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In any distributed system� there is an intrinsic need to coordinate the events

between the nodes� In such a system� even though each individual node only

has access to its local clock� global coordination often has to be carried out the

basis of time� called the global time� that is common to every nodes� One way to

achieve this globally synchronous behavior is to synchronize all local clocks with

an external time source such as a Cesium clock� Local time then becomes in e	ect

global time� There are� however� several drawbacks to such clock synchronization

method� Highly precise clocks are expensive and can add to the cost of the

hardware node� Some approaches depend on a certain network characteristic

such as a symmetric latency� a broadcast medium� or a bus structure� Many are

also centralized in that they assume the existence of one or more master clocks to

which the remaining clocks synchronize with� and this adds additional complexity



when the master node fails and
or when the network has to reorganize in order

to select another master�

In this dissertation� we introduce a new method for achieving global synchrony

without performing clock synchronization� In our approach� called the Cyclone

Network Synchronization �CNS� scheme� the local clocks are free�running and

are not modied in any way� CNS relies on the ability of each node to send data

at a time of its choosing� Such data are sent at regular interval� with the next

instance being determined based only on the local information available at the

node� Once the scheme converges� the interval for all nodes becomes exactly the

same� supporting a synchronous operation across the whole network� CNS takes

into account the nite precision arithmetic and measurements it has to use� while

still maintaining global synchrony with very small jitter values�

The scheme can be used in many synchronous cyclic networks� and does not

require a broadcast medium or depend on a symmetric latency� CNS is a de�

centralized scheme with no master server� as all of the nodes execute the same

set of instructions� and can tolerate most topology changes without the need to

recongure� There is very little overhead since no explicit synchronization mes�

sages are sent� A high degree of accuracy can be achieved with the algorithm�

and both clock drift as well as latency perturbation are tolerated� Furthermore�

this accuracy is not a function of the clock drift rate� as is the case for most clock

synchronization approaches�
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Chapter �

Introduction

In any distributed system� there is an intrinsic need to coordinate the occurrences

of events at various nodes ����� This synchronization requirement is particularly

important for high�speed synchronous cyclic networks ���� ��� ��� especially those

that support real�time and
or stringent quality of service �QOS� applications

���� ���� An example of such system is Cyclone ����� a network which requires

that all resources be known and scheduled in advanced of actual usage� These

network resources include not only the traditional bu	ers� but the time instances

at which these bu	ers are being moved from one node to another� In other words�

the sends and receives in Cyclone must be coordinated ahead of time and with as

much precision as possible� in order to maximize the e	ectiveness of the overall

network�

Global coordination must be done with respect to a common basis of time�

logically called the �global clock�� that is visible to all nodes in the system�

However� the only clock that is usually available at each node is the �local clock��

which consists of a quartz crystal and a clock counter ����� The crystal oscillates

at some nominal frequency� e�g� � MHz �one million times per second�� generating

a pulse every microsecond which is used to increment the clock counter� Time

�



readings at each node are performed simply by accessing the value of this clock

counter� While the oscillating frequencies of various clock oscillators are expected

to be the same� in practice they do di	er� making two clocks drift with respect to

each other� or to the global clock� which is considered to be perfect�� Furthermore�

since the frequency of the crystal can also �uctuate over time depending on

external factors such as temperature changes� the local clock at a node is further

a	ected� It is not uncommon to have drift rates of say �� parts per million ���

PPM or ���� ����� for the clocks used in most PCs� As a result� local clocks�

with typical drift rate in this range� cannot be used to achieve global synchrony

without additional steps� We note while that most local clock systems permit

the modication of the clock counter� they rarely� if ever� support the adjustment

of the oscillating frequency�

Local clock synchronization is one way to achieve the desired globally syn�

chronous behavior� Here� the local clocks at each node are synchronized with

each other� usually by modifying the clock counters accordingly� such that a time

reading by one local clock will not di	er by more than some xed amount from

that read by another local clock at any given instance� More specically� one of

the local clocks will be synchronized with an attached �external clock�� and the

remaining nodes will synchronize with this special node� External clocks such

as a Cesium clock or a GPS clock are considered to be highly accurate in that

their drift rates are very small �� ����� ���� over time compared to the global

clock� With clock synchronization� local time then becomes in e	ect equivalent

to global time� There are� however� various drawbacks to the clock synchroniza�

tion method� Highly accurate clocks are expensive� and can add to the cost of

�By perfect� we mean a clock which maintains the true real time� e�g� UTC�
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the hardware node� Also� the signals have to propagate from the master clock

to the local clock� taking nite amount of time and contributing to some degree

of temporal uncertainty� Some approaches depend on a certain network charac�

teristic such as a symmetric latency� a broadcast medium� or a bus structure�

The existence of one or more external clocks� acting as master clocks to which

the remaining local clocks synchronize to� also implies a centralized scheme� Ad�

ditional complexity are incurred when these master clocks �or the nodes they

are attached to� fail and
or when the network has to recongure in order to

select
locate another master clock�

��� Contributions

In this dissertation� we introduce a new method for achieving global synchrony in

a distributed system� Our technique� called the Cyclone Network Synchroniza�

tion �CNS� scheme� does not require the local clocks to be synchronized� CNS

relies on the ability of each node to send data at a time of its choosing� Such

data are sent at regular interval� with the next instance being determined based

only on the local information available at the node� Once the scheme converges�

the interval for all nodes becomes exactly the same� supporting a synchronous

operation across the whole network� CNS takes into account the nite preci�

sion arithmetic and measurements it has to use� while still maintaining global

synchrony with very small jitter values� The scheme can be used for event coor�

dination in synchronous high�speed cyclic networks such as Cyclone ����� where

timing knowledge of all network resources such as bu	er sends and receives must

be available a priori� in order to provide real�time and
or quality of service guar�

antees� CNS provides the following innovations and advantages over traditional

�



clock synchronization approaches�

� In CNS� the local clocks are free�running� and thus can drift at their own

rate� There is no synchronization of these local clocks� either among them�

selves or with external clocks�

� Since CNS does not perform clock synchronization� it does not incur any

overhead in message passing required for this task� and is therefore ex�

tremely light�weight� Synchronization among the nodes is achieved solely

based on the regular periodic network tra�c�

� CNS is a decentralized scheme which is highly scalable� with no special

distinction between the di	erent nodes� All of them execute the same set

of instructions� In case of a node failure� there is no need to recongure the

network� as is usually the case with approaches using a centralized setup�

� CNS does not depend on specialized or expensive hardware components

����� and can be implemented using standard ones �e�g� timestamp counter��

The algorithm also does not assume any particular network characteristic

such as a broadcast medium or a bus topology� In addition� there is no

symmetric latency requirement �where the latency on the forward path is

the same as that of the return path between any two nodes� or bidirectional

connection requirement�

� CNS can provide a very high degree of synchronization accuracy� which

is not dependent on the drift rates of the local clocks� as is the case for

most existing clock synchronization approaches� The algorithm can tolerate

jitters associated with both clock drift values as well as latency values�
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��� Organization

The remaining chapters of the dissertation are organized as follow� In Chapter ��

because the CNS scheme was developed as part of the Cyclone project� we brie�y

describe aspects of the Cyclone architecture that are relevant to the presenta�

tion and discussion of CNS� In Chapter �� we rst provide the intuition behind

the working principle of CNS� We assume a distributed computing system with

innite precision and negligible latency delay� and show how timing on such sys�

tems can be synchronized without the need for highly accurate clock or expensive

hardware� We then remove these assumptions� formally describe CNS in details�

and provide an analysis of the convergence behaviors of the scheme� In Chapter

�� two enhancements to the basic scheme that help facilitate the implementation

on actual hardware are discussed� In Chapter �� we present our simulation re�

sults� showing the degree of accuracy that can be achieved with CNS� even in

the presence of clock and latency perturbations� In Chapter �� we compare and

contrast CNS with some current clock synchronization approaches� Finally� the

concluding remarks and opened questions are presented in Chapter ��
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Chapter �

Background and Motivation

In this chapter� we present a brief overview of the Cyclone Network ����� describe

aspects of its design that are relevant to the dissertation� and demonstrate why

the synchronization provided by the CNS scheme is a critical part of the overall

Cyclone architecture� Our objective is to show that Cyclone is an example of the

type of network that can benet from using a scheme such as that of CNS� as

well as being the motivation behind its development�

��� Cyclone Technology

A large number of performance problems that computer networks su	er today

are the consequence of resource contention at network nodes� This contention

is a direct result of resources requested by the tra�c and resource allocation

policies employed at the nodes to handle the tra�c� The current practice is to

use on�demand� priority�based� and event�based management� which inherently

leads to resource saturation� congestion� loss� and jitter problems� An alterna�

tive is to use time�based resource management� Cyclone technology� designed

end�to�end in time�based manner� carries out time�based resource management

in a synchronous manner� Any connection that exploits time�based resource
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management of Cyclone� called scheduled tra�c� reserves the use of resources in

time and space� As a consequence� there are no losses� jitters� or contentions

for any resources� In order for time�based approaches to function properly on

the components of a network� a high degree of synchronization is essential� The

CNS scheme proposed in this dissertation meets the need of these time�based

approaches� Note that CNS can also be used in other networks which may not

have the exact same characteristics as Cyclone� yet still have a need for accurate

timing requirements �e�g� Sonet ����� DTM �����

��� Components

A Cyclone network consists of a collection of nodes� called Cyclonode and con�

nected via unidirectional links� operating in a strictly time controlled manner� In

Cyclone� the tra�c with strictly dened timing requirement is called scheduled

tra�c� Each connection carrying scheduled tra�c goes through connection es�

tablishment and tear down processes� In addition� Cyclone also handles tra�c

without timing requirement� called on�demand tra�c� Incoming data are tem�

porarily placed in a bu	er� The operations of an outgoing link are controlled by

a calendar maintained at a node� Entries in the calendar specify the time and

the location of the data that has to be moved during that time�

For the Cyclone network� there are two invariant quantities� a chunk and a

period� A chunk is dened in terms of a xed number of bytes� and a transmission

period is dened in terms of a xed length of time required to send a xed

number of chunks� In order to simplify the design of Cyclone network� all data

is organized� managed� and moved in terms of chunks� and all operations at a

node are organized in terms of a period� Chunks arriving at a node may have to
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wait in a bu	er for transmission on an outgoing link� Conceptually� a bu	er is

partitioned so that each partition� called a slot� can store one chunk� Consider

continuous writing of chunks into sequential slots of a bu	er� We can then assign

a unique time instance to each slot based on the time at which the writing of

data in the slot begins� The time associated with each slot is referred to as the

time tag of the slot� The time tag di	erence between any two consecutive slots

is called a slot time� which clearly depends on the speed of the link�
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Figure ���� Cyclonode

Figure ����a� shows the basic structure of an m x n cyclonode� which consists

of two parts� a switch and a controller� For each incoming link� a slot bu�er is

assigned so that arriving chunks are stored in successive slots of the slot bu	er

that is treated as a circular bu	er� For each outgoing link� there is a pointer

bu�er� each entry of which stores the address of a slot in a slot bu	er� The free

slot list maintains the list of slots that are not scheduled� The next free slot is

the rst entry in the free slot list� On�demand tra�c and control chunks utilize

unscheduled slots of the outgoing link of interest� A marker checker checks the

rst byte of a chunk� the marker� as it arrives at a node� The node carries out
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di	erent actions based on the type of the chunk� The switch handles communica�

tions with the controller in the same way it handles an incoming and an outgoing

link by maintaining appropriate bu	ers for them� The controller is responsible for

processing control chunks� managing connections� handling failure� maintaining

routing information� and maintaining synchronization�� Figure ����b� shows the

basic design of an m x n temporal regulator consisting of three parts� a host� a

switch� and a controller� A temporal regulator is a cyclonode with a host attached

to it� The way the switch handles communications with the host is identical to

the way it handles communication with the controller�

��� Operations

����� Transfer of Data

����slot
buffer

pointer
buffer

free
slot
list

marker
checker

incoming link

outgoing link
next free slot

pointer

Figure ���� Data Transfer

The pointer bu	er is essentially the schedule for the outgoing link� Each slot

in the pointer bu	er contains the pointer to the slot bu	er whose content has to

be moved by the outgoing link at the time corresponding to the time of that slot

in the pointer bu	er� Once that time has elapsed and the switch has taken the

appropriate actions� the content of the slot in the pointer bu	er is updated to

re�ect the time that the slot is to be used again� The free slot list is updated

�This includes performing the operations required by the CNS scheme�
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to re�ect the usage of time slots on the outgoing link when the pointer bu	er is

updated� The next free slot pointer also advances to the next unscheduled time

slot on the outgoing link� When a scheduled tra�c chunk arrives� no further

action is required since there already is a pointer set up in the pointer bu	er of

the outgoing link for this scheduled chunk�

When the controller is ready to send a control chunk on an outgoing link� it

rst identies the outgoing link to use� The controller checks if there is available

slot in the pointer bu	er for the outgoing link� It then writes the chunk in its

slot bu	er� Otherwise� the controller keeps the chunk in its internal bu	ers� As

described in Section ���� one time slot in each period is reserved for control chunks�

use only� The controller makes an entry in the pointer bu	er of the outgoing link

using reserved slot or the next free slot whichever comes rst� When the host is

ready to send� it writes the chunk into its slot bu	er� Thereafter� the operations

are the same� When a chunk arrives for the host� it is handled in the same way

except that the pointer bu	er for the host is used instead of a pointer bu	er of

an outgoing link�

����� Scheduling

In scheduling� each Cyclonode carries out all operations with respect to its view of

time �i�e� according to its local clock�� Cyclone technology completely supports

such local views� The only requirement is that the variability in the phases of

the local clocks as seen by the node be bounded and known to the node��

Figure ��� shows the time line of an incoming link �a� and examples of time

lines of two possible outgoing links �b�c�� A bit arriving at a node via this link is

�This is a function of the CNS scheme�
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Figure ���� Timeline

eligible for outgoing transmission after �� where � � �� The value of � �or �� is

selected taking into consideration the clock jitter and hardware characteristics�

The value of � may not be the same as � when incoming and outgoing link speeds

are di	erent� Thus the chunk in Figure ����a� can be scheduled for transmission

as early as the �nd time slot in Figure ����b�� However� the �rd time slot in Figure

����c� is the rst time slot available since the �nd time slot ends before the later

portion of the chunk becomes eligible�

Recall that there is nite bu	er space for each incoming link� and the bu	er

space is used circularly to store chunks� Therefore� a chunk must be removed from

this bu	er within the number of time slots corresponding to the nite bu	er space�

Once the rst chunk of a period is scheduled on the outgoing link� all subsequent

chunks for this connection within this period must be scheduled within the num�

ber of time slots corresponding to the bu	er size� When a new request comes�

the calendar of the outgoing link is examined taking into account scheduling con�

ditions described above� For each incoming slot in the request� the rst available

and eligible slot for outgoing transmission is assigned� This is consistently done

for the available bu	er space�
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��� Synchronization

From the description above� it is evident that accurate timing is an important� if

not the most important� aspect of the Cyclone network� especially since routing

information are encoded implicitly in the arrival and departure time of a chunk� If

the Cyclonodes are not su�ciently synchronized� and the arrival time of a chunk

is miscalculated� there will simply be no way to determine this error after the

fact� If chunk N arrived at the wrong time� say at the time when N�� is supposed

to be arriving� then chunk N will simply be routed to where chunk N�� would

have been sent� To make matter worse� this timing error will cascade indenitely

from this point onward �e�g� chunk N�� will be sent to where chunk N�� would

have been sent� etc��� as the Cyclone network is simply not designed to handle

this type of timing failure�

Accurate timing is also important when it comes to the scheduling of re�

sources� or bu	ers� at a Cyclonode� The more precise the timing� e�g� if we know

a chunk is scheduled to arrive between ���� and ���� instead of between ���� and

����� the more �exibility we have in making reservations in the calendars� e�g� we

can schedule this chunk to be sent out anytime after ���� instead of having to wait

until after ����� Better schedules can translate to potentially more connections

being accepted at setup time and smaller end�to�end delays in the network� In

particular� the � value shown in Figure ����a� should be as predictable as possible�

so that the timing relationship between the incoming and outgoing links can be

established ahead of time�

By using the Cyclone Network Synchronization scheme present in this disser�

tation� each Cyclonode can coordinate with all the other nodes in the network the

time at which chunks are scheduled to be sent and received within a period� For
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synchronization purposes� we introduce the concept of a cycle� which consists of

the data transmission period� followed by an adjustment gap �Figure ����� Since

the chunks in a given cycle are transmitted back to back� and since a Cyclone

node will determine when to transmit on its outgoing links ��outgoing cycles���

each node only needs to determine the time when the rst chunk of a cycle will

arrive on each of its incoming link ��incoming cycles��� The arrival
departure

time of the rst chunk in a cycle is also referred to as the start time of that

incoming
outgoing cycle�
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Figure ���� Cycle

Conceptually� the CNS scheme allows each Cyclone node to �i� determine the

start times of all the incoming cycles� and based on these info� �ii� determine

an appropriate start times of all the outgoing cycles� This is done by modifying

the adjustment gap in each cycle accordingly� such that the resulting cycle length

�period plus adjustment� is exactly the same across the entire Cyclone network� as

measured by the global clock� Specically� let C denotes the cycle length and let

P denotes the length of the data transmission period� Since P is the time requires

to transmit a xed number of chunks� its value as measured by the local clock at

each node will be the same� In terms of the global clock time� however� P will

vary from node to node due to the di	erent clock drift rates� In contrast� once

��



convergence has been reached� the C value� though di	erent at each node when

measured in terms of the local clock� will be the same value when considers in

terms of the global clock� This is how �global synchronization� is thus obtained

by the CNS scheme�

Finally� we note once again that� in CNS� only locally available information are

used� in the sense that there is no explicit exchanging of global information by the

nodes� Furthermore� the synchronization scheme has to work despite the fact that

the clocks on the individual Cyclone nodes are free�running and not synchronized

in any way� are not required to be highly accurate �e�g� Cesium clocks�� and can

potentially drift at di	erent rates �although for practical operations we do require

that the clock jitter� or drift rate perturbation� be bounded��
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Chapter �

Description and Analysis

In this chapter� we give a detailed description of the basic algorithm in the Cy�

clone Network Synchronization scheme� We begin by specifying the network and

the clock models� We then provide an high�level overview of the algorithm as

well as the intuition behind its working principle� Next� we formally state the

algorithm� and follow with analysis on both the converged cycle length as well as

the convergence behavior�

��� Network Model

We assume that nodes are connected with point�to�point uni�directional links�

Operations on any particular node are controlled by the clock local to that node�

The clock drift rate is not known to the node� All links send or receive continu�

ously� and that a node can record the arrival time of any bit� as reported by its

local clock��

We assume that the graph that represents the Cyclone network topology is

connected� i�e� that there is a path from any node to any other node� Network

�Our algorithm actually only depends on the ability of each node to record the arrival time

of the �rst bit in each incoming cycle�
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topology naturally introduces the concept of neighbors� We call node j a neighbor

of node i� and write j � i� if there is a link from node j to node i� The

neighborhood of node i is dened as the set

Ui � fj � j � ig � fig�

Note that we include i itself in the set of its neighbors� We denote the latency

of the link j � i by lji� Finally� if there is both a j � i as well as a i �j links�

lij may not necessarily be the same as lji �i�e� there is no symmetric latency

requirement��

��� Clock Model

Our analysis requires consideration of clock readings in several contexts� local

clock times� global clock time� and relations between clock times at neighboring

nodes� We let sij�k� denote the start time of cycle k on node j� as interpreted

by the clock on node i� In general� our clock notation follows the following

conventions�

� The superscript indicates which clock is recording the given interval or event

of interest�

� The subscript indicates the node on which the event occurred�

� The �argument� provides the cycle number� The network begins operations

with cycle �� although we do not require that all nodes start operating at

absolute time ��

� An absence of a superscript indicates an absolute �also called global� time

reading�
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Every cycle� C� consists of a data transmission period �or simply transmission

period�� P � followed by an adjustment gap� Y � We set the initial value of C to

be equal to P �thus Y is ��� or slightly longer if we assume the computations

performed by CNS takes a non�zero amount of time� In addition� we dene

the kth observation period to be the interval consisting of adjustment period

k � � followed by transmission period k� Since every node can record the arrival

time of any bit on its input links� information about the length of a cycle at

any neighbor can be collected by observing consecutive start times of the data

transmissions received from that neighbor� with discretization errors due to nite

clock granularity�

Our clock model assumes a constant drift rate� Specically� we assume that

an interval of length �ti as measured by clock i is related to the absolute time

�t according to the relation

�ti � ri�t� �����

where the clock drift rate ri is xed for each i� We assume that link latencies are

xed as well� Although in practice� there can be perturbation in the latencies�

these are so small that over the length of a single cycle the e	ect is negligible� Any

long term e	ect caused by the perturbation will be corrected by the algorithm�

Similarly� clock drift rate variations will have a second order e	ect� Again� this

variation is small and slow enough so that the algorithm corrects for it� Assuming

static latencies and clock drift rates allows us to provide a static analysis of the

behavior of the synchronization algorithm�
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����� Clock Drift Rate Ratio

In the absence of a global clock� it is impossible for nodes to determine individual

clock drift rates� They can� however� determine clock drift rate ratios� Speci�

cally� an interval of absolute length �t is measure as �ti � ri�t on node i and

as �tj � rj�t on node j� Thus

�tiri � �t
jrj�

or equivalently

�tj �

�
rj
ri

�
�ti� �����

��� Overview and Intuition

The working principle of the algorithm is straightforward�

Assume there are N nodes in the network� For i � �� �� � � � � n let Di be a constant

with magnitude on the order of the desired cycle length C� During steady state

operation of the algorithm� node i records the start times �if any� of all incoming

cycles it receives from its neighbors during observation period k� Node i sets the

start time for cycle k � � to the average of these neighbor start times �including

its own� plus the 	xed value Di�

����� Averaging Clock Drift Rates

Intuitively� CNS is an averaging algorithm� and the values we are taking the

average of is basically the clock drift rates� the r values� Let �i be a value

maintained and updated by each node using the following relation after every
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cycle�

�i�k� �
riav�k�

ri

where riav�k� is the current estimate of the average value of r by node i�

In order to show the way the algorithm works� let us take a look at the actions

taken by node i in deciding the value of the next cycle length after its current

cycle of length Ci�k�� Let us assume that the node i has n incoming connections

from nodes x� y� z� � � � � It calculates the new value for the cycle Ci�k � �� as

follow�

Ci�k � �� �
nh

�
Ci�k�

� �
Cix�k�

� � � �
i �����

The scheme starts by each unit setting Ci � C�

We observe that the values of the cycle lengths converge to a constant time

value� as measured by the global clock� In order to see how these computations

work� let us see the rst few steps for the two node direct�connected case �nodes

i and j��

We start by setting �i � �j � �� Since we normally want C
i � C

�i
� we initially

set Ci��� � Cj��� � C� Note that Ci
j �

ri
rj
Cj � ri

rj
�C
�j
�� Thus when we use

Equation ����� to calculate the new value� we get

Ci��� �

�
�

�
Ci���

� �
Cij���

�

�

�
�

�i���
C
�

�j���rj
riC

�

�

�
�Cri
ri � rj

�

Thus �i��� �
ri�rj
�ri
� The general expression can thus be written as

�i�k � �� �
riav�k� � rjav�k� � � � �

nri
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At the kth cycle� the value of � at any node represents the average of the rav�k�

terms for the nodes connected to it on the incoming link� as modied by its own

drift rate� In a connected network� the numerator in this expression converges

to the true average of the drift rate for all of the nodes� Thus the value of � for

each node converges to a constant adjusted for its own drift rate�

����� Finding Eigenvalues

Another way of looking at the convergence properties of the CNS scheme is to

take a look at the way the average is getting computed above� We can represent

the topology of the network as a stochastic matrix� H� in which the �i�j� term

is non�zero if there is a link from node i to node j �this includes the �i�i� term��

The non�zero value is set to ��m if there are m incoming links to node j �i�e�

we normalize H�� Let there be n nodes in the network� Then H is an n by n

matrix� Let R��� represents an n vector whose components represent the actual

drift rates of the corresponding nodes� We calculate

R�k � �� � HR�k�

� Hk��R���

Since H is a stochastic matrix� its largest eigenvalue is one� The computation

converges to the eigenvector which will have all components equal to the average

value of the n drift rates ���� The rate of convergence in this case is determined

by the second largest eigenvalue� If we consider a fully connected network� then

the second largest eigenvalue is zero and the computation converges in one step�

We note that the convergence in this case is exponential and monotonic�

In the description above� we have presented the convergence property of CNS

in terms of the drift value r� and how as the rav values at each node becomes the
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same� the cycle length will become the same as well� This can also be achieved by

making the new cycle length to be the average of the incoming cycle length� We

note that this process goes on based strictly on the cycle length measurements

made at a node according to its local clock� The scheme still converges to a

constant cycle length as measured by the global clock�

��� CNS Algorithm

In our overview discussion� we had assumed that the delays caused by latency

values are negligible� such that cycle start times will arrive in the same cycle

they are sent out at� When realistic link latencies are considered� and a start

time may take multiple cycles �possibly hundred or thousand� to arrive at its

destination� the averaging algorithm would still converge� but this time to a

value that is dependent in part on the latency values� The inclusion of the Di

value into the algorithm is specically designed to counteract this� removing any

dependency of cycle length on latencies� Simulations performed by not including

the Di values have shown that the converged cycle length could end up being

�� longer than the initial desired cycle length� Di e	ectively helps to keep the

padding or waiting time to a minimum� In addition� we had also assumed that the

arithmetic operations have innite precision� If we wish to reduce the complexity

of the CNS scheme so that it can be implemented on relatively simple hardware

components� this may not be possible ����� Subsequently� when calculations are

performed with nite precision� one then has to be concerned with round�o	

e	ects� and specically in making sure that these values do not accumulate over

time� For example� while the cycle lengths may be only a fraction of a clock tick

apart� over the period of a few thousand or million cycles� these minor di	erences
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could desynchronize the whole system if allowed to accumulate and not properly

accounted for� In our formal description of the algorithm presented below� as

well as in our simulation results given in a subsequent chapter� both of these

assumptions have been removed�

The algorithm consists of two phases� an initialization phase during which the

Di are the same across all nodes� and the primary operation phase during which

the Di values di	er from node to node� Operation in both phases is identical

except for the change in Di value!the purpose of the initialization phase is to

allow the algorithm to converge to a steady state during which Di values can

be determined� Conversion from initialization to primary operation phase does

not require synchronization among the nodes� but can instead take place over the

course of several �even thousands of� cycles with some nodes in initialization mode

and others in primary operation mode� In practice� nodes can be programmed

to switch from initialization to primary operation at a specic �local� cycle�

Formally� the algorithm is as follows� Let s�k� �with appropriate subscripts

and superscripts� denote the start time of cycle k� Ui denote the set of neighbors

of node i� and jUij denotes the cardinality of Ui�

Initialization Phase

�� Each node initially transmits for an interval of P time units� as measured

by its local clock�

�� At the end of the kth transmission period� each node sets the start time

of transmission period k � � to the average of all the start times observed

�if any� and including its own� during observation period k� plus the xed

value C� That is�
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sii�k � �� � C �
�

jUij

X
j�Ui

sij�k� �����

The adjustment required to change the start time of the subsequent cycle

is �absorbed� by the adjustment period�

�� Once a predetermined cycle instant� called the alpha cycle or point� is

reached� the nodes start observing �for several cycles� say k in K� the dif�

ference�

vi�k� �
�

jUij

�X
j�Ui

sij�k�

�
� sij�k� �����

between the average start time of its neighbors �including itself� during a

cycle and its own start time during the same cycle� Di is then dened by

Di � C �
�

jKj

X
k�K

vi�k� �����

Once Di has been computed� the node moves into primary operation mode�

The value of Di remains xed until either the network goes o"ine or a

complete restart is required� in which case the nodes start the process all

over again beginning with the initialization phase� In Equation ����� above�

we require that K satises the criteria

K �
max�lji� �j � Ui

C
�����

as this will ensure that the latency will be accounted for when Di is nally

computed�
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Primary Operation Phase

�� At the end of the kth transmission period� each node sets the start time of

transmission period k� � to the average of all start times observed �if any�

and including its own� during observation period k� plus the xed value

Di� Assuming that start times are received from all neighbors during each

cycle� we have

sii�k � �� � Di �
�

jUij

X
j�Ui

sij�k� �����

Figure ��� shows a summary of the cycle length computation performed at the

di	erent phases� The interval from the start until the alpha point is to allow the

nodes to spread the initial or default drift values around the system �using Ci�

which is C according to the node�s local clock�� Once this is done� the next step is

to compute the value vi �which will ultimately be used in the computation of Di�

for K cycles� The reason we require that K satises Equation ����� is to ensure

that the vi �Di� computation takes into account the latency delays� At the end

of the K interval� we replace Ci with Di in the next cycle computation� and use

the new formula from this point onward�

�

�

� �
�
��

A
AU

�� �Initialization Phase

Start

vi are computed

Di is computed
K

alpha point

Primary Operation Phase

Next � Avg � DiNext � Avg � Ci

Figure ���� Phases of the algorithm�
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��� Analysis

We assume initially that link latencies are small enough that in steady state

operation� start times of the kth transmission period are observed during the kth

observation period� In practice� the start of the kth cycle on one node may not

be observed on a neighboring node until several hundred cycles later�

We begin our analysis with a look at the core algorithm� setting the start time

of a cycle to the average of the previous start time plus a xed �and possibly

node specic� constant� So� for each integer i � ��� N � let Mi be xed and

assume in addition that theMi values are relatively close
�� Consider the following

generalization of Equation ������

sii�k � �� �Mi �
�

jUij

X
j�Ui

sij�k�� �����

This can be written in terms of absolute time as

si�k � �� �
Mi

ri
�
�

jUij

X
j�Ui

�sj�k� � lji�� ������

This can also be expressed in matrix form� Specically� let H be the adjacency

matrix that captures the network topology�

Hij �

����
���
�� j � Ui

�� otherwise

�This assumption is not necessary if we allow the stretchable adjustment period length to

be as large as necessary to run the algorithm� That is� we need the adjustment period to be

long enough to allow a node to set the next start time to the value dictated by the algorithm�
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Using H� Equation ������ can rewritten as

si�k � �� �
Mi

ri
�

�P
jHij

X
j

Hij�sj�k� � lji�� ������

If we dene the stochastic adjacency matrix G by

Gij �
HijP
jHij

�
Hij

degree of node i
� ������

where the degree of node i includes the count of the self�loop� then Equation

������ becomes

si�k � �� �
Mi

ri
�

NX
j��

Gij�sj�k� � lji�� ������

where N denotes the number of nodes in the network� Let S�k� denote the N��

column matrix whose entries are the si�k�� M denote the N � � column matrix

whose entries are the M�ri� and L denote the N �M matrix whose ij entry is

lij� Finally� dene diag�A� for an N �N matrix A to be the N � � matrix whose

ith entry is Aii� Then Equation ������ can be rewritten as

S�k � �� � GS�k� � diag�GL� �M ������

A closed form solution for this Equation is

S�k� � GkS��� �
k��X
i��

Gi�M � diag�GL�� ������

where k is any non�negative integer� Cycle lengths can be determined by looking

at the di	erences of successive start times�

S�k � ��� S�k� � �Gk�� �Gk�S��� �Gk�M � diag�GL��� ������

Now we show in Section ��� that under our network topology assumptions�

the powers of G converge to a stochastic matrix Q� all of whose rows are identical�

Thus�

lim
k��

�S�k � ��� S�k�� � Q�M � diag�GL��� ������
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Since the limit is a column vector in which all entries are the same� cycle lengths

converge to the same absolute length at each node� In addition� and perhaps

more important� once the algorithm has reached steady state� start times remain

locked relative to the start times of neighbor nodes� That is� there is no phase

shift�

In the initiation phase of the algorithm� the value of each Mi is C� and in

the primary phase Mi � Di� so the above analysis shows that the algorithm

converges in both phases� and that the rate of convergence is determined by the

rate of convergence of the powers of G� In addition� the limiting cycle length

depends in part on diag�GL�� which is a term that captures the e	ects of link

latencies� Specically� �diag�GL�i� � �GL�ii� Since the jth entry in the ith row

of G is nonzero if and only if j is a neighbor of i� and ith row of G e	ectively lists

the neighbors of i� The ith column of L on the other hand� lists the latencies

from neighbors of i into i� Thus �GL�ii �and �diag�GL�i�� is the average of link

latencies on links toward i�

As mentioned earlier� our denition of Di is designed to counteract this de�

pendence on link latencies� To simplify the analysis in this case� assume that the

set K in Equation ����� consists of the single value �� Then Di is dened by

Di � C � sii����
�

jUij

X
j�Ui

sij����

Substituting this into Equation ����� gives

sii�k � �� � C � sii����
�

jUij

X
j�Ui

sij��� �
�

jUij

X
j�Ui

sij�k��

In absolute terms� this becomes

sii�k � �� �
C

ri
� si����

�

jUij

X
j�Ui

�sj��� � lji� �
�

jUij

X
j�Ui

�sj�k� � lji�
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Moving to matrix notation� the analogue of Equation ������ is

S�k � �� � C �G S���� diag�GL� �G S�k� � diag�GL� � S���

� C � �I �G�S��� �G S�k��

The corresponding closed form solution is

S�k� � S��� �
k��X
i��

GiC�

so

S�k � ��� S�k� � GkC � QC�

The limit in this case is a weighted sum of the C�ri and is independent of the

values of the link latencies�

If clock drift rates are required to satisfy j� � rij � � for some xed �� then

the converged or limiting cycle length� CL� satises

C

� � �
� CL �

C

�� �
� ������

A realistic value for � is ������� which corresponds to clocks that are accurate to

��� parts per million� For ��� �s cycle lengths� this guarantees a limiting cycle

length between �������� �s and �������� �s� or less than one hundredth of a

percent deviation from the desired length�

It is natural at this point to question the need for the initialization phase�

since the previous analysis set Di values according to the observed start time for

the rst cycle� In practice� start times for neighbor nodes may not be observable

for several cycles� For example� with ��� �s cycles� a �� ms delay corresponds to

�� cycles�
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��� Convergence Behavior

Given that the rate at which the algorithm reaches steady state depends on the

convergence properties of Gk� we need to determine the conditions under which

Gk converges� the limit when it does converge �and the sense in which we mean

�limit��� and the rate of convergence�

We begin with the issue of the conditions under which Gk converges� G

is a nite stochastic matrix� and thus it must be the transition matrix for a

nite Markov chain� Specically� let G be the graph that represents the topology

of our Cyclone network �including self�loops�� and consider the Markov process

corresponding to a �traveler� moving randomly �along edges of G� from node

to node on G� with the system in state Si at a particular time epoch if the

traveler is located at node i during that epoch� G is the transition matrix for

this nite Markov chain� Because G is connected and contains self�loops� the

Markov chain is ergodic �irreducibility follows from being connected� aperiodicity

from the self�loops�� Among other properties� ergodicity guarantees that the

powers Gk approach a matrix Q� in the sense that each entry of Gk approaches

the corresponding entry of Q ���� ���� Moreover� each row of Q is the same

positive probability vector W � where W is the unique probability vector such

that WG � W � Equivalently� if W � �w� w� � � � wN �� then the wi are uniquely

determined through the system of equations

NX
i��

wi � �# wj �
NX
i��

wiGij� j � �� �� � � � � N�

Since wi represents the �long term� probability that the system is in state i� it

is fairly intuitive that each wi should be given by

wi �
degree of node i

number of nonzero entries of G

��



where the degree of a node includes a count of the self�loop� A straightforward

calculation veries this result� To simplify notation� we will refer to the number

of nonzero entries of G as the degree of G� denoted degree�G�� and denote the

degree of node i by degree�i�� so that

wi �
degree�i�

degree�G�
�

Given this value of the limiting matrix Q� the limiting cycle length L is given

by

L �
NX
i��

wiCi��� �
NX
i��

degree�i�

degree�G�
Ci��� ������

Since the initial cycle for node i has length �in absolute time� of C�ri� we have

L �
NX
i��

degree�i�

degree�G�

C

ri
������

Thus L is� as stated earlier� a weighted average of initial cycle lengths�

Determining the rate of convergence is relatively straightforward in theory�

the powers of the transition matrix of an ergodic Markov chain converge at a rate

related to the moduli of the eigenvalues of the matrix� This can be observed by

considering the spectral representation of G� Specically� the �positive integral�

powers of a diagonalizable stochastic matrix G are given by

Gk � Q� �k�A� � �k�A� � 	 	 	� �kmAm ������

where the �i are the non�one eigenvalues of G� Q is the limit of the powers of G�

and the Ai are di	erential matrices �i�e� each row of the matrix sums to zero�

satisfying the following�

�� AiAj � AjAi � � if i 
� j

�� Ak
i � Ai� � � i � m� k � �� �� � � � �

�� AiQ � QAi � �� � � i � N�

��



�� kAik � �� i � �� �� � � � � m�

Viewed in this form� it is clear that Gk converges at the same rate as the largest

of the moduli of the �i� We refer to an eigenvalue with the largest moduli as a

�submaximal� eigenvalue� That is� an eigenvalue is submaximal if its absolute

value is equal to the maximum of the moduli of the set of non�one eigenvalues

�note that � is an eigenvalue of any stochastic matrix� and that Q would be the

corresponding matrix in the spectral representation�� Since Gk converges� it is

clear that the moduli of the �i must be less than one� This also follows from one

form of the Perron�Frobenius theorem which also asserts that the eigenvalue one

has multiplicity one �����

The matrix G corresponding to the networks under consideration here is di�

agonalizable� To see this� consider the non�normalized adjacency matrix H cor�

responding to G� Because all links in the underlying network are bidirectional� H

is symmetric� and thus diagonalizable �and all of its eigenvalues are real�� Nor�

malizing �as dened by Equation ������� amounts to multiplying H on the left

by a diagonal matrix D with strictly positive diagonal entries� Such a D must

be invertible and have an invertible square root� Thus G � DH is similar to

D�
�
� �DH�D

�
� � D

�
�HD

�
� � Since this last matrix is symmetric� G is similar to a

symmetric matrix and thus it is diagonalizable and has only real eigenvalues�

Determining the eigenvalues of a matrix can be di�cult� There are a few

classes of topologies for which an explicit closed form solution for the eigenvalues

can be found� One of these is a complete graph� in which the eigenvalues are easily

seen to be � with multiplicity one �of course� and � with multiplicity N � �� The

star topology is another whose eigenvalues are relatively easy to determine� We

call a graph an N �star if the graph contains a total of N nodes� one �hub� node
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and N�� leaf nodes� It can be shown that the non�one eigenvalues of the N �star

are �
�
with multiplicity N � � and �

N
� �

�
with multiplicity one� Since j �

N
� �

�
j � �

�

for N � �� the submaximal eigenvalue is �
�
� and Gk converges at the rate of O� �

�k
��

Although we are more concerned with upper bounds on convergence rates

of Gk� it is of interest to observe a situation in which a lower bound on the

convergence rate can be computed� Specically� if each node in G has degree

m� then each nonzero entry of G is �
m��

� and trace�G� � N
m��

� Now� the trace

of a matrix is equal to the sum of its eigenvalues� so since � is an eigenvalue of

multiplicity one� the sum of the remaining eigenvalues is N
m��

�� � N�m��
m��

� Let �

be a submaximal eigenvalue of G� In order for the sum of the non�one eigenvalues

to equal the expression above� we must have

�N � ��j�j �
N �m� �

m� �

or equivalently

j�j �
N �m� �

�m � ���N � ��
�

Thus� the fastest that Gk can converge in this case is at the rate of�
N �m� �

�m � ���N � ��

�k

�

Finally� if we allow graphs with unidirectional links� then in terms of conver�

gence� a worst case is a �one way� ring� for which the modulus of the base p

in the exponential convergence rate pk can be made arbitrarily close to �� Al�

though this shows that convergence rates can in theory be relatively slow� this

is not a practical limitation� As our simulation results show �for a bidirectional

ring!a situation for which computing closed form expressions for eigenvalues

can be daunting�� convergence rates will generally be slower than more favorable

topologies� but still well within tolerable limits�
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��	 Summary

In this chapter� we formally describe the algorithm used by the Cyclone Network

Synchronization scheme� and provide the intuition behind its working principle�

An analysis on the converged cycle length shows that this length is dependent only

on the clock drift rates� and not on the latency values� In addition� simulation

results present in a subsequent chapter of this dissertation will also show that

the algorithm converges in a very short amount of time for a variety of network

settings�
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Chapter �

Enhancements

In this chapter� we discuss two enhancements to the basic algorithm that help

facilitate the implementation of CNS on actual Cyclonode hardware in a Cyclone

network� The rst deals with minimizing the number of bu	ers needed at each

Cyclonode� The second allows �new� nodes to join an existing Cyclone network

or �current� nodes to leave an existing Cyclone network�

��� Minimize Bu
ering

In Equation ������ the value of k on both sides of the equation are only the same

if the latency is less than one cycle length �at that given cycle�� Otherwise� the

k on the right�hand side is likely to be a few cycles behind the k on the left�hand

side� For example� assuming the latency is equal to � cycle lengths� the start time

of cycle N at the source node will not be visible at the destination node until

cycle N � �� In any case� a node simply �processes� the incoming start times

in subsequent arrival order� If si�k� makes use of sj�l� in its computation� then

si�k � �� will make use of sj�l � ��� and so on�

Because of the di	erent clock drift rates and the initialization phase �where

cycle length at the nodes can vary�� the FIFO processing of incoming start times
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Figure ���� Bu	ering due to di	erent clock drift rates�

can lead to cases where a node� when computing si�k�� will have to depend on

sj values that had arrived at si a few cycle earlier� e�g� at k�N for some values

of N �see Figure ����� This node will therefore have to allocate bu	ers to store

these incoming values until they are processed� Since we do not know at this

time which parameters a	ect or determine the number of bu	ers� we need to

modify the basic algorithm so that this number is bounded� preferably by as

small a value as possible �e�g� � or ��� This is the motivation for the �minimize

bu	ering� modication�

Let C be the desired cycle length as described previously� When computing

si�k � ��� we rst look at the interval between si�k�� C and si�k� � C� i�e� two

�windows� of length C centered at si�k� �see Figure ����� Let sj�l� be the next

unprocessed incoming start time� If sj�l� is within some 	 of either boundary�

then we say that sj�l� has �potentially� �drifted� too much to the right or to

the left� or faster or slower with respect to si�k�� In this case� instead of using

sj�l� as in the original algorithm� we use either sj�l � �� if drifting to the left�

or sj�l � �� if drifting to the right� At the next cycle� we will then use sj�l� or

sj�l � ��� respectively�

Even though we are no longer using sj�l�� we cannot simply use the previ�

ous
next incoming start time value directly when computing the next start time

��
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Figure ���� Two�windows checking scheme to minimize bu	ering�

since that would skew the average either too far to the past �since we have already

used this value� or the future �since we are not supposed to use this value until

the next cycle�� To get around this problem� we add an �o	set� value to each

a	ected link� and either add to or remove from the averaging computation for

the next and all subsequent cycles� such that they are una	ected by our jumping

backward or ahead�

Formally� we modify the basic algorithm in the following way� We dene an

o	set value for each link� oj�j � Ui�� which is initially set to �� Equation ����� is

then modied to take account the o	set values�

sii�k � �� � C �
�

jUij

X
j�Ui

�sij�l� � oj� �����

Let sij�m� be the earliest s
i
j that has arrived� but not yet used in the next

cycle computation by node i� Let W be a window of size �C centered si�k�� Let

E be a small interval of size 	� say �
�� the size of C� at both ends ofW � If sij�m�

does not fall into either E� i�e�

si�k�� C � 	 � sij�m� � si�k� � C � 	 �����

then we let sij�l� be s
i
j�m�� Otherwise� if s

i
j�m� falls into the left E window �i�e�

sij�m� � si�k��C� 	�� then we set sij�l� to be s
i
j�m���� and update oj as follow�
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oj � oj � �s
i
j�m � ��� sij�m�� �����

Similarly� if sij�m� falls into the right E window �i�e� s
i
j�m� � si�k� � C � 	��

then we set sij�l� to be s
i
j�m� ��� and update oj as follow�

oj � oj � �s
i
j�m�� sij�m� ��� �����

Finally� we modify Equation ����� as well to take into account the o	set values�

sii�k � �� � Di �
�

jUij

X
j�Ui

�sij�l� � oj� �����

sij�l� and oj are computed as described above�

��� Adding and Removing Nodes

We now look at how the basic CNS algorithm can be modied to accommodate

topology changes� with new nodes joining or existing nodes leaving a Cyclone

network� We assume that�

� The Cyclone network has reached �steady�state�� where the cycle length

are the same everywhere� as measured by the global clock�

� The Cyclone network is still �connected� after the addition or removal of a

node�

� If a new node is being added� its data transmission period is less than the

steady�state cycle length �both values as measured by its local clock��

��



� If a new node is being added� it can monitor the network for a period

of time to determine the steady�state cycle length before beginning actual

operation� i�e� sending actual data�

Let us rst consider the addition of a new node� say node i� Based on our

assumption� i will be able to determine the steady�state cycle length by listening

on its coming links� If necessary� it can average this value over a number of cycles

since the steady�state cycle lengths can still �uctuate a little due to factors such

as clock drift and latency perturbations and computation round�o	s� Once i is

ready to join the network� it simply sets its cycle length to the average cycle

length it observes on its incoming link�

sii�k � �� � sii�k� �
�

jUij

X
j�Ui

�sij�k�� sij�k � ��� �����

Let j be an existing node in the Cyclone network with an incoming link from

i� Node j now has an extra incoming start time at each cycle� On one hand� it

cannot simply use the incoming start time from i as is since this new addition

will likely cause the average �start time� value in Equation ����� to change� and

therefore changing the �steady�state� cycle length and subsequently throwing the

whole network out of sync� On the other hand� j should not ignore i incoming

start time completely because it should at least take into account any minor

�uctuations in i�s steady�state cycle length� in order to propagate this throughout

the network so all nodes can make the proper adjustments� To satisfy both of

these requirements� we make use of a �node�specic o	set value� in a manner

similar to the way link�specic o	set values are used as described above in the

Minimize Bu�ering section� When j detects i sending data for the rst time� it

factors the initial start time from i� say si� into its node�specic o	set� Subsequent
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cycle length computations at j will then use this o	set value to factor out only

si� but still consider any �uctuations i may have caused�

Formally� we modify the algorithm again in the following way� We dene an

o	set value for each node� p� which is initially set to �� Equation ����� is then

modied to take account the node�specic o	set value�

sii�k � �� � Di � pi �
�

jUij

X
j�Ui

�sij�k� � oj� �����

At any given cycle� when a node detects that one or more new links are

becoming �active� for the rst time� it updates its p o	set value by computing

the average of the incoming start times both with as well as without the start

times from the new links� Let Ui be the set of neighbors including the new links

and let Vi be the set without the new links �i�e� the previous Ui��

pi � pi � �
�

jVij

X
j�Vi

�sij�k� � oj��� �
�

jUij

X
j�Ui

�sij�k� � oj�� �����

We handle the case when an existing node leaves the network in a similar

manner� We factor the e	ect this node would have in the averaging value� such

that subsequent cycle length computations will be carried out as if the node is

still there� This is necessary so that the steady�state cycle length does not change�

Let Ui be the set of neighbors without the removed links and let Vi be the set

with the removed links still left in �i�e� the previous Ui�� pi is computed exactly

as in Equation ������ as we simply swap the role of Ui and Vi when deleting a

node�
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Chapter �

Simulation Results

In this chapter� we provide simulation results� using realistic values for param�

eters� to validate the analysis given in the previous chapter� Specically� the

results show that the converged cycle lengths conformed closely to the results of

Equation ������� They also show how quickly� in terms of the global clock time�

the CNS algorithm converges for various network congurations� And nally�

results showing the behavior of the scheme in the presence of both latency as

well as clock drift perturbations are presented�

��� Setup

We assume that the network operates at �� GHz� with a ��� �s desired cycle

length �or about ���� cycles per second�� We also assume that the granularity of

the timestamp clock is accurate to a within a single clock tick� or ��� picoseconds�

Rate of convergence is measured in terms of the number of cycles the network

takes to reach steady�state �usually in the thousand of cycles when denotes by

K�� Converged cycle lengths �CL�� cycle length jitters� as well as start time o	set

jitters� are all measured in terms of the number of clock ticks� We represent the

clock drift at each node by specifying the r value� the drift rate� and use Equation

��



����� to convert a local time to the global time� or Equation ����� to convert the

between the local times at two nodes� All arithmetic operations are carried out

with nite precision�

Unless otherwise noted� our �baseline� simulation dataset will consist of the

Cyclone network with the following parameters�

� The nominal cycle length of ���� million clock ticks� or ��� �s �this is the

C value��

� �� nodes organized in a �chain� topology �see Figure �����

� Unidirectional links� with latencies being random values between � and ���

million clock ticks �or about �� cycles��

� Clock drift rates between ������ and ������� or equivalent to clocks that

are accurate to about ���� PPM�

� The alpha point in the initialization phase set at the ����th cycle�

� K in Equation ����� set to �����

While we have chosen the above values for our default dataset� we note that

the synchronization scheme itself is not dependent on any specic values� and we

will in fact vary all of the parameters in our simulations�

10 20191 2

Figure ���� ���node Chain Network Topology

The goal of the CNS algorithm is to enable the nodes in the network to reach

�convergence�� or �steady�state�� whereby the limiting or converged cycle length
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satises Equation ������� Note that the converged cycle length� CL� may �uctuate

a little bit due to factors such as nite precision calculation roundings�

��� Convergence Criteria

In our simulations� we use the following criteria to determine if and when a

network has reached convergence� or steady�state� Let TOTAL be the number of

cycles �per node� the algorithm will execute� To be more precise� since the nodes

can have di	erent clock drifts� not all of them will execute for exactly TOTAL

cycles� Instead� the rst node that reaches this limit will terminate the simulation�

Let the cycle denoting the end of the simulation be referred to as CycleTOTAL�

As the simulation progresses� we keep track of two sets of statistic along the way�

However� since we are mainly interested in the steady�state behavior� and not

with the behavior of the network at the beginning while adjustments are being

made� we collect these statistics only from the point where we believe convergence

has been reached� Let CycleCONV be the cycle at this point� and let CONV be

the number of cycles since the start of the simulation up until then� Statistics

are therefore only kept from CycleCONV until CycleTOTAL�

The rst statistic we keep track of is the cycle length �as measured by the

global clock� at each node during the simulation� This value changes for various

reasons as the simulation progresses� We refer to this cycle length di	erence as

the cycle length jitter �CLJ� In addition� for the purpose of aiding in the

calendar scheduling at a Cyclonode� we are also interested in keeping track of

when an incoming cycle will arrive� relative to the start of the local cycle� on all

the incoming links� If there is no �uctuation in the cycle lengths at all of the

nodes once convergence is reached� then an incoming cycle will always arrive at
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exactly the same point relative to the start time at the local node� However�

converged cycle lengths do �uctuate as mentioned above� Subsequently� the time

o�set between the start of an incoming cycle and the start of the corresponding

cycle at the local node will �uctuate as well� We refer to this �uctuation as the

start time o�set jitter �SOJ� Our goal is to make sure that both cycle length

jitter as well as start time o	set jitter are bounded�

LetmaxCycleLeni �minCycleLeni� be the maximum �minimum� cycle length

seen at node i during IntervalCONV � the interval from CycleCONV to CycleTOTAL�

For an incoming link l to a node� let maxStartOffsetl �minStartOffsetl� be

the maximum �minimum� start time o	set �between the start of the local cycle

and the incoming start time on that given link� observed at this node during

IntervalCONV �

We say that the network has reached convergence if the following two criteria

hold true during IntervalCONV

maxCycleLeni �minCycleLeni � 	�

maxStartOffsetl �minStartOffsetl � 	�

�����

for some 	� and 	�� We specify both 	 values to be �� units �or clock

ticks in our simulations� In other words� once convergence has been reached�

the cycle length at each node should be �the same� �according to the global clock��

subjected to some bounded �uctuations or jitters� Similarly� incoming cycles to

a node should always arrive at the same time� relative to the start time of the

corresponding local �outgoing� cycle� We then say that the network converges at

CycleCONV � or that it takes CONV cycles to converge�

We vary CycleCONV accordingly to determine how fast the simulated network

converges�
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��� Baseline Dataset Simulation Output

MCL � minimum cycle length � CLJ � cycle length jitter

MSO � minimum start time o�set � SOJ � start time o�set jitter

Node MCL CLJ MSO� SOJ� MSO� SOJ�

� ������� � ������ �

� ������� � ����� � ������ �

� ������� � ����� � �������� �

� ������� � ������� � ����� �

� ������� � ������ � ����� �

� ������� � ������ � ����� �

	 ������� � ������ � ������ �

� ������� � ������� � ����� �


 ������� � ������ � ����� �

�� ������� � ������ � ����� �

Table ���� Baseline dataset simulation output

Figure ��� shows the partial output of an actual simulation run on the baseline

dataset �the full results can be found in Table A�� in Appendix A�� These numbers

represent the values that were kept during the statistic gathering period �i�e� from

CycleCONV until the end of the simulation�� For each node� we have theminimum

cycle length �MCL� and its di	erence from the maximum cycle length� which is

the cycle length jitter �CLJ�� Similarly� for each incoming link to a node� we

have the minimum start time o�set �MSO� and its di	erence from the maximum

start time o�set� which is the start time o�set jitter �SOJ� �node � has a single
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incoming link from node ��� Of particular interest is the fact that both cycle

length jitters as well as start time o	set jitters are kept to only several clock

ticks� even though our denition of convergence allows to values up to ��� In

addition� the Minimize Bu�ering modication described in Section ��� ensures

that start time o�sets are never greater than the length of one cycle� Without

this modication� simulations have shown that the start time o	set values can be

very large �up to ���cycle length for some of the simulated topologies�� requiring

a signicant number of bu	ers�

��� Cycle Length

We begin by simulating with cycle lengths of ������� and ���������� clock

ticks� respectively� Partial results are shown in Table ��� �the full results can be

found in Tables A�� and A�� in Appendix A�� We can see that in both cases� the

converged cycle length �CL� follows from Equation ������� In addition� the jitter

values �both cycle length and start time o	set� are of the same order of magnitude

as in the case of the unmodied baseline dataset� where C is ��������� clock ticks

�Table ����� Moreover� all � datasets converge at the same rate of about � secs

���K cycles�� These results conrm the fact that the cycle length value does

not a	ect either the convergence rate or the jitter values �which represent the

synchronization accuracy of the CNS scheme��

��



MCL � minimum cycle length � CLJ � cycle length jitter

MSO � minimum start time o�set � SOJ � start time o�set jitter

Node MCL CLJ MSO� SOJ� MSO� SOJ�

C � ����			

� ������ � ����� �

� ������ � ���� � ���	
 �

� ������ � ���� � �����
	 �

� ������ � �����
 � ���� �

� ������ � ����� � 
��� �

C � ����		�			

� �������� � ������� �

� �������� � �����
 � ������� �

� �������	 � ������ � ��������� �

� �������	 � �������� � ������ �

� �������	 � ������� � 
���
� �

Table ���� Simulation outputs for di	erent cycle lengths

��� Network Topology

We now look at how the di	erent network layouts or topologies a	ect the con�

vergence rate� We arrange N nodes �e�g� ��� ��� ���� in a chain �see Figure �����

bidirectional cycle �see Figure ����� star �see Figure ����� and random layouts�

The remaining parameters �e�g� clock drift rates� latencies� etc�� are the same as

the baseline dataset mentioned above�

Here� we would expect the star network to converge the fastest since it has the

smallest diameter �value of �� of all the networks� allowing information such as

��
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Figure ���� ���node Star Network Topology

cycle lengths to propagate around the network in fewer cycles� The chain network

should converge the slowest since it has the largest �longest path� between nodes

� and �� �value of ���� The bidirectional networks is simply the chain with a

connection between nodes � and ��� and therefore should converge at the same

rate or slightly faster than the chain�

We generate the random network using the pseudo�code shown in Figure ����

Since the resulting network is connected and has the minimum number of �bidi�

rectional� edges� it is �minimally connected�� A real�life network with the same

number of nodes would probably be better connected �i�e� have more edges� than

our random network� and thus should converge even faster� In addition to the ���

node� ���node� and ����node networks� we also simulate a ����nodes� ����nodes�

and �����nodes networks �all random� to obtain an idea of how long such a large

network would take to converge�

��



put the N nodes into the set UNCONNECTED
initialize the set CONNECTED to 
remove � random nodes� X and Y� from UNCONNECTED
connect X and Y bidirectionally
add X and Y to CONNECTED
while N is not empty
do
pick a random node� A� in CONNECTED
remove any node� B� from UNCONNECTED
connect A and B bidirectionally
put B into CONNECTED

end

Figure ���� Pseudo�code for random network generator�

Table ��� shows the convergence rate for the various networks� The values in

the table indicates the time �in seconds� as well as the number of cycles needed to

reach convergence� As expected� the star networks converge the fastest� followed

by the random network� with the chain and bidirectional being the slowest� With

the exception of the ���node networks� the larger networks seem to converge at

a rate that is independent of the total number of nodes �possibly because their

diameters are similar�� We note that even in the worse case� convergence is

reached in about �� secs� In addition� if we allow the 	 value that is used to

bound the jitters �both cycle length and start time o	set� to be larger than ��

clock ticks �as is the case for all of the simulations above�� the various networks

could potentially converge even faster� Finally� as a way to conrm the long�

term stability of the convergence behavior of CNS� several of the simulations

were allowed to run for a period of about ��� hours of simulation�time� which

corresponds to a TOTAL value of about ��� billion cycles�

��



Convergence rates are in secs �
 of cycles�

$ Nodes Star Chain Bidirectional Random

�� � ���K� � ���K� � ���K� � ���K�

�� �� ����K� �� ����K� �� ����K� �� ����K�

��� �� ����K� �� ����K� �� ����K� �� ����K�

��� N
A N
A N
A �� ����K�

��� N
A N
A N
A �� ����K�

���� N
A N
A N
A �� ����K�

Table ���� Convergence rates for di	erent network topologies�

��� Alpha Point

In this simulation� we vary the �alpha point� �this controls how far we allow the

default drift rate values to initially propagate around the network� and see if its

value a	ects the convergence rate� We use the ���node star network from the

Network Topology simulations� and specify various alpha points between �K and

��K� Since the star network converges in about ���K cycles� it would not make

sense for us to simulate with even larger alpha values since the network would

need some non�zero number of cycles after the alpha point to stabilize� Table ���

shows the result of the simulations�

Alpha values are in 
 of cycles

Alpha Value �K ��K ��K ��K ��K ��K

Convergence Yes Yes Yes Yes No No

Table ���� Convergence results for ���star network with di	erent �alpha� values�

��



Convergence was not possible for alpha values of ��K and ��K since we did not

change the CycleCONV value �set at ���K cycles�� and subsequently� the network

did not have enough time to stabilize once the alpha point has been reached�

Taking into account this fact� the results show that� for a given set of network

parameters� the alpha point does not have an impact on the convergence rate�

Thus the smallest possible alpha point should be selected� in order to allow the

network to more quickly reach convergence�

��	 Network Latency

Latency Value Convergence Rate �� of cycles

� ms �� secs ����K�

� ms �� secs ����K�

�� ms �� secs ����K�

�� ms �� secs ����K�

�� ms �� secs ����K�

��� ms �� secs ����K�

��� ms �� secs ����K�

��� ms ��� secs ����K�

� sec ��� secs �����K�

Table ���� Convergence rate for di	erent latency values�

In our baseline dataset� the latency is a randomly generated value between �

and a maximum of ��� million clock ticks �or roughly �� cycles�� We now vary

the maximum value from �� million clock ticks �about �� cycles� or � ms� all the

��



way to �� billion clock ticks �about ���� cycles� or � sec�� The network topology

is a ���node random network� with a diameter of ���

Table ��� shows the results of the simulations� As expected� the network

does take longer to converge for higher latency values� since the changes �or

computations� at a node will take longer to propagate through the whole network�

Even so� in the worst case� where the latency can be as high as � second on each

link� the algorithm still converges in about ��� million cycles� or ��� seconds�

Finally� although not obvious from the above results� there is one value that is

directly a	ected by the latency and should be adjusted accordingly� This is the K

value in Equation ������ which corresponds to how many cycles each node should

compute theDi value once the �alpha point� has been reached� Intuitively� a node

should keep on computing the Di values until it has received the information from

all of its neighbors� This delay is determined by the latencies on its incoming

links� Thus K should be greater than the maximum incoming link latency� in

term of the number of cycles� Since di	erent nodes can have di	erent incoming

latencies� K can theoretically be di	erent for each node� However� in practice�

we use the same K value for all node� In the above simulations� K is set to

������� �cycles�� Note that computing Di longer than necessary does not a	ect

the convergence result� It would simply result in unnecessary computation� and

therefore K should be set to the lowest possible value in an actual implementation

of the algorithm�

��� Clock Drift Rate

As shown in Equation ������� the limiting cycle length �or the converged cycle

length� is a function of the clock drift values� We simulate di	erent clock accuracy

��



Cycle lengths are in 
 of clock ticks

� PPM C��� � �� C���� �� Actual �CL Deviation

��� ����� ������� ������� ������� � 

���� ���� ������� ������� ������� �� 

����� ��� ������� ������� ������� ��� 

������ �� ������� ������� ������� ���� 

Table ���� Converged cycle length for di	erent clock drift values�

ranging from �� PPM to ������ PPM� Table ��� shows the results of these simu�

lations� The � value� the bound on the clock drift rates� is taken from Equation

������� PPM is the accuracy of an equivalent clock� Actual is the actual limit�

ing cycle length �CL� obtained from the simulations� and Deviation is how much

this cycle length deviates from the desired cycle length� or C� The results show

that� assuming the hardware timestamp clock has a ne enough granularity� the

amount of �padding� added by CNS to the cycle length to ensure that all nodes

are synchronized is extremely small� even when using commodity clocks with ac�

curacy with ���� PPM or worse� Consequently� if we consider a system where

the clocks are perfectly synchronized to have zero padding amount� then we can

see that CNS adds very little overhead to a similar system with unsynchronized

clocks� Finally� we note that all of the simulations converge at the same rate of

about � secs ���K cycles�� and therefore conclude that clock drift rates do not

have an e	ect on the rate of convergence�

��



��� Topology Changes

MCL � minimum cycle length � CLJ � cycle length jitter

MSO � minimum start time o�set � SOJ � start time o�set jitter

Node MCL CLJ MSO� SOJ� MSO� SOJ�

Addition of Node � at cycle �
	�			

� ������� � �
	���
 �

� ������� � ���

	� � �����
� �

� ������� � ���
��� � ������ �

� ������� � ���	��� � ���
�� �

� ������� � �����
� � 
��
�� �

Deletion of Node � at cycle �
	�			

� ������� � ����
�	 �

� ������� � ���

� � ���

	 �

� ������� � ���
��� � �	� �

� ������� � ������� � ������ �

� ������� � 	��	� � ��	��� �

Table ���� E	ect of node addition
deletion on jitter values�

As described in Section ���� the CNS scheme supports simple modications to

the topology of a Cyclone network such as the addition or removal of a node� We

simulate both cases by adding a node �Node �� as well as removing one �Node ��

from the baseline dataset after it has reached convergence� Table ��� shows the

partial results for these two simulations �the full results can be found in Tables

A�� and A�� in Appendix A�� The network reaches convergence in about ���K

��



cycles in both cases� and we start keeping statistics from that point onward� For

addition� we added node � to the network at around cycle ���K� Similarly� for

deletion� we removed node � from the network at around the same cycle� The

results show that both cycle length jitters as well as start time o�set jitters are

completely una	ected by changes to the topology in the form of a node addition

or deletion� and therefore CNS is completely resilient to such simple network

modications�

��� Perturbations

So far� we have assumed in all previous simulations that latency and clock drift

values are xed� In other words� we assume that they are not a	ected by things

such as temperature changes� In practice� however� perturbation does occur and

is caused by a variety of factors� For example� changes in temperature can a	ect

the ber� causing small changes in the latency values� Similarly� temperature

change can also cause the clock oscillator to drift at a slightly faster or slower

rate than the nominal value� In both cases� however� the perturbation is usually

bounded�

We now introduce latency and clock drift perturbations into the simulation to

ensure that the algorithm would still converge even in the presence of such per�

turbations� and also to determine the a	ect that they have on the various values

at convergence� As indicated by Equation ������ the two values we are interested

in at convergence are the cycle length jitter and the start time o�set jitter� With�

out any perturbation� we have shown that both of these values can be bounded

to an 	 value that is in the order of �� units� or clock ticks� With perturbation�

however� we expect the jitter values to increase� Rather than changing our de�

��



nition of convergence by increasing the 	 values� we rst perform the simulation

without any perturbation and obtain its convergence rate �CycleCONV �� We then

repeat the simulation using the obtained CycleCONG value� but this time around

with the perturbations� This allows us to accurately compare the behavior of the

CNS scheme both with and without the presence of perturbations�

����� Latency Perturbation

In the rst set of simulations� we look at how the size of the latency perturbation

a	ects the convergence results� We assume that each link perturbs independently

of one another� We also assume that the perturbations do not deviate from the

baseline latency values by more than some xed amount� i�e� that there is a lower

and upper bounds� We express the perturbation bounds as a percentage of the

desired cycle length� e�g� �� or ��� of the cycle length� We x the probability

of a perturbation at each link at each cycle to �
����� and simulate a random

walk with a total number of �� steps between the lower and upper bounds ���

steps above the baseline and �� steps below the baseline��

Table ��� shows how the magnitude of the perturbation a	ects the conver�

gence values� ��� corresponds to the smallest simulated perturbation� and � 

corresponds to the largest one� To simplify the presentation� we only show the

results for the rst �� nodes �see Table A�� in Appendix A for the complete re�

sults�� In addition� for each node� we show the cycle length jitter �CLJ� as well

as the start time o�set jitter �SOJ� only for the rst incoming link to that node

�start time o�set jitter for all remaining incoming links� if any� are omitted for

brevity�� The results show that latency perturbations do not cause the network to

go out of phase� and everything remains in sync� Only the cycle length jitters and
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CLJ � cycle length jitter � SOJ � start time o�set jitter

��� �� � 

Node CLJ SOJ CLJ SOJ CLJ SOJ

� � ��� � ���� � �����

� � ��� �� ���� ��� �����

� �� ��� �� ���� ��� �����

� �� ��� �� ���� ��� �����

� � ��� ��� ���� ��� �����

� �� ��� �� ���� ���� �����

	 � ��� �� ���� ��� �����

� � ��� �� ���� ��� �����


 �� ��� �� ���� ���� �����

�� �� ��� �� ���� ��� �����

Table ���� E	ect of di	erent latency perturbation sizes on jitter values �measured

in $ of clock ticks�� The bounds of the various perturbation sizes are expressed

as a percentage of the cycle length�

start time o	set jitters are a	ected� Let�s consider the values for the two columns

associated with a ��� perturbation� Here� the perturbation is bounded by ���

clock ticks on both side of the base drift rate� and it changes by �� clock ticks

in every instance� Thus we can see that the magnitude of the cycle length jitter

corresponds to the magnitude of the perturbation step� Similarly� the magnitude

of the start time o�set jitter corresponds to the magnitude of the perturbation

bound� This behavior holds true for the remaining values in the table�

We now vary the rate of perturbation� from a probability of �
���� all the way

��



CLJ � cycle length jitter � SOJ � start time o�set jitter

�
���� �
��� �
�� �
�

Node CLJ SOJ CLJ SOJ CLJ SOJ CLJ SOJ

� � ��� � ��� � ���� � ���

� � ��� �� ��� �� ��� �� ���

� � ��� �� ���� �� ��� �� ���

� � ��� �� ��� �� ��� �� ���

� � ��� �� ��� �� ��� �� ���

� � ��� �� ��� �� ��� �� ���

	 � ��� �� ��� �� ��� �� ���

� �� ��� �� ��� �� ��� �� ���


 � ��� �� ��� �� ��� �� ���

�� �� ��� �� ��� �� ��� �� ���

Table ���� E	ect of di	erent latency perturbation frequencies� expressed as a

probability of a perturbation occurring per link per cycle� on jitter values �mea�

sured in $ of clock ticks��

up to �
� �i�e� a latency perturbation is possible at every cycle at every link��

and see how this a	ects the convergence values� The size of the perturbation

bound is set to ��� of the desired cycle length� The results are shown in Table

���� As above� only partial results are presented here �the complete results can

be found in Table A�� in Appendix A�� We can see that as the frequency of

perturbation increases� both the cycle length jitters as well as the start time o�set

jitters increase as well� However� even in the worst case scenario where there is

potentially a perturbation at every link at every cycle ����� times per sec�� the

��



network remains synchronized� For the particular network topology used in this

sets of simulation� the cycle length jitters are in the order of ��� of the cycle

time� Similarly� the start time o�set jitters are in the order of �� �

CLJ � cycle length jitter � SOJ � start time o�set jitter

�K �K ��K ��K

Node CLJ SOJ CLJ SOJ CLJ SOJ CLJ SOJ

� � ���� � ��� � �� � �

� �� ���� � ��� � �� � �

� �� ���� � ��� � �� � �

� ��� ���� � ��� � �� � �

� ��� ���� � ��� � �� � �

� ��� ��� � ��� � �� � �

	 �� ��� � ��� � �� � �

� �� ��� � ��� � �� � �


 � ��� � ��� � �� � �

�� � ��� � ��� � �� � �

Table ����� Rate of adjustment after a single latency perturbation� Each column

group represents the $ of cycles after the occurrence of the perturbation at cycle

�������� Jitter values are measured in $ of clock ticks�

Finally� since not every system will be subjected to continuous perturbations�

i�e� a network in a relatively stable environment may experience such changes

only occasionally� we simulate a single perturbation and look at how quickly the

system recovers back to its previous converged state� As a reminder� convergence�

��



in the absence of any perturbation� implies that both cycle length jitters as well

as start time o�set jitters must be less than some 	 value� currently set at �� clock

tick units� We induce the �����ticks ��� of C� perturbation at the edge from

node � to node � in the network at cycle number ���K �as seen by the source

node of that edge�� Rather than keeping track of the various statistics �e�g�

max
min cycle length� max
min start time o	set� by setting the CycleCONV

value at the point where we believe the system initially converges� we move it to

several points after cycle number ���K� By comparing the results we obtained

from these di	erent values of CycleCONV � we can determine the rate of adjustment

made by the algorithm after a single latency perturbation has occurred�

Table ���� shows the partial results for CycleCONV values set at the perturba�

tion point� �K cycles afterward� ��K cycles afterward� and ��K cycles afterward

�the full results can be found in Table A�� in Appendix A�� At the point where

the perturbation occurs �cycle ���K�� both cycle length jitter as well as start

time o	set jitter values increase �CLJ to the hundred and SOJ to the thousand��

However� it takes the algorithm only about ��� secs ��K cycles� to bring cycle

length jitters back to their convergence values� Start time o	set jitters� on the

other hand� require about � additional secs ���K cycles� to recover�

����� Clock Drift Perturbation

We now look at how perturbations in the clock drift values a	ect the convergence

results� We assume that the clock at each node perturbs independently of each

other� and that the perturbations are bounded by some value �usually �� � on

either side of the baseline clock drift value�

We begin by simulating the same topology with di	erent magnitude of per�

��



turbation� We x the probability of a perturbation at each node at each cycle to

be �
����� and simulate a random walk with a total number of �� steps between

the lower and upper bounds ��� steps above the baseline and �� steps below the

baseline�� For example� given a clock with a baseline drift rate of ��� PPM� the

upper bound will be ��� PPM and the lower bound will be �� PPM� and the

drift rate changes by � PPM at each step�

CLJ � cycle length jitter � SOJ � start time o�set jitter

��� PPM �� PPM � PPM

Node CLJ SOJ CLJ SOJ CLJ SOJ

� � ����� � ����� � ���

� ��� ����� �� ����� � ���

� �� ����� �� ����� � ���

� ��� ����� �� ����� � ���

� �� ����� �� ����� � ���

� ��� ����� � ����� � ���

	 ��� ����� �� ����� � ���

� ��� ����� �� ����� � ���


 ��� ����� �� ���� � ���

�� ��� ����� �� ���� � ���

Table ����� E	ect of di	erent clock drift perturbation sizes on jitter values� Each

column group represents the size of the perturbation bound� Jitter values are

measured in $ of clock ticks�

Partial results for bounds in the order of ��� PPM� �� PPM� and � PPM are

��



shown in Table ���� �full results can be found in Table A�� in Appendix A�� In

the worst case scenario� where a bound of ��� PPM which corresponds to a clock

drift accuracy of ���� PPM� the sizes of the cycle length jitters and start time

o�set jitters are only about ��� and � of the cycle length� respectively�

Min�Max are deviations of the min�max cycle length

��� PPM �� PPM � PPM

Node Min Max Min Max Min Max

� ����� ����� � � � � 

� ����� ���� ����� ���� � � 

� ����� ����� ����� � � � 

� ����� ����� ����� � � � 

� ����� ����� � ���� � � 

� ����� ����� ����� � � � 

	 ����� ���� ����� ���� � � 

� ����� ���� � ���� � � 


 ����� ����� ����� ���� � � 

�� ����� ����� � ���� � � 

Table ����� E	ect of di	erent clock drift perturbation sizes on the converged

cycle lengths� The deviations are expressed as a percentage of the cycle length

obtained without any perturbation�

While link latency perturbation will not ultimately a	ect the converged cycle

length� clock drift rate perturbation could potentially do� This is because the

converged cycle length is a function of the clock drift rate of all the nodes� ac�

��



cording to Equation ������� In Table ����� we have only shown the cycle length

jitter values� which is basically the di	erence between the maximum and mini�

mum cycle lengths seen during the statistic keeping period �i�e� from CycleCONV

until the end of the simulation� CycleTOTAL�� When there is no perturbation� the

converged cycle length is ������� with a jitter value of � or � clock ticks� We show

how far the maximum and minimum cycle lengths �with perturbation� deviate

from this ������� converged cycle length� when expressed as a percentage of the

latter� The partial results� corresponding to Table ����� are shown in Table ����

�full results can be found in Table A��� in Appendix A�� Even with perturbation

bounds of ��� PPM� the cycle length changes by no more than ���� �

Next� we change the frequency of perturbation� from a probability of �
����

all the way up to �
� �i�e� a clock drift perturbation is possible at every cycle

at every node�� and see how this a	ects the convergence values� The bound

on the perturbation size is set at �� PPM� Partial results are shown in Table

���� �full results can be found Table A��� in Appendix A�� For this particular

network conguration� both the cycle length jitters as well as the start time o�set

jitters increase as the probability of a perturbation increase from �
���� to �
����

After that� whereas cycle length jitters continue to increase �although not by a

signicant amount� as the perturbation frequency increases to �
�� and then

eventually �
�� start time o�set jitters actually decrease� The network remains

synchronized in all cases� The largest cycle length jitter values are in the order of

���� of the cycle length �for the �
� case�� and those of start time o	set jitters

are in the order of � �for the �
��� case��

Finally� to evaluate a stable network that is subjected to perturbations only

on an infrequent basis� we look at how fast the system recovers from a single

��



CLJ � cycle length jitter � SOJ � start time o�set jitter

�
���� �
��� �
�� �
�

Node CLJ SOJ CLJ SOJ CLJ SOJ CLJ SOJ

� � ����� � ����� � ����� � ����

� �� ����� �� ����� �� ���� �� ����

� �� ����� �� ����� �� ���� �� ����
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�� �� ���� �� ���� �� ���� �� ����

Table ����� E	ect of di	erent clock drift perturbation frequencies� expressed as

a probability of a perturbation occurring per node per cycle� on jitter values

�measured in $ of clock ticks��

clock drift perturbation� For this simulation� we introduce a perturbation of size

������� �equivalent to changing the drift rate by ��� PPM� at node �� at cycle

���K� We then move CycleCONV � which is used to keep track of jitter values�

from cycle ���K forward until we obtain results that are the same as those seen

at the initial convergence point �around cycle ���K�� Table ���� shows the partial

results for CycleCONV values set at the perturbation point� ��K cycles afterward�

��K cycles afterward� and ��K cycles afterward �the full results can be found

in Table A��� in Appendix A�� We can see that the perturbation caused a very
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CLJ � cycle length jitter � SOJ � start time o�set jitter

�K ��K ��K ��K

Node CLJ SOJ CLJ SOJ CLJ SOJ CLJ SOJ

� � ��� � �� � �� � �

� � ��� � �� � �� � �

� � ��� � �� � �� � �

� � ��� � �� � �� � �

� � ��� � �� � �� � �

� � ��� � �� � �� � �

	 � ��� � �� � �� � �

� � ��� � �� � �� � �


 � ��� � �� � �� � �

�� �� ��� � �� � �� � �

Table ����� Rate of adjustment after a single clock drift perturbation� Each

column group represents the $ of cycles after the occurrence of the perturbation

at cycle �������� Jitter values are measured in $ of clock ticks�

small increase in the cycle length jitters� and in fact those jitters returned to their

convergence values quickly afterward �within less than �K cycles%not shown in

the table�� The impact on start time jitters are more signicant� and the network

requires about � secs �or ��K cycles� to bring them back to their pre�perturbation

values�
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CLJ � cycle length jitter � SOJ � start time o�set jitter

��� ticks 
 ��� PPM �� ticks 
 �� PPM

Node CLJ SOJ CLJ SOJ

� � ����� � ����

� ��� ����� �� ����

� ��� ����� �� ����

� ��� ����� �� ����

� ��� ����� �� ����

� ��� ����� �� ����
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 ��� ����� �� ����

�� ��� ����� �� ����

Table ����� E	ect of both latency and clock drift perturbation on jitter val�

ues� Each column group represents the bound on the size of the perturbations

��ticks� for latency and �PPM� for the corresponding clock drift�� Jitter values

are measured in $ of clock ticks�

����� Both latency and clock drift perturbations

Using the same network setup as above� we now introduce both latency and clock

drift perturbations into the simulation at the same time� We assume that each

perturbation� whether latency or clock drift� is independent of any other� and x

the probability at �
����� We set the size of a latency perturbation to be on the

same order of magnitude as the size of the clock drift perturbation� For example�
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if the bound on the latency perturbation is ��� clock ticks� then that of clock drift

perturbation would be ��� PPM� We simulate with latency perturbation bounds

of ��� ticks and �� ticks� with corresponding clock drift perturbation bounds of

��� PPM and �� PPM� respectively� For both cases� each perturbation step is

�
�� of the perturbation bound�

The partial results for this simulation are shown in Table ���� �full results

can be found in Table A��� in Appendix A�� If we compare the jitter values for

the �� ticks�PPM columns with those found in the �� PPM columns in Table

����� we can see that they are of the same order of magnitude� The same holds

true for the values found in the � ticks�PPM columns and � PPM columns in

the two tables� Basically� the clock drift perturbations are having a much larger

impact on the jitter values� especially the start time o�set jitter ones� than the

latency perturbations� The system remains in sync with very small cycle length

jitter values in both cases�

���� Summary

The simulation results presented in this chapter show that the CNS scheme

achieves convergence in all cases� for all parameter values� Simple node addi�

tions and deletions are handled in CNS with no susceptible changes to either

cycle length jitter or start time o	set jitter values� When perturbations are in�

troduced into the simulation� the results show that while jitter values do increase

as expected� they remain tolerable in the typical cases and� more importantly� do

not cause the already synchronized network to go out of phase�
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Chapter �

Related Works

Coordination in a computer network� and distributed systems in general ���� ���

��� ��� ��� ��� ��� ��� have been addressed in various contexts such as� mutual

exclusion ����� consensus agreement ����� concurrency control ��� ��� deadlock

detection ����� termination detection ����� and clock synchronization� Even the

area of clock synchronization can be divided into physical clock synchronization�

where we are concerned with the occurrence of an event on the basis of time

���� ���� and logical clock synchronization ���� ��� where only the logical ordering

of events are important�

In this chapter� we look at some current approaches to physical clock synchro�

nization since that particular area is most closely related to the work presented

in this dissertation� Specically� we describe Cristian Algorithm� Berkeley Al�

gorithm� the Network Time Protocol �NTP�� and the Precision Time Protocol

�PTP�� In addition� we also look at how synchronization is achieved in the DTM

Gigabit network� as it is somewhat similar in nature to the Cyclone network

architecture� We conclude by comparing these approaches with the CNS scheme�
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��� Cristian Algorithm

This centralized clock synchronization algorithm ���� assumes the existence of an

external reference clock �e�g� Cesium� GPS� that is connected to one of the nodes�

referred to as themaster node� The local clock on the master node is synchronized

to this reference clock� The remaining nodes� the clients� then synchronize their

local clocks to the master node�s local clock�

�

��
�
�
�
�
�� �

�
�
�
�
�RProcess A

Process B

T�

T�

TB

T�

T�

Figure ���� Cristian Algorithm�

The interaction between the client and server is shown in Figure ���� The

client �process A� starts by sending a message at time T� to the master �process

B�� The master receives the message at time T�� The master then looks up

its current time� TB� and sends this value back to the client at time T	� The

client receives the message containing TB at time T
� Note that T� and T
 are

measured according to the client�s local clock� Similarly� T�� TB� and T	 are

measured according to the server�s local clock�

T
 � T� is the total round trip time as observed by the client� T	 � T� is the

time it takes for the master to respond to the request from the client� and may

include queueing delay as well as processing time� The client computes the time

o	set� i�e� the di	erence between its clock and the master node�s clock� by using

offset �
�T
 � T��� �T	 � T��

�
�����
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and then adjusts its local clock by adding to this o	set value� In the above

equation� there is an assumption that the latency from client to server �forward

path� is the same or very close to the latency from server to client �backward

path�� or symmetric latency� Similarly� if T	 � T� is not known or provided by

the server� then this value is assumed to be either �a� very small compare to the

latency values� or �b� that TB is in the middle of the interval�

To prevent the master from being a single point of failure� multiple masters

can be congured� This� however� adds to the complexity and overhead of the

algorithm� Experiments using this algorithm have shown that accuracy in the

milliseconds range can be achieved�

��� Berkeley Algorithm

In Berkeley Algorithm ����� there is no external reference clock like in the case

for Cristian Algorithm� Instead� the nodes synchronize their local clocks among

themselves� A node is selected to be the server� Periodically� the server sends

a message to each client to determine� using an algorithm similar to Cristian

Algorithm� the clock o	set between itself and that of the client �Figure ����a���

The server then computes the average of all the clock o	sets it has collected

�Figure ����b��� and sends to each client the di	erence between this average and

the client�s clock o	set �which it had collected in the rst step�� Every node�

including the master� then adjusts its local clock accordingly to achieve system

wide synchrony �Figure ����c���

To prevent an errand or misbehaving clock from a	ecting the whole network�

the averaging computation can be adjusted� For example� the smallest or largest

o	set values can be thrown out� Another approach is to consider only clock
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Figure ���� Berkeley Algorithm

o	sets that do not di	er from each other by some xed amount� As in the case

of Cristian Algorithm� there is an implicit assumption that the latencies of the

forward and return path are the same or very close to each other� For fault

tolerance purpose� if the master fails� another master can be selected from the

remaining nodes ����� Experiments using the algorithm have shown accuracy in

the milliseconds range �����

��� NTP

The Network Time Protocol �NTP� ���� is designed to maintain time synchrony

in a wide area network� where messages may have to cross multiple gateways or

routers� and network link latency can be unpredictable or even unreliable� The

�time servers� in NTP are organized in a hierarchical subnet with the top level

servers connected to external reference clocks �Figure ����a��� These top level

servers are considered to be at �stratum �� level�� At one level down are servers

designated to be at stratum �� which synchronize themselves to those at stratum

�� and so on ����� Each node may be connected to multiple nodes at a higher or

same stratum level for fault tolerance purposes� The NTP subnet recongures

�The NTP de�nition of �stratum� does not correspond to the ITU de�nition�
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itself in case of a node or link failure �Figure ����b���

1
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Figure ���� NTP subnet

An NTP node uses clock o	sets values obtained from its subnet peers in

order to synchronize its local clock� These o	set values are rst passed through

a set of lters to reduce incidental timing noise� A peer�selection algorithm

then determines the most accurate values based on criteria such as the distance

between the server and the peer� Finally the resulting subset are combined on a

weighted�average basis to create the actual adjustment value� Past results are a

factor considered when computing future values�

There are actually three modes of operation in NTP� In multicast mode� where

a high degree of accuracy is not required� a single server periodically broadcasts

its timestamp values to a set of clients� The client computes the clock o	set by

assuming a link latency of a few milliseconds� If a multicast environment is not

available� or if a better accuracy is needed� procedure�call mode is used� In this

mode� a client requests and receives the timestamp values from the server� using

a method that is similar to Cristian Algorithm �Figure ����� The third mode�

symmetric mode� is used by a pair of servers to exchange timestamps between

themselves� with each node acting as both a server and a client alternatively� This

mode allows the two servers to maintain the highest synchronization accuracy
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between their clocks� In a general wide area network �i�e� the Internet�� NTP

can achieve an accuracy in the �� milliseconds range� For a small local area

network with low tra�c� the accuracy in the ��� microseconds range can be

achieved �����

��� PTP

IEEE����� denes a Precision Timing Protocol �PTP� for used in a local area

network such as ethernet by control and measurement systems ����� where high

timing measurement accuracy is required� For protocols that send timestamps

at a high level �e�g� at the software application level�� there is a potential de�

lay between the instance the timestamp is recorded and the time it is actually

transmitted by the network interface controller �NIC�� This delay is caused by

the application making a system call and going through the kernel network stack�

then to the NIC bu	er� and nally onto the physical medium� A similar delay

occurs at the receiving end� If these delays are not properly accounted for� and

end up being treated as part of the network latency� then the clock o	set compu�

tation will not be as accurate� PTP seeks to overcome this problem by requiring

that the nodes contain hardware support that will perform the timestamping

operation at the closest possible point to the network� with the ideal case being

�i� just before the message is put onto� or �ii� just after the message is retrieved

from� the physical medium �����

Consider the message passing sequence shown in Figure ���� where Process B

�the client� is trying to synchronize with the clock on Process A �the server�� A

starts out by sending a message containing the timestamp T� to B� Immediately

afterward� it sends another message to B containing the actual time� T
�

�� just
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Figure ���� Precision Time Protocol

before the rst message enter the wire �as measured by its special hardware��

The purpose of these rst two messages is to factor out the delay associated

with the sending of a message from A� B now sends a message to A� and after

receiving this message �at the application level�� A sends back to B the actual

time� T
�


� just after the message enters the wire �again as measured by its special

hardware�� The purpose of these last two messages is to factor out the delay

associated with the receiving of a message from A� At point S� B will then know

about T
�

�� T�� T	� and T
�


� Using these � timestamp values� and by assuming that

the forward and backward latencies are the same� B can compute the clock o	set

between it and the server �A�� and adjusts its clock accordingly� In addition

to dening the message passing protocol� PTP also denes a Best Master Clock

�BMC� algorithm ��� that is used by the nodes to determine which one should

be a server and which ones should be clients� as well the hierarchy among them�

BMC is highly dependent on the network layer being a broadcast medium� With

the proper hardware support� PTP can achieve clock synchronization accuracy

in the sub�microsecond range�

��� DTM

Dynamic Synchronous Transfer Mode �DTM� is a ber�optic network architecture

designed to support a variety of applications� from voice to data� as well as those
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with quality of service �QOS� requirements ����� Nodes in a DTM subnet are

arranged in a dual buses topology� where each bus is a ber carrying data in a

particular direction� Multiple subnets can be connected together by using nodes

that are attached to more than one dual buses �Figure ����� In DTM� a TDMA�

based scheme is used� where the bandwidth is divided into consecutive frames of

a xed�size time interval �e�g� ��� microseconds�� Each frame is divided into a

number of slots of ���bit each� The number of slots in a frame depends on the

speed of the link� For example� in a ��� Mbit
s OC���� network� there would

be around ���� slots per cycle� There are two types of slots� static and dynamic

slots� The formers are used for control and the latters for application data�

1.11.21.31.4

2.1

2.2

2.3

2.4

3.1 3.2 3.3 3.4

Figure ���� DTM network

DTM uses a scheme similar to Cyclone to synchronize the cycles across the

multiple buses ���� Each cycle consists of a start slot� follows by the data slots�

In between cycles are one or more 	ll slots �these could be empty data slots�� To

ensure that the cycle lengths are the same on all the buses in the network� DTM

synchronize the start time of the cycles across the di	erent buses� The nodes

are organized in a hierarchical manner with one master node and multiple slave
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nodes� The master is located at one end of a dual buses� and is assumed to be

connected to an external reference clock� The master controls the cycle length

on all of its outgoing buses by periodically sending out start slots� At the other

end of each dual bus is a slave node� The slave listens to its incoming� or trigger�

bus� When it sees a start slot� the slave then initiates a new cycle on all of its

outgoing bus �there may be more than one� by sending out a start slot on these

buses� Once the data for the current cycle has been transmitted� the slave then

sends out one or more ll slots until it sees the next start slot on its trigger bus�

As an example� let node ��� be the master in Figure ���� It will control the

cycle length on the right�to�left bus in subnet �� At the other end of this subnet

is node ��� �aka ����� which controls the cycle length for the left�to�right bus on

subnet �� as well as the bottom�to�top bus on subnet �� Node ��� �aka ���� is a

slave on subnet �� and it controls the cycle length on the top�to�bottom bus on

subnet �� along with the left�to�right bus on subnet �� Finally� node ��� is a slave

on subnet �� and it controls the right�to�left bus on this subnet� The accuracy

of the cycle synchronization in DTM is dependent on that of the master external

reference clock� as well as how closely its internal clocks are kept in sync with

that clock�

��� Comparison to CNS

We now compare and contrast the various characteristics of the CNS scheme with

the approaches described in the previous sections�

� In the message overhead passing category� CNS is extremely �lightweight�

since no messages are being sent for the purpose of synchronization� DTM

is similar in this respect� The other clock synchronization approaches have
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to exchange timestamps in order to compute the clock o	set values� The

downside to the CNS approach is that synchronization are only possible

at cycle endpoints� In between those endpoints� events can still be coor�

dinated� although the accuracy may no longer be as accurate compare to

those achieved at the endpoints�

� CNS is a decentralized scheme� where there is no special distinction among

the nodes and they all execute the exact same algorithm� Should a node

failed in CNS� the remaining nodes will continue to function properly� The

other approaches all have the concept of one or more master nodes that the

remaining nodes will synchronize with �e�g� stratum�� nodes in NTP� BMC

in PTP� �master� node in Cristian� Berkeley� and DTM��

We note that it is trivial to modify CNS so that there is conceptually

a �master� node to which all other node will eventually sync up with�

Basically� this master node simply computes the cycle length by using its

local clock� and does not resort to using the CNS average algorithm like

the remaining nodes do� Simulations have shown that the network will

converge to the cycle length dictated by the local clock of the master node�

This modication does not change the decentralized aspect of CNS� but it

does allow for use of a highly accurate clock �e�g� Cesium� to synchronize

the whole Cyclone network�

� While we do assume that links are point�to�point in Cyclone� CNS is not

dependent on any particular network topology �e�g� bus� star� ring�� PTP

nodes depend on a broadcast medium such as Ethernet in order to carry out

the BMC algorithm� and DTM assumes a dual buses layout� In addition�
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CNS does not require that the latency on the forward path �A to B� be

equal to or be close to that of the backward path �B to A�� This is unlike

Cristian Algorithm� Berkeley Algorithm� or PTP� all of which assume a

symmetric latency delay�

� The computations in CNS are relatively simple� and consisting of integer

operations only� Its complexity should therefore be less than the full NTP

implementation or even the BMC implementation in PTP�

� As shown in the simulation results� CNS can achieve a very high degree

of synchronization precision� one that is not dependent on the clock drift

values� but only on the clock drift jitter values� If we were to implement the

other algorithms on top of Cyclone� then it is conceivable that they could

achieve a similar degree of accuracy� due to the fact that the latency values

are very predictable �even if there is no symmetric latency delay��

x x x

y y y

Figure ���� Sawtooth e	ect

However� one characteristic of synchronization approaches that adjust clocks

on a regular interval is what we term the sawtooth e�ect� Figure ��� shows

the di	erence between two clocks being synchronized with each other over

time� Let the x�s represent the synchronization points� so the intervals be�

tween them correspond to the clock synchronization intervals� At each x�
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the clocks are synchronized and therefore the time di	erence is zero� In

between the x�s� one clock will drift relative to the other� and the y�s rep�

resent the maximum time di	erence� The value of y depends on the clock

drift rates as well as the length of the interval� If synchronization events

occur at x� then the accuracy can be very high� However� this accuracy

will decrease if these events occur slightly to the left of x� With CNS� there

is no sawtooth e	ect because it does not perform clock synchronization�

Instead� the corresponding y values are very small� and depend only on the

clock drift jitters as mentioned previously�
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Chapter 	

Concluding Remarks

A new method for achieving global synchronicity in a distributed system is pre�

sented in this dissertation� This method� referred to as the Cyclone Network

Synchronization �CNS� scheme� does not require that the local clocks on the var�

ious nodes be synchronized with each other or with a set of external clocks� CNS

relies on the ability of each node to send data at a time of its choosing� Such

data are sent at regular interval� with the next instance being determined based

only on the local information available at the node� Once the scheme converges�

the interval for all nodes becomes exactly the same� supporting a synchronous

operation across the whole network� CNS takes into account the nite preci�

sion arithmetic and measurements it has to use� while still maintaining global

synchrony with very small jitter values�

By using local clocks that are free�running and thus allowed to drift at their

own rates� CNS does not su	er from some of the drawbacks commonly exhibited

by approaches based on local clock synchronization� Specically� the scheme

does not require the use of highly accurate external clocks such as a Cesium

or GPS clock� which can signicantly add to the cost of the overall system�

Unlike some clock synchronization methods� CNS does not also depend on any
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particular network characteristic such as a broadcast medium or bus structure�

or the requirement that the latency on the sending path be equal to the latency

on the receiving path of a message exchange �symmetric latency�� The scheme is

decentralized� with no special node nor the need to select one� and does not require

reconguration in case of node failures� assuming the failure does not partition

the network� It is also relatively simple� making use of only integer arithmetic

operations� and therefore can be implemented in hardware if necessary� Finally�

the synchronization accuracy that can be achieved in CNS is dependent only on

the granularity of the timestamp counter� along with the perturbation caused by

clock drift and latency jitters� However� this accuracy is not a function of the

local clock drift rates� as is the case for all other clock synchronization methods�

CNS does require an initialization phase during which the network is not syn�

chronized� The time taken by this delay is determined by the latency values as

well as the network topology� For the typical LAN or WAN networks that are

in used today� simulations have shown that the time taken to reach convergence

is small and acceptable �in the order of � to � minutes�� The scheme also incurs

some overhead in terms of the additional padding of the cycle length� Again�

simulations have shown that these extra gaps amount to only about ���� of

the desired interval �cycle length�� Finally� because CNS is not a clock synchro�

nization scheme� local clock values cannot be used for o	�line comparison of time

instances in tasks such as logle analysis� However� there is currently ongoing

works to perform explicit clock synchronization by using CNS as a starting point�

In this approach� a �common clock� is logically dened for the whole system� and

each node then maintains a mapping that converts its local clock value to the cor�

responding common clock value� and vice versa� Logle values can then be saved
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either as common clock values� or as local clock values along with the information

needed to recreate the clock mapping function� The local clocks themselves are

still free�running and unsynchronized just as they are in the CNS scheme�
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Appendix A

Complete Simulation Results

In order to facilitate the presentation of the simulation results� some of the tables

in Chapter � include only a partial set of values� The corresponding tables in

this Appendix contain the complete results�

Partial results Complete results
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Table A��� Simulation outputs for baseline dataset
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