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The phenomenon of “brownout” is characterized by a large cloud of sediment
or dust that is formed around a rotorcraft when it takes off or lands in arid or dusty
environments. To further understand the physics of brownout, a laboratory-scale
rotor hovering in water was tested over a ground plane covered with a mobile sed-
iment bed. The sensitivity of the dual-phase flow environment to changes in the
values of the similarity parameters that potentially govern the fluid dynamics of the
rotor flow and the transport of sediment was explored. First, dye flow visualization
was performed to study the general evolution of the rotor flow and its interaction
with the ground plane. Then, dual-phase flow visualization was used to expose
the details of the processes that mobilize and uplift loose particles from the sedi-
ment bed. It was shown using the flow visualization that the trailed vortices from
the rotor blades were a primary contributor to the mobilization and suspension of
sediment. Particle image velocimetry (PIV) was also used to obtain quantitative
measurements of the flow velocities found in the rotor wake and near the ground
plane. It is then discussed as to why the steady flow assumptions used in the usual
definitions of the classical similarity parameters governing sediment transport are
not as applicable to the dual-phase flows produced by a rotor operating over a mobile
sediment bed. A Buckingham-Π analysis was performed to determine a set of new
similarity parameters that potentially better reflect the dual-phase flow characteris-
tics relevant to sediment mobilization and suspension by a rotor wake, including the
characteristics of the tip vortices. Sixteen new similarity parameters were initially
determined, five of which selected as having particular relevance. Specifically, these
new similarity parameters were: 1. The mobile inertia ratio; 2. The stationary
inertia ratio, 3. The terminal-swirl velocity ratio; 4. The threshold-swirl velocity
ratio; 5. The terminal/threshold-swirl velocity ratio. The values of these similar-
ity parameters were determined using the PIV measurements, and were all found
to correlate to the quantity of sediment mobilized and uplifted by the rotor. The
terminal/threshold-swirl velocity ratio is proposed as the potentially most important
similarity parameter for further characterizing the brownout phenomenon.
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Chapter 1

Introduction

1.1 The Problem of Brownout

Brownout can be a consequence of rotorcraft taking-off and landing in arid,

dusty environments. The effect occurs when a rotorcraft’s wake interacts with and

mobilizes loose dust or sand on the ground, uplifting it into a swirling, blinding

dust cloud that forms rapidly, often without warning to the pilot. Figure 1.1 shows

an example of a helicopter encountering brownout conditions during landing. Many

helicopters are affected by brownout, and this phenomenon is a leading cause of acci-

dents during military rotorcraft operations. As many as 60% of human-factor related

accidents in military helicopter operations can be related to brownout conditions [1].

Brownout-related accidents also occur in civilian helicopter flight operations, espe-

cially those involved in MEDEVAC operations [2].

The most significant consequence of brownout is the loss of visibility to the

pilot. This issue is part of a broader class of problems known as a degraded visual

environment (DVE). Pilots rely heavily on visual cues during landing and take-off,

so losing such a vital source of information near the ground can prove disastrous. To

land a helicopter, a pilot requires visual cues ranging from the macro environment,

such as the horizon or nearby structures to finer details of the surroundings, such as

individual rocks. Even blades of grass give a pilot a sense of motion and orientation.
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Figure 1.1: Brownout as experienced by a helicopter landing in a desert environment.

(Courtesy of Optical Air Data Systems LLC.)

A dense brownout cloud can obfuscate the pilot’s visual cues, and the swirling motion

of the dust can give the pilot a sense of erroneous motion. The margin for error in

control is very small during take-off and landing operations and minor sensory loss

issues can become difficult or impossible to correct.

Brownout can also prove hazardous to ground personnel. The uplifted and

suspended dust particles can irritate the eyes and throats of unprotected ground

personnel, and fine dust suspended in the air creates degraded visual conditions

that can hide rocks that have been thrown from the ground by the rotor wash.

The abrasive dust is also harmful to the operational health of the rotorcraft.

The service life of rotor blades, engine components, windscreens, and many other

flight-critical parts is greatly reduced by constant exposure to suspended dust. It

has been reported that rotor blade service life can be reduced to only tens of hours

if frequent or severe brownout conditions are encountered, greatly increasing the
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cost of maintenance and length of downtime, thus reducing the overall readiness

state of a helicopter fleet [3]. Several attempts at mitigating the consequences of

brownout through operations [3, 4] or sensors and display technologies [5–10] have

been made, but despite these advances, brownout still remains a dangerous problem

in rotorcraft operation.

1.2 Physics of Brownout

To work towards mitigating brownout at its source, a better understanding of

the underlying physics of the problem must be gained. Brownout is an unsteady,

three-dimensional, two-phase fluid dynamics problem caused by the interaction of

the rotor flow with the ground [13]. Blade loading, overall rotorcraft performance

characteristics, and the specific ground environment can all influence how severe

a brownout cloud becomes [14]. Figure 1.2 shows some of the larger scale fluid

dynamic mechanisms involved in brownout. Many factors are involved in the evo-

lution of a brownout cloud, but they can be split into two main categories — those

associated with the fluid, or carrier phase, and those associated with the sediment,

or dispersed phase. The carrier phase consists of the downwash produced by the

rotor in ground effect and the embedded blade tip vortices. The dispersed phase

contains the sediment, which is mobilized and uplifted from the ground to form the

dust cloud. The physics of sediment motion is described by the particle dynamics

aspect of sedimentology [15].
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Figure 1.2: A schematic of some of the fluid dynamic mechanisms involved in sedi-

ment uplift and transport by a rotor hovering over the ground [16].

1.2.1 Fluid Mechanics

Predicting or measuring the flow of the rotor wake near the ground, even

without sediment interactions at the bed, is very difficult. However, understanding

the flow beneath the rotor is necessary to understand how and when sediment is

uplifted. Most studies of rotors in ground effect have focused on how rotor perfor-

mance is affected by near-ground operation [17–28]. Some recent studies, however,

have provided insight into the detailed flow structures found in the rotor flow near

the ground [16, 29–36]. These studies have shown that in ground effect, the rotor

wake is characterized by persistent helicoidal tip vortices that produce large velocity

excursions.

Previous studies have identified some of the differences in how a rotor wake

develops out of ground effect (Fig. 1.3) and in ground effect (Fig. 1.4) [16, 29, 30].

Out of ground effect (Fig. 1.3), the rotor wake flows downwards, contracting slightly

as it flows away from the rotor. Tip vortices (the cores of which are visualized as

circular regions devoid of smoke) are trailed as vortex filaments from each blade tip,
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convecting along the slipstream boundary of the wake. Out of ground effect, the tip

vortices tend to diffuse at relatively young wake ages (only about two or three rotor

revolutions), beyond which the flow is mostly turbulent.

The wake initially contracts for the flow in ground effect (Fig. 1.4), as seen in

the out of ground effect case. However, as the wake encounters the ground plane it

spreads out and convects radially outward. In ground effect, the tip vortex filaments

tend to persist to much older wake ages than out of ground effect because they

stretch as they convect outwards along the ground plane, increasing their vorticity.

Eventually, the vortices diffuse and form a turbulent wall jet.

Many of the flow features that have been identified in ground effect operation

have been suggested as contributors to the brownout phenomenon: the tip vortices

shed from the blades, the turbulent wall jet, turbulence generated by wake sheets,

and unsteady suction pressures (due to the passage of the tip vortices over points

on the ground). Furthermore, secondary wake structures, such as vortex pairing

between adjacent turns of the helical vortices, have been noted as possible sec-

ondary contributors to sediment mobilization and transport [16] and to the severity

of brownout.

1.2.2 Particle Dynamics and Sediment Transport

Sediment mobilization by a rotorcraft is caused by the interaction of the rotor

wake with a sediment bed. It is important then, to understand how the shear

forces, pressure gradients, and velocity gradients imposed on each particle by the

5



Figure 1.3: Flow visualization of a rotor out of ground effect [29].
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Figure 1.4: Flow visualization of a rotor in ground effect [29].

rotor wake affects its dynamics [16]. For a particle to be mobilized, the gravitational

and cohesive forces on a sediment particle must be overcome by the aerodynamic

forces caused by the rotor wake. Once a particle has been fully entrained into the

flow, the inertial and aerodynamic properties of the sediment particle, as well as the

fluid it is suspended in, become important in determining its subsequent motion.

Aeolian and fluvial sciences pertain to the study of a fluid’s ability to mobi-

lize, uplift, and suspend sediment. At their most basic level, these processes are

driven by a fluid (usually air or water) flowing over a sediment bed [37], causing the

mobilization of sediment particles. These particles are then carried downstream by

the fluid, and are deposited at a different location. Bagnold [37], as well as Greeley

and Iverson [38] studied how sediment in an aeolian environment is mobilized and

entrained. Their works in this field aimed to answer, among others, two questions:

By what processes does sediment move along a sediment bed? What criteria needs

7



Figure 1.5: Classical aeolian creep and saltation sediment transport mechanisms [16].

to be met to initiate sediment motion and uplift?

Creep, Saltation, and Bombardment

Creep is the process by which particles roll along a sediment bed when the fluid

velocity threshold for sediment mobilization has been exceeded (see Fig. 1.5). These

rolling particles do not become airborne, but can disturb other particles as they

move over the sediment bed, causing more particles to be set in motion and so

creep. Creeping particles may also begin to hop and jump as they strike immobile

and protruding sediment particles, a process called saltation. As the flow speed

increases along a sediment bed, the speed at which the sediment creeps along the

ground increases, and the heights to which the particles bounce increase until the

particles become fully suspended.

Particles that are uplifted by the flow but do not remain suspended fall back

under gravity towards the ground. These particles are said to saltate. As saltating

particles collide with the sediment bed, they may dislodge other particles. This

results in a cascading effect, where saltating particles cause the ejection of more and

more particles, which also saltate and continue the process. A large collection of
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saltating particles is called a saltation layer, an example of which is the thin layer

of wind-blown sand that moves just above a sand dune in high winds.

Bombardment is the process by which saltating particles collide back into a

sediment bed at the end of their trajectory. This collision can loosen relatively large

quantities of particles, which are then much more susceptible to mobilization and

may begin to creep or saltate. Particles bombarding the surface with significant

energies can also cause the ejection of particles to heights well into the saltation

layer, directly increasing the quantity and concentration of saltating particles [38].

Threshold Criteria

Determining the conditions required to mobilize sediment is an important aspect

of sediment transport, and many studies have done this by determining the mag-

nitude of the threshold friction velocity, U∗
t =

√
τω/ρ. This equation describes the

minimum shear stress, τω (given as an equivalent velocity), that is required to just

overcome the gravitational and cohesive forces that resist particle motion in ideal

conditions [39]. When the friction velocity on the sediment bed, U∗, (caused by the

boundary layer of the passing fluid) is greater than the threshold friction velocity,

sediment particles on the bed will begin to become mobilized.

Particles that are exposed to this shear stress but wedged against other parti-

cles may still not begin to move (see the discussion of incipient sediment mobilization

in Appendix A). Near the threshold friction velocity, mobilized particles will gener-

ally only undergo creep. Greater increases in velocity along the ground are required

to uplift the particles and so generate a saltation layer [38].
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Shields Parameter

Shields parameter (τ∗ or θ as given by Eq. 1.1) is another method used in the

aeolian sciences to establish when sediment might begin to move.

τ∗ = θ =
τ

(ρs − ρ)gDp

(1.1)

This parameter describes the relationship between the fluid forces and gravita-

tional forces on a sediment particle, and can be viewed as another form of the

non-dimensional shear stress on the sediment bed. Finding the values of Shields pa-

rameter is difficult [40] and there is subjective error in identifying at what velocity

initial mobilization occurs [41, 42]. The present work, therefore, uses the threshold

friction velocity rather than the Shields parameter to determine particle threshold

velocities.

1.3 Prior Work

A variety of research has been performed to study how the physics of brownout

relate to rotorcraft. Computational approaches, such as the computational fluid dy-

namics (CFD) work performed by Kalra [31] and Thomas [43], attempt to model

the brownout problem numerically. Several other CFD studies searched for ways to

reduce the problem [44–46]. CFD can be useful as it allows for the investigation of

many different aspects of brownout physics that can be hard to model in the labora-

tory, but experiments also necessary. Physical testing in addition to CFD expands

knowledge of the brownout phenomenon by examining how actual brownout clouds

behave, and the data acquired helps to validate numerical models and simulations.
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1.3.1 Full-Scale Research

There is little data on the brownout cloud produced by a full-scale rotorcraft.

One full-scale study, performed by Wong and Tanner [36], used photogrammetry

as a means for quantifying the size and shape of a brownout cloud. This work

provided observations of how a brownout cloud forms and evolves, but measurements

of internal velocities, shear stresses, or other fluid properties in the brownout cloud

were not attempted. Another study performed by the U.S. Air Force [5,6] measured

the quantity of sediment uplifted by several different helicopters in an attempt to

quantify brownout intensity. This information was used to identify general trends

of sediment uplift across different helicopter platforms.

Using this and other data on helicopter brownout, Milluzzo and Leishman [47]

attempted to understand why some rotorcraft experience more severe brownout con-

ditions than others. It was theorized that certain factors, such as average downwash

velocities, blade tip vortex strengths, and vortex frequency in the rotor wake, are

related to the severity of the brownout clouds produced.

In most cases, performing full-scale experimentation is a difficult and expensive

proposition. In addition to the manpower and material cost of operating a helicopter,

the inherent risks of operating a rotorcraft in brownout conditions must be taken

into account. Measuring flow velocities in a brownout cloud is also very difficult.

The DVE conditions caused by a brownout cloud makes it extremely difficult to

use optical flow measurement techniques. It is also nearly impossible to account for

naturally occurring events such as wind or rain, which can affect how a dust cloud
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develops and evolves.

1.3.2 Laboratory-Scale Research

The difficulty in obtaining accurate and comprehensive flow field measure-

ments of the brownout phenomenon at the full-scale drives the need for laboratory

experiments. For example, a camera with extremely high resolution would be needed

to resolve individual sediment particles in a full-scale brownout cloud. By reducing

the problem to a laboratory-scale, the composition and motion of the dust cloud

can be measured.

To date, laboratory-scale research has focused on identifying the fundamen-

tal aerodynamic and sediment transport processes that contribute to the brownout

phenomenon [16, 29, 30]. Nathan and Green [33] studied the flows produced by a

small-scale rotor in ground effect at low advance ratios. They used particle image

velocimetry (PIV) to measure velocity profiles of the rotor wake in ground effect.

Research performed by Sydney et al. [16] identified the underlying physics that

govern how brownout clouds may develop. In addition to creep, saltation and bom-

bardment, Sydney identified several additional mechanisms of sediment transport

in rotor flows. Vortex-induced trapping, secondary suspension of particles, and un-

steady pressure effects were identified as further mechanisms by which brownout

clouds may develop.
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1.4 Scaling Issues of Brownout

With most studies of the brownout phenomenon being performed in the laboratory-

scale, there is a need to understand how these results correlate to the brownout dust

clouds produced by full-scale helicopters. To relate a laboratory-scale brownout en-

vironment to full-scale, the physics of both the aerodynamics and sediment transport

must be scaled simultaneously. Prior work has not fully accounted for the effects of

scaling. However, without understanding how changing scale affects the sediment

entrainment characteristics produced by a rotor, the results from these experiments

are difficult to apply to the full-scale brownout problem.

To relate results from laboratory-scale testing to full-scale environments, each

flow is characterized by similarity parameters. According to Greeley and Iver-

son [38], there are at least fifteen similarity parameters that must be matched to

achieve dynamic similarity in aeolian flows (Table 1.1). The complexities of match-

ing just a few of the scaling parameters between full-scale and laboratory-scale rotor

flows means that no previous research has achieved true dynamic similarity of the

two-phase flow.

The sensitivity of sediment transport under a rotor to five of Greeley and Iver-

son’s [38] fifteen scaling parameters (parameters 2, 3, 5, 12, and 14 in Table 1.1),

was studied by Baharani [29]. Table 1.2 lists the calculated laboratory-scale val-

ues from that study. The selected parameters included, in order of importance to

sediment uplift, the particle-to-fluid density ratio, ρs/ρ; the threshold friction speed

ratio, Uchar/U
∗
t ; the particle diameter-to-rotor radius ratio, Dp/R; the densimetric
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Table 1.1: Classical nondimensional scaling parameters used in aeolian trans-

port [38].

Parameter Expression Description

(1) d/R Deposition depth ratio

(2) Dp/R Particle diameter-to-rotor radius ratio

(3) U2
char/gR Froude number

(4)∗ e Coefficient of restitution

(5) Uchar/UF

Ratio of characteristic velocity to particle

terminal speed

(6, 7, Li/R, (z/R)/R,
Topographical geometric similarity

and 8) η/R

(9) z0/R Roughness similarity

(10) L∗/R Boundary layer stability similarity

(11) UcharR/ν Reynolds number

(12 and 13) Uchar/Ut, Uchar/U
∗
t Friction speed ratios

(14) ρs/ρ Density ratio

(15) Uchart/R Time scale

* – Coefficient of restitution is not a similarity parameter, but a nondimensional

parameter governing particle elasticity and energy transfer between colliding

particles.
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Froude number, Uchar/
√

((ρs/ρ)− 1)gDp; and the ratio of characteristic flow speed

to particle terminal speed, Uchar/UF . A discussion of each of these parameters is

given in Appendix A.

Table 1.2 shows that for full-scale vehicle operation, tip chord Reynolds num-

bers are of the order 107, but at the laboratory-scale, Reynolds numbers are typically

of the order 104. The terminal velocity ratio is also several orders of magnitude differ-

ent, largely because of differences in the characteristic velocity, Uchar. The downwash

velocities produced by a full-scale rotorcraft are much higher than those produced

by a laboratory-scale rotor. The higher characteristic velocities found at full-scale

(a direct result of the higher downwash velocities) result in terminal velocity ratios

that are two orders of magnitude higher than at laboratory-scale.

Greely and Iverson’s similarity parameters are widely accepted in the aeolian

sciences, but these classical similarity parameters were developed using steady flow

assumptions that may not hold for a rotor flow. Rotor flows are highly unsteady

and include significant turbulence, vorticity, and a host of other characteristics that

can affect sediment mobilization. It is, therefore, unclear how well the classical

parameters describe the scaling of the problem of brownout.

One of the biggest differences between a large-scale fluvial/aeolian flow and a

rotor flow is the periodic passage of a tip vortex over the sediment bed. The passage

of a tip vortex element produces vertical velocity components that can mobilize and

uplift sediment particles, and so cause them to be transported much further and in

different directions than would occur in uniform flow. In addition, vortex passage

causes large transients in the horizontal velocity over the ground plane, which affects
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Table 1.2: Selected scaling parameters.

Scaling Parameters Full-Scale Lab-Scale in air, Lab-Scale in water

Ref. [29] (estimated)

Reynolds number UcharR
ν 1× 107 3× 104 3× 104

Time scale Uchart
R 1× 10−3 5 0.2

Particle-to-fluid ρs
ρ 2.25× 103 2.19× 103 2.5

density ratio

Densimetric Froude Uchar√
( ρ
ρs

−1)gDp
49 4 3

number

Particle size-to-rotor
Dp
R 6.22× 10−7 6.42× 10−4 6.42× 10−4

radius ratio

Terminal velocity Uchar
UF

5.31× 103 20 9

ratio

Threshold friction Uchar
U∗
t

28 40.7 24

speed ratio

the instantaneous values of many of the similarity parameters, e.g., the threshold

friction velocity [49]. While the average velocity along the sediment bed may be

below the threshold velocity, the velocity fluctuations in an unsteady flow may

exceed the threshold value, mobilizing the particles [50]. A proper characterization

of the unsteady flow velocites near the sediment bed is, therefore, important in

understanding the brownout environment.

Several of the similarity parameters given in Tables 1.1 and 1.2 are functions

of Uchar, the characteristic velocity of the flow. In the field of aeolian sciences,

characteristic velocity is calculated from the averaged wind speed of the flow. In
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classical sediment transport problems, the flow is steady, and an average wind speed

is representative of flow conditions. This is not the case in rotor flows. Inspired

by the methods of the aeolian sciences, previous two-phase rotor flow testing has

calculated the characteristic velocity using the time-averaged downwash velocity of

the rotor [16, 29]. Baharani [29], for example, calculated the characteristic velocity

from the average velocity of the flow field in the region where sediment was noted

to become mobilized. However, this averaged velocity is not fully representative of

the unsteady and three-dimensional nature of a flow under a rotor at any instant in

time. The choice of a characteristic velocity is important as it affects the values of

many of the similarity parameters.

1.5 Objectives of the Present Research

The main objectives of this research are:

1. To determine which of the classical scaling parameters best characterize the

aerodynamics and sediment transport below a rotor, to improve the under-

standing of how full-scale brownout problem might be better reproduced in

the laboratory.

2. To compare results over a range of scaling parameters (especially Reynolds

number and density ratio) different to that of previous experiments.

3. To identify new scaling parameters that could be used to better predict the

onset and severity of brownout.
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In the current research, a rotor operating in ground effect over a flat plate was

tested in water. Because water has a viscosity and density much higher than air, a

different range of scaling parameters was possible. These scaling parameters, when

also combined with results from previous work [29], provide for a wider range of

similarity parameter values. Dye flow visualization, particle image velocimetry, and

dual-phase flow visualization were used to explore the effects of the similarity param-

eters on the mobilization and uplift of sediment particles. Furthermore, this work

explored different methods of calculating the selected scaling parameters to account

for flow unsteadiness. A dimensional analysis accounting for the characteristics of

both the sediment particles and the most dominant structures in a rotor flow, i.e.,

blade tip vortex filaments, helped identify new parameters for future study.
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Chapter 2

Description of the Experiments

2.1 Overview

The present research involves experiments performed in single-phase and dual-

phase flow environments below a hovering rotor operating in ground effect. The goal

of these experiments was to determine the effects of changing some relevant scaling

parameters by performing experiments in water rather than air. The increased

density and viscosity of water allows for the ranges of the scaling parameters to

be increased or decreased relative to what would be obtained in air. This chapter

describes the experiment, the setup, instrumentation, and the techniques used to

collect and analyze the data. The difficulties encountered with the experiments and

challenges with measurements are also discussed.

2.1.1 Water Tank

All experiments were conducted in a 1.2× 1.2× 1.2 m water tank, shown in

Fig. 2.1, located at the Low Reynolds Number Aerodynamics Laboratory (LRAL)

at the University of Maryland, College Park. The water tank was constructed

with 3.81 cm (1.5 in) thick acrylic walls. The tank was placed into a steel support

framework and supported 1 m the ground to allow optical access on all sides. Testing

equipment (such as cameras and the laser system) was positioned orthogonally to
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Figure 2.1: Water tank setup with motor and drive-train.

the walls of the tank to prevent image distortion caused by the differing indices of

refraction in air, acrylic, and water.

2.1.2 Rotor System

Two different rotors were used in these experiments. For initial dye flow visual-

ization and proof of concept work, a two-bladed rotor with a radius of 85 mm (3.34 in)

was used to create the rotor wake. The design of the rotor was based on previous

research [29]. The rotor had untwisted rectangular blades (constant chord) using

cambered flat plate airfoils with rounded leading edges. These airfoils were selected

because a cambered flat plate has increased aerodynamic efficiency relative to tra-

ditional airfoils at low Reynolds numbers [28]. Figure 2.2(a) shows a sketch of the

rotor. (A technical drawing of the rotor is given in Appendix B.) The rotor had
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(a) Sketch of the two-bladed rotor. (b) Single-bladed rotor.

Figure 2.2: Rotors used for experimentation.

fixed pitch and was set at 12◦ collective relative to the chord line. It was fabricated

using three-dimensional rapid prototyping using Nylon-12 doped with carbon fiber

composite. The forces generated by operating in water were so high that the rotor

deformed unacceptably at higher rotational speeds, limiting the use of this rotor to

low-speed flow visualization.

The dual-phase flow visualization and particle image velocimetry experiments

utilized a one-bladed rotor (Fig. 2.2(b)) to generate the rotor wake. This one-bladed

rotor was milled from a solid billet of aluminum. The overall blade design of this

rotor was the same as for the two-bladed rotor, however one blade was replaced by a

tungsten carbide counterweight. Solid aluminum construction allowed much higher

rotational rates to be achieved, without any of the flexing or coning seen with the

Nylon rotor. The one-bladed rotor incorporated two set screws used to position the

rotor at the desired height above the ground plane. All of the present experiments

were performed with the rotor a height of one rotor radius (85 mm) above the ground

21



Stepper Motor

Drive Shaft

Toothed Pulleys

Motor Controller

Optical Encoder

Figure 2.3: Photograph of drive assembly.

plane or sediment bed.

The rotor was fitted to a 12.7 mm (0.5 in) drive shaft that was 1.5 m long.

One end of the drive shaft was passed through a hole in the ground plane and was

located in a bearing secured to the bottom of the tank. This bearing provided

support for the drive shaft. The other end of the drive shaft passed through a set of

tapered bearings above the waterline and entered the drive assembly. In the drive

assembly (Fig. 2.3), the rotor shaft was driven by a stepper motor through a set of

toothed pulleys with a gear ratio of 1:2. An optical encoder provided tracking of

the rotational position of the rotor blades.

The stepper motor was programmed to gradually increase the speed of the

rotor to the required operational condition, and then slow it down after data collec-

tion was completed. An optical encoder was used to synchronize the rotor position
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Figure 2.4: Diagram of blade azimuth angle, ψ; top down view of rotor.

with the camera and laser equipment. The blade azimuth angle, ψ, is defined to be

ψ= 0◦ when the mid-chord of the rotor blade passes through the plane of the laser

light sheet (see Section 2.6.1). The angle of the axis of the rotor blade relative to

the plane of the laser sheet viewed from above defines the blade azimuthal angle, as

shown in Fig. 2.4.

2.1.3 Ground Plane

A fiberglass ground plane, shown in Fig. 2.1, was placed above the bottom

of the tank to clear the bearing affixed to the tank bottom. It extended to the

edges of the tank, with a hole in the center to accommodate the drive shaft that

supported the rotor. The ground plane also provided protection to the acrylic of

the tank when sediment particles were used; without a separate ground plane, the

sediment particles would abrade the acrylic. For experiments utilizing lasers, the

ground plane was painted a matte-black to reduce laser reflections.

For all measurements, the origin of the coordinate system was positioned at

the intersection of the axis of rotation and the ground plane, as shown in Fig. 2.5.

Moving away from the ground plane towards the top of the tank was defined as
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Figure 2.5: Experimental setup.

positive z/R, the nondimensional vertical height. Moving out away from the axis of

rotation was defined as positive y/R, the nondimensional radial location. In order

to capture images for this work, a camera was arranged as shown in Fig. 2.5, with

the optical axis of the camera orthogonal to the axis of the laser sheet

2.2 Seeding and Sediment Particles

Soda-glass microspheres of diameter 45–63µm (average diameter of 54µm)

were placed on the ground plane to form a bed of sediment about one centimeter

thick. The soda-glass particles were chosen because they were of the same type used

in previous experiments in air [16, 29]. Because the glass spheres were denser than

the water (specific gravity = 2.478), they remained stationary on the ground plane

until mobilized by the rotor flow. By using the same glass particles as in previous

research in air, the effect of changing just the operating fluid was evaluated.

Denser stainless steel particles were also used for this experiment to determine

how changing the properties of the sediment particles affected their mobilization
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and transport. The steel particles were between 44–125µm in diameter, with an

average size of 90µm. They had a specific gravity of 7.495, approximately three

times higher than the soda-glass microspheres.

The particle image velocimetry (PIV) and dual-phase flow visualization re-

quired the use of tracer particles suspended within the water to track the fluid

motion. A Nylon powder (Vestosint 2070) was selected because of its near-neutral

buoyancy in water, as well as its small and consistent size (∼2µm in diameter).

This powder, once mixed into the water, remained in suspension for several days.

2.3 Regions of Interest

Two primary regions of interest (ROI) were studied in these experiments.

They are shown in Fig. 2.6, laid over a schematic of the rotor setup and ground

plane, along with some key flow features found during experimentation. ROI 1

consisted of a region from y/R= 0.75 to y/R= 2.6. This large field of view allowed

for quantitative measurements to be taken across a large portion of the flow field,

and provided an overall understanding of the features present in the flow. This

view also provides insight into which areas in the flow require further study, i.e.,

areas that might contain interesting flow features, or where sediment would likely

be mobilized and entrained.

ROI 2, consisting of the region from y/R= 1.50 – 2.5, covers a smaller area

that contains the highest velocities across the ground plane. Therefore, this region

was most likely to contain mobilized sediment. Phase-resolved PIV was performed
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Figure 2.6: Schematic of regions of interest.

in this region of interest, as was dual-phase flow visualization.

2.4 Operating Conditions

The experiments in this research were performed in water. The main purpose

of using water as the working fluid was to allow for larger changes in the values of the

similarity parameters as compared to previous tests done in air. The tip Reynolds

number, Retip, is defined as

Retip =
Vtipc

ν
(2.1)

where Vtip is the tip speed of the rotor, c is the blade chord, and ν is the kinematic

viscosity of the fluid, in this case water. Water, with its lower kinematic viscosity

(1.004× 10-6 m2s-1) compared to air (1.568× 10-5 m2s-1), requires lower tip speeds to

achieve the same tip Reynolds numbers as for tests done in air.

To quantify the relative importance of the different scaling parameters, several
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rotor operating conditions were used. Because the rotor used for this work was set

to a fixed pitch of 12◦, increasing rotor rpm increased the thrust produced by the

rotor. This increase in thrust also increased the rotor disk loading, induced velocity,

and slipstream velocity of the rotor wash. Five operating conditions, each at a

different blade rotational frequency, were used. For this work, measurements of

sediment uplift are compared at different rotor operating conditions, represented by

tip Reynolds number, Retip, and rotor speed, rpm. It is important to note that

while tip Reynolds number is used to characterize the rotor operating condition, the

effects seen are not necessarily caused by increased Reynolds number, per se, but

by the increase in thrust (i.e., causing an increase in downwash velocity). Thrust

was not measured in this research because of the difficulty in incorporating a force

balance into the experimental setup.

Table 2.1 gives the different rotor operating conditions used for the present

research. To prevent recirculation in the tank from becoming a significant contribu-

tor to the measured flow, the running time of the rotor was limited to two minutes

or less. After running the rotor, the water was allowed to settle for a period of not

less than 30 minutes (a time chosen based on observation of tank settling). During

the dual-phase testing (as explained in following sections), this settling time was

also used to re-level the sediment bed to ensure a smooth surface.
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Table 2.1: Rotor operating conditions.

Rotor Speed (rpm)
Blade Passing

Tip Speed (ms−1)
Tip Reynolds

Frequency (Hz) Number (Retip)

80 1.333 0.712 1.06× 104

100 1.667 0.890 1.33× 104

120 2.000 1.068 1.60× 104

152 2.533 1.353 2.02× 104

450 7.500 4.006 5.98× 104

2.5 Flow Visualization

The flows induced by the single-blade and dual-blade rotors were first quali-

tatively studied using flow visualization and high-speed photography. As shown in

the region of interest schematic (Fig. 2.6), the flow consists of a mean outflow and

vortices trailed from the blade tips. Several methods of flow visualization were used

in this research. Flow visualization utilizing concentrated dye helped to show the

regions that were needed further study, as well as revealing some of the overall com-

plexities in the flow beneath a rotor operating near the ground. Single-phase flow

visualization in a seeded flow provided experience in seeding methods, and allowed

for photographic techniques to be developed. Dual-phase flow visualization helped

show the degree of sediment uplift, as well as the effect of scaling parameters and

the effect of rotor operating conditions on sediment mobilization.
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2.5.1 Dye Flow Visualization

While visualizing the movement of the sediment under the action of the rotor

was an important part of studying the particle uplift mechanisms found beneath

the rotor, studying the movement of the water itself was also required. For dye

flow visualization, concentrated dye was used to identify the flow structures. A

long needle was fed through the ground plane and the dye was injected immediately

under the tip-path-plane (TPP) of the rotor (see Fig. 2.6) to identify the vortices

present in the rotor wake. The downwash of the rotor carried the dye with the rotor

flow, making elements of the tip vortex filaments visible as they convected along the

slipstream boundary. A 16 MP DSLR camera was used to capture images of the dye

as it convected away from the rotor.

The dye flow visualization is the only part of this study that utilized the

two-bladed rotor. Because of the limitations on the strength of the Nylon material

used for the blades, this rotor could only be operated at relatively low rotational

frequencies (up to 100 rpm).

2.5.2 Single-Phase Flow Visualization

Although mostly used as a stepping stone to doing PIV, single-phase flow

visualization in a seeded flow provided good insight into the overall rotor flow. This

technique also used the 16 MP camera, but instead of using dye as a tracer medium,

fine polyamide 12 Nylon seed particles (Vestosint 2070) were uniformly distributed

in the tank. The particles were illuminated using a laser light sheet in continuous
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wave mode. This unsynchronized system of camera and laser makes exact timing

impossible, but long exposure imagery was possible. By keeping the shutter of the

camera open for relatively long periods of time (∼3 – 4 seconds), the illuminated

particles traced out long streaks, showing the time-history of the flow. This time-

history allowed the evolution of the general characteristics of the wake generated by

the rotor to be better understood.

2.5.3 Dual-Phase Flow Visualization

Dual-phase flow visualization was undertaken by dispersing the Nylon particles

in the water, with the glass or steel microspheres being used for the sediment. Before

starting the rotor, a level bed of sediment particles approximately one centimeter

thick was formed on the ground plane. The rotor was started, and images were

taken as the rotor began to mobilize the sediment. After a run was completed, the

sediment layer was re-graded.

The dual-phase flow visualization taken for this research was used to study

both the process of sediment uplift and the amounts of sediment entrained. By mea-

suring the intensity of each pixel in a flow visualization image (see Fig. 2.7(a)) and

applying a thresholding filter, sediment particles could be identified (see Fig. 2.7(b)).

The total area of the image that was covered by sediment provided a quantitative

assessment of the quantity of suspended sediment. Some of the Nylon tracer parti-

cles were in each measurement, but the total contribution to the threshold area was

relatively small. This contribution (or error) was measured by thresholding an area
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(a) Raw dual-phase flow visualization im-

age.

(b) Threhsolded particle image.

Figure 2.7: Dual-phase flow visualization analysis.

of the image without suspended sediment, and was found to be 0.035%. The results

of this analysis were then reported as a fraction of the total image obstruction, which

is defined as the area in a region covered by sediment particles to the total area of

that region.

2.6 Particle Image Velocimetry (PIV)

Particle image velocimetry (PIV) is a non-invasive flow diagnostic method that

can measure the velocity field of a fluid in a given region [51,52]. The present study

used several methods of PIV to determine the flow characteristics. As discussed in

Section 2.3, two regions of interest (ROI) were used. The present section describes

time-averaged, phase-averaged, and instantaneous PIV techniques used to measure

the flow conditions beneath the rotor.

31



2.6.1 Methodology

PIV requires that the fluid be seeded so that the motion of the fluid can be

rendered visible. In this research, the flow was seeded with small Nylon tracer

particles, as previously discussed. The particles chosen were selected because of

their small size and neutral buoyancy in water, which meant that they could follow

the flow and still be large enough to scatter light when illuminated by the laser.

A Nd:YAG dual cavity laser with a maximum output of 100 mJ per pulse was

used to generate the laser sheets. The invisible 1064 nm light emitted from the laser

was frequency doubled to a length of 532 nm (visible in the green spectrum). The

beams emanating from the lasers were passed through a series of cylindrical lenses

that generated a light sheet, that was measured to have a thickness of less than

2 millimeters at its waist. Images were recorded using a 4 MP CMOS camera with

a viewing axis that was orthogonal to the laser sheet and focused on the selected

ROI (Fig. 2.5). The operation of the laser and camera were synchronized using a

timing hub and a 500/rev encoder to obtain precisely timed images.

Successful PIV requires the capture of two precisely timed images taken in

quick succession. The two captured images (frames A and B) are separated by

a known pulse separation time, ∆t. To calculate the velocity fields, each image

frame is first sub-divided into many smaller interrogation windows of a given size.

The window size utilized in processing the present images was 24× 24 pixels. The

interrogation window from the same location in both frames A and B were then

compared. To calculate the velocities of the tracer particles in the window, a cross-
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correlation algorithm was used to measure how the unique pattern of particles in

frame A changed relative to frame B. This correlation sequence is repeated for each

set of interrogation windows for each set of images. Once the displacement of each

particle within the flow is measured, the distance traveled is divided by the pulse

separation time, and the velocity field is determined.

The calculation process was conducted using a FFT correlator, and a Rohaly-

Hart analysis was used to refine cross-correlation and improve results [53]. The

cross-correlation methods used in this research used a deformation grid algorithm, as

discussed in depth by Scarano [54]. The velocity vectors were further validated using

a universal median test, and only images that contained fewer than 5% spurious

vectors were used in subsequent analysis. The good accuracy of the measurements

resulted in spatial resolution of 81 vectors per square centimeter, or 14 vectors per

blade chord length.

2.6.2 Time-Averaged PIV

In time-averaged PIV, 500 image pairs were taken at several different blade

azimuthal angles (ψ). Image acquisition was not synchronized to the blade position.

Images were collected by allowing the PIV system to capture image pairs at its

maximum repetition rate of 14.5 Hz, with a pulse separation time (∆t) of 575µs.

This repetition rate is several times faster than the rotational rate of the rotor (for

rotational rates, see Table 2.1). For the time-averaged flow analysis, only ROI 1

was imaged. A lens with a focal length of 85 mm was trained on the region of
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interest, and a 20× 20 cm field of view was captured. By performing an ensemble

average over the entire set, an average velocity field was determined. The time-

averaged velocity field allowed for the calculation of certain parameters needed for

the similarity parameters, most notably the characteristic velocity, Uchar (see Section

1.4).

2.6.3 Phase-Averaged PIV

In this experiment, the laser and camera were synchronized to the rotational

rate of the rotor, and images were only captured when the blades were at a pre-

defined azimuthal position, ψ. This method required the use of an optical shaft

encoder, which identified the blade position and sent the value to a control and

synchronization program. The same Nd:YAG laser used for the time-averaged PIV

experiments was also used with the 4 MP CMOS camera. When the optical encoder

determined that the blade was at the desired blade azimuthal angle, the first laser

pulse was triggered, and the two images were recorded.

The phase-averaging method of data collection gave a large set of images with

the blade at the same azimuthal angle ψ. A phase-averaged set of data was created

by ensemble averaging 150 velocity fields. By capturing PIV images at the same

blade azimuthal angle, the location of the tip vortices was similar in each image.

Averaging PIV images taken in this manner allows the periodic flow structures to

be highlighted. To demonstrate how the flow evolved as the rotor position changed,

three blade azimuth angles were studied, ψ= 10◦, 60◦, and 320◦.
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2.6.4 Instantaneous PIV

Single image-pairs were taken from the phase-resolved data set and the in-

stantaneous velocity fields computed to examine some of the aperiodic flow features

that form in the rotor wake.

2.6.5 PIV Challenges

PIV measurements of a rotor flow pose several technical challenges. Laser

reflections off of the ground plane were one of the greatest challenges to overcome.

Light that reflected or refracted from the rotor, ground plane, or tank walls could

scatter throughout the tank, causing overexposed regions in the image. Overex-

posure in an image can mask individual seed particles, preventing successful cross-

correlations.

The reflection most difficult to mitigate was off of the ground plane, but this

is the very region where sediment mobilization and transport occurs. Judicious

alignment of the laser sheet was, therefore, necessary to reduce reflections as much

as possible. Figure 2.8(a) shows the second region of interest (ROI 2) just above

the ground plane when laser reflections are strong. Figure 2.8(b) shows the result of

good laser alignment; surface reflections in this case are significantly reduced, and

will allow better measurements.

Seeding of the water can also be a challenge when performing PIV. If too few

seed particles were added to the tank, poor cross-correlations would be obtained.

However, over-seeding can also be a problem. Too many particles creates a situation
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(a) Laser light sheet reflection at the ground

due to poor laser alignment.

(b) Reduction of reflections after laser

alignment.

Figure 2.8: Reduction of laser light reflections near the ground through careful

alignment of the laser light sheet.

where individual seed particles can no longer be discerned from others. Furthermore,

if too many particles are added to the water, they are impossible to remove. Instead,

some or all of the tank must be drained and refilled with clear water to dilute

the concentration of seed particles. Also problematic is the natural occurrence of

minerals, dissolved gases, and other contaminants in the water used in the tank.

These contaminants can make the water semi-opaque, an effect that can sometimes

be mitigated by allowing the water tank to settle for several hours.

Determining the proper settings for the camera, laser, and rotor can be an-

other challenge. A careful selection of the laser pulse separation time, for instance,

is important; this is because too short a separation time results in sub-pixel dis-

placements of the seed particles, which makes it difficult for the cross-correlation
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algorithms to detect particle movement. Too large a ∆t, however, results in seed

particles traveling too far, or even out of the laser sheet entirely, which can cause

errors in the measurements of the flow velocities.

2.6.6 Uncertainties in PIV

There are many potential sources of uncertainty in the flow measurements

using PIV. Sources can include particle tracking errors, background image noise,

interrogation window size, as well as several other factors [51, 59]. Tracking errors

are the result of seed particles that are not able to perfectly respond to changes

in flow speed or direction. Usually, the larger the inertia of the seed particle, the

less able it will be to follow the flow. Images taken by digital cameras will have

some amount of sensor noise. The noise detected by the camera’s CCD array can

cause false peaks in the algorithms that detect and correlate particle motion. This

is especially true where the signal-to-noise ratio is low (sometimes caused by images

taken with too much ambient light or otherwise overexposed). Another source of

error in the PIV measurements is the uncertainty in the magnification factor, M ,

caused by lens aberrations or uneven magnification. This effect can be mitigated

by calibration plates, which allow the software to account for aberrations. Errors

in the calibration of the pixel size to physical dimensions can cause some errors in

calculated velocities. Finally, there is some uncertainty (usually very small) in the

pulse separation time.

For this work, the uncertainty from measured velocity fields, values of pulse
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separation time ∆t, and magnification factor, resulted in a total propagated un-

certainty of the flow velocity measurement of about 5%. This uncertainty was

calculated using

∆U =

√(
∆ε∆x

∂U

∂∆x

)2

+

(
ε∆t

∂U

∂∆t

)2

+

(
εM

∂U

∂M

)2

where ε∆x, ε∆t, and εM are the uncertainties in the pixel displacement, pulse sepa-

ration time, and magnification factor, respectively [60].

2.7 Identification of the Locations of the Vortices

Determining the location of the trailed vortices was vital for measuring the

vortex characteristics. While qualitative observation of the PIV velocity fields is

sufficient to determine approximate locations of the vortices, a quantitative method-

ology was required to accurately measure the vortex core position. Given the PIV-

measured velocity fields, several methods of vortex identification were used to locate

the vortex cores.

2.7.1 Vorticity

One way of calculating the locations of the vortices in a flow is through the

calculation of the vorticity within the flow field. Vorticity is a measure of the

circulation in the fluid. Vorticity is defined mathematically as the curl of a velocity

field, i.e., ~ω = ~∇×~υ. After calculating the vorticity in the velocity field, vortices are

defined as areas of concentrated vorticity, the center of the vortex is at the location

of highest vorticity.

38



2.7.2 Q-Criterion

While the use of vorticity is one way of determining the location of a vortex,

some inaccuracies in measuring vortex location may arise because the calculated

vorticity field can also be affected by the velocity gradients or shear layers in the flow.

Several methods for vortex identification exist that account for regions with shear

layers or altered velocity gradients. One such method is the Q-criterion algorithm.

Developed by Hunt et al. [61], the Q-criterion defines a vortex as a region where the

norm of the vorticity tensor dominates the rate of strain. The Q-value is calculated

by finding the discriminant of the velocity gradient tensor, as given by

Q =
1

4
S2 − q (2.2)

where S is the trace of the velocity gradient tensor

S =
∂u

∂x
+
∂v

∂x
(2.3)

and q is the determinate of the velocity gradient tensor, given by

q =
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
(2.4)

The velocity gradients were calculated using the Richardson extrapolation where(
∂f

∂xi

)
≈ fi−2 − 8fi−1 + 8fi+1 + fi+2

12∆X
(2.5)

The Richardson extrapolation method provides an accuracy ∼O(∆X3), and an

uncertainty ≈ 0.95ε/∆X. Vortex centers are located at the maximum positive peak

of Q for each vortex.
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2.7.3 Γ-Method

Another method for vortex identification is the Γ-method [62]. This method

utilizes a proper orthogonal decomposition (POD) to separate the turbulent fluctu-

ations from unsteady swirling motion. This decomposition is then used in either of

two vortex identification functions. These functions can be used to either identify

the location of a vortex center or to compute the size of the vortex core. In the

present research, the second function was used to visualize the vortices present in

the flow. By this method, a vortex is defined as a region where Γ ≥ 0.6, where Γ is

defined as

Γ(x, y) =
1

N

∑
S

[
PM× (UM − ŨP )

]
· z

‖PM‖ ·
∥∥∥UM − ŨP

∥∥∥ (2.6)

In Eq. 2.6, N is the number of points inside S, the two-dimensional area surrounding

P , a fixed point in the measurement domain. M is a point that lies in S, and PM

represents the radius vector linking M to P . UM is the velocity vector found at the

measurement location and ŨP is the local convection velocity around P . ŨP can

be calculated from

ŨP =
1

S

∫
S

U dS (2.7)

Finally, z is the unit vector normal to the measurement plane. Further information

about the POD vortex core identification method can be found in [62].

2.8 Summary

This chapter has described the experimental setup and methods used in the

course of the current work. The water tank, rotor setup, ground plane, seeding,
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and sediment particles were described. The flow visualization techniques, as well

as particle image velocimetery principles were discussed, and the equipment used

in each case has been described. The methods of collecting time-averaged, phase-

averaged, and instantaneous velocity field measurements were explained, and some

vortex identification methods were also discussed.
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Chapter 3

Results

3.1 Overview

The present chapter presents the findings from the flow visualization and par-

ticle image velocimetry in the single-phase and dual-phase flow environments. Flow

visualization was used to examine the rotor wake flow near the ground, and to

qualitatively study the effects of changing the scaling parameters on the resulting

two-phase flow environment. Flow visualization was vital for determining regions of

interest for further study using particle image velocimetry (PIV) techniques. Time-

averaged and phase-averaged PIV measurements were then made, and the data was

used to calculate different values of the fluid scaling parameters that were used.

3.2 Single-Phase Flow Visualization

3.2.1 Dye Flow Visualization

Dye flow visualization was used to examine the flow structures beneath a

two-bladed rotor operating in ground effect. Flow visualization was performed by

introducing concentrated dye near the tip-path-plane (TPP) of the rotor such that

the dye became entrained into the blade tip vortices. These dye flow experiments

were performed at significantly lower rotational rates (80 rpm) than the later tests
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page

Dye injection 

Vortices

Wall flow

Figure 3.1: Dye flow visualization (side view).

because the two-bladed rotor was structurally less stiff than the single-bladed rotor.

In addition to locating areas of interest for later study, the initial flow visual-

izations with the two-bladed rotor provided examples of the flow structures expected

from the rotor in ground effect operation. Figure 3.1 shows a representative flow

visualization image from a side view. In this case, the rotor plane was at a height of

one rotor radius above the ground plane, and the dye was injected from a thin (24

gauge) needle protruding from the ground plane to a point very close to the TTP

of the rotor.

The most dominant features in the flow are clearly the blade tip vortices. As

each rotor blade moves through the water, it trails a helical tip vortex. Figure 3.2

shows a perspective view of the rotor flow. Each element of the vortex can be iden-

tified by the roughly spiral or helicoidal pattern it produces. Initially, the wake

contracts below the rotor, but as it nears the ground plane, the wake and the vor-

tices quickly expand and convect outwards. As the vortex filaments convect along

the ground, they are also stretched, which intensifies their vorticity and increases
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Vortices

Wall flow

Vortex filaments

Figure 3.2: Dye flow visualization (isometric view).

the local swirl velocities. Stretching allows the vortex filaments to persist longer

than they would out of ground effect (for more information on this effect, see Sec-

tion 1.2.1). Eventually, the vortices diffuse and merge with other features of the

downwash field formed by the rotor to form a wall jet over the ground plane.

Of particular interest in this study was the unsteady nature of the vortex

filaments as they approached the ground plane. In Fig. 3.2, aperiodic disturbances

in the vortex filaments are visible. When two adjacent turns of the helicoidal tip

vortex move closer to each other, they may pair and merge, combining their strength

and causing significant velocity fluctuations in the local flow. It was found using the

flow visualization (and later by means of particle image velocimetry) that higher

rotational rates of the rotor can increase the tendency for pairing to occur. This

effect has also been noted in prior work by Sydney and Leishman [16]. Increased

vortex pairing at higher rotational rates occurs because adjacent turns of the helical
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vortex filaments become spatially closer together, which leads to increased flow

interactions. The frequency of vortex pairing is directly related to the blade passing

frequency; a rotor with more blades is more likely to produce a wake with a greater

susceptibility to vortex pairing. In later testing of a one-bladed rotor, pairing and

merging events were found to occur less often.

3.2.2 Seeded Flow Visualization

Flow visualization on a single-bladed rotor was conducted by seeding the water

in the tank with Nylon particles (Vestosint 2070) and illuminating a plane in the flow

using a laser sheet generated by a 1 W continuous wave laser. This method of flow

visualization allowed for a more complete view of the flow field because the tracer

particles were more evenly distributed throughout the fluid, rather than injected at

a single point as was used in the dye flow visualization.

Figure 3.3 shows an example of the flow visualization images captured during

testing. In this example, the rotor is rotating at 100 rpm (Retip = 1.33× 104). Sec-

tions of the tip vortex are visible in the image as particle streaklines. The vortices

form at the tip of the rotor blade (out of frame in this image) and follow along the

slipstream boundary of the rotor wake. As they convect downwards, the wake be-

low the rotor contracts slightly before encountering the ground plane and expanding

outward, as was seen previously in the dye flow visualization (see Fig. 3.1).

Photography using a long exposure was utilized to gain a better understanding

of the time-averaged flow. In a long exposure image of the flow, longer streaks in
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Figure 3.3: Seeded flow visualization (zoomed in and vortices circled for clarity).

the particle tracks usually represent larger flow velocities. Because the laser sheet

was relatively thin (approximately 2 mm), longer streaks also indicate a more two-

dimensional flow in which the particles stay in the plane of the laser sheet for longer.

Short particle tracks represent either very low flow velocities or a flow that had a

larger out-of-plane component.

Figure 3.4 shows a partitioning of the different flow regions around the rotor

in ground effect. Region 1 is the region of the flow that will pass through the TPP

of the rotor. In actual operational brownout conditions, this region of the flow is

important because any sediment or dust entrained here will be re-ingested by the
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rotor. The flow in Region 2 is mostly downwards, but also radially inwards towards

the rotor, and sediment suspended in this region would be carried towards the rotor.

In practice, any sediment suspended in this region would tend to remain close to

the rotorcraft, probably contributing to reducing the pilot’s visibility. Region 3

contains mostly downwash produced by the rotor. This downwash flow is turbulent

and three-dimensional, as is evident from the short particle streaks. From the flow

visualization (e.g., Fig. 3.3), the cores of the trailed vortices are known to flow out

along the ground plane on the boundary between Regions 4 and 5. As the vortices

pass over the ground plane, the negative (to the left) tangential velocities at the top

edge of the vortices combine with the translational velocities of the vortices (to the

right), and results in a turbulent mixing zone, marked as Region 4. Near the ground

plane (Region 5), the positive (to the right) tangential velocity at the bottom of the

vortex adds to the net translational velocity of the vortex flow, causing relatively

larger flow velocities to occur at the ground plane.

3.3 Time-Averaged PIV

PIV was used to measure the velocity field produced by the rotor above the

ground plane, as well as to obtain a first-order approximation of the values needed

for the scaling factors. Baharani [29] and others [16,30] used a time-averaged char-

acteristic velocity to evaluate several of the two-phase flow similarity parameters

thought to be relevant to rotorcraft brownout (e.g., the densimetric Froude number,

friction threshold velocity, and terminal velocity). To compare the results from the
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Figure 3.4: Long exposure photograph of the flow with the rotor at 100 rpm

(Retip = 1.33× 104).

present work with the previous work, time-averaged velocity field measurements of

the flow were acquired.

Figure 3.5 shows the normalized time-averaged total velocity (i.e., |Vtotal| =

√
u2 + v2/ΩR) field in ROI 1 for the rotor operating at 120 rpm (Retip = 1.60× 104).

The streamlines in this image have been created by drawing lines tangential to

the calculated velocity vectors. The rotor is located at a nondimensional height of

z/R= 1, with the tip of the rotor blades at y/R= 1. Higher flow velocities are shown

in red and lower velocities in blue. As shown previously in the long exposure flow

visualization, the flow curved towards the edge of the TPP before being convected

downwards.
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Figure 3.5: Time-averaged total velocities in ROI 1 with the rotor at 120 rpm

(Retip = 1.60× 104). (Total velocity: |Vtotal| =
√
u2 + v2/ΩR)

The two-phase flow visualization (presented later in Section 3.6) revealed that

the region of maximum sediment uplift was between y/R= 1.25 and y/R= 2.60, i.e,

in ROI 2. Figure 3.6 shows the normalized total velocity in ROI 2 for the single-

bladed rotor operating at 100 rpm (Retip = 1.33× 104). The time-averaged velocity

field near the ground is shown, and for clarity only every 10th vector along the

abscissa and every other vector along the ordinate is plotted. Figure 3.7 shows

radial velocity profiles for the flow under the rotor at the same operating conditions

(100 rpm, Retip = 1.33× 104) at non-dimensional radial distances of y/R= 1.7, 2.0,

2.3, and 2.57. The radial velocity slows near the ground, reaches a maximum velocity

at approximately 1/10th of a rotor radius above the ground, and is nearly zero at
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Figure 3.6: Time-averaged total velocities in ROI 2 with the rotor at 100 rpm

(Retip = 1.33× 104). (Total velocity: |Vtotal| =
√
u2 + v2/ΩR.)

rotor heights greater than 1/2 of a rotor radius. The shape of the time-averaged

velocity profiles was found to be similar for all of the radial distances shown here,

although the maximum velocity measured in the wall jet decreased as y/R increased.

3.4 Phase-Averaged PIV

When compared to the dye flow visualization, it became evident that the

velocity field measurements obtained by the time-averaging method were a poor

representation of the actual flow conditions in the rotor wake (see Fig. 3.1). As a

rotor blade passes through the imaging plane, it leaves behind an element of a tip

vortex, which is visible in the dye flow visualization (see Fig. 3.1) but not in the

time-averaged velocity field (see Fig. 3.5).

To quantitatively resolve these flow features, phase-averaged measurements
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Figure 3.7: Radial velocity profiles at y/R= 1.7, 2.0, 2.3, and 2.57 in the velocity

field shown in Fig. 3.6.

were acquired with the rotor at selected rotor azimuthal positions, ψ. By capturing

a series of images at the same blade azimuthal position, elements of the tip vor-

tex filament appeared to be in (nearly) the same spatial locations. Once a set of

data large enough to provide statistical significance (at least 150 image pairs) was

acquired, the velocity fields were computed and then ensemble averaged. This flow

measurement technique gives a measure of the periodic flow velocity fluctuations in

the rotor wake.

Three rotor phase angles (or degrees from the beginning of a revolution) were

used for the phase-averaged PIV, and in this case were at ψ= 10◦, 60◦, and 320◦

(see Fig. 2.4). These angles allow for the flow to be observed before the blade
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passes through the field of view (ψ= 320◦), just after it begins a new revolution

(ψ= 10◦), and further into its rotation (ψ= 60◦). While each turn of the tip vortex

filament follows the same general path, turbulence introduces some uncertainty in

the spatial position of any given vortex element. This behavior affects the phase-

averaged profiles to some degree. In general, the velocities phase-averaged over all

PIV realizations will be somewhat lower than what is expected in an instantaneous

velocity field [16,29,30].

Figure 3.8(a) shows the phase-averaged radial velocity fields in ROI 1 for a

single-bladed rotor at ψ= 320◦ operating at 100 rpm (Retip = 1.33× 104). Note that

the rotor’s axis of rotation is at y/R= 0. The colors represent the radial velocity

at each location in the flow, with red representing flow moving away from the rotor

shaft (to the right), and blue showing flow moving towards the rotor shaft (to the

left). Vortices appear as red/blue pairs in the flow field. Five vortices are visible

in Fig. 3.8(a). Their spatial locations were determined by finding the maximum Q

of each vortex utilizing the Q-criterion, and then verified using the Γ-method (see

Section 2.7). To visualize the size and locations of each element, contours of Γ = 0.6

are overlaid in black.

Figure 3.8(b) shows the phase-averaged and time-averaged radial (outward)

velocities at y/R= 1.7, which is marked with a vertical gray line in Fig. 3.8(a). The

velocity profiles are shown from the ground plane to a non-dimensional axial height

of z/R= 0.5. At this blade azimuthal angle there is a portion of the tip vortex

present near y/R= 1.6, but the core is still to the left of the velocity profile cut

at y/R= 1.7. The phase-averaged velocity profile is similar to the time-averaged
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(a) Radial velocity field

(b) Radial velocity profile for ψ= 320◦ at y/R= 1.7

Figure 3.8: Phase-averaged radial flow velocities with the rotor operating at 100 rpm

(Retip = 1.33× 104) and ψ= 320◦.
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profile, with a few differences. Very close to the ground plane, the velocities are

lower in the phase-averaged case compared to the time-averaged case. The velocity

then increases further from the ground plane to a maximum near the maximum seen

in the time-averaged case. This results in steeper velocity gradients near the wall

(and is commensurate with increased shear stresses) and so the flow there is more

likely to uplift and entrain sediment particles. As previously discussed, sediment

particles will resist movement until a certain threshold velocity has been reached;

the higher velocities produced near a tip vortex are more likely to mobilize and

entrain sediment.

Figure 3.9(a) shows the phase-averaged flow field at a blade azimuthal angle of

ψ= 10◦. Here 50◦ of blade rotation has elapsed compared to that shown in Fig. 3.8(a)

and a vortex is positioned directly over the ground at y/R= 1.7. The passage of

this vortex has produced a velocity excursion from the average flow and a region of

reverse flow at axial heights above z/R= 0.25. Figure 3.9(b) shows that the passing

vortex produced velocities that were more than 50% higher than the time-averaged

values. This higher velocity along the ground is one reason that loose sediment on

the ground is more likely to be mobilized during a vortex transit.

After the vortex has passed (see Fig. 3.10, ψ= 60◦), the phase-averaged veloc-

ity profile returns to a shape similar to those of the ψ= 320◦ case (see Fig. 3.8(b))

and the time-averaged case (see Fig. 3.7). While this trend is observed whenever a

vortex is not directly over a measurement location, time-averaging is not generally

representative of the flow field found under a rotor in ground effect because the ex-

cursions are large when the vortex is present. The phase-averaging results highlight
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(a) Radial velocity field

(b) Radial velocity profile for ψ= 10◦ at y/R= 1.7

Figure 3.9: Phase-averaged radial flow velocities with the rotor operating at 100 rpm

(Retip = 1.33× 104) and ψ= 10◦.
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(a) Radial velocity field

(b) Radial velocity profile for ψ= 60◦ at y/R= 1.7

Figure 3.10: Phase-averaged radial flow velocities with the rotor operating at

100 rpm (Retip = 1.33× 104) and ψ= 60◦.
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(a) Axial velocity field

(b) Axial velocity profile for ψ= 60◦ at z/R= 0.1

Figure 3.11: Phase-averaged axial flow velocites with the rotor operating at 100 rpm

(Retip = 1.33× 104) and ψ= 60◦.
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the elements of the tip vortices — a key feature in rotor flow — and shows how the

velocity at a fixed location on the ground plane varies with time.

Figure 3.11(a) shows the slipstream axial (vertical) velocity field when ψ= 60◦.

In this figure, blue denotes downward velocities and orange/red denotes upward ve-

locities. Because the vortices are generally convecting downward, the blue side of the

vortex appears more intense than the orange (upward moving) side. Figure 3.11(b)

shows the axial (vertical) velocities near the ground plane from y/R= 1.25 – 2.5 at

a non-dimensional axial height of z/R= 0.1. As before, the vortex centers were

located using the Q-criterion and Γ-method, and both results are overlaid on the

plot.

Notice that to the right of each vortex, a region of positive axial velocity is

present. On a sediment bed, this upward velocity would act to lift any mobilized

particles away from the ground. To the left of each vortex core, a region of negative

axial velocity is present. If there are particles in the fluid on this side of the vor-

tex then they would be accelerated downwards toward the sediment bed, and may

bombard the bed.

3.5 Instantaneous PIV

While phase-averaging of the PIV measurements gives one measure of the tip

vortex strengths, the instantaneous flow field measurements capture the unsteady

flow conditions found in the rotor wake. Figure 3.12(a) shows the instantaneous

radial velocities in the flow field with the rotor at 100 rpm (Retip = 1.33× 104) and
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at a blade azimuthal position of ψ= 10◦. While the vortices are rendered here as

red/blue pairs, they were not as sharp as was found in the phase-averaged data

shown in Fig. 3.8(a). Contours of Γ = 0.6 are shown in white to highlight the vortex

locations.

Figure 3.12(b) shows four of the 150 instantaneous velocity profiles used to

compute the phase-averaged results (also shown here for comparison) at y/R = 1.7.

While all of the profiles are qualitatively similar to the phase-averaged results, there

are large fluctuations in the instantaneous flow measurements. Note that some flow

velocities near the wall are greater than the phase-averaged values, some are smaller,

and some are even negative (i.e., reverse flow). In all of the observed velocity profiles,

the instantaneous measurements showed higher velocity maximums than the phase-

averaged cases.

3.6 Dual-Phase Flow Visualization

To better understand how the specific flow structures below a hovering rotor

may influence the problem of rotorcraft brownout, dual-phase flow visualization was

conducted. This approach showed how (and when) sediment mobilization and uplift

occurred by the action of the rotor wake. The objective of these experiments was to

determine if sediment mobilization and entrainment into the flow correlates to the

transit of a vortex element over the ground, an event that was previously shown to

cause higher velocity excursions.

Two different types of sediment particles were used in the current research.
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(a) An example radial velocity field

(b) Radial velocity profiles for ψ= 10◦ at y/R= 1.7

Figure 3.12: Instantaneous radial flow velocities with the rotor operating at 100 rpm

(Retip = 1.33× 104) and ψ= 10◦.
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Soda-glass microspheres of diameters between 45–63µm and of a density 2,575 kg m-3

were used to match the particles used in previous research [29]. In addition, stainless

steel particles of diameter 44–125 µm and a density of 7,473 kg m-3 were also used.

3.6.1 Soda-Glass Particles

Figure 3.13 shows an image of the two-phase flow in ROI 2, with the rotor

operating at 100 rpm (Retip = 1.33× 104) one rotor radius above a sediment bed

comprised of the 45–63µm soda-glass microspheres. The flow is from left-to-right,

and the approximate locations of the tip vortices have been marked with spirals.

In Fig. 3.13, a dense concentration of uplifted particles can be seen in front of and

below passing vortices (see Fig. 3.13, Region (a)). Notice that particles are not

uniformly uplifted by the rotor wake, but appear to respond to the local excursions

in flow velocity (and resulting shear stress). This condition corresponds to the phase-

averaged PIV measurements (presented in Section 3.4) in which there was a region of

larger-than-average positive radial (see Fig. 3.8) and axial velocities (see Fig. 3.12)

in front of the tip vortices. Between the vortices there is a region of relatively

quiescent flow (see Fig. 3.13 (b)) with relatively few suspended particles. The flow

shown here did not uplift sediment into Region (c) of Fig. 3.13, only achieving a

maximum height of approximately z/R= 0.5.

The rotor speed (and thus the tip speed of the rotor) was then increased to

120 rpm (Retip = 1.60× 104), increasing the swirl velocities in the tip vortex, and

the velocity of the rotor downwash (through the effects of increasing thrust, see

61



Figure 3.13: Dual-phase flow visualization in ROI 2 with the rotor operating at

100 rpm (Retip = 1.33× 104) showing sediment mobilization. (a) Quiescent area be-

tween vortices (b) Wave of mobilized particles caused by vortex passage (c) Region

above vortices

Section 2.4). Figure 3.14 shows a greater quantity of suspended sediment was up-

lifted to greater heights, and a significantly larger concentration of sediment was

produced.

The relative quantity of suspended sediment was compared at the different

rotor operating conditions by measuring the percentage of each image covered by

sediment particles (see Section 2.5.3). In Fig. 3.13 (at 100 rpm, Retip = 1.33× 104),

2.70% of the image was obscured by suspended sediment particles, while in Fig. 3.14

at (120 rpm, Retip = 1.60× 104), 8.12% of the image was obscured by sediment. In

addition to more particles being mobilized and entrained in the flow, the sediment

was also more evenly distributed at the higher rotor rpm, and more particles ap-

peared in the flow above and behind the vortices. Approximately fifty times more

particles were measured in Region (c) of Fig. 3.14 than in Region (c) of Fig. 3.13.
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Figure 3.14: Dual-phase flow visualization in ROI 2 with the rotor operating at

120 rpm (Retip = 1.60× 104) showing large quantities of sediment mobilization in

Region (c) above the vortices.

The increase in the groundwash velocity between the 100 and 120 rpm cases

also altered the mechanisms of sediment mobilization. At 100 rpm, corresponding

to a tip Reynolds number of 1.33× 104, sediment particles were not entrained or

uplifted between vortex passages. However, particle mobilization did occur between

vortex passages at higher rotor rotational speeds (120 rpm). It appears that between

100 rpm and 120 rpm, a threshold condition was exceeded that caused a significant

increase in particle mobilization and dispersal throughout the flow. Figure 3.15

shows that at even higher rotor rpm and flow velocities, even more sediment is

uplifted, in this case creating a relatively dense sediment cloud.

Reducing the rotor tip speed to 80 rpm (Retip = 1.06× 104) greatly decreased

the quantity of sediment that was uplifted. Figure 3.16 shows results for ROI 2

when the rotor was operating at 80 rpm. At this operating condition, the only

sediment that was mobilized was just ahead of the vortex flow at the ground, where
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Figure 3.15: Dual-phase flow visualization with the rotor operating at 450 rpm

(Retip = 5.98× 104).

there was an axial (upward) velocity (see Fig. 3.12) and an increased streamwise

velocity along the sediment bed (see Fig. 3.8). It appears that the threshold for

sediment mobilization was only met in the regions of the flow with the highest (and

most unsteady) flow velocities. Furthermore, sediment was uplifted primarily by

younger vortices (the ones to the left of the image); these younger vortices were to

be more coherent, and so contained the higher flow velocities that were necessary

for sediment mobilization.

3.6.2 Stainless Steel Particles

Further dual-phase flow visualization was performed with the rotor operat-

ing at 450 rpm, corresponding to a tip Reynolds number of 5.98× 104, and using

steel sediment particles instead of soda-glass microspheres. A significantly higher

rotational speed (450 rpm) was required in this case because the other operating
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Figure 3.16: Dual-phase flow visualization in ROI 2 with the rotor operating at

80 rpm (Retip = 1.06× 104).

conditions (defined in Section 3.6.1) failed to mobilize the stainless steel particles.

The higher specific gravity of the steel particles (leading to a higher particle ter-

minal velocity) is the likely reason higher rotor speeds are necessary to entrain the

particles. Figure 3.17 shows a flow visualization image of the stainless steel particles

that were uplifted at 450 rpm. This case looks similar to the glass sediment case

when the rotor operated at 120 rpm (Retip = 1.33× 104; see Fig. 3.13) despite the

different particle densities and rotor operating conditions.

3.7 Summary

This chapter has discussed the flow structures produced by a small rotor op-

erating in ground effect as observed using flow visualization and PIV. Flow visu-

alization showed the behavior of the tip vortices near the ground plane, as well as

turbulent zones found within the rotor flow. Time-averaged PIV allowed for the

measurements of the time-history of the flow. Phase-averaged and instantaneous
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Figure 3.17: Dual-phase flow visualization of the stainless steel particles in ROI 2

with the rotor operating at 450 rpm (Retip = 5.98× 104).

PIV was used to characterize the features of the tip vortices. The dual-phase flow

visualization was used to show the effects of vortex passage on sediment mobilization

and transport.
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Chapter 4

Discussion

4.1 Overview

The previous chapter described the phase-averaged and time-averaged particle

image velocimetry (PIV) experiments performed to study the flow beneath a rotor

hovering over a ground plane. To relate the results obtained from the present work

with those of other experiments performed in air [29], it was necessary to calculate

the similarity parameters that relate the single-phase and dual-phase flow environ-

ments. The present chapter discuses the results that were obtained and explores a

method for determining new similarity parameters and calculating their values from

the measurements.

4.2 Classical Similarity Parameters

The “classical” similarity parameters (see Greeley and Iverson [38] and Ap-

pendix A) used to describe the two-phase flow in the present research were:

1. Particle diameter-to-rotor radius ratio, Dp/R

2. Particle-to-fluid density ratio, ρs/ρ

3. Ratio of characteristic flow velocity to particle terminal velocity, Uchar/UF
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4. Densimetric Froude number, Uchar/
√

((ρs/ρ)− 1)gDp

5. Threshold friction velocity ratio, Uchar/U
∗
t

As mentioned in Section 1.4, these parameters were chosen to correspond with those

studied in previous experiments in air [29] which are a subset of the parameters given

by Greeley and Iverson [38].

4.2.1 Time-Averaged Characteristic Velocity

Three of the classical scaling parameters listed above depend on the evaluation

of a characteristic velocity, Uchar, within the flow. In previous rotor studies, this

value has been calculated from a time-average of the PIV measurements of the flow

velocities at all (measured) radial positions along the sediment bed [16,29]. A similar

method was used in the current work by using the time-averaged PIV results.

The time-averaged velocity field near the ground plane in the region from

y/R= 1.25 to y/R= 2.60 was calculated from 500 PIV realizations taken at numer-

ous blade azimuthal positions. The ensemble average was calculated using

Uavg(i, j) =
1

N

N∑
n=1

Um(i, j) (4.1)

where N is the total number of measurements (N = 500 in this case), n is an in-

dividual image realization, and (i,j) represents the spatial location of a velocity

measurement in a PIV realization. The characteristic velocity was then calculated

by selecting the peak velocity, U , at each radial station, y/R, and then ensemble

averaging the peak velocities to give an average peak flow velocity, Uchar. This value

can be written as

68



Uchar =
1

N

k∑
i=1

max(U(i)) (4.2)

where k is equal to the number of measured radial positions and max(U(i)) is the

peak velocity at a given radial position, y/R. Table 4.1 shows the results of this

analysis for the different cases tested in the present research.

Table 4.1: Calculated (time-averaged) characteristic velocities.

Rotor Operating Condition (rpm) Tip Reynolds Number (Retip) Uchar (ms-1)

80 1.06× 104 0.076

100 1.33× 104 0.095

120 1.60× 104 0.120

152 2.02× 104 0.186

450 5.98× 104 0.445

The rotor rig used in the present work was thrust-matched at 152 rpm to the

rotor used in Baharani’s research. Direct thrust measurements could not be obtained

with the present experimental set-up. However, a comparison of the rotor thrust

between the two rotor rigs can be made by using momentum theory as a basis,

beginning with the thrust equation, i.e.

T = ṁw = ṁ(2vi) = 2(ρAvi)vi = 2ρAv2
i (4.3)

where T is the thrust of the rotor, ṁ the mass flow through the rotor disk, w is

the rotor-induced velocity in the far wake, ρ is the density of the working fluid, A
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is the disk area of the rotor, and vi is the hover-induced velocity of the rotor at the

rotor plane. By setting the thrust of the two rotor systems to be equal for the two

different fluid mediums, the difference in the induced velocity can be found using

Eq. 4.3, resulting in

2ρairAv
2
i air = 2ρwaterAv

2
i water (4.4)

Because the disk (and blade) areas of the two rotor systems are equal, this result

simplifies to

ρairv
2
i air = ρwaterv

2
i water (4.5)

Rearranging yields

ρair

ρwater

=

(
vi water

vi air

)2

(4.6)

and solving for the induced velocity in water results in

vi water = vi air

√
ρair

ρwater

(4.7)

In Baharani’s experiments [29], a characteristic velocity of 4.10 ms-1 was measured.

With the density of air equal to 1.20 kg m-3, and the density of water equal to

998 kg m-3, Eq. 4.7 (momentum theory) suggests an expected thrust-matched char-

acteristic velocity in water of approximately 0.142 ms-1 with the rotor operating

at 152 rpm. Table 4.1 shows that at 152 rpm, the actual measured characteristic

velocity in the present experiments was 0.186 ms-1.
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Table 4.2: Calculated time-averaged similarity parameters.

Geometric Parameters Operational Parameters

Sediment type, Size ratio Density Characteristic Terminal Densimetric Threshold

particle size, ratio flow velocity velocity ratio Froude number friction velocity

and rotor rpm (Table 4.1) ratio

Dp

R

ρs

ρ
Uchar (ms-1)

Uchar

UF

Uchar√
((ρs/ρ) − 1)gDp

Uchar

U∗
t

Glass microspheres,
45–63µm, 80 rpm 6.42× 10-4 2.578 0.0758 33 2.69 8.28

Glass microspheres,
45–63µm, 100 rpm 6.42× 10-4 2.578 0.0946 41.2 3.36 10.33

Glass microspheres,
45–63µm, 120 rpm 6.42× 10-4 2.578 0.1195 52.1 4.25 13.05

Steel microspheres,
44–125µm, 450 rpm 9.94× 10-4 7.474 0.4445 20.98 6.07 40.6

4.2.2 Time-Averaged Similarity Parameters

Using the time-averaged characteristic velocities given in Table 4.1, and fur-

ther sediment and rotor operating characteristics, the similarity parameter values

shown in Table 4.2 were computed. These parameters have been classified as either

“geometric” (i.e., parameters that depend only on the geometry of the problem), or

“operational” (i.e., parameters that depend on the rotor operating conditions).

The dual-phase flow visualization presented in Chapter 3 (see Figs. 3.13–3.16)

showed how the rotor operating conditions (e.g., the characteristic flow velocity) af-

fected the quantity of sediment uplift — higher rpm produced higher flow velocities,

which mobilized more sediment. The geometric parameters (particle diameter-to-

rotor radius ratio, Dp/R, and particle-to-fluid density ratio, ρs/ρ) remained constant

for the tests with the glass microspheres, despite changes in rotor operating condi-

tions. The rotor operational parameters, however, are affected by the characteristic
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velocity, which depends on the rotor rpm. The quantity of sediment mobilization

was found to increase with increases in characteristic velocity (as shown in Sec-

tion. 3.6.1).

In addition to the glass particles, stainless steel microspheres were also used

as sediment. It was found that higher rotor rotational speeds (and thus higher flow

velocities) were required to mobilize these particles. Even at higher operating speeds

(450 rpm), the mobilization and entrainment of the stainless steel particles was less

severe than for the 120 rpm case with the glass microspheres.

Table 4.2 shows that the densimetric Froude number and the threshold fric-

tion velocity ratio were higher when the rotor was operating at 450 rpm with steel

particles than when the rotor was operating at 120 rpm with the glass particles. At

the same time, the terminal velocity ratio decreased significantly between the two

cases, reaching values lower than those measured with the glass particles with the

rotor operating at 80 rpm.

Of the three operational similarity parameters listed in Table 4.2, the terminal

velocity ratio best reflected the trends (increasing glass particle uplift with an in-

crease in rotor rpm) seen in the dual-phase flow visualization. However, the trends

seen in the terminal velocity ratio did not completely mirror the results seen in the

flow visualization. There was more sediment uplift with the steel particles and the

rotor operating at 450 rpm than with the glass particles and the rotor operating at

80 rpm, even though the steel particles have a lower terminal velocity ratio. This

difference may be because the classical similarity parameters use the steady flow ve-

locities obtained from time-averaging and do not account for the unsteady velocity
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fluctuations inherent in the rotor flow.

4.2.3 Phase-Averaged Similarity Parameters

Previous observations of the dual-phase flow (see Section 3.6) showed a link

between the passage of tip vortices near the ground plane and bursts of increased

sediment mobilization and uplift. The velocity excursions caused by vortex pas-

sages are often large enough to exceed the particle threshold friction velocity and

so mobilize the particles on the bed. However, values of the classical similarity

parameters presented in the previous section were computed using a time-averaged

characteristic velocity, which does not account for such velocity fluctuations.

In Section 3.4, phase-averaged results were obtained by ensemble averaging

the PIV images with the blade at a fixed azimuthal position, ψ. Three different

PIV realizations, with the blade at ψ= 320◦, 10◦, and 60◦ were captured. Figure 4.1

shows the positions of the nearest vortex relative to the measurement location at

y/R= 1.7 for the three PIV realizations. The maximum radial velocities measured

at y/R= 1.7 for each of the three different phase-averaged data sets were then used

as three different characteristic velocities. These velocities were used to show how

the similarity parameter values changed at y/R= 1.7 because of the presence of a

nearby vortex.

Table 4.3 shows how the time-averaged similarity parameter values measured

with the rotor at 100 rpm compare to those computed using the characteristic ve-

locities measured in the three phase-averaged PIV realizations. The geometric pa-
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Figure 4.1: Vortex location relative to a vertical cut at y/R= 1.7.

rameter values are constant but the operational parameters vary. Before and after

the vortex passage (i.e., the ψ= 320◦ and ψ= 60◦ cases, respectively), the values

of the phase-averaged operational similarity parameters are similar to those of the

time-averaged values. However, the values of these parameters are very different at

ψ= 10◦, when the vortex core is centered over the measurement point at y/R= 1.7.

At ψ= 10◦, the parameter values increase more than 60% because of the increase

in local flow velocity caused by the tip vortex. This effect correlates with the dual-

phase flow visualization (see Figs. 3.13 – 3.16), where particle mobilization and uplift

was found to occur primarily in the region below or directly ahead of a vortex. This

observation shows the need for appropriate similarity parameters that account for

the influence of the tip vortices in the two-phase flow.

4.2.4 Discussion of the Classical Similarity Parameters

The design of an experiment generally requires a compromise when selecting

the similarity parameters that will be matched. With at least fifteen “classical”
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Table 4.3: Calculated phase-averaged similarity parameters at y/R= 1.7.

Geometric Parameters Operational Parameters

Test Case Size ratio Density Characteristic Terminal Densimetric Threshold friction

Particle size and rpm ratio velocity velocity ratio Froude number velocity ratio

Dp

R

ρs

ρ
Uchar (ms-1)

Uchar

UF

Uchar√
(ρs/ρ− 1)gDp

Uchar

U∗
t

Time-averaged
100 rpm 45–63µm 6.42× 10-4 2.578 0.0946 41.2 3.36 10.33

Glass microspheres

Phase-averaged,
ψ=320◦ 6.42× 10-4 2.578 0.0989 43.1 3.51 10.79

100 rpm 45–63µm
Glass microspheres

Phase-averaged,
ψ=10◦ 6.42× 10-4 2.578 0.1669 72.7 5.93 18.22

100 rpm 45–63µm
Glass microspheres

Phase-averaged,
ψ=60◦ 6.42× 10-4 2.578 0.1094 47.7 3.89 11.94

100 rpm 45–63µm
Glass microspheres

similarity parameters in the coupled aerodynamics/sediment transport problem [38],

there are likely to be significant challenges in scaling laboratory-scale experiments.

Some interdependencies between the scaling parameters also makes it difficult to

simultaneously scale all of the parameters that might be relevant to the problem.

Therefore, it is important to understand which scaling parameters are likely to have

the greatest effect on sediment mobilization and transport.

Dual-phase flow visualization (see Section 3.6) suggested that an important

factor in the operational parameters is the characteristic velocity of the fluid, Uchar.

It was found that as the characteristic velocity increased, the quantity of mobilized

particles also increased. At lower flow velocities, the sediment particles only experi-

enced saltation (or creep) along the ground plane. However, once a certain threshold

velocity was exceeded, sediment particles were transported away from the ground
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and many particles remained suspended in the flow for a longer time.

The classical operational parameters, which assume steady flow velocities, rep-

resent sediment mobilization and entrainment for aeolian environments. However,

the flow visualization results suggest that an important characteristic of the flow

field induced by a rotor is the unsteady local velocities induced by the tip vortices

as they convect along the sediment bed. The classical similarity parameters are

based on steady flows, which do not capture these unsteady effects. This deficiency

can be resolved to some extent by using the phase-averaged values of the charac-

teristic velocities. However, new parameters that characterize the most important

unsteady flow features, the effects of the blade tip vortices, better describe the

brownout environment.

4.3 New Scaling Parameters

Using the Buckingham-Π Theorem, new scaling parameters were derived for

use in unsteady and aperiodic rotor flows. Because of the observed importance

of the tip vortices in mobilizing and entraining sediment (see Section 3.6), it was

important to include the measured characteristics of the tip vortices in addition to

the properties of the sediment in the formulation of the new parameters.

4.3.1 Vortex Characteristics

The first step in deriving new similarity parameters was to quantify the char-

acteristics of the vortices produced by the rotor blades. Of greatest interest were
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quantities such as circulation, vortex Reynolds number, peak swirl velocity, vortex

core size, and overall area of the flow that was affected by the vortices.

Circulation:

The circulation of a vortex is defined by the closed loop line integral

Γv =

∮
C

V · ds (4.8)

where V is the local fluid velocity and ds is the directed line segment along the closed

contour of integration, C. In the current work, the circulation was calculated by

using the circulation box method. The center (i.e., the core region) of a vortex was

found using methods discussed previously (see Section 2.7) and a small rectangular

box oriented along the abscissa and ordinate axes enclosing the vortex was defined,

as shown in Fig. 4.2. The total circulation was calculated from discrete velocity

measurements using

Γv =

∮
C

V · ds =
∑

UT∆x+ VT∆y (4.9)

where UT and VT are the horizontal and vertical velocity components of the flow

tangential to the edges of the circulation box, and ∆x and ∆y are the respective

spatial discretizations of the velocity field measurements. The area of the circu-

lation box was increased incrementally, recalculating the total circulation at each

increment. Eventually, the circulation approaches an asymptote (see Fig. 4.3). Care

was taken to exclude other sources of circulation, such as near a rotor blade, at the

ground plane, or near other vortices.

Using this method, the value of the tip vortex circulation for each operating
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Figure 4.2: Vortex circulation calculation using the circulation box method [29].
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Figure 4.3: Circulation box method circulation result for 120 rpm.
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condition was found from the phase-averaged PIV measurements, and is given in

Table 4.4. The circulation box method requires many measurements on all sides

of a vortex flow, therefore the values of circulation were calculated by using the

younger vortices closer to the rotor to avoid ground interference. The values given

in Table 4.4 for a full-scale helicopter are an estimate, obtained from the equation

Γv = 2.3

(
CT
σ

)
ΩRc (4.10)

where CT is coefficient of thrust, σ is the solidity of the rotor, and ΩR is the tip

speed of the rotor [63].

Comparing the strength of the vortices measured in this research to those ob-

tained by Baharani [29], the vortex strength in water was less than that in air, except

when the rotor was operating at 450 rpm. Notice that for all of the laboratory-scale

tests, the vortices were considerably weaker than for those of a full-scale helicopter.

Vortex Reynolds number:

The vortex Reynolds number is a dimensionless number that gives a measure of

the ratio of inertial forces to viscous forces in a vortex flow. The vortex Reynolds

number is defined as

Rev =
Γv
ν

(4.11)

where Γv is the vortex strength and ν is the coefficient of kinematic viscosity. The

lower kinematic viscosity of water (νwater = 1.00 × 10−6) as compared to air (νair =

1.57 × 10−5) and larger vortex sizes as compared to air results in higher vortex

Reynolds numbers in the current work than in that of Baharani [29], but the values
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were still much lower than at full-scale.

Swirl velocity, core radius, and core area:

The swirl velocity is another characteristic of a vortex flow. For this research, the

vortices were assumed to be axisymmetric, similar to the Rankine vortex model [64].

A vertical “cut” was taken through the vortex center, and the maximum velocity

normal to this cut was taken to be the maximum swirl velocity. By selecting vortices

near the rotor blade that were traveling axially (downward) through the flow and

not radially (outward), the vortex convection velocity was not included in the swirl

velocity estimate. All of the measured swirl velocities in the water-based experi-

Table 4.4: Calculated tip vortex characteristics.

Operating condition
Vortex Vortex Peak swirl Vortex Vortex Reynolds

radius core area velocity strength number

rc (m) Avortex (m2) Vθmax (ms-1) Γv (m2s-1) Rev

rpm, Retip Laboratory-scale tests in water (calculated)

80 rpm, 1.06× 104 0.0225 1.59× 10-3 0.1618 0.0270 2.69× 104

100 rpm, 1.33× 104 0.0225 1.59× 10-3 0.1858 0.0395 3.94× 104

120 rpm, 1.60× 104 0.0225 1.59× 10-3 0.2243 0.0475 4.73× 104

450 rpm, 5.98× 104 0.0225 1.59× 10-3 0.4656 0.6067 5.98× 105

Retip Laboratory-scale tests in air (from [29])

4.34× 104 0.002 1.26× 10-5 10 0.241 1.54× 104

Retip Full-scale utility helicopter (estimated)

7.47× 106 0.21336 0.1430 37 37.53 2.39× 106
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ments were larger than the tests done in air, and were many times lower than those

produced by a full-scale rotor.

The analysis used to find the swirl velocities also yields an estimate of the

vortex core radius and vortex core area. The core radius, rc, can be defined as the

distance from the center of the vortex to the location of the maximum swirl velocity.

The vortex core area was assumed to be circular and was calculated directly from

the measured core radius, i.e., Avortex = πr2
c . Notice that the core radius and area

of the vortices in the current work are significantly larger than for laboratory-scale

vortices in air; this is a consequence of the higher dynamic viscosity of water.

To compare the results of this and previous laboratory-scale reasarch to full-

scale rotor flows, the vortex characteristics for a full-scale helicopter were also

needed. Leese and Knight’s research on helicopter downwash [63] provided the

necessary values for a common medium-lift utility helicopter, but it should be noted

that these values are only approximate.

4.3.2 Buckingham-Π Theorem

The Buckingham-Π dimensional analysis is one formal method to systemat-

ically determine the dimensionless parameters governing a given problem. This

approach provides a large pool of possible similarity parameters, but the final selec-

tion of the most useful parameters requires experience and judgment. To use the

Buckingham-Π Theorem, a list of dependant variables was first created (given in

Table 4.5). These variables were selected to represent the particle characteristics,
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flow velocities, and vortex characteristics known to affect sediment mobilization and

entrainment. The corresponding basic units of these variables (length, mass, and

time) were isolated. For example, the characteristic velocity, Uchar, is a variable

that is dependent on the flow and has units of length L and time T (LT-1). Letting

r be the number of basic dimensions in the problem (r = 3 for this case), and k

be the number of dependent variables (k = 17), there exist k − r non-dimensional

Π-products (i.e., 14 potential similarity parameters).

Next, r linearly independent variables were selected from the list (Table 4.5).

These initial variables appear in each new similarity parameter. Each selected vari-

able must have a different make-up of basic units than the others selected. For

example, two variables both involving velocities (LT-1) cannot be selected. Addi-

tionally, across all r variables, each basic unit must be included at least once. To

find new similarity parameters for the brownout problem, the Buckingham-Π anal-

ysis was performed several times with different choices of initial variables, resulting

in several potential similarity parameters.

Buckingham-Π example

The initial variables were chosen to be Vθ max, ρs, and Dp. One more “repeating”

variable was selected, i.e., Uchar. This approach gives the first Π-product (similarity

parameter) as

Πi = Uchar(Vθmax)b(ρs)
c(Dp)

d (4.12)

Because the similarity parameter must be dimensionless, the equation can be de-

composed into its basic units M, L, and T
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Table 4.5: Dependent variables selected for the Buckingham-Π analysis.

Variable Symbol Units Basic units

Rotor radius R m L

Blade chord c m L

Particle diameter Dp m L

Characteristic flow velocity Uchar ms-1 LT-1

Gravitational constant g ms-2 LT-2

Particle terminal velocity UF ms-1 LT-1

Boundary layer thickness L∗ m L

Kinematic viscosity ν m2s L2T

Threshold friction velocity U∗
t ms-1 LT-1

Sediment density ρs kg m-3 ML-3

Fluid density ρ kg m-3 ML-3

Blade passing frequency t-1 s-1 T-1

Vortex strength Γv m2s L2T

Vortex core size rc m L

Maximum swirl velocity Vθ peak ms-1 LT-1

Vortex area Avortex m2 L2

Rotor tip speed Vtip ms-1 LT-1
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M0L0T 0 = L1T−1(L1T−1)b(M1L−3)c(L1)d (4.13)

The following r equations were then written as

M = 0 : 0 = 0 + 0 + c+ 0

L = 0 : 0 = 1 + b− 3c+ d

T = 0 : 0 = −1− b+ 0 + 0

Solving the r equations for b, c, and d, and substituting back into Eq. 4.12 yielded

the first Π-product, i.e.,

Π1 =
Uchar

Vθmax

(4.14)

This type of analysis was performed again by replacing the repeating variable (Uchar

in this example) with another repeating variable. For the selected parameters in

Table 4.5, this process yielded thirteen more Π-products.

Buckingham-Π Results

More Π-products were found by selecting different initial variables. Table 4.6

shows all (20) of the Π-products generated by the Buckingham-Π analyses. The first

four similarity parameters in the first row of Table 4.6 belong to the list of classical

parameters given by Greeley and Iverson [38]. The remaining parameters are new,

and in this case account for various characteristics of the vortices, including their

circulation and peak swirl velocity. Note that similarity parameters that include
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vortex characteristics have not been previously used to characterize aspects of the

brownout problem.

Table 4.6: Similarity parameters obtained from the Buckingham-Π analyses.

Uchar
UF

ρs
ρ

R
Dp

Uchar
U∗t

U∗t
UF

Γv
RVtip

rc
Dp

V 2
θ max
UFU

∗
t

Γv
Avortext

Vθ max
Vtip

Vθ max
UF

Γv
rcUF

Γv
RUF

Γv
DpUF

Vtip

UF

Vθ max
U∗t

Γv
rcU∗t

Γv
RU∗t

Γv
DpU∗t

Vtip

U∗t

4.3.3 New Similarity Parameters

Tables 4.7 – 4.10 show representative values of these similarity parameters for

different operating conditions, and at both laboratory-scale and full-scale. An ini-

tial investigation of these similarity parameters as potential indicators of brownout

allowed several of them to be immediately discarded. It was clear from dual-phase

flow visualization (see Section 3.6) that an increase in rotor speed resulted in the

uplift of more sediment. Therefore, the similarity parameters that do not change

with rotor speed or do not take vortex characteristics into account, i.e., Uchar/UF ,

Γv/RVtip, and rc/Dp, do not show much promise in having important consequences

on the problem of brownout. These parameters were, therefore, excluded from fur-

ther consideration. Furthermore, several of the parameters such as Γv/RUF and
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Γv/DpUF , are similar in value except for a geometric constant (i.e., R and Dp), and

thus only one of each set was retained. It is important to note that these parameters

are not identical (the flow could be dependent on R but not Dp) and the discarded

similarity parameters may have other uses despite their exclusion in the current

research. The field of prospective similarity parameters was thus narrowed to five:

1. Γv/DpU
∗
t , which is called the stationary inertia ratio

2. Γv/DpUF , which is called the mobile inertia ratio

3. Vθ max/UF , which is called the terminal-swirl velocity ratio

4. Vθ max/U
∗
t , which is called the threshold-swirl velocity ratio

5. V 2
θ max/UFU

∗
t , which is called the terminal/threshold-swirl velocity ratio

Stationary inertia ratio, Γv/DpU
∗
t

The stationary inertia ratio has a form similar to the densimetric Froude number

(i.e., Uchar/Dp

√
((ρs/ρ)− 1)g). The Froude number can be thought of as a ratio of a

particle’s inertia to the momentum of the fluid. Similarly, the stationary inertia ratio

compares a measure of the threshold velocity (related to the sediment’s inertia) to

the momentum of the passing fluid. Intuitively, this parameter relates how difficult

it is to mobilize sediment to how much energy the flow has to initiate particle motion.

The classical similarity parameter that is usually used to define the onset of particle

motion is the threshold velocity ratio, Uchar/U
∗
t . As previously discussed, using

the characteristic velocity alone may give a poor representation of real (unsteady)
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Table 4.7: Calculated values of the new similarity parameters (1 of 4).

Operating condition
U∗
t

UF
Γv
RVtip

rc
Dp

Vθ max

UF

rpm, Retip, and sediment Laboratory-scale tests in water (calculated)

80 rpm, 1.06× 104 4.00 2.242 412 70.7
Glass Particles

100 rpm, 1.33× 104 4.00 1.915 412 81.1
Glass Particles

120 rpm, 1.60× 104 4.00 1.911 412 97.9
Glass Particles

450 rpm, 5.98× 104 0.514 0.567 266 22.1
Steel Particles

Retip and sediment Laboratory-scale tests in air (from [29])

4.34× 104 0.561 16.01 36.7 52.9
Glass Particles

4.34× 104 117 16.01 1340 72700
Kaolinite

4.34× 104

Ottawa Test 0.0829 16.01 5.56 3.00
Dust

Retip and sediment Full-scale utility helicopter (estimated)

7.47× 106 28.9 48.14 60100 38900
AZTD (0-10 µm)
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Table 4.8: Calculated values of the new similarity parameters (2 of 4).

Operating condition
Γv
rcUF

Γv
RUF

Γv
DpUF

Vtip
UF

rpm, Retip, and sediment Laboratory-scale tests in water (calculated)

80 rpm, 1.06× 104 524 139 2.16×105 311
Glass Particles

100 rpm, 1.33× 104 767 203 3.16×105 389
Glass Particles

120 rpm, 1.60× 104 922 244 3.80×105 466
Glass Particles

450 rpm, 5.98× 104 1260 333 3.35×105 189
Steel Particles

Retip and sediment Laboratory-scale tests in air (from [29])

4.34× 104 638 15.0 2.34×104 240
Glass Particles

4.34× 104 876000 20600 1.18×109 3.29×105

Kaolinite

4.34× 104

Ottawa Test 36.1 0.85 201 13.6
Dust

Retip and sediment Full-scale utility helicopter (estimated)

7.47× 106 185000 4820 1.11×1010 2.32×105

AZTD (0-10 µm)
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Table 4.9: Calculated values of the new similarity parameters (3 of 4).

Operating condition
V 2
θ max

UFU∗
t

Γv
Avortext

Vtip
Vθ max

Vθ max

U∗
t

rpm, Retip, and sediment Laboratory-scale tests in water (calculated)

80 rpm, 1.06× 104 1250 12.73 4.401 17.7
Glass Particles

100 rpm, 1.33× 104 1650 14.91 4.791 20.3
Glass Particles

120 rpm, 1.60× 104 2400 14.94 4.762 24.5
Glass Particles

450 rpm, 5.98× 104 935 50.30 8.603 8.60
Steel Particles

Retip and sediment Laboratory-scale tests in air (from [29])

4.34× 104 4980 225.6 4.540 94.1
Glass Particles

4.34× 104 4.51×107 225.6 4.540 621
Kaolinite

4.34× 104

Ottawa Test 108 225.6 4.540 36.1
Dust

Retip and sediment Full-scale utility helicopter (estimated)

7.47× 106 5.23×107 61.07 5.969 1350
AZTD (0-10 µm)
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Table 4.10: Calculated values of the new similarity parameters (4 of 4).

Operating condition
Γv
rcU∗

t

Γv
RU∗

t

Γv
DpU∗

t

Vtip
U∗
t

rpm, Retip, and sediment Laboratory-scale tests in water (calculated)

80 rpm, 1.06× 104 131 34.7 5.40×104 77.7
Glass Particles

100 rpm, 1.33× 104 192 50.7 7.90×104 97.2
Glass Particles

120 rpm, 1.60× 104 231 61.0 9.50×104 117
Glass Particles

450 rpm, 5.98× 104 2440 645 6.49×105 367
Steel Particles

Retip and sediment Laboratory-scale tests in air (from [29])

4.34× 104 1130 26.7 4.16×104 428
Glass Particles

4.34× 104 7480 176 1.00×107 2820
Kaolinite

4.34× 104

Ottawa Test 434 10.2 2410 164
Dust

Retip and sediment Full-scale utility helicopter (estimated)

7.47× 106 6400 167 3.85×108 8030
AZTD (0-10 µm)
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flow conditions that exist at the sediment bed. The vortex strength on the other

hand, takes into account the transient flow velocities on the ground beneath a rotor.

Unfortunately, it is sometimes difficult to measure vortex strength as it requires

detailed measurements of the velocity field (see Section 4.3.1).

Mobile inertia ratio, Γv/DpUF

The mobile inertia ratio differs from the stationary inertia ratio in that it uses

the terminal velocity, Ut, of the sediment rather than the threshold velocity, U∗
t .

This parameter characterizes the likelihood of previously uplifted particles remaining

suspended in the fluid, and is a measure of the sediment’s ability to be transported

through the flow (and perhaps reingested into the rotor system). The stationary

inertia ratio provides a measure of how difficult it is to initially mobilize sediment

from the sediment bed, while the mobile inertia ratio gives a measure of how easily

mobilized sediment will form a suspended dust cloud.

Terminal-swirl velocity ratio, Vθ max/UF

The terminal-swirl velocity ratio relates the sediment’s terminal velocity to the

maximum swirl velocity (Vθ max) of the passing vortices. This parameter is an in-

dicator of whether the vortices induce a high enough velocity to keep sediment

suspended in the flow. It is much like the classical ratio of characteristic flow ve-

locity to particle terminal velocity ratio, except with the key replacement of the

(time-averaged) characteristic flow velocity, Uchar, with the swirl velocity induced

by the vortices.
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Threshold-swirl velocity ratio, Vθ max/U
∗
t

This similarity parameter relates the threshold velocity of the sediment to the

maximum swirl velocity of the vortices. It provides insight into whether sediment

will initially mobilize. This parameter is similar to the threshold friction velocity

ratio (a classical similarity parameter), except with the characteristic flow velocity

replaced with the swirl velocity.

Terminal/threshold-swirl velocity ratio, V 2
θ max/UFU

∗
t

The final similarity parameter, V 2
θ max/UFU

∗
t , includes both the sediment termi-

nal velocity and threshold velocity in a single parameter. Therefore, this parameter

addresses both the stationary and mobile characteristics of the sediment, and com-

pares them to the swirl velocity of the vortex induced flow. This parameter is useful

because brownout can be thought of as a two-part problem where particles must

both be mobilized from the sediment bed and suspended to create a degraded visual

environment.

4.3.4 Analysis of the Similarity Parameters

To evaluate the validity and impact of the newly derived similarity parameters,

values of these parameters were compared against a quantitative measure of the

suspended sediment. Section 2.5.3 described the process of measuring the quantity

of sediment in a dual-phase flow visualization image. Table 4.11 gives the percentage

of the image areas that are obscured by suspended sediment. The near ground region

is the area from y/R= 1.0 to 3.5, and from the ground plane to a nondimensional
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height of z/R= 0.5. The upper region covers the same horizontal distance, but from

z/R= 0.5 to 1.0. The percentage of an area obscured by sediment is plotted in

Figs. 4.4 – 4.6 against the derived similarity parameters.

The first selected parameter, the mobile inertia ratio, is shown in Fig. 4.4(a).

Small increases in the values of this similarity parameter at the lower end of the

testing range resulted in small increases in sediment obstruction. At the highest

values of the measured mobile inertia ratio (i.e., for the glass particles with the rotor

operating at 450 rpm), almost complete obstruction of the flow field by sediment was

recorded. Unfortunately, there is a large gap in the data between the low and high

ends of the values, and while there seems to be some structure to the data, there

are no clear trends discernible at this point.

A plot of the stationary inertia ratio, as shown in Fig. 4.4(b), appears qual-

itatively similar to the effects of the mobile inertia ratio, but with one noticeable

difference. There is a point in the data with significantly higher stationary inertia

ratio values, but with no increase in the quantity of uplifted sediment. This data

point represents the rotor operating at 450 rpm above the stainless steel particles.

While it was found to be relatively easy to mobilize the steel particles, they did not

remain suspended because of their high specific gravity and higher terminal velocity.

This outcome suggests that a single similarity parameter may not fully represent

the brownout problem unless it can characterize both particle mobilization and sus-

pension.

Figures 4.5(a) and 4.5(b) shows the relationships between the third and fourth

parameters and suspended sediment. These parameters are related to the inertia
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Table 4.11: Measured image obstruction.

Operating Condition Near Ground Upper Region Combined Regions

and Sediment Region

80 rpm 3.21% 0.56% 1.88%

Glass microspheres

100 rpm 8.05% 0.54% 4.30%

Glass microspheres

120 rpm 14.78% 2.60% 8.69%

Glass microspheres

450 rpm 97.57% 98.54% 98.06%

Glass microspheres

120 rpm 0.038% 0.035% 0.037%

Steel microspheres

450 rpm 7.86% 0.76% 4.31%

Steel microspheres
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(a) Γv/DpUF Mobile inertia ratio

(b) Γv/DpU
∗
t Stationary inertia ratio

Figure 4.4: Image obstruction as a function of inertia ratio similarity parameters.
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(a) Vθ max/UF Terminal-swirl velocity ratio

(b) Vθ max/U
∗
t Threshold-swirl velocity ratio

Figure 4.5: Image obstruction as a function of velocity ratio similarity parameters.
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Figure 4.6: Image obstruction as a function of V 2
θ max/UFU

∗
t , the terminal/threshold-

swirl velocity similarity parameter.

ratios, but use the maximum swirl velocity induced by the vortex instead of vortex

strength. This substitution spreads the data out along the abscissa.

The relationship between the final parameter and suspended sediment, shown

in Fig. 4.6, is perhaps the most promising because it incorporates both sediment

mobilization effects (i.e., the sediment friction threshold velocity, U∗
t ) and suspension

(i.e., the sediment terminal velocity, UF ). Including both characteristics in a single

parameter allows for a more thorough characterization of both parts of the sediment

transport problem, i.e., particle mobilization and suspension. While it can be seen

that sediment obstruction increases with increases in all of the new parameter values,

the data measured in the present work is only sufficient to provide some initial trends.
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Further experiments are required to produce the extent of data needed to determine

the sensitivities to the derived similarity parameters.

4.4 Summary

The present chapter has discussed how the similarity parameters relevant to

the problem of brownout have been evaluated. The values of the similarity parame-

ters used in aeolian two-phase sediment transport problems were measured below the

rotor using time-averaged PIV. Phase-averaged PIV showed how the local velocities

fluctuate as a vortex passes over a point on the ground. The vortex characteristics,

such as core radius, vortex strength, and peak swirl velocities were calculated for the

rotor as it operated over the ground plane. A Buckingham-Π dimensional analysis

was used to develop new similarity parameters that may better account for the flow

characteristics produced by these vortices. Based on these results, five new similar-

ity parameters were selected and were plotted against quantitative measurements

of sediment suspension (from the dual-phase flow visualization). Some parameters,

especially the terminal/threshold-swirl velocity similarity parameter, V 2
θ max/UFU

∗
t ,

reflected the trends seen in the dual-phase flow visualization, with increasing values

corresponding to increased quantities of sediment suspension.
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Chapter 5

Conclusions

5.1 Overview

A laboratory-scale rotor, hovering in water over a mobile sediment bed, was

tested to study the two-phase flow physics that could potentially influence the

physics of the rotorcraft brownout problem. The rotor used in the present ex-

periments was designed to match the physical geometry of a rotor previously tested

in air [29]. Testing the rotor in water allowed for significant changes in the values

of several of the scaling parameters that govern the fluid mechanics and particle

transport physics of the problem.

The flow visualization experiments that were conducted showed the relatively

complex nature of rotor flow in ground effect operation, and provided some results

that helped to explain the mobilization of sediment by features of the rotor wake.

Particle image velocimetry (PIV) techniques were used to provide measurements of

the flow velocities in the rotor wake and also near the ground plane as the wake

impinged upon the ground and spread outward. These measurements allowed for

the values of the relevant similarity parameters to be calculated over a range of rotor

operating conditions and for two different types of sediment.

A limitation in the use of classical similarity parameters for two-phase flow

was found to be their inability to account for unsteady effects that are present in
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the rotor wake flow and the local flow at the ground plane. For example, a tip vortex

that trails from a blade and subsequently interacts with the sediment bed produces

unsteady flow fluctuations each time an element of the vortex passes over a point

on the ground. A Buckingham-Π analysis was performed by introducing certain

properties of the tip vortices in an effort to develop new similarity parameters that

more completely describe the two-phase fluid flow problem.

5.2 Specific Conclusions

The outcomes from this research has lead to several conclusions:

1. The set of “classical” similarity parameters (e.g., those developed by Bag-

nold [37], Greeley and Iverson [38], etc.) are not fully adequate to describe

sediment mobilization and entrainment by the action of a rotor wake. These

classical parameters are based on steady flow assumptions, and so do not ad-

equately represent the effects produced by the more unsteady flow conditions

found beneath a rotor in ground effect operation. The classical similarity pa-

rameters use time-averaged quantities in their calculation; in particular they

use a characteristic velocity, Uchar. The dual-phase flow visualization experi-

ments revealed that sediment mobilization is initiated and sustained primarily

by the unsteady velocity fluctuations and excursions from the mean flow that

are caused by the passage of the tip vortices near to the sediment bed.

2. The relevant similarity parameters governing the problem were classified as

either “geometric” or “operational.” Some similarity parameters, namely the
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particle size-to-rotor radius ratio, DP/R, and particle-to-fluid density ratio,

ρs/ρ, remain constant for a given rotor system and for a given fluid. These

parameters, along with any others that are independent of operational condi-

tions, were classified as geometric parameters. Parameters that include terms

that depend on the flow field (e.g., the characteristic flow velocity) were clas-

sified as operational similarity parameters.

3. To characterize and scale the rotorcraft brownout problem, it was shown why

the similarity parameters should include certain characteristics of the tip vor-

tices. To this end, a Buckingham-Π analysis was performed to identify nondi-

mensional parameters that account for the strength, Γv, and/or the maximum

internal (swirl) velocities, Vθ max, of the trailed tip vortices. Five new similarity

parameters were selected, namely

(a) The mobile inertia ratio, Γv/DpUF

(b) The stationary inertia ratio, Γv/DpU
∗
t

(c) The terminal-swirl velocity ratio, Vθ max/UF

(d) The threshold-swirl velocity ratio, Vθ max/U
∗
t

(e) The terminal/threshold-swirl velocity ratio, V 2
θ max/UFU

∗
t

where DP is the diameter of the particle, UF is the terminal velocity of the

sediment particles, and U∗
t is the threshold friction velocity of the particles.

4. The approximate quantity of sediment particles that were mobilized and en-

trained at different operating conditions was measured using dual-phase flow
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visualization. The results were analyzed to examine the sensitivities (if any)

to the values of the proposed new similarity parameters. Generally, increasing

the values of the parameters was found to correspond to increased quanti-

ties of sediment mobilization and suspension. Of the five parameters, the

terminal/threshold-swirl velocity ratio, V 2
θ max/UFU

∗
t , showed promise in help-

ing to scale the brownout problem. This latter parameter characterizes both

sediment mobilization and suspension by including both the threshold and

terminal velocities of the sediment particles, as well as a characteristic flow

velocity produced by the vortices.

5.3 Suggestions for Future Work

5.3.1 Further PIV Measurements

The dual-phase flow visualization showed that tip vortices play a key role

in sediment mobilization and transport below a rotor. Significant differences were

found when comparing the similarity parameters that were evaluated by using the

time-averaged PIV measurements to those evaluated from the phase-averaged PIV

results. Phase-averaging algorithms exist that can track and overlay the vortex

centers (cores) to correct the slight aperiodicity and spatial locations of the vortices

between successive PIV images, which may further improve the accuracy of the

measurements.

Another technique that could increase understanding of the brownout phe-

nomenon is dual-phase PIV. Dual-phase PIV allows for simultaneous, quantitative
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measurements of the carrier-phase velocity field (in this case water), as well as the

locations and trajectories of suspended sediment particles [65]. This approach pro-

vides for a quantification of sediment mobilization and suspension. Furthermore,

the flow field measurements during the dual-phase testing could also provide infor-

mation about whether the suspended sediment influences the velocity field of the

carrier-phase. By comparing the carrier-phase flow field velocities in a dual-phase

test with single-phase PIV at the same operating conditions, it might be possible

to determine how much sediment must be uplifted for the sediment to significantly

influence the carrier flow.

5.3.2 Expanding the Range of the Similarity Parameters

By varying the operating conditions of the rotor or by selecting different sedi-

ment types (e.g., size and density), the sensitivity of sediment transport to changes

in the values of the similarity parameters can be further explored.

Glass Sediment Particles

In the current work, the soda-glass microspheres produced a dense cloud when

the rotor was operated at 450 rpm, but relatively few particles were mobilized and

entrained when the rotor was at 80 rpm. More experiments at different operating

conditions (that were not tested in the present research) would help to further define

the relationships between sediment mobilization/suspension and the values of the

similarity parameters. Table 5.1 shows examples of four test conditions that would

help to better identify possible sensitivities to the values of the mobile inertia ratio.
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The recommended rotor operating conditions given here are approximations based

on the phase-averaged PIV results.

Table 5.1: Recommended operating conditions for further laboratory-scale testing

in water.

Recommended Similarity Parameter Value Rotor rpm Rotor rpm

(Mobile Inertia Ratio,
Γv

DpUF
) (Glass Sediment) (Steel Sediment)

7.50× 105 165 580

1.50× 106 240 840

2.50× 106 320 1110

3.50× 106 380 1340

Steel Sediment Particles

Another option for further work is to use the denser steel particles instead of (or in

addition to) glass particles. While steel particles were used in the current research,

only a limited set of operating conditions was tested when using those particles.

Table 5.1 provides suggested operating conditions to reach four mobile inertia ratios

by using the steel particles. Because the mobile inertia ratio is inversely proportional

to the terminal velocity (and because the stainless steel particles have a much higher

terminal velocity than the glass particles), the vortex strength, and thus the rotor

rpm must also be increased.
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Other Sediment Particles

Another method for testing at different similarity parameter values is to change

the sediment particles while maintaining a fixed rotor operating condition (and

thus a fixed vortex strength, Γv). Table 5.2 provides examples of several sediment

materials that would produce the recommended range of the similarity parameters,

assuming the particles are of the same size as the glass microspheres (average Dp =

5.46 × 10-5) and the rotor is operating at 120 rpm. Many other materials exist

that would also satisfy the needed values and ranges of the similarity parameters.

A parametric study of the effects of varying the sediment type, size, and rotor

operating conditions independently could also be performed.

Table 5.2: Recommended sediment choices for further laboratory-scale testing in

water at 120 rpm.

Recommended Similarity Parameter Value Recommended Density

(Mobile Inertia Ratio,
Γv

DpUF
) Sediment (ρs, kg m-3)

7.50× 105 Magnesium 1,940

1.50× 106 Aluminum Oxide 1,463

2.50× 106 Quartz, Bakelite 1,276

3.50× 106 Sand, Glass 1,196
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Appendix A

Selected Similarity Parameters

Particle Diameter-to-Rotor Radius Ratio, Dp/R

The particle diameter-to-rotor radius ratio, Dp/R, describes the size of the

particles found in the flow relative to the size of the rotor generating the flow. For

a full-size helicopter, with approximate values of the similarity parameters as given

in Table 1.2, the particle diameter-to-rotor radius ratio is 6.22× 10−7, compared

to 6.42× 10−4 as in the current and previous experiments [16, 29]. If a one-to-one

scaling of this parameter was preserved, the experiment would require tiny particles

with a diameter of 50 nm. However, particles of this size suffer from inter-particle

forces that cause particle clumping, and so they will exhibit different characteristics

compared to larger particles. Furthermore, resolving such tiny particles in flow

visualization images or particle image tracking velocimetry would be very difficult

if not impossible.

Particle-to-Fluid Density Ratio, ρs/ρ

The particle-to-fluid density ratio is a parameter that directly relates the den-

sity of the sediment, ρs, to the fluid density, ρ [66]. This parameter is essentially

a measure of the specific gravity between the two media. When switching from
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one fluid to another, maintaining the density ratio parameter is difficult. Water is

approximately one thousand times denser than air, so finding a sediment particle

that preserves the full-scale value of density ratio in water at laboratory-scale is all

but impossible.

Characteristic Velocity-to-Particle Terminal Velocity Ratio, Uchar/UF

The characteristic velocity-to-particle terminal velocity ratio is a similarity

parameter that takes into account not only the size of the sediment particles, but

also the density ratio of the sediment to fluid. The terminal velocity of a particle

is the maximum speed that it attains while falling freely through a fluid under

the influence of gravity. This settling velocity occurs when equilibrium is reached

between the forces of weight, drag and buoyancy acting on the particle, i.e., when

W = Fb +D, where W is the weight of the particle, Fb is the buoyancy force on the

particle, and D is the drag force [67]. Assuming a spherical particle, the weight and

buoyancy forces on the particle are

W =
π

6
D3
pρsg (A.1)

and
Fb =

π

6
D3
pρg (A.2)

respectively, and the drag force on the particle at its terminal velocity is

D =
1

2
ρU2

fCdA (A.3)

where Cd is the particle drag coefficient, A is the cross-sectional area of the particle,

and Uf is the terminal velocity. Substituting and solving for Uf yields
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Uf =

√
((ρs/ρ)− 1)4gDp

3Cd
(A.4)

The terminal velocity is affected by particle size, particle shape, and the difference

between the density of the particle and the fluid medium it is suspended in. The

particle terminal velocity ratio is then calculated by dividing the characteristic ve-

locity by the terminal velocity. Previous research [29] suggests that an increase in

terminal velocity ratio, which can be caused by an increase in characteristic velocity

(or decrease in particle terminal velocity), results in an increase in the quantity of

particles being uplifted.

Densimetric Froude Number, Uchar/
√

((ρ/ρs)− 1)gDp

The Froude number is a dimensionless parameter representing the ratio be-

tween the inertial forces and gravitational forces [68]. It is a predictor of sediment

mobility because a body with lower inertia will be easier to mobilize than one with

higher inertia [29, 69]. When dealing with an object submerged in a moving fluid,

the use of densimetric Froude number is preferred because it is particle specific.

Velocity Threshold Ratio, Uchar/U
∗
t

Threshold friction velocity, U∗
t =

√
τw/ρ, is the equivalent fluid velocity at

which stationary sediment particles will begin moving along the sediment bed under

the action of the fluid flow. Motion of the fluid causes shear stresses along the

sediment bed which, if sufficiently high, begins moving particles along with the
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fluid. However, determining the threshold velocity is very difficult because it is first

necessary to define when the onset of particle motion has actually occurred [70]. For

example, some studies [71] have argued for the threshold to be the absolute minimum

velocity required for even just one sediment particle to begin to move. This strict

definition requires extremely careful observation in experiments, and determining

the exact velocity is difficult and not completely unambiguous. Other research [72]

has suggested that perhaps a more reasonable definition of threshold velocity is when

some fraction (perhaps around 25%) of the particles become mobilized and move

along the ground plane. Other definitions [70] specify the threshold velocity at the

point where particles regularly creep along a sediment bed and where saltation is

just beginning to occur.

Further complicating the issue of determining the threshold velocity are other

characteristics of the sediment and the sediment bed, including how particles are

arranged next to each other [73] or the compactness of the bed, which can prevent

particle motion until higher fluid velocities are reached. In Fig. A.1, point (A)

represents sediment particles that are stacked on top of each other such that the

Figure A.1: Particle packing effects on motion threshold.
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flow will be less likely to uplift them. Like scales on a fish, the particle arrangement

in (A) allows fluid to flow over smoothly, creating a higher than expected friction

threshold velocity, and so reducing the velocity threshold ratio. The arrangement of

the sediment particles under point (B) are such that the flow would be more likely

to mobilize the particles. Particles arranged as under (B) would present a lower

friction threshold velocity than the particles under (A). As with the sediment under

point (A), the sediment under (C) is arranged such that the flow would be less likely

to mobilize the particles. The particles stacked against each other at (C) effectively

lock them together, and will resist mobilization to a higher flow velocity.
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