist_highPOST,'b--') 
title('Posterior Logistic POD CDF') 
xlabel('True crack size (\mum)') 
ylabel('POD CDF') 
legend('mean','2.5% bound','97.5% bound') 
ylim([0 1]) 
  
% =============================================================== 
% Posterior Parameter Distributions 
% =============================================================== 
figure(5) 
subplot(5,6,1) 
hist(result(:,1),100) 
xlabel('Loglogistic POD \beta_0 parameter') 
ylabel('Frequency') 
subplot(5,6,2) 
hist(result(:,2),100) 
xlabel('Loglogistic POD \beta_1 parameter') 
ylabel('Frequency') 
subplot(5,6,7) 
hist(result(:,3),100) 
xlabel('GPR log(A_1) parameter') 
ylabel('Frequency') 
subplot(5,6,8) 
hist(result(:,4),100) 
xlabel('GPR log(A_2) parameter') 
ylabel('Frequency') 
subplot(5,6,9) 
hist(result(:,5),100) 
xlabel('GPR log(A_3) parameter') 
ylabel('Frequency') 
subplot(5,6,10) 
hist(result(:,6),100) 
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xlabel('GPR log(A_4) parameter') 
ylabel('Frequency') 
subplot(5,6,11) 
hist(result(:,7),100) 
xlabel('GPR log(A_5) parameter') 
ylabel('Frequency') 
subplot(5,6,12) 
hist(result(:,8),100) 
xlabel('GPR log(A_6) parameter') 
ylabel('Frequency') 
subplot(5,6,13) 
hist(result(:,9),100) 
xlabel('GPR log(A_7) parameter') 
ylabel('Frequency') 
subplot(5,6,14) 
hist(result(:,10),100) 
xlabel('GPR log(A_8) parameter') 
ylabel('Frequency') 
subplot(5,6,15) 
hist(result(:,11),100) 
xlabel('GPR log(A_9) parameter') 
ylabel('Frequency') 
subplot(5,6,16) 
hist(result(:,12),100) 
xlabel('GPR log(A_1_0) parameter') 
ylabel('Frequency') 
subplot(5,6,17) 
hist(result(:,13),100) 
xlabel('GPR log(A_1_1) parameter') 
ylabel('Frequency') 
subplot(5,6,18) 
hist(result(:,14),100) 
xlabel('GPR log(A_1_2) parameter') 
ylabel('Frequency') 
subplot(5,6,19) 
hist(result(:,15),100) 
xlabel('GPR log(A_1_3) parameter') 
ylabel('Frequency') 
subplot(5,6,20) 
hist(result(:,16),100) 
xlabel('GPR log(A_1_4) parameter') 
ylabel('Frequency') 
subplot(5,6,21) 
hist(result(:,17),100) 
xlabel('GPR log(A_1_5) parameter') 
ylabel('Frequency') 
subplot(5,6,22) 
hist(result(:,18),100) 
xlabel('GPR log(A_1_6) parameter') 
ylabel('Frequency') 
subplot(5,6,23) 
hist(result(:,19),100) 
xlabel('GPR log(A_1_7) parameter') 
ylabel('Frequency') 
subplot(5,6,24) 
hist(result(:,20),100) 
xlabel('GPR log(A_1_8) parameter') 
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ylabel('Frequency') 
subplot(5,6,25) 
hist(result(:,21),100) 
xlabel('GPR log(A_1_9) parameter') 
ylabel('Frequency') 
subplot(5,6,26) 
hist(result(:,22),100) 
xlabel('GPR log(A_2_0) parameter') 
ylabel('Frequency') 
subplot(5,6,27) 
hist(result(:,23),100) 
xlabel('GPR log(A_2_1) parameter') 
ylabel('Frequency') 
subplot(5,6,28) 
hist(result(:,24),100) 
xlabel('GPR log(A_2_2) parameter') 
ylabel('Frequency') 
subplot(5,6,29) 
hist(result(:,25),100) 
xlabel('GPR log(A_2_3) parameter') 
ylabel('Frequency') 
subplot(5,6,30) 
hist(result(:,26),100) 
xlabel('False call probability P_F_C parameter') 
ylabel('Frequency') 
  
figure(6) 
subplot(5,6,1) 
plot(x1,F1,'r--',x1,cdf(pd1,x1),'b:') 
xlabel('Loglogistic POD \beta_0 parameter') 
ylabel('Posterior CDF')  
subplot(5,6,2) 
plot(x2,F2,'r--',x2,cdf(pd2,x2),'b:') 
xlabel('Loglogistic POD \beta_1 parameter') 
ylabel('Posterior CDF')  
subplot(5,6,7) 
plot(x3,F3,'r--',x3,cdf(pd3,x3),'b:') 
xlabel('GPR log(A_1) parameter') 
ylabel('Posterior CDF')  
subplot(5,6,8) 
plot(x4,F4,'r--',x4,cdf(pd4,x4),'b:') 
xlabel('GPR log(A_2) parameter') 
ylabel('Posterior CDF')  
subplot(5,6,9) 
plot(x5,F5,'r--',x5,cdf(pd5,x5),'b:') 
xlabel('GPR log(A_3) parameter') 
ylabel('Posterior CDF')  
subplot(5,6,10) 
plot(x6,F6,'r--',x6,cdf(pd6,x6),'b:') 
xlabel('GPR log(A_4) parameter') 
ylabel('Posterior CDF')  
subplot(5,6,11) 
plot(x7,F7,'r--',x7,cdf(pd7,x7),'b:') 
xlabel('GPR log(A_5) parameter') 
ylabel('Posterior CDF')  
subplot(5,6,12) 
plot(x8,F8,'r--',x8,cdf(pd8,x8),'b:') 
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xlabel('GPR log(A_6) parameter') 
ylabel('Posterior CDF')  
subplot(5,6,13) 
plot(x9,F9,'r--',x9,cdf(pd9,x9),'b:') 
xlabel('GPR log(A_7) parameter') 
ylabel('Posterior CDF')  
subplot(5,6,14) 
plot(x10,F10,'r--',x10,cdf(pd10,x10),'b:') 
xlabel('GPR log(A_8) parameter') 
ylabel('Posterior CDF')  
subplot(5,6,15) 
plot(x11,F11,'r--',x11,cdf(pd11,x11),'b:') 
xlabel('GPR log(A_9) parameter') 
ylabel('Posterior CDF')  
subplot(5,6,16) 
plot(x12,F12,'r--',x12,cdf(pd12,x12),'b:') 
xlabel('GPR log(A_1_0) parameter') 
ylabel('Posterior CDF')  
subplot(5,6,17) 
plot(x13,F13,'r--',x13,cdf(pd13,x13),'b:') 
xlabel('GPR log(A_1_1) parameter') 
ylabel('Posterior CDF')  
subplot(5,6,18) 
plot(x14,F14,'r--',x14,cdf(pd14,x14),'b:') 
xlabel('GPR log(A_1_2) parameter') 
ylabel('Posterior CDF')  
subplot(5,6,19) 
plot(x15,F15,'r--',x15,cdf(pd15,x15),'b:') 
xlabel('GPR log(A_1_3) parameter') 
ylabel('Posterior CDF')  
subplot(5,6,20) 
plot(x16,F16,'r--',x16,cdf(pd16,x16),'b:') 
xlabel('GPR log(A_1_4) parameter') 
ylabel('Posterior CDF')  
subplot(5,6,21) 
plot(x17,F17,'r--',x17,cdf(pd17,x17),'b:') 
xlabel('GPR log(A_1_5) parameter') 
ylabel('Posterior CDF')  
subplot(5,6,22) 
plot(x18,F18,'r--',x18,cdf(pd18,x18),'b:') 
xlabel('GPR log(A_1_6) parameter') 
ylabel('Posterior CDF')  
subplot(5,6,23) 
plot(x19,F19,'r--',x19,cdf(pd19,x19),'b:') 
xlabel('GPR log(A_1_7) parameter') 
ylabel('Posterior CDF')  
subplot(5,6,24) 
plot(x20,F20,'r--',x20,cdf(pd20,x20),'b:') 
xlabel('GPR log(A_1_8) parameter') 
ylabel('Posterior CDF')  
subplot(5,6,25) 
plot(x21,F21,'r--',x21,cdf(pd21,x21),'b:') 
xlabel('GPR log(A_1_9) parameter') 
ylabel('Posterior CDF')  
subplot(5,6,26) 
plot(x22,F22,'r--',x22,cdf(pd22,x22),'b:') 
xlabel('GPR log(A_2_0) parameter') 



137 
 

ylabel('Posterior CDF')  
subplot(5,6,27) 
plot(x23,F23,'r--',x23,cdf(pd23,x23),'b:') 
xlabel('GPR log(A_2_1) parameter') 
ylabel('Posterior CDF')  
subplot(5,6,28) 
plot(x24,F24,'r--',x24,cdf(pd24,x24),'b:') 
xlabel('GPR log(A_2_2) parameter') 
ylabel('Posterior CDF')  
subplot(5,6,29) 
plot(x25,F25,'r--',x25,cdf(pd25,x25),'b:') 
xlabel('GPR log(A_2_3) parameter') 
ylabel('Posterior CDF')  
subplot(5,6,30) 
plot(x26,F26,'r--',x26,cdf(pd26,x26),'b:') 
xlabel('False call probability P_F_C parameter') 
ylabel('Posterior CDF')  
  
figure(13) 
plot(YnewD1,muPOSTD1,'r+') 
xlabel('Test Crack lengths (\mum)') 
ylabel('Model Prediction Crack lengths (\mum)') 
  
save results_loglogistic_SR_K4_1B3 
 

  



138 
 

Appendix B.2 Kernel Function 

This kernel function is the same as that of Equation (3.42) in Chapter 3 Section 3.4.5.  It is 

recommended that the user designs their own kernel function using the options provided in 

the GPML MATLAB package designed by Rasmussen and available online (Rasmussen, 

Nickisch, & Williams, 2015 ).  This MATLAB package must be loaded prior to use of this 

function.  Original credit for this function belongs to Dr. Martin Wayne. 

% ===================================================================== 
% Kernel Function 
% ===================================================================== 
% Original function by Dr. Martin Wayne 
% Modified by Reuel Smith 
% ===================================================================== 
function [nlml, result, newm, news2,K,f]= kernel7(x,y,z,significance) 
  
% define the D variable 
D = size(x); 
D = D(2); 
% define z as linear space plus one step beyond data 
% z = linspace(1,length(y)+50,length(y)+50)'; 
  
% transform to log scale 
y = log(y); 
  
% covariance function determination 
covfunc = 
{@covSum,{@covConst,@covLINard,@covSEard,@covNNone,@covNoise}}; 
% intial guess of hyper-parameters of covariance function 
hyp.cov = [0;zeros(D,1);zeros(D,1);log(0.1);0;log(0.1);log(0.1)]; 
  
% mean function determination 
meanfunc = @meanZero; 
% intial guess of hyper-parameters of mean function 
% hyp.mean = mean(y); 
  
% likelihood function determination 
likfunc = @likGauss; 
% intial guess of hyper-parameters of likelihood function 
hyp.lik = log(0.1); 
  
% choose optimal hyper-parameters by minimizing log likelihood with 
% conjugate gradient optimizer 
hyp = minimize(hyp, @gp, -500, @infExact, meanfunc, covfunc, likfunc, 
x, y); 
  
% negative log likelihood for comparison purposes 
nlml = gp(hyp, @infExact, meanfunc, covfunc, likfunc, x, y); 
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% predictive output mean and std dev 
[m s2] = gp(hyp, @infExact, meanfunc, covfunc, likfunc, x, y, z); 
  
%transform back to strictly positive domain 
newm = exp(m+0.5*s2); 
news2 = (exp(s2)-1).*exp(2*m+s2); 
  
% 100*(1-significance) percent probability intervals 
f = [exp(m-norminv(1-significance/2)*sqrt(s2));flipdim(exp(m+norminv(1-
significance/2)*sqrt(s2)),1)]; 
  
% plot results and actual data 
% figure(2) 
% fill([z; flipdim(z,1)], f, [7 7 2]/8) 
% hold on;  
% plot((z(:,4)), newm);  
% % plot(exp(x(:,4)), exp(y), 'r+'); 
% hold off 
% compute vector of hyper-parameters for model selection 
result = [exp(hyp.cov)]; 
  
K = feval(covfunc{:}, hyp.cov, x);  % covariance matrix 
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Appendix B.3 Recursive Bayesian Particle Filter Data Generator 

This routine generates the PF data for a given set of fatigue test specimen data and its AE 

data by way of the methodology defined in Chapter 4 Section 4.3.  The routine also requires 

the GPML MATLAB code package as well as a linear extrapolation function (Appendix 

B.4).  The latter function is needed to match the unknown true crack lengths with the known 

AE indices.  This routine is best applied when the AE data is over 100 data.  The specimen 

data set used for this example is specimen 5A2. 

% ===================================================================== 
% Recursive Bayes Estimation Particle Filtered Data Generation 
% ===================================================================== 
% by Reuel Smith 
% ===================================================================== 
clear 
clc 
run('C:\Users\ReuelS\Desktop\POD Research\gpml-matlab-v3.6\startup.m') 
  
% =========================================== 
% LOAD DATA 
% =========================================== 
load('DBdata.mat','Data_5A2'); 
load('DBAEdata.mat','Data_AE_5A2'); 
load('measurementerror','ME') 
% =========================================== 
% CONSTANTS AND DATA INITIALIZATION 
% =========================================== 
N = 1000;                   % The number of particles at each time step 
A0 = 35;                    % threshold amplitude in dB 
Ea = ME(1);                 % 50% measurement error 
significance=0.05; 
% =========================================== 
% Renames the test data and isolates the cycle and crack data 
testdat = Data_5A2;testN = testdat(:,3);testa = 
testdat(:,1)./Ea;testCSF = testdat(:,3:11); 
Init_a = testa(20:23); 
testNc = testN(20:end);testac = testa(20:end);testCSFc = 
testCSF(20:end,:); 
for i = 1:length(testac)/4 
    testai(i,1) = mean(testac((i-1)*4+1:i*4)); 
    testNi(i,1) = mean(testNc((i-1)*4+1:i*4)); 
end 
testCSFi = [testNi ones(length(testNi),1)*testCSF(1,2:end)]; 
% =========================================== 
% Renames the AE test data and isolates the cycle, cumulative count (C) 
and 
% cumulative amplitude (A) 
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AEtestddat = Data_AE_5A2;AEtestN = AEtestddat(:,1);AEtestC = 
AEtestddat(:,4);AEtestA = AEtestddat(:,5);AEtestCSFs = [AEtestN 
ones(length(AEtestN),1)*testCSF(1,2:end)]; 
% =========================================== 
% Set the initial true crack length point and its distribution 
Init_a_param = lognfit(Init_a); 
a0 = lognrnd(Init_a_param(1),Init_a_param(2),[N,1]); 
% Set initial cycle 
N0 = testN(20).*ones(N,1); 
% Set initial weight 
w0 = (1/N).*ones(N,1); 
% =========================================== 
% Set up input sets: cycles, cumulative counts, and cumulative 
amplitude 
% such that the entire range is covered.  Extrapolate what isn't 
readily 
% available 
% =========================================== 
  
for i = 1:length(AEtestN) 
    if AEtestN(i) > testNc(1) 
        if AEtestN(i) == testNc(1) 
            ZN = sort([AEtestN(i:end);testNc(end)]); 
            ZC = 
[AEtestC(i:end);extrapolater(AEtestN,AEtestC,testNc(end))]; 
            ZA = 
[AEtestA(i:end);extrapolater(AEtestN,AEtestA,testNc(end))]; 
        else 
            ZN = sort([testNc(1);AEtestN(i:end);testNc(end)]); 
            ZC = 
[extrapolator(AEtestN,AEtestC,testNc(1));AEtestC(i:end);extrapolater(AE
testN,AEtestC,testNc(end))]; 
            ZA = 
[extrapolator(AEtestN,AEtestA,testNc(1));AEtestA(i:end);extrapolater(AE
testN,AEtestA,testNc(end))]; 
        end 
        break; 
    end 
end 
% The CSF set of the new set of data 
ZCSF = [ZN ones(length(ZN),1)*testCSF(1,2:end)]; 
% Calculates the mean approximation of the true crack length path 
[DBnlml, DBresult, DBnewm, DBnews2,DBK,DBf]= 
kernel7(testCSFc,testac,ZCSF,significance); 
% The standard deviation of the white noise 
sigWN = sqrt(DBresult(end)); 
% Calculates the change in crack length between steps 
testda = diff(DBnewm); 
% Calculates the da/dN 
testdadN = testda./diff(ZN); 
% Calculate the AE intensity parameters 
p = polyfit(log((ZC.*ZA)./A0),log(DBnewm),1);beta = p(1);alpha = 
exp(p(2));sigv = mean(sqrt(DBnews2)); 
% =========================================== 
% SAMPLE PROPAGATION 
% =========================================== 
% Propagate each of the N samples for k number of steps 
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% Number of steps - k 
K = length(ZN); 
% initialize the crack length, cycle, and weight matrices 
aRBE = [a0 zeros(N,K-1)];NRBE = ones(N,1)*ZN';wRBE = [w0 zeros(N,K-
1)];anew = a0;wnew = w0; 
ameanRBE = [mean(a0);zeros(K-1,1)]; 
  
for k = 2:K % NUMBER OF STEPS 
    % update of the crack length for the next step 
    aold = anew; 
    anew = anew + testda(k-1).*exp(normrnd(0,sigWN,[N,1])); 
    mu = (1/beta)*log(anew) - (1/beta)*log(alpha); 
    % Distribution zK|xk 
    pdistnew = (1/(ZC(k)*ZA(k)*sigv*sqrt(2*pi))).*exp(-
0.5.*(((log((ZC(k)*ZA(k))/A0) - mu)./sigv).^2)); 
    % Calculate the new weights for the next step 
    wnew = wnew.*pdistnew; 
    % Normalize the weights for the next step 
    wnew = wnew./sum(wnew); 
    p2 = lognfit(anew); 
    for i = 2:N % NUMBER OF SAMPLES 
        if logncdf(anew(i),p2(1),p2(2)) == wnew(i) 
            anew(i) = aold(i) + testda(k-1)*exp(normrnd(0,sigWN)); 
            wnew(i) = 1/N; 
        end 
    end 
    wnew = wnew./sum(wnew); 
    aest = sum(anew.*wnew); 
    ameanRBE(k) = aest; 
    wRBE(:,k) = wnew; 
    aRBE(:,k) = anew; 
end 
% =========================================== 
% PLOTS 
% =========================================== 
figure(1) 
% plot(testN,testa,'b*',N0,a0,'r.') 
% plot(testN,testa,'b*',N0,a0,'r.',ZCSF(:,1),DBnewm,'b:') 
plot(testN,testa,'b*',reshape(NRBE,[K*N,1]),reshape(aRBE,[K*N,1]),'g.',
ZN,ameanRBE,'k:') 
xlabel('Cycles') 
ylabel('Crack Length (\mum)') 
legend('Test crack lengths (\mum)','RBE crack lengths (\mum)','Mean 
estimate crack length (\mum)','location','Northwest') 
xlim([9500,11000]) 
  
figure(2) 
plot(AEtestN,AEtestC,'r.',AEtestN,AEtestA,'b.') 
% 
plot(AEtestN,AEtestC,'r.',AEtestN,AEtestA,'b.',AEtestN,Cnewm,'r:',AEtes
tN,Anewm,'b:') 
  
save('Data_RBE_5A2','ZN','ZCSF','NRBE','aRBE','ameanRBE') 
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Appendix B.4 Linear Extrapolation 

As stated in Appendix B3, the linear extrapolation function is designed to match unknown 

variables with known variables so that they are all set at the same time stamp or step.  This 

tool works best when the AE index data numbers 100 or more. 

% ===================================================================== 
% Linear Extrapolator 
% ===================================================================== 
% by Reuel Smith 
% ===================================================================== 
function Y = extrapolator(x,y,X) 
  
for i = 2:length(x) 
    if x(i-1) < X && x(i) > X 
        low = i-1; 
        hi = i; 
    end 
    if x(i-1) < X && x(i) < X 
        low = i-1; 
        hi = i; 
    end 
end 
p = polyfit([x(low) x(hi)],[y(low) y(hi)],1); 
Y = polyval(p,X); 
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