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Bacterioplankton communities are deeply diverse within and across environments, yet 

also display repeatable patterns over seasonal and annual time scales. I assessed 

patterns of bacterioplankton community variability across the Columbia River coastal 

margin over space and time. Coastal zones encompass a complex spectrum of 

environmental gradients, which impact the composition of bacterioplankton 

communities. Few studies have attempted to address these gradients 

comprehensively, especially across large spatial and long temporal scales. I generated 

a 16S rRNA gene-based bacterioplankton community profile of a coastal zone from 

water samples collected from the Columbia River, estuary, plume, and along coastal 

transects covering 360 km of the Oregon and Washington coasts and extending to the 

deep ocean (>2000 m). I collected nearly 600 water samples during four consecutive 



 

years and eleven research cruises. Spatially, bacterioplankton communities separated 

into seven environments across the coastal zone (ANOSIM, p<0.001): river, estuary, 

plume, epipelagic, mesopelagic, shelf bottom (depth<350 m), and slope bottom 

(depth>850 m). Communities correlated strongly with the structuring physical factors 

of salinity, temperature, and depth. Within each environment, community variability 

correlated with factors important to primary and secondary production. In the 

freshwater-influenced environments of the Columbia River, estuary, and plume, 

communities varied seasonally and reassembled annually.  Freshwater SAR11, 

Oceanospirillales, and Flavobacteria taxa were indicators of changing seasonal 

conditions in these environments. In contrast, seasonal change in communities was 

not detected in the coastal ocean but instead varied spatially with environmental 

conditions. Each coastal ocean environment had distinct taxa including SAR406 and 

SUP05 taxa in the deep ocean and Prochlorococcus and SAR11 taxa in the upper 

water column. A survey of metabolic potential (metagenomics) and gene expression 

(metatranscriptomics) across the salinity gradient showed that although communities 

were taxonomically distinct, the metabolic potential of these communities was highly 

similar. Additionally, gene expression patterns were extremely different and reflected 

the short-time scales on which microbial processes persist in an environment. Across 

the coastal zone, bacterioplankton communities were taxonomically distinct but 

metabolically similar, structured by physical factors, and predictable across seasons 

from river to ocean.  
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Bacteria and other microbes control most of the biogeochemical cycles that 

shape all ecosystems, and they do this with a wide range of metabolic abilities that are 

not available to macroscopic organisms. Taxonomically, microbial communities vary 

across habitats, and diversity within and between these habitats changes across scales 

of millimeters to thousands of kilometers (Fierer 2008). However, the patterns of this 

diversity and the mechanisms that create and sustain this diversity remain largely 

unknown. One way to explore these mechanisms is with biogeographical surveys.  

Biogeography is the study of organism diversity across space and time and shows 

where organisms live, at what abundance, and why (Martiny et al. 2006). Microbial 

biogeography has been studied on small scales for decades, but recent advancements 

in molecular methods have given us the ability to study microbial diversity patterns 

more deeply and more widely across environments and over time (Martiny et al. 

2006). The objective of microbial biogeography is not only to understand the 

mechanisms that control microbial diversity patterns, but to also understand the 

functional role of specific organisms, helping to link community structure with 

community function. Moreover, a combination of microbial biogeographical surveys 

and measurements of the metabolic potential using genomics provides a complete 

assessment of functional and taxonomic microbial diversity and allows for the 

prediction of shifts in microbial diversity and function with environmental change.  

 This dissertation aims to describe and assess microbial biogeographical 

patterns over space and time across a large and complex coastal zone, where there 

exist strong environmental gradients from river to ocean. The addition of data 

assessing metabolic diversity as well as taxonomic diversity across these gradients 
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provides a link between microbial structure and function. With this taxonomic and 

metabolic analysis we gain a better understanding of microbial diversity patterns, the 

mechanisms behind these patterns, and role these patterns play in ecosystem function.  

 

Community variation across environmental gradients: 

Environmental gradients strongly influence bacterioplankton diversity and 

community composition. Globally, over many different environment types including 

marine, freshwater, and soil, salinity was found to strongly correlate with changes in 

bacterial community composition (Lozupone and Knight 2007). Thus estuaries are 

important environments where freshwater and marine bacterioplankton communities 

mix and composition can change drastically over short time and spatial scales. 

Previous studies along estuarine salinity gradients describe distinct freshwater and 

marine taxa (Bernhard et al. 2005, Bouvier and Giorgio 2002, Crump et al. 2004, 

Hewson and Fuhrman 2004, Selje and Simon 2003, Troussellier et al. 2002), although 

some studies identify taxa that appear to be ubiquitous from river to ocean (Hewson 

and Fuhrman 2004). In Crump et al. (2004), freshwater and marine bacteria in Plum 

Island Sound, MA co-occurred with a distinct estuarine community, which formed 

during summer when estuary residence times exceeded bacterial doubling times. A 

similar result was seen in Weser estuary, Germany, where well-separated freshwater, 

brackish, and marine communities were observed (Selje and Simon 2003). Bernhard 

et al. (2005) demonstrated a switch from freshwater to marine taxa across an estuarine 

gradient in Tillamook Bay, OR and identified freshwater populations from the rivers 

that drain into the estuary. Salinity, however, is not necessarily the only factor 
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influencing bacterial populations along river to ocean gradients, as other factors that 

co-vary with salinity including temperature, silica and other dissolved inorganic 

nutrients, and concentrations of dissolved and particulate organic matter also 

contribute to variation among communities (Bernhard et al. 2005, Bouvier and 

Giorgio 2002, Stepanauskas et al. 2003). 

Across coastal zones, where freshwater flushes into the ocean, salinity 

influences bacterioplankton community composition but in offshore regions, depth is 

also a major factor controlling community composition (Lee and Fuhrman 1991), as 

many specific phylogenetic groups show vertically variable distributions including 

the SAR11 (Field et al. 1997), Bacteroidetes (Blumel et al. 2007), and Proteobacteria 

groups (Acinas et al. 1999, Wright et al. 1997). Bacterial diversity also is influenced 

by depth, as Brown et al. (2009) showed a decrease in bacterial diversity with depth 

and little overlap in community composition along a depth gradient in the North 

Pacific.  

Brown et al. (2009) measured bacterial diversity as the abundance of bacterial 

species within each sample, usually referred to as a community. This type of diversity 

measure is defined as alpha diversity, and it is a measure of the taxonomic diversity 

(i.e., number of different taxa) and evenness (i.e., relative abundances of different 

taxa) within a single community. Many studies of bacterial community composition 

across environmental gradients also measure beta diversity. Beta diversity is the 

measure of species diversity between communities, and it provides a measure of how 

species change within communities over time and across environments. In bacterial 

diversity studies, diversity is often measured as the abundance Operational 
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Taxonomic Units (OTU) in a community because there is no clear definition of a 

bacterial species. When two or more bacterial 16S rRNA gene sequences are greater 

than 97% similar, they are clustered together to form an individual OTU. The 16S 

rRNA gene is a highly conserved gene that is used as a genetic marker in studies of 

microbial communities.  

 Although salinity and depth are both major determinants of bacterioplankton 

community composition on a large spatial scale, other biotic and abiotic factors also 

influence the structuring of bacterial communities including pH, oxygen, and nutrient 

concentrations. In soil, community composition was found to vary with pH (Lauber et 

al. 2009) as well as with nitrogen concentrations (Fierer et al. 2012), with shifts in the 

most abundant taxonomic groups across these environmental gradients. Along an 

oxygen gradient across the oxygen minimum zone off the Chilean coast, Stewart et al. 

(2012) found a shift in both bacterial and archaeal community composition as oxygen 

decreased and nitrogen processes shifted from ammonium oxidation to anammox and 

denitrification. Bacterioplankton community composition was also shown to shift 

along a nutrient gradient in a eutrophic tropical estuary, with lower alpha diversity 

and distinct taxonomic composition at nutrient-rich stations (Vieira et al. 2008). 

Although these studies lend insight into changes in community composition across 

gradients, many focus on variability across one environment or with a singular factor, 

like oxygen, and use different methods for measuring diversity, composition, and 

correlation to the environment. Thus there is a need for more comprehensive studies 

of microbial community variability across complex environments and gradients using 

one standardized approach, which would allow for comparison between environments 
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and further our understanding of the complex nature of bacterioplankton 

communities. 

 Coastal zones are complex aquatic systems that present bacterioplankton 

communities with many different and overlapping seasonal and spatial environmental 

gradients. Chapter two of this dissertation focuses on the spatial variability of 

bacterioplankton communities across the complicated environmental gradients 

encountered from freshwater to the deep ocean. I generated a synoptic, 16S rRNA 

gene-based bacterioplankton community profile of a complex coastal zone using 

water samples collected across the environmental gradients of the Columbia River, 

estuary, and plume, and along coastal transects covering 360 km of the Oregon and 

Washington coasts and extending to the deep ocean. With this work I identified key 

physical and biological factors correlating with community composition across the 

complex mixing zones of a river-influenced coastal margin and described how 

bacterioplankton communities varied with salinity, temperature, depth, nutrients 

gradients. 

 

Spatial and temporal community variability: 

 Spatial variability in bacterioplankton communities has been explored on 

scales that range from millimeters (Long and Azam 2001) to kilometers (Hewson et 

al. 2006b) to global (Fuhrman et al. 2008, Pommier et al. 2007). This variability is 

often attributed to a combination of biological factors that influence the rate of 

growth of individual taxa, and physical parameters that prevent communities from 

interacting across different spatial scales. A broad range of environmental conditions 
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can potentially influence bacterial communities including pH, salinity, temperature, 

and organic matter, and biotic factors such as bacterial production, phytoplankton 

interactions, and grazing. Varying sets of these factors have been shown to explain 

variation in microbial communities within soils, lakes, rivers, estuaries, and the 

oligotrophic surface ocean (Crump et al. 2003, Crump and Hobbie 2005, Fierer et al. 

2009, Hewson et al. 2006a, Kent et al. 2007, Lauber et al. 2009). Dispersal processes 

have also been shown to influence bacterial biogeography (Martiny et al. 2006). 

Although it is known that environmental conditions and dispersal processes govern 

community diversity and taxonomic composition, the scale and the degree to which 

these two factors influence to bacterial spatial variability is still relatively unknown.  

Globally, marine bacterioplankton, like metazoans, follow a latitudinal 

diversity gradient, with increasing diversity towards the equator (Fuhrman et al. 

2008). Although, diversity measures may be similar among communities at similar 

latitudes, taxonomic composition has been found to be greatly variable between 

locations. In a study of coastal bacterioplankton diversity across ocean basins, 

Pommier et al. (2007) found many bacterial taxa to be endemic to one location and 

only a small number of taxa to be present at more than one location, with these 

cosmopolitan taxa being highly abundant compared to endemic taxa. Although many 

individual taxa were only found at one location, the same major taxonomic groups 

were represented at all locations (Pommier et al. 2007). Thus the structure of 

communities was similar across all sites, with each community comprised of many 

endemic and a few dominant taxa of varying taxonomic affiliations (Pommier et al. 

2007). Although a community may comprise many rare taxa, many of these taxa are 
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metabolically active and may become dominant when environmental conditions 

change (Campbell et al. 2011). Crump et al (2012), found that dispersal processes 

also influence community composition, showing that in a stream-fed arctic lake more 

than half of the dominant lake taxa were rare taxa in upstream environments and 

demonstrating the adaptability of rare taxa to different niches. Thus, bacterioplankton 

communities are highly dynamic and community composition is strongly influenced 

by both local environmental conditions and dispersal processes. 

 Bacterioplankton communities vary spatially with environmental conditions, 

but patterns of seasonal succession among communities have also been shown from 

freshwater lakes to the open ocean. Seasonal shifts in microbial community 

composition have been demonstrated in the Sargasso and Baltic Seas and the English 

Channel, where succession of microbial communities correlated with changes in 

seasonally influenced environmental factors such as mixed layer depth, temperature, 

and nutrient concentrations (Andersson et al. 2010, Carlson et al. 2009, Gilbert et al. 

2009, Morris et al. 2005). Kent et al (2007) attributed seasonal succession of 

phytoplankton in freshwater lakes to similar environmental factors but found that 

succession of bacterial communities was driven by biological interactions with 

phytoplankton species.  

Seasonal succession of bacterioplankton communities is repeatable over an 

annual cycle (Andersson et al. 2010, Carlson et al. 2009, Crump et al. 2009, Fuhrman 

et al. 2006, Morris et al. 2005). Crump et al. (2009) showed seasonal synchrony of 

bacterioplankton communities in six large arctic rivers but also annual reassembly, 

indicating that communities shift in predicable patterns each year. Coastal 
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bacterioplankton communities also reassemble annually. Fuhrman et al. (2006) 

identified seasonal patterns in communities off the coast of California and showed 

that these same patterns reoccur each year and are highly predictable based on a 

combination of biotic and abiotic factors. Thus, bacterioplankton communities are 

variable across space and time with environmental conditions and taxonomic 

composition can potentially be predictable based on these specific conditions. 

Although many studies have determined the spatial or temporal patterns of 

bacterioplankton communities, most of these studies were restricted to single 

dimensions, focusing either on long-term time series, depth profiles, or horizontal 

surveys across environmental gradients. Chapter three of this dissertation presents a 

study that compared bacterioplankton community composition in all three of these 

dimensions: spatially from river to surface ocean, by depth from surface to deep 

ocean, and through time seasonally over an annual cycle. In this study I characterized 

bacterioplankton community composition from three hundred samples, which enabled 

a fine-scale resolution of community variability and led to the discovery of robust 

spatial patterns from river to ocean, and seasonal shifts that may not have been 

observed if fewer samples were analyzed. Determining both the spatial and temporal 

variability of bacterioplankton communities provided a framework for modeling these 

communities across environmental gradients.  

 

Ecological role of individual taxa: 

Several studies have described broad-scale spatial and temporal changes in 

microbial communities in freshwater, coastal, and open ocean (e.g. (Crump et al. 
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2012, Fuhrman et al. 2006, Galand et al. 2010, Gilbert et al. 2009, Kirchman et al. 

2010), and although these studies discuss changes in community composition and 

structure, little is mentioned about the specific taxa that distinguish one community 

from another and potentially serve as the drivers of change in these environments. 

Recently, a few studies described how specific taxonomic groups and individual taxa 

vary with environmental conditions as well as with each other (Barberan et al. 2012, 

Eiler et al. 2012, Gilbert et al. 2012). In one long-term study of the English Channel, 

Gilbert et al. (2012) showed strong repeatable seasonal patterns in the general 

bacterioplankton community and demonstrated that seasonal variability in specific 

taxonomic groups was best explained by length of day, temperature, nutrients, and 

photosynthetically active radiation (i.e., “bottom-up” variables), rather than biomass 

of zooplankton species (i.e., “top-down” variables). Eiler et al. (2012) found complex 

interdependences in bacterioplankton communities and synchrony over the temporal 

scale for specific taxonomic groups in a freshwater lake system. Taxonomic 

interdependencies have also been observed in soil communities, where non-random 

co-occurrence patterns were found to occur more than expected by chance indicating 

strong inter-taxa relationships among specific soil taxa (Barberan et al. 2012). 

Although recent microbial biogeographical studies have been more focused on the 

variability of specific taxonomic groups instead of overall beta diversity, there is still 

much to be learned about how taxa interact and change with environmental conditions 

and their importance in ecosystem function. 

The spatial and temporal distributions of ecologically important marine 

bacterial taxa such as SAR11, SAR86, and Prochlorococcus have been recently 
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described, although most of these studies focus on single bacterial types within a 

specific environment (Carlson et al. 2009, Dupont et al. 2012, Malmstrom et al. 2010, 

Morris et al. 2012, Treusch et al. 2009). Malmstrom et al. (2010) showed consistency 

in the depth distribution of ecotypes of Prochlorococcus over a five-year period in the 

Pacific and also showed that these distributions, although disturbed by seasonal 

mixing in the Atlantic, would always reestablish during periods of stratification. The 

depth distribution of SAR11 ecotypes has also been described, with distinct 

populations observed in the epipelagic and upper mesopelagic at the long-term 

Bermuda Atlantic Time Series (BATS) (Carlson et al. 2009), and across nutrient, 

chlorophyll, and organic carbon gradients in the South Atlantic (Morris et al. 2012). 

Spatially separated phylotypes have also been observed in the common surface ocean 

bacteria SAR86, where SAR86-C and D phylotypes were found in colder coastal 

environments while SAR86-B was found in warmer waters and SAR86-A was found 

to have a ubiquitous distribution (Dupont et al. 2012).  

The recent studies describing patterns of different taxonomic groups looked 

specifically at variation of taxa over time or with environmental variables only at 

fixed stations. The challenge in understanding taxonomic patterns then is to define 

key taxa in a community for different environments over both spatial and temporal 

scales. Additionally, there is also a need to determine how ecologically important 

taxonomic groups, like SAR11 or SAR86, affect overall patterns of community 

distribution in different environments. Chapter four of this dissertation builds on these 

past studies by examining both the variation of specific taxa as well as whole 

communities and by identifying key taxa that define specific environments. I 
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characterized the biogeography of specific bacterioplankton populations from 600 

water samples collected across the Columbia River coastal margin over a four-year 

period. The focus of this study was on population-level analyses to determine the key 

taxa in each environment and how abundances of these taxa were shaped by changing 

environmental conditions. The goal of this study was to develop a set of key taxa that 

were representative of specific conditions in an environment and were indicators of 

change in bacterioplankton community composition. 

 

Linking community structure and function: 

Microbes strongly influence biogeochemical cycling and thus the transfer of 

organic matter and energy within and across ecological systems. Metagenomic and 

metatranscriptomic data provide powerful insight into the metabolic potential and 

expression in an environment without previous knowledge of taxonomic or functional 

characteristics (Poretsky et al. 2005). A metagenome captures all the genetic material 

of a microbial community in an environment, while a metatranscriptome captures the 

community gene expression of this environment. Many recent studies have used 

metagenomic or metatranscriptomic approaches to answer important ecological 

questions about the biogeochemical function of microbes in soil, in the surface 

coastal and open ocean, as well as the deep sea (Eloe et al. 2011, Fierer et al. 2012, 

Gifford et al. 2011, Hewson et al. 2010, Poretsky et al. 2005). Together, metagenomic 

and metatranscriptomic studies further solidify the importance of microbes to 

ecosystem function, and provide greater detail about the genetic capabilities of these 

organisms. 
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 The goal of many early metagenomic studies was to describe the functional 

processes occurring in different environments and to ascribe a metabolic fingerprint 

in addition to a taxonomic one in order to better link structure and function in 

bacterial communities (Biddle et al. 2008, DeLong et al. 2006, Rusch et al. 2007, 

Tringe et al. 2005). DeLong et al. (2006) found there was a distinct vertical 

distribution of taxonomy and function genes, with genes associated with carbon 

metabolism, motility, and viral interactions all having variable abundances with 

depth. Variable abundances of functional genes have also been observed across 

habitat types, where different environments have been shown to have habitat-specific 

functional fingerprints based on variability of important processes like photosynthesis 

and starch metabolism (Tringe et al. 2005). Similar to metagenomic studies, early 

metatranscriptomic studies described the dominant microbially mediated 

biogeochemical processes occurring in an environment. Early studies analyzed 

microbial community mRNA transcripts of the open and coastal ocean and within a 

salt marsh creek (Frias-Lopez et al. 2008, Gilbert et al. 2008, Poretsky et al. 2005). 

These studies determined key functional and metabolic processes active within each 

system, including genes involved in sulfur oxidation, photosynthesis, carbon fixation, 

and nitrogen acquisition. Determining which microbial genes are being expressed 

within an environment lends greater insight into the critical metabolic processes of 

the system. For example, Frias-Lopez et al. (2008) found that some of the most highly 

expressed genes in open ocean surface waters are proteorhodopsins, light-driven 

proton pumps used for the creation of chemical energy. Corresponding analysis of 

community DNA found that these genes were not only highly expressed but were also 
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found in a diverse group of microbial taxa, indicating proteorhodopsins were 

important genes for driving cellular and metabolic processes of microbes in the open 

ocean. 

With the advancement of sequencing technology and thus an increase in the 

size of metagenomic and metatranscriptomic libraries, there has been a shift from 

descriptive to more hypothesis-based research. In a comparison of day/night 

transcripts from the open ocean, Poretsky et al. (2011) found that microbial 

communities have metabolic and biogeochemical responses to changes in solar 

forcing, as day transcripts were mostly for photosynthesis and oxidative 

phosphorylation, while night transcripts were mostly for housekeeping activities, such 

as DNA repair, amino acid biosynthesis, protein export, and other processes 

important to cell maintenance. Hewson et al. (2010) looked at spatial patterns across 

metatranscriptomes from ocean surface waters around the globe and found that the 

spatial differences between these metatranscriptomes were driven by expression of 

genes involved in nutrient acquisition and transport as well as cell metabolism and 

growth. These spatial patterns in gene expression could be a consequence of 

differences in nutrient concentrations across ocean basins but also a difference in 

abundance of cyanobacteria, specifically Prochlorococcus marinus, which dominated 

transcript libraries (Hewson et al. 2010). A shift in taxonomy was also shown in a 

experiment-based study describing changes in gene expression in DOM-amended 

bottle experiments where the addition of high-molecular weight DOM to surface 

seawater resulted in shifts in taxonomy and gene expression as different groups took 

advantage of the added carbon source (McCarren et al. 2010). From these studies, we 
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see that marine bacterioplankton community gene expression changed on both 

temporal and spatial scales and that taxonomic composition of the community played 

an important role in gene expression patterns. 

Recent metagenomic and metatranscriptomic studies have found coupled 

taxonomic and metabolic shifts across ecologically relevant biogeochemical gradients 

in marine and soil environments. Soil metagenomes sampled across a nitrogen 

gradient revealed increases in genes associated with replication, electron transport, 

and protein metabolism as well as a shift from oligotrophic to more copiotrophic taxa 

with increasing nitrogen concentrations (Fierer et al. 2012). Oxygen gradients across 

oxygen minimum zones have also been the focus of metagenomic and 

metranscriptomic studies (Canfield et al. 2010, Stewart et al. 2012). Stewart et al. 

(2012) compared both metagenomic and metatranscriptomic data across an oxygen 

gradient along the Chilean coast. Again, changes in gene abundance, gene expression, 

and taxonomic composition occurred across the oxygen gradient as nitrogen 

processes changed from oxidative to reductive and the community shifted from 

nitrifying taxa to those taxa associated with anammox and denitrification (Stewart et 

al. 2012). Looking at the same oxygen gradient, metagenomic data also revealed the 

first evidence of an active sulfur cycle in an oxygen minimum zone and coupling 

between sulfur and nitrogen processes (Canfield et al. 2010). These metagenomic 

studies across both nutrient and oxygen gradients have provided gene-level 

information concerning important ecological process and microbial community 

dynamics in these biogeochemically important environments. 
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Many metagenomic and metatranscriptomic studies focus on the marine 

environment, but few have looked at metagenomic data from river systems. Ghai et 

al. (2011) looked at a metagenome taken from the largest river system in the world, 

the Amazon. Results from this study found the presence of common freshwater 

lineages including the Actinobacteria AC1 clade as well as the Betaproteobacteria 

taxa, Polynucleobacter among metagenomic sequences. In addition, this metagenome 

had a disproportionate amount of heterotrophic carbon processing genes when 

compared to marine metagenomes, indicating these abundant freshwater microbes 

played an important role in the breakdown and transformation of terrestrial carbon in 

the river, which has important implications for the coastal ocean (Ghai et al. 2011).  

 Although gradients have recently become a focus of metagenomic and 

metatranscriptomic studies, to date there have not been any of these types of studies 

focusing on gene abundance and expression across a salinity gradient. Chapter five of 

this dissertation describes changes in metabolic potential and gene expression across 

the salinity gradient of the Columbia River coastal margin. Previous work on 

bacterioplankton community composition has shown spatially and taxonomically 

distinct communities in the river, estuary, plume, and surface ocean. The addition of 

gene abundance and expression data to already established patterns of taxonomic 

composition creates a link between community structure and community function, 

and provides information to explore how and why specific populations are distributed 

across from river to ocean. 
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The Columbia River coastal margin: 

The Columbia River coastal margin is a productive ecosystem due to nutrients 

from seasonal upwelling and the Juan de Fuca strait and the Columbia River (Hickey 

and Banas 2003). The biological and physical processes of these waters are 

complicated by variable winds, remote wind forcing, shelf width, and submarine 

canyons (Hickey and Banas 2003, Hickey and Banas 2008, Hickey et al. 2010), 

which may in turn affect the composition of bacterioplankton communities along the 

coast. The Pacific Northwest coast is highly productive, with greater productivity 

occurring along the Washington coastline compared to Oregon due to increased 

nutrient delivery from the Juan de Fuca strait and the Columbia River as well as 

nutrient entrainment from a wider shelf and submarine canyons (Hickey and Banas 

2003, Hickey and Banas 2008, Hickey et al. 2010). The Columbia River is the second 

largest river in the United States with a mean annual discharge of 7300 m3s-1 (Hickey 

et al. 1998) and this significant release of freshwater has a large impact on the 

chemical, physical, and biological characteristics of the adjacent Oregon and 

Washington coasts. The Columbia River supplies large amounts of iron and silica to 

the coastal ocean (Hickey et al. 2010), which can influence primary and thereby 

secondary production along the coast. This nutrient supply when coupled with 

seasonal upwelling of nitrate during the summer months can make the Columbia 

River plume region highly productive (Hickey et al. 2010).  

Previous microbial biogeographical studies of the Columbia River coastal 

margin system focused on the characterization and distribution of particle-attached 

and free-living bacteria and archaea in the river and estuary (Crump et al. 1998, 



 

  18 

Crump et al. 1999, Crump and Baross 2000). Additionally, a recent study looking at 

patterns of carbon and nitrogen gene expression across the estuarine salinity gradient 

using microarray data has added insight into how important biochemical processes 

shift from river to ocean (Smith et al. 2010). Smith et al. (2010) showed strong 

seasonal shifts in gene expression patterns but variable spatial differences with some 

seasons showing little difference in gene expression across the river to ocean salinity 

gradient. This dissertation expands on these previous studies and describes patterns in 

bacterioplankton diversity and taxonomic composition over broad spatial and 

temporal scales and across the many environmental gradients that define coastal 

zones. This dissertation also presents metagenomic and metatranscriptomic 

information that describes metabolic potential and gene expression patterns across the 

Columbia River coastal margin without any assumptions of metabolic processes.  
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Chapter questions and hypotheses: 

1) How is bacterioplankton community variability potentially influenced by 

environmental gradients? Which environmental factors are most important in shaping 

communities? 

On a large scale, variation across spatial gradients will be influenced by 

structuring environmental factors including salinity, temperature, and depth as fresh 

and marine, warm and cold, surface and deep waters mix across a complex coastal 

zone. On a smaller scale, however, more location-specific factors, including nutrient 

and chlorophyll concentrations, will be influential in determining the spatial patterns 

of bacterioplankton communities. 

 

2) How are bacterioplankton communities spatially and seasonally distributed? 

Bacterioplankton communities will separate by location from fresh, to 

estuarine, to coastal waters, as large salinity and depth gradients physically separate 

water masses and associated bacterioplankton communities. Mixing of communities 

will be apparent at interfaces between environments. With seasonal shifts come 

changes in influential variables such as temperature and nutrient concentrations, so 

it is expected that community composition will change across seasons. Seasonal 

shifts, however, will be overwhelmed by the spatial patterns of communities as the 

sampling area encompasses great spatial distances. 
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3) What are the ecologically important dominant taxonomic groups of the Columbia 

River coastal margin? How are these taxa potentially influenced by environmental 

variables both spatially and seasonally? 

 Due to the spatial complexity of the coastal zone, different dominant 

taxonomic groups will be present from river to ocean and from surface to deep. 

Additionally, variability of these key taxa will be affected differentially across the 

coastal margin, depending on the physical and biological factors affecting each 

environment. 

 

4) What is the spatial pattern of community metabolic potential and gene expression 

across a salinity gradient from river to coastal ocean?  

 Gene abundance and availability across a river to ocean gradient will shift 

dramatically, but that taxonomically distinct populations would perform similar 

metabolic activities regardless of the salinity of the water. Thus, the typical 

phylogenetic shift from fresh, to estuarine, to marine bacteria over the salinity 

gradient would be apparent in metagenomic data, but would not be reflected in 

metatranscriptomic gene expression patterns. 
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CHAPTER 2: 

BACTERIOPLANKTON COMMUNITY VARIATION ACROSS RIVER TO 

OCEAN ENVIRONMENTAL GRADIENTS 
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Abstract: 

 Coastal zones encompass a complex spectrum of environmental gradients that 

each impact the composition of bacterioplankton communities. Few studies have 

attempted to address these gradients comprehensively. I generated a synoptic, 16S 

rRNA gene-based bacterioplankton community profile of a coastal zone by applying 

the fingerprinting technique denaturing gradient gel electrophoresis (DGGE) to water 

samples collected from the Columbia River, estuary, and plume, and along coastal 

transects covering 360 km of the Oregon and Washington coasts and extending to the 

deep ocean (>2000m). Communities were found to cluster into five distinct 

environments based on location in the system (ANOSIM, p<0.003): estuary, plume, 

epipelagic, shelf bottom (depth<150 m), and slope bottom (depth>650 m). Across all 

environments, communities varied strongly with abiotic factors (salinity, temperature, 

depth, ρ=0.734). Within each coastal environment, communities varied more with 

biotic factors. Thus, structuring physical factors in coastal zones, such as salinity and 

temperature, define the boundaries of many distinct microbial habitats, but within 

these habitats variability in microbial communities is driven by biological gradients in 

primary and secondary productivity. 

 

Introduction: 

Microbial communities are abundant and diverse and vary over space, time, 

and across environmental gradients. Key to understanding the distribution of 

microbial communities is determining the factors that both create and sustain these 

distribution patterns. Microbial biogeographical patterns are shaped by both 
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environmental variables and dispersal processes (Green et al. 2008, Horner-Devine et 

al. 2004, Martiny et al. 2006). Horner-Devine et al. (2004) showed that there is a 

taxa-area relationship for bacteria in which the number of taxa increases with 

increasing sampling area, and that this relationship was driven primarily by 

environmental heterogeneity. More specifically, abiotic factors such as pH, salinity, 

temperature, and organic matter, and biotic factors such as bacterial production, 

phytoplankton interactions, and grazing have been shown to explain variation in 

microbial communities within soils, lakes, rivers, estuaries, and the oligotrophic 

surface ocean (Crump et al. 2003, Crump et al. 2004, Crump and Hobbie 2005, Fierer 

et al. 2009, Hewson et al. 2006b, Kent et al. 2007, Lauber et al. 2009, Simek et al. 

2001). These studies provide insight into varying environmental tolerances and 

ecological strategies of microbial taxa (Lauber et al. 2009).  

Variability in bacterioplankton communities has been explored on spatial 

scales that range from millimeters (Long and Azam 2001) to kilometers (Hewson et 

al. 2006b) to global (Fuhrman et al. 2008, Pommier et al. 2007).  Many studies 

describe community variability in aquatic systems, but most focus on specific 

environments including estuaries, coastal regions, and ocean gyres. A handful 

describe variability across one or two of the many gradient regions that separate these 

environments, including the freshwater-saltwater interface, the estuary-coastal ocean 

interface, nearshore-offshore interface, or across depth gradients in the coastal and 

open ocean (e.g. Alonso-Saez et al. 2007, Celussi et al. 2009, Crump et al. 2004, 

Ghiglione et al. 2008, Hewson et al. 2006a, Kataoka et al. 2009, Vieira et al. 2008). 

Very few studies have characterized microbial community distribution across a large 
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river to ocean gradient as seen in the Columbia River system. The Columbia River is 

the second largest river in the United States with a mean annual discharge of 7300 

m3s-1 (Hickey et al. 1998). This significant release of freshwater has a large impact on 

the chemical, physical, and biological characteristics of the adjacent Oregon and 

Washington coasts. Previous microbial community studies of the Columbia River 

system focused on the characterization and distribution of particle-attached and free-

living bacteria and archaea in the river and estuary (Crump et al. 1998, Crump et al. 

1999, Crump and Baross 2000). Here I expand on previous work and assess 

differences in the spatial distribution of bacterioplankton communities across the river 

to ocean gradient from freshwater to the deep ocean, and identify environmental 

factors that explain the variability seen among these communities.  

For this study I examined a bacterioplankton community profile using the 

community fingerprinting technique denaturing gradient gel electrophoresis (DGGE) 

to water samples collected from the Columbia River, estuary, and along the Oregon 

and Washington coasts. Environmental variables were also measured in order to link 

variation in microbial community composition with environmental factors. I 

hypothesized that bacterioplankton communities would differ over the large spatial 

scale of the Columbia River system and that variation across spatial gradients would 

vary with key environmental factors including, but not limited to, salinity and depth. 

Our results indicate that communities separated into five distinct groups based on 

location, and varied with abiotic factors (salinity, temperature, depth). Within each 

group, communities varied with biotic factors involved in primary and secondary 

production.  
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Methods: 

 Samples were collected from the Oregon and Washington coasts and the 

Columbia River and estuary (latitude 44.652° and 47.917°, longitude -123.874° and -

125.929°) during a Center for Coastal Margin Observation and Prediction (CMOP) 

cruise on August 13-31, 2007 aboard the R/V Wecoma. Water samples were taken 

from Columbia River estuary, plume, and four coastal ocean lines (Figure 2.1). For 

coastal lines, samples were taken at three depths per station (surface, within 

thermocline, and bottom). Plume samples were taken at 2 depths (surface and bottom) 

and estuary samples were collected across a salinity gradient of 0 to 30. Samples were 

collected with 10-liter Niskin bottles, and depth profiles of salinity, temperature (ºC), 

turbidity (NTU), oxygen (mgL-1), and chlorophyll fluorescence were recorded. For all 

samples, surface was defined as 1 m depth and bottom was defined as 5 m above 

sediment. Depth for samples taken within the thermocline was determined by CTD 

temperature sensor.  

For collection of photosynthetic pigments (chlorophyll a, phaeophytin), 0.5-2 

L of water was filtered through 25 mm GF/F (Whatman) filters. Filters were snap 

frozen in liquid nitrogen. Concentrations were determined using high performance 

liquid chromatography (HPLC) (Wright et al. 1991). Pigment samples were cold-

extracted (-15ºC) in polypropylene centrifuge tubes using a fixed volume of 90% 

acetone in water (v/v) and chromatographic separations were made using a reverse-

phase column and diode array detection at 436 nm.  Pigments were quantified by 

comparison of integrated peak area with response factors for authentic commercial 

standards.  
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Filtrate from ashed 25 mm GF/F (Whatman) filters was collected for 

dissolved organic carbon (DOC), total dissolved nitrogen (TDN) and phosphorus 

(TDP), and nutrients. For DOC, 20 ml filtrate were stored at -20ºC in polypropylene 

vials and analyzed by Horn Point Laboratory (HPL) analytical services (Sugimura 

and Suzuki 1988), using a Shimadzu TOC-5000 total organic carbon analyzer. 

Filtrate (20 ml) for TDN and TDP was collected in reagent-conditioned 30 ml 

polypropylene bottles, stored at -20ºC, and analyzed by HPL analytical services 

(Valderrama 1981).  Dissolved organic nitrogen (DON) and phosphorus (DOP) 

concentrations were calculated from TDN and TDP values by subtracting dissolved 

inorganic nitrogen and phosphorus concentrations. For dissolved inorganic nutrient 

measurements, filtrate (25 ml) was collected in acid-washed polyethylene vials, 

stored at -20ºC, and analyzed using standard continuous segmented flow autoanalyzer 

techniques for ammonium, nitrate+nitrite, nitrite, dissolved silica (DSi), and soluble 

reactive phosphorus (SRP) (Gordon et al. 1994).  

Bacterial production was measured as the rate of incorporation of L-[3H] 

leucine (20 nM final concentration) into cold trichloroacetic acid (TCA; 5% final 

concentration)-insoluble fraction of macromolecules in four 1.5-ml subsamples, 

including one killed control, incubated for 1 h at in situ temperatures in the dark in 2-

ml microcentrifuge tubes (Fisher Scientific).  TCA-precipitated macromolecules were 

centrifuged at 14,000xG for 10 min and washed once with 1.5 ml cold 5% TCA, 

flooded with scintillation cocktail and counted in a Packard Tri-Carb liquid 

scintillation counter.  Bacterial carbon production (BP) was calculated from leucine 

incorporation used a ratio of cellular carbon to protein of 0.86, a fraction of leucine in 
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protein of 0.073, and an intracellular leucine isotope dilution of 2 (Kirchman et al. 

1993). 

 DNA samples (1-6 L per sample) were pumped through 0.2 µm Sterivex-GP 

filters (Millipore). 1 mL DNA extraction buffer (DEB: 0.1 M Tris-HCl (pH 8), 0.1 M 

Na-EDTA (pH 8), 0.1 M Na2H2PO4 (pH 8), 1.5 M NaCl, 5% CTAB) (Zhou et al. 

1996) was added to each filter, which were subsequently sealed and stored at -80ºC. 

DNA was extracted using methods adapted from Zhou et al. (1996) and Crump et al. 

(2003).  

 Extracted DNA was PCR-amplified using 16S ribosomal RNA gene primers 

for the V3 region in 50 µl reactions (1X PCR buffer (Promega), 2.5 mM MgCl2, 0.2 

mM deoxynucleoside triphosphates (dNTPs), 0.25 µM primers, 0.5 U Taq 

polymerase (Promega)). The primers were bacteria-specific 357f with GC-clamp 

attached to the 5’ end (5’-

CGCCCGCCGCGCCCCGCGCCCGGCCCGCCGCCCCCGCCCC-

CCTACGGGAGGCAGCAG-3’) and universal primer 519r (5’-ACCGCGGCTGCT 

GGCAC-3’). PCR conditions, which followed Crump et al. (2004) were 30 cycles 

with a final one-hour extension at 72ºC (Janse et al. 2004). For DGGE, PCR products 

were loaded onto 29-lane acrylamide (8%) gels prepared with 30% acrylamide–bis-

acrylamide (37.5:1; Bio-Rad), 0.5X TAE buffer (1X TAE is 40 mM Tris [pH 8.0], 20 

mM acetic acid, 1 mM EDTA), and gradients of 35 to 60% denaturants (100% equals 

7 M urea and 40% formamide). The amount of PCR product loaded into each lane 

was adjusted to ensure a similar amount of DNA was run for each sample. Gels were 

run for 24 hrs at 75 V. A DGGE ladder, previously constructed from clone libraries, 
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was run every 6 lanes in order to accurately assess the position of bands across each 

gel and to allow for comparison between gels. DGGE gels were photographed using a 

Chemi-Doc gel documentation system (Bio-Rad) with exposure times set for 

photographs to be undersaturated and analyzed using the GelcomparII software 

package (Applied Maths) as described in Crump et al. (2007). Briefly, banding 

patterns were subjected to ‘rolling ball’ background subtraction (disk width, 50) and 

bands were considered present when peak height exceeded 5% of the peak height of 

the darkest band in the sample.  

To assess similarity between bacterioplankton communities, pairwise 

similarity matrices were calculated from relative band height (i.e. band intensity) 

using the Bray-Curtis similarity coefficient (Legendre and Legendre 1998). Relative 

band height was determined by dividing the height of each band by the sum of all 

band heights in the sample. Community patterns using relative band height were very 

similar to those determined using presence/absence data, and previous work has 

shown that community patterns are the same regardless of the method used to analyze 

DGGE banding patterns (Crump et al. 2007). Similarity matrices were visualized 

using multiple dimensional scaling (MDS) diagrams, a form of ordination. Analysis 

of similarity statistics (ANOSIM) were run to test significant differences between a 

priori sampling groups identified visually in MDS diagrams. Similarity matrices, 

MDS diagrams, and ANOSIM statistics were carried out using PRIMER v6 for 

Windows (PRIMER-E Ltd, Plymouth, UK).  

Environmental data were compiled and tested for normality (Shapiro-Wilkes 

test, p>0.05). Variables were divided into abiotic and biotic categories, and analyzed 
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separately. Abiotic variables included in analyses were: depth, salinity, temperature, 

turbidity, dissolved oxygen (DO), nitrate, nitrite, ammonium, ortho-phosphate, silicic 

acid (DSi), dissolved organic nitrogen, phosphorus and carbon (DON, DOP, DOC), 

chlorophyll a (Chl a), bacterial production rate (BP). Variables not normally 

distributed were transformed to be as close to normality as possible, and 65 of the 71 

samples were used for environmental analyses due to gaps in environmental data. 

Results were analyzed with Primer v6 (PRIMER-E Ltd, Plymouth, UK) (Clarke and 

Ainsworth 1993). BV-STEP analysis was used to identify sets of variables that best 

explained community variability (ρ>0.95, Δρ<0.001, 10 random starting variables, 

100 restarts). BIO-ENV was used to rank each individual environmental variable by 

degree of association with community variability. Analyses were run separately for 

abiotic and biotic variables. BV-STEP and BIO-ENV use the Spearman rank 

correlation coefficient (ρ) to determine the degree of association between similarity 

matrices of DGGE (Bray-Curtis similarity) and environmental data (Euclidean 

distances), where a coefficient of one denotes all variability explained. To ensure 

variables did not correlate with each other, pairwise correlation coefficients were 

determined for the overall dataset as well as for specific sample groups using Primer 

v6. This reduced the size of the environmental dataset by removing highly correlated 

variables (ρ>0.90), and allowed for more interpretable results. Although a part of 

experimental design, depth was included in the environmental analysis and treated as 

a proxy variable for a number of environmental conditions that change in the vertical, 

including light. Depth did not correlate with any other variable in the dataset 

(ρ<0.55).  
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Results: 

Bacterioplankton communities separated into five distinct environments based 

on location in the system (ANOSIM, p<0.003): estuary, plume, epipelagic, shelf 

bottom (depth<150 m), slope bottom (depth>650 m). The plume community 

consisted of coastal surface samples with salinity less than 31. The epipelagic group 

consisted of coastal samples collected at the surface and within the thermocline 

(maximum depth=50 m). Coastal bottom samples were divided into those taken on 

the continental shelf (depth<150 m) and deeper samples taken on the continental 

slope (depth>650 m). The MDS diagram of all samples (Figure 2.2) shows little 

overlap among these five groups, indicating large spatial differences among 

bacterioplankton communities. The percent similarity among samples ranged broadly 

from 4% to 91% (average 36%±14% s.d.), and similarity values were higher within 

groups than between groups (Table 2.1).  

 Within the epipelagic group (Figure 2.3A) there was a clear distinction 

between near-shore and offshore communities. In samples taken close to shore (<35 

km), surface and within thermocline communities clustered together by location 

along the coast.  In contrast, samples collected offshore (>60 km), surface and within 

thermocline samples clustered separately, independent of the coastal line sampled. 

Within the shelf bottom group (depth<150 m), clustering was less defined (Figure 

2.3B). These communities separated into three groups based on coastal location: 

Oregon coast (Newport hydroline), Columbia River line, and Washington coast (La 

Push, Willipa Bay lines). Shelf bottom samples taken below the plume region 

clustered with nearby Columbia River line or Washington coast samples. Within the 
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estuary, bacterioplankton communities separated by salinity (Figure 2.3C), 

irrespective of location of the sampling site, forming three clusters: oligo/mesohaline, 

mesohaline, and meso/polyhaline. Although estuarine sample size is small (n=10), the 

salinity trend is readily apparent. Unlike the previous groups, plume communities did 

not separate by salinity or coastal location and a pattern of separation was not easily 

seen (data not shown). 

 Comparison of all samples (n=65) to the environmental dataset showed that 

communities varied strongly with salinity, temperature, and depth across the entire 

sample set, together giving a correlation coefficient of ρ=0.734. With the addition of 

turbidity and inorganic nutrients (ortho-phosphate, nitrate), the correlation coefficient 

value increased slightly to ρ=0.755 (Table 2.2). When salinity, temperature, and 

depth were removed from the analysis, community variability was correlated with 

turbidity, inorganic nutrients (ortho-phosphate, nitrate), and DSi (ρ=0.603). Results 

indicate that salinity, temperature, and depth appear to be the most important 

variables, with a combination of other abiotic environmental factors contributing 

slightly to bacterioplankton community variability. Biotic factors had little influence 

on variability in the overall bacterioplankton community, with phaeophytin and 

bacterial production combining for a correlation value of ρ=0.297. 

Within the separate coastal environments (epipelagic, shelf bottom, plume), 

biotic factors played a larger role in the variability of communities, as gradients of 

primary and secondary production were evident from environmental variables. 

Chlorophyll a and bacterial production were the top two factors correlating with 

community variability in the epipelagic (n=23), shelf bottom (n=16), and plume 
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(n=13), where ρ=0.471, 0.494, and 0.515 respectively. Abiotic factors played a lesser 

role within the coastal environments. In the epipelagic, turbidity was the abiotic factor 

with the highest correlation coefficient (ρ=0.333), while in the shelf bottom a 

combination of several abiotic variables, including temperature, turbidity, ortho-

phosphate, nitrite, ammonium, DOP, and DOC produced a much lower correlation 

coefficient when compared to the biotic variables (ρ=0.296). Similarly in the plume, a 

combination of abiotic factors had little influence on community variability. Looking 

at all three coastal environments, it is clear that bacterioplankton communities are 

sensitive to changes in secondary and primary production. However, although 

communities varied strongly with biotic factors, these biotic factors (e.g., bacterial 

production, chlorophyll a) are dependent upon abiotic factors such as nutrients, 

turbidity, and temperature. Thus it is likely that abiotic and biotic factors function in 

combination to control bacterioplankton community composition within each coastal 

environment.  

Unlike the three coastal environments, in the estuary biotic factors were not as 

important in describing the community variability. Variation of bacterioplankton 

communities in the estuary (n=10) was strongly correlated with salinity (ρ=0.628, 

Figure 2.3C). DOP and DO were also important factors, with correlation coefficients 

of 0.452 and 0.440 respectively.  

It is also important to note that DGGE does introduce certain biases that must 

be taken into account when interpreting our results. DGGE has been shown to be 

unable to detect populations that make up less than 1% of the total bacterial 

community (Muyzer et al. 1993), but this limit may be less depending on the bacterial 
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group (Casamayor et al. 2000, Kan et al. 2006a). Additionally, some DGGE bands 

may not represent bacterial populations, but chloroplasts, as primers amplifying the 

V3 region of the 16S gene have been found to amplify chloroplasts sequences (Ferrari 

and Hollibaugh 1999). 

  

Discussion:  

 Bacterioplankton communities varied dramatically across all major 

environment types in the coastal region of Oregon and Washington, and the 

environmental conditions potentially influencing this variability differed depending 

on the spatial scale of analysis. In coastal zones, communities can vary across 

gradients created by physical properties like upwelling and currents (Alonso-Saez et 

al. 2007, Kataoka et al. 2009), but also by those created by influences from land, 

including freshwater input. With the larger spatial scope of this study, I was able to 

assess both land and ocean influences on coastal zone bacterioplankton communities, 

which gives a unique perspective on how communities adapt across river to ocean 

gradients. One study of similar spatial scale was carried out in Moreton Bay, 

Australia (Hewson and Fuhrman 2004). This study found that bacterioplankton 

communities were significantly different across gradients from river to bay to open 

ocean (Hewson and Fuhrman 2004). However, this study also notes that although 

there was heterogeneity between environment types, bacterioplankton communities 

within each environment were relatively homogenous (Hewson and Fuhrman 2004). 

This is in contrast to our results in which bacterioplankton communities within each 

environment could be further clustered across finer spatial scales. Also, low values of 
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percent similarity within each group (range: 44-68%) relative to typical similarity 

values for replicate samples (>90%, data not shown) indicate heterogeneity of 

communities within each environment type, although communities were not 

significantly different.  

Across the entire dataset, salinity, temperature, and depth appeared to be the 

three most important environmental factors describing variability. This makes sense 

because these three factors define the differences among the environments hosting the 

five major clusters of bacterioplankton communities seen in this study. Salinity and 

temperature vary between the estuary and the rest of the coastal zone, and 

temperature and depth vary between the surface and bottom ocean. Salinity has been 

shown in many studies to be an important factor for the separation of bacterial 

communities (e.g. Bernhard et al. 2005, Bouvier and Giorgio 2002, Crump et al. 

2004, Hewson and Fuhrman 2004, Selje and Simon 2003, Troussellier et al. 2002). 

Depth has also been shown to be an important factor in determining bacterial 

community composition (e.g. Ghiglione et al. 2008, Riemann et al. 1999). Although 

depth was part of the experimental design in this study, it can be considered a proxy 

variable for many biological and physical factors that vary in the vertical dimension 

but were not directly measured, including photosynthetically available radiation 

(PAR). Once bacterioplankton communities were separated by salinity, temperature, 

and depth gradients, community composition within environments varied with biotic 

factors, specifically variables contributing to both primary and secondary production. 

Thus, by using only community fingerprinting data and a suite of environmental 

variables, the most important variables predicting bacterioplankton community 
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composition were elucidated for a dataset that encompassed a large spatial distance, 

from river to ocean. 

Within the epipelagic environment, communities separated based on coastal 

proximity.  At distances greater than 60 km offshore, fingerprinting data showed 

communities are laterally homogeneous across a large sampling area, but were 

variable by depth with surface (<2.5 m) communities differentiating from 

communities within the thermocline (15-50 m). In contrast, the near-shore coastal 

ocean (<35 km offshore) was more heterogeneous, with different bacterioplankton 

communities developing at different locations along the coast, and with surface 

(<2.5m) and thermocline (7-15 m) samples clustering together (Figure 2.3A). 

Differing patterns with depth in the epipelagic may be explained by the fact that the 

thermocline is relatively compressed close to shore, which could facilitate vertical 

mixing and homogenization of epipelagic communities.  Offshore the thermocline 

reaches deeper depths, and this physical separation appears to differentiate the surface 

and deeper communities within the epipelagic zone. 

The separation of the near- and offshore communities can be explained by the 

physical processes affecting the Pacific Northwest. Fluctuations of local winds can 

cause near-shore coastal waters to shift between upwelling to downwelling conditions 

over short time scales (Hickey 1989). Across the shelf, however, shifting winds affect 

waters differently. The mid to outer shelf is not affected by changing winds on these 

short time scales, and along-shore surface currents remain intact (Kosro 2005). On the 

inner shelf (less them 10 km), however, a shift in wind direction causes currents to 

change almost immediately (Hickey 1989), and thus causes primary productivity to 
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increase along the inner shelf, as nutrients are brought to the surface. The productivity 

gradient from inner to outer shelf is one likely explanation for the separation of 

epipelagic communities between near shore and off shore. Different bacteria taxa may 

be present depending on availability and quality of organic matter from primary 

production, which could result in different community composition (Cottrell and 

Kirchman 2000). This explanation is supported by environmental data, where 

chlorophyll a and bacterial production were the two most important factors 

influencing community variability. Separation of near-shore communities laterally 

along the coast can also be explained by productivity gradients. The Washington 

coastline has been found to be more productive than Oregon (Hickey and Banas 2003, 

Hickey and Banas 2008, Hickey et al. 2010), and this difference may explain the 

separation of near-shore communities by location along the coast. Near-shore 

communities may each be considered distinct water masses, with different physical 

processes occurring in each region, in turn affecting productivity and influencing the 

composition of bacterioplankton communities.  

Chlorophyll a and bacterial production were also important in shaping 

communities in the plume and shelf bottom. In the shelf bottom environment, 

bacterioplankton communities separated loosely into three groups based on location 

along the coast. This result is similar to the pattern seen in the epipelagic group. 

Productivity in the surface ocean influences conditions along the bottom, especially in 

shallower shelf environments. The depth range for the shelf bottom group was 42 to 

145 m, and the shallower, near shore sites generally had higher concentrations of 

chlorophyll a and phaeophytin, and higher bacterial production rates when compared 
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to the deeper, offshore sites. This difference in depth, although not dramatic, created a 

gradient of productivity across the shelf bottom that was reflected in the composition 

of communities such that those close to shore, influenced by light and surface water 

productivity, had different community composition from the deeper offshore sites.  

In the plume environment, there was no spatial pattern for communities, but 

chlorophyll a and bacterial production were again the two top factors potentially 

influencing variability. Plume sites were sampled both north and south of the 

Columbia River mouth. The Columbia River plume supplies large amounts of iron 

and silica to the coastal ocean (Hickey et al. 2010), which can influence primary and 

thereby secondary production along the coast. This nutrient supply coupled with 

seasonal upwelling of nitrate can make the plume region highly productive (Hickey et 

al. 2010). The importance of both chlorophyll a and bacterial production in shaping 

plume bacterioplankton communities further illustrates the importance of plume 

waters on coastal productivity. Along the coast, both chlorophyll a and bacterial 

production played an important role in influencing community composition. Within 

the estuary, however, salinity was the most important factor potentially influencing 

bacterioplankton community variation. Dissolved nutrients, specifically DOC and 

DOP, were also factors potentially influencing community variability. Estuaries are 

sites of high productivity where river and ocean communities mix along both salinity 

and nutrient gradients. In the Columbia River estuary, short residence times, and thus 

rapid movement of water through the estuary, results in the differentiation of 

bacterioplankton communities by the degree of mixing between river and coastal 

ocean waters (Crump et al. 1999).  
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It is often difficult to identify environmental factors that potentially influence 

community variability (Lozupone and Knight 2007). Factors affecting 

bacterioplankton community composition are complex and consequently it is the 

combination of many that influence community variability. Overall, communities 

across the Columbia River region appeared to be shaped by three abiotic factors: 

salinity, temperature, and depth. Differences among these factors helped to explain 

the separation of communities into five distinct spatial environments. Within the 

coastal environments, differences in productivity due to variable physical processes 

appeared to shape bacterioplankton communities. Thus, communities were first 

separated by location along salinity, temperature, and depth gradients, and then varied 

further across coastal productivity gradients. With community fingerprint data and a 

suite of environmental variables, I was able identify potential drivers of 

bacterioplankton community variability across a river to ocean gradient. 

Understanding how and why bacterioplankton communities are distributed across 

environmental gradients allows for better prediction of how these communities, and 

ecosystems as a whole, might be shaped by future environmental change. 

 
. 
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Table 2.1: Percent similarity values within and between groups ± standard deviation 
(ANOSIM: p<0.003) as determined from relative band height data using the Bray-
Curtis similarity coefficient.  
 

 Estuary Plume Epipelagic Shelf bottom Slope bottom 

Estuary 67.6 ± 10.2     

Plume 31.0 ± 8.4 56.8 ± 10.0    

Epipelagic 26.8 ± 7.1 42.0 ± 10.8 42.4 ± 10.0   

Shelf bottom 19.8 ± 7.8 28.4 ± 7.7 35.4 ± 9.7 52.6 ± 12.4  

Slope bottom 19.9 ± 6.9 21.8 ± 5.3 23.7 ± 6.3 25.0 ± 7.7 44.1 ± 2.5 
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Table 2.2: Spearman rank correlation coefficients (ρ) showing correlation between 
bacterioplankton communities and both abiotic and biotic environmental variables. 
BV-STEP ρ values represent maximum values when all environmental variables were 
included. For BIO-ENV, the maximum number of variables was set to one to 
determine the degree of association of each environmental variable individually, ρ 
values for the top two variables are shown. 
 

Environment Abiotic BV-STEP factors ρ Abiotic BIO-ENV factors ρ 

All Salinity, Temperature, Turbidity, 
Nitrate, Depth 0.755 Temperature 

Salinity 
0.565  
0.508 

Estuary Salinity, DOP, DOC 0.628 Salinity 
DOP 

0.628  
0.452  

Plume Salinity, Temperature, DO, Ortho-
phosphate 0.382 DO 

Turbidity 
0.362  
0.261  

Epipelagic Temperature, Turbidity, DOC, Depth 0.425 Turbidity 
Temp 

0.333  
0.281  

Shelf bottom Temperature, Turbidity, Ortho-
phosphate, Nitrite, Nitrate, DOP, DOC 0.286 Nitrite 

DOP 
0.226 
0.151  

 Biotic BV-STEP factors ρ Biotic BIO-ENV factors ρ 

All Phaeophytin, BP 0.297 Phaeophytin 
BP 

0.274  
0.172  

Estuary Chl a, BP 0.313 Phaeophytin 
BP 

0.233  
0.226  

Plume Chl a, BP 0.515 Chl a 
BP 

0.437 
0.424  

Epipelagic Chl a, BP 0.471 Chl a 
BP 

0.422  
0.413  

Shelf bottom Chl a, BP 0.494 Chl a 
BP 

0.452  
0.490  
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Figure 2.1: Map of Oregon and Washington coasts. Inset depicts Columbia River 
estuary and plume region. Dotted line denotes approximate location of shelf break. 
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Figure 2.2: Multiple dimensional scaling (MDS) diagram of percent similarities for 
all 71 communities in August 2007. Bacterioplankton communities separated into 
five groups based on location within the study site (ANOSIM: p<0.003, Stress: 0.18). 
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Figure 2.3: MDS diagram of epipelagic (A), shelf bottom (B), and estuary (C) 
bacterioplankton communities. Epipelagic and shelf bottom group communities 
clustered by location, estuary communities clustered by salinity. Stress values for 
diagrams are 0.2, 0.17, and 0.08 respectively. 
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CHAPTER 3: 

SPATIAL VARIABILITY OVERWHELMS SEASONAL PATTERNS IN 

BACTERIOPLANKTON COMMUNITIES ACROSS A RIVER TO OCEAN 

GRADIENT 
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Abstract: 

Few studies of microbial biogeography address variability across both 

multiple habitats and multiple seasons. Here I examine the spatial and temporal 

variability of bacterioplankton community composition of the Columbia River coastal 

margin using 16S rRNA gene amplicon pyrosequencing of 300 water samples 

collected in 2007 and 2008. Communities separated into seven environments 

(ANOSIM, p<0.001): river, estuary, plume, epipelagic, mesopelagic, shelf bottom 

(depth<350 m), and slope bottom (depth>850 m). The ordination of these samples 

was correlated with salinity (ρ=-0.83) and depth (ρ=-0.62). Temporal patterns were 

obscured by spatial variability among the coastal environments, and could only be 

detected within individual groups. Thus, structuring environmental factors (e.g., 

salinity, depth) dominate over seasonal changes in determining community 

composition. Seasonal variability was detected across an annual cycle in the river, 

estuary, and plume where communities separated into two groups, early year (April-

July) and late year (August-Nov), demonstrating annual reassembly of communities 

over time. Determining both the spatial and temporal variability of bacterioplankton 

communities provides a framework for modeling these communities across 

environmental gradients from the river to the deep ocean. 

 

Introduction: 

Over the past few decades, aquatic microbial communities have been shown 

to be abundant, deeply diverse, and variable across space and time. Yet several recent 

studies demonstrate repeatable and predictable patterns in the composition of these 
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communities. Spatial variability in aquatic microbial communities has been explored 

on scales that range from millimeters (Long and Azam 2001) to kilometers (Hewson 

et al. 2006b) to global (Fuhrman et al. 2008, Pommier et al. 2007). This variability is 

often attributed to a combination of environmental factors that influence the rate of 

growth of individual taxa and physical parameters that prevent different communities 

from interacting (Crump et al. 2004, Fuhrman et al. 2006, Fuhrman et al. 2008, 

Lozupone and Knight 2007, Nemergut et al. 2011). Of these factors, salinity, 

temperature, and depth appear to be the most important in distinguishing aquatic 

communities over large spatial scales, in part because many environmental factors 

vary with salinity, temperature, and depth (i.e., light, nutrients, pressure) which 

results in separation of water masses and thereby communities (Carlson et al. 2009, 

Fortunato and Crump 2011, Fuhrman et al. 2008, Morris et al. 2005, Treusch et al. 

2009). On a global scale, Lozupone and Knight (2007) showed that the primary 

determinant of aquatic microbial community composition was salinity while Fuhrman 

et al (2008) found that changes in diversity of marine bacteria across a latitudinal 

gradient was highly correlated to temperature.  

 Temporal variability in marine and freshwater microbial communities is also 

predictable within individual environments. Seasonal shifts in microbial community 

composition have been demonstrated in marine environments such as the Sargasso 

and Baltic Seas and the English Channel, where succession of microbial communities 

correlated with changes in mixed layer depth, temperature, and nutrient 

concentrations through the year (Andersson et al. 2010, Carlson et al. 2009, Gilbert et 

al. 2009, Morris et al. 2005). Mixing, temperature, and nutrient concentrations are 
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important factors influencing communities in freshwater systems as well (Berdjeb et 

al. 2011, Kent et al. 2007, Nelson 2009, Shade et al. 2008). Shade et al. (2008) found 

distinct communities in layers of a stratified lake, where gradients of temperature, 

dissolved oxygen, and nutrients were present. Seasonal succession in both marine and 

freshwater has also been shown to be repeatable (Andersson et al. 2010, Carlson et al. 

2009, Crump et al. 2009, Fuhrman et al. 2006, Morris et al. 2005, Nelson 2009). 

Crump et al. (2009) showed synchronous shifts in communities in six arctic rivers 

strongly correlated with seasonal changes in the environment, suggesting microbial 

communities may shift in predictable patterns from season to season.  

Microbial communities are highly diverse, but the extent and the variability of 

this diversity in freshwater and marine systems are uncertain. High throughput 

pyrosequencing of PCR-amplified 16S rRNA genes is beginning to resolve the deep 

diversity of these systems. Due to the large number of sequences per run (~1 million 

reads), 16S rRNA gene amplicon pyrosequencing provides better resolution of 

microbial biogeographical patterns because the depth of diversity captured with each 

sample is greater when compared to classical community fingerprinting techniques 

(e.g. DGGE, T-RFLP, ARISA), which only capture the most dominant species in an 

environment (Sogin et al. 2006). Recent studies have used 16S amplicon 

pyrosequencing to determine the microbial diversity of many different environments 

including deep sea, arctic, soil, and estuarine communities (Andersson et al. 2010, 

Galand et al. 2009, Gilbert et al. 2009, Lauber et al. 2009, Sogin et al. 2006).  

Microbial community composition and diversity have been characterized 

spatially and temporally in various environments, but rarely have they been assessed 
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over both spatial and seasonal scales. Using 16S amplicon pyrosequencing, I 

characterized bacterioplankton communities from 300 water samples collected across 

the Columbia River coastal margin over an annual cycle. The coastal waters of the 

Pacific Northwest are highly productive due to nutrient delivery from seasonal 

upwelling and from the Juan de Fuca strait and Columbia River (Hickey and Banas 

2003). The biological and physical processes of these coastal waters are complex due 

to variable winds, remote wind forcing, shelf width, and submarine canyons (Hickey 

and Banas 2003, Hickey and Banas 2008, Hickey et al. 2010), which in turn may 

differentially affect the composition of bacterioplankton communities along the 

Oregon and Washington coasts (Fortunato and Crump 2011). The Columbia River is 

the second largest river in the United States with a mean annual discharge of 7300 

m3s-1 (Hickey et al. 1998). This significant release of freshwater strongly impacts the 

chemical, physical, and biological characteristics of the coastal ocean including 

primary and secondary production within the river plume and differentially along the 

Oregon and Washington coasts (Hickey et al. 2010).  

In a previous study from August 2007, the community fingerprinting 

technique DGGE was used to broadly characterize spatial variation of microbial 

communities in the Columbia River coastal margin (Fortunato and Crump 2011). 

Here I used 16S rRNA gene amplicon pyrosequencing to expand on this earlier 

dataset by increasing the sample size four fold and characterizing communities across 

multiple seasons using a more resolved spatial scale from the river to the deep ocean. 

I hypothesized that due to the large spatial scale of this study, bacterioplankton 

communities would separate from river to ocean, across salinity, depth, and other 
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environmental gradients that vary from fresh to marine waters. Results indicate that 

spatial variability overwhelmed seasonal trends across the entire sample set, and 

temporal variability could only be resolved within single environment types.  

 

Methods:  

Water samples were collected from the Oregon and Washington coasts and 

the Columbia River and estuary (latitude 44.652 and 47.917, longitude -123.874 and -

125.929) as part of the NSF-funded Center for Coastal Margin Observation and 

Prediction (CMOP) science and technology center. Samples were collected between 

2007-08 on eight cruises aboard the R/V Wecoma and R/V Barnes. Aboard the R/V 

Wecoma, water samples were collected from the Columbia River, estuary, plume, and 

two coastal ocean lines (Columbia River line, Newport Hydroline) in August and 

November of 2007 and April, June, July, and September of 2008 (Figure 3.1). For 

coastal lines, samples were taken at three depths per station (surface, within 

thermocline, and bottom). Plume samples were taken at 2 depths (surface and bottom) 

in 2007 and 4 depths in 2008 (surface, below plume, within thermocline, bottom). In 

the estuary, samples were collected based on the location of the salt gradient in both 

the north and south channels of the river. Samples were collected across the salt 

gradient from 0 to 30. Samples were collected using a conductivity-temperature-depth 

(CTD) rosette water sampler with 10-liter Niskin bottles. With each CTD cast, depth 

profiles of salinity, temperature (ºC), turbidity (NTU), oxygen (mgL-1), and 

chlorophyll fluorescence were recorded. Water samples aboard the R/V Barnes were 

collected using a high volume low-pressure pump over salinity gradients in the 



 

  50 

estuary in August 2007 and July 2008.  For all samples, surface was defined as being 

between 1 and 2 m depth and bottom was defined as being between 1 and 5 m above 

sediment. Data from CTD fluorescence and temperature sensors were used to 

determine exact sampling depths for water collected at the chlorophyll maximum and 

within the thermocline. 

 DNA samples (1-6 L per sample) were collected, preserved and extracted as 

described previously (Fortunato and Crump 2011) using methods adapted from Zhou 

et al (1996) and Crump et al (2003). Extracted DNA was PCR-amplified using 

primers targeting bacterial 16S ribosomal RNA genes. Each sample was assigned a 

uniquely barcoded reverse primer and amplified in four replicate 20 µl reactions 

(Hamady et al. 2008). Primers used for amplification were bacteria-specific primers 

focusing on the V2 region, 27F with 454B FLX linker 

(GCCTTGCCAGCCCGCTCAG TC AGRGTTTGATYMTGGCTCAG) and 338R 

with 454A linker and unique 8 basepair barcode, denoted by N in primer sequence 

(GCCTCCCTCGCGCCATCAG NNNNNNN CA TGCWGCCWCCCGTAGGWGT) 

(Modified from (Hamady et al. 2008)). Replicate amplifications were combined, 

purified, and normalized using Invitrogen SequelPrep normalization plates 

(Invitrogen, Carlsbad, CA, USA). Five µl from each sample were combined into a 

single tube and sent for pyrosequencing on a Roche-454 FLX pyrosequencer at 

Engencore at the University of South Carolina (http://engencore.sc.edu/). 

 Sequence data was processed using two different methods:  1) Manual global 

alignment and removal of pyrosequencing errors using ARB (Ludwig et al. 2004) and 
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MOTHUR software (Schloss et al. 2009), and 2) denoising and pairwise alignment 

using the QIIME (v1.2.0) software package (Caporaso et al. 2010). 

For the first method, raw sequences were sorted and quality controlled (min 

length 150 bp, no ambiguous bases) using the Ribosomal Database Project (RDP) 

Pyro tools (Cole et al. 2005). A reference sequence database was created using the 

community analysis program MOTHUR (Schloss et al. 2009) consisting of unique 

sequences from the overall dataset. These unique sequences were imported into ARB 

and manually aligned. Extra bases commonly added in pyrosequencing (i.e., 

pyronoise) were placed in gaps added to the alignment. Once the manual alignment 

was completed, sequences were trimmed to E. coli basepair positions 136-335 and 

were exported using a 3% basepair frequency filter to mask insertions, but include 

variable bases. This reference dataset of manually aligned unique sequences was then 

used to align the entire dataset using MOTHUR. Our approach removed insertions 

from pyrosequencing, but did not repair deletions of bases, which were included in 

downstream analyses. OTUs were determined based on 97% sequence similarity 

using MOTHUR.  

For the second method using QIIME, sequences were quality controlled using 

the Split_Libraries.py script with default settings (min length 200, max length 1000, 

min mean quality score 25, max ambiguous bases 0, max homopolymer length 6, max 

primer mismatch 0).  To account for pyronoise, the remaining sequences were 

denoised using the denoiser.py script with the 'fast' method and default settings. 

Sequences were then clustered using the pick_otus.py script with the uclust method 

(97% sequence similarity). Potentially chimeric sequences were identified among 
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representative sequences from each OTU with ChimeraSlayer, and a total of 3,952 

sequences composing 196 OTUs were eliminated from the dataset. 

For both methods, relative abundance was calculated for the OTUs in each 

sample and used to calculate pairwise similarities among samples using the Bray-

Curtis similarity coefficient (Legendre and Legendre 1998). I also calculated pairwise 

similarities among samples using both weighted and unweighted UNIFRAC metrics 

(Lozupone et al. 2006), but the results were nearly identical to those based on Bray-

Curtis, and so are not presented. Bray-Curtis similarity matrices were visualized using 

multiple dimensional scaling (MDS) diagrams, a form of ordination. Analysis of 

similarity statistics (ANOSIM) was calculated to test the significance of differences 

among a priori sampling groups based on environmental parameters. Similarity 

matrices, MDS diagrams, and analysis of similarity (ANOSIM) statistics were carried 

out using PRIMER v6 for Windows (PRIMER-E Ltd, Plymouth, UK).  

Alpha diversity for samples was calculated using MOTHUR. The number of 

sequences was normalized before calculation by randomly selecting the same number 

of sequences per sample, based upon the sample with the least number of sequences 

(n=209 sequences). The taxonomy of OTUs identified was determined using the RDP 

Classifier tool. Taxonomic assignments with less than 80% confidence were marked 

as unknown. A total of 306 samples were analyzed overall. This number was reduced 

to 300 as samples with a low number of sequences were removed.  

All sequences can be downloaded from the NCBI Sequence Read Archive 

(SRA) database under the accession number SRP006412. 
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Results: 

Comparison of the two sequence analysis methods showed that the overall 

patterns of microbial community structure for this study are highly robust, as both 

spatial and temporal patterns in beta-diversity were the same for both methods. The 

number of OTUs identified by the QIIME analysis (8039) was slightly lower than the 

ARB/MOTHUR analysis (9389), but this was because fewer sequences passed the 

initial QIIME quality control step due to different quality control parameters 

including maximum homopolymers length and primer mismatches. Since the patterns 

of community variability were comparable, the results presented are based on the 

QIIME sequence analysis protocol.  

Bacterioplankton communities separated into seven distinct environments 

(ANOSIM, p<0.001): river, estuary, plume, epipelagic, mesopelagic, shelf bottom, 

and slope bottom. The plume consisted of coastal surface samples with salinity less 

than 31, the epipelagic included coastal surface and chlorophyll maximum samples 

(average depth=8 m), the mesopelagic consisted of coastal samples within and below 

the thermocline (average depth=44 m), the shelf bottom of bottom samples with depth 

less than 350 m, and the slope bottom of bottom samples deeper than 850 m. Percent 

similarity for all samples was 22.9% (± 15.3%) with a range from 0 to 74.8% 

similarity. Similarity values were higher within groups than between groups (Table 

3.1).  

A multidimensional scaling plot of all 300 samples based on Bray-Curtis 

similarity values (Figure 3.2) depicts the seven environments based on location in the 

system. Environments separated along two axes that form a V-shaped arrangement of 
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microbial communities. The first axis is clearly related to salinity, and the second is 

related to depth. There was a strong correlation between Dimension 1 and salinity, 

with a Spearman’s rho (ρ) value of -0.83 (p<0.001, Figure 3.3). A weaker relationship 

was observed between Dimension 2 and sample depth (ρ =-0.62, p<0.001 for 

Dimension 2 axis and depth), although this relationship improved when river and 

estuary samples were omitted (ρ=-0.76, p<0.001). 

Spatial variation in communities based on sampling location is readily 

apparent in Figure 3.2. Temporal variation, however, appears to be overwhelmed by 

the strong spatial gradients of salinity and depth. Temporal variation was only 

detectable when each spatial group was analyzed separately. For river, estuary, and 

plume samples, a seasonal trend is apparent from river to ocean (Figure 3.4). In the 

river, three communities are visible, spring, freshet-early summer, and late summer-

fall. In the estuary, seasonal clustering of communities was not as clear, although 

communities did split into two significant clusters (ANOSIM, p<0.001), an early year 

community, encompassing samples from April to July, and a late year community 

encompassing samples from August to November. These same two communities, 

early and late, are also present in the plume (ANOSIM, p<0.001). The seasonal 

pattern in the other groups is less discernable. There was significant seasonal 

variation in the shelf bottom and epipelagic environments according to ANOSIM 

statistics, but these patterns could not be discerned in the individual MDS plots due to 

the large amount of variability within each group. There was no significant temporal 

pattern in the slope bottom or mesopelagic. 
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Most sequences in the dataset were related to the phyla Proteobacteria 

(44.7%) and Bacteroidetes (33.6%). Within the Proteobacteria, Alpha (21.2%), 

Gamma (17.0%), Beta (2.6%), and Delta (0.4%) were present. In the Bacteroidetes, 

Flavobacteria was the largest group, with 55,915 sequences, making up 28% of the 

total dataset. The most abundant OTU belonged to the SAR11 clade and consisted of 

16,635 sequences. Overall, SAR11 made up 11.3% of the dataset with a total of 

22,454 sequences belonging to 208 OTUs. The second largest OTU was a 

Gammaproteobacteria with 13,137 sequences. Cyanobacteria were a small percentage 

of the total dataset, only 1.8%, but constituted as much as 19% of sequences in 

epipelagic samples collected off the shelf. More specific taxonomic information for 

each of the seven spatial groups can be found in the supplemental material (Table 

3.S1, Figure 3.S1).  

To better understand community composition, I classified each of the 8039 

OTUs in this study based on the location in the system where they exhibited their 

maximum average relative abundance in pooled sequences (Figure 3.5). For example, 

if OTU-1 was most abundant in the plume (based on its relative abundance within 

each pool of sequences from the seven groups), it was classified as a plume OTU. 

Results suggest mixing of water masses and microbial communities from estuary to 

the shelf bottom. The river and slope bottom groups appear to be end members in the 

system, as most of the river and slope bottom sequences are found only in their 

respective locations. The estuary community is primarily a mix of sequences 

belonging to river and estuarine OTUs, with some addition from the plume and 

epipelagic. In the plume, however, plume sequences are mostly classified as being 
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from plume, epipelagic, and mesopelagic OTUs with few sequences coming from 

river or estuary OTUs. 

I mapped the relative abundance of the top OTU from each of the seven 

spatial groups (based on average relative abundance per group) using the ordination 

of Figure 3.2. These bubble plots show that the top OTUs for each group are most 

abundant in samples from their location and less abundant in neighboring locations 

(Figure 3.S2). The top OTUs for the estuary and the river display some seasonality, 

with the largest abundances occurring in only one or two seasons (e.g., June and July 

2008 for the estuary). 

Alpha-diversity varied across the spatial groups (Figure 3.6). The river and 

slope bottom groups had the highest and third highest average diversity (Chao1=1104 

and 868, respectively), indicating the presence of many more endemic taxa within 

these two environments, and showing further that freshwater and deep ocean 

represent end members in this study. As water mixes from the river to the coastal 

surface ocean, diversity measurements decrease to the lowest diversity in the 

epipelagic group (Chao1=380). Diversity then increased from surface to the deep 

ocean, with the mesopelagic, shelf bottom, slope bottom groups each having a higher 

diversity than the previous. Diversity measurements show that when water mixes 

from fresh to salt and from deep to surface, taxa are reduced in abundance beyond our 

limit of detection and thus community composition becomes more streamlined in the 

coastal surface.  
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Discussion: 

 Previous studies of variability and diversity in bacterioplankton communities 

are restricted to single dimensions, focusing either on long-term time series, depth 

profiles, or horizontal surveys across environmental gradients (Andersson et al. 2010, 

Fuhrman and Steele 2008, Gilbert et al. 2009, Hewson et al. 2006a, Lozupone and 

Knight 2007, Morris et al. 2005, Nemergut et al. 2011, Pommier et al. 2007, Treusch 

et al. 2009).  Here I present a dataset that compares bacterioplankton community 

composition in all three of these dimensions: spatially from river to surface ocean, by 

depth from surface to deep ocean, and through time seasonally over an annual cycle. 

This larger scale biogeographical analysis was enabled by the use of 16S amplicon 

pyrosequencing, which assesses diversity through DNA sequencing of hundreds of 

thousands of PCR-amplified gene copies. Previous 16S amplicon pyrosequencing 

studies focused on deep sampling of small numbers of samples, allowing for 

characterization of the “rare biosphere” but only at limited spatial and temporal scales 

(Andersson et al. 2010, Galand et al. 2009, Gilbert et al. 2009, Kirchman et al. 2010). 

In this study I took a different approach to characterizing bacterioplankton 

communities by applying 16S amplicon pyrosequencing to ten times the number of 

samples seen in previous studies. Sequencing more samples produces fewer 

sequences per sample and limits the resolution of the rare biosphere. However, the 

greater number of samples in this study (n=300) led to the discovery of robust spatial 

patterns from river to ocean, and seasonal shifts that may not have been observed if 

fewer samples were sequenced. Based on a previous community fingerprinting study 

of 71 samples from August 2007 using DGGE, I found that communities separated 
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into just five environments defined by location across salinity and depth gradients 

(Fortunato and Crump 2011). With the addition of over four times the number of 

samples, in this study I was able to further resolve the spatial patterns of 

bacterioplankton communities into seven distinct environments across steep salinity 

and depth gradients in addition to determining temporal variability.   

Salinity and depth change dramatically from the Columbia River to the deep 

ocean, and these factors appear to strongly influence the composition of 

bacterioplankton communities. In contrast, temporal variability in bacterioplankton 

communities was relatively small, and was obscured by the spatial variability in 

communities across environments in the coastal zone.  Several studies of coastal zone 

bacterioplankton identify time as the principle axis of community variability 

(Fuhrman et al. 2006, Gilbert et al. 2009, Kan et al. 2006b, Stepanauskas et al. 2003), 

but these studies were restricted to one environment type (e.g., estuaries or a fixed 

coastal station) within which spatial variability of bacterioplankton communities was 

limited.  Few studies address temporal variability across many different habitats, so it 

was difficult to compare our results to other studies. However, one study by 

Kirchman et al. (2010) identified a similar pattern among 11 surface water samples in 

which winter/summer differences in Arctic Ocean bacterioplankton communities was 

minimal compared to spatial variability across their sampling range. Thus, while 

temporal variability may occur within many marine habitats, it is clear that 

structuring environmental factors (e.g., salinity, depth) dominate over seasonal 

changes in determining community composition. 
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Spatial differentiation among samples was highly correlated with salinity, 

confirming the observations of two global meta-analyses of microbial diversity based 

on 16S rRNA gene sequences (Lozupone and Knight 2007, Tamames et al. 2010). In 

one of these studies, Lozupone and Knight (2007) found that salinity was the primary 

environmental determinant for community composition across marine, freshwater, 

sediment, and soil environments, more so than temperature, pH, or other 

environmental factors. In the coastal marine environment, salinity contributes to 

density gradients that physically separate water masses and their resident microbial 

communities. However, the degree to which these water masses are separated 

depends on the magnitude of mixing via river flow, tides, upwelling, surface winds, 

etc. This mixing from fresh to marine or from surface to deep leads to the formation 

of communities in mixing zones that are comprised of bacterioplankton populations 

from multiple water masses. For example in the Columbia River estuary, the flushing 

rate exceeds the doubling time of bacterioplankton populations, thus a distinct free-

living estuarine community is unable to form (Crump et al. 1999). Our study 

confirmed this observation, demonstrating that estuarine bacterioplankton 

communities are composed of populations from the river and the coastal ocean. I also 

identified significant overlap in communities across environmental gradients in the 

coastal ocean including the plume, epipelagic, mesopelagic and shelf bottom 

environments, although it is unclear whether this is the result of mixing or the 

presence of generalist organisms that thrive in different environments.   

Coastal bacterioplankton communities correlated with depth from surface to 

the deep ocean despite the fact that samples were collected over multiple seasons and 
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at sampling sites as much as 150 km apart. Salinity varies with depth, as do many 

other environmental parameters including temperature, light, and nutrients. I therefore 

am treating depth here as a proxy for many factors that vary in the vertical dimension. 

The vertical structuring of bacterioplankton communities in the ocean has been 

demonstrated in many studies and has been linked to changes in hydrostatic pressure 

as well as water mass properties (Blumel et al. 2007, Carlson et al. 2009, Lee and 

Fuhrman 1991, Morris et al. 2005, Treusch et al. 2009). For example, Treusch et al 

(2009) found that Sargasso Sea bacterial communities separated into surface (upper 

40 m), deep chlorophyll maximum, and upper mesopelagic communities. I also 

observed a separation of the epipelagic and upper mesopelagic communities, but not 

between surface and chlorophyll maximum samples, possibly because the mixed 

layer depth (5 to 56 m) was, in general, shallower than in the Sargasso Sea (<50 m to 

350 m) (Carlson et al. 2009, Treusch et al. 2009). Treusch et al (2009) attributed 

separation of these communities to stratification and seasonal mixing in the upper 

water column. The coastal zone of the Pacific Northwest experiences seasonal 

upwelling, and thus a mixing of communities from bottom to surface. The degree of 

mixing is evident in Figure 3.5, where the mesopelagic is actually a mix of 

populations from the bottom and surface. In July 2008 during strong upwelling, near-

shore surface samples from the Newport Hydroline contained a higher proportion 

(23%) of sequences belonging to shelf bottom and slope bottom OTUs than during 

other times in 2008 (5%). Also during that month, the most abundant estuary-

classified OTU was found in some shelf bottom samples, indicating a possible 

exchange between these two environments. 
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Temporal variability could only be resolved within some environments. 

Seasonal changes were observed in the river, estuary, and plume environments. In the 

river, there were three separate groups, spring, freshet-early summer, and late 

summer-fall, corresponding to seasonal changes in Columbia River discharge, where 

maximum discharge occurs in late spring and is minimum in late summer to early fall 

(Prahl et al. 1998). In the plume, seasonal upwelling strongly influences temperature 

and nutrient concentrations and thereby production in the plume (Hickey et al. 2010). 

Thus, plume community composition is tightly linked to the physical processes 

occurring along the coast. The seasonality of the estuary community then can be 

attributed to a combination of both river and coastal processes. The periods of 

maximum and minimum discharge of the river correspond to the two seasonal 

bacterioplankton groups seen in the estuary, early (April to July) and late (August to 

November). During times of high river flow, the estuarine community is shaped by 

the river and when river flow is at a minimum, community composition is influenced 

more by the plume and coastal ocean. 

River and deep ocean (slope bottom) appear to be end members in this system 

in that they contribute populations to nearby environments, but receive little to no 

contributions themselves. In the other five environments there was tremendous 

overlap in community composition from estuary to shelf bottom suggesting dynamic 

exchange of communities through advection and mixing. Within each environment 

there also appeared to be environment-specific communities, based on maximum 

relative abundance. In the plume, 37% of plume sequences were classified as 

belonging to plume OTUs, indicating the presence of a plume-specific community. 



 

  62 

Additionally, only 5% of plume sequences were from the river and estuary while 36% 

came from epipelagic and mesopelagic OTUs, indicating the plume community is 

comprised more of coastal populations than bacteria flushed from the estuary. As 

mentioned previously, the plume is highly productive due to nutrient delivery from 

the river and coastal upwelling (Hickey et al. 2010) and as primary production 

increases in the plume, different epipelagic taxa could increase depending on 

availability and quality of organic matter. This would result in a different 

combination of bacteria populations and a clear distinction between the plume and 

epipelagic communities. I speculate then that each spatial group, from estuary to shelf 

bottom, contains bacterioplankton populations that are broadly distributed across 

environments, but each group supports a different combination of these bacteria, 

creating distinct communities within each environment. 

16S amplicon pyrosequencing, like any molecular technique is prone to errors 

and it is important to analyze sequences in a way that accurately assesses community 

patterns. Analyzing 16S amplicon pyrosequencing data is difficult due to sequencing 

errors termed “pyronoise”, which may artificially increase the number of OTUs 

observed. In Kunin et al. (2009), the authors PCR-amplified a 300bp region of the 

16S rRNA gene from a known cultured E. coli strain and then pyrosequenced it. The 

results returned a largely inflated number of OTUs, showing that pyrosequencing 

errors may lead to a gross overestimation of the number of OTUs in a sample. An 

increase in the number of OTUs leads to inflated alpha diversity within samples, and 

greater beta diversity between samples. I found that global alignment combined with 

manual removal of pyronoise insertions was comparable in total OTU number, alpha-
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diversity, and beta-diversity patterns to analysis using a QIIME analysis pipeline that 

includes denoising (denoiser.py) and pairwise sequence alignment (uclust). I also 

found that removing the pyronoise is crucial for minimizing the total number of 

OTUs and overall sequencing errors. To demonstrate this I globally aligned our 

sequences using a reference database from SILVA (Pruesse et al. 2007) and found 

that although our beta-diversity patterns were comparable, the OTU number and 

alpha diversity estimates were nearly twice that of our previous methods (data not 

shown). It is important then that pyrosequencing datasets be subjected to rigorous 

quality checking and denoising in order to accurately assess both the overall 

community patterns and the rare biosphere.  
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Table 3.1: Percent similarity values within and between groups ± standard deviation 
(ANOSIM: p<0.001) as determined by Bray-Curtis similarity coefficient. 
 

 River Estuary Plume Epipelagic Mesopelagic Shelf 
Bottom 

Slope 
Bottom 

River 33.6±11.2       

Estuary 17.8±11.7 24.9±11.1      

Plume 2.6±4.1 19.2±11.4 36.5±10.5     

Epipelagic 0.1±0.2 15.4±11.2 35.0±9.2 38.4±9.9    

Mesopelagic 0.4±1.5 13.1±10.0 27.3±11.1 33.4±11.8 37.2±11.5   

Shelf Bottom 0.2±0.3 10.3±8.6 17.9±9.5 22.8±10.9 32.2±12.1 41.8±12.6  

Slope Bottom 0.2±0.3 4.3±4.0 6.2±5.8 8.7±6.3 16.4±9.6 24.7±9.0 50.3±6.6 
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Figure 3.1: Map of Oregon and Washington coasts. Inset depicts Columbia River 
estuary and plume region. Dotted line denotes approximate location of shelf break. 
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Figure 3.2: Multiple dimensional scaling diagram of percent similarities for all 300 
samples. Bacterioplankton communities separated into seven groups based on 
location, across salinity and depth gradients (ANOSIM: p<0.001, Stress: 0.12). 
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Figure 3.3: Correlation of Dimension 1 for the 300 samples from Figure 3.2 and 
salinity. A Spearman’s rho (ρ) value of -0.83 (p<0.001) indicates a strong relationship 
between salinity and bacterial community variation.  
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Figure 3.4: Seasonal multidimensional scaling diagram of river, estuary, and plume. 
River displays three seasonal communites, which cluster into two communities, early 
(April to July) and late (August to November), in the estuary and plume. Stress = 
0.04, 0.15 and 0.17 for river, estuary, and plume, respectively. 
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Figure 3.5: Percentage of sequences in OTUs classified by location. Slope bottom and 
river groups represent end members in the system. Rare category represents 
sequences belonging to OTU that make up less than 0.1% of the total number of 
sequences from each corresponding location. 
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Figure 3.6: Average Chao1 index per group ± standard deviation as determined using 
MOTHUR (v.1.15.0). OTU number was normalized to the sample with the smallest 
number of sequences (n=209 sequences). 
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Supplemental Table 3.1: Most abundant OTUs within each group based on average 
relative abundance. Taxonomy was determined by the RDP Classifier (80%  
confidence threshold).  
 

Environment Taxonomy (Phylum, Class, Order, Family, Genus) Average relative abundance within group (%) 
River Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae, Flavobacterium 4.1 
 Proteobacteria, Betaproteobacteria, Burkholderiales, Comamonadaceae 4.0 
 Proteobacteria 3.4 
 Unknown Bacteria 3.3 
 Actinobacteria, Actinobacteridae, Actinomycetales  2.7 
 Proteobacteria, Betaproteobacteria, Methylophilales, Methylophilaceae 2.4 
 Actinobacteria, Actinobacteridae, Actinomycetales 2.4 
 Verrucomicrobia 1.8 
 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae, Flavobacterium 1.6 
 Actinobacteria 1.3 
  Sum: 27.0 
Estuary Proteobacteria, Gammaproteobacteria, Oceanospirillales 2.5 
 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 2.4 
 Proteobacteria, Alphaproteobacteria, Rhodobacterales, Rhodobacteraceae 1.2 
 Bacteroidetes, Flavobacteria, Flavobacteriales, Cryomorphaceae, Fluvicola 1.2 
 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 1.2 
 Proteobacteria, Alphaproteobacteria, Rhodobacterales, Rhodobacteraceae 1.1 
 Proteobacteria, Betaproteobacteria, Burkholderiales, Comamonadaceae 1.1 
 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae, Flavobacterium 0.9 
 Bacteroidetes 0.8 
 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 0.7 
  Sum: 13.0 
Plume Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 3.9 
 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae, Ulvibacter 3.5 
 Proteobacteria, Alphaproteobacteria, Rhodobacterales, Rhodobacteraceae 2.7 
 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae, Polaribacter 2.0 
 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 1.8 
 Bacteroidetes, Flavobacteria, Flavobacteriales, Cryomorphaceae 1.7 
 Unknown Bacteria 1.5 
 Bacteroidetes, Flavobacteria, Flavobacteriales 1.3 
 Verrucomicrobia, Opitutae 1.2 
 Proteobacteria, Alphaproteobacteria, Rhodobacterales, Rhodobacteraceae 1.2 
  Sum:  20.8 
Epipelagic Proteobacteria, Alphaproteobacteria, Rhodobacterales, Rhodobacteraceae 5.6 
 Unknown Bacteria 3.0 
 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 2.0 
 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 2.0 
 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 1.8 
 Cyanobacteria, Cyanobacteria, Family II, GpIIa 1.7 
 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 1.6 
 Proteobacteria, Gammaproteobacteria 1.5 
 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 1.2 
 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 1.2 
  Sum: 21.7 
Mesopelagic Proteobacteria, Alphaproteobacteria, Rickettsiales. SAR11, Pelagibacter 14.0 
 Proteobacteria 1.5 
 Proteobacteria, Alphaproteobacteria 1.2 
 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae,  1.1 
 Proteobacteria, Gammaproteobacteria 1.0 
 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae, Polaribacter 0.9 
 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 0.9 
 Unknown Bacteria 0.7 
 Bacteroidetes, Flavobacteria, Flavobacteriales 0.6 
 Proteobacteria, Alphaproteobacteria, Rickettsiales. SAR11, Pelagibacter 0.4 
  Sum: 22.2 
Shelf Bottom Proteobacteria, Gammaproteobacteria 16.4 
 Proteobacteria, Gammaproteobacteria 3.2 
 Proteobacteria, Gammaproteobacteria 2.2 
 Proteobacteria, Gammaproteobacteria 2.2 
 Unknown Bacteria 1.1 
 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 1.0 
 Proteobacteria, Gammaproteobacteria 1.0 
 Actinobacteria 0.8 
 Bacteroidetes 0.7 
 Bacteroidetes 0.7 
  Sum: 29.3 
Slope Bottom Unknown Bacteria 8.4 
 Unknown Bacteria 4.2 
 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 2.7 
 Proteobacteria, Alphaproteobacteria, Rickettsiales. SAR11, Pelagibacter 1.8 
 Proteobacteria, Gammaproteobacteria 1.8 
 Proteobacteria, Alphaproteobacteria, Rickettsiales. SAR11, Pelagibacter 1.7 
 Proteobacteria, Gammaproteobacteria 1.3 
 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 1.2 
 Proteobacteria, Alphaproteobacteria, Rickettsiales. SAR11, Pelagibacter 1.1 
 Unknown Bacteria 0.9 
  Sum: 25.1 
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Supplemental Figure 3.1: Percentage of sequences for each spatial group classified 
using the RDP Classifier tool with an 80% confidence threshold. 
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Supplemental Figure 3.2: Spatial distribution of the most abundant OTUs based on 
average relative abundance in each spatial group across the ordination of Figure 2. 
Taxonomic identification for each OTU is listed to the furthest classification possible 
as determined by the RDP Classifier tool with an 80% confidence threshold. Stress = 
0.12 
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CHAPTER 4: 

INDICATOR TAXA ACROSS SPATIAL AND SEASONAL GRADIENTS IN THE 

COLUMBIA RIVER COASTAL MARGIN 
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Abstract: 

 Bacterioplankton communities are deeply diverse and highly variable across 

space and time, but several recent studies demonstrate repeatable and predictable 

patterns in this diversity. I expanded upon previous studies by determining patterns of 

variability in both individual taxa and overall bacterial communities across coastal 

aquatic environmental gradients. I surveyed bacterioplankton diversity across the 

river-to-ocean gradient in the Columbia River coastal margin, USA, using amplicon 

pyrosequencing of 16S rRNA genes from 596 water samples collected between 2007 

and 2010. Our results showed seasonal shifts and annual reassembly of 

bacterioplankton communities in the freshwater influenced environments of the 

Columbia River, estuary, and plume. I identified indicator taxa, including species 

from freshwater SAR11, Oceanospirillales, and Flavobacteria groups that characterize 

the changing seasonal conditions in these environments. In the river and estuary, 

Actinobacteria and Betaproteobacteria indicator taxa correlated strongly with 

seasonal fluctuations in particulate organic carbon (ρ=-0.664) and estuarine residence 

time (ρ=0.512) respectively. In contrast, seasonal change in communities was not 

detected in the coastal ocean but instead varied more with the spatial variability of 

environmental factors including temperature and dissolved oxygen. Indicator taxa of 

coastal ocean environments included SAR406 and SUP05 taxa from the deep ocean 

and Prochlorococcus and SAR11 taxa from the upper water column. Overall, I found 

that in the Columbia River coastal margin, freshwater influenced environments were 

relatively consistent and predictable whereas variability in the physical conditions of 

the coastal ocean complicated community composition. This study moved beyond 
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beta-diversity patterns to focus on the occurrence of specific taxa and lends insight 

into the potential ecological roles these abundant taxa play in coastal ocean 

environments. 

 

Introduction: 

Microbial biogeographical studies describe spatial and temporal distribution 

patterns of microbes, and shed light on the degree of diversity, patterns of dispersal, 

and levels of species interactions in different environments (Martiny et al. 2006). We 

know from these studies that microbes are not ubiquitously distributed. Microbial 

communities display a high degree of endemism and contain few cosmopolitan taxa 

(Nemergut et al. 2011, Pommier et al. 2007). In aquatic systems, these communities 

vary spatially with water mass characteristics including depth, salinity, temperature, 

pH, hydrological conditions, organic matter, phytoplankton interactions, and other 

biological and physical factors (Crump et al. 2003, Field et al. 1997, Fortunato and 

Crump 2011, Fuhrman et al. 2008, Galand et al. 2010, Ghiglione et al. 2008, Kent et 

al. 2007, Lauber et al. 2009, Lozupone and Knight 2007). On temporal scales, 

seasonal succession and annual reassembly of communities have been shown in both 

fresh and marine waters (Andersson et al. 2010, Carlson et al. 2009, Crump et al. 

2009, Fuhrman et al. 2006, Morris et al. 2005, Nelson 2009).  

Biogeography of microbial communities has been well described across 

spatial and seasonal scales (Crump et al. 2012, Fortunato et al. 2012, Galand et al. 

2010, Gilbert et al. 2009, Kirchman et al. 2010), and although most studies discuss 

changes in community composition and structure, there is little focus on the specific 
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taxa that distinguish one community from another. In one long-term study of the 

English Channel, Gilbert et al. (2012) showed strong repeatable seasonal patterns in 

the general bacterioplankton community and in specific taxonomic groups, and found 

that seasonal variability was influenced by length of day, temperature, nutrients, and 

photosynthetically active radiation, rather then biomass of zooplankton species. Eiler 

et al. (2012) found complex interdependences in bacterioplankton communities and 

synchronous temporal changes for specific taxonomic groups in a freshwater lake 

system. These studies described variation in specific taxa over time relative to 

variation in environmental conditions, but both studies were conducted at one or a 

handful of fixed locations, and did not consider the effect of immigration.  

Several studies of common marine bacterial taxa, such as SAR11, SAR86, and 

Prochlorococcus describe spatial and temporal distributions of these groups over 

different conditions (Carlson et al. 2009, Malmstrom et al. 2010, Morris et al. 2012, 

Treusch et al. 2009). Malmstrom et al. (2010) showed consistency in the depth 

distribution of ecotypes of Prochlorococcus over a five-year period in the Pacific. 

The depth distribution of SAR11 ecotypes has also been well described, with distinct 

populations observed in the epipelagic and upper mesopelagic at the long-term 

Bermuda Atlantic Time Series (BATS) (Carlson et al. 2009), and across gradients in 

nutrient, chlorophyll, and organic carbon concentrations in the South Atlantic (Morris 

et al. 2012). What is not fully described in these studies, however, is how patterns in 

the abundance of these taxonomic groups are related to overall patterns of community 

distribution in these environments. 
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I expanded on these studies by describing patterns of variability in both 

individual taxa and overall bacterial communities across a broad range of coastal 

aquatic environments, and by identifying key taxa that define specific environments. 

Using 16S rRNA gene amplicon pyrosequencing, I characterized bacterioplankton 

communities from 596 water samples collected across the Columbia River coastal 

margin over a four-year period from 2007-2010. The coastal waters of the Pacific 

Northwest are highly productive due to nutrients supplied by seasonal upwelling and 

freshwater inputs (Hickey and Banas 2003). The biological and physical processes of 

these waters are complex due to variable winds, remote wind forcing, shelf width, and 

submarine canyons (Hickey and Banas 2003, Hickey and Banas 2008, Hickey et al. 

2010), which in turn may differentially affect the composition of bacterioplankton 

communities along the Oregon and Washington coasts (Fortunato and Crump 2011). 

The Columbia River is the second largest river in the United States with a mean 

annual discharge of 7300 m3s-1 (Hickey et al. 1998). This significant release of 

freshwater strongly impacts the chemical, physical, and biological characteristics of 

the river plume and coastal ocean (Hickey et al. 2010). 

An earlier study of 300 water samples collected in 2007 and 2008 showed 

bacterioplankton communities of the Columbia River coastal margin separated into 

seven environments: river, estuary, plume, epipelagic, mesopelagic, shelf bottom, and 

slope bottom (Fortunato et al. 2012). Here I expand on this work and focus on 

population-level analyses to determine the key taxa in each environment and describe 

how the relative abundance of these taxa shifts with changing environmental 

conditions. I hypothesized that there exists seasonal shifts of dominant taxa in each 
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environment and reassembly of the same environment-specific communities each 

year. Results confirmed both these characteristics of bacterioplankton communities in 

freshwater influenced environments, and I identified indicator taxa that characterize 

each season. In contrast, the coastal ocean communities varied with environmental 

conditions that were not linked to seasonality but instead tended to show strong 

spatial variability. 

 

Methods:  

Water samples were collected from the Oregon and Washington coasts and 

the Columbia River and estuary (latitude 44.652 to 47.917, longitude -123.874 to -

125.929) as part of the NSF-funded Center for Coastal Margin Observation and 

Prediction (CMOP). Samples were collected between 2007 and 2010 on 14 cruises 

aboard the R/V Wecoma, R/V New Horizon, and R/V Barnes. Aboard the R/V 

Wecoma, water samples were collected from the Columbia River, estuary, plume, and 

three coastal lines (Columbia River line, Newport Hydroline, La Push Line) in April, 

August, and November of 2007, April, June, July, and September of 2008, and May 

and July of 2010. In 2009, the same set of samples was collected aboard the R/V New 

Horizon in May and September (Figure 4.S1). Samples were collected using an 

instrumented 12 or 24-bottle rosette equipped with a Seabird 911+ conductivity-

temperature-depth (CTD) sensor or a high volume low-pressure pump as described 

previously (Fortunato et al. 2012).  

 DNA samples (1-6 L per sample) were collected from 10 L Niskin bottles, 

preserved and extracted as described previously (Fortunato and Crump 2011), and 
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PCR-amplified for amplicon pyrosequencing using primers targeting the V2 region of 

the bacterial 16S ribosomal RNA gene (Hamady et al. 2008) as described previously 

(Fortunato et al. 2012) . Pyrosequencing was completed in two runs at Engencore at 

the University of South Carolina (http://engencore.sc.edu/). The first run of 2007-08 

samples was performed on a Roche-454 FLX pyrosequencer and has been published 

(Fortunato et al. 2012). The second run of 2009-10 samples was completed using 

Titanium chemistry.  

 Water was also collected and analyzed for a suite of environmental variables 

as described previously (Fortunato and Crump 2011) or as described below. 

Particulate organic carbon (POC) and particulate nitrogen (PN) was collected by 

filtering between 250-1000 mL of water onto 25 mm diameter combusted (4.5 h at 

500°C) GF/F filters (Whatman). Filters were folded, placed in plastic collection bags, 

and stored at −20°C. POC and PN content of the suspended particulate matter on 

acid-fumed filters (Hedges and Stern 1984) was determined at University of 

California, Davis using a Carlo Erba NA-1500 Elemental Analyzer system as 

described by Verardo et al (1990). For each day that samples were collected I 

determined several basic physical characteristics of the Columbia River Coastal 

margin. Columbia River flow (m3s-1) at Bonneville Dam (upstream of furthest river 

sampling site) was measured by the U.S. Army Corps of Engineers (USACE, 

http://www.nwd-wc.usace.army.mil). Columbia River estuary residence time (in 

days) was calculated from river discharge records by USACE (http://www.nwd-

wc.usace.army.mil). Upwelling index at latitudes 45º and 48º (m3/s/100m) as 
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determined by Schwing et al. (1997) was reported by U.S. National Oceanographic 

and Atmospheric Administration (NOAA, http://las.pfeg.noaa.gov/). 

Pyrosequences were quality controlled using the AmpliconNoise pipeline 

(Quince et al. 2011) with recommended procedures for FLX (Clean204.pl, 

PyroNoise, SeqDist, SeqNoise) and Titanium (CleanMinMax.pl, PyroNoiseM, 

SeqDistM, SeqNoiseM) chemistry. Maximum sequence length was set to 250 

basepairs (Parse.pl), and chimera were identified and removed (PerseusD). Sequences 

were clustered into operational taxonomic units (OTU) using QIIME (Caporaso et al. 

2010).  Sequences from each sample were unweighted (unweight_fasta.py), 

concatenated, and primers were removed.  OTUs were identified using uclust 

(pick_otus.py), and representative sequences were selected (pick_rep_set.py). The 

taxonomy of OTUs was determined in MOTHUR (v.1.21.0, Schloss et al. 2009) 

using the improved Greengenes 2011 taxonomic database (McDonald et al. 2012). 

Taxonomic assignments with less than 80% confidence were marked as unknown. A 

total of 608 samples were analyzed but was reduced to 596 because samples with low 

number of sequences were removed. 

Relative abundances were calculated for OTUs in each sample and pairwise 

similarities among samples were calculated using the Bray-Curtis similarity 

coefficient (Legendre and Legendre 1998). Similarity matrices were visualized using 

multiple dimensional scaling (MDS) ordination. Analysis of similarity statistics 

(ANOSIM) was calculated to test the significance of differences among a priori 

sampling groups based on environmental parameters. These analyses were carried out 

using PRIMER v6 for Windows (PRIMER-E Ltd, Plymouth, UK).  
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As found in Fortunato et al (2012), bacterioplankton communities separated 

into seven environments (ANOSIM, p<0.001): river, estuary, plume, epipelagic, 

mesopelagic, shelf bottom, and slope bottom. The plume group consisted of surface 

samples with salinity<31, the epipelagic group included surface and chlorophyll 

maximum samples (average depth = 9 m), the mesopelagic group consisted of 

samples within and below the thermocline (average depth = 56 m), the shelf bottom 

group of bottom samples with depth less than 350 m, and the slope bottom group of 

bottom samples deeper than 850 m. These seven environmental categories were used 

for further analyses. To better determine the variability within each environment, 

OTUs were assigned to a specific location based on the maximum average relative 

abundance of each OTU. For example, if OTU #1 was most abundant in the river, 

then it was a river OTU. 

To identify the specific OTUs that characterize each of the environments, I 

used Indicator Species Analysis run in R (R-Development-Core-Team 2011), using 

the package labdsv (http://ecology.msu.montana.edu/labdsv/R) and test indval 

(Dufrene and Legendre 1997). Indicator values (IV) range from 0 to 1, with higher 

values for stronger indicators. Only OTUs with IV>0.3 and p<0.05 were considered 

good indicators (Dufrene and Legendre 1997). This approach was also used to 

identify key OTUs for seasonal groups within river, estuary, and plume communities 

and for spatial groups within the epipelagic community.  

Environmental data were compiled from all years and tested for normality 

(Shapiro-Wilkes test, p>0.05). Variables not normally distributed were transformed to 

as close to normality as possible. Variables included were: depth, salinity, 
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temperature, dissolved oxygen (DO), nitrate, nitrite, ammonium, ortho-phosphate, 

silicic acid (DSi), dissolved organic nitrogen, phosphorus and carbon (DON, DOP, 

DOC), particulate organic carbon (POC), and particulate nitrogen (PN), chlorophyll a 

(Chl a), bacterial production rate (BP), Columbia River flow, Columbia River estuary 

residence time, and coastal upwelling index at latitudes 45º and 48ºN. Analyses were 

completed with a reduced set of 312 samples due to missing environmental data. The 

number of samples in each environment was: slope bottom = 16, shelf bottom = 72, 

mesopelagic = 23, epipelagic = 95, plume = 52, estuary = 46, river = 8. I also 

removed OTUs that were only present in one sample because environmental analyses 

may be skewed by rare taxa, which resulted in a reduced set of 5038 OTUs.  

Our analysis used a two-step approach. First, in Primer v6 (PRIMER-E Ltd, 

Plymouth, UK), BV-STEP analysis was used to identify sets of variables that 

influenced community variability (ρ>0.95, Δρ<0.001, 10 random starting variables, 

100 restarts) (Clarke and Ainsworth 1993). BIO-ENV was used to rank each 

individual environmental variable by degree of association with community 

variability. BV-STEP and BIO-ENV use the Spearman rank coefficient (ρ) to 

determine the degree of association between similarity matrices of 16S amplicon 

sequences (Bray-Curtis similarity) and environmental data (Euclidean distances). 

Then, using the environmental variables identified by BV-STEP, I preformed a 

Canonical Correspondence Analysis (CCA) to determine the percent of community 

variability explained by environmental variables (ter Braak 1986).  When community 

data varied linearly along environmental gradients (instead of unimodal), I ran 

Redundancy analysis (RDA) instead of CCA (Legendre and Anderson 1999). 
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CCA/RDA analyses were run in R, using the vegan package (http://vegan.r-forge.r-

project.org/), for each environment and for abundant taxonomic groups within each 

environment. I reduced the size of the environmental dataset by removing highly 

correlated variables (ρ>0.90). Depth was included as a proxy variable for conditions 

that change in the vertical, including light and pressure. 

Sequences are deposited in the NCBI Sequence Read Archive (SRA) under 

the accession number SRP006412 for 2007-08 and SRA058065 for 2009-10.  

 

Results: 

Sequence analysis of the full dataset (n=596) yielded 11,082 OTUs 

comprising 428,372 sequences. Bacterioplankton communities separated into the 

seven environments described previously (Fortunato et al. 2012) (ANOSIM p<0.001): 

river, estuary, plume, epipelagic, mesopelagic, shelf bottom, and slope bottom along 

gradients of salinity and depth (Figure 4.S2).  

Within each of the seven environments, bacterioplankton communities were 

variable across space and over time. Seasonal variability and annual reassembly of 

bacterioplankton communities in the Columbia River, estuary, and plume were 

evident in the MDS diagrams (Figures 4.1, 4.2, 4.3). For analysis of seasonal patterns, 

only OTUs specific for each environment were used to create MDS plots in order to 

specifically address the variability of the dominant members of the local 

communities. In the river, communities shifted along a seasonal continuum from 

April to November, and separated into two significant groups: early year (April-July) 

and late year (August-November) (ANOSIM, p<0.001). Actinobacteria made up a 
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larger percentage (32%) of the late year community than the early year community 

(12%). A freshwater SAR11 group was present in the late year community (7%), but 

was absent from early year samples (Figure 4.1, Table 4.S1). Comparing river 

community variability with environmental conditions, I found that the concentration 

of POC and PN, varied with river community composition (ρ=0.686, Table 4.1). The 

correlation coefficient increased to ρ=0.857 with inclusion of ammonium, DOC, Chl 

a, and DO (Table 4.1). Early in the year, during spring and freshet periods, the river 

had higher flow and higher concentrations of POC, PN, DOC, and some inorganic 

nutrients. 

In the estuary, there was a significant difference between early and late year 

communities (ANOSIM, p<0.001, Figure 4.2), and community composition 

correlated with seasonality in river flow and residence time (ρ=0.550, Table 4.1). 

Including temperature, DO, ortho-phosphate, and PN increased the coefficient to 

ρ=0.638. The early community had a larger percentage of Oceanospirillales, while the 

late community was dominated by Flavobacteria (Figure 4.2). Indicator analysis 

showed the top indicator for the early estuary was an Oceanospirillales OTU, which 

in some samples comprised up to 34% of the community (Figure 4.2, Table 4.S1). 

This same OTU was found in the estuary in a previous study (Crump et al. 1999). The 

top late year indicator was a Rhodobacteraceae OTU, which made up to 9.6% of the 

community.  

The plume community also appeared to be influenced by river inputs, but did 

not correlate as strongly with environmental variables. The plume community varied 

seasonally and correlated strongly with temperature (ρ=0.465) and bacterial 
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production (ρ=0.317) (Table 4.1). These variables were elevated in the late summer 

months (August and September) compared to the rest of the year with average 

temperature increasing from 7.1 to 8.6ºC and average bacterial production from 0.18 

to 0.23 µgCL-1h-1. Changes in environmental conditions corresponded to the 

development of a significantly distinct summer bacterioplankton community (August-

September) that assembled each year in the plume (ANOSIM, p<0.001, Figure 4.3). 

In this community, 31% of sequences were from Polaribacter and Rhodobacteraceae, 

which made up only 2% of non-summer communities. In non-summer months, 72% 

of the community was represented by unknown Flavobacteria. Indicator analysis 

showed that the top indicator for summer plume was a Rhodobacteraceae OTU 

(Figure 4.3, Table 4.S1).  

In the slope bottom environment, in deep waters far off shore, DO (ρ=0.606) 

and temperature (ρ=0.587, Table 4.1) were most important to community variability. 

In the shallower shelf bottom environment, which includes samples from nearshore 

(<35 km to shore) and offshore (>35 km from shore) and a depth range of 18 m to 

350 m, the community varied with differences in depth, temperature, DO, and rates of 

bacterial production (ρ=0.618, Table 4.1). In the epipelagic there was little variation 

in the depth of samples, but this group extended over large longitudinal and 

latitudinal scales. The MDS plot of the epipelagic community showed no significant 

difference across the latitudinal gradient but there was significant difference between 

nearshore and offshore communities (ANOSIM, p<0.001). The top indicators were a 

Flavobacteria OTU for the nearshore community, and a Pelagibacter OTU for the 
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offshore community (Table 4.S2). Community variability did not correlate with any 

measured environmental variables (Table 4.1).  

Within each of the seven environments, I found distinct taxonomic 

assemblages. The upper panel of Figure 4.4 shows the complete taxonomy of the 

seven environments, which each displayed a unique taxonomic fingerprint consisting 

of different percentages of major taxonomic groups. The phylum SAR406 and the 

Gammaproteobacteria family SUP05 were most prevalent in the deep ocean 

environment, and mixed out in shallower water. The opposite can be said for the 

common surface bacteria groups SAR86 and Rhodobacteraceae, which were 

prevalent in the estuary, plume and epipelagic. The ubiquity of SAR11 was evident, 

as it made up a large percentage of the community in each of the seven environments.  

The lower panel of Figure 4.4 depicts the taxonomy of OTUs specific to each 

environment. Focusing on environment-specific OTUs, it is evident that one or two 

taxonomic groups dominate each environment. In the mesopelagic, SAR11 sequences 

accounted for over 60% of the community, while Flavobacteria dominated the plume, 

specifically Polaribacter sequences which made up 15% of the community. Many of 

the top indicators corresponded to the dominant taxonomic group in each 

environment. In the slope bottom environment, top indicators included a SAR406 

(IV: 0.94) and a gammaproteobacterium (IV: 0.91) OTU, both large percentages of 

the deep ocean community (Figure 4.4, Figure 4.5). In the mesopelagic, indicators 

included a SUP05 and a SAR11 OTU while in the epipelagic, surface ocean taxa 

SAR86 and Prochlorococcus were top indicators (Figure 4.5). In the plume, a 

Polaribacter OTU was the top indicator (IV: 0.42), and comprised up to 30% of the 
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sequences in some plume samples. Top estuary indicators included a Flavobacteria 

and Rhodobacteraceae OTU while in the river, common freshwater taxa from the 

class Betaproteobacteria were top indicators (Figure 4.5).  

The environmental variables that correlated highly with variability of the 

dominant taxonomic groups in their respective environments were, with differing 

degrees, the same variables correlating with overall community variability in that 

environment (Table 4.2, Figure 4.6). In the slope bottom environment, the SAR406 

community was correlated with changes in DO (ρ=0.472) while in the shelf bottom 

the SUP05 community was correlated with temperature and DO (ρ=0.432, Table 4.2, 

Figure 4.6). For the family Rhodobacteraceae and Flavobacteria in the estuary, river 

flow and residence time were the top factors correlated with these taxonomic groups 

(ρ=0.660 and 0.550 respectively, Table 4.2). In the river, variability of the freshwater 

SAR11 community was correlated with inorganic and organic nutrients, particularly 

POC and PN (ρ=0.760, Table 4.2).  

 

Discussion:  

 Recent biogeographical studies comparing abundance of bacterial taxa with 

environmental conditions have either focused on the temporal variation of one 

common taxonomic group (Carlson et al. 2009, Malmstrom et al. 2010) or have 

studied multiple taxa but on a limited spatial scale (Eiler et al. 2012, Gilbert et al. 

2012). In this study I assessed the variability of communities over four years, in seven 

environments spanning broad environmental gradients, and identified key taxa that 

characterize each of these environments. Results showed seasonal reassembly of 
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bacterioplankton communities in the river, estuary, and plume, with identification of 

taxa that characterize specific seasonal conditions in each environment, and 

correlation of community variability with seasonally influenced variables such as 

river flow and residence time. Seasonality was not detected in the coastal ocean, 

where communities were more variable on a spatial scale, and community 

composition was complicated by seasonal and annual fluctuations in physical factors 

like mixing and upwelling. 

 The physical mixing of communities was evident throughout the Columbia 

River coastal margin as taxonomic groups increased and decreased across salinity and 

depth gradients (Figure 4.4). In each of the seven environments, specific niches were 

created which lead to the prevalence of dominant taxonomic groups in each 

environment. This is evident in Figure 4.4, in which the upper panel of the overall 

community shows gradual shifts in these communities across space, but in contrast, 

the lower panel of environment-specific communities depicts sharp differences 

among environments and shows there are certain taxa that dominate each 

environment. The OTUs from these dominant taxonomic groups were also the top 

indicators for each environment, suggesting these dominant groups were key to 

shaping community composition, and indicating that the variability within each 

environment was driven by shifts in the most abundant taxa.  

Seasonality of communities in the river, estuary, and plume environments was 

linked to the environment of the Columbia River. In the river community, seasonal 

fluxes of inorganic and organic nutrients, especially POC and PN, appeared to shape 

the changes in the bacterioplankton community over the annual cycle. Higher river 



 

  90 

flow generally brings more particulate matter downstream, with high POC 

concentrations during the spring freshet, and low concentrations during summer 

months (Prahl et al. 1998). The relative abundances of OTU 11923, a member of 

Actinobacteria and OTU 2500, a freshwater SAR11, both negatively correlated with 

POC concentrations (ρ=-0.664, -0.616 respectively, Figures 4.5, 4.6), such that these 

taxa were more abundant in low flow summer months. The opposite was found for 

OTU 7389, a Burkholderiales OTU, where periods of higher POC concentrations 

resulted in higher abundance (ρ=0.527). The sequences of these three river OTUs 

match, with 100% identity, clones from freshwater environments around the globe 

(unpublished data from NCBI). OTU 7389 also matched a clone from low salinity 

bottom waters of the Chesapeake Bay estuary (Shaw et al. 2008), suggesting that this 

OTU favored a particle rich, high nutrient environment. 

Community composition in the estuary also was influenced by upstream river 

conditions, specifically river flow and residence time. In a river-dominated system, 

like the Columbia River estuary, the amount and composition of river water and the 

time that water spends in the estuary greatly affects the development of the 

bacterioplankton community. In this study, the early estuary community (April-July) 

was more river-dominated because river flow was higher (average=3.82 m3s-1) and 

residence time was shorter (average=0.68 d) compared to the late community 

(August-November), when flow was lower (average=3.47 m3s-1) and residence time 

was longer (average=1.03 d). Indicator analysis showed that the top indicator for the 

early estuary was an Oceanospirillales OTU (OTU 627), which made up over one 

third of the sequences in some estuarine samples. A BLAST search of this OTU 
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sequence revealed it was identical to both free-living and particle-attached clones 

from a previous study of the Columbia River estuary (Crump et al. 1999). Crump et 

al. (1999) sampled the estuary in May when abundance for OTU 627 was highest, 

indicating this Oceanospirillales taxon is a well-established population in the early 

months of the year. BLAST results also showed this sequence was 100% identical 

only to clones from the Columbia River estuary. The indicator for the late year, and 

more coastal ocean influenced community, was a Rhodobacteraceae OTU (OTU 

8288). This sequence was identical to clones from the Delaware Bay (Shaw et al. 

2008) and was nearly identical (99%) to Roseobacter sp. clones from coastal waters 

of the Gulf of Mexico (Pinhassi et al. 2005), demonstrating that this taxon is prevalent 

in coastal ocean influenced environments.  

 In the plume, the community composition was less correlated with river-

specific variables like river flow and residence time and more correlated with 

seasonal variables like temperature, leading to a distinct bacterioplankton community 

in the summer months. Of the top ten indicators for the plume environment, seven 

were Flavobacteria OTUs, with Flavobacteria sequences making up 46% and 72% of 

sequences in summer and non-summer months respectively. This class of bacteria 

was previously shown to be prevalent in productive environments like phytoplankton 

blooms (Simon et al. 1999) and upwelling zones (Alonso-Saez et al. 2007). The 

Columbia River plume is highly productive with seasonal upwelling supplying 

nutrients to the surface waters to fuel production (Hickey et al. 1998, Hickey et al. 

2010). The top plume indicator was OTU 9443, a Polaribacter taxon, which is a 

genus of class Flavobacteria. One study of bacterioplankton communities along a 
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coast to open ocean transect in the North Atlantic Ocean found Polaribacter taxa to 

be the most prevalent of all Flavobacteria, with higher abundances in coastal samples 

(Gomez-Pereira et al. 2010). A comparison of all Polaribacter OTUs in the plume to 

environmental variables showed correlation with temperature, DO, BP, DOC, and 

upwelling (ρ=0.576, Table 4.2). Additionally, Polaribacter OTU 9443 closely 

matched sequences of clones from coastal upwelling systems, including the Brazilian 

(Cury et al. 2011) and Chilean coasts (Pommier et al. 2007), as well as along the 

Oregon coast during a diatom bloom (Morris et al. 2006), further demonstrating the 

prevalence of this taxon in highly productive coastal environments like the Columbia 

river plume. 

Seasonality of environmental conditions clearly shaped communities across 

the river to ocean gradient, but in the coastal ocean, the variability within each 

environment varied strongly with spatial differences in environment and less by 

seasonal changes. In the slope bottom, where samples ranged in depth from 600 m to 

2900 m, community composition correlated strongly with DO concentration 

(ρ=0.607, Table 4.1). DO ranged from 0.26 to 2.67 mg/L, with lower concentrations 

found in shallower DO minimum zone samples (~1000 m) and higher concentrations 

found in deeper waters (~2900 m). The top indicator for the slope bottom 

environment was a SAR406 OTU (OTU 4871), which identically matched sequences 

from oxygen minimum zones in the eastern North Pacific (Walsh et al. 2009) and the 

Hawaii Ocean Timeseries (HOT) Station ALOHA (Swan et al. 2011). In the 

shallower shelf bottom (18 m to 350 m), community composition varied with 

proximity to shore and location along the coast, and with temperature, DO, and 
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bacterial production rates. One of the top indicators for this environment was a very 

abundant OTU (up to 38% of sequences) taxonomically identified as SUP05 (OTU 

14135). However, a BLAST search showed this OTU closely matched sequences 

identified as the ARCTIC96BD-19 group, a closely related Gammaproteobacteria 

group to SUP05 (Walsh et al. 2009). Both of these groups are important to 

chemolithoautrophy in oxygen minimum zones (Walsh et al. 2009). Swan et al 

(2011), showed single amplified genomes of ARCTIC96BD-19 from HOT Station 

ALOHA have both Rubisco and sulfur oxidation genes, including an isolate that was 

99% identical to OTU 14135. This similarity, coupled with the abundance of OTU 

14135, suggests chemolithoautotrophic processes may be important in low oxygen 

bottom environments on the Oregon and Washington shelf.  

In the epipelagic there was little correlation to any of the environmental 

variables that I measured and no seasonal patterns were evident. The heterogeneity of 

the epipelagic caused by mixing, upwelling, river flow, and other physical and 

biological factors made it difficult to define a set of environmental variables that best 

correlated with community composition. This contrasts with the river, estuary, and 

plume environments where seasonal patterns of community composition were more 

clearly defined and communities appeared to be driven by seasonally fluctuating 

environmental conditions. Throughout the year, the river, in general, is inoculated by 

the same upstream sources of bacteria and flows into the estuary, which then 

influences the plume, creating a consistent, predicable bacterioplankton community 

that changes seasonally and reassembles annually. In the coastal ocean, winds, 

upwelling, runoff from land, and mixing fluctuate both seasonally and annually. 
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Thus, the epipelagic community was inoculated by different sources depending on 

various physical conditions, which created a more complicated community where 

taxa increased and decreased frequently. 

In conclusion, this study demonstrates that bacterioplankton communities are 

consistent and predictable across river to plume environments, with specific taxa 

defining each season. Community composition in the epipelagic was complicated by 

seasonal and annual fluctuations in physical factors like mixing and upwelling and 

thus correlation with environmental variables was low. In the bottom environments, 

DO strongly correlated with community composition, and prevalence of taxonomic 

groups like SUP05 and ARCTIC96BD-19 suggests chemolithoautotrophic processes 

are important in the carbon cycle of these low oxygen environments. The next step is 

to further develop a set of key taxa that can be used to model specific conditions in an 

environment and indicate change in bacterioplankton community composition. 
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Table 4.1: Spearman rank correlation coefficients (ρ) showing correlation between 
location-specific bacterioplankton communities and environmental variables. Top 
panel includes analyses with all OTUs and bottom panel with just OTUs specific to 
each location. BV-STEP ρ values represent maximum values when all environmental 
variables were included. For BIO-ENV, the maximum number of variables was set to 
one to determine the degree of association of each environmental variable 
individually, ρ values for the top two variables are shown. Environmental variables 
from BV-STEP results were used in Canonical Correspondence Analysis 
(CCA)/Redundancy Analysis (RDA) to determine the percent of community 
variability explained. 

Environments with all OTUs 

Environment BV-STEP factors ρ BIO-ENV factors ρ Variability explained 
Slope Bottom Temperature, DO, BP 0.707 DO 

Temperature 
0.606 
0.587 

24.2% 

Shelf Bottom Depth, Temperature, DO, BP 0.618 Temperature 
DO 

0.482 
0.440 

12.5% 

Mesopelagic Depth, Salinity, Temperature 0.599 Temperature 
Depth 

0.513 
0.429 

19.9% 

Epipelagic Salinity, Temperature, DO, Chl a 0.376 Temperature 
Salinity 

0.248 
0.240 

10.2% 

Plume Salinity, Temperature, DSi, DOC, 
BP 

0.517 Temperature 
BP 

0.465 
0.317 

18.7% 

Estuary Salinity, Temperature, DO, Ortho-
phosphate, PN, River flow, 
Residence time  

0.638 River flow 
Residence time 

0.550 
0.550 

22.9% 

River DO, Chl a, Ammonium, DOC, 
POC, PN 

0.857 POC 
PN 

0.686 
0.686 

80.9% 

 
Environments with only location-specific OTUs 
Slope Bottom DO, BP 0.649 DO 

Temperature 
0.546 
0.473 

17.0% 

Shelf Bottom Temperature, DO, BP 0.611 DO 
Temperature 

0.484 
0.434 

7.6% 

Mesopelagic Depth, Salinity, BP 0.484 Depth 
Salinity 

0.398 
0.251 

16.5% 

Epipelagic Salinity, Temperature, Chl a 0.283 Temperature 
Chl a 

0.222 
0.185 

8.7% 

Plume Salinity, Temperature, DSi, DOC, 
BP  

0.517 Temperature 
BP 

0.394 
0.364 

20.9% 

Estuary Salinity, Nitrate, POC, BP, River 
flow, Residence time 

0.736 River flow 
Residence time 

0.642 
0.642 

19.3% 

River DO, Chl a, Ammonium, DOC, 
POC, PN 

0.855 POC 
PN 

0.689 
0.689 

81.5% 
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Table 4.2: Spearman rank correlation coefficients (ρ) showing correlation between 
abundant taxonomic groups within each environment and environmental variables. 
Variables from BV-STEP results were used in CCA/RDA analysis to determine the 
percent of community variability explained. 
 

 

Slope Bottom BV-STEP factors  ρ BIO-ENV factors  ρ Variability explained 
SAR406 DO, BP 0.641 DO 

Temperature 
0.472 
0.371 

18.4% 

Deltaproteobacteria DO, BP 0.466 BP 
Temperature 

0.356 
0.333 

23.9% 

SAR11 Temperature, DO,  
Chl a, Nitrite, BP, 
Upwelling 

0.366 DO 
Upwelling 

0.189 
0.183 

41.7% 

Shelf Bottom      

Gammaproteobacteria Temperature, DO, BP 0.533 DO 
Temperature 

0.440 
0.413 

44.6% 

SUP05 Temperature, DO 0.432 Temperature 
DO 

0.392 
0.376 

40.1% 

Mesopelagic      

SAR11 Depth, Salinity, Chl a, 
DSi, River flow, 
Residence time 

0.441 Depth 
Salinity 

0.287 
0.259 

52.4% 

Epipelagic      

Prochlorococcus Salinity, DO 0.324 Salinity 
DO 

0.289 
0.239 

2.5% 

SAR11 Salinity, DO 0.397 Salinity 
DO 

0.334 
0.313 

3.6% 

Plume      

Rhodobacteraceae Depth, Temperature, DO, 
Nitrite, Org P, BP, River 
flow, Residence Time 

0.318 BP 
Temperature 

0.242 
0.215 

49.4% 

Polaribacter Temperature, DO, DOC, 
BP, Upwelling 

0.505 BP 
Temperature 

0.457 
0.368 

24.0% 

Estuary      

Rhodobacteraceae Ammonium, River flow, 
Residence time 

0.610 River flow 
Residence time 

0.550 
0.550 

15.2% 

Flavobacteria Salinity, NO3, BP, River 
flow, Residence time 

0.684 River flow 
Residence time 

0.660 
0.660 

18.2% 

River      

Actinobacteria DO, Chl a Ammonium, 
DOC, POC, PN 

0.811 POC 
PN 

0.698 
0.698 

84.8% 

Betaproteobacteria Depth, DO, POC, PN, BP 0.580 POC 
PN 

0.571 
0.571 

81.4% 

SAR11 Nitrate, Org N, POC, PN, 
River flow, Residence 
time  

0.802 POC 
PN 

0.760 
0.760 

96.8% 
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Figure 4.1: Seasonal multidimensional scaling diagram of river samples, produced 
with Bray-curtis similarity values for communities that only included river-specific 
OTUs (Stress = 0.11). Samples separated into two significantly different 
communities, early (April to July) and late (August to November) (ANOSIM, 
p<0.001). Taxonomy of the two groups is depicted in the upper right panel. Two 
bottom panels depict the spatial distribution of a top indicator for Early (IV: 0.74) and 
Late (IV: 0.94), by average relative abundance, across the ordination of the river 
MDS (IV = Indicator value). 
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Figure 4.2: Seasonal multidimensional scaling diagram of estuary samples, produced 
with Bray-curtis similarity values for communities that only included estuary-specific 
OTUs (Stress = 0.19). Samples separated into two significantly different 
communities, early (April to July) and late (August to November) (ANOSIM, 
p<0.001). Taxonomy of the two groups is depicted in the upper right panel. Two 
bottom panels depict the spatial distribution of a top indicator for Early (IV: 0.96) and 
Late (IV: 0.87), by average relative abundance, across the ordination of the estuary 
MDS.   
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Figure 4.3: Seasonal multidimensional scaling diagram of plume samples, produced 
with Bray-Curtis similarity values for communities that only included plume-specific 
OTUs (Stress = 0.17). Samples separated into two significantly different 
communities, non-summer (April-July, Nov.) and summer (August to September) 
(ANOSIM, p<0.001). Taxonomy of the two groups is depicted in the upper right 
panel. Two bottom panels depict the spatial distribution of the top indicator for non-
summer (IV: 0.76) and summer (IV: 0.67), by average relative abundance, across the 
ordination of the plume MDS. 
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Figure 4.4: Taxonomic composition of each environment. Top panel depicts 
taxonomy for all OTUs in each environment. Bottom panel depicts taxonomy only for 
OTUs that were assigned to each environment based on the maximum average 
relative abundance. 
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Figure 4.5: Bubble plot of top indicator OTUs in each environment. The size of the 
bubble indicates the average relative abundance (%) of each OTU in each of the 
seven environments. Black shaded bubbles show the environment for which each 
OTU is an indicator. Indicator values are displayed next to each OTU.  
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Figure 4.6: Correlations of the relative abundance of top indicator OTUs and 
environmental variables for each of the seven environments. Spearman correlation 
coefficient (ρ) and p-values are indicated for each relationship.  
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Supplemental Table 4.1: Top ten indicator taxa for each of the seasonal groups of the 
river, estuary, and plume. Taxonomy is listed to the furthest classification.  

 
 

Environment, Season OTU Indicator Value Taxonomy: Phylum, Class, Order, Family, Genus, Species 
River, Early 10165 0.80 Armatimonadetes, Armatimonadia, Armatimonadales, Armatimonadaceae 
 6790 0.77 Verrucomicrobia, Spartobacteria, Spartobacteriales, Spartobacteriaceae, Xiphinematobacter 
 11327 0.76 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae, Flavobacterium 
 4129 0.74 Proteobacteria, Betaproteobacteria, Methylophilales, Methylophilaceae, Methylotenera 
 13463 0.73 Proteobacteria, Alphaproteobacteria, Sphingomonadales, Sphingomonadaceae 
 3721 0.72 Proteobacteria, Alphaproteobacteria, Rhodobacterales, Rhodobacteraceae 
 13717 0.72 Cyanobacteria, Synechococcophycideae, Pseudanabaenales, Pseudanabaenaceae, Pseudanabaena 
 11240 0.72 Bacteroidetes, Sphingobacteria, Sphingobacteriales, Cyclobacteriaceae, Algoriphagus 
 4144 0.69 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae, Flavobacterium 
 8328 0.67 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae, Flavobacterium 
River, Late 3480 0.99 Actinobacteria, Actinobacteria, Actinomycetales, ACK-M1 
 11011 0.94 Actinobacteria, Actinobacteria, Acidimicrobiales 
 2500 0.94 Proteobacteria, Alphaproteobacteria, Rickettsiales, SAR11, Pelagibacter 
 8752 0.88 Cyanobacteria, Synechococcophycideae, Synechococcales, Synechococcaceae, Prochlorococcus 
 10530 0.84 Bacteroidetes, Flavobacteria, Cryomorphaceae, Fluviicola 
 9600 0.82 Cyanobacteria, Synechococcophycideae, Synechococcales, Synechococcaceae, Prochlorococcus 
 13388 0.80 Proteobacteria, Gammaproteobacteria, Chromatiales, Sinobacteraceae 
 11923 0.80 Actinobacteria, Actinobacteria, Actinomycetales, ACK-M1 
 5354 0.78 Proteobacteria, Alphaproteobacteria, Rhodospirillales, Acetobacteraceae, Roseomonas 
 10937 0.78 Cyanobacteria, Synechococcophycideae, Synechococcales, Synechococcaceae, Prochlorococcus 
Estuary, Early 627 0.96 Proteobacteria, Gammaproteobacteria, Oceanospirillales 
 10165 0.90 Armatimonadetes, Armatimonadia, Armatimonadales, Armatimonadaceae 
 11327 0.81 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae, Flavobacterium 
 12554 0.79 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 
 7389 0.77 Proteobacteria, Betaproteobacteria, Burkholderiales, Comamonadaceae, Limnohabitans 
 12427 0.70 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae, Flavobacterium 
 8328 0.69 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae, Flavobacterium 
 617 0.68 Verrucomicrobia, Opitutae, Puniceicoccales, Puniceicoccaceae 
 7356 0.68 Actinobacteria, Actinobacteria, Actinomycetales, ACK-M1 
 7717 0.66 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 
Estuary, Late 850 0.88 Proteobacteria, Alphaproteobacteria, Rhodobacterales, Rhodobacteraceae 
 8288 0.87 Proteobacteria, Alphaproteobacteria, Rhodobacterales, Rhodobacteraceae 
 3480 0.83 Actinobacteria, Actinobacteria, Actinomycetales, ACK-M1 
 9914 0.81 Bacteroidetes, Flavobacteria, Cryomorphaceae 
 2500 0.78 Proteobacteria, Alphaproteobacteria, Rickettsiales, SAR11, Pelagibacter 
 10937 0.77 Cyanobacteria, Synechococcophycideae, Synechococcales, Synechococcaceae, Prochlorococcus 
 11487 0.76 Proteobacteria, Gammaproteobacteria, Oceanospirillales, HTCC2188 
 7317 0.75 Proteobacteria, Alphaproteobacteria, Rhodobacterales, Rhodobacteraceae, Thalassobius 
 6664 0.73 Proteobacteria, Alphaproteobacteria, Rhodobacterales, Rhodobacteraceae 
 11742 0.73 Proteobacteria, Gammaproteobacteria, Oceanospirillales, Alteromonadaceae, HTCC2207  
Plume, Non-summer 9385 0.76 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 
 2855 0.71 Bacteroidetes, Flavobacteria, Flavobacteriales,Flavobacteriaceae, Ulivbacter 
 41 0.63 Bacteroidetes, Flavobacteria, Cryomorphaceae, Fluviicola 
 5251 0.61 Proteobacteria, Alphaproteobacteria, Rickettsiales, SAR11, Pelagibacter ubique 
 2439 0.60 Proteobacteria, Alphaproteobacteria, Rickettsiales, SAR11, Pelagibacter ubique 
 2763 0.55 Verrucomicrobia, Verrucomicrobiae, Verrucomicrobiaceae 
 7363 0.53 Proteobacteria, Gammaproteobacteria, Oceanospirillales 
 14135 0.51 Proteobacteria,, Oceanospirillales, SUP05 
 10461 0.50 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 
 781 0.49 Proteobacteria, Alphaproteobacteria, Rickettsiales, SAR11, Pelagibacter 
Plume, Summer 850 0.67 Proteobacteria, Alphaproteobacteria, Rhodobacterales, Rhodobacteraceae 
 13028 0.67 Cyanobacteria 
 11667 0.64 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 
 8648 0.63 Proteobacteria, Alphaproteobacteria, Rhodospirillales, Rhodospirillaceae 
 11487 0.62 Proteobacteria, Gammaproteobacteria, Oceanospirillales, HTCC2188 
 1623 0.62 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae, Polaribacter 
 3050 0.61 Verrucomicrobia, Opitutae, Puniceicoccales, Puniceicoccaceae 
 9443 0.59 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae, Polaribacter 
 2745 0.58 Proteobacteria, Gammaproteobacteria, Oceanospirillales, Alteromonadaceae, HTCC2207  
 9065 0.57 Verrucomicrobia, Opitutae, Puniceicoccales, Puniceicoccaceae 
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Supplemental Table 4.2: Top ten indicator taxa for nearshore and offshore 
communities in the epipelagic. Taxonomy is listed to the furthest classification. 
 

Season OTU  Indicator Value Taxonomy: Phylum, Class, Order, Family, Genus, Species 

Nearshore 13095 0.74 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 
 1263 0.64 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 
 2855 0.62 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae, Ulvibacter 
 7317 0.60 Proteobacteria, Alphaproteobacteria, Rhodobacterales, Rhodobacteraceae, Thalassobius 
 9443 0.60 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae, Polaribacter 
 14654 0.59 Proteobacteria, Alphaproteobacteria, Rhodobacterales, Rhodobacteraceae 
 850 0.58 Proteobacteria, Alphaproteobacteria, Rhodobacterales, Rhodobacteraceae 
 13530 0.57 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 
 10719 0.57 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 
 10571 0.54 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae, Polaribacter 

Offshore 781 0.74 Proteobacteria, Alphaproteobacteria, Rickettsiales, SAR11, Pelagibacter 
 14347 0.73 Proteobacteria, Alphaproteobacteria 
 884 0.72 Cyanobacteria, Synechococcophycideae, Synechococcales, Synechococcaceae, Prochlorococcus 
 2439 0.70 Proteobacteria, Alphaproteobacteria, Rickettsiales, SAR11, Pelagibacter ubique 
 10117 0.66 Cyanobacteria, Synechococcophycideae, Synechococcales, Synechococcaceae, Prochlorococcus 
 11501 0.65 Proteobacteria, Alphaproteobacteria, Rickettsiales, SAR11, Pelagibacter 
 5251 0.62 Proteobacteria, Alphaproteobacteria, Rickettsiales, SAR11, Pelagibacter ubique 
 5300 0.59 Bacteroidetes, Flavobacteria, Flavobacteriales, Flavobacteriaceae 
 5804 0.57 Actinobacteria, Actinobacteria, Koll13 
 9632 0.56 Proteobacteria, Alphaproteobacteria 
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Supplemental Figure 4.1: Map of Oregon and Washington coasts. Inset depicts 
Columbia River estuary and plume region. Dotted line denotes approximate location 
of shelf break 
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Supplemental Figure 4.2: Multidimensional scaling diagram of all 596 samples. 
Samples separated into seven distinct groups (ANOSIM, p<0.001): river, estuary, 
plume, epipelagic, mesopelagic, shelf bottom, and slope bottom. Samples are colored 
by salinity.  
 

 
 



 

  107 

 

 

 

 

 

 

CHAPTER 5: 

GENE ABUNDANCE AND EXPRESSION PATTERNS ACROSS AN 

ESTUARINE SALINITY GRADIENT 
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Abstract: 

 Microbial communities mediate the biogeochemical cycles that drive 

ecosystems, and it is important to understand how these communities are affected 

across changing environmental conditions, especially in complex coastal zones. From 

river to ocean, environmental conditions shift with salinity, and microbial 

communities must adjust to these changing biogeochemical conditions. I collected 

five metagenomic and metatranscriptomic samples across the salinity gradient of the 

Columbia River coastal margin, from the Columbia River, estuary, plume, and coastal 

ocean in August 2010. Results from metagenomic 16S rRNA gene sequences showed 

there were taxonomically distinct communities from river to ocean, and that these 

communities mixed in the estuary. Mapping metagenomic sequences to genomes 

showed that freshwater Actinobacteria genomes were highly abundant in 

metagenomic samples, while Pelagibacter genomes were dominant in higher salinity 

samples. Despite the strong salinity gradient (0 to 33), the metabolic potential of 

microbial communities was very similar from river to ocean, with metagenomic 

samples showing an average of 78% similarity. In contrast, the metatranscriptomes 

were only 23% similar, and showed large differences in functional genes among 

samples. In the metagenomes, there was a relative increase in sulfur metabolism and 

stress genes and a decrease in phosphorus metabolism genes with increasing salinity. 

In the plume there was a higher proportion of photosynthesis genes compared to other 

samples. Gene expression patterns were highly variable in the metatranscriptomes 

with no apparent relationship with salinity. Across the salinity gradient, the microbial 

community followed three different patterns of diversity. The phylogeny of the 
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community varied strongly with salinity, while metabolic potential was similar, with 

only small differences in gene abundance from river to ocean, and gene expression 

was highly variable and generally was independent of changes in salinity.  

 

Introduction:  

 The key to understanding the ecological role of microbial communities in an 

environment is determining the link between community structure and community 

function. Metagenomic and metatranscriptomic data provide powerful insight into the 

metabolic potential and gene expression in an environment without previous 

knowledge of taxonomic or functional characteristics (Poretsky et al. 2005). Thus, 

many recent studies have used these approaches to answer ecological questions about 

the biogeochemical function of microbes in soil, in the coastal and open ocean, and in 

the deep sea (Eloe et al. 2011, Fierer et al. 2012, Gifford et al. 2011, Hewson et al. 

2010, Poretsky et al. 2005). Together, these studies further solidify the importance of 

microbes to ecosystem function. 

 Initially, the goal of metagenomic and metatranscriptomic studies was to 

describe the dominant microbially mediated biogeochemical processes occurring in 

an environment (Frias-Lopez et al. 2008, Poretsky et al. 2005). With the advancement 

of sequencing technology and the increase in size of metagenomic and 

metatranscriptomic libraries, there has been a shift from descriptive to more 

hypothesis-based research. A comparative study of metatranscriptomes taken from 

the surface ocean at the Hawaiian Ocean Time Series (HOT) Station Aloha looked 

found an overrepresentation of photosynthesis and C1 metabolism during the day and 
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an abundance of housekeeping related processes such as membrane repair and amino 

acid biosynthesis at night (Poretsky et al. 2009b). Hewson et al. (2010) found that 

differences between metatranscriptomes were driven by differential expression of 

genes involved in nutrient acquisition, cell metabolism, and growth, which could be a 

consequence of variable nutrient and Cyanobacteria concentrations across ocean 

basins. A difference in gene expression was also seen in DOM-amended bottle 

experiments where the addition of high-molecular weight DOM resulted in changes 

in gene expression as specific taxa took advantage of the added carbon source 

(McCarren et al. 2010). Environmental conditions then play a large role in 

determining the taxonomic composition of communities and consequently gene 

expression. 

 More recently, genomic studies have started to examine gene abundance and 

expression across ecologically relevant gradients of various environments. Soil 

metagenomes sampled across a nitrogen gradient revealed increases in genes 

associated with replication, electron transport, and protein metabolism and a shift 

from oligotrophic to copiotrophic taxa with increasing nitrogen concentrations (Fierer 

et al. 2012). Stewart et al. (2012) compared both metagenomic and 

metatranscriptomic data across an oxygen gradient in the oxygen minimum zone off 

the Chilean coast. Again, changes in gene abundance and expression as well as a shift 

in taxonomic composition occurred across the oxygen gradient as nitrogen processes 

changed from oxidative to reductive and the community shifted from nitrifying taxa 

to taxa associated with anammox and denitrification (Stewart et al. 2012). Looking at 

the same oxygen gradient, metagenomic data also revealed the first evidence of an 
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active sulfur cycle in an oxygen minimum zone and a coupling between sulfur and 

nitrogen processes (Canfield et al. 2010). These metagenomic studies across both 

nutrient and oxygen gradients have provided a genetic basis for important ecological 

process and microbial community dynamics in these biogeochemically important 

environments. 

Although gradients have recently become a focus of metagenomic and 

metatranscriptomic studies, to date there have not been any studies focusing on gene 

abundance and expression across a salinity gradient. In fact, there have few studies 

looking at metagenomic data from river systems (e.g., Ghai et al. 2011). In this study, 

I looked at changes in metabolic potential and gene expression across the salinity 

gradient of the Columbia River coastal margin. The Columbia River is the second 

largest river in the United States with a mean annual discharge of 7300 m3s-1 (Hickey 

et al. 1998). This release of freshwater has a large impact on the chemical, physical, 

and biological characteristics of the Oregon and Washington coasts (Hickey et al. 

2010). Using microarray analysis to characterize gene expression from the Columbia 

River to the coastal ocean, Smith et al. (2010) showed strong seasonal shifts in gene 

expression but variable spatial differences as some seasons showed little difference in 

gene expression across the salinity gradient. In addition, my work on 16S rRNA 

genes identified spatially and taxonomically distinct bacterioplankton communities in 

the river, estuary, plume, and surface ocean (Fortunato et al. 2012).  

Building on patterns of community structure and previous microarray data, the 

addition of gene abundance and expression data has the potential to create a link 

between community structure and function and provides information to explore how 
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and why specific populations are distributed across the salinity gradient. I 

hypothesized that gene abundance and availability across a river to ocean gradient 

will shift dramatically, but that taxonomically distinct populations would perform 

similar metabolic activities regardless of the salinity of the water. Thus I anticipated 

that the typical phylogenetic shift from fresh, to estuarine, to marine bacteria over the 

salinity gradient would be apparent in metagenomic data but would not be reflected in 

metatranscriptomic gene expression patterns. Results, however, show that in fact the 

metagenomes from river to ocean are very similar with little change in metabolic 

potential across the salinity gradient. Patterns of gene expression, however, are 

extremely variable, with each metatranscriptome dominated by a handful of different 

functional genes. 

 

Methods: 

Metagenomic and metatranscriptomic samples were collected from the 

Columbia River, estuary, and plume (latitude 46.184 and 46.239, longitude -124.161 

and -123.182) as part of the NSF-funded Center for Coastal Margin Observation and 

Prediction (CMOP) science and technology center. Samples were collected aboard 

the R/V Wecoma between August 1 and 8, 2010. Water was collected using a high 

volume low-pressure pump with an attached Seabird 911+ conductivity-temperature-

depth (CTD) sensor. With each CTD cast, depth profiles of salinity, temperature (ºC), 

turbidity (NTU), oxygen (mgL-1), and chlorophyll fluorescence were recorded. 

Surface samples (0.5-1 m) were collected in the river, estuary, and plume across a 

salinity gradient of 0-25. A sample was also taken below plume waters (16 m) at a 
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salinity of 33 (Table 5.1, Figure 5.1). Water was collected in 25 L carboys and 

immediately filtered. Filtering time was stopped at 30 min to ensure preservation of 

mRNA. Samples were pre-filtered through a 3.0 µm polycarbonate filter and then 

collected onto a 0.2 µm polycarbonate filter, preserved in RNAlater and stored at -

80ºC until extraction. For extraction, the 0.2 µm filters were thawed and rinsed with 

sterile PBS or water, depending on salinity of the sample, to remove RNAlater. Cells 

that became dislodged after rinsing were captured on a 0.2 µm Sterivex-GP 

(Millipore) filter and extracted with the polycarbonate filter. One quarter of the 

polycarbonate filter was used to extract DNA for a metagenome and the remaining 

was used for RNA extraction. Additional sample water was filtered onto Sterivex-GP 

(Millipore) filters for DNA to be used in 16S rRNA gene amplicon pyrosequencing. 

These filters were extracted, amplified using 16S rRNA gene specific primers, 

pyrosequenced, and analyzed as described in Fortunato et al. (2012) and Fortunato et 

al. (in prep). 

RNA was extracted using a modified protocol from the RNeasy kit (Qiagen) 

as described in Poretsky et al. (2009a). Briefly, the thawed, rinsed, 0.2 µm filter was 

cut into pieces using a sterile blade and placed in a 50 mL tube with RLT buffer 

(Qiagen) and RNA beads (MoBio). The tube was vortexed for 10 min and centrifuged 

twice at 5000 rpm. The lysate was placed in a new tube with one-volume 100% 

ethanol and pushed through a 20-gauge needle several times to shear the RNA. The 

extraction then followed the RNeasy kit (Qiagen) according to manufacturer 

instructions. DNA was removed from the extraction using a Turbo-DNase kit 

(Ambion). A final volume of 100 µl was extracted. Ribosomal RNA was removed 
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from RNA samples using subtractive hybridization as described in Stewart et al. 

(2010). Sample specific rRNA probes were constructed from DNA collected on 0.2 

µm Sterivex filters. After rRNA removal, RNA final concentration was determined 

on an Agilent 2100 Bioanalyzer. DNA was extracted using a phenol-chloroform 

extraction method adapted from Zhou et al. (1996) and Crump et al (2003). DNA and 

RNA aliquots (~1 µg) were then sent to Integrated Genomic Services (IGS) at the 

University of Maryland for sequencing on an Illumina Hi-Seq 1000 system. Resulting 

libraries were paired-end, non-overlapping. The average single read length was 100 

basepairs (bp). 

 Raw metatranscriptomic reads were aligned to SILVA SSU and LSU 

databases (Pruesse et al. 2007) using Bowtie2 (v 2.0.0-beta5, Langmead and Salzberg 

2012) with a local alignment and default settings to remove additional rRNA 

sequences. Ribosomal RNA from the metagenomes was also identified but not 

removed using the above method. Once metagenomic rRNA sequences were 

identified, I then identified potential 16S rRNA sequences from the overall rRNA 

pool by aligning to the Greengenes 2011 taxonomic database (McDonald et al. 2012) 

and to a manually curated freshwater taxonomic database (Newton et al. 2011 and 

K.D. McMahon pers. comm.) using Bowtie2. Potential 16S rRNA sequences were 

then taxonomically identified using MOTHUR (v 1.21, Schloss et al. 2009) using the 

Greengenes and freshwater taxonomic databases. Taxonomic assignments with less 

than 80% confidence were marked as unknown. 

Metagenomes and metatranscriptomes were assembled prior to annotation due 

to the large number of reads in each library. Assemblies were carried out using CLC 
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Genomics Workbench (v 4.9) with a minimum length fraction of 80% and a similarity 

of at least 95%. The minimum contig length was set to 250 bp. Assembled contigs for 

each library were uploaded to the MG-RAST web-server (Meyer et al. 2008). Open 

Reading Frame (ORF) annotation was done using SEED subsystem categories with a 

BLAST threshold of 1e-5, a minimum of 60% identity, and a minimum alignment 

length of 50 bp. Sequences were then mapped to all ORFs with Bowtie2 (Langmead 

and Salzberg 2012) using an end-to-end alignment and default settings to determine 

the number of sequences per ORF.  

In order to compare between samples and account for differences in 

sequencing depth, libraries were randomly downsampled to match the number of 

subsystem-annotated sequences in the smallest sample with MOTHUR (Schloss et al. 

2009). For each metatranscriptome n=168,743 sequences and n=6,525,399 for each 

metagenome. When comparisons were done between metatranscriptomes and 

metagenomes, each library was downsampled to the smallest metatranscriptome 

(n=168,743). Comparative functional gene analysis between samples was completed 

using Statistical Analysis of Metagenomic Profiles (STAMP) software (Parks and 

Beiko 2010). STAMP settings for pairwise comparisons between metagenomic and 

metatranscriptomic samples used a Fisher’s exact test (one-sided) with Newcombe-

Wilson calculations of Confidence Interval (0.95) and Bonferroni multiple test 

correction (Eloe et al. 2011). Pairwise Pearson correlations (r), gene diversity indices, 

and hierarchical clustering of metagenomic and metatranscriptomic samples were 

performed using R (R-Development-Core-Team 2011) using the package vegan 

(http://vegan.r-forge.r-project.org/). 
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 Additionally, metagenomes and metatranscriptomes were mapped to 

published genomes with Bowtie2 using a local alignment and default settings. Our 

dataset of genomes consisted of 182 marine genomes assembled and annotated by the 

J. Craig Venter Institute (JCVI) as part of the Marine Microbial Genome Sequencing 

project (MMGSP). In addition, 60 marine genomes and 740 non-marine genomes 

from the dataset described in Yooseph et al (2010) were also used. Since our data 

included freshwater libraries, I also added five freshwater genomes from 

Actinobacteria (AC1 lineage) and Alphaproteobacteria (LD12 lineage) and a genome 

from a coastal Crenarchaeota to our genome dataset (unpublished data).  

  

Results: 

 Sequencing of the five salinity gradient samples produced paired-end 

sequence reads with an average of 66 million fragments per metagenome and 67.5 

million fragments per metatranscriptome (Table 5.1). I consider a fragment to be an 

intact paired-read, with sequences covering both ends. Despite efforts to remove 

rRNA from the total RNA pool prior to sequencing, an average of 81% rRNA was 

identified and removed from each metatranscriptomic library prior to analysis. A 

comparison between the metagenome and metatranscriptome for each sample showed 

most of the expressed annotated genes identified in the metatranscriptomes were also 

found in the metagenomes (Figure 5.2). The Venn diagrams in Figure 5.2, which 

depict the presence/absence of annotated genes in each sample, showed an almost 

complete inclusion of the number of expressed genes within the functional genes 
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across the salinity gradient, indicating the metatranscriptomes accurately represented 

expression of the metabolic potential found in each sample.  

 Comparisons between metagenomes showed that 60% of the annotated genes 

were shared between freshwater, estuary, and below plume samples, with unique 

genes making up 13% or less of the total (Figure 5.3). A similar pattern was found 

when comparing metagenomes from the freshwater, new plume, and below plume 

samples, with 63% of genes being shared. The metatranscriptomes showed less 

overlap between samples. A comparison of freshwater, new plume, and below plume 

metatranscriptomes showed only 22% of expressed annotated genes were shared, 

with uniquely expressed genes making up 25%, 27%, and 28% of the total in each 

sample, respectively (Figure 5.3). When comparing the estuary (salinity=3.9) to the 

freshwater and below plume samples, only 18% of expressed genes were seen in all 

three samples, but almost all of the expressed genes seen in the freshwater (89%) and 

below the plume (86%) were also expressed in the estuary (Figure 5.3).  

 Although the metagenomes appeared to share many functional genes across 

the salinity gradient, these genes came from taxonomically distinct communities. Our 

previous study of 16S rRNA gene amplicon sequences showed taxonomically distinct 

bacterial communities in the river, estuary, plume, and coastal ocean (Fortunato et al. 

2012). The taxonomy of sequences from the two ends of the paired-end Illumina 

sequences were nearly identical and were similar to the taxonomy of the amplicon 

sequences (Figure 5.4). For each metagenome I identified an average of 108,000 16S 

rRNA gene sequences. For each amplicon sample there was an average of 321 

sequences, not including the estuary sample which only had 50 sequences. 
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Actinobacteria, Betaproteobacteria, and Verrucomicrobia taxa were abundant in the 

freshwater and estuary samples, but decreased in the plume as salinity increased. In 

contrast SAR11, Flavobacteria, and Rhodobacteraceae taxa increased with salinity. In 

the old plume sample there was a greater abundance of Polaribacter (2.5%) 

compared to the other plume samples. The below plume sample had a greater 

abundance of Gammaproteobacteria (25.5%), which was perhaps a reflection of the 

higher ocean salinity and deeper sampling depth.  

 This shift in taxonomic composition across the salinity gradient was also 

observed in our comparison of metagenomes and metatranscriptomes to sequenced 

microbial genomes (Figure 5.5). I found an over-representation of archaeal transcripts 

in our metatranscriptomes compared to the metagenomes, where transcripts matching 

archaeal genomes made up to 66% of all transcripts in some samples while making up 

less than 1% on average in metagenomic samples. Further analysis of this 

metatranscriptomic over-representation suggested that perhaps there was incomplete 

removal of archaeal rRNA, which subsequently mapped to archaeal genomes. For this 

reason, results presented only included metagenomic and metatranscriptomic 

sequences that mapped to bacterial genomes. Figure 5.5 includes the ten most 

abundant genomes to which sequences mapped for metagenomes and 

metatranscriptomes from each of the five samples.  

As with Figure 5.4, Figure 5.5 shows a shift in the abundance of different 

taxonomic groups across the salinity gradient for both the metagenomic and 

metatranscriptomic samples. In the freshwater metagenome, freshwater 

Actinobacteria genomes made up 47% of mapped sequences. This percentage 
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decreased as salinity in the samples increased, although Actinobacteria genomes still 

made up 26% of the new plume metagenome (Figure 5.5). Transcripts matching 

Actinobacteria genomes were expressed in the freshwater metatranscriptome (15%), 

but a much larger percentage of Actinobacteria genomes (46%) were expressed in the 

estuary metatranscriptome. This is surprising since Actinobacteria genomes were not 

prevalent in the estuarine metagenome. The most abundant genomes found in the 

estuary metagenome were Cyanobacteria species (e.g. Synechococcus, Cyanobium), 

but these organisms were not well represented in the transcriptome, indicating they 

were present, but not active (Figure 5.5). In both the freshwater and estuary samples, 

the most abundant genomes found in the metagenomes, in general, were not the same 

as the most abundant genomes found in the metatranscriptomes. This, however, was 

not the case in the plume samples, where the most abundant genomes were found in 

both the metagenomes and metatranscriptomes, with the exception of a Roseobacter 

sp. genome that was highly expressed in the plume, but made up a small percentage 

of plume metagenomes (Figure 5.5). Abundant genomes in the new, old, and below 

plume samples included a Rhodobacteraceae genome (Alphaproteobacteria 

HTCC2255) and various SAR11 genomes. The deeper below plume sample also had 

high abundance of two Gammaproteobacteria genomes, similar to what was seen in 

the 16S data (Figures 5.4, 5.5).  

 To further compare the metagenomes and metatranscriptomes I clustered 

sequences hierarchically based on the distribution of sequences matching different 

SEED subsystem categories using pairwise Pearson correlations (Figure 5.6). Figure 

5.6 depicts the clustering of metagenomes and metatranscriptomes at different 
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subsystem category scales, from basic metabolic functional categories (Level 1) to 

specific genes (Function level), and shows heatmaps depicting the distribution of 

these categories across samples. At every functional level, the metagenomes clustered 

separately from four of the five metatranscriptomes indicating that, in general, 

metagenome samples were more similar to one another than to their corresponding 

metatranscriptome (Figure 5.6). The estuary metatranscriptome, however, did cluster 

more closely with the metagenomes. Correlations between metagenomes were higher 

than between metatranscriptomes, indicating that the variation in gene function 

among samples was lower than variation in gene expression. This result was also seen 

in the corresponding heatmaps, particularly in Level 1, where the relative abundance 

of each functional category was similar across the five metagenomes but more 

variable across the metatranscriptomes (Figure 5.6).  

Dendrograms of the metatranscriptomes showed that the freshwater and new 

plume samples as well as the old plume and below plume clustered together at each 

level. The estuary transcriptome, as mentioned, clustered separately from the other 

four (Figure 5.6). In addition to pairwise Pearson correlations, diversity and evenness 

of genes was also assessed (Table 5.2). Using the inverse Simpson index as a measure 

of gene diversity, I found that all metagenomes displayed much higher functional 

diversity than the metatranscriptomes and the abundance of these genes was more 

evenly distributed. The metatranscriptomes, however, had very low evenness, as all 

metatranscriptomes were dominated by a small number of highly expressed genes 

(Figure 5.6, Table 5.2). 
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 To look more closely at functional differences among and between the 

metagenomes and metatranscriptomes, I compared the relative abundance of genes 

corresponding to different functional processes across the salinity gradient. These 

processes were nitrogen, sulfur, and phosphorus metabolism, carbon fixation, 

photosynthesis, and stress (Figure 5.7). In general, the metagenomes varied more 

strongly with the salinity gradient compared to the metatranscriptomes, with genes 

associated with sulfur metabolism and stress proportionally increasing from river to 

ocean. Across the salinity gradient there was a relative increase in genes for sulfur 

oxidation, DMSP degradation, and taurine utilization, and a decrease in thioredoxin-

disulfide reductase genes, which is an enzyme important to cell reduction-oxidation 

reactions (Figure 5.7). There was a relative decrease in genes associated with 

phosphorus metabolism across the salinity gradient, with the freshwater metagenome 

having proportionally more genes for high-affinity phosphate uptake and 

alkylphosphonate utilization compared to below the plume. There was not a clear 

pattern with salinity in nitrogen metabolism genes. However, as the below plume 

sample had nearly twice the proportion of genes associated with nitrogen metabolism 

than the other four metagenomes with a large percentage of nitric oxide synthase 

genes present. There were very few nitrogen fixation genes, but denitrification genes 

were present in the freshwater and below plume samples, perhaps associated with 

anaerobic processes occurring within suspended particles. The relative abundance of 

carbon fixation genes was even among the metagenomes, with a slightly higher 

relative abundance in the estuary. Photosynthesis genes were abundant in the estuary 



 

  122 

as well as the old plume, with the old plume containing proportionally more genes for 

proteorhodopsins compared to the estuary (Figure 5.7).  

As for the metatranscriptomes, there was no clear pattern for expression of 

genes across the salinity gradient, but there were differences between samples. 

Similar to the metagenomes, the relative abundance of nitrogen metabolism genes 

was greatest in the below plume sample, with a proportionally higher expression of 

nitric oxide synthase genes, the same gene that made up a large percentage of the 

metagenome (Figure 5.7). Expression of sulfur metabolism genes was variable across 

samples, with the old plume having the highest relative gene expression, especially of 

genes associated with using glutathione, an organic sulfur compound. The relative 

expression of stress genes, both oxidative and osmotic, was also highest in the old 

plume metatranscriptome (Figure 5.7). Looking at genes expressed for carbon 

fixation and photosynthesis, the freshwater and new plume samples had the highest 

relative expression of carbon fixation genes with the lowest expression of 

photosynthesis genes, while the estuary, new plume, and old plume showed the 

opposite pattern (Figure 5.7). Although there were differences in relative gene 

expression patterns for important metabolic processes among metranscriptomic 

samples, many of the differences were variable and difficult to interpret.  

 

Discussion: 

 Most metagenomic and metatranscriptomic studies of aquatic microbial 

communities have focused on the metabolic potential and gene expression patterns of 

the surface ocean, with few studies describing freshwater systems (Ghai et al. 2011, 
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Hewson et al. 2010, Poretsky et al. 2009b, Rusch et al. 2007). This study represents 

the first to connect fresh and marine environments in order to understand the changes 

in metabolic function across a salinity gradient. Our results suggest that although 

taxonomically distinct communities were present from river to ocean, the metabolic 

potential of these communities was highly similar. Gene expression patterns across 

the salinity gradient, however, were extremely different and reflect the short-time 

scales on which microbial processes occurred and persisted in an environment. 

 Previous work of 16S amplicon pyrosequences has shown taxonomically 

different communities in the river, estuary, plume, and coastal ocean (Fortunato et al. 

2012). This pattern was also reflected in our metagenomic samples, with a clear shift 

from freshwater taxa such as Actinobacteria and Betaproteobacteria to marine 

Alphaproteobacteria, Flavobacteria and Gammaproteobacteria. Despite the large 

difference in the number of 16S sequences between the metagenomes 

(average=108,000 sequences) and the 16S amplicons (average=321 sequences) for 

each sample, results from the taxonomic analysis were very similar, with the 

exception of the estuary, where the number of amplicon sequences was very low and 

probably did not accurately reflect community composition. This similarity despite 

the large difference in sequencing depth validates shallow 16S amplicon surveys as 

accurate depictions of the dominant microbial community. In addition, similar results 

from metagenomic sequencing strengthen the patterns of abundance of these 

taxonomic groups and the large differences between freshwater, estuary, and plume 

microbial community composition.   
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 This taxonomic shift was also observed in the abundance of metagenomic and 

metatranscriptomic sequences mapping to freshwater and marine genomes. Across 

the salinity gradient the freshwater Actinobacteria AC1 clade was extremely abundant 

in the freshwater, and decreased with increasing salinity. These freshwater bacteria 

were also present in the new plume metagenome and showed expression in the 

metatranscriptome. This showed that perhaps the new plume sample was not well 

mixed, but instead consisted of several thin layers of water integrated during 

sampling, including a layer of freshwater and higher salinity coastal water. 

Freshwater discharge onto the coast forms a surface lens on top of higher salinity 

coastal waters (Hill and Wheeler 2002) and thus the timing of the sample may have 

captured this layered structure before substantial vertical mixing occurred, especially 

since measured wind speed was low at the time of sampling (3 m/s).  

As freshwater bacteria were diluted out along the salinity gradient, dominant 

marine bacteria appeared to mix into the plume, including many Pelagibacter and 

Gammaproteobacteria genomes, which were highly abundant in both metagenomes 

and metatranscriptomes. The most abundant genome detected in the new and old 

plume metagenomes was an alphaproteobacterium belonging to the 

Rhodobacteraceae family. In a previous study of 16S amplicons, a Rhodobacteraceae 

taxon was found to be highly abundant in the plume during the summer (Aug-Sept) 

and was found to be a key indicator of the summer plume microbial community 

(Fortunato et al, in prep). Thus the high abundance and expression of a 

Rhodobacteraceae genome in the plume sample further solidified the importance of 

these taxa to plume metabolic processes. 
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 Although the taxonomic composition of the microbial community shifted 

across the salinity gradient, the metabolic potential from fresh to marine waters was 

highly similar. Similarity between metagenomes was evident in Venn diagrams, 

which showed almost complete overlap of gene functions across the salinity gradient 

(Figure 5.3). Gene functions were on average 78% similar between metagenome 

samples (Pairwise Bray-Curtis). Evident from the dendrograms of Figure 5.6, 

metagenome samples clustered separately from the metatranscriptomes and had high 

pairwise Pearson correlations at all subsystem category levels with average 

correlations of 0.99, 0.98, and 0.88 at Level 1, Level 2, and the functional level 

respectively. In fact, the Pearson correlation between the freshwater and below plume 

metagenomes at the finest-scale gene function level was 0.86, indicating these two 

metagenomes share a high number of genes in the same ratios despite the large 

difference in salinity. Visually, the heatmaps of Figure 5.6 also were similar between 

the relative abundance of genes in each sample, especially at Level 1, where the 

heatmap of gene categories was nearly identical from freshwater to below plume.  

Contrary to this study, other metagenomic studies across environmental 

gradients saw large differences in metabolic potential. Fierer et al (2012) found 

significant changes in metagenomes across a nitrogen gradient in soil and Stewart et 

al. (2012) found a shift from aerobic to anaerobic metabolism across an oxygen 

minimum zone. Additionally, Ghai et al (2011) found a large difference between a 

freshwater metagenome from the Amazon to metagenomes from the Global Ocean 

Survey (GOS), specifically a high abundance of genes associated with microbial 

heterotrophy in fresh vs. marine waters. These studies however, used samples from 
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environments that are known to possess large differences in metabolic functions, e.g. 

aerobic vs. anaerobic waters, heterotrophic river systems vs. oligotrophic open ocean. 

The salinity gradient of the Columbia River coastal margin, however, does not have 

these large metabolic gradients. For example, the majority of organic matter in the 

Columbia River, unlike the Amazon, is not allochthonous material, but derived from 

river phytoplankton blooms (Prahl et al. 1998), and thus genes for the breakdown of 

terrestrial-derived organic matter may not be as prevalent as in the Amazon. All 

samples, even the below plume sample, were taken in the photic zone and did not 

span large oxygen, depth, or nutrient gradients where there would be a large shift in 

metabolic function. In a previous study of surface ocean, metagenomes from two 

different ocean basins were found to be highly similar (Rusch et al. 2007). Thus, 

despite salinity differences, surface metabolic potentials appeared to be similar from 

river to ocean.  

  Although metagenomes were highly similar, there were some trends in 

functional gene abundances across the salinity gradient. The relative abundance of 

genes associated with sulfur metabolism increased from freshwater to below plume, 

corresponding with the increase in sulfate availability in higher salinity waters. A 

relative increase in genes associated with DMSP breakdown was seen from estuary to 

plume, indicating the importance of the organic sulfur source in marine microbe 

metabolisms. Relative abundance of genes associated with phosphorous metabolism 

decreased from fresh to high salinity waters, perhaps reflective of the limited 

phosphorus pool in river systems due to particle bound complexes. The freshwater 

sample contained the most high-affinity phosphate uptake genes. Additionally, the 
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freshwater had the highest chlorophyll a concentrations (10.6 µg/L) and so these 

high-affinity transporters may be used to scavenge phosphorus during nutrient 

depleting phytoplankton blooms. The relative abundance of nitrogen genes was 

similar across the salinity gradient, except for a high proportion of nitric oxide 

synthase genes in the below plume sample. These genes are known to help cells 

counter oxidative stress and for transcriptional regulation (Rafferty 2011), but it is 

unclear why there would be more of these genes below the plume.  

 Gene expression determined from metatranscriptomes across the salinity 

gradient was more variable than gene presence. Metatranscriptomic libraries were on 

average only 29% similar based on Bray-Curtis similarity of expressed gene 

functions. Metatranscriptomes, except for the estuary sample, clustered separately 

from the metagenomes, and had very low Pearson correlations across all subsystem 

category levels, which on average were 0.70, 0.52, and 0.30 for Level 1, Level 2, and 

the functional gene level respectively. The lowest correlation was seen between the 

freshwater and below plume samples, which had a correlation of 0.04, showing 

almost complete separation of these two metatranscriptomes. Compared to the 

heatmaps of the metagenomes, gene expression in the metatranscriptome was highly 

variable among samples. Unlike in the metagenomes, each of metatranscriptomes was 

dominated by a few highly expressed genes, including a ribokinase gene in the 

freshwater and a phage capsid protein gene in the below plume sample. The high 

expression of a limited number of genes in each metatranscriptome was reflected in 

the low gene evenness measured. An average evenness of 0.05 was found for the 

metatranscriptomes compared to 0.23 for the metagenomes, where an evenness of 1 
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implies an equal number of sequences per gene function. Stewart et al. (2012) also 

observed low evenness in metatranscriptomic samples. This high variability in 

expressed gene proportions is perhaps reflective of the short-time scales on which 

many microbial processes operate and the limited view metatranscriptomic samples 

provide. 

 Shared expressed gene content across the salinity gradient was more variable 

than seen with metagenomes. A Venn diagram between the freshwater, estuary, and 

below plume samples showed a high number of expressed gene functions only 

present in the estuary, with almost all of the freshwater and below plume expressed 

genes also expressed in the estuary, suggesting a combination of gene expression 

patterns from the river, ocean, and uniquely within the estuary. The estuary 

metatranscriptome had the highest expressed gene diversity and evenness compared 

to the other metatranscriptomes, and thus may be why the estuary clustered with the 

metagenomes at all subsystems levels in Figure 5.6. The estuary, thus, can be seen as 

a highly diverse environment hosting a mixture of marine and freshwater microbial 

metabolic processes. The freshwater and new plume metranscriptomes clustered 

together at subsystem category Level 1 and 2 and closely at the functional level. The 

similarity between these samples was seen in the abundance of typical freshwater 

genomes in both the freshwater and new plume samples and also in expression of 

genes involved in carbon fixation, photosynthesis, nitrogen and sulfur metabolism, 

and stress, which further supports the idea that the new plume sample was a stratified 

sample of freshly discharged river water and higher salinity water beneath.  
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 A study of ocean surface water metatranscriptomes from different ocean 

basins found that gene transcription patterns were mostly shared between 

geographically diverse locations (Hewson et al. 2010), unlike what was seen along a 

salinity gradient in this study. Thus, although the metagenomic samples shared 

similar metabolic potential similar to what was seen in the surface ocean 

metagenomes, gene expression across the salinity gradient does not compare to 

patterns seen in surface ocean metatranscriptomes. There were no functional 

processes that exhibited a clear pattern of gene expression with salinity, as all were 

highly variable between metatranscriptomes.  Relative expression of nitrogen 

metabolism genes was highest in the below plume sample, with a high expression of 

nitric oxide synthase genes, which were also abundant in the metagenome. Although 

these genes combat UV and oxidative stress (Rafferty 2011), stress gene expression 

was relatively low in the below plume sample. Nitric oxide synthase is also important 

for regulation of transcription (Rafferty 2011), but it unclear why the below plume 

sample would have higher expression of this gene. Gene expression patterns in the 

old plume sample showed signs of productivity, with high relative expression of 

phosphate metabolism genes, photosystem and light harvesting complex genes, and 

genes involved in DMSP and other organic sulfur compound breakdown. Although 

chlorophyll a concentrations were lower (6.3 µg/L), expression of these genes 

suggested a highly productive plume sample. Relative expression of stress genes, 

especially genes for osmotic stress, was also highest in the old plume sample, 

suggesting the presence of a stressed river community in the plume. Gene expression 

patterns in the new plume sample were very different than the old plume and were 
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more similar to the freshwater sample. Both the freshwater and new plume sample 

expressed proportionally high amounts of carbon fixation genes, but had low relative 

expression of photosynthesis genes. The opposite pattern was seen for the estuary, old 

plume and below plume samples, where there was low carbon fixation but high 

relative expression of photosynthesis genes. Although samples were taken on 

different days, they were all taken at a similar time of day, well after sunrise and well 

before sunset, and thus the mechanism behind these expression patterns remains 

unclear.  

 In conclusion, I found that, like previous studies, taxonomically different 

communities were present across the salinity gradient as evident from 16S rRNA 

genes as well as the abundance of fresh and marine genomes. Conversely, metabolic 

potential across the salinity gradient was similar among all environments, indicating 

that taxonomically distinct communities have similar metabolic functions from river 

to ocean. Gene expression patterns, however, were highly variable and showed no 

pattern with salinity, demonstrating that expression changed rapidly and transcript 

turnover was high as microbes were constantly adapting to their environment, 

especially in a complex river-influenced coastal zone. 
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Table 5.1: Environmental and sequence information for each sample metagenome and 
metatranscriptome. A fragment is an intact paired-read, with sequences covering both 
ends. The number of annotated reads is the total of both fragments and single reads 
assigned to SEED subsystem functional categories.  
 

Sample Salinity Depth (m) Nucleic Acid No. of fragments (x106) %rRNA No. annotated 

Freshwater 0 0.5 DNA 60 0.5 6,525,399 

   mRNA 86 85.2 1,567,407 

Estuary 3.9 0.5 DNA 60 2.0 6,924,410 

   mRNA 87.5 87.5 222,737 

New Plume 15.5 1 DNA 84 0.4 15,834,963 

   mRNA 67.5 69.8 312,123 

Old Plume 25.3 1 DNA 67.5 1.0 13,161,525 

   mRNA 63 81.3 829,226 

Below Plume 33 16 DNA 61 1.3 11,768,111 

   mRNA 33.5 80.8 168,743 
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Table 5.2: Gene function diversity and richness for each metagenome and 
metatranscriptome. Reciprocal Simpsons diversity (1/D) was used for diversity 
calculations, where D=∑Pi

2 and P is the proportion of the total number of sequences 
represented by the ith unique gene function. Evenness was calculated by (1/D)/S, 
where S is gene richness (number of gene functions) for each sample. Evenness 
ranges from 0 to 1, where and evenness of 1 implies an equal number of sequences 
per gene function.   
 

 DNA  mRNA  
 Diversity Evenness Diversity Evenness 
Freshwater 888.10 0.24 13.93 0.02 
Estuary 886.66 0.24 284.20 0.12 
New Plume 780.30 0.23 33.13 0.03 
Old Plume 794.98 0.22 107.25 0.05 
Below Plume 890.51 0.22 32.19 0.03 
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Figure 5.1: Map Columbia River, estuary and plume sampling locations. Plume 
samples were collected at the same sampling location on consecutive days. 
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Figure 5.2: Shared gene functions between the metagenome and metatranscriptome 
for each sample and overall. All metagenomes and metatranscriptomes were 
normalized to 168,743 sequences for accurate comparison. 
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Figure 5.3: Shared gene functions between Freshwater, Estuary, New Plume, and 
Below Plume metagenomes and metatranscriptomes. Metagenomes were normalized 
to 6,525,399 sequences. Metatranscriptomes were normalized to 168,743 sequences. 
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Figure 5.4: Taxonomy of 16S rRNA genes identified in each metagenome and 
corresponding 16S rRNA gene amplicon sample. There are two bars for each 
metagenome, which represent 16S sequences indentified from each end of the paired-
end fragment.  
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Figure 5.5: Relative abundance of sequenced genomes in each metagenome and 
metatranscriptome. Blue bubbles represent metagenomes, red represent 
metatranscriptomes.  
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Figure 5.6: Relatedness of metagenomes and metatranscriptomes. Heatmaps show the 
relative abundance of sequences matching metabolic function categories at three 
levels of the SEED subsystem functional hierarchy. Dendrograms are based on 
hierarchical clustering of pairwise Pearson correlation coefficients. Blue and red 
represent metagenomes and metatranscriptomes respectively. All samples were 
normalized to 168,743 sequences. 
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Figure 5.7: Abundance of functional genes present and expressed across all samples. 
Functional assignments are based on SEED subsystem categories. Metagenomic data 
is on the left, metatranscriptomic data on the right.  
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Figure 5.7: continued 
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CHAPTER 6: 

FINAL CONCLUSIONS 
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This research is the first to characterize in detail the bacterial communities of 

the Columbia River coastal margin from freshwater to the deep ocean. I found that 

the phylogenetic composition of bacterioplankton communities separated by coastal 

environment based on structuring physical factors and that this great spatial 

variability overwhelmed any seasonal patterns across the entire coastal dataset. 

Taxonomically distinct communities were observed from river to the deep ocean, 

with different taxonomic groups characterizing each specific coastal environment. 

Freshwater influenced environments, from the river, to the estuary, to the plume, 

showed seasonal shifts in bacterioplankton community composition and reassembly 

of the same community each year. Seasonal shifts in communities in these 

environments were correlated most strongly with environmental factors that affected 

the rate of freshwater flow. With these seasonal shifts, I saw distinct taxa become 

dominant as environmental conditions changed. In the coastal ocean, however, 

seasonality of communities was not apparent but varied longitudinally with proximity 

to the coast and across environmental gradients. Combining this taxonomic survey 

with metagenomic and metatranscriptomic data across the salinity gradient, I found 

that although taxonomy changes drastically from river to ocean, bacterioplankton 

communities share much of the same metabolic function. Expression of these 

functions, however, was highly variable, with no obvious relationship with salinity. 

Spatially, bacterioplankton communities separated into distinct coastal 

environments defined by the strong salinity, temperature, and depth gradients from 

river to ocean and from surface to deep. With a small dataset of 71 samples I saw 

communities separated into five different environments, but with the inclusion of 
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more samples, from 71 to 300, communities further separated into seven location-

specific environments: river, estuary, plume, epipelagic, mesopelagic, shelf bottom 

(depth<350 m), and slope bottom (depth>850 m). These strong spatial patterns were 

even more solidified with an expansion of our dataset to nearly 600 samples across 

four years. Thus, this broad-scale microbial biogeographical survey gave an accurate 

depiction of how bacterioplankton communities were structured across the physical 

gradients of a coastal zone. Once bacterioplankton communities separated into 

environments based on physical conditions, factors related to primary and secondary 

production were found to influence community variation within environments, 

especially in the coastal ocean, where chlorophyll a and bacterial production appeared 

to be the two most important factors influencing community variability in the plume, 

epipelagic, and shelf bottom during our study in August 2007. In the summer months, 

the Pacific Northwest coast is highly productive due to upwelling of nutrients from 

the deep ocean, with the Washington coast being more productive than Oregon 

(Hickey and Banas 2003, Hickey et al. 2010). This spatial variation in primary and 

secondary production was reflected in bacterioplankton community composition as 

communities changed depending on proximity to shore and location along the coast. 

The spatial patterns of bacterioplankton communities were highly robust, as our 

extensive 16S biogeographical survey found communities were first separated by the 

physical parameters that define the coastal zone, and then secondarily by location-

specific environmental factors. 

 In addition to this dataset spanning large spatial gradients from river to the 

deep ocean, I was also able to study temporal variability of bacterioplankton 
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communities across a four-year sampling period. I found temporal variability across 

the coastal zone to be obscured by the strong spatial variability. Several studies of 

coastal zone bacterioplankton identified time as the principle axis of community 

variability (Fuhrman et al. 2006, Gilbert et al. 2009, Kan et al. 2006b, Stepanauskas et 

al. 2003), but these studies were restricted to one environment type within which 

spatial variability of bacterioplankton communities was limited. Thus, while temporal 

variability may occur within many marine habitats, it was clear within our dataset that 

spatially variable environmental factors that structure the coastal environment (e.g., 

salinity, depth) were more important than temporal changes in determining 

bacterioplankton community composition. Temporal variability could only be 

resolved within some environments, specifically those influenced by freshwater flow. 

Our initial dataset of 300 samples over an annual cycle (2007-08) showed distinct 

seasonal communities in the river, estuary, and plume. These environments supported 

distinct early (April-July) and a late (August-November) year communities. The river 

also showed evidence of a unique spring community.  

 With the expansion of this data to include nearly 600 samples over four years, 

I saw that the temporal patterns became more resolved, with a strong separation of 

communities into early and late year in the river and estuary. In the plume there was a 

separation of a distinct summer community compared to the rest of the year. The 

seasonal separation into early and late year communities in the river and estuary 

corresponded to changes in Columbia River flow, where maximum flow occurs in 

late spring and is minimum in late summer to early fall (Prahl et al. 1998). In 

combination with river flow, the river community varied with inorganic and organic 
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nutrients, especially POC and PN (ρ=0.686), as higher river flow generally brings 

more particulate matter downstream, with high POC concentrations during the spring 

freshet, and low concentrations during summer months. Community composition in 

the estuary was strongly correlated with river flow and residence time (ρ=0.550) as 

the amount and composition of river water and the time that water spent in the estuary 

greatly affected the development of the bacterioplankton community. Across our 

four-year dataset, these seasonal communities reassembled each year across the 

salinity gradient and thus, much like other studies showing annual reassembly, these 

bacterioplankton were predictable based on environmental conditions (Andersson et 

al. 2010, Carlson et al. 2009, Crump et al. 2009, Fuhrman et al. 2006, Morris et al. 

2005). 

 Throughout the coastal ocean, there was no seasonal variation in community 

composition, and within-environment variation appeared to be driven by changing 

environmental conditions from near to offshore. Although shelf and slope bottom 

community variation correlated with dissolved oxygen and temperature from near to 

off shore, environmental factors in the epipelagic varied little. In both the larger 

survey encompassing multiple years, and the smaller study in August 2007, 

epipelagic communities varied from near to off shore. In August 2007, this variation 

also extended along the coast, presumably because epipelagic communities were 

influenced by variation in summer production along the coast. This along shore 

variability was not seen in the larger dataset. The lack of along shore variability in the 

larger, multi-year dataset showed the heterogeneity of the epipelagic environment as 

inter-annual variability of mixing, upwelling, river flow, and other physical and 
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biological factors made it difficult to define a set of environmental variables that best 

explained epipelagic community composition over multiple years and seasons.  

 The physical mixing of bacterioplankton communities was evident throughout 

the Columbia River coastal margin as taxonomic groups increased and decreased 

across the strong salinity and depth gradients of the dataset, with a distinct taxonomic 

fingerprint for each environment. In each of the seven environments across the coast, 

specific niches were created which led to the prevalence of different dominant 

taxonomic groups in each environment. The phylum SAR406 and the 

Gammaproteobacteria family SUP05 were most prevalent in the deep ocean and 

mixed out in shallower water. The opposite was seen for the common surface ocean 

bacteria groups SAR86 and Rhodobacteraceae, which were prevalent in the estuary, 

plume and epipelagic. Flavobacteria, especially Polaribacter taxa were extremely 

abundant in the plume. In the river community, Actinobacteria were dominant. The 

OTUs from these dominant taxonomic groups were also top indicators in their 

respective environments, suggesting these groups shaped community composition. 

Environmental conditions change seasonally, causing taxonomic composition to 

change as different taxa are able to dominate in different conditions. These seasonal 

shifts in taxonomic composition were evident in the river, estuary and plume, where 

shifts in the most dominant taxa appeared to drive changes in community 

composition. In the estuary specifically, changes in river flow and residence time also 

co-occurred with a shift in community composition. One Oceanospirillales OTU was 

more dominant during times of high flow and short residence times, and a 

Rhodobacteraceae OTU was dominant in low and long residence times. 
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 From our 16S amplicon biogeographical studies, I saw changes in taxonomic 

composition across salinity, depth, and other environmental gradients of the coastal 

zone. This change in taxonomy across the salinity gradient was also evident in our 

metagenomic data, with a clear shift from freshwater taxa such as Actinobacteria and 

Betaproteobacteria to marine Alphaproteobacteria, Flavobacteria, and 

Gammaproteobacteria. Despite the large difference in the number of 16S sequences 

between the metagenomes (average=108,000 sequences per sample) and the 16S 

amplicons (average=321 sequences per sample), results from the taxonomic analysis 

were very similar. This taxonomic shift was also observed in the abundance of 

metagenomic and metatranscriptomic sequences mapping to freshwater and marine 

genomes. Unlike the taxonomy across the salinity gradient, the metabolic potential of 

microbial communities was similar from river to ocean. This similarity was evident in 

Venn diagrams, which showed almost complete overlap of gene functions and high 

Pearson correlation coefficients between samples, even at the finest subsystem 

functional category. The results were different with other metagenomic studies across 

oxygen and nutrient gradients (Fierer et al. 2012, Stewart et al. 2012). All of our 

samples were taken in the photic-zone and did not span steep depth or oxygen 

gradients, thus despite the salinity, the gene prevalence and abundance of these 

surface microbes was fairly similar. The metatranscriptomes were highly variable, 

although this variability was not in response to changes in salinity. I found expression 

patterns of genes associated with nutrient metabolism, carbon fixation, 

photosynthesis, and stress showed no clear pattern with salinity and overall were hard 

to interpret. This high variability across the metatranscriptomes demonstrates that 
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gene expression changes rapidly and transcript turnover is high as microbes adapt to a 

changing environment. Thus our analysis of the metabolic potential and gene 

expression across this coastal salinity gradient showed that freshwater and marine 

taxa were metabolically similar in these surface communities, but that the expression 

of these metabolic functions was highly variable. 

 Microbes are indicators of environmental change. The ability for microbes to 

quickly adapt growth rates and cell processes allows them to be sensitive to subtle 

shifts in biological or physical conditions. As evident by both our 16S amplicon and 

metagenomic work, the taxonomic composition of microbial communities shifted 

with spatially and seasonally fluctuating environmental factors as different taxa took 

advantage of specific conditions. Metabolically, these different taxa were quite 

similar, but the expression of these metabolisms was not yet fully understood. 

Together the chapters of this dissertation present a complete taxonomic and 

functional study of microbial community variability in a complex coastal 

environment, and lays the groundwork for these communities to be further explored 

and eventually predicted.  
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