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The Born-Oppenheimer approximation, which allows a decoupling of electronic

and nuclear motion, underlies the investigation of molecular dynamics. In some

cases this decoupling is not possible, so that nuclear motion can induce changes

in electronic state. It is then necessary to account for collision-induced transitions

between multiple potential energy surfaces. This is an inherently quantum phe-

nomena. In this dissertation we present a new way to visualize these non-adiabatic

transitions in chemical reactions of open-shell atoms. Toward this end, we have

developed new algorithms and developed a MATLAB-based software suite for sim-

ulating non-adiabatic reactions. We have also determined new molecular potential

energy surfaces and their couplings required to simulate the reactive dynamics.
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Chapter 1: Introduction and Overview

The subject of this work is the identification and visualization of quantum

effects in the dynamics of electronically open-shell, atom-diatom systems.

Since the development of molecular beam techniques [1] to investigate chem-

ical reaction dynamics some 60 years ago, chemical physicists have developed a

panoply of theoretical methods to interpret and model these experiments. The

Born-Oppenheimer (BO) approximation [2] has proved most useful in this endeavor

and is an essential underpinning in modern studies in theoretical and computational

chemistry.

Within this approximation the motion of the electrons in a molecule is de-

coupled from the motion of the nuclei. The forces on the nuclei are defined by

the gradient of the electronic potential energy. Physically one can understand this

approximation as follows; because electrons are so much lighter than nuclei (even

the lightest nucleus – the proton – is 1840 times heavier than an electron) elec-

trons react much faster to external perturbations. Accordingly, the electrons will

adjust instantaneously to the motion of nuclei and their respective dynamics can be

decoupled.

In quantum mechanical terms the BO approximation allows one to write the

1



total molecular wave function as the product of an electronic wave function and

nuclear wave function. In practice one solves the electronic problem first, which

depends only parametrically on the nuclear coordinates. The dependence of the

electronic energies on the position of the nuclei is (along with the repulsion between

the nuclei) the potential energy of the latter. This potential energy surface allows for

the simulation of the nuclear dynamics. There exist many software packages for both

accurate electronic structure calculations [3–5] and nuclear dynamics simulations

[6–9].

For systems where the BO approximation predicts the nuclear dynamics cor-

rectly, we say that the nuclei move adiabatically, i.e. their motion is confined to

a single electronic potential energy surface (one eigenstate of the electronic prob-

lem). In the case of adiabatic dynamics, classical, semiclassical methods such as

ring-polymer methods models [10], classical [11] and Monte Carlo [12] trajectory

methods, and transition-state methods [13] work well to model the nuclear dynam-

ics of reactive scattering. Because exact quantum scattering software packages are

limited to a few atoms (though recently there has been advances in treatable system

size [14]) these classical and quasi-classical methods are the only option for larger

systems.

In this thesis we are interested in nonadiabatic – non-BO – dynamics, where

the motion of the electrons and nuclei cannot be decoupled, and the nuclear motion

evolves on multiple, coupled electronic potential energy surfaces. The essentially

quantum nature of coupling and interference between molecular potential energy sur-

faces can’t be described by classical mechanics. As a consequence, an ad hoc method

2



must be used to account for non-BO behavior in classical and semi-classical simu-

lations. Many such methods exist including surface hopping, [15], time-dependent

self-consistent fields [16] and linear approximations of the initial value problem [17].

Ultimately, though, an accurate description of the reaction dynamics of nonadia-

batic systems demands an exact quantum treatment based on ab initio potential

surfaces. Very little software exists to simulate the general case of nonadiabatic

reaction dynamics. What software that does exist [6] must be extended anew for

each nonadiabatic system, which is time consuming and restricts its use to all but

a few experts in the field. The lack of available nonadiabatic reactive scattering

software has motivated the majority of the work contained in this dissertation.

This dissertation is organized into six chapters. The following chapter, Chapter

2, is an introduction to the nonadiabatic dynamics of collisions between open-shell

atoms and closed-shell diatomic molecules. We start this discussion with a brief

theoretical treatment of the BO approximation and its breakdown. We identify

the common sources of nonadiabaticity in reactive scattering, namely coupling near

conical intersections, spin-orbit coupling and Coriolis coupling. We then define our

system of interest, i.e. the quantum reactive scattering dynamics of an open-shell

atom with a closed shell diatomic molecule. We focus on the coordinate system and

physical scattering boundary conditions used throughout this work.

After defining the system of interest, we turn to dynamical studies of atom-

diatom reactions in Chapter 3. Scattering software packages available today are

generally based on finite difference propagation of the wave function and are, in

general, difficult to use, not easily generalized to new systems, and do not readily

3



provide the scattering wave function. These concerns combined with the noted lack

of general purpose nonadiabatic software has inspired our development of a novel

extension of the finite element (FE) method for approximating reactive scattering

dynamics. We have implemented this FE approach to quantum reactive scattering

in MATLAB.

In Chapter 3 we work through many applications of the FE method to approxi-

mate the Schrödinger equation for atom-diatom systems beginning with bound state

systems. Once we have introduced the finite element method and its application

to Schrödinger’s equation, we apply the algorithm to adiabatic, reactive scattering.

It is here, we derive our novel modifications to the way boundary conditions are

handled in the FE scattering algorithm of Askar and Rabitz [18]. We use the exem-

plary hydrogen exchange reactions such as H+H2, F+H2, F+HCl and their isotopic

variants to test our new algorithm.

Subsequently, in Chapter 3 we generalize the results of the FE adiabatic scat-

tering algorithm to nonadiabatic systems. We focus on the formulation of the

boundary condition for coupled reactive scattering. We introduce the topic of the

fluid-dynamical picture of quantum reactive scattering, studied in detail in the lit-

erature [19–26]. We show how this fluid-flow picture of quantum mechanics can

extend our intuition of the nonadiabatic, quantum reactive scattering. We test the

nonadiabatic FE scattering algorithm with the F+HCl and F+H2 reactions.

In the last section of Chapter 3, motivated by modern laser-cooling experimen-

tal methods that can resolve hyperfine structure [27], we apply our nonadiabatic

dynamics method to the Li+CaH system, which is a potential candidate for the
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preparation of ultra-cold molecular systems.

In Chapter 4 we describe in more detail the potential energy surfaces of atom-

diatom reactions. We have analyzed the potential energy surfaces of many reactive,

atom-diatom systems that exhibit similar nonadiabatic character, such as F+H2,

F+HCl, O+H2. In this chapter we discuss the technical details of these potential

surfaces and describe our new, highly accurate, ab initio calculations for the O+H2

system.

Accurate ab initio potential surface calculations are computationally expen-

sive. Even in the era of distributed computation, these calculations can takes weeks

and sometimes months. Density Functional Theory (DFT) has been successfully

used in a wide range of chemical applications and in Chapter 5 we analyze its use as

a computationally cheaper alternative for the determination of potential energy sur-

faces for atom-diatom systems. Specifically this chapter analyzes the ability of DFT

to model long-range dispersion forces in open-shell systems, which has historically

proven difficult for DFT [28].

Finally, after the technical discussion, Chapter 6 presents a concise summary

of the work presented in this dissertation. We also comment on projects that could

be inspired by this work.

The exciting developments of our ongoing work, involving the use of statistical

learning models to fit potential energy surfaces, are described in Appendix A.
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1.0.1 Published Works

Much of the work presented in the following chapters has been previously

published in peer reviewed journals. This section identifies which works have been

cross-referenced and provides the references to the respective articles.

Chapter 3 is largely contained in the following series of works which have

previously been published in the Journal of Chemical Physics (JCP). Chapter 3

also borrows from another work, on the nonadiabatic dynamics of Li+CaH, which

is currently in draft form (see below).

[1] M. Warehime, M. H. Alexander, A MATLAB-based finite-element visualization

of quantum reactive scattering. I. Collinear atom-diatom reactions. J. Chem.

Phys. 141, 024118 (2014) [29].

[2] M. Warehime, M. H. Alexander, A MATLAB-based finite-element visualization

of quantum reactive scattering. II. nonadiabaticity in the F+HCl and F+H2

reactions on coupled potential energy surfaces. J. Chem. Phys. 142, 034108

(2015) [30].

The study presented in Chapter 5 involving new potential energy surfaces of

the ground state Ar+NO(X2Π) system has been published JCP.

[3] M. Warehime, J. K los and E. Johnson, New XDM-corrected potential energy

surfaces for Ar-NO(X2Π): A comparison with CCSD(T) calculations and ex-

periments., J. Chem. Phys. 142 024302 (2015) [31].
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1.0.2 Manuscripts in Progress

At the time of the presentation of this thesis to the committee there were

several projects contained herein that have yet to be published:

Chapter 3 contains a new study on the nonadiabatic dynamics of the Li(2S)

+ CaH(2Σ+) system in the ultra-cold regime. We have drafted a manuscript to be

submitted to Chemical Physics Letters based on this work.

[4] M. Warehime, J. K los, Collisions between Li(2S) and CaH(2Σ+) on the lowest

triplet and singlet potentials: Two-dimensional finite element studies on coupled

potential surfaces.

The study presented in Chapter 4 on the potential energy surfaces of O(3P )

+ H2 is in preparation for publication in JCP.

[5] M. Warehime, J. K los and M. H. Alexander, Time reversal invariant basis for

nonadiabatic reactive scattering of F(2P )+H2 and O(3P )+H2.

Appendix A contains new work on a project using neural networks to model

molecular potential energy surfaces. This is the subject of a forthcoming paper,

which will likely be submitted to the Journal of Computational Chemistry.

[6] M. Warehime and M. H. Alexander, Identifying optimal neural network topology

for fitting molecular potential surfaces.
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Chapter 2: Nonadiabatic Dynamics of Open-Shell

Atom+Diatom Systems

2.1 Nonadiabatic Chemistry

The accurate dynamical modeling of nonadiabaticity in molecular collisions has

implications in a variety of fields including solar energy [32], photosynthesis [33,34],

human vision [35], combustion dynamics [36], fuel cells [33, 34], and interstellar

and atmospheric chemistry [37, 38], to name a few. In this work we investigate

nonadiabatic dynamics in the simplest class of chemical reactions: collisions between

an atom and a diatomic molecule. Understanding nonadiabaticity in this class of

reactions will refine our understanding of this effect in more complex systems.

Nonadiabatic dynamics has been studied near conical intersections [45–49], as

well as induced by spin-orbit [50–55] or Coriolis coupling [56,57]. A panoply of meth-

ods and mathematical tools have been developed to investigate this phenomenon.

These include exact time-dependent [58–60] and time-independent [50–54, 61–64]

quantum scattering, as well as extensions of classical trajectory methods [15,65–71].
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2.1.1 Born-Oppenheimer Approximation

In this section we briefly recapitulate the theoretical framework for nonadi-

abatic chemistry provided by Jasper and coworkers [72]. The Hamiltonian of a

molecular system can be written

H(Q, q) = T (Q) +He(q;Q)

where Q refer to the nuclear degrees of freedom, q refers to the electronic degrees

of freedom, T (Q) is the nuclear kinetic energy and He(q;Q) is the electronic Hamil-

tonian, which includes the nuclear repulsion. Systems that are accurately modeled

within the BO approximation are those whose dynamics evolve on a single electronic

potential surface, in which case we can write the total molecular wave function,

Ψ(Q, q), as

Ψ(Q, q) = Ψη(Q)|η⟩

where |η⟩ is an eigenstate of the electronic Hamiltonian, which also depends paramet-

rically on the nuclear degrees of freedom, Q. This wave function solves Schrödinger’s

equation, namely

[T (Q) +He(q;Q) − E] Ψ(Q, q) = 0

where E is the total energy of the system. Substituting the BO wave function,

premultiplying by ⟨η|, and integrating over the electronic degrees of freedom yields

[T (Q) + V η,η(Q) − E] Ψη(Q) = 0
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where V η,η(Q) = ⟨η|He(q;Q)|η⟩q is the electronically-adiabatic potential energy sur-

face (PES) associated with electronic state η, and the subscript q denotes integration

over the electronic degrees of freedom.

2.1.2 Beyond the Born-Oppenheimer Approximation

Many chemical systems require more than one electronic PES to accurately

describe the nuclear dynamics. In such cases we expand the nuclear wave function

in the set of electronic wave functions

Ψ(Q, q) =
∑
η

Ψη(Q)|η⟩.

Substituting this expression for the wave function into Schrödinger’s equation we

have

[T +He(q;Q) − E]

(∑
η

Ψη(Q)|η⟩
)

= 0.

For now, let us remember that the kinetic energy operator is proportional to the

Laplacian, so that we can write for simplicity

T ∝ ∂2

∂Q2
.

Premultiplying by the electronic wave functions and integrating over the electronic

degrees of freedom we obtain the following set of coupled equations

∑
η,η′

[
T + T η′,η

1 + T η′,η
2 + V η,η(Q) − E

]
Ψη(Q) = 0 (2.1)

where terms T η′,η
1 and T η′,η

2 result from the product rule and are defined as

T η′,η
1 = 2⟨η′| ∂

∂Q
|η⟩ ∂

∂Q
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and

T η′,η
2 = ⟨η′| ∂

2

∂2Q
|η⟩.

Here V η,η is the matrix element of the electronic Hamiltonian, which is diagonal in

the electronic state index. The kinetic energy terms, however, are not diagonal in

the electronic state index. Note that we have assumed the Cartesian expression for

the Laplacian. In other coordinate systems T is more complicated but still involves

second derivatives with respect to the coordinates. But we see, even in the simplest

Cartesian form, that the kinetic energy operator couples the electronically adiabatic

states.

In some applications it is more convenient to transform this system of equations

to a basis in which the kinetic energy terms are diagonal and the potential energy

terms are not diagonal, the so-called diabatic basis. It should be noted, however,

that this is not always possible, and the term quasi-diabatic basis is used for the

basis which minimizes the off-diagonal coupling in the kinetic energy operator. For

our purposes we will use the term diabatic, with the knowledge that we are using

only approximately diabatic states.

2.1.3 Conical Intersections

Conical intersections occur when two states of different symmetry mix as the

system moves to a lower symmetry configuration. If these two states cross in the

high-symmetry geometry, then at nearby lower-symmetry geometries the degeneracy

of the adiabatic states is lifted forming a cone of intersection. In a system with n
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degrees of freedom the conical intersection forms a seam of dimension n− 2 [73]. In

the vicinity of the seam of conical intersection, because the two states are degenerate,

the nonadiabatic couplings T1 and T2, no matter how small, can lead to a significant

mixing. Thus, along the seam of conical intersections the BO approximation breaks

down. An accurate picture of the motion of the nuclei near conical intersections

must therefore involve two (or more) coupled adiabatic PESs. Conical intersections

appear in wide range of systems and are central to a discussion of nonadiabatic

dynamics.

2.1.4 Spin-Orbit Interactions

Another source of nonadiabatic dynamics in molecular systems is the spin-

orbit interaction. The spin-orbit Hamiltonian, which arises from the coupling of the

electron’s spin and orbital angular momentum, can be written as

Hso(Q) = A(Q)L · S,

where L is the orbital angular momentum operator, S is the spin angular momen-

tum operator, and A(Q) is the spin-orbit constant, which is geometry dependent.

The spin-orbit interaction is not included in the electronic Hamiltonian, He(Q, q),

which contains only electrostatic interactions. The addition of Hso(Q) can couple

different adiabatic electronic states. This can be important in collisions of atomic

and molecular radicals whenever both L and S are non-zero. The study of such

systems is an important component in this dissertation.
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2.1.5 Coriolis Coupling

Electronic Coriolis coupling occurs when an open-shell atom or molecule col-

lides with another atom or molecule. As stated above the nuclear kinetic energy

term, T , is the Laplacian operator. This operator contains terms that include the

angular momentum of the nuclei. The coupling between the angular momentum of

the nuclei and the electronic angular momentum can give rise to mixing between

different electronic states. This is called electronic-rotational Coriolis coupling.

In many dynamical studies these terms are ignored, as they tend to be small,

just as T1 and T2 are ignored. However, a complete description of the nonadiabatic

dynamics of reactive collisions must account for the electronic Coriolis coupling.

Schatz and Drukker provide an excellent study on the importance of electronic-

rotational Coriolis coupling in nonadiabatic reactive collisions [178]. In the present

work we do not include nonadiabatic effects that arise due to electronic Coriolis

coupling.

2.1.6 Nonadiabatic Reactive Scattering

In this work we are interested in approximating the results to Eq. 2.1 for

reactive collisions between an open-shell atom and closed-shell diatomic molecule.

In the following sections we describe this system in detail including the choice of

coordinate system and physical scattering boundary conditions.
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2.2 Atom+Diatom Reactive Scattering

To begin the discussion of quantum reactive scattering dynamics we first define

the system of interest. In particular, we are interested in the reactive collisions

between a diatomic molecule, BC, and a lone atom, A, with a fixed amount of total

energy in the system. Let ma, mb and mc denote the atomic masses in the A + BC

reaction. After a collision there are three possible arrangements, let γ designate the

arrangement, with γ = a the A+BC arrangement, γ = b the B+AC arrangement,

and γ = c the C+AB arrangement. There is a fourth possibility, i.e. triatomic

breakup, but we will not consider such high energy effects in this work. The main

goal of reactive scattering calculations is to accurately calculate the probability of

each of these possible outcomes as a function of the total energy of the system.

2.3 Collinear Atom-Diatom Reactive Scattering

In this section we start with a collinear model for the reaction dynamics in

which all atoms are constrained to move along a single line. If the initial arrangement

is A+BC, then only two possible outcomes can occur in a collinear reaction, namely

γ = a and c. In the collinear model there are two degrees of freedom. Possible

coordinate systems include bond coordinates, which are defined as the separation

between AB, uab, and between BC, ubc, or Jacobi coordinates to describe the system.

The Jacobi coordinates are the most natural way to write the asymptotic behavior

of the reactive system. The Jacobi coordinates are the following transformation of
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the bond coordinates,

R̄a = uab +
(

mc

mb +mc

)
ubc

r̄a = ubc. (2.2)

A similar expression holds for the Jacobi coordinates in the product arrangement,

R̄c and r̄c. Figure 2.1 shows a graphical representation between the Jacobi and bond

coordinate systems.

B A C 
r  = uc bc

r  = ua ab

Ra

Rc

cm
cm

Figure 2.1: Representation of the bond coordinates, (uαβ, uβγ), and Jacobi Coordi-

nates, (R̄α, r̄βγ), for collinear reactive scattering. The ‘cm’ label denotes the center

of mass of the diatomic molecule.

However, we elect to use a third set of coordinates in this work, the mass-

scaled Jacobi coordinates (MSJ). [39–41] As we will see in Chapter 3 the reactive

scattering problem is simpler in the MSJ coordinates. These MSJ coordinates are

defined as (for arrangement a)

Ra = λa R̄a
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ra = λ−1
a r̄a (2.3)

where the scaling parameter, λa is defined as

λa =

(
µ

µbc

)1/2

(2.4)

with µbc defining the standard reduced mass of the BC diatomic moiety, and

µ =
[

mambmc

ma +mb +mc

]1/2
=
[
mambmc

M

]1/2
,

where M is the total mass of the system. The relation between the Jacobi and

mass-scaled Jacobi coordinates for the product arrangement is equivalent with

λc =

(
µ

µab

)1/2

. (2.5)

The reactant and product MSJ coordinates are related by the orthogonal transfor-

mation [42]  Rc

rc

 =

 cosα sinα

sinα − cosα


 Ra

ra

,

 (2.6)

where the “skew” angle between R⃗a and R⃗c is

α = arctan

(mb(ma +mb +mc)

mamc

)1/2

.

 (2.7)

The collinear model restricts any rotational motion and therefore the total

energy of the system is a function of the nuclear coordinates. When the free atom is

asymptotically far from the diatomic molecule (large R limit), the total energy is the

sum of the collisional energy (kinetic energy) of the free atom and the vibrational

energy of the diatom. In MSJ coordinates we write this as follows

lim
R→∞

Etot(R, r) = Ecol(kα) + Evib(vα) (2.8)
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where we assume the atom can be treated as a plane wave with wave vector, k, and v

is the vibrational quantum number for the diatom and γ identifies the arrangement

(A, B or C). Note we have set the zero of energy to be the minimum of the diatomic

vibrational potential.

A typical reaction in this collinear model with fixed total energy, Etot, can

now be described. Atom A, with collisional energy proportional to ka approaches

diatom BC in the vibrational state va. With sufficient collisional energy the atom

can reach the transition state (point of closest approach). From the transition state

one of two outcomes is possible, either a) no reaction occurs and the reactant atom,

with collisional energy proportional to k′
a, moves away from the diatomic molecule,

in the vibrational state va
′, (note this may be inelastic) or b) a reaction occurs and

the newly freed C atom, with collisional energy proportional to k′
c moves away from

the newly formed AB diatom, in vibrational state v′
c. We denote the probability for

starting in the reactant vibrational state vα and ending up in the β exit channel in

the v′
β vibrational state as |Svα,v′β

|2. Note the use of the ′ denotes ‘exit channel’.

Figure 2.2 shows a diagrammatic representation of the collinear model.

17



re
ac

ta
n
ts

tr
an

si
ti

on
st

at
e

ex
it

ch
an

n
el

s

k′ a
v′ a

k a
v a

A
B

C

k′ c
v′ c

F
ig

u
re

2.
2:

P
os

si
b

le
en

er
gy

ex
ch

an
ge

m
ec

h
an

is
m

s
in

a
co

ll
in

ea
r

at
om

-d
ia

to
m

re
ac

ti
on

.
In

th
e

re
ac

ta
n
t

ar
ra

n
ge

m
en

t
(l

ef
t)

th
e

A
at

om
,

w
it

h
k
in

et
ic

en
er

gy
p

ro
p

or
ti

on
al

to
k
a
,

ap
p

ro
ac

h
es

th
e

d
ia

to
m

ic
B

C
in

th
e

v
ib

ra
ti

on
al

st
at

e
v
a
.

T
h

e
tr

an
si

ti
on

st
at

e
(c

en
te

r)
d

en
ot

es
th

e
ge

om
et

ry
of

cl
os

es
t

ap
p

ro
ac

h
.

F
ro

m
th

e
tr

an
si

ti
on

st
at

e
th

e
sy

st
em

m
ay

en
d

u
p

in
on

e
of

tw
o

ex
it

ch
an

n
el

s;
th

e
in

el
as

ti
c

a-
ch

an
n

el
(t

op
ri

gh
t)

in
w

h
ic

h
th

e
sy

st
em

ca
n

m
ig

h
t

re
ar

ra
n

ge
th

e
in

te
rn

al
en

er
gy

or
th

e
tw

o
re

ac
ti

ve
c-

ch
an

n
el

(b
ot

to
m

ri
gh

t)
.

In
b

ot
h

ex
it

ch
an

n
el

s
th

e
en

er
gy

of
th

e
sy

st
em

is
d

es
cr

ib
ed

b
y

th
e

ex
it

in
g

at
om

w
it

h
k
in

et
ic

en
er

gy
p

ro
p

or
ti

on
al

to
k
′ γ

an
d

th
e

d
ia

to
m

ic
in

th
e

v
ib

ra
ti

on
al

st
at

e
v
′ γ
.

18



2.3.1 Adiabatic Scattering

In the collinear model presented in the previous section all atoms are con-

strained to move along a line and, accordingly, the angular momentum terms vanish

in the collinear model. Furthermore, in collinear geometries the interaction poten-

tial is simply a function of the magnitude of the MSJ coordinates. The collinear

Hamiltonian can then be written simply as

H =
−1

2µ
∇2 + V γ(Rγ, rγ) + Vγ(rγ) (γ = a, c), (2.9)

where ∇2 = 1
Rγ

∂2

∂R2
γ
Rγ + 1

rγ
∂2

∂r2γ
rγ. Note we will use atomic units, (h̄ = 1, me = 1),

throughout this work, unless noted explicitly.

2.3.1.1 Potential Energy Surface

Within the Born-Oppenheimer approximation, the potential energy surface

V (R, r) is just the electronic energy of the ABC system as a function of the nuclear

coordinates. Typically, [43, 44] we express this as a sum of two- and three-body

terms, so that, in the reactant arrangement

V (R, r) = Ea + Vbc(ra) + Vabc(Ra, ra),

and, in the product arrangement

V (R, r) = Ec + Vab(rc) + Vabc(Rc, rc).

Here Vbc and Vab are the potential energy curves of the diatomic BC and AB

molecules. We shall define the zero of energy to be the electronic energy of atom
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A plus the electronic energy of the BC molecule at its equilibrium internuclear dis-

tance, rc = r(e)c . Thus,

Ec = Ea + ∆Er = Ea +De(BC) −De(AB),

where ∆Er is the energy of reaction, which is the difference in the bond dissociation

energies of the BC and AB molecules.

2.3.1.2 Schrödinger’s Equation

Using the collinear Hamiltonian from the previous section we are interested in

solving the following time-independent formulation of Schrd̈inger’s equation

[
−1

2µ
∇2 + Vabc(Rγ, rγ) + Vαβ(rγ)

]
Ψγ(Rγ, rγ) = EtotΨγ(Rγ, rγ) (2.10)

We define the physical boundary of this problem as the geometries for which the

lone atom is far away from the diatomic molecule, i.e. when Rγ ≫ 1. We note a

typical large Rγ limit is around 10-20 a0. In the asymptotic regime of each channel

the interaction potential is exactly zero, i.e.

lim
Rγ→∞

Vabc(Rγ, rγ) = 0 (γ = a, c). (2.11)

The Hamiltonian is separable in the asymptotic regime. We can write the asymptotic

Hamiltonian in terms of kinetic and vibrational terms

lim
Rγ→∞

H = Hkin(R) +Hvib(r),

where

Hkin(R) = − 1

2µ

d2

dR2
γ

,
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and

Hvib(r) = − 1

2µ

d2

dr2γ
+ Vαβ(r).

This result is intuitive. When the atom is far away from the diatomic molecule

the atomic degree of freedom, Rγ, is treated like a free particle, and the diatomic

molecule degree of freedom is a vibrational Hamiltonian. We can write down the

time-independent formulation of Schrödinger for both the kinetic and vibrational

terms, namely

− 1

2µ

d2

dR2
γ

Ξγ(Rγ) = EcolΞγ(Rγ), (2.12)

and [
−1

2µ

d2

dr2
+ Vαβ(rγ)

]
χvγ (rγ) = Evibχvγ (rγ). (2.13)

The solutions to Eq. (2.12) are plane-waves with wave vector kγ =
√

2µEcol. The

solutions to Eq. (2.13) are vibrational functions index by the vibrational quantum

number and for the purposes of notation let vγ designate the vth vibrational level in

arrangement γ (γ = a or c). We note Evib = εvγ is the energy of the vth vibrational

level of the diatomic moiety in arrangement γ. In the following section we show how

these asymptotic forms can be used to construct the physically meaningful boundary

conditions.

2.3.1.3 Physical Boundary Conditions

The standard scattering boundary conditions correspond to collision of A with

BC initially in a particular vibrational state va. In the reactant channel the wave

function is a linear superposition of an incoming wave, with unit incoming flux, in
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state va and outgoing waves, with amplitudes Sv′a,va in all the other energetically

accessible (designated “open”) BC vibrational levels. In the product channel the

wave function will be a linear superposition of purely outgoing waves, with ampli-

tudes Sv′c,va in all the energetically accessible AB vibrational levels. The amplitudes

S form a column vector of length Nv, equal to the sum of the energetically accessible

BC and AB vibrational levels.

There is an equivalent column of amplitudes, but with different values, corre-

sponding to incoming waves in each open vibrational level of the reactant and the

product states. The full Nv ×Nv matrix of amplitudes is called the S-matrix. The

modulus squared of any S-matrix element is the probability that the collision of A

with BC in the vibrational level specified by the column index (remember, that “vi-

brational level” can refer to the vibrational motion of either BC or AB) will result

in A+BC in the vibrational level corresponding to the row index. Then the general

S-matrix element will be designated Svγ ′,vγ , where the vγ
′ denotes an outgoing term

in the γ channel and va corresponds to the initial, incoming term in the reactant

channel.

In the case where the lone atom, A, approaches the diatomic molecule, BC, in

vibrational level va, we can write the scattering boundary conditions as (note that

these are expressed in terms of unscaled, reactant and product Jacobi coordinates)

lim
Rγ→∞

Ψ(Rγ, rγ) = ΨΓ(Rγ, rγ) =
a,c∑
γ

f ∗
va(R̄a, r̄a)δa,γ +

Nγ∑
vγ ′=0

fvγ ′(R̄γ, r̄γ)Svγ ′,va


(2.14)

where Γ is the boundary to the physically relevant domain (we cover more on the
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scattering domain in Chapter 3). We use the Kronecker δa,γ to remind us that

there is only an incoming term in the reactance (γ = a) arrangement. Here Nγ is

the quantum number of the highest open vibrational level of the diatomic in the γ

channel. The boundary basis functions, fvγ , with γ = a or c, are defined as

fvγ = k−1/2
vγ Ξγ(R̄γ)χvγ (r̄γ), (2.15)

and f ∗
va , which implies an incoming plane wave, is the complex conjugate of fva ,

an outgoing wave. Where Ecol = E − εvγ , and µγ is the collision reduced mass in

arrangement γ

µa = ma(mb +mc)/M

and similarly for the product arrangement (γ = c). Furthermore, these f functions

are linear products of the solutions to Eqs. (2.12) and (2.13) so we are guaranteed

to solve the asymptotically separable time independent Schrd̈ingier equation.

By specifying the value of the solution along the boundary in Eq. (2.14), we

are imposing Dirichlet boundary conditions. These boundary conditions, however,

contain the Sv′γ ,va amplitudes, which are not known a priori. As we will show in

our application of the finite element method, we will simultaneously determine the

wave function Ψ and the S-matrix.

2.3.2 Nonadiabatic Scattering

In the previous section we limited our scope to systems that evolve according

to the BO approximation. We now turn our focus to systems where the BO ap-

proximation breaks down and we must explicitly include nonadiabatic effects. In
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particular we are interested in systems with complex electronic structure. To in-

clude the effects of coupled electronic states we introduce the electronic state label

η. We can then expand the Hamiltonian for the coupled system as follows

H(Qγ, q) =
∑
η,η′

|η′⟩Hη′,η(Qγ)⟨η|. (2.16)

Here Q designates the nuclear degrees of freedom (R, r,) for a collinear reaction

[or (R, r, θ) for a full three-dimensional description] and q designates the electronic

degrees of freedom with Born-Oppenheimer electronic eigenfunctions |η⟩. As in

the adiabatic case, the nuclear coordinates, Qγ, can be written in terms of any

appropriate set of MSJ coordinates.

Explicitly including the kinetic and potential terms, as in Eq. (2.9), in the γ

channel, we have

H(Qγ , q) = − 1

2µ

∑
η,η′

T η′,η(Qγ)δη′,η +
∑
η,η′

|η′⟩V η′,η(Qγ)⟨η|. (2.17)

This is the so-called diabatic representation of the problem. The adiabatic repre-

sentation of this problem is the one that diagonalizes the potential energy, V (Qγ),

for all values of the nuclear coordinates, Qγ. We see that the potential is coupled in

the diabatic basis, and the kinetic energy is coupled in the adiabatic basis.

2.3.2.1 Potential Energy Surface

As before we can describe the potential as the sum of interaction terms and

diatomic terms

∑
η,η′

|η′⟩V η′,η(Qγ)⟨η| =
∑
η,η′

|η′⟩V η′,η
abc (Qγ)⟨η| +

∑
η,η′

V η′,η
αβ (Qγ)δη′,η, (2.18)
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where the diagonal nature of the diatomic potential is a requirement that the system

be in a single electronic state asymptotically.

The diagonal η′ = η components of the potential energy V̂ are the potential

energy in state η which is a function of the nuclear degrees of freedom. The off-

diagonal components of V will represent either the the mixing of two electronic states

which belong to separate irreducible representations in high-symmetry geometries

or coupling due to terms in the Hamiltonian (for example, spin-orbit coupling) not

included in the construction of the diabatic states. We discuss the various coupling

mechanisms in Section 2.1.

2.3.2.2 Schrödinger’s Equation

Including the electronic state label, η, into the nuclear wave function, we see

the dynamics for the electronically coupled system are governed by the following

equation, namely− 1

2µ

n∑
η,η′

T η′,η(Qγ)δη′,η +
n∑

η,η′
|η′⟩V η′,η(Qγ)⟨η|

 n∑
η

Ψη(Qγ)|η⟩ = Etot

n∑
η

Ψη(Qγ)|η⟩,

(2.19)

where we have assumed there are n electronic states. We represent the total molec-

ular wave function in the coupled picture as

Ψ(Qγ, q) =
n∑
η

Ψη(Qγ)|η⟩ (2.20)

This formulation of Schrödinger’s equation is more easily represented in matrix form− 1

2µ

 T 0

0 T

+

 V 11 V 12

V 12 V 22



 Ψ1

Ψ2

 = EtotI

 Ψ1

Ψ2

 , (2.21)
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where I is a 2x2 identity matrix. Here we have limited the system to two electronic

states for simplicity. Most of this work is motivated by finding approximate solutions

to Eq. (2.21).

2.3.2.3 Physical Boundary Conditions

The extension from Eq. 2.14 to multiple electronic states is straightforward.

The electronic state index η can be added to the expansion coefficients and the wave

function must satisfy boundary conditions appropriate to multi-state scattering.

lim
Rγ→∞

Ψ(Rγ, rγ) = ΨΓ(Rγ, rγ) =
a,c∑
γ

f η
va

∗(R̄a, r̄a)|η⟩δa,γ +
∑
η′

∑
vγ ′
Sη′,η
vγ ′,vaf

η′

vγ ′(R̄γ, r̄γ) |η′⟩


(2.22)

where f η
vγ is the asymptotic (A+BC or AB+C) wavefunction (the product of a plane

wave multiplied by a vibrational wave function for the diatomic in electronic state

η in arrangement γ,

fη
vγ = (kηγ)−1/2Ξη

γ(Rγ)χη
vγ (rγ). (2.23)

Inelastic or reactive scattering can occur to any energetically open, vibrational

level associated with any electronic state. The S matrix is doubly-indexed in the

electronic state, so that Sη′,η
vγ′ ,va

is the amplitude for a transition from the BC vibra-

tional state va in electronic state η to either the AB vibrational state vc
′ in the ABC

electronic state η′ or BC vibrational state va
′ in the ABC electronic state η′.

With the equations of motion and boundary conditions well defined we are
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now able to approximate the reaction dynamics for collinear reactive scattering. In

Chapter 3 we derive a novel finite element algorithm to simultaneously determine

the scattering amplitudes and the scattering wave function for both adiabatic and

nonadiabatic systems.

2.4 3D Atom-Diatom Reactive Scattering

In reality the triatomic system is not constrained to motion along a line. While

the collinear model of reactive scattering provides intuition to the nature of nona-

diabatic dynamics, one needs to account for all degrees of freedom using a three

dimensional model to achieve ‘chemically accurate’ results. Instead of a vibrational

state, the diatomic molecule is most accurately describe by a rotational-vibrational

(ro-vibrational) state. We use the notation (v,j) to identify the ro-vibrational state

where v is the vibrational quantum number and j is the rotational quantum num-

ber. Figures 2.3 and 2.4 show the MSJ coordinates and a schematic representation

of the possible energy exchanges in a fully three-dimensional atom-diatom reaction,

respectively.
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Figure 2.3: Representation of the bond coordinates, (uαβ, uβγ), and Jacobi Coordi-

nates, (R̄α, r̄βγ, θα), for collinear reactive scattering.
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2.4.1 Adiabatic Scattering

In this section we extend the results from collinear atom and diatom dynamics

to rotating systems. The Hamiltonian for the 3D problem can be written in terms

of any of the three arrangement MSJ coordinates. From [42] we have

H = − 1

2µ

[
1

Rγ

∂2

∂R2
γ

Rγ +
1

rγ

∂2

∂r2γ
rγ +

L2
γ

R2
γ

+
j2γ
r2γ

]
+ V γ

tot(Rγ, rγ, θγ) (γ = a, b, c).

(2.24)

The orbital angular momentum operator, Lγ, is the kinetic energy correspond-

ing to the lone atom orbiting the diatom, and the diatomic angular momentum op-

erator, jγ, is associated with the kinetic energy of the rotating diatomic. The total

angular momentum of the system is the sum of the orbital and angular momenta,

J = L + j.

2.4.1.1 Potential Energy Surface

In any arrangement we can write the potential energy surface from Eq. (2.24)

as a sum of two and three body terms

V γ
tot(Rγ, rγ, θγ) = E + Vγ(rγ) + V γ(Rγ, rγ, θγ)

At large values of Rγ we have

lim
Rγ≫1

V γ(Rγ, rγ, θγ) = 0.

As in the collinear case, in the limit of Rγ ≫ 1 the potential only depends on

the diatomic coordinate and the Hamiltonian given in Eq. (2.24) is asymptotically

separable.
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2.4.1.2 Schrödinger’s Equation

We limit the discussion in this section to cases with where the total angular

momentum is set to zero, i.e. J = 0. The unrestricted case has been covered in detail

in Ref [42]. Writing the time independent formulation of Schrödinger’s equation for

the 3 dimensional problem we have

HΨ(Rγ, rγ, θγ) = EtotΨ(Rγ, rγ, θγ). (2.25)

It is typical to expand the total wave function as a product of radial functions

and angular functions

Ψ(Rγ, rγ, θγ) =
∑
j=0

Gj(Rγ, rγ)Pj =
∑
j=0

gj(Rγ, rγ)

Rr
Pj′ , (2.26)

where Pj(cos θγ) is a Legendre polynomial associated with the jth rotational state of

the diatomic molecule in the γ arrangement. We can reduce the three dimensional

problem to a set of coupled equations in two dimensions by integrating over the

angular degrees of freedom,

∑
j,j′

∫
Pj′ [H − E]Pjgj(Rγ, rγ) = 0. (2.27)

Evaluation of this integral yields the following set of equations coupled equations

∑
j,j′

[
−∇2δj,j′ +

j(j + 1)

I(Rγ, rγ)
+ 2µ [Vj,j′(Rγ, rγ) − E]

]
gj(Rγ, rγ) = 0 (2.28)

where ∇ = ∂2Rγ +∂2rγ, I(Rγ, rγ) =
(

1
R2

γ
+ 1

r2γ

)
. The potential term will, in general,

couple all values of j,

Vj′j(Rγ, rγ) =
∫
Pj′V

γ
tot(Rγ, rγ, θγ)Pj sin θγ dθγ.
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We have used dV = Rγ
2rγ

2 sin θγdθγdRγdrγ as the volume element associated with

the Hamiltonian. We have also used the fact that the Legendre polynomials are

eigenfunctions of the total angular momentum operator. In the case of J = 0, the

angular momentum operators from Eq. (2.24) can be written as

L2

R2
γ

+
j2

r2γ
=

(J− j)2

R2
γ

+
j2

r2γ
=

j2

I(R, r)
(2.29)

and ∫
Pj′j

2Pj sin θγ dθγ = j(j + 1)δj,j′ . (2.30)

In practice the summations over j are truncated at some jmax such that all rovibra-

tional states have energy less than the total energy, Etot.

2.4.1.3 Physical Boundary Conditions

When the lone atom is asymptotically far away from the diatomic molecule in

a given arrangement, (large Rγ limit), we can separate the Hamiltonian (Eq. 2.24)

into atomic and diatomic terms

lim
Rγ≫1

H = H(Rγ) +H(rγ).

The Rγ dependent terms can be written as

H(Rγ) = − 1

2µ

[
∂2

∂R2
γ

+
j(j + 1)

R2
γ

]
. (2.31)

The wave function describing the motion of the lone atom must satisfy the following

formulation of Schrödinger’s equation

[H(Rγ) − Ecol] ρj(Rγ) = 0.
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This can be rewritten as

[
− ∂2

∂R2
γ

+
j(j + 1)

R2
γ

− k2
]
ρj(R) = 0,

where k =
√

2µEcol. Using the change of variables x = kRγ, we have

[
x2∂2x− j(j + 1) + x2

]
ρ̂j(x) = 0.

The solutions to this differential equation are the Riccati-Bessel functions,

ĵn(x) = xjn(x) =
√
πx/2 Jn+1/2(x)

and

ŷn(x) = −xyn(x) = −
√
πx/2 Yn+1/2(x).

We use the Ricatti-Hankel functions

ĥ(1,2)n (x) = xh = x[jn(x) ± iyn(x)],

whose asymptotic behavior appropriately describes the free atom,

lim
x≫1

ĥ(1,2)n (x) = (∓i)n+1 exp[±ix]. (2.32)

The r dependent Hamiltonian from Eq. 2.31 can be written

H(rγ) = − 1

2µ

[
∂2

∂r2γ
+
j(j + 1)

r2γ

]
+ Vγ(rγ).

Asymptotically, the diatomic wave function in the γ arrangement must satisfy

[
− 1

2µ
∂2rγ +

j(j + 1)

2µr2γ
+ Vβ,γ(rγ)

]
χvγ ,j(rγ) = εvγ ,jχvγ ,j(rγ). (2.33)

The solutions to Eq. 2.33 are the rotational-vibrational vibrational states, Xvγ ,j(rγ),

in the γ arrangement with vibrational quantum number vγ and rotational quantum

number jγ. In practice these are determined numerically.
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We can are free to take the asymptotic solution to be a linear combination of

products of Ricatti-Bessel functions and rovibrational states. Typically we set the

total energy of the reaction and fix the diatomic molecule in some initial rovibra-

tional state (vγ, jγ). We can then write Ecol = E − εvγ ,jγ .

The reactant channel has both an incoming and outgoing term, while the other

two channels have purely outgoing terms. For a system prepared with total energy

E, and the reactant diatomic, BC, initially in the rovibrational state (va, ja), the

boundary conditions can be written in terms of S-matrix elements, S
vγ ′,jγ ′

va,ja as

ΨΓ(Rγ, rγ, θγ) =
γ=a,b,c∑

γ

ĥ(2)ja (kva,jaRa)χva,ja(ra)δa,γ +
∑
j′γ

∑
vγ ′
ĥ
(1)
j′γ

(kvγ ′,j′γRγ)χ(vγ ′,j′γ)(rγ)S
vγ ′,jγ ′

va,ja

 .
(2.34)

The physical interpretation of these scattering boundary conditions for the

three dimensional problem correspond to the collision of A with BC in a particular

rovibrational state, (va, ja) with a fixed total energy, E. The collisions can redis-

tribute the energy of the reactants (inelastic collisions) and produce a new rovibra-

tional state in the reactant arrangement, (va
′, ja

′), with probability |Sva′,ja′

va,ja |2. The

collisions may also induce a reaction to one of two product channels, b: B+AC in

a product rovibrational state, (vb
′, jb

′) with probability |Svb
′,jb

′

va,ja |2 or c: C+AB in a

product rovibrational state, (vc
′, jc

′) with probability |Svc′,jc′

va,ja |2. Extremely high en-

ergy collisions may induce a triatomic breakup, but we will not consider such high

energy collisions here.

Ultimately, we are interested in chemically accurate predictions of the collision

dynamics of open shell, atom-diatom reactions, especially those which violate the BO
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approximation. The complexity of the equations of motion becomes less tractable

as we add the electronic state index and remove the J = 0 restriction.

2.5 Conclusion

In this chapter we have defined our system of interest, namely nonadiabatic

reactive collisions between an atom and diatomic molecule. We are interested in

approximating the reactive scattering wave function and the state-to-state reaction

probabilities as a function of the collisional energy. To this end, in the next chapter

we derive a novel extension of the finite element method applied to quantum reactive

scattering dynamics for nonadiabatic reactions.
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Chapter 3: Reactive Atom-Diatom Systems

and the Finite Element Method

3.1 Overview

Theoretical and computational advances have enabled the fully-quantum mod-

eling of elementary chemical reactions at a state-to-state level [74]. Time-independent

methods [6] can be used to investigate, in detail, quantum effects of reactive systems

such as resonances [75] and nonadiabatic transitions [63] in triatomic (atom and di-

atomic molecule) reactions. Time-dependent methods [74, 76–78] have enabled the

state-to-state study of four-atom reactions in all degrees of freedom [79–81] and,

just recently, the study of a 6-atom reaction, [82] albeit in reduced dimensionality.

These sophisticated methods allow the determination of state-resolved differ-

ential and integral cross sections. This involves calculation of the S-matrix which

arises in the imposition of physical scattering boundary conditions. Despite the

vast attention given to the development of computational machinery for the deter-

mination of the S-matrix, there has been little attention devoted to developing a

qualitative quantum picture of the mechanism of reactive scattering.

Most of our understanding of reaction dynamics is based on the standard
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one-dimensional models of passage over, or through, a barrier. In two dimensions,

qualitative pictures of chemical reactions are common, [83–85] but based on classical

trajectories. Time-dependent treatments, in which the evolution of a wave packet

is followed in time, can provide quantum insight into a reaction as it unfolds. A

beautiful illustration for the H+H2 reaction is presented in the review article by

Althorpe and Clary, [74] although other examples are rare. One disadvantage of

the time-dependent method is that the evolving wave packet is a convolution over a

large number of energies so that watching the wave packet move in time gives little

insight into the dynamics at a particular energy.

A time-independent approach can yield an energy-resolved picture, specifically

within the hydrodynamic interpretation of quantum mechanics. Here, the proba-

bility density |Ψ|2 is seen as an inhomogeneous fluid [86]. The flow of this fluid is

described by the probability current density field J.

J(q) =
−ih̄
2m

[Ψ(q)∇Ψ∗(q) − [∇ψ(q)]ψ∗(q)] (3.1)

There are obvious analogies to the flow of fluids or electricity. Of course, due to

the uncertainty principle, energy resolution is achieved only at the loss of temporal

information.

In early work, Hirschfelder and co-workers explored the coordinate dependence

of the probability current density field for model two-dimensional reactive potential

energy surfaces [20, 87]. They identified, as might be expected in a hydrodynamic

pictures, vortices and eddies, which varied as a function of the collision energy
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and the curvature of the potential. Kuppermann and co-workers, in work largely

unpublished, [21,88] determined the probability current density field for the collinear

H+H2 reaction. Wyatt and co-workers have investigated the probability current

density field for the H+H2 and F+H2 reactions, using both time-dependent (H+H2)

and time-independent (F+H2) methods. [22–24,89]

Manolopoulos, Alexander and co-workers have presented techniques for the

calculation of the probability current density field in inelastic scattering, [26, 90]

and in molecular photodissociation [25, 91–94]. In their subsequent analysis of the

photodissociation of the HBr molecule, Péoux and co-workers have compared the

time-independent viewpoint, in which the evolution of the probability current den-

sity field is followed in space, with the time-dependent viewpoint, in which the

evolution of the wave packet is followed in time [95].

The time-independent treatment of quantum reactive scattering dates back

nearly 40 years [96–98]. The vast majority of these treatments [98–100] involve

finite-difference based [101] numerical solutions of the Schrödinger equation for a

given set of physical scattering boundary conditions. Because of numerical stability

issues, one does not solve for the wave function directly, but rather for its logarithmic

derivative [6,102,103] or, in the renormalized Numerov method, [104,105] the ratio

of the wave function at one point to its value at a previous point.

Consequently, to determine the probability and the probability current density

field one must store the log-derivative matrix at each step (or, alternatively, the wave

function ratio), determine the S-matrix, and, finally, extract the scattering wave

function from the S-matrix and the stored set of log-derivative matrices. Similarly,
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in a time-dependent treatment post-processing is required to obtain the scattering

wave function at given collision energy by Fourier transform of the wave packet.

In contrast to propagation and time-dependent methods, basis set methods

solve directly for the scattering wave function, and are thus an important tool for

the dynamicist. Specifically, the S-matrix version of the Hulthén-Kohn variational

principle of Miller and Zhang [106–108] has been the standard in variational scatter-

ing calculations. Jaquet and others [109, 109, 110] implemented this approach with

a finite element (FE) basis.

Here we describe an alternative FE approach to determine simultaneously a

piece-wise approximation to the scattering wave function and the S-matrix itself.

In the FE treatment of Askar, Cakmak, and Rabitz [18] and Jaquet [111] the wave

function on the reactant and product boundaries is fixed to a given vibrational state.

One must solve an FE linear matrix problem for each of these pre-imposed boundary

conditions, then taking linear combinations to correspond to the scattering boundary

conditions. In our version we determine one or more columns of the S-matrix from

a single calculation.

There have been relative few applications of the FE method to reactive scat-

tering [18, 111–118]. In their initial paper, Askar, Cakmak and Rabitz [18] point

out the advantages of the FE approach over the more widely used propagator meth-

ods [98–100]. First, one can use a single set of coordinates, which eliminates the

need to match different coordinate systems asymptotically. Secondly, FE methods

can easily handle the irregular angled domains of reactive scattering. Thirdly, the

scattering wave function is generated directly, at no extra cost. Finally, compared
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to traditional propagator methods, [98–100] the FE method involves larger, but ex-

tremely sparse matrices. This allows the use of extremely efficient sparse-matrix

solvers, of which MATLAB takes complete advantage.

We have developed a MATLAB-based code, which takes advantage of the

ease and sophistication of this widely-used computational package, as well as the

availability of third-party scripts. Our code is available online [119]. This can be a

tool to conceptualize the quantum character of chemical reactions in more than one

dimension. Through plots of the probability current density field one can visualize

quantum tunneling, recrossing of the transition state, and quantum vortices.

In Secion 3.2 we first work through the application of the finite element method

to bound state, collinear atom-diatom systems. This is a natural starting place as

the boundary conditions (that the wave function vanish asymptotically) are the

easiest to enforce. We then derive our novel extension of the FE machinery to

reactive collisions of collinear atom-diatom systems evolving on a single potential

surface in Section 3.3. In this Section we also compare our algorithm with the FE

algorithm developed previously [18] and provide evidence that our results match

those from other methods for the well studied H+H2, F+H2 and F+HCl reactions.

In Section 3.4 we remove the single surface constraint and extend our algorithm

to nonadiabatic, collinear, atom-diatom systems. Finally, in Section 2.4 we focus

on how this FE algorithm can be used for bound, 3D atom-diatom systems. We

conclude this chapter with our thoughts on how one might apply this algorithm to

reactive fully 3D, rotating, atom-diatom systems.
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3.2 Collinear Bound Systems

In this section we outline the application of the finite element method to

approximate the bound state wave functions and energies for collinear atom-diatom

systems.

3.2.1 Weak Formulation of Schrödinger’s Equation

We first outline a general variational approach to boundary value problems

(BVP) before application to reactive scattering. The two-dimensional Schrödinger

equation from Eq. (2.10), in atomic units we have

[
−∇2 + 2m(V − E)

]
Ψ = 0 on Ω (3.2)

and

Ψ = 0 on Γ, (3.3)

where Ω is the relevant physical domain and Γ is the boundary to this domain. Note

we have assumed the wave function vanishes along the boundary.

By premultiplying the differential Eq. (3.2) by any arbitrary function, ξ (this

is conventionally labelled a “test” function), and integrating over the domain we

obtain ∫
Ω
ξ
[
−∇2 + 2m(V − E)

]
Ψ = 0 (3.4)

We can now apply Green’s formula – integration by parts in more than one

dimension – to the first term in Eq. (3.4) to obtain

−
∫
Ω
ξ∇2Ψ =

∫
Ω
∇ξ · ∇Ψ −

∫
Γ
ξ(n̂ · ∇)Ψ (3.5)
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where n̂ · ∇ is the derivative normal to the boundary Γ. Substitution of Eq. (3.5)

into Eq. (3.4) yields the variational formulation of Eq. (3.23), namely

∫
Ω
∇ξ · ∇Ψ + 2mξ (V − E)Ψ =

∫
Γ
ξ (n̂ · ∇)ΨΓ (3.6)

where we have explicitly used Eq. (3.24).

Borrowing notation from the finite element community, we introduce the bi-

linear form [101], or energy inner product [120],

a(ξ,Ψ) =
∫
Ω
∇ξ · ∇Ψ + 2mξ(V − E)Ψ (3.7)

and defining the boundary integral

b(ξ,ΨΓ) =
∫
Γ
ξ(n̂ · ∇)ΨΓ (3.8)

we can write the original BVP [Eq. (3.23)] more compactly as

a(ξ,Ψ) = b(ξ,ΨΓ). (3.9)

Equation (3.9) is entirely general for any system that can be described by the

time-independent Schrödinger equation. Note that this transformation underlies the

Kohn (and other) variational methods [42,121,122].

3.2.2 Finite-Element Solution

To obtain an approximate solution of Eq. (3.9) we first discretize the domain

into a finite, triangulated domain, Ω, defined by N nodes (vertices) and delimited by

a polygonal boundary, Γ. The desired approximation is then typically represented as
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a piece-wise function on this triangulation. In this work we use piece-wise Galerkin-

type polynomials for simplicity. The triangulation procedure for the first three

polynomial order, P , are shown in Fig. 3.1.

Figure 3.1: Model triangulations for the unit square [-1 1]x[-1 1] for the first

three polynomial orders. (left) For unique piece-wise linear polynomials (P = 1)

the triangulation must be defined at three points for every triangle. These three

points are taken to be the nodes (vertices) of each triangle shown as black dots.

(center) For unique piece-wise quadratic polynomials (P = 2) the triangulation

must be defined at 6 points per triangle. It is typical to add the midpoint of each

edge for every triangle, shown here in blue. The shaded region is used to model

the Galerkin polynomials in Fig. 3.2. (right) Finally, for unique piece-wise cubic

polynomials (P = 3) the triangulation must contain 10 points per triangle. The

common placement of these nodes is shown in red.

We then expand the solution Ψ in a set of basis functions:

Ψ ≈
N∑
i=1

Ci Φi, (3.10)

where Φi is a piece-wise polynomial associated with the ith node.

Φi(R, r) =
ni∑
j=1

ϕij(R, r) (3.11)
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Here {R, r} designate two spatial coordinates and the j index refers to one of the ni

triangles associated with node i (in two dimensions usually ni = 6). Above the jth

triangle, the function ϕij is a bivariate polynomial of order P , which we can write

as

ϕij(R, r) =
k+l≤P∑

k,l

cij,klR
k rl. (3.12)

These so-called “hat” functions have a value of unity at node i and are zero at all

other nodes [120].

The simplest approximation involves limiting the polynomial order to P = 1,

in which case the nodes are the vertices of the triangles. The functions ϕij(R, r) are

planes, so that the resulting polynomial basis function Φi [Eq. (3.11)] is a planar,

polygonal (usually hexagonal) pyramid, which is unity at node i and vanishes at

each of the nearest-neighbor nodes.

For P = 2 the nodes are defined by both the vertices of the triangles, and,

in addition, the mid-points of each side of every triangle. This gives rise to two

types of hat functions (illustrated in Fig. 3.2): those which are unity at a vertex

and those which are unity at a mid-point. In the present description we focus on

the P2 basis for clarity, but all of the following results hold for any polynomial order

N. Furthermore, the provided software takes the polynomial order N as an input

and automatically prepares the calculation allowing the user to efficiently tune the

accuracy of a given calculation.

The P = 2 hat functions for triangle j are obtained by solution of the equation

XC = 1, (3.13)
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Figure 3.2: Polynomial basis functions along the boundary for the sample triangu-

lation shown in Fig. 3.1. The red numbers denote the triangle numbering scheme,

and the black numbers denote the nodal numbering scheme. The black lines in the

upper panel are the projections of the Φi functions along the boundary. These 1D

functions are shown separately in the lower panel. The filled dots indicate a vertex

node, and the empty dots indicate a midpoint node. As the center panel reveals,

not all ϕij functions contribute to ΦΓ
j .

where the dimension of the X matrix is 6 × 6, with the row indices corresponding

to the points (vertices and mid-points) and the column indices corresponding to the

double kl index in Eq. (3.12), so that

Xi,m=1:6 = [R2
i , Riri, r

2
i , Ri, ri, 1].

Thus the row index of the C matrix corresponds to the kl indices while the column
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index corresponds to j.

The hat functions which are unity above the vertex nodes are a composite of,

in general, ni = 6 bivariate quadratic functions, from Eq. (3.11), one above each

triangle. In contrast, any midpoint node is shared by at most two triangles. Thus

the P = 2 hat functions which are unity at a midpoint node are a composite of

at most two bivariate quadratic functions above the two triangles which share this

midpoint, so that ni = 2 in Eq. (3.11). In both cases the hat functions are piece-

wise continuous along the common sides of any two triangles which share either the

vertex or the midpoint.

Obviously, one can adopt more sophisticated ways of choosing both the trian-

gularization algorithm and the basis functions in Eq. (3.10) with the goal of maxi-

mizing accuracy for a given domain Ω while minimizing the number of nodes. (One

choice which comes to mind is the use of Lobatto shape functions [123]). For the

present two-dimensional application, the P = 2 basis functions defined above offer

an excellent compromise between simplicity, accuracy, and computational speed.

By expanding the wave function in a sum of basis functions, we convert

Eq. (3.9) into a matrix equation. We start by replacing the true wave function

in the bilinear form with the basis function expansion, and replacing the test func-

tion, ξ, by a single basis function, Φj, which yields

a(Φj,
∑
i

CiΦi) =
∑
i

Ci a(Φj,Φi) = b(Φj,ΨΓ). (3.14)

This can be cast as a matrix equation

AC = 0. (3.15)
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Where we have assumed, that for a bound-state problem, the wave function

vanishes along the boundary, Γ, so that Eq. (3.15) reduces to the standard set

of homogeneous linear equations. In the following section we give the numerical

details for how to compute the matrix elements of A using the bilinear form and

the Galerkin polynomials.

3.2.3 FE Matrix Integrals

In this section we briefly outline the numerical evaluation of the integrals that

constitute the elements of the A matrix in Eq. (3.15). We start with the bilinear

form between two Φ basis functions, namely (written in MSJ coordinates)

Aij = a(Φi,Φj) =
∫
Ω
∇Φi · ∇Φj dRdr + 2µ

[∫
Ω

Φi V Φj dRdr −
∫
Ω

Φi Φj dRdr
]
.

(3.16)

The evaluation of these integrals is simplified using the bivariate polynomials

from Eq. (3.12)

Aij =
∑
k,l

∫
Ω
δkl∇ϕik · ∇ϕjl dRdr + 2µ

[∫
Ω
δklϕik V ϕjl dRdr − E

∫
Ω
δklϕik ϕjl dRdr

]
= Tij + 2µ [Vij − EOij] . (3.17)

The delta function, δkl, is the source of the sparsity in the FE calculation. The

major advantage of the FE method is that any single basis function has a non-zero

overlap with a tiny subset of the total set of functions in Ω, specifically only for nodes

which share a common triangle, i.e. k = l. For P = 2 calculations, a typical node

has non-zero overlap with 19 other nodes. As we shall see, this extreme sparseness

dramatically reduces the required computational time.
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Rather than use MSJ Jacobi coordinates to evaluate the elements of the T,

V, and O matrices, we first transform to a “standard” triangle, with coordinates

designated (x, y) and vertices (0,0), (0,1), and (1,0). To convert the integrals in

Eq. (3.17) from MSJ coordinates to standard triangle coordinates we need to we

need to define, in standard triangle coordinates, the basis functions ϕik(R, r), the

gradient operator and the area element dRdr.

For a given triangle k with vertices (R1, r1), (R2, r2), and (R3, r3) the trans-

formation to the standard triangle is Rk

rk

 = M

 x

y

+

 R1

r1

 , (3.18)

where

M =

 R2 −R1 R3 −R1

r2 − r1 r3 − r1

 .
This transformation will allow us to express the basis functions in terms of the

basis functions for the standard triangle. These are (for P = 2)

ϕij(x, y) = c20x
2 + c11xy + c02y

2 + c10x+ c01y + c00,

where we have suppressed the ij labels in Eq. (3.12) and the coefficients, obtained

from Eq. (3.13), for nodes i = 1 − 6 are listed in Table 3.1. These functions are

unity, successively, at the 6 nodes (vertices and edge mid-points) of the standard

triangle, ordered as (0,0), (1,0), (0,1), (1/2,1/2), (1/2,0) and (0,1/2). It is easy to

verify that these polynomials vanish at all other nodes.
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Table 3.1: Expansion coefficients for the P = 2 (quadratic) basis functions, ϕij, for

the standard triangle.

j non-zero node c20 c11 c02 c10 c01 c00

1 (0,0) 2 4 2 –3 –3 1

2 (1,0) 2 0 0 –1 0 0

3 (0,1) 0 0 2 0 –1 0

4 (1/2,0) –4 –4 0 4 0 0

5 (1/2,1/2) 0 4 0 0 0 0

6 (0,1/2) 0 –4 –4 0 4 0

The gradient operator transforms as

∇Rr = (M−1)T∇xy

and the unit area as

dRdr = det(M) dxdy.

Over any given triangle we can also expand the potential in terms of the six

P = 2 basis functions, with expansion coefficients equal to the value of the potential

at the vertex or midpoint at which the particular basis function is non-vanishing.

In other words, over triangle k

Vk(R, r) ∼=
6∑

n=1

V (Rn, rn)ϕnk(R, r) =
6∑

n=1

Vn ϕnk(R, r), (3.19)

where V (Rn, rn) = Vn is the value of the potential at the nth node. The elements

of the T, V and O matrices can now be computed by transformation to standard
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triangle coordinates

Tij =
Nij∑
k

det(Mk)
∫
tk

[
(M−1

k )T∇xyϕik(x, y)
]
·
[
(M−1

k )T∇xyϕjk(x, y)
]
dxdy, (3.20)

and

Oij =
Nij∑
k

det(Mk)
∫
tk

ϕik(x, y)ϕjk(x, y) dxdy, (3.21)

and

Vij =
Nij∑
k

6∑
n=1

V (Rn, rn) det(Mk)
∫
tk

ϕik(x, y)ϕnk(x, y)ϕjk(x, y) dxdy. (3.22)

Here, the outer sum runs over all the Nij triangles which contain both nodes

i and j. For P = 2 there are 36 possible integrals (62) in the expressions for the

matrix elements of T and O and 216 (63) possible integrals for the V matrix. For

each matrix the number of distinct integrals is reduced by symmetry. Askar and

co-workers [18] report the values of these integrals, which are identical to those

calculated in the present work. Because Askar and co-workers use an oblique co-

ordinate system to describe the standard triangle instead of cartesian coordinates,

the gradient operator has a different transformation. Consequently, the elements of

the T matrix in the work of Askar et al. must be transformed to match the values

calculated in the present work.

The elements of the T, V and O matrices need be computed only once, and

can be stored and reused in scattering calculations at different total energies. The

only input that is required to determine these matrices is the N×2 matrix containing

the node locations in MSJ coordinates and the N×1 vector containing the values of

the potential at these nodes. Furthermore, given MATLAB’s native sparse matrix
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handling and vectorization capabilities, these matrices to be built anew for each

problem with little computational cost.

More details of these calculations are available in the software reference for

COLSCAT available on the web [119]. With the numerical form of the A matrix in

hand the bound state wave functions and their energies are trivial to compute. The

system of equations AC = 0 is solved by invoking the ‘́(backslash) matrix operator

in MATLAB. Given the sparse nature of the A matrix the bound states are found

very quickly, even for very large (N > 100K) mesh sizes. In the following section

we extend this result to systems with nonzero boundary conditions.

3.3 Collinear Adiabatic Scattering

The bound state problem is relatively easy because the molecular wave func-

tion must vanish asymptotically. The reactive scattering problem is less straight-

forward as the form of the molecular wave function must asymptotically match the

physical scattering boundary conditions described in Chapter 2. In each case the

physical boundary conditions contain a linear combination of the scattering am-

plitudes, which are not known a priori. In this section we derive our novel FE

algorithm to solve the reactive scattering problem for collinear reactions. Unlike

previous applications of the FE method to reactive scattering our algorithm solves

for both the scattering amplitudes and scattering wave function simultaneously. We

conclude this section with a discussion comparing our algorithm with the previous

implementation.
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3.3.1 Reactive Scattering Domain

The domain, Ω, for a reaction scattering problem is broken up into three

sections; the reactant channel (γ = a) where atom A is far from diatom BC (Ra ≫

1), the product channel (γ = c) where atom C is far from diatom AB (Rc ≫ 1) and

the interaction region where the three atoms are close to one another. Figure 3.3

shows a representative reactive scattering domain of the H+H2 reaction.

The scattering domain, Ω, is also defined by its boundary Γ. For a collinear

reaction this boundary, like the domain, is also broken into three sections; the

reactant boundary, Γa where the boundary conditions include an incoming term

and outgoing terms, the product boundary, Γc where the boundary conditions only

contain outgoing terms, and the remaining portion of the boundary where we assume

the wave function is zero.

The assumption that the wave function is zero along all other boundaries

to the scattering domain is a constraint on the value of the potential along the

boundary. For values of small enough values of rγ and Rγ this is naturally the case,

the potential becomes exponentially large when atoms get ‘too’ close. When both rγ

and Rγ become large we enter the triatomic breakup regime. In this work we will not

explicitly treat the triatomic breakup regime, instead we consider collision energies

‘low enough’ that the wave function does enter the region of triatomic breakup.

There is a bit of art required to balance the number of nodal points and and the

value of the potential along Γ when constructing the domain and triangulation for

a given system.

52



1 2 3 4 5

1

2

3

4

5
Γc

Γa

Γ

Ω

0.190.431.36

u
ab

u
b
c

1 2 3 4 5 6

1

2

3

4

5

6

r
c

R
c

α

r a

R
a

Figure 3.3: The domain for the symmetric, collinear H+H2 →H2+H reaction shown

in bond coordinates (upper panel) and MSJ coordinates (lower panel). Distances in

bohr. The reactant boundary, Γa, is shown in red, and the product boundary, Γc, in

blue. The skew angle, α, is also shown. Some energy contours (in eV) of the HHH

PES are shown in both figures; the zero of energy corresponds to H+H2(r = re).
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3.3.2 Finite Element Solution

In the case of reactive scattering we solve the same formulation of Schrödinger’s

equation with the reactive scattering boundary conditions. The problem we would

like to solve can be written as

[
−∇2 + 2m(V − E)

]
Ψ = 0 on Ω (3.23)

and

Ψ = ΨΓ on Γ, (3.24)

where ΨΓ is given in Eq. (2.14).

In the previous section we developed the weak formulation of this problem.

Because the wave function is exactly zero along the boundary for a bound state

wave function we had b(ξ,ΨΓ) = 0. Instead we can substitute the reactive scattering

boundary conditions for ΨΓ from Eq. (2.14) into Eq. (3.15). This gives

∑
i

Ci a(Φj,Φi) = b(Φj,ΨΓ)

= b(Φj,ΨΓa) + b(Φj,ΨΓc)

= b(Φj, f
∗
va) + b(Φj,

Na∑
va′=0

fva′Sva′,va) + b(Φj,
Nc∑

vc′=0

fvc′ Svc′,va)

= b(Φj, f
∗
va) +

Na∑
va′=0

Sva′,va b(Φj, fva′) +
Nc∑

vc′=0

Svc′,va b(Φj, fvc′),(3.25)

where Γa, and Γc channels are the asymptotic reactive scattering boundary condi-

tions for the reactant and product channels. These can be written as

ΨΓa = f ∗
va(R̄a, r̄a) +

Na∑
va′=0

fva′(R̄a, r̄a)Sva′,va
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and

ΨΓc =
Nc∑

vc′=0

fvc′(R̄c, r̄c)Svc′,va .

Equation (3.25) can be recast as the matrix equation

AC = b + BaSa + BcSc. (3.26)

From Eq. (3.17) A is the N×N bilinear matrix, with elements Aij = a(Φj,Φi),

C is a N×1 column vector containing the expansion coefficients at each of the nodes,

[from Eq. (3.10)], b is a N × 1 column vector with elements (b)j = b(Φj, f
∗
va), Bγ is

an N ×Nγ matrix with elements (Bγ)jvγ ′ = b(Φj, fvγ ′). Here, Nγ is the number of

vibrational levels included in the γ arrangement. Thus, in terms of the maximum

vibrational levels Na and Nc defined in Eq. (2.14), we have Nγ = Nγ + 1. Finally,

Sγ is an Nγ × 1 column vector containing the inelastic, γ = a, and reactive, γ = c,

scattering amplitudes corresponding to an incoming wave in arrangement a in state

v=va.

To solve for C, Sa and Sc simultaneously we create a single vector of unknowns

by concatenating C, Sa and Sc. This vector satisfies the linear equation

[
A −Ba −Bc

]


C

Sa

Sc


= b (3.27)

This is a set of N equations in N+Na+Nc unknowns, and is hence underdetermined.

We can remove this indeterminacy by introducing explicity the boundary conditions

contained in Eqs. (2.14). These relate the wave function at all points along the
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boundaries Γa and Γc to expressions containing the Sγ vectors. Let NΓa and NΓc be

the number of nodes along Γa and Γc, respectively. The terms along the reactant

boundary Γa from Eq. (2.14) can be written compactly as

[
Ia Fa 0a

]


C

Sa

Sc


= f (3.28)

Here Ia is a unit-like matrix of dimension NΓa ×N . The row index of Ia corresponds

to the NΓa nodes which lie on Γa while the column index corresponds to all the

nodes. All elements of Ia are zero except for the columns which correspond to nodes

which lie on the boundary Γa.

For the NΓa ×Na matrix Fa the row index corresponds to the nodes which lie

on Γa while the column index corresponds to the vibrational states of the diatomic

moiety in the reactant arrangement.The elements of Fa are

(Fa)iva′ = fva′(R̄ai, r̄ai) = k
−1/2
va′ exp(ikva′R̄ai)χva′(r̄ai).

Also, 0 designates an Na ×Nc nul matrix. The elements of the Na × 1 vector f on

the r.h.s. of Eq. (3.28) are

(f)i = k−1/2
va exp(−ikvaR̄ai)χva(r̄ai).

We can similarly express the boundary conditions along Γc as

[
Ic 0T Fc

]


C

Sa

Sc


= 0c (3.29)
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Here Ic is a unit-like matrix of dimension NΓc × N , defined similarly to Ia except

that the non-zero elements correspond to nodes which lie on the boundary Γc. The

NΓc × Nc matrix Fc is similar to Fa except that the row index corresponds to the

NΓc nodes which lie on Γc while the column index corresponds to the vibrational

states of the diatomic moiety in the product arrangement. Thus the elements of Fc

are

(Fc)ivc′ = fvc′(R̄ci, r̄ci) = k
−1/2
vc′ exp(ikvc′R̄ci)χvc′(r̄ci).

Equations (3.27), (3.28) and (3.29) can be combined as

A −Ba −Bc

Ia −Fa 0

Ic 0T −Fc





C

Sa

Sc


=



b

f

0c


. (3.30)

This is a set of (N+NΓa +NΓc) equations in (N+Na+Nc) unknowns. Provided that

the number of nodes along the boundaries are greater than or equal to the number

of energetically accessible BC and AB vibrational states, this set of equations is

overdetermined. In practice we ensure that Na + Nc = NΓa + NΓc by using every

vibrational state state on both boundaries, where there is one vibrational state on

each boundary for each nodal point on that boundary.

The additional equations reflect a linear dependency, because the coefficients

of the basis functions along the Γa and Γc boundaries are constrained by Eq. (3.25)

to be a linear combination of a smaller number of vibrational functions multiplied by

incoming or outgoing waves. Consequently, Eq. (3.30) will have a unique solution,

yielding, in one shot, both the scattering wave function as well as one column of the

inelastic and reactive S-matrix.
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If we include as many vibrational levels as points on the boundary, then

Eq. (3.30) becomes uniquely determined, with the number of unknowns equal to

the number of equations. This can be achieved easily by the addition of “closed”

(energetically inaccessible) vibrational states. The 1D FE calculation of the vibra-

tional functions returns one vibrational state per boundary point, so this is feasible.

Since the size of the calculation depends on the size of the much larger A matrix

in Eq. (3.30), inclusion of energetically closed states does not slow down the calcu-

lation. We also find no loss in numerical stability after including the energetically

closed states because the exponential term in Eq. (2.15) is real valued and very

small for these closed states. Accordingly, for well-defined domains the scattering

amplitudes for energetically closed states are exactly zero.

Furthermore, we can add additional columns to the r.h.s. of Eq. (3.30) corre-

sponding to different choices of the initially populated vibrational level va. Solving

this larger system allows the determination of multiple columns of, or even the full,

S-matrix without a significant increase in computational overhead.

3.3.3 Boundary Integrals

In this section we describe the procedure for evaluating the boundary integrals

that appear in Eq. (3.25). Making use of Eq. (3.8) to expand these integrals, we

have

b(Φj, fvγ ) =
∫
Γγ

Φj n̂ · ∇fvγ , (3.31)
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where γ ≡ a/c for the reactant/product boundary. Since the normal derivative is

perpendicular to the boundary, n̂ · ∇ = ∂/∂Rγ. Substituting this partial derivative

for the gradient in Eq. (3.31) and using the definition of fvγ in Eq. (2.15), we find

b(Φj, fvγ ) =
∫

Φj(R, r)
∂

∂Rγ

[
k−1/2
vγ exp(ikvγ R̄γ)χvγ (r̄γ)

]
drγ, (3.32)

where we have replaced the integral over Γγ with an integral over rγ because Rγ

is constant along the Γγ boundary. Since fvγ is defined in standard Jacobi coordi-

nates, we can use the definition of the MSJ coordinates, Eq. (2.3), to evaluate the

derivatives occurring in Eq. (3.32), obtaining

b(Φj, fvγ ) =
1

λγ
kvγ

1/2 exp(ikvγ R̄γ)
∫

Φj(R, r)χvγ (r̄γ) drγ. (3.33)

Changing to an integral over r̄γ [Eq. (2.3)] adds another factor of 1/λγ

b(Φj, fvγ ) =
1

λγ
2 kvγ

1/2 exp(ikvγ R̄γ)
∫

Φj(R̄, r̄)χvγ (r̄γ) dr̄γ, (3.34)

where we have expressed the basis functions in terms of the unscaled Jacobi coordi-

nates. The integration follows the γ = a or γ = c boundary. The only non-vanishing

integrals are those which include nodes that are unity at one of the nodes along the

boundary. As can be seen in Fig. 3.2, in this 1D projection, there is one basis func-

tion per node along the boundary. For P = 2 these 1D basis functions span either

one or two triangles. We can write the 1D projections as follows

Φj(R̄γ, r̄γ) = ΦΓ
j (r̄γ) =

nΓ
j∑

k=1

ϕΓ
jk(r̄γ), (3.35)

where nΓ
j is either 1 or 2.
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We use a similar 1D, P = 2 FE method to obtain the vibrational wave functions

along either γa or γc, which are solutions to Eq. (2.13). Thus

χvγ (r̄γ) ≈
Nγ∑
k=1

gvk ΦΓ
k (r̄γ). (3.36)

Here the gvl coefficients are just the values of the χv vibrational function at each

node (either vertex or midpoint) along the boundary. Consequently, the boundary

integrals are

b(Φj, fvγ ) = 1
λγ

2 kvγ
1/2 exp(ikvγ R̄γ)

∑nΓ
k

k=1 gvk
∫

ΦΓ
j (r̄γ) ΦΓ

k (r̄γ) dr̄γ (3.37)

= 1
λγ

2 kvγ
1/2 exp(ikvγ R̄γ) (OΓ G)jv, (3.38)

where the the (j, vα + 1)th element of the Nγ × Nγ matrix G is the value of the

vibrational function χvγ (r̄γ) at node j along the boundary and OΓ is the Nγ × Nγ

boundary overlap matrix, [the 1D counterpart to O, in Eq. (3.21)]. The matrix OΓ

is also used in the 1D FE approximation to the vibrational functions themselves in

Eq. (2.13). In practice the wave functions and the boundary integrals are computed

at the same time, and then stored.

3.3.4 Comparison with Earlier FE Implementation

In previous applications of the FE method to reactive scattering, [18,111–118]

the boundary conditions are fixed to a pure vibrational state. That is, the wave

function along the reactant boundary is fixed to specified values of va=vc = 0.

Na + Nc linearly independent pairs of such artificial boundary conditions are used

to generate standing waves in the scattering region. These standing waves and
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their directional derivatives normal to the reactant and product boundaries are

then projected into the set of vibrational boundary functions. Askar [18] gives a

relationship between these projections and the (Na +Nc) × (Na +Nc) S-matrix.

A complexity in the numerical solution of scattering problems is that the

behavior of the wave function on the boundary is not known in advance. In Section

3.3.2, we have shown how a FE solution of the Schrödinger Equation can be extended

to include determination of both the value of the wave function at each grid point

and the column of the S matrix corresponding to incoming flux in vibrational level

v.

It is conceptually simpler to impose in advance a particular form for the wave

function on Γa and Γc and then solve the Schrödinger’s Equation. For example, we

could require that the wave function vanish on Γc and, on Γa, be equal to a constant

multiple of a particular χv(r) vibrational wave function. We could impose a set of

such initial conditions, sufficient in size to generate a set of linearly independent

solutions to Schrödinger’s Equation. Then, we could chose a linear combination of

these independent solutions to satisfy the physical scattering boundary conditions.

From this linear combination, we can determine the S matrix, as in the propagator

(finite-difference) based solution of the time-idependent scattering equations [98].

In this Section we present an alternative, concise discussion of this procedure, which

was introduced by Askar et al., [18] and used in subsequent FE treatments [111–118].

We assume that the boundaries Γa and Γc are located sufficiently far into the

reactant and product arrangements that the three body term in the PES vanishes,

Eq. (2.11). Then, in analogy with Eq. (2.14), along the boundaries Γa and Γc any
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solution to Schrödinger’s Equation, i.e. Ξ(R, r), will be a linear combination of the

energetically open BC or AB vibrational states, namely

lim
{Ra,ra}→Γa

Ξ(R, r) =
Na∑
v=0

tva(R̄a)χva(r̄a) (3.39)

and

lim
{Rc,rc}→Γc

Ξ(R, r) =
Nc∑
v′=0

tv′c(R̄c)χv′c(r̄c). (3.40)

For simplicity, we can replace these two equations by a single equation

lim
{R,r}→Γ

Ξ(R, r) =
Nv∑
v=1

tv(R̄)χv(r̄). (3.41)

Here we use a single index v, with the understanding that the limit is evaluated

on either the reactant or product boundaries and that 1 ≤ m ≤ Na refers to the

vibrational levels of the BC moiety and Na + 1 ≤ m ≤ Nv refers to the vibrational

levels of the AB moiety. As before Nv is the total number of open vibrational levels

in both the reactant and product arrangements.

There will exist in general 2Nv linearly independent solutions of Schrödinger’s

equation. Of these, only Nv will have the proper exponentially decreasing depen-

dence on R as the distance becomes small. Let us designate the behavior on the

boundaries Γa and Γc of this set of Nv linearly-independent solutions as the square

matrix ΞΓ(r) of size Nv × Nv. Each row corresponds to the index v in Eq. (3.41)

while each column corresponds to a particular linearly-independent solution. In

matrix notation, Eq. (3.41) is

lim
{R,r}→Γ

Ξ ≡ Ξ(r)|Γ = χ(r̄)T(R̄). (3.42)
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Here T is a square Nv ×Nv matrix each column of which corresponds to the coeffi-

cients defined in Eq. (3.41). Since R̄a (or R̄c) have fixed values along the boundaries

Γa (Γc), the T matrix is a set of constants. Also χ(r) is a diagonal Nv × Nv ma-

trix with elements (note that these diagonal elements are functions, rather than

numbers)

[χ(r̄)]mn = δmnχm(r̄). (3.43)

Again, we understand that the first Na rows of matrix Equation (3.42) correspond

to the behavior on the reactant boundary Γa while rows Na + 1, . . . , Nv correspond

to the behavior on the product boundary.

Askar et al. [18] and subsequent practitioners [111–118] preselect a set of lin-

early independent solutions by a particular choice of the matrix T that is real and

non-singular with elements either 0 or ±1 and with real eigenvalues. Each column

of T corresponds to a particular preselected choice of boundary conditions.

The normal derivative on the boundaries Γa and Γc is proportional to either

∂/∂R̄a or ∂/∂R̄c. Since the vibrational functions χ depend only on ra or rc, the

normal derivative of the set of linearly-independent solutions is [from Eq. (3.39)]

lim
{Ra,ra}→Γa

n̂ · ∇Ξ(R, r) =
Na∑
v=0

dtva(R̄a)

dR̄a

χva(ra), (3.44)

and, similarly along Γc. Combining the two boundaries, in matrix notation we have

lim
{R,r}→Γ

n̂ · ∇Ξ ≡ Ξ′(r)|Γ = χ(r̄)T′(R̄), (3.45)
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where T′ is a real matrix of constants corresponding to the derivatives, evaluated

on the boundaries, of the tv(R̄) functions of Eq. (3.41).

If, as suggested by Askar and co-workers, [18] each column of the T matrix is

limited to one (or two) entries, then the corresponding column of the T′ matrix will

be limited to the same number of entries. Thus, the summation over v in Eq. (3.44)

will be limited to one (or two) terms. Unfortunately, one can obtain the non-zero

entries of the T′ matrix only by a complete FE solution of Schrödinger’s Equation.

The physical scattering boundary conditions of Eq. (2.14) can be written com-

pactly as

lim
R,r→Γ

Ψ(r̄, R̄) ≡ Ψ(r)|Γ = χ(r̄)
(
h(−) + h(+)S

)
, (3.46)

where h(±1) are diagonal matrices with elements

h(±)
mn = δmnk

−1/2
m exp(±ikmR̄a), 1 ≤ m ≤ Na

and

h
(±)
m′n = δm′nk

−1/2
m′ exp(±ikm′R̄c), Na + 1 ≤ m′ ≤ Nv.

This corresponds to a diagonal matrix χ(r̄)h(−) with incoming waves in each channel

[remember that χ is diagonal, see Eq. (3.43)] along with a full matrix corresponding

to outgoing waves in all (inelastic plus reactive) channels. Similarly, the normal

derivative of Ψ(r, R) on the boundaries Γa and Γc is

n̂ · ∇Ψ|Γ ≡ Ψ′(r)|Γ = iχ(r)k
(
−h(−) + h(+)S

)
, (3.47)

where k is the diagonal matrix of wave vectors.
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As discussed above, each column of the T matrix defines a particular, but

arbitrary, behavior of the solution to Schrödinger’s Equation along the boundary,

with the values of the corresponding normal derivatives given by the matrix T′. The

corresponding set of linearly independent solutions along the boundary is given by

the Nv × Nv matrix Ξ(r)Γ. One can construct a linear transformation of Ξ(R, r)

to obtain a set of solutions which correspond to the desired scattering boundary

conditions on Γ, namely (where we have, for convenience, suppressed the dependence

on r),

ΞΓ X = ΨΓ.

From Eq. (3.46) this is equivalent to

χTX = χ
(
h(−) + h(+)S

)
, (3.48)

and, for the normal derivative

χT′ X = iχk
(
−h(−) + h(+)S

)
.

We can eliminate the common premultiplication by χ from both equations, to

obtain

TX = h(−) + h(+)S, (3.49)

and

T′ X = ik
(
−h(−) + h(+)S

)
. (3.50)

Then, exactly as in the standard finite-difference time-independent formulation of

inelastic and reactive scattering, elimination of the matrix X will allow us to obtain
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the S matrix by solution of the following set of linear equations [98]

[
(T)−1 − i(T′)−1k

]
h(+)S = −

[
(T)−1 + i(T′)−1k

]
h(−).

The method of Askar et al. [18] requires Nv decompositions of an N × N

matrix, followed by solution of an Nv × Nv matrix equation. In our method, we

need to decompose one (N + Nv) × (N + Nv) matrix and then back substitute for

each column of the S matrix that is desired. Since N >> Nv, the two methods are

computationally equivalent if the full S matrix is desired. Our method is Nv times

faster if only one column is desired.

3.3.5 MATLAB Code

As mentioned in the Introduction, we have written a MATLAB based code to

implement FE solution of the collinear reactive scattering problem. The source code

and user’s guide are available online at http://www2.chem.umd.edu/groups/alexander/FEM.

All calculations were carried out with MATLAB 2013B running on a 2009 vintage

MacPro with a dual-processor, 4 core (per processor) Xeon W3520 (Nehalem) CPU

with a 2.66 GHz clock speed. The machine contained 16GB of 1066 MHz DD3 RAM

with a 256K L2 cache (per core) and an 8 MB L3 cache (per processor).

We use MATLAB’s symbolic capability to determine the values of the integrals

which underly the elements of the T, V and O matrices [Eqs. (3.20), (3.22) and

(3.21)]. We find values identical to those reported by Askar and co-workers [18].

Also, by exploiting MATLAB’s implicit vectorization capabilities, we can compute

all elements of these matrices in a single command without explicitly looping over
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nodes or triangles.

3.3.6 Test Calculations

To verify our algorithm for determination of a single column of the S-matrix

and to test our MATLAB script, we calculated reactive transition probabilities for

the H+H2, F+H2 and F + HCl reactions, using, respectively, the collinear potential

energy surface of Mielke et al. [124], the Muckerman V PES [125] and Deskevich’s

F+HCl surface [126]. The calculated reactive transition probabilities for the H+H2

system, shown in Fig. 3.4, are in excellent agreement with earlier finite-difference

calculations of Bondi and Connor [127], based on the older Porter-Karplus [128] and

Liu-Siegbahn-Truhlar-Horowitz [129,130] PES’s.
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Figure 3.4: Reaction probabilities for H+H2(va=0)→H2(vc=0,1,2)+H as a function

of collision energy based on the PES of Mielke et al. [124]. The mesh used to calculate

these data contained 1900 nodes, to achieve an accuracy of 0.1 percent. This figure

illustrates the results of calculations at 1300 energies and required a total time of

less than 20 seconds (≃1.5 ms per energy).

The scattering probabilities of the F+H2 system, shown in Fig. 3.5 system
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agree well with earlier finite-difference [131] and finite-element calculations [112],

both of which use the Muckerman V PES. The scattering probabilities of the F+HCl

system are shown in Fig. 3.6.
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Figure 3.5: Reaction probabilities for the F+H2(va=0)→HF(vc=1,2,3)+H reaction

as a function of collision energy based on the Muckerman V PES [125]. The va = 0 →

vc=1 probability has been multiplied by a factor of 100. The mesh used to calculate

these data contained 11,059 nodes. This figure illustrates the results of calculations

at 601 energies (∼ 10 ms per energy).

3.3.7 Timing, Parallelization and Error

Matrix calculations in MATLAB are simple to invoke and make use of highly

optimized kernels, which, at least on computers containing multi-core Intel proces-

sors, exploit the parallelism built into in Intel’s MKL library. In addition, crucial

to the present application, MATLAB’s matrix operations check for and make use of

sparseness, automatically and transparently [132]. The slowest step in the present

application is solution of the linear equations (3.30). For this we use MATLAB’s

powerful matrix division (backslash) super-operator, which uses the Unsymmetrical

68



0.12 0.14 0.16 0.18 0.2
0

1

2

3

4

5

6

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

collision energy, (eV)

p
ro

b
a

b
ili

ty

0−4

0−3

total

p
ro

b
a

b
ili

ty
, 
(×

 1
0

−
4
)

0−3

Figure 3.6: Reaction probabilities for the F+HCl(va=0)→HF(vc=3,4)+Cl reaction

as a function of total based on the Deskevich PES [126]. The mesh used to calculate

these data contained 12,320 nodes. This figure encompasses a grid of 521 energies.

The total computation time required was less than one minute.

MultiFrontal method developed at the University of Florida [133]. Solution proceeds

through LU decomposition in the case of a square matrix or through QR decompo-

sition in the case of a rectangular matrix (which corresponds to an overdetermined

solution).

As mentioned earlier, one great advantage of the FE approach is the sparseness

of the resulting matrices. The left panel in Fig. 3.7 shows the fractional number

of non-zero elements in the T, O, and V matrices, as a function of the number

of nodes N . For mesh sizes on the order of 1000–10,000 (Figs. 3.4–3.6), we see

that the fraction of non-zero elements is between 0.001 and 0.01. Consequently,
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the expected computation time for an LU decomposition should scale much more

favorably than O(N3) [132]. Work in the communications field suggests that at large

N the timing for sparse-matrix-vector operations should scale as O(N logN) [134].

Since MATLAB’s backslash operator exploits sparsity, transparently, [133] we find,

as shown in the right panel in Fig. 3.7, that our actual timings may be consistent

with this scaling but there seems to be an upward trend suggesting an N3/2 scaling.

The timing of the MultiFrontal MATLAB’s backslash operator depends on the shape

of the triangulated domain. Optimal timing is achieved for rectangular meshes with

one dimension much larger than the other. The irregular domains used in the

reactive scattering calculations do not fit this description, which can explain the

fact that we do not see an exact N logN relationship for the timing of the solution

to the sparse linear system.

It is important to note that the largest contribution to numerical error in the

FE calculation is the number of nodes used in the triangulation. The error also

depends on the order of the Galerkin polynomials used in the calculation as well as

the minimum angle of all triangles in the mesh. However, the error in the calculation

will converge most rapidly by simply increasing the number of nodal points used in

the triangulation of the domain. We also note the existence of error in the repre-

sentation of the boundary conditions. In the statement of the boundary conditions

we assumed the gradient of the potential energy in the Rγ direction is zero, i.e. the

atom is a free particle. In practice we define the boundary to the reactive system at

some large, finite value of Rγ, and the gradient of the potential is not exactly zero.

To reduce the numerical and modeling errors in these calculations we increase first
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Figure 3.7: (Left panel) The fractional number of non-zero elements as a function

of the number of nodes N for the T, O matrices (blue) and V matrix (green)

[Eqs. (3.20), (3.21) and (3.22)]. (Right panel) The effective run time per energy, as

a function of N log(N) and of the number of parallel cores.

Rγ then the number of nodes in the calculation until the probabilities are stationary

with respect to each of these variables.

In addition to sparsity, the computational overhead of an LU decomposition

can be reduced by minimization of the overall bandwidth of the matrices. As men-

tioned earlier, to triangulate the domain Ω we used the MATLAB scripts of Pers-

son [135]. This minimizes the bandwidth of the A matrix [Eq. (3.17)]. However, we

obtain the S-matrix as well as the scattering wave function by solution of a set of

linear equations containing the full matrix on the LHS of Eq. (3.30) of which A is

only one component. The additional components of this matrix disrupt, to a small

extent, the compactness of the structure. However, we found that further invoking,

within MATLAB, the Cuthill-McKeee algorithm [136] to reduce the bandwidth of
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the this full matrix led to only an insignificant reduction in computation time.

Additionally, MATLAB can be parallelized, via MATLAB’s Parallel Comput-

ing Toolbox (PCT). Calculations at individual energies can be sent to different cores.

This is done totally transparently, by replacing the MATLAB loop command FOR

by the command PARFOR. Using 8 cores, we have found up to a factor of 5 speed-

up using the PCT as shown in Fig. 3.7. Typically, the calculations summarized in

Figs. 3.4, 3.5 and 3.6 require on the order of 10–100 milliseconds per energy.

The MATLAB software that accompanies this work is intended to be simple,

general and accessible. We have not included any advanced FE techniques such

as, for example, hp-adaptivity (adaptively changing the size of the mesh or the

polynomial order of the basis functions), multi-grid methods, or hierarchical basis

functions. However, we have achieved a dramatic reduction in overall computation

time by exploiting MATLAB’s built-in sparse matrix capabilities and vectorized

syntax (no explicit loops over nodal indices). Additional optimization could be

achieved, as suggested by Askar et al., [18] by using the scattering solution at one

energy to speed up the calculation at the next energy, as, for example, by matrix

preconditioning. However, this would be incompatible with our use of the PCT to

distribute calculations at different energies to separate cores. For the relatively small

systems studied in this work (less than 5e4 nodal points), we believe the speedup

from parallelization greatly outweighs any possible gains from this preconditioning.

For problems that require many more nodal points, however, using the solution at

one energy to speed the matrix decomposition at the next energy may alleviate the

computational effort to solve Eq. (3.30).
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3.3.8 Automatic Mesh Generation

Included in the provided suite of MATLAB subroutines is an automatic mesh

generator which extends the distmesh2d triangulation algorithm of Persson and

Strang [135, 137]. The automated mesh generation depends only on the potential

energy surface for a given A+BC system. Our routine exploits the fact that the

potential surfaces of A+BC systems are generally similar i.e. exponentially repulsive

walls for small values of Ra or ra and a plateau in the region corresponding to

triatomic dissociation.

We parameterize the domain of the reactive scattering with four parameters,

the asymptotic distances, Ra and Rc, and two potential values, one along the expo-

nential wall and one along the separated atoms plateau. These four values are used

to construct the domain as shown in the right panel of Fig. 3.3, and the user only

supplies a MATLAB script for the potential energy surface.

The most important considerations for a ‘good triangulation’ for reactive scat-

tering problems are i) at the boundaries which define the repulsive wall and triatomic

dissociation regions the potential must be sufficiently large that the scattering wave

function is effectively zero, ii) there are enough nodal points to accurately describe

any rapidly oscillating behavior in the scattering wave function and iii) the asymp-

totic values of Ra and Rc are large enough that ∂V (Rα, rα)/∂Rα=0 at the boundary

of each arrangement.

We have found this automatic triangulation subroutine to be extremely robust

and effective. Meeting the three criteria can be more or less difficult depending on

73



the potential surface itself. We have had success with both analytic potential func-

tions and interpolation of ab initio data. This subroutine is independent of the form

of the potential in the reactive region and accordingly insensitive to local extrema

(barriers, dispersion wells, etc). This routine produces meshes that can be used

for high collision energies, assuming the first and second criteria are met. At high

collision energies or for large masses, where the local de Broglie wavelength is small,

finer meshes will be required. More detail about the this automatic mesh genera-

tion can be found in the user’s manual that accompanies the provided software [119].

3.3.9 Probability Density and its Vector Current

The FE calculation generates the wave function directly. Squaring this gives

the reactive and inelastic probability density. From the wave function, we can

calculate the probability current density field [Eq. (3.64)]. Fig 3.8 shows plots of

the probability density for the H+H2 and F+H2 reactions at various energies.

For H+H2 the first two of these energies are just below and above the zero-

point corrected barrier to reaction (see Fig. 3.4; the barrier height itself, Ea=0.4274

eV, is considerably lower), and the third, at higher energy. For the F+H2 reaction,

the energies depicted correspond to below the onset of the HF(v=3) channel, at the

point where this probability is minimized, and at at the point where this probability

is maximized.

For H+H2 at the first and third of the energies displayed, and for F+H2 at all
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Figure 3.8: Probability densities for the H+H2 (upper panels) and F+H2 (lower

panels). The red curves delimits the classically allowed region. The position of the

barrier is marked by a black dot. The dashed box in the lower panels encloses the

region plotted in Fig. 3.10.

the energies displayed, the total probability of reaction (summed over the energeti-

cally accessible product vibrational levels) is less than unity (see Figs. 3.4 and 3.5).

Thus, as one might have anticipated, the square of the probability density in the re-

actant arrangement shows substantial evidence of interference between the incoming

and inelastically scattered waves. For F+H2 the dominant product channel corre-

sponds to HF in v=3. We see in the lower panels of Fig. 3.8 that the v=3 character

(three nodes along the HF vibrational coordinate rc) is established immediately once
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the product arrangement is accessed, so that the vibrational nonadiabaticity in the

reaction [H2(v=0)→HF(v=3)] develops promptly.

Also, we see in Fig. 3.5 a near vanishing of the reactive probability for the

F+HCl reaction at Ecol ≈ 0.4 eV. In Fig. 3.8 we see that although the wave function

does extend over the barrier at this energy, it does not extend at all into the product

arrangement. There is total reflection at this energy.

Plots of reactive scattering wave functions for H+H2 have been given earlier

by Wyatt and co-workers [22,24] and for F+H2 by Jaquet [89,112]. Although these

plots are eye-opening, far more insight is given by the probability current density

field. Some years ago, Kuppermann and his group (Bowman, Adams, Truhlar)

explored [21, 88] similar probability current density fields for the H+H2 reaction

(based on an earlier PES), but this work was not published. Wyatt and co-workers

used a time-dependent simulation to determine a probability current density field for

the H+H2 reaction and a time-independent method for the F+H2 reaction. [22,23,89]

Alexander, Manolopoulos and co-workers have presented comparable probability

current density fields for molecular photodissociation processes [25, 91–94].

For the H+H2 reaction Fig. 3.9 illustrates the probability current density field

at three total energies. The larger the magnitude of an arrow, the greater the

quantum probability that the reaction will pass through that location. These vector

fields provides the same picture as a macrocanonical (mono-energetic) ensemble of

classical trajectories, but with the addition of quantum interference and tunneling.

At energies below the height of the barrier, the H+H2 probability current den-

sity field does not follow the minimum energy reaction path, but cuts the corner.
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Figure 3.9: Probability current density fields for the H+H2 reaction. In this

inset, the classically forbidden region is delineated by the vertical red lines and the

position of the barrier, by the vertical black line. The location of the barrier is

shown by the black dot. The thick black line marks the minimum energy path. The

inset figure shows the probability current projected along the dashed line which lies

perpendicular to the reaction path and intersects the transition state.

This feature has been explored before, [138–140] by determination of the path along

which the imaginary component of the integrated classical action is smallest (the

classical action acquires an imaginary component because the momentum is imag-

inary whenever the path traverses a classically forbidden region). This one picture
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(the upper right hand panel of Fig. 3.9) presents, in our opinion, a vivid and imme-

diate illustration of this [88]. We note that once the energy becomes greater than

the barrier height, so that passage over the minimum energy path becomes classi-

cally allowed, very little probability current extends into the classically forbidden

region, even for this most quantum of chemical reactions. In a semiclassical picture

reaction at energies below the barrier can be attributed to a single (or dominant)

trajectory which evolves in complex phase space [141]. In the quantum picture the

probability current density field extends over a large region in coordinate space,

We see also at the higher energies the appearance of a vortex or whirlpool [89]

in the probability density field. In some regions this leads to the appearance of

a net flux in the backward direction (product→reactant). This is the quantum

fingerprint, in two dimensions, of barrier “recrossing”, a phenomenon that has been

often discussed in the collision dynamics literature [142]. Recrossing and tunneling

are made more apparent by projecting the probability current density field onto

a line perpendicular to the transition state. Bowman and Kupperman [88] name

this projection the “current density profile.” These profiles are shown in insets in

the three panels of Fig. 3.9. The topology of the H3 PES results, at higher energy,

in reaction on the inside of the transition state with significant recrossing on the

outside.

Similar images of probability current density fields for the F+H2 and F+HCl

reactions are shown in Figs. 3.10 and 3.11. For F+H2 we observe a persistent vortex

inside the transition state. Curiously, the helicity of this vortex changes as the

collision energy increases. As the collision energy rises from 0.407 eV to 0.409 eV,
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the helicity of this vortex changes from counterclockwise to clockwise. At 0.408

eV the vorticity vanishes. This coincides with the vanishing (Fig. 3.5) of the total

reaction probability at this energy. For F+H2 there is little evidence of corner-

cutting, even at low collision energy.

For the F+HCl reaction, we observe a strong, double vortex at all the collision

energies shown. In this heavy-light-heavy reaction, the PES is characterized by

a small skew angle [Eq. (2.7); for F+HCl α ≈ 16o]. As might be expected, at

low energy (especially below the barrier) most of the reaction occurs by corner-

cutting. What is unexpected is the significant degree of recrossing (from products to

reactants) even at this low energy. As in the case of F+H2, the helicity of the vortices

in the probability current density field reverses at the energy increases. Specifically,

the reversal which occurs as Ecol increases from 0.19 to 0.22 eV corresponds to the

vanishing of the reaction probability at this energy seen in upper panel of Fig. 3.6.

3.3.10 Discussion

We have applied the finite element method to the relatively old problem of

collinear atom-diatom reactive scattering with a novel treatment of the undeter-

mined Dirichlet boundary conditions, i.e. the physical scattering boundary condi-

tions, and our results agree well with published results.

We have developed a generalized suite of MATLAB scripts to handle any

collinear atom diatom reactive system using the FE method for any polynomial order

basis functions. The implicit parallelization and vectorization of the MATLAB code
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Figure 3.10: Contour plots of the potential (upper left panel) and probability

current density fields for the F+H2 reaction at three collision energies. The inset

figure shows the current projected onto the transition state – the “current density

profile” (Ref. [88]). The reaction path is indicated by the heavy black line and the

location of the barrier, by the black dot. The dashed black line displays the normal

mode motion perpendicular to reaction at the barrier. In the inset plot, the vertical

red lines delimit the classically allowed region, while the vertical black line indicates

the position of the barrier.

allows scattering probabilities for thousands of collision energies to be computed in

a matter of minutes even on a small laptop. The major computational effort is
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Figure 3.11: Contour plots of the potential (upper left panel) and probability

current density fields for the F+HCl reaction at three total energies. The inset

figure shows the current projected onto the transition state – the “current density

profile” (Ref. [88]). The reaction path is indicated by the heavy black line and the

location of the barrier, by the black dot. The dashed black line displays the normal

mode motion perpendicular to reaction at the barrier. In the inset plot, the vertical

red lines delimit the classically allowed region, while the vertical black line indicates

the position of the barrier.

solving the sparse linear system of Eq. (3.30) (sparse LU factorization), which we

have shown scales roughly as N logN for a mesh with N nodal points.
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Our automatic triangulation routine uses a uniform nodal point density. We

could expect better performance with potential adapted triangulations or from im-

plementing an adaptive FE algorithm. We have experimented with meshes ranging

from 500 to 150,000 nodal points. Typically 10,000-50,000 nodal points are re-

quired for convergence. Based on these results, we expect our approach can treat

any collinear A+BC system efficiently (calculation times on the order of minutes)

with perhaps the exception of extremely heavy atoms at high collision energies or

extremely long range forces that would require dense meshes over larger areas. In

both cases we expect dramatic improvement using non-uniform node distributions.

One particular advantage of the FE application is that the reactive scattering

wave function is determined directly (time-independent propagation methods and

time-dependent wave packet methods both require post-processing to obtain the

wave function). As we have shown here the scattering wave function can be used to

extend our intuition of the quantum features in chemical dynamics. The next section

details the natural extension of this treatment of the scattering boundary conditions

to collinear reactions on multiple potential energy surfaces. As we will show, the

scattering wave function will be an invaluable tool for analyzing the dynamics of

nonadiabatic reactions.

3.4 Collinear Nonadiabatic Scattering

In the previous section we described a time-independent, finite-element (FE)

method to determine numerically the quantum scattering wave function for collinear,
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atom-diatom reactions. In this section we provide a generalization to collinear re-

actions evolving on n-coupled electronic states.

As illustrative examples for reactions evolving on multiple potential surfaces

we use the collinear F(2P) + HCl(v) → HF(v′) + Cl(2P) and F(2P) + H2(v) →

HF(v′) + H reactions. With the scattering wave function in hand we can calculate

the probability current density field for each electronic state and its divergence. We

can use the divergence of the probability current density field – which we will call

the nonadiabatic divergence – to pinpoint the location and extent of nonadiabaticity

during the collision.

This section is organized as follows: first we extend our FE approach for

collinear atom-diatom reactions to systems that evolve on coupled potential surfaces.

Next we show a straight forward application of this method to the F(2P) + HCl(v)

reaction, based on a new ab initio calculation of the PES’s and coupling. We then

detail how to modify the boundary conditions to analyze the reactive dynamics of

the coupled F(2P)+H2(v) reaction. Finally we give a brief discussion of these results

and their implications.

3.4.1 FE Solution

To apply the FE method from Section 3.3, one uses the weak form of the

Schrödinger equation. As in the previous Section, to obtain the weak form we

premultiply by a test function and then integrate over the scattering domain, Ω. The

wave function and test function are then replaced by, respectively, by an expansion
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in finite elements and a single member of this expansion. We will continue to use

piece-wise, Galerkin-type polynomials defined on the triangulation.

The extension to multiple electronic states is straightforward. The electronic

state index η can be added to the expansion coefficients and the wave function must

satisfy boundary conditions appropriate to multi-state scattering. From Eq.(2.22)

we have

lim
Rγ→∞

Ψ(Rγ, rγ) = ΨΓ(Rγ, rγ) =
a,c∑
γ

f η
va

∗(R̄a, r̄a)|η⟩δa,γ +
∑
η′

∑
vγ ′
Sη′,η
vγ ′,vaf

η′

vγ ′(R̄γ, r̄γ) |η′⟩

 ,
(3.51)

where f η
vγ is the asymptotic (A+BC or AB+C) wavefunction (the product of a plane

wave multiplied by a vibrational wave function for the diatomic in electronic state

η in arrangement γ as defined in Eq. (2.23).

Inelastic or reactive scattering can occur to any energetically open vibrational

level associated with any electronic state. The S matrix is doubly-indexed in the

electronic state, so that Sη′,η
vγ′ ,va

is the amplitude for a transition from the BC vibra-

tional state va in electronic state η to either the AB vibrational state vc
′ in the ABC

electronic state η′ or BC vibrational state va
′ in the ABC electronic state η′.

For simplicity, we restrict the ensuing discussion to only two electronic states,

which we designate η = 1, 2, and, further, assume that the system is initially in

electronic state |η = 1⟩. The following expressions, however, can be easily extended

to an arbitrary number of states. Thus, Eq. (3.26) becomes
 T ∅

∅ T

− 2µ


 V11 V12

V12 V22

− E

 O ∅

∅ O




 C1

C2


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=

 A11 A12

A12 A22


 C1

C2

 =

 b1 + B1
aS

11
a + B1

cS
11
c

B2
aS

21
a + B2

cS
21
c

 . (3.52)

The definition of the sub-matrices are the two-state generalization of those

given in Eqs. (3.20-3.21). For example, S21
a(c) refers to the the S-matrix for the

inelastic (reactive) scattering out of electronic state |1⟩ into electronic state |2⟩.

Also, ∅ is a null matrix.

In imposing the boundary conditions of Eq. (3.51) we assume that incoming

flux is restricted to a single electronic state η. For this to be correct, the coupling

between different electronic states must vanish asymptotically, in all arrangements.

In other words, we have

lim
R→∞

V12 = 0. (3.53)

As in the case of a single electronic-state calculation the scattering amplitudes

are not known a priori. We can move these to the l.h.s. and include them in the

vector of unknowns,

 A11 A12 −B1
a −B1

c ∅ ∅

A12 A22 ∅ ∅ −Ba
2 −B2

c





C1

C2

S1
a

S1
c

S2
a

S2
c



=

 b1

∅

 . (3.54)

This set of equations is under-determined. We can use the boundary conditions
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to extend this system of equations to be uniquely (exactly) determined

A11 A12 −B1
a −B1

c 0 0

A12 A22 0 0 −B2
a −B2

c

I1a 0 −F1
a 0 0 0

I1c 0 0 −F1
c 0 0

0 I2a 0 0 −F2
a 0

0 I2c 0 0 0 −F2
c





C1

C2

S1
a

S1
c

S2
a

S2
c



=



b1

0

f1

0

0

0



, (3.55)

where the elements of the I, f and F matrices are defined in Section 3.3.2.

The solution of the matrix equation (3.55) will yield the scattering wave func-

tion and a single column of the S-matrix for a given total energy. The entire

S-matrix can be determined in a single calculation by including all possible initial

states in the r.h.s. as is shown in Eq. (3.56)

A11 A12 −B1
a −B1

c 0 0

A12 A22 0 0 −B2
a −B2

c

I1a 0 −F1
a 0 0 0

I1c 0 0 −F1
c 0 0

0 I2a 0 0 −F2
a 0

0 I2c 0 0 0 −F2
c





C1

C2

S1
a

S1
c

S2
a

S2
c



=



B1
a 0

0 B2
a

F1
a 0

0 0

0 F2
a

0 0



. (3.56)

This formalism is entirely general and can support any atom-diatom reaction

evolving on any number of coupled electronic surfaces. Before we use this result

to analyze the significance of nonadiabatic (spin-orbit) behavior in the F(2P)+HCl

and F(2P)+H2 reactions we first develop the potential energy surfaces that dictate

the dynamics.
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3.4.2 Basis Choice for Coupled Potential Surfaces

In this section we are interested in predicting the scattering dynamics of the

nonadiabatic F+H2 and F+HCl reactions. In the case of the F+HCl reaction the

products and reactants are symmetric, i.e. the lone atom in in both reactant and

product channels is a 2P halogen (p5 occupancy). Both halogens have non-negligible

SO coupling which is the source of nonadiabaticity. In the case of F+H2, this

symmetry doesn’t exist; the lone H atom in the product channel does not exhibit any

SO coupling. As such, the transformation that diagonalizes the coupled potential

in the product channel is not the same for these two reactions.

The nonadiabatic boundary conditions from Eq. (3.53) assume a diagonal form

of the potential in all asymptotic channels. In this section we introduce the natural

choices represent coupled, nonadiabatic potential energy surfaces. We will use these

results to account for the possibility of potentials that are asymmetric with respect to

this asymptotic diagonalization. This will provide a general framework for handling

asymptotic boundary conditions for any nonadiabatic atom-diatom reaction.

3.4.2.1 Quasi-Diabatic Bases

Alexander, Manolopoulos and Werner [52] have presented a framework to de-

scribe the reactive encounter of a halogen atom with a closed-shell diatomic. There

are six states in the so-called ΛΣ basis, each labelled in the projection quantum

numbers of the electronic orbital and spin angular momenta. We designate these in

the shorthand notation |Σ⟩, |Σ̄⟩, Π1⟩, |Π̄1⟩, Π−1⟩, |Π̄−1⟩, where Π and Σ refer to the
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projection of the electronic orbital angular momentum and the absence or presence

of an overbar designates a spin projection quantum number of +1/2 or –1/2. These

six states form an “electrostatic” basis.

In these reactions nonadiabatic coupling is induced by the spin-orbit Hamil-

tonian or by the mixing between the nominally Σ and nominally Π(A′) states. The

latter coupling vanishes in collinear geometry where a classic Σ − Π conical inter-

section occurs. In the Cl+H2 →HCl+H reaction, Sun, Zhang, and Alexander have

shown [60] that the spin-orbit Hamiltonian is the primary source of electronic nona-

diabaticity, not this latter mixing, which is small. Since, at least for the Cl+H2 reac-

tion the spin-orbit coupling varies little with triatomic angle, [143,144] investigation

of the simpler collinear case will provide meaningful insight into the predominant

mechanism for inelasticity in these halogen reactions.

In collinear geometry, the Σ and Π±1 states belong to different irreducible rep-

resentations and hence form a natural diabatic basis, since the differing symmetries

are independent of nuclear geometry (provided the molecule remains collinear). The

matrix of the Hamiltonian blocks into two identical 2×2 matrices, coupling the two

states with total (spin plus electronic orbital) projections +1/2, |Σ⟩ and |Π̄1⟩ (or,

equivalently, the two states with total projection –1/2, |Σ̄⟩ and |Π−1⟩). The two

states with total projection quantum number ±3/2 (|Π1⟩ and |Π̄−1⟩ are not coupled

to any other. Reactions on these two uncoupled potential energy surfaces can be

treated with the single-state FE methodology from Section 3.3.

The spin-orbit operator will couple the two states with total projection +1/2

(or, equivalently, the two states with projection –1/2). We will hereafter refer to
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the diabatic basis formed out of states corresponding to specified orientations of the

electronic angular momentum as the Λ basis. The 2×2 matrix of the potential plus

spin-orbit coupling is [62]

VΛ(Q) = Vel(Q) + VSO(Q) =

 VΣ(Q) 0

0 VΠ(Q)

+

 0 −21/2B(Q)

−21/2B(Q) B(Q)

 ,
(3.57)

where B(Q) is the spin-orbit coupling matrix element, which depends on the nuclear

coordinates Q.

Asymptotically, in the limit of large A–BC or AB–C separations, the VΣ and VΠ

potential energy surfaces are equal, and become the vibrational potentials of the BC

or AB molecules. Also as R → ∞ the spin-orbit coupling goes to the constant value

appropriate to the isolated halogen. In this asymptotic limit, the 2× 2 Hamiltonian

matrix of Eq. (3.59) can be diagonalized. The eigenvectors correspond to the two ja

(fine-structure) states (ja = 3/2 and ja = 1/2) with energies VΣ − B and VΣ + 2B,

respectively.

The asymptotic orthogonal transformation from the Λ basis to the ja basis is,

D = 3−1/2

 21/2 −1

1 21/2

 . (3.58)

The matrix of the potential energy in the ja basis is

Vja = DTVΛD =

 V3/2 Vd

Vd V1/2

 =

 Vs −B Vd

Vd Vs + 2B

 , (3.59)

where Vs = (2VΣ + VΠ)/3 and Vd = 21/2(VΣ − VΠ)/3. All the matrices except D are
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functions of the nuclear coordinates, Q, which we have suppressed for simplicity.

The ja states also constitute a quasi-diabatic basis, since the transformation

from the Λ to the ja basis is independent of the ABC geometry. For interactions of a

halogen atom with a closed-shell diatomic molecule, the ja basis is diagonal asymp-

totically, when the splitting between the Σ and Π PES’s vanishes. If the A+BC

Jacobi vector defines the z-axis, then the Σ and Π states correspond, respectively,

to single and double occupancy of the 2pz atomic orbital on the halogen.

As the partners approach, the electrostatic interactions for these two electron

occupancies become increasingly different. Eventually, the splitting between the Σ

and Π PES’s becomes larger than the spin-orbit splitting. At this point the off-

diagonal coupling in the ja basis, which is proportional to VΣ − VΠ, becomes larger

than the off-diagonal coupling in the Λ basis, which is proportional to the spin-orbit

term, B. At this point the best zeroth order description of the electronic state of

the ABC system switches from the ja to the Λ basis.

In a two-dimensional model this is a seam, defined by

|Vd| = 21/2B

or, equivalently,

|VΣ − VΠ| = 3B. (3.60)

Asymptotically, the halogen spin-orbit splitting is 3B. As we shall see below, the

spin-orbit coupling term can vary significantly over the PES. On the seam defined

by Eq. (3.60), of which there can be more than one, the electrostatic splitting is

equal in magnitude to the local spin-orbit splitting. This has long been thought to
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be the locus of points at which nonadiabaticity is most probable, [145–147] although

the usual interpretation is the comparison of the local electrostatic splitting with

the asymptotic spin-orbit splitting.

3.4.2.2 Electronically Adiabatic Basis

Diagonalization of the Hamiltonian in either the Λ or ja basis at each value

of R and r defines the electronically adiabatic (or, for short, adiabatic) basis. In a

basis of two states, diagonalization is equivalent to a planar rotation

 a1

a2

 =

 cos θ − sin θ

sin θ cos θ


 d1

d2

 , (3.61)

where θ is the so-called diabatic mixing angle, whose value varies with Q.

For a two-state problem, with Hamiltonian matrix elements H11, H22, and

H12, the mixing angle is

θ =
1

2
tan−1

(
2H12

H22 −H11

)
.

Thus, from Eq. (3.59) we see that mixing angle in the ja diabatic basis is

θja =
1

2
tan−1

(
2Vd
3B

)
≈ 1

2
tan−1

[
VΣ − VΠ

∆Eso

]
. (3.62)

were ∆Eso is the halogen fine-structure splitting. Similarly, in the Λ diabatic basis,

the mixing angle is

θΛ =
1

2
tan−1

(
−21/2B

VΠ − VΣ +B

)
. (3.63)
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3.4.3 Time-Independent, Hydrodynamic Interpretation

Hirschfelder, [19, 20] Kuppermann, [21] and Wyatt, [22–24], have introduced

the use of a time-independent, fluid-dynamics interpretation which uses the proba-

bility current density field, given here as

J =
−ih̄
2m

{Ψ(Q)∇Ψ∗(Q) − [∇Ψ(Q)]Ψ∗(Q)} . (3.64)

This widespread expression for the probability current density field can be easily

derived [26] from the flux operator of Miller, Schwartz, and Tromp [148,149].

Implicit in this expression is (i) a dependence of the wave function on the

electronic coordinates, q, and (ii) integration over these coordinates in evaluating

the probability current density field as a function of just the nuclear coordinates, Q.

Thus, Eq. (3.64) should be written formally as

J =
ih̄

2m

∫
q

[Ψ∗(Q, q)∇QΨ(Q, q) − Ψ(Q, q)∇QΨ∗(Q, q)] dq. (3.65)

Specifically, if we have two coupled electronic states, we expand the wave

function in terms of two orthonormal diabatic states |d1⟩ and |d2⟩,

Ψ(Q, q) = Ψd1(Q, q) + Ψd2(Q, q) = ψd1(Q)|d1⟩ + ψd2(Q)|d2⟩. (3.66)

Substitution of this into Eq. (3.65) and integration over the electronic coordinates

gives

J(Q) =
ih̄

2m

2∑
i=1

∫
q

[
Ψ(i)∗(Q, q)∇QΨ(i)(Q, q) − Ψ(i)(Q, q)∇QΨ(i)∗(Q, q)

]

=
ih̄

2m

2∑
i=1

[
ψdi∗(Q)∇Qψ

di(Q) − ψdi(Q)∇Qψ
di∗(Q)

]
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= Jd1(Q) + Jd2(Q). (3.67)

The total probability current density is the sum of the probability current density

associated with scattering on each of the diabatic states.

Typically, scattering calculations are carried out in a quasi-diabatic basis.

However, the most physically meaningful quantity is the probability current den-

sity field in the electronically-adiabatic basis. This will be independent of whatever

diabatic basis is chosen for the calculations.

To expand the wave function in the adiabatic basis we replace the right-hand

side of Eq. (3.66) with

Ψ(Q, q) = ψd1(Q) (cos θ|a1⟩ − sin θ|a2⟩) + ψd2(Q) (sin θ|a1⟩ + cos θ|a2⟩)

=
[
cos θψd1(Q) − sin θψd2(Q)

]
|a1⟩ +

[
sin θψd1(Q) + cos θψd2(Q)

]
|a2⟩

= ψa1(Q)|a1⟩ + ψa2(Q)|a2⟩. (3.68)

Here ψa1 and ψa2 are the (R, r) dependent components of the scattering wave func-

tion expressed in terms of the two electronically adiabatic states.

The probability current density field in the adiabatic basis is, in analogy to

Eq. (3.67)

J(Q) =
ih̄

2m

2∑
i=1

[ψai∗(Q)∇Qψ
ai(Q) − ψai(Q)∇Qψ

ai∗(Q)]

= Ja1(Q) + Ja2(Q). (3.69)

We evaluate this expression by replacing ψai∗(Q) by its representation [from the

2nd line of Eq. (3.68)] in terms of the scattering wave functions in the diabatic

basis ψdi∗(Q) and the mixing angle. Since the latter also depends on the nuclear
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coordinates, the gradient operates on both ψdi∗(Q) and cos θ (or sin θ).

The reader can show that

−2mi

h̄
Ja1(Q) = cos θ2

(
ψd1∗∇ψd1 − ψd1∇ψd1∗

)
+ sin θ2

(
ψd2∗∇ψd2 − ψd2∇ψd2∗

)
+ cos θ sin θ

(
ψd1∗∇ψd2 − ψd1∇ψd2∗ + ψd2∗∇ψd1 − ψd2∇ψd1∗

)
+
(
ψd1∗ ψd2 − ψd1 ψd2∗

)
∇θ (3.70)

and

−2mi

h̄
Ja2(Q) = sin θ2

(
ψd1∗∇ψd1 − ψd1∇ψd1∗

)
+ cos θ2

(
ψd2∗∇ψd2 − ψd2∇ψd2∗

)
− cos θ sin θ

(
ψd1∗∇ψd2 − ψd1∇ψd2∗ + ψd2∗∇ψd1 − ψd2∇ψd1∗

)
−
(
ψd1∗ ψd2 − ψd1 ψd2∗

)
∇θ. (3.71)

Summing these two equations [Eqs. (3.70) and (3.71)], we find

Ja1(Q) + Ja2(Q) = Jd1(Q) + Jd2(Q).

The total probability current density is independent of the electronic basis used to

expand the scattering wave function, as we would expect.

The two vector fields Ja1(Q) and Ja2(Q) correspond to the flow of probabil-

ity associated with the two electronically adiabatic states. The divergence of the

probability current density fields associated with the electronically adiabatic states

corresponds to the loss (or gain) of probability density associated with one or the

other state. Since the scattering process does not create or destroy particles, a con-

sequence of the equation of continuity [150] is that loss in one state coincides with

gain in the the other,

∇ · Ja1(Q) = −∇ · Ja2(Q.
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) Thus, regions of high nonadiabatic divergence indicate those places on the potential

energy surface where nonadiabatic transitions are occurring [25,26].

We turn now to a determination of the probability current density field and

its divergence for two exemplary reactions: F+HCl→FH+Cl and F+H2 →FH+H.

3.4.4 F+HCl→FH+Cl Reaction

In this hydrogen exchange reaction, a classic heavy-light-heavy system, there

are two electronic states (one degenerate) which are energetically accessible in both

the reactant and product arrangement. Because of the strong interaction between

the quadrupole moment of the halogen atom and the dipole-moment of the hydro-

gen halide, the Σ and Π electronic states are significantly split in both the reactant

and product channels. In both the reactant and product arrangements this dipole-

quadrupole interaction causes the Π orientation to be attractive while the Σ orien-

tation is correspondingly repulsive (especially in the product FH+Cl arrangement

where both the atomic and molecular electrostatic moments are larger). However,

the Σ orientation has a lower barrier. Thus, a conical intersection occurs in both

arrangements.

Because of the sizable splitting between the Σ and Π states at long range,

these conical intersections occur near the barrier. We therefore have the possibil-

ity of electronic nonadiabaticity in both the inelastic F(ja)+HCl→F(ja
′)+HCl and

reactive F(ja)+HCl→FH+Cl(jc
′) channels.
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3.4.4.1 Potential Energy Surface

In this section we use the recent collinear potential surface calculations from

Klos [30] for the lowest two adiabatic (VΣ and VΠ) potentials and the spin-orbit

coupling constant, A, as function of the nuclear coordinates. We present the contour

plots of these collinear potential surfaces in Figs.(3.12) and (3.13).

The transformation from the Λ to the ja bases is independent of the ABC

geometry. Thus the ja basis is also a quasi-diabatic basis, which has the addi-

tional advantage of being diagonal asymptotically in both the reactant (F+HCl)

and product (FH+Cl) arrangements.

In the numerical implementation we use a simple bi-cubic interpolation routine

to calculate the potential energy surface at the nodal points in the triangulation.

This removes any fit related errors and because we use high density of ab initio points

we do not have any issues with nonconvergent calculations while using MATLAB’s

built-in interpolation routines. Finally, Table 3.2 lists the predicted parameters of

the FHCl barriers.

3.4.4.2 Results: Scattering Dynamics

In Figures (3.15) and (3.16) show the scattering probabilities for nonreactive

and reactive collisions of, respectively, F(ja = 3/2) and F(ja = 1/2) with HCl as a

function of energy.

One can see (in the lower panels) the presence of Stueckelberg oscillations

[153–156] in the nonreactive probabilities. In purely non-reactive systems, these are
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Table 3.2: Parameters of the FHCl barrier in the Λ, ja and adiabatic bases.1

State (uHF, uHCl)
2 Ea

3 ωTS
4 Ezpt

5

Σ (2.569, 2.525) 0.3275 0.1159 0.1995

Π (2.432, 2.631) 0.7910 0.0628 0.6365

ja=3/2 (2.455, 2.582) 0.4583 0.0667 0.3218

ja=1/2 (2.434, 2.612) 0.6384 0.0630 0.4518

a1 (2.569, 2.525) 0.3267 0.1156 0.2147

a2 (2.432, 2.631) 0.7955 0.0628 0.6088
1Distances in bohr, energies and vibrational frequencies in eV.

2Geometry of the saddle point, in bond coordinates.

3Barrier height relative to F+HCl(re) at Ra = 24.

4Frequency of the non-reactive normal mode at the saddle point.

5Zero-point corrected barrier: Ezpt= Ea + 1/2(ωTS − ωHCl). Here, ωHCl on the ab initio

PES’s is 0.3756 eV, slightly larger than the experimental value of 0.3708 eV.

6Ref. [152].
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Figure 3.12: The FHCl PES’s in the Λ and ja diabatic bases. Distances in bohr

and energies in eV in all panels except the spin-orbit coupling, B, and the electro-

static splitting, Vd, which are shown in meV. The zero of energy corresponds to

F(Σ)+HCl(re) at Ra = 24. The F+HCl and FH+Cl asymptotes correspond to,

respectively, the lower-right and upper-left valleys. Asymptotically, at distances

considerably larger than shown here, in both arrangements the two diabatic PES’s

become identical (VΣ = VΠ). Shown in grey is the minimum energy path (MEP)

on the lowest adiabatic surface calculated using the method of Weinan et al. [151]

The filled circles on the MEP are marker points to allow a comparison with the

one-dimensional reaction path shown later in Fig. 3.14.
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Figure 3.13: The FHCl PES’s in the adiabatic basis in (left) bond coordinates and

(right) in mass-scaled Jacobi coordinates. Distances in bohr and energies in eV. The

potential contours in the right panels are identical to those on the left. The dashed

box in the right panels show the area examined in more detail later in Fig. 3.17.

The zero of energy corresponds to F(Σ)+HCl(re), at Ra = 24. Shown in grey is the

minimum energy path (MEP) on the lowest adiabatic surface calculated using the

method of Weinan et al. [151] The solid grey circles are marker points to allow a

comparison with the one-dimensional reaction path shown later in Fig. 3.14.

due to interference between trajectories which undergo nonadiabatic (ja → ja ± 1)

transitions as the particles approach and those, which recede after having bounced

off the repulsive wall. Although the zero-point corrected barrier on the lower FHCl

adiabatic PES is low (∼0.2 eV), the barrier up the first excited adiabatic PES is

much higher, (∼0.6 eV). Thus, a significant fraction of the collisions are non-reactive

for all values of the collision energies shown in Figs. (3.15) and (3.16). This leads

to the pronounced oscillatory character in the non-reactive transition probabilities.

As can be seen in the upper panels of these two figures there is also a significant
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Figure 3.14: The FHCl potential energy surfaces along the minimum energy path

(MEP) of the lower adiabat. The solid circles shown here are identical to the solid

circles in Figs. 3.13 and 3.17 and thus provide a mapping of the 1D potential shown

here onto the collinear PES’s shown in these figures.

amount of nonadiabatic reactivity. As one might expect, reaction commences once

the collision energy exceeds the zero-point corrected barrier on the lower PES (∼0.2

eV; see Tab. 3.2). Initially, Cl products are formed in the lower (jc = 3/2) spin-orbit

states. The upper spin-orbit state lies 0.11 eV higher, which explains the higher

threshold for jc = 1/2 products. We observe no evidence of oscillatory structure in

the reactive products. There are no reflections corresponding to curve-crossing on

the product side (Fig 3.14). Once the system proceeds through this crossing, there

is no return. There is also nearly complete vibrational adiabaticity (va
′ = va) in the

inelastically scattered products, and nearly complete vibrational specificity in the

products (vc
′ = 3).

More insight into the mechanism of nonadiabaticity is given by the divergence
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Figure 3.15: (Upper panel) Reactive F(ja = 3/2) + HCl(va = 0) → HF(vc
′ =

3)+Cl(jc
′) transition probabilities. (Lower Panel) Inelastic F(ja = 3/2) + HCl(va =

0) → F(ja
′) + HCl(va

′ = 0) probabilities. The inelastic and reactive probabilities

into other final vibrational levels are negligibly small. The thick black lines mark

the energies probed in Fig. 3.17.

of the probability current density on the lower adiabatic state, ∇ · Ja1 [where Ja1 is

given by Eq. (3.70)]. Contour plots of the nonadiabatic divergence for this reaction

are given in Fig. (3.17). As seen in rows 2–4, once the collision energy is high

enough for reaction to occur (Ecol ≥ Ezpt in Tab. 3.2), the region of strongest

nonadiabatic divergence occurs in the product arrangement, delimited by the seams

where |VΣ − VΠ| = 3B and centered on the seam where VΣ = VΠ.

In all cases, the nonadiabatic divergence has both positive and negative lobes,

evocative of wave crests and troughs, with a node located on the VΣ = VΠ seam.
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Figure 3.16: (Upper panel) Reactive F(ja = 1/2) + HCl(va = 0) → HF(vc
′ =

3)+Cl(jc
′) transition probabilities. (Lower Panel) Inelastic F(ja = 1/2) + HCl(va =

0) → F(ja
′) + HCl(va

′ = 0) probabilities. The probabilities, both inelastic and

reactive, into other vibrational levels are negligibly small. The thick black lines

mark the energies probed in Fig. 3.17.

Figure 3.17 also shows a scale bar corresponding to the de Broglie wavelength of the

F+HCl system. As we might have anticipated, we see that the range over which

significant oscillations in nonadiabaticity occurs is roughly comparable to the de

Broglie wavelength.

In the study on just the lowest electronically-adiabatic PES (Section 3.3):,

at low energy the probability current density field indicated a substantial degree

of corner cutting [138–140]. The bulk of the reaction takes a sharper turn than

the MEP. Similarly, the contour plots of the nonadiabatic divergence in the exit
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Figure 3.17: Divergence of the probability current density ∇ · Ja1 associated with

the lower adiabatic state, at several collision energies (left panels) for the reaction of

F(ja = 3/2) (left panels) or F(ja = 1/2) (right panels) with HCl(va = 0). Each row

corresponds to a given total energy (the corresponding collision energies differ by the

F-atom fine-structure splitting of 0.05 eV). The red contours in the left (right) panels

delimit the classically forbidden region on the lower (upper) adiabatic PES. The solid

and dashed black lines delineate, respectively, the seams where |VΣ − VΠ| = 3B and

VΣ = VΠ. The blue and red contours correspond to loss (gain) of current density

associated with the lower (a1) adiabatic state. The scale bar at the bottom right in

each panel indicates the de Broglie wavelength at each collision energy.
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channel show that the maximum electronic nonadiabaticy occurs inside the MEP.

For nonadiabaticity occurring in the product arrangement the nodal structure of

the nonadiabatic divergence is longitudal (parallel to the MEP).

Figure 3.17 reveals that in reactive encounters the incoming F atom moves

adiabatically over the lower barrier (the barrier on the a1 PES, regardless of its

initial state, and behaves nonadiabatically only after it has crossed the barrier and

moves through the region of curve-crossing on the FH+Cl side. For collision energies

less than ∼0.6 eV ( see Tab. 3.2), barrier crossing is possible only in the a1 state.

Thus, nonadiabaticity in the FH+Cl rearrangement is independent of which initial

state is initially populated. Notice the sign of the divergence changes the reactant

channel but is the same in the product channel when comparing the left and right

panels of Fig. 3.17.

We also note that the relative minimum in the nonadiabatic, inelastic scatter-

ing probability in both the a1 and a2 states, at 0.25 eV and 0.20 eV respectfully,

coincides with a significant reduction of the nonadiabatic divergence in the entrance

channel as seen in the third row of Fig. 3.17.

Although a Σ − Π curve crossing occurs also in the reactant arrangement

(see Fig. 3.14), the degree of nonadiabaticity is much less. A quiver plot of the

gradient of the mixing angle is shown in Fig. 3.18. The largest changes in the mixing

angle occur beyond the barrier and are confined by the same set of contours where

|VΣ−VΠ| = 3B. In the reactant arrangement, the maximum nonadiabatic divergence

is centered on the MEP and has both longitudinal and transverse characteristics.

The differing topography of the nodal patterns in the nonadiabatic divergence
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Figure 3.18: Quiver plot of the gradient of the mixing angle, θ [Eq. 3.61)], for the

F+HCl (left) and F+H2 (right) reactions. The red contours delimit the classically

allowed region at the two collision energies indicated (eV). The solid and dashed

black lines delineate, respectively, the seams where |VΣ − VΠ| = 3B and VΣ = VΠ.

of the probability density suggests that the details of the electronic nonadiabaticity

may vary with the degree of initial vibrational excitation of the HCl moiety.

We also observe that the change of sign of the nonadiabatic divergence in

the entrance channel is to be expected: F atoms in the lower adiabatic state can

undergo transitions to the upper state, with a loss of probability density out of the

lower adiabatic state. Conversely, F atoms in the upper adiabatic state can undergo

transitions to the lower, with a gain of probability in the lower state. Note that

these two processes are reciprocal, despite the larger degeneracy of the lower state.

This is because 50% of the ja = 3/2 are uncoupled to the upper state, and hence

evolve solely on the lower adiabatic PES.

Finally, the directionality of the gradient of the mixing angle, θ, shown in the

quiver plot in the left panel of Fig. 3.18, offers a simple explanation of the difference
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between the orientations of the waves in the nonadiabatic divergence in the reactant

as compared to product arrangements. In the reactant channel the gradient of the

mixing angle has a large vector component perpendicular to the MEP while in the

product channel the vector field is predominantly parallel to the MEP.

3.4.5 F+H2 → HF+H

(Reactions with Mixed Boundary Conditions)

In this section we consider reactions that induce changes in electronic prop-

erties; i.e. reactions that involve different electronic structure in the reactant and

product channels. Our model reaction in this section will be F+H2. For this re-

action the lone F atom in the entrance channel has non-zero spin-orbit coupling,

whereas the lone H atom in the product channel does not exhibit this behavior. In

this section we solve for the nonadiabatic dynamics of such a system using the FE

approach outlined above.

The boundary conditions of Eq. 3.51 assume that the potential is asymptot-

ically separable, Vii(R∞, r) = Vii(r) and uncoupled, Vij(R∞, r) = 0. As was the

case for F+HCl and FH+Cl, for the F+H2 arrangement, the ja diabatic basis sat-

isfies these criteria. However, in the FH+H product arrangement, the ground 1Σ+

electronic state of HF lies far below the first excited Π state, [62] so that only the

former is energetically accessible. The appropriate diabatic basis in the product

arrangement is the Λ basis.
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We can write the boundary condition in the reactant channel using the ja basis

ΨΓa(Ra, ra) = f ja
va

∗
(R̄a, r̄a)|ja⟩ +

∑
ja′

∑
vγ ′
S
j′a,ja
vγ ′,vafvγ ′(R̄a, r̄a) |ȷ′a⟩ (3.72)

And we use the Λ basis in the product arrangement,

ΨΓc(Rc, rc) =
∑
Λc

′

∑
vγ ′
S
Λ′
c,Λc

vγ ′,vafvγ ′(R̄c, r̄c) |Λ′
c⟩, (3.73)

where the electronic states are designated |ja⟩ in the reactant channel and |Λc⟩ in

the product channel.

We will solve the equations in the Λ diabatic basis. At the reactant boundary

Γa, we can use the transformation between the two diabatic bases [Eq. (3.58)] to

re-express the boundary conditions on Γa in terms of the Λ states. We have

ΨΓa =
∑
Λa

f ja
va

∗
Dja,Λa|Λa⟩ +

∑
Λa

′

∑
ja′

∑
va′
f ja′

va′ S
ja′,ja
va′,vaDja′Λa

′|Λa⟩, (3.74)

where Dja′Λa
′ is the matrix element coupling ja

′ and Λa
′. Thus, for a single initial

condition (F in a particular ja state and H2 in a particular vibrational level) the

mixed-state equivalent of the one-column solution Eq. (3.30) is

A11 A11 −D11B
3/2
a −D21B

1/2
a −BΣ

c 0

A12 A12 −D12B
3/2
a −D22B

1/2
a 0 −BΠ

c

IΣa 0 −D11F
3/2
a −D21F

1/2
a 0 0

0 IΠa −D12F
3/2
a −D22F

1/2
a 0 0

IΣc 0 0 0 −FΣ
c 0

0 IΠc 0 0 0 −FΠ
c





CΣ

CΠ

S3/2
a

S1/2
a

SΣ
c

SΠ
c



=



D11b
3/2

D12b
3/2

D11f
3/2

D12f
3/2

0

0



.

(3.75)

In order to write this in a more concise form, we have reordered the scattering

amplitudes in the vector of unknowns from Eq. (3.56). Technically, the spin-orbit
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Hamiltonian couples the Σ state with the Π̄ (and, similarly, the Σ̄ state with the

Π state). For simplicity, we have suppressed the superscript bar. The solution to

this system of equations yields the scattering wave function in the Λ basis, as well

as the mixed-state reactive and nonreactive scattering amplitudes. Note that the

transformation from the Λ basis to the ja basis at the boundary Γa reduces the

sparsity of the 2nd and 3rd columns of the matrix in Eq. (3.30), after introduction

of the elements of the ΛΣ → ja transformation matrix.

3.4.5.1 Potential Energy Surface

To investigate nonadiabaticity in the collinear F+H2 reaction, we use the re-

cent Li-Werner-Alexander-Lique (LWAL) FH2 PESs [63]. Figure 3.19 displays con-

tour plots of these PES’s in both the ja and Λ bases. A similar plot of the FH2

PES’s in the adiabatic basis, in both bond- and mass-scaled-Jacobi coordinates, is

presented in Fig. 3.20. The corresponding one-dimensional plot of the energies along

the MEP is shown in Fig. 3.21. At the barrier, the energy of the Π state is so high,

that the lowest electronically adiabatic state is indistinguishable from the energy of

the Σ state. We used the same asymptotic value of the spin-orbit constant in the

reactant channel as in the F+HCl simulations: BF = 0.01607 eV.

3.4.5.2 Two-State Scattering with Mixed Boundary Conditions

Figures 3.22 and 3.23 show the scattering probabilities for nonreactive and

reactive collisions of, respectively, F(ja = 3/2) and F(ja = 1/2) with H2.
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Figure 3.24 is a contour plot of the divergence of the probability current density

field on the lower adiabatic state, ∇ · Ja1 . Because the Π surface is energetically

inaccessible in the exit channel, nonadiabaticity in the F+H2 reaction occurs only in

the reactant arrangement, largely confined to regions of configuration space between

the seams where |VΣ − VΠ| = 3B and VΣ = VΠ.

Unlike the F+HCl reaction, we see that the nonadiabatic, inelastic scattering

probabilities (the probabilities for fine-structure changing F(ja)+H2 collisions) drop

to nearly zero at two energies. As one might have anticipated, we see (rows 2

and 4 in Fig. 3.24) that the nonadiabatic divergence almost completely vanishes

at these energies. In contrast, for the F+HCl reaction the nonadiabatic, inelastic

transition probabilities never quite reach zero so that the nonadiabatic divergence

in the reactant channel never quite vanishes.

The sign of the nonadiabatic divergence in the reactant channel of the F+H2

reactions is again opposite for the initial states a1 and a2, as can be seen by com-

paring the columns of Fig. 3.24. This is the identical to the F+HCl reaction. We

see the location of the nonadiabatic divergence is the same for both initial states,

however the direction of the nonadiabatic divergence is not. At the total energy rep-

resented by the third row of plots in Fig. 3.24 the largest nonadiabatic divergence

occurs, which corresponds to maximal nonadiabatic, inelastic probability (Figs. 3.22

and 3.23).

From the right panel of Fig. 3.18 we can see that for F+H2 the gradient of

the mixing angle, θ, is confined to the reactant channel. This is expected from the

repulsive behavior of the upper state. Once the Σ and Π states become separated
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by an amount much larger than the 3B (∼ 0.05 eV for the F atom), there is no

more mixing. We also note that the direction of the vector field is about 45◦ relative

to the direction of the reaction path. Consequently, there is no preferred sense

(longitudinal or transverse) in the wave character of the nonadiabatic divergence.

3.4.6 Discussion

In this section we have extended the FEM time-independent treatment of

collinear reactive scattering from Section 3.3 to reactions involving coupled poten-

tial surfaces. We solve the electronically coupled Schrödinger equation in a dia-

batic basis. This can be transformed easily on the boundary, to allow treatment of

atom+diatom systems in which different diabatic bases correspond to the asymp-

totically uncoupled basis in the two arrangements.

The FEM method yields the scattering wave function directly, without post

processing. By transforming the scattering wave function into an electronically

adiabatic basis, we can obtain the adiabatic probability current density. In the fluid

dynamic picture of quantum scattering, the divergence of this vector field shows

unambiguously where, and over what range, nonadiabaticity occurs. This is the

first two-dimensional extension of simpler one-dimensional models [67, 68, 157, 158]

of nonadiabaticity in reaction dynamics.

In applications to the F+HCl→FH+Cl and F+H2 →FH+H reactions, we

observe that the nonadiabatic divergence displays pronounced oscillatory behavior,

extending over a range similar to the de Broglie wavelength of the reacting partners.
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Figure 3.19: Contour plots of the Li-Werner-Alexander-Lique (LWAL) [63] FH2

PESs in both the Λ and ja bases. The units here are eV, except for B, which

is shown in meV. The zero of energy corresponds to F(Σ)+H2(re), Ra = 10.5.

Asymptotically, at distances considerably larger than shown here, the two diabatic

PES’s become identical, VΣ = VΠ for large Ra and Rc. Shown in grey is the minimum

energy path (MEP) on the lowest adiabatic surface calculated using the method of

Weinan et al. [151] The solid grey circles are marker points to allow a comparison

with the one-dimensional reaction path shown later in Fig. 3.21.

These divergence waves occur where the off-diagonal coupling in the electrostatic and

spin-orbit diabatic basis is equal. Nonadiabaticity has long been thought [145–147]
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Figure 3.20: The FH2 PES’s in the adiabatic basis in bond coordinates (left panels)

and in mass-scaled Jacobi coordinates (right panels); distances in bohr and energies

in eV. The contour values on the right panels are identical to those on the left. The

dashed box shows the area examined in Fig. 3.24. The zero of energy corresponds

to F(Σ)+H2(re), Ra = 10.5. The light gray line corresponds to the minimum energy

path calculated using the method of Weinan et al. [151] The solid grey circles are

marker points to allow a comparison with the one-dimensional reaction path shown

in Fig. 3.21.

to be most pronounced on this seam. For the F+HCl reaction we observed that

the predominant nonadiabaticity in the formation of reactive products occurs in a

region well inside the minimum energy path, in a manifestation of corner-cutting in

this heavy-light-heavy reaction.

Comparing the nature of nonadiabaticity in the F+HCl and F+H2 reactions
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adiabatic surface, in the region of the barrier. The solid circles correspond to the

points marked solid circles in the collinear contour plots presented in Figs. 3.19, 3.20

and 3.24.

we observe a qualitative similarity in the nonadiabatic divergence. In these reactions

we observe an expected behavior, namely the divergence intensifies at energies cor-

responding to relative maxima in nonadiabatic transitions (inelastic and reactive)

and is diminished at energies corresponding to relative minima in the nonadiabatic

scattering probabilities.

In a recent paper [159] Guo et al., investigated the state-to-state dynamics

of the F+HCl system using a 3D time-dependent study on solely the ground state

potential energy surface (PES) of Deskevich [126]. These authors speculated that

electronic nonadiabaticity could contribute to the observed disagreement between

the predictions of the calculations and experiment [160]. Here we have shown,

albeit in reduced dimensionality, that nonadiabaticity in the F+HCl reaction can

be significant, and vary with collision energy. We believe that nonadiabaticity will

be similarly important in the F+HCl reaction in full dimensionality.
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Figure 3.22: (Upper panel) Probability of reactive F(ja = 3/2) + H2(va = 0) →

HF(vc
′ = 3)+H scattering. HF products are formed only in the lower (Λ = 0)

electronic state. (Lower Panel) Probability of inelastic F(ja = 3/2) + H2(va = 0)

→ F(ja
′) + H2(va

′ = 0) scattering. Note: Probabilities of reactive or inelastic

scattering to other vibrational levels are negligibly small. The thick black lines

mark the energies probed in Fig. 3.24.

Tully and his collaborators have developed a suite of powerful quasi-classical

surface-hopping methods, that have permitted the simulation of collision dynamics

in complex systems where multiple PES’s are coupled together [15, 66–71]. The

initial work on these methods was guided by a number of one-dimensional models.

We believe that the two-dimensional snapshots presented here increase our ability to

unravel the details of electronic nonadiabaticity in chemical reactions. As such, the

examples presented here, or similar studies on other exemplary systems, will provide
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Figure 3.23: (Upper panel) Probability of reactive F(ja = 1/2) + H2(va = 0) →

HF(vc
′ = 3)+H scattering. HF products are formed only in the lower (Λ = 0)

electronic state. (Lower Panel) Probability of inelastic F(ja = 1/2) + H2(va = 0)

→ F(ja
′) + H2(va

′ = 0) scattering. Note: Probabilities of reactive or inelastic

scattering to other vibrational levels are negligibly small. The thick black lines

mark the energies probed in Fig. 3.24.

far more stringent testbeds for the development and calibration of sophisticated

trajectory-based methods.

Two-dimensional calculations are not the state of the art in reactive scattering.

Extension of the FEM method to 3D scattering, even in the J = 0 limit, will be

computationally difficult, due to the large size of the matrices. More standard time-

independent methods for reactive scattering involving a single [6] or multiple poten-

tial energy surfaces [62] are based on propagation of the ratio of the derivative of

the scattering wave function to the wave function itself (the so-called log-derivative).
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on the lower adiabatic surface, ∇ · Ja1 , for a range of collision energies and for

ja = 3/2 (left) and ja = 1/2 (right). The red curves in the left (right) panels delimit

the classically allowed regions on the lower (upper) adiabatic potential. The solid

and dashed black lines delineate, respectively, the seams where |VΣ − VΠ| = 3B

and VΣ = VΠ. The blue and red contours correspond to loss (gain) of current

density associated with the lower (a1) adiabatic state. The two panels in each row

correspond to the same total energy. The region of the PES depicted corresponds

to the dashed rectangles in Fig. 3.20.
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Once the S matrix has been determined, at the end of the propagation, one could

back-propagate to extract the wave function, and, from this, the current density

field and, in the case of scattering on multiple PES’s, the vector divergence. This is

now routine in time-dependent inelastic scattering [161]. However, no generalized

software exists to perform these fully 3D nonadiabatic calculations. Notwithstand-

ing, these collinear calculations provide unique, and hitherto unseen, insight into

nonadiabaticity in reactive collisions.

3.5 Ultracold Nonadiabatic Reactions: Li+CaH

3.5.1 Introduction

There is recently much interest to efficiently produce cold and ultra-cold

molecules [162, 163]. The field of low temperature chemistry offers increased con-

trol over the quantum state of the reactants and collision energy resolution. The

cold regime also allows for precise single-molecule spectroscopy [164] and control

over chemical reactions using external fields or trapping cold molecules in optical

lattices [165] and magnetic traps [166]. Optical lattices are a promising tool for

realizations of quantum information objectives, i.e. quantum computers and simu-

lators.

The magnetic trapping and co-trapping of cold atoms and molecules are tools

for precise studies of collision dynamics and measurements that can reveal new

physics [167]. Stark deceleration has been used successfully to slow down supersonic

beams of polar molecules such as OH [168, 169] and ND3 [170]. Sub-kelvin reac-
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tions have also been studied by exploiting the Zeeman effect. The Zeeman effect

is exploited using curved magnetic quadrupole guides to merge a beam molecules

with a magnetic moment, such as metastable Ne, with another beam of molecules

to investigate resonances in the ultra-cold reaction regime [171–173].

Reaction kinetics in the low kelvin regime have also been studied by the so-

called CRESU technique (cinétique de réaction en éclement supersonique uniforme,

or reaction kinetics in uniform supersonic flow). Sims and coworkers [64] have re-

cently used this technique to determine the F+H2 reaction rate from 11 K to 295K.

These measurements, which are below the 800K reaction barrier, confirmed that the

reaction rate in the low temperature regime is driven by quantum tunneling effects.

Recently, a slow beam of CaH(X2Σ+) molecules has been realized by two-

stage cell buffer gas method [174,175]. A similar method has been used to prepare a

source of slow CaF molecules [166]. Beams of slow moving molecules can be used as

a source for loading molecular traps. In this study we are interested in the feasibility

of using these techniques to cool trapped CaH molecules to sub-kelvin temperatures

via controlled interactions with a beam of cold Li atoms.

The theoretical plausibility of using cold Li atoms for sympathetic cooling of

CaH molecules in a spin-polarized state has been demonstrated in scattering cal-

culations [176]. The calculations on the spin-polarized Li-CaH triplet surface show

a favorable ratio of elastic to inelastic collisions, which predicts minimal collision

induced loses. Tscherbul et al. claim that extending the CaH interatomic distance

does not lead to the reaction on the triplet surface, on the other hand, the singlet

surface may lead to the following exothermic reaction with exothermicity of 0.67
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eV:

Li(2S) + CaH(2Σ+) → Ca(1S) + LiH(1Σ+). (3.76)

Low temperature collisions on the endothermic triplet surface should not lead

to reaction. The possibility of spin-orbit coupling between triplet and singlet surfaces

that would lead to depolarizing the high spin state and cause a loss in sympathetic

cooling process remains an open questions. Therefore, in this work, we present

reduced dimensionality finite element method (2D-FEM) studies of collisions be-

tween Li and CaH on the triplet (S=1) potential energy surface with coupled by the

spin-orbit term to the barrierless singlet (S=0) surface. To perform these scattering

calculations we first calculate new potential surfaces including the singlet and triplet

surfaces as well as the spin-orbit coupling term from first-principle configuration in-

teraction calculations.

3.5.2 ab initio Potential Surfaces

In this study we are interested in the interaction between Li(2S) atom and the

CaH molecule in the ground electronic X2Σ+ state. In our ab initio approach to

calculate the S = 0 (singlet), S = 1 (triplet) potential energy surfaces and the spin-

orbit coupling between these surfaces we used the state-averaged complete active

space configurational self-consistent field (SA-CASSCF) method to obtain reference

orbitals for subsequent internally contracted multi-reference configuration interac-

tion calculations including explicitly single and double excitations (ic-MRCISD).
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The Davidson correction was applied to account for effects of higher excitations in

an approximate manner. The Ca atom was described by all-electron correlation

consistent quadruple-zeta basis set (vQZ), the Li atom by augmented, correlation

consistent quadruple-zeta (aug-cc-pVQZ) and hydrogen by aug-cc-pVTZ basis sets.

The reference wave function for the MCSCF calculations were obtained from

the restricted Hartree-Fock calculations (RHF) for the high-spin case. The first

step of the CASSCF calculations was to perform state-averaged calculations for

the singlet and triplet states. The active space in the CASSCF calculation was

composed of 13 orbitals in A′ representation and 3 orbitals of A′′ representation of

the Cs symmetry group. The first four A′ and one A′′ orbitals were kept frozen with

an additional four A′ and one A′′ correlated but kept doubly occupied.

Using the MRCI density matrices for the S = 0 and S = 1 Li-H-Ca electronic

states we calculated spin-orbit coupling matrix elements between the two surfaces.

The potentials and spin-orbit matrix element were calculated for geometry described

by two bond coordinates, uLiH and uHCa and ̸ Li-H-Ca bond angle. We calculated

the potential surfaces and the coupling term for the ̸ Li-H-Ca bond angle of 160

degrees andon a grid of interatomic distance from 1.4 to 24 a0 for uLiH and from 1.8

to 24 a0 for uHCa.

Figure 3.25 shows the contour plots of the potential energy surfaces and spin-

orbit constant in the interaction region for each fixed value of θ. In Fig. 3.26 we

show the potential energy surfaces along the minimum energy path along the triplet

surface for θ = 160. Lastly, we provide the descriptive parameters of each potential

surface in Table 3.5.2.
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Figure 3.25: Potential contours of the Li+CaH reaction for the singlet surface in eV

(top), triplet surface in eV (middle) and spin-orbit matrix element in meV (bottom)

as a function of bond coordinates for three fixed collision angles θ = 120◦, 140◦, 160◦.
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surface in eV and spin-orbit matrix element in meV along the minimum energy path

for θ = 160◦ (from Weinan’s method [151]).

3.5.3 Results and Discussion

We use the reactive scattering software developed in this Chapter to simulate

the nonadiabatic reaction dynamics of Li+CaH coupled singlet and triplet potential

surfaces. Specifically we are interested in the possible quenching of the by spin-orbit
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Table 3.3: Minimum geometries for the singlet and triplet surfaces of Li+CaH.

Values given in bohr and eV.

θ ULiH UHCa Vmin

singlet 120 2.99 4.19 -1.37

140 2.99 4.23 -1.27

160 2.99 4.40 -1.24

triplet 120 3.19 3.90 -0.91

140 3.19 3.82 -0.78

160 3.22 3.82 -0.66

induced nonadiabatic transitions. The singlet and triplet surfaces are coupled by

the spin-orbit operator, namely,

V(Q) = Vel(Q) + VSO(Q) =

 VS=0(Q) 0

0 VS=1(Q)

+

 0 B(Q)

B(Q) 0

 . (3.77)

The spin-orbit constant, B, vanishes asymptotically in both the reactant and

product channels. Accordingly, we can use the same potential basis in both reactant

and product channels as we did in the case of F+HCl in Section 3.4.4. In Fig. 3.27

we provide the results of the scattering simulations at low collision energies.

From Fig. 3.27 we can see there is essentially zero spin-orbit induced nonadia-

batic reaction probability. The probabilities do vary some as a function of the bond

angle and therefore one expects the full three dimensional scattering calculations

123



0.01 0.02 0.03 0.04

0.2
0.4
0.6
0.8

1
1.2

collision energy, eVpr
ob

ab
ilit

y 
(1

0 
  )

 

 

θ=160°

θ=140°

θ=120°
-3

Figure 3.27: Nonadiabatic reactive scattering probabilities summed over all final

states for triplet Li(2S)+CaH(2Σ) → Ca(1S)+LiH(1Σ) as a function of angle. Note:

the results for θ = 160◦ are increased by a factor of 100.

would accordingly vary from these results qualitatively. However, the magnitude of

these results is so small that it is unlikely that the inclusion of rotational dynam-

ics will dramatically increase the probability of nonadiabatic transitions induced by

spin-orbit couplings.

Nonadiabatic transitions are most probable when the off-diagonal elements of

the coupling potential are on the order of magnitude of the difference between the

diagonal potential surfaces. Based on the new ab initio potential surfaces presented

in this work, we have found that the spin-orbit coupling never satisfies this require-

ment. Our scattering calculations, albeit in reduced dimensionality, have shown that

for collision energies relevant in ultra-cold cooling methods, the spin-orbit induced

transitions are negligibly small. This emboldens the claim made by Tscherbul and

coworkers [176] that lithium atoms are very promising collision partners to produce

ultra cold CaH molecules.
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Chapter 4: Representation of Reactive Potential Surfaces

4.1 Overview

In this Chapter we describe some aspects of the potential energy surfaces

required for the study of nonadiabaticity in atom-diatom reactions. We refer the

reader elsewhere for an introduction to ab initio electronic structure calculations [3–

5, 73, 177, 179]. In particular, we will introduce the use of a time-reversal-invariant

basis for reactive scattering. We also discuss the results of our recent potential

energy calculations for the O(3P )+H2 system.

As discussed in the preceding chapters, to model accurately the reaction dy-

namics of open-shell systems we require multiple, coupled potential energy surfaces.

To simplify the treatment of the dynamics we need to take advantage of all possible

symmetries in the representation of the electronic Hamiltonian. In this chapter we

show how exploiting time-reversal [180] symmetry can achieve a significant blocking

of the matrix of the Hamiltonian. We apply this simplification to a set of new,

accurate potential energy surfaces for the O(3P ) +H2 reaction including electronic

diabatic and spin-orbit couplings.
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4.2 A(2P)+BC

Consider the collision of an atom in a 2P electronic state with a closed-shell

diatomic. Asymptotically, the electronic angular momentum L = 1 and the spin

S = 1/2. and there are 6 electronic states (two values of ms and three values of ml).

We will use the |ΛΣ⟩ basis of Alexander and co-workers, [62] namely |Σ⟩, |Σ̄⟩, |Π1⟩,

|Π̄1⟩, |Π−1⟩ and |Π̄−1⟩], where

|Σ⟩ ≡ |l = 1,ml = 0⟩|s = 1/2,ms = 1/2⟩

which can be simplified as

|Σ⟩ ≡ |0⟩|1/2⟩

and so forth, for example,

|Π̄1⟩ = |1⟩| − 1/2⟩.

In this definite-m representation (so-called because the projection of the elec-

tronic angular momentum is a good quantum number), the matrices of the electronic

Hamiltonian given by Alexander [62]

HΛΣ
el =



Σ Σ̄ Π1 Π̄1 Π−1 Π̄−1

Σ VΣ 0 −V1 0 V1 0

Σ̄ 0 VΣ 0 −V1 0 V1

Π1 −V1 0 VΠ 0 V2 0

Π̄1 0 −V1 0 VΠ 0 V2

Π−1 V1 0 V2 0 VΠ 0

Π̄−1 0 V1 0 V2 0 VΠ



.
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It is also possible to use a basis in which Cartesian representation of the Π

states (Πx and Πy are used. For a triatomic system, with a plane of symmetry, there

will be no coupling between the Πy state, which is antisymmetric with respect to

reflection in this plane, and the Πx and Σ states, which are symmetric with respect

to this same reflection. The elements of the electronic Hamiltonian in this basis are

the product of standard electronic structure codes (for example MOLPRO [3]). We

have VΣ = Vzz, VΠ = (Vxx + Vyy)/2, V2 = (Vyy − Vxx)/2 and V1 = Vxz/
√

2. Here,

each term is a function of the three internal coordinates of the triatomic system.

The spin-orbit Hamiltonian is also given by Alexander [62]

HΛΣ
so =



Σ Σ̄ Π1 Π̄1 Π−1 Π̄−1

Σ 0 0 0 −
√

2B 0 0

Σ̄ 0 0 0 0 −
√

2B 0

Π1 0 0 −A 0 0 0

Π̄1 −
√

2B 0 0 A 0 0

Π−1 0 −
√

2B 0 0 A 0

Π̄−1 0 0 0 0 0 −A



,

where A and B are defined in [Ref. [62]]. In the following section we show how the

total Hamiltonian for this system (a coupled 6×6 system) can be block-diagonalized

in a basis of states – the so-called Kramers states – in which the time-reversal

operator θ̂ is diagonal.

127



4.2.1 Kramers States

The Kramers states are those that diagonalize the time-reversal operator θ̂

(which commutes with the Hamiltonian). Knowing the action of the time-reversal

invariant operator, from Brink [180],

θ̂|jm⟩ = (−1)j−m|j −m⟩,

where j can be either l or s, we can construct the matrix of θ̂. This operator acts

simultaneously in both the three-dimensional coordinate space and in the spin space,

so that

θ̂ ≡ θ̂lθ̂s.

It is easy to compute the matrix of θ̂ in the |ΛΣ⟩ basis. We find that the full matrix

of θ̂ is

θΛΣ =



Σ Σ̄ Π1 Π̄1 Π−1 Π̄−1

Σ 0 1 0 0 0 0

Σ̄ −1 0 0 0 0 0

Π1 0 0 0 0 0 −1

Π̄1 0 0 0 0 1 0

Π−1 0 0 0 −1 0 0

Π̄−1 0 0 1 0 0 0



.

As a result, in the |ΛΣ⟩ basis the matrix of the time-reversal operator is “anti-

unitary” so that θ̂2 = −I. Diagonalization gives six eigenvectors

|Σ(ε)⟩ = 2−1/2
(
|Σ⟩ + iε|Σ̄⟩

)
,
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|Π(ε)
1/2⟩ = 2−1/2

(
|Π−1⟩ − iε|Π̄1⟩

)
and

|Π(ε)
3/2⟩ = 2−1/2

(
|Π1⟩ − iε|Π̄−1⟩

)
,

where ε = ±1. The subscript refers to the z-component of the total angular mo-

mentum mj = ml + ms. We will denote these eigenfunctions as Kramers states

(or Kramers doublets, although the word “doublet” designates the triple two-fold

degeneracy, not the multiplicity). The index ε is related to the eigenvalue of θ̂,

namely

θ̂|Λ(ε)⟩ = iε|Λ(ε)⟩.

Note that the definition of the Kramers states in Ref. [62] is incorrect, specifi-

cally Eq. (27). The correct definitions of the Kramers Π states involve linear combi-

nations of |Πλ⟩ and |Π̄−λ⟩. Specifically, the Kramers states |Π±
1/2⟩ are complex linear

combinations of the two states with ω = λ + σ = ±1/2 while the |Π±
3/2⟩ states are

complex linear combinations of the two states with ω = λ+ σ = ±3/2.

In the Kramers basis, the matrices of both the potential and the spin-orbit

Hamiltonian separate into 3 × 3 blocks. We find

H
(ε)
el (R, θ) =

∣∣∣∣∣∣∣∣∣
H

(+)
el 0

0 H
(−)
el ,

∣∣∣∣∣∣∣∣∣
where

H
(+)
el (R, θ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Σ(+) Π
(+)
1/2 Π

(+)
3/2

Σ(+) VΣ V1 −V 1

Π
(+)
1/2 V1 VΠ V2

Π
(+)
3/2 −V1 V2 VΠ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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and H
(−)
el = H

(+)
el . For the spin-orbit Hamiltonian, we find

H(ε)
so (R, θ) =

∣∣∣∣∣∣∣∣∣
H(+)

so 0

0 H(−)
so ,

∣∣∣∣∣∣∣∣∣
where

H(+)
so (R, θ) =

Σ(+) Π
(+)
1/2 Π

(+)
3/2

Σ(+) 0 i21/2B 0

Π
(+)
1/2 −i21/2B A 0

Π
(+)
3/2 0 0 −A

and H(−)
so (R, θ) = H(+)

so (R, θ)†.

4.2.2 Collinear Geometry

In collinear geometry, A = B and V1 = V2 = 0. The matrix of the full

Hamiltonian (electrostatic plus spin-orbit) is then, in the Kramers basis

H
(±)
K (R, θ) =

Σ(±) Π
(±)
1/2 Π

(±)
3/2

Σ(±) VΣ ±i21/2A 0

Π
(±)
1/2 ∓i21/2A VΠ + A 0

Π
(±)
3/2 0 0 VΠ − A

. (4.1)

In the limit where VΣ = VΠ, the three eigenvalues are VΠ − A (doubly degen-

erate) and VΠ + 2A, with eigenvectors (column ordered).

E VΠ − A VΠ − A VΠ + 2A

CΣ 0
(
2
3

)1/2
i

(
1
3

)1/2
i

CΠ1/2
0 −

(
1
3

)1/2 (
2
3

)1/2
CΠ3/2

1 0 0

. (4.2)
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We shall refer to the 3 × 3 matrix of coefficients in this equation as C.

One of the Π states is not coupled to the other two states. This is equivalent

(in the Kramers basis) to the Π3/2 and Π−3/2 states in the ΛΣ basis used in [62]. The

only mixing is between the Π±1/2 and the Σ±1/2 states (in the ΛΣ basis or between

the Σ(ε) and Π
(ε)
1/2 states (in the Kramers basis).

For a 2P atom with a p5 electron occupancy, A is positive, so the state with

E = VΠ−A will be the lower and that state with E = VΠ +2A, the upper. We shall

designate these as “ja” states, and label them as |jaΩ⟩. Here Ω is the projection

quantum number of the total (electronic orbital plus spin) angular momentum of

the atom. We have |3
2
3
2
⟩, |3

2
1
2
⟩, and |1

2
1
2
⟩. Note that the |3

2
3
2
⟩ state is identical to the

|Π3/2⟩ state.

4.2.3 Comparison with Previous Work

In the 6-state ΛΣ basis, in collinear geometry the matrix of the potential is

diagonal [see Eq. (20) of [62]]. The matrix of the spin-orbit coupling [Eq. (25) of [62]]

consists of two 2 × 2 blocks and two singleton blocks. The matrix of Ĥel + Ĥso is

then
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H =



Σ Π̄1 Π̄−1 Σ̄ Π−1 Π1

Σ VΣ −21/2A 0 0 0 0

Π̄1 −21/2A VΠ + A 0 0 0 0

Π̄−1 0 0 VΠ − A 0 0 0

Σ̄ 0 0 0 VΣ −21/2A 0

Π−1 0 0 0 −21/2A VΠ + A 0

Π1 0 0 0 0 0 VΠ − A



.

In collinear geometry, the matrix of the Hamiltonian is block-diagonal in both

the ΛΣ and Kramers bases. In bent (non-collinear) geometry, however, only the

Kramers states achieve this block diagonalization. The results presented here differ

from [62] and are consistent with an alternative derivation of the Kramers basis for

the A(2P )+BC system [181].

4.2.4 Scattering Calculations

4.2.4.1 Two Possible Diabatic Bases

To describe scattering in the presence of multiple electronic states, we use a

basis obtained by multiplying a wave function ψ, which is a function of the nuclear

coordinates, by an electronic state function. For these we can use either the Kramers

or ja states. Note: the ja basis is used previously to treat the nonadiabatic scattering

of F+HCl in Section 3.4.4. If we neglect the Ω = 3/2 state, which is not coupled to
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the other two, then the transformation between the Kramers and ja states is ja = 1/2

ja = 3/2

 = D†

 Σ

Π1/2

 . (4.3)

More compactly, we can write this equation as

|ja⟩ = D†|Λ⟩ (4.4)

or, equivalently

|Λ⟩ = D|ja⟩, (4.5)

where |ja⟩ and |Λ⟩ are 2×1 column vectors. Here we use Λ to designate the Kramers

states with Λ = 1 and Λ = 2 corresponding, respectively, to the Σ state and Π−1

states.

The matrix D diagonalizes the upper 2× 2 block of Eq. (4.1) in the limit that

VΣ = VΠ, namely

D†

 V ∓i21/2A

±i21/2A V + A

D =

 V − A 0

0 V + 2A


from Eq. (4.2). Note that the matrix is column ordered, i.e.

D = 3−1/2

 21/2i i

−1 21/2

 . (4.6)

Since in the Kramers basis the matrix of the Hamiltonian is block-diagonal in ε,

and independent of this index (to within a sign difference), we can neglect ε.

Formally, then, we can write the Hamiltonian as

Ĥ(Q) =
∑
Λ

∑
Λ′

|Λ⟩H(K)
ΛΛ′ (Q)⟨Λ′|, (4.7)
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where Λ = 1, 2, 3 designates the three Kramers states |Σ⟩, |Π−1⟩ and |Π1⟩, and

HΛΛ′(Q) is the 3× 3 matrix given in Eq. (4.1). Here we use the single variable Q to

represent the nuclear coordinates {R, r}. Since the Π1 state is uncoupled from the

first two, a scattering calculation on the reaction of a halogen atom can be decoupled

into two steps: (a) a single-state calculation based on a potential energy surface

VΠ −A [the (3,3) element of the H matrix of Eq. (4.1)], and a two-state calculation

based on the expansion of Eq. (4.7) in which the summations are restricted to |Σ⟩

and |Π−1⟩.

Alternatively, we can work in the ja basis, in which case we write the Hamil-

tonian as

Ĥ(Q) =
∑
ja

∑
j′a

|ja⟩H(j)
jaja′(Q)⟨ja′|. (4.8)

4.2.4.2 S Matrix

The S matrix we then obtain will be indexed in the labels of whichever of

the two diabatic bases we use. In the mixed halogen reactions (X+HY→XH+Y)

we should use the ja basis, since, asymptotically, the Hamiltonian is diagonal in

this representation. However, in reactions of a halogen with H2, the Hamiltonian is

diagonal in the ja basis in the reactant arrangement but diagonal in the Kramers

basis in the product arrangement. Since VΠ and VΣ differ dramatically in this region,

it makes more sense to solve the scattering problem in the Kramers basis. However,

on the reactant boundary, we then need to transform the S matrix from the Kramers

to ja basis.
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If a scattering calculation is done in the Kramers basis, then we can expand

the S-matrix formally similarly to Eq. (4.7), namely

Ŝ =
∑
Λ

∑
Λ′

|Λ⟩S(K)(Λ,Λ′)⟨Λ′|. (4.9)

Thus the S-matrix element for a transition between a state ja in the reactant (X+H2)

to a state XH+H in the product arrangement is

S(ja,Λ
′′) =

∑
Λ

⟨ja|Λ⟩S(K)(Λ,Λ′′). (4.10)

Similarly, the S-matrix element for a nonreactive transition between states ja and

j′a both in the reactant arrangement is

S(ja, j
′
a) =

∑
Λ

∑
Λ′⟨ja|Λ⟩S(K)(Λ,Λ′)⟨Λ′|j′a⟩.

Here ⟨ja|Λ⟩ is an element of the D† matrix and ⟨Λ|ja⟩ is an element of the D matrix.

Note that this 2 × 2 transformation of the S matrix is diagonal in the vibrational

index. In the reactant arrangement, the H2 vibrational wave function is independent

of the electronic state of the halogen atom. In the product arrangement, only the

Σ state exists at low to moderate energies, so S(K)(1, 2) = S(K)(2, 2) = 0

4.2.4.3 Adiabatic Basis

It is also possible to define the electronically adiabatic states which result from

by diagonalizing the (complex, hermitian) H matrix of Eq. (4.1) at each point on the

PES. We shall refer to these states as |a1⟩ and |a2⟩, where the indices “1” and “2”

designate the lower and upper of the electronically adiabatic states. The scattering

on the ja = 3/2 PES is unaffected. n either diabatic basis (Kramers or ja), the
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transformation into the adiabatic basis can be written in terms of a mixing angle

which varies over the PES.

4.2.4.4 Kramers Basis

An orthogonal rotation in two dimensions can be described in terms of single

angle θ. In the Kramers basis, this mixing angle is chosen to diagonalize the upper-

left 2×2 matrix in Eq. (4.1). We can diagonalize Eq. (4.1) using the transformation

RKH
+
KR

†
K , where

RK =

 cos θK − sin θK

sin θK cos θK

 (4.11)

and

θK(Q) =
1

2
tan−1

[
23/2A(Q)

VΣ(Q) − [VΠ(Q) − A(Q)]

]
, (4.12)

which is a function of the coordinates R and r. The 2 × 2 unitary transformation

(the complex analogue of the 2 × 2 rotation) is

CK =

 i cos θK sin θK

−i sin θK cos θK

 . (4.13)

The mixing angle and, consequently, the orthogonal transformation C are functions

of the nuclear coordinates Q.

In Eq. (4.13) we are ordering the eigenvectors by column, so that, in matrix

notation

|a⟩ = C†
K|Λ⟩, (4.14)
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where |a⟩ and |Λ⟩ are the 2 × 1 column vectors

|a1⟩ = C∗
11|Σ⟩ + C∗

21|Π1/2⟩

and

|a2⟩ = C∗
12|Σ⟩ + C∗

22|Π1/2⟩.

More specifically,

C†
K

 VΣ ±i21/2A

∓i21/2A VΠ + A

CK =

 El 0

0 Eu


and  |a1⟩

|a2⟩

 = C†
K

 |Σ⟩∣∣∣Π1/2

⟩


The inverse transformation is

|Λ⟩ = CK|a⟩. (4.15)

Asymptotically VΠ = VΣ, so that the mixing angle becomes

θ∞ ≡ lim
R→∞

θK =
1

2
tan−1(23/2) ≈ 0.1959π (4.16)

This angle is in the first quadrant and we have

cos θ∞ = (1/3)1/2 and sin θ∞ = (2/3)1/2 (4.17)

Asymptotically the adiabatic states become the ja states from Eq. (4.13)

lim
R→∞

CK = D.

Because the spin-orbit constant A is a positive number, the numerator in

Eq. (4.12)] will be positive. When VΣ > VΠ +A, the denominator is Eq. (4.12) will

137



also be positive, so that 2θ will lie in the first quadrant of 0 ≤ θK ≤ π/4. When

VΣ < VΠ + A, the denominator will be negative, so that 2θ will lie in the second

quadrant, and π/4 ≤ θK ≤ π/2. These considerations will provide a check on the

numerical calculation of θK.

4.2.4.5 ja Basis

The Hamiltonian in the ja basis is obtained by transformation of the Hamilto-

nian in the Kramers basis HK [Eq. (4.1)] by the matrix D defined in Eq. (4.6). We

have

Hja = DHK
(±)D† =



3
2
3
2

3
2
1
2

1
2
1
2

3
2
3
2

VΠ − A 0 0

3
2
1
2

0 1
3
(VΠ + 2VΣ) − A 21/2

3
(VΣ − VΠ)

1
2
1
2

0 21/2

3
(VΣ − VΠ) 1

3
(2VΠ + VΣ) + 2A


.

(4.18)

This real matrix can be diagonalized by the transformation using Eq. 4.11. The

mixing angle in the ja basis is thus

θja(Q) =
1

2
tan−1

[
23/2(VΣ − VΠ)

VΣ − VΠ − 9A

]
. (4.19)

The transformation between the ja and adiabatic states is

|a⟩ = R†|ja⟩.

For use later, we can invert this transformation, obtaining

|ja⟩ =
(
R†
)−1

|a⟩ = R|a⟩. (4.20)
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4.2.5 Mixed Halogen X+HY→XH+Y Reaction

This diagonalizing transformation from Kramers to the ja bases is independent

of the magnitude of the spin-orbit constant. Thus, for mixed halogen reactions,

where both the reactant and product arrangements correspond to a 2P atom plus a

closed-shell diatomic molecule, the same Kramers→ ja transformation will be valid

at both the reactant and product asymptotes. The appropriate diabatic basis is the

ja states, in which the Hamiltonian is diagonal in both the asymptotic reactant and

product arrangements.

Note that this result is independent of the ± index (the time reversal symme-

try) of the Kramers states. The matrix of Ĥ is purely real. Consequently, as we

mentioned in the preceding subsection, it can be diagonalized by a (real) orthogonal

transformation.

4.2.6 Reaction of Halogen Atom with H2

In X+H2 →XH+H reactions, in the product channel VΠ is very high and not

equal to VΣ. Thus, the Hamiltonian in the ja basis [Eq. (4.18)] is not diagonal in

the asymptotic product channel. However, since the spin-orbit coupling A goes to

zero in the product channel (if one neglects the coupling between the two Π states,

at very high energy), the Hamiltonian is diagonal in the Kramers basis. Thus, for

X+H2 →XH+H reactions, it is most appropriate to expand the wave function in

terms of the Kramers states. Then, we use Eq. (4.10) to transform the S matrix

into a mixed representation (ja states for the X+H2 asymptote and Kramers states
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for the XH+H asymptote).

4.3 A(3P)+B2

We now consider the collision of an atom in a 3P electronic state with a closed-

shell diatomic, and example being O(3P )+H2 →OH+H. In the reactant asymptote

are nine degenerate electronic states. To determine the form of the potential in

the ΛΣ or Kramers basis we will first need to determine the transformation from a

Cartesian basis (which is the usual basis for ab initio calculations) to the ΛΣ basis.

We assume that the molecule lies in the xz plane, so that px and pz belong

to the A′ irreducible representation in Cs symmetry and the py orbital is out of

plane and belongs to the A′′ representation. For p4 electron occupancy we identify

a determinant by its two half-filled orbitals. Any p4 determinants with a single py

electron will therefore have A′′ symmetry. These nine states are given below, with

their respective symmetry, spin projection and Slater determinant.
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

q(p4) symmetry MS Slater determinant

x̄z̄ A′ 1 |pxpyp̄ypz|

ȳz̄ A′′ 1 |pxp̄xpypz|

x̄ȳ A′′ 1 |pxpypzp̄z|

xz̄ A′ 0 2−1/2(|p̄xpyp̄ypz| + |pxpyp̄yp̄z|)

yz̄ A′′ 0 2−1/2(|pxp̄xp̄ypz| + |pxp̄xpyp̄z|)

xȳ A′′ 0 2−1/2(|p̄xpypzp̄z| + |pxp̄ypzp̄z|)

xz A′ −1 |p̄xpyp̄yp̄z|

yz A′′ −1 |pxp̄xp̄yp̄z|

xy A′′ −1 |p̄xp̄ypzp̄z|



.

We can write down the Cartesian equivalents of the ΛΣ states using the rela-

tionship between the definite-M and Cartesian orbitals, namely

p±1 = ∓2−1/2[px ± ipy],

and

p0 = pz.

The transformation matrix between the ΛΣ and Cartesian bases is block diagonal

with respect to MS, i.e.

T =



T̃ 0 0

0 T̃ 0

0 0 T̃


,
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where

T̃ =
1√
2



ML Πx Πy Σ

1 −1 −i 0

0 0 0 1

−1 1 −i 0


.

In the Cartesian basis, the matrix of the Hamiltonian is (a) diagonal in MS,

(since the choice of the z axis is arbitrary) and (b) with no coupling between the

two states of A′′ reflection symmetry and the single state of A′ reflection symmetry.

Thus the Hamiltonian matrix will be, for a p4 electron occupancy,

H
(xyz)
el =



q Πx Πy Σ

xz VΠx 0 0

yz 0 VΠy V1

xy 0 V1 VΣ


.

The electronic Hamiltonian is also block diagonal in the ΛΣ basis. Using the

T̃ matrix, the electronic Hamiltonian in the ΛΣ basis can be written as

H
(ΛΣ)
el = T̃H

(xyz)
el T̃† =



ML 1 0 −1

1 VΠ −iV1/
√

2 V2

0 iV1/
√

2 VΣ iV1/
√

2

−1 V2 −iV1/
√

2 VΠ


,

where VΠ = (VΠx + VΠy)/2 and V2 = (VΠx − VΠy)/2.

We designate V1 the coupling between the two states of A′′ symmetry. Note

that V1 vanishes in linear geometry.

lim
θ=0,π

V1 = 0.
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Thus in collinear geometry we have

H
(xyz)
el =



q Πx Πy Σ

xz VΠx 0 0

yz 0 VΠy 0

xy 0 0 VΣ


and

H
(ΛΣ)
el =



ML 1 0 −1

1 VΠ 0 0

0 0 VΣ 0

−1 0 0 VΠ


.

4.3.1 Spin-Orbit Hamiltonian

The |ΛΣ⟩ states are labelled by ML and MS. We’ll call the total projection

quantum number Ω = ML +MS. The spin-orbit Hamiltonian is diagonal in Ω. The

matrix of ĤSO depends on two, coordinate-dependent terms A and B (as in the 2P

case

H
(Ω=0)
SO =



ML 1 0 −1

ML MS −1 0 1

1 −1 A −21/2B 0

0 0 −21/2B 0 −21/2B

−1 1 0 −21/2B A



,
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H
(Ω=±1)
SO =



ML ±1 0

ML MS 0 ±1

±1 0 0 −21/2B

0 ±1 −21/2B 0


,

and

H
(Ω=±2)
SO =



ML ±1

ML MS ±1

±1 ±1 −A


,

where

A ≡ ⟨3Πx|LzSz|3Πy⟩,

and

B ≡ ⟨3Πy|LySy|3Σ⟩.

The full 9 × 9 matrix of ĤSO in the ΛΣ basis can be written as follows (we

suppress the lower triangle for simplicity)
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H
(ΛΣ)
SO =



ML 1 0 −1 1 0 −1 1 0 −1

ML MS −1 −1 −1 0 0 0 1 1 1

1 −1 A 0 0 0 −21/2B 0 0 0 0

0 −1 0 0 0 0 −21/2B 0 0 0

−1 −1 −A 0 0 0 0 0 0

1 0 0 0 0 0 −21/2B 0

0 0 0 0 0 0 −21/2B

−1 0 0 0 0 0

1 1 −A 0 0

0 1 0 0

−1 1 A



.

4.3.2 Cartesian Coordinates

Transforming the spin-orbit matrix to the Cartesian basis we have

H
(xzy)
SO = ZTH

(ΛΣ)
SO T†ZT ,

where Z takes into account the mixing between the two states with A′′ symmetry.

The Z matrix is block diagonal with respect to MS, with each 3 × 3 block defined
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as

Z(MS) =



Πx Πy Σ

1A′ 1 0 0

1A′′ 0 cos θ sin θ

2A′′ 0 − sin θ cos θ


,

here θ is the mixing angle between the two states of A′′ symmetry. We can write

the spin-orbit matrix in the Cartesian basis in terms of two 3 × 3 matrices

H
(xzy)
SO =



MS −1 0 1

−1 A B 0

0 B† 0 B

1 0 B† A†


, (4.21)

where

A =



1A′ 1A′′ 2A′′

1A′ 0 Ai cos θ −Ai sin θ

1A′′ −Ai cos θ 0 0

2A′′ Ai sin θ 0 0


and

B =



1A′ 1A′′ 2A′′

1A′ 0 B sin θ B cos θ

1A′′ −B sin θ 0 −Bi

2A′′ −B cos θ Bi 0


.

This gives us an alternative method to determine the mixing angle from the ab initio

calculations. Note that the mixing angle, θ, also vanishes in linear geometry, i.e.

lim
θ=0,π

θ = 0.
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The elements of the spin-orbit operator are quite easily determined in the

ΛΣ basis. Transformation to the Cartesian basis provides checks for accuracy and

consistency for the many non-zero ab initio HSO elements.

4.3.3 Kramers Basis

Using the results from the preceding sections one can now write down the total

Hamiltonian for the 3P system. This total electronic Hamiltonian couples all 9 ΛΣ

states. In this section we introduce a Kramers basis, to simplify substantially the

representation of the 3P Hamiltonian.

As defined above, the matrix elements of the time reversal operator, θΛ, de-

pends on the values of Λ and Σ and not on the actual occupation. In the ΛΣ basis

the time-reversal operator for a 3P system is
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θ
(ΛΣ)
Λ =



ML 1 0 −1 1 0 −1 1 0 −1

ML MS −1 −1 −1 0 0 0 1 1 1

1 −1 0 0 0 0 0 0 0 0 1

0 −1 0 0 0 0 0 0 0 −1 0

−1 −1 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 1 0 0 0 0

−1 0 0 0 0 −1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

0 1 0 −1 0 0 0 0 0 0 0

−1 1 1 0 0 0 0 0 0 0 0



.

Diagonalizing this matrix gives 4 ”doublets” and a ”singlet”, the so-called

Kramers states, namely

Kramers state ΛΣ state eigenvalue

|1, 1±⟩ 2−1/2(| − 1,−1⟩ ∓ |1, 1⟩) ±1

|1,−1±⟩ 2−1/2(|1,−1⟩ ∓ | − 1, 1⟩) ±1

|1, 0±⟩ 2−1/2(|1, 0⟩ ± | − 1, 0⟩) ±1

|0, 1±⟩ 2−1/2(|0,−1⟩ ± |0, 1⟩) ±1

|0, 0+⟩ |0, 0⟩ 1

.

These doublets are the pairs |ml,ms⟩ ± | −ml,−ms⟩. After transformation to this

Kramers basis, the total Hamiltonian separates into two blocks: a 5 × 5, H(+), and

a 4 × 4, H(−),
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HK(R, θ) =

∣∣∣∣∣∣∣∣∣
H(+) 0

0 H(−)

∣∣∣∣∣∣∣∣∣

H(+) =



|1, 0−⟩ |0, 1−⟩ |1, 1+⟩ |1,−1+⟩ |0, 0+⟩

⟨1, 0−| VΠy −B
√

2 −iB sin θ iB sin θ −iV1

⟨0, 1−| −B
√

2 VΣ Vd Vd 0

⟨1, 1+| iB sin θ −Vd VΠ − A cos θ V2 B(cos θ − 1)

⟨1,−1+| −iB sin θ −Vd V2 VΠ + A −B(cos θ + 1)

⟨0, 0+| iV1 0 B(cos θ − 1) −B(cos θ + 1) VΣ


and

H(−) =



|1, 0+⟩ |0, 1+⟩ |1, 1−⟩ |1,−1−⟩

⟨1, 0+| VΠx

√
2B cos θ iB sin θ iB sin θ

⟨0, 1+|
√

2B cos θ VΣ Vd Vd

⟨1, 1−| −iB sin θ −Vd VΠ − A cos θ V2

⟨1,−1−| iB sin θ −Vd V2 VΠ + A cos θ


where Vd = i(V1 + A sin θ)/

√
2.

The sub-matrices of the Hamiltonian in the Kramers basis further reduce in
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collinear geometry to

H
(+)
col =



|0, 1+⟩ |1, 0+⟩ |1, 1+⟩ |1,−1+⟩ |0, 0+⟩

⟨0, 1+| VΣ −21/2B 0 0 0

⟨1, 0+| −21/2B VΠ 0 0 0

⟨1, 1+| 0 0 VΠ − A 0 0

⟨1,−1+| 0 0 0 VΠ + A −2B

⟨0, 0+| 0 0 0 −2B VΣ



,

and

H
(−)
col =



|0, 1−⟩ |1, 0−⟩ |1, 1−⟩ |1,−1−⟩

⟨0, 1−| VΠ 21/2B 0 0

⟨1, 0−| 21/2B VΣ 0 0

⟨1, 1−| 0 0 VΠ − A 0

⟨1,−1−| 0 0 0 VΠ + A



.

In the following section we use the Kramers basis to study the potential sur-

faces of the O(3P )+H2(
1Σ+

g ). Specifically, we analyze the magnitude of the nonadi-

abatic contributions.

4.4 O(3P )+H2(
1Σ+

g )

Much work has been done to study the many potential energy surfaces in-

volved with the O(3P,1D,1 S)+H2(
1Σ+

g ) system [182, 183] and the adiabatic [184]

and nonadiabatic dynamics of this reaction. This reaction has long been of interest

in the field of chemical dynamics [182–188]. In this section we present new, chemi-

cally accurate, potential surfaces for the O(3P )+H2(
1Σ+

g ) reaction and calculations
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Figure 4.1: Schematic of the nine potential surfaces of the O(3P,1D,1 S)+H2 re-

action along the minimum energy path in (left) collinear and (right) slightly bent

geometries. These potential curves are generated from MRCI calculations at the

avtz level, with the exception of the attractive 1D curves in the right panel, which

are modeled by a simple sum of two Gaussian terms.

of the spin-orbit constants to aid in the future study of nonadiabatic effects in this

reaction.

Figure 4.1 provides a semi-quantitative picture of the electronic states of the

O(3P,1D,1 S)+H2 reaction along the minimum energy reaction path and in collinear

and slightly bent geometries.

Nonadiabatic transitions will be important only when two coupled potential

surfaces lie close in energy. We see from Fig. 4.1 that this coupling will be signif-

icant over a sizable portion of the coordinate space accessed during the reaction.

The couplings considered here are the mixing between two states of the same total

symmetry (diabatic coupling, which we have designated V1) or the spin-orbit inter-

actions. Regardless of the basis used to describe the electronic structure, transitions
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between electronic states are most probable when the coupling between the two

states is comparable in magnitude to of the separation of the states.

In the reactant channel, diabatic coupling exists between the two 3P states

with A′′ symmetry and between both sets of 1D states, i.e. the pair of singlet

states with A′ symmetry and the set of three singlet states with A′′ symmetry. In

the collinear interaction region diabatic coupling exists at relatively high energies

between the 23A′′ and 11A′′ states as well as between the 13A′ and 11A′ states. In

bent geometries, the 1A′ and 1A′′ states become very attractive (forming the deep

H2O well). Hoffmann and Schatz have shown the singlet states cross the triplet

states just before barrier to reaction [189]. The dynamic implications of the diabatic

coupling between the singlet and triplet states with A′ and A′′ symmetry just before

barrier and into the product regions have been well studied [182,189–191].

We also consider transitions between the potential surfaces induced by the

spin-orbit coupling in this system. The spin-orbit matrix elements are non-zero

between any pair of potential surfaces for which ∆Ω = 0 (∆ms + ∆ml = 0). Fur-

thermore, because all the states with the same symmetry are coupled by diabatic

coupling the exact form of the spin-orbit matrix element is dense. If we consider

reactions starting on the lowest 3P potential surfaces, we can see in Fig. 4.1 that

the spin-orbit coupling will be relevant throughout the reaction.

Specifically, the spin-orbit operator couples the 3P states in all geometries as

shown by Eq. 4.21. All 1D states have MS = 0. As such, these singlet states

are not coupled to one another. However, spin-orbit coupling does mix these with

both the 3P and 1S states. The magnitude of the spin-orbit matrix elements varies
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throughout the space accessed by the reaction. Also, the size of the spin-orbit

coupling is affected by the degree of adiabatic→diabatic mixing (θ) between states of

the same symmetry, which also varies across the reaction geometry. More attentions

should be devoted to the importance of spin-orbit coupling in reactions of 3P atoms.

Full quantum scattering including spin-orbit and diabatic coupling in reactions

between O(3P,1D,1 S)+H2 will be a difficult computation challenge. There are a

total of 15 possible projections (9 for 3P , 5 for 1D and 1 for 1S), 6 states with A′

symmetry and 9 with A′′ symmetry. The complete description of this system will

involve 15×15 Hamiltonian, in just the electronic space. Some states will be at ener-

gies high enough that they will not be relevant at thermal or hyper thermal energies.

These states can then be eliminated, leading to some reduction in complexity.

In the next subsection, to study the significance of nonadiabaticity on the

O+H2 reaction we report on the lowest potential energy surfaces in the reactant

channel up to and just over the barrier. In addition, over the same region, we have

determined the spin-orbit coupling terms and the adiabatic→diabatic mixing angle.

This work is organized as follows: in the first of the following subsections we

describe new ab initio calculations, with plots and comparisons with previous work

on these potential energy surfaces. Finally, we discuss, in light of these calculations,

the importance of the spin-orbit and diabatic coupling terms, and offer, in conclu-

sion, some insight into the nonadiabatic dynamics of the family of O(3P,1D,1 S)+H2

reactions.
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4.4.1 Ab initio Calculations

In this section we present electronic structure calculations of a new set of the

lowest 3A′ and two lowest 3A′′ potential energy surfaces using the explicitly corre-

lated variant [192–194] of the internally contracted multi-reference configuration-

interaction method [195–197] with single and double excitations with the addition

of the Davidson correction [198] (MRCISD-F12+Q) for the O(3P )+H2(
1Σ+

g ) re-

action. We use Dunning’s triple-zeta, augmented correlation-consistent triple-zeta

basis set, (aug-cc-pvtz) [199] coupled with generated JKFIT/MP2FIT density fitting

basis which in conjunction with the F12 method given above, is close in accuracy to

the complete basis set limit. The interaction energies are calculated by subtracting

from the total energy at given geometry the asymptotic total energy of the oxygen

and hydrogen molecule separated in collinear geometry by 40 a0. The optimized

interatomic H2 distance for the asymptotic limit was 1.4017 a0.

The calculations are done in Cs symmetry. The energies of the triply degen-

erate O(3P) atom will split upon the interaction with the hydrogen molecule to one

energy corresponding to the wavefunction of the A′ symmetry and two energies cor-

responding to wavefunctions of the A′′ symmetry. The reference wavefunction for

the subsequent MRCISD-F12+Q calculations is obtained from the complete active

space self-consistent field (CASSCF) calculations used with state-averaging of two

3A′′ and one 3A′ with equal weights. The eight correlated electrons were distributed

in full valence active space composed of six orbitals, in which 5 were of A′ and one

of A′′ symmetry. One additional orbital of the A′ symmetry, the 1s(O) orbital, has
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been kept as a frozen core orbital in the subsequent MRCISD-F12+Q calculations.

The energies from the two-state MRCISD-F12+Q calculations performed for the A′′

symmetry where chosen with a rotated reference (energd4 variable in MOLPRO

program). For calculations on the F+H2 reaction this gave somewhat larger cluster

corrections and gave better results by Werner et al. [200]

We used the quasi-diabatization DDR procedure of Werner and coworkers [144,

201] implemented in the MOLPRO code to obtain the diabatic PESs and diabatic

coupling V1 along with the mixing angle θ for the two states of the A′′ symme-

try which couple as the molecule bends out of collinear geometry. As described

above, there is a seam of diabatic surface crossings (CI) between 3Σ and 3Π states

at collinear geometries (θ = 0◦ and θ = 180◦, in which case, the adiabatic and

diabatic orbitals coincide). The two-state quasi-diabatization procedure requires a

set of reference orbitals for a geometry where the diabatic and adiabatic orbitals

are identical. Here, we choose our reference orbitals to be these collinear orbitals

θ = 180◦.

During the calculations we save the CASSCF and MRCISD-F12 density ma-

trices and orbitals for the determination of the geometry dependence of the full

matrix in the triplet state of the spin-orbit (SO) coupling [202]. The transformed

SO matrix elements can be used in the scattering calculations in the Kramers basis.

All calculations were performed on the angular grid, in reactant Jacobi coor-

dinates, delimited by θ = 180◦ and θ = 90◦ with a step of 5◦ and on a radial grid of

about 8K points in the range R = [2 − 12] × r = [0.9 − 4.5].
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4.4.2 3P Potential Surfaces

We label the three lowest O(3P )H2(
1Σ+

g ) diabatic states of triplet multiplicity

Σ, Πx, Πy, which refer to the following p4 occupancies, |pxpypzp̄z|, |pxpyp̄ypz| and

|pxp̄xpypz|, respectively. The transformation between these diabatic states and the

adiabatic states (1A′′, 1A′ and 2A′′) is described in the previous section. Figure 4.2

shows one-dimensional cuts of the potential energy surfaces corresponding to these

diabatic states at a variety of angles in the reactant region for fixed rHH = 1.40

bohr.

In collinear geometries, O+H2 exhibits C∞v symmetry, which has two irre-

ducible representations Σ and Π. The diabatic states Πx and Πy map to the irre-

ducible group Π and the diabatic Σ maps to the Σ irreducible group in collinear

geometries. At long range the interaction between the quadrupole moment of the

oxygen atom and the quadrupole moment of the hydrogen molecule significantly

lowers the Σ state relative to the two Π states. Figure 4.3 shows the two adiabatic

potentials (1A′ and 2A′′) and the spin-orbit constants in collinear geometry.

At short range, however, and into the product channel the Σ surface is purely

repulsive, while the two Π states are reactive. This gives rise to a seam of crossings

between the two diabatic surfaces in the reactant region of the potential. For the

geometries shown in Fig. 4.2 this seam is depicted by a dashed line.

Figure 4.4 shows the mixing angle between the two states with A′′ symmetry

as well as the nonadiabatic coupling terms for a variety of angles with fixed rHH =

1.40 bohr. This figure also indicates the geometries where complete (50:50) mixing

156



e
n

e
rg

y
 /
 c

m
-1

-75

-25

25

75

125

175

-75

-25

25

75

125

175

R / bohr
5 6 7 8 9 10

e
n

e
rg

y
 /
 c

m
-1

R / bohr
5 6 7 8 9 10

θ = 150º

θ = 180º θ = 165º

θ = 135º

Σ

Π 

1A''

2A''

Σ

Π 

1A''

2A''

Π x
y

Σ

Π 
1A''

2A''

Π 

x

y

Σ

Π 

1A''

2A''

Π 

x

y

Figure 4.2: Potential curves of O(3P )+H2 in the reactant region for fixed rHH =

1.40 bohr. The vertical dashed line indicates the location of the diabatic surface

crossing. We suppress the label for the uncoupled adiabatic, 1A′. In collinear

geometry this uncoupled adiabatic potential is equivalent to the Π potential surface.

In all other geometries, the uncoupled adiabatic potential is equivalent to the Πy

surface.
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The dashed black line is an approximation to the seam of diabatic surface crossing.

The red contour line in is generated from the lower adiabatic surface to give a sense

of the reaction channel. The red circle correspond to the geometries sampled in Fig.

4.6.
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between the two states occurs, which is the case at the crossing seam shown in Fig.

4.2. At these geometries the value of the nonadiabatic coupling terms, both diabatic

coupling and spin-orbit coupling, is indicated with a vertical dashed line in Fig. 4.4.

Figure 4.5 shows the magnitude of the lowest adiabatic potential surfaces (1A′

and 1A′′) as a function of the Jacobi angle, θ, with the other Jacobi coordinates fixed

to the global barrier geometry, namely (R, r) = [3.15 bohr, 1.68 bohr]. Figure 4.5

also shows the values of the two spin-orbit constants for these same geometries. The

states are split by about 13000 cm−1 at the global barrier (collinear geometry), while

the spin-orbit constants are A =75 cm−1 and B =53 cm−1 at this geometry, which

is very small by comparison.

Nonadiabatic transitions are most probable when the coupling between the

potential surfaces is on the order of the energetic difference between the potential

surfaces of interest, which occurs, in the case of the O(3P )+H2 reaction, along the

seam of diabatic surface crossing. To illustrate this Fig. 4.6 shows the value of the

adiabatic and diabatic potential surfaces as well as the value of the coupling terms

at points along the minimum energy path just before, near and just after the seam

of diabatic surface crossing.

4.4.3 Discussion

The experimental study of the O(3P )+H2 reaction is a nontrivial endeavor

as it requires nearly exact state specificity of the reactant oxygen atom. This is

because the O(1D)+H2 reaction proceeds along a barrierless trajectory through the
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Figure 4.4: (top) Mixing angle, θ, between the two states with A′′ symmetry for

O(3P )+H2 in reactant region for fixed rHH = 1.40 bohr. The horizontal dashed

line is set at θ = π/4, which indicates the geometers of even mixing between the

states, i.e. the geometries of the diabatic potential surface crossings in Fig. 4.2.

The circles are the outputs of the ab initio calculations and the black lines are the

values extracted from the spin-orbit constants. (bottom) Diabatic coupling terms

shown in color at various angles and spin-orbit terms for the O(3P )+H2 reaction

with fixed rHH = 1.40 bohr. The colors used in the bottom panel are consistent

with the coloring scheme for various angles in the top panel. The vertical dashed

lines between the panels are used to indicate the value of the nonadiabatic coupling

terms at the geometries of diabatic potential surface crossing for each angle.
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These geometries are shown in Fig. 4.3.
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very deep water well (see Fig. 4.1). Accordingly, at an equal collision energy the 1D

reaction will be 6 orders of magnitude more likely than the triplet reactions [203,204].

Even singlet contaminations of 1 ppm will render the results meaningless. Very

recent experiments have achieved, for the first time, state-to-state resolution of

both the fine-structure and the Lambda-doublet of the OH product for reactive

collisions of O(3P )+D2 [205]. However, these experiments are in disagreement with

the leading [206]. In this context we are interested in refining our understanding of

the importance of nonadiabatic transitions for the O(3P )+H2 reactions.

For ‘low energy’ reactions (Ecol < 5000 cm−1 that start on the O(3P ) surfaces

nonadiabatic coupling can induce, as the collision proceeds transitions to the lowest

two 1D potential surfaces or between any of the 3 3P potential surfaces. Transitions

to the singlet surface can be induced by the diabatic or spin-orbit coupling and are

most probable just below the barrier in bent geometries (right panel of Fig. 4.1) and

deep into the reactant region. Diabatic coupling and spin-orbit coupling will induce

transitions between the 3 3P potential surfaces. In this study we have provided new,

chemically accurate potential surfaces of the lowest three triplet surfaces to analyze

importance of nonadiabatic transitions between the triplet surfaces and will extend

this analysis to the singlet surfaces in ongoing work.

Transitions between the triplet surfaces are most likely along near the seam

of diabatic surface crossings (Fig. 4.6). The reaction barrier occurs in collinear

geometry (Eb = 4523.5 cm−1 in this study, comparable to the estimate of from Rogers

et al. Eb 4616.8 cm−1). In collinear geometries the diabatic coupling vanishes. The

spin-orbit matrix elements which couple the 1A′ and 1A′′ surfaces (Eq. 4.21) are
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roughly constant in the reactant region up to and over the barrier to reaction. As

can be seen in Fig. 4.6 the spin-orbit matrix elements are equal to their asymptotic

values along the seam of diabatic surface crossing. Thus we can expect transitions

induced by the spin-orbit coupling to be significant in these geometries.

Analysis of the mixing angle as a function of the Jacobi angle is shown in Fig.

4.4 along the mixing angle for each angle analyzed. The dashed-horizontal line is

used to indicate the location where the diabatic potential surfaces cross at each angle

(this occurs when θ = π/4). As can be seen in the lower panel of Fig. 4.4 the spin-

orbit matrix elements are essentially constant, with insignificant angular anisotropy,

along the reactant portion of the minimum energy path up to the diabatic surface

crossing. Though the magnitude of the diabatic coupling shows significant variation

at the diabatic surface crossing, it will still play a role in the nonadiabaticity in these

geometries, albeit to a lesser degree than transitions induced by the the spin-orbit

coupling, which is larger in magnitude.

The mixing angle shown in Fig. 4.4 was determined directly by the quasi-

diabatization procedure in MOLPRO [3]. These values are shown by the colored

circles in the top panel. The mixing angle can also be extracted from the spin-

orbit matrix elements in bent geometries, by following Eq. 4.21. We observe that

the values of the mixing angle calculated from the spin-orbit matrix elements are

smoother than the values that come directly from MOLPRO. These two methods

agree well in all studied geometries up to the barrier to reaction. At the barrier, the

2A′′ surface is about 11000 cm−1 higher in energy than the 1A′ surface. Furthermore,

in these geometries the attractive 1D PES approaches and crosses the 3P potential

163



surfaces. The diabatic mixing near the barrier to reaction, therefore, is not described

by a single angle but by two angles: one for the mixing between the 11A′ and

13A′ states, and another for the mixing between the 11A′′ and 13A′′ states. This

change in the nature of the diabatic mixing is seen in the disagreement between the

values of the mixing angle near the barrier extracted from (a) the quasi-diabatization

procedure or (b) the calculated spin-orbit matrix elements.

Finally Fig. 4.3 shows the potential surface cuts and coupling terms as a

function of the Jacobi angle with (R, r) fixed to the geometries shown by the red

circles in Fig. 4.6 which correspond to just before, near, and just after the diabatic

surface crossing along the minimum energy path in collinear geometry. Because the

spin-orbit matrix elements are comparable in magnitude to the splitting between

the two lowest triplet surfaces, spin-orbit coupling will induce transitions between

these states for all geometries shown. The diabatic coupling, however, is largest in

magnitude at θ = 130◦. At that geometry, the diabatic coupling is much smaller than

the separation between the two states with A′′ symmetry. Thus, we can anticipate

that the diabatic coupling will make a much smaller contribution to nonadiabatic

transitions than the spin-orbit coupling.

4.4.4 Conclusion

In this study we have described new, accurate potential energy surfaces, as

well as spin-orbit and diabatic coupling matrix elements in the reactant region and

near the barrier for the experimentally challenging O(3P ) + H2 reaction. From the
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work presented here we have shown that the spin-orbit coupling can be expected to

induce nonadiabatic transitions in all geometries along the seam of diabatic surface

crossing and near the barrier between the lowest two adiabatic states. The diabatic

coupling, on the other hand, will play at best only a secondary role in the nonadia-

batic dynamics at all the geometries considered. Furthermore, the variation of the

spin-orbit coupling is mild and one can accurately capture the coupling using the

asymptotic value within the reactant channel.

As mentioned earlier in this chapter it is also essential to consider, in more

detail than we have done here, the 1D PES/s. In bent geometries, singlet states

of A′ and A′′ reflection symmetry cross the 13A′ and 13A′′ states near the barrier

to reaction. Based, on the present results for the triplet PES’s we expect the spin-

orbit coupling to lead to significant nonadiabatic dynamics between the lowest triplet

and singlet potential surfaces. Note that there will be no diabatic coupling between

singlet and triplet states because their total spin differs. The diabatic coupling

within the singlet and between the triplet states will be affected, but this will be

only a second-order change due to a coupling term which is considerably smaller

than the dominant spin-orbit coupling. The 1D −3 P coupling will be the subject

of a future study.
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Chapter 5: A Comparison of ab initio and Density Functional

Potential Energy Surfaces

5.1 Overview

Electronic structure calculations from ab initio based quantum chemistry prin-

ciples, like those considered in the previous chapters, are difficult to prepare and

can be very computationally demanding. The computational efficiency of density-

functional theory (DFT) makes it an appealing option to calculate the electronic

structure of molecules. Using DFT to model intermolecular complexes, one must

account for weak dispersion forces for a complete representation of the electronic

environment. The standard test of DFT functionals is to benchmark them against a

set of molecules with well-known properties, usually closed-shell molecules in their

ground states. These benchmarks do not typically include long-range, dispersion

interactions. Whether or not DFT methods can systematically describe van der

Waals complexes involving open-shell molecules, or molecules in electronically ex-

cited states, is not well known.

Recently, Ershova et al. asked if the interaction between the open-shell NO
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radical and a rare-gas atom could be described by DFT methods [28]. Their study,

which tested a set of functionals with different long-range corrections, produced

a high quality description of the ground electronic state, X2Π. However, none

of the tested functionals could accurately describe the NO-Ar system in the first

excited electronic state, A2Σ+. Here we rigorously test new DFT calculations

with novel long range, dispersion corrections for the ArNO ground state. These

results are in very good agreement with results from PESs calculated from the more

computationally-intensive CCSD(T) method for this system. Ershova’s question

about how well DFT can model the electronically-excited state of this moiety re-

mains an open one.

The inelastic dynamics of open-shell diatomics with noble gases, such as the

collisions of NO and Ar, have been well studied theoretically and experimentally

[207–219]. The Ar+NO system has been a focus of interference studies in differ-

ential cross sections [220] and sophisticated experimental measurements that are

capable of resolving the Λ-doublet fine structure [221]. These fine-structure re-

sults were confirmed by state-of-the-art scattering calculations based on Alexander’s

CCSD(T) surface [222]. The Ar–NO system has also been used to study the angu-

lar momentum orientation of the NO molecule after collisions with Ar atoms [223].

Furthermore, there is a long history to the refinement of the two PESs required to

describe the ground state of Ar–NO(X2Π) [207–210, 224]. This wealth of experi-

mental and theoretical knowledge of the system make it suitable as a benchmark

for the new dispersion-corrected DFT calculations.
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A post-Hartree-Fock scheme with corrections for dispersion interactions (UHFBR-

XDM) developed by Johnson and Becke [225] has produced a new set of PESs

for the ground state Ar–NO(X2Π) system. To add dispersion interactions to the

UHFBR energies, Johnson applied the exchange-hole dipole moment (XDM) dis-

persion model [226] using the exact Hartree-Fock exchange-hole. Hartree-Fock with

Becke-Roussel dynamical correlation [227] and the XDM dispersion correction has

timings similar to standard Hartree-Fock, which are much faster than than the

CCSD(T) calculations. These UHFBR-XDM PESs are qualitatively and quantita-

tively very similar to earlier CCSD(T) calculations [209, 210] and the more recent

RCCSD(T) PESs by Cybulski et al [224].

To test the new UHFBR-XDM PESs against known experimental cross sec-

tions we perform fully-quantum, close-coupling scattering calculations of the integral

sections at collision energies of 442 cm−1 and 1774 cm−1, and differential cross sec-

tions at a collision energy of 530 cm−1. These UHFBR-XDM potentials show the

promise of using DFT with dispersion corrections to describe the physical properties

of small intermolecular complexes, even for open-shell systems.

5.2 Potential Energy Surfaces

We use the unscaled Jacobi coordinates, (R, r, θ), to describe the triatomic

system where we define θ = 0 as the collinear approach Ar-NO and the NO bond

length is fixed at re = 1.15077 Å. Note: here we suppress the R̄ notation of earlier

chapters. Due to the reflection symmetry in the triatomic plane, the approach of a
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structureless atom to a diatomic in a 2Π state gives rise to two PESs, A′ and A′′.

The A′ and A′′ ground states PESs were generated from self-consistent Hartree-Fock

calculations, performed using the basis-set-free NUMOL program [228]. Dynamical

correlation and dispersion effects were included in a post-HF manner [225] using the

Becke-Roussel correlation functional [227] and the exact-exchange formulation of the

XDM dispersion model [226]. The two parameters in the XDM damping function

were assigned values of a1 = 0.75 and a2 = 1.39 Å. This approach gives a mean

absolute error of 2 cm−1 for the binding energies of the noble-gas pairs consisting of

He, Ne, and Ar atoms [229]. Note that XDM-corrected potential-energy surfaces for

larger molecules can easily be generated with Gaussian, or any electronic structure

program capable of writing a wavefunction file, using the postg program [230,231].

As can be seen in Figs. 5.1-5.3, the PESs calculated using UHFBR-XDM and

CCSD(T) are qualitatively very similar. In Figure 5.3 we show the half-sum and

half-difference potentials used in the dynamic calculations, defined as follows:

Vsum (R, θ) =
1

2
[VA′′(R, θ) + VA′(R, θ)] =

lmax∑
l=0

Vl0(R)dl00(θ), (5.1)

Vdif (R, θ) =
1

2
[VA′′(R, θ) − VA′(R, θ)] =

lmax∑
l=2

Vl2(R)dl20(θ), (5.2)

where dlm0(θ) denotes the reduced Wigner rotation matrix elements. Here we use

lmax = 10.
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Figure 5.1: (upper) Contour plot of the A′ PES. (lower) The minimum energy

profiles of the A′ PES as a function of θ. The contours are labeled in cm−1 relative

to the minimum of the potential (for CCSD(T), De=116.6 cm−1 and for UHFBR-

XDM, De=124.8 cm−1).
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Figure 5.2: (upper) Contour plot of the A′′ PES. (lower) The minimum energy

profiles of the A′′ PES as a function of θ. The contours are labeled in cm−1 relative

to the minimum of the potential (for CCSD(T), De=112.3 cm−1 and for UHFBR-

XDM, De=113.7 cm−1).

The wells in the A′ and A′′ surfaces, as predicted by UHFBR-XDM calculations

are all slightly deeper than those from CCSD(T) calculations. The UHFBR-XDM

calculations also predict a lower half-sum potential relative to the CCSD(T) calcu-

lations. The right panel of Fig. 5.3 shows the half-difference potential as predicted

by UHFBR-XDM calculations is in good agreement with the CCSD(T) potentials,

though the UHFBR-XDM half-difference potential is slightly broader and higher

than the corresponding CCSD(T) PES.

Table 5.1 compares the minimum geometry, (Re, re, θe), and minimum energy,
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Figure 5.3: (left) Vsum(R, θ) (right) Vdif (R, θ). The thick black curve in the right

panels indicates the beginning of the repulsive wall, where Vsum(R, θ) = 0. The blue

circles indicate the minimum geometries of VA′ and VA′′ . The minimum of Vsum for

UHFBR-XDM and CCSD(T) are -116 cm−1 and -110.5 cm−1, respectively.

De, for both of the Ar–NO PESs as predicted by the UHFBR-XDM method, Alexan-

der’s CCSD(T) PESs [209,210], Alexander’s coupled electron pair method (CEPA)

calculations [207] and Cybulski’s RCCSD(T) PESs [224]. The UHFBR-XDM val-

ues are in good agreement with both coupled-cluster methods. The A′ well depth

predicted by UHFBR-XDM is about 7% and 4% deeper than the CCSD(T) and

RCCSD(T) predictions, respectively. The well depths of the A′′ adiabatic PES are
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quite similar for all listed methods except CEPA, which is much shallower.

Table 5.1: Minimum geometry (Re, θe) in bohr and degrees and minimum energy,

De, in cm−1 for the Ar–NO(X2Π) A′ and A′′ PESs calculated with different methods.

Method Re(A
′) θe(A

′) De(A
′) Re(A

′′) θe(A
′′) De(A

′′)

UHFBR-

XDM1

6.74 92.9 124.8 6.89 75.9 113.7

CCSD(T)2 6.76 94.9 116.6 6.90 69.1 112.3

CEPA3 6.99 94.1 77.9 7.09 73.1 79.1

RCCSD(T)4 6.75 94.9 120.3 6.90 71.1 115.0

The CCSD(T) PESs based on Alexander’s calculations [209] have been re-

produced to ensure consistency in the comparisons with the new UHFBR-XDM

calculations. As in the case of the UHFBR-XDM calculations, the CCSD(T) PESs

were calculated with the NO bond length fixed at 1.15077 Å.

5.3 Bound States

In this section we briefly describe the parameters needed to converge the bound

state wave functions and obtain rotational constants for the triatomic complex. The

formal expressions for the wave functions of the Ar–NO complex have been developed

previously [209,211].

The bound states of Ar–NO(X2Π) were calculated using the HIBRIDON quan-

tum chemistry package [161]. The radial part of the wave function was represented
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by an equidistant distribution of Gaussian basis functions [232]. The fine-structure

rotational channels of the 2Π NO molecule were defined by the rotational constant

of B = 1.69611 cm−1 and the spin-orbit constant of ASO = 123.1393 cm−1, with the

reduced mass of the Ar–NO complex set to 17.135 a.m.u.

Each rotational level splits into two Λ-doublets where the Λ-doubling param-

eters are p = 0.0117 cm−1 and q = 6.7 × 10−4 cm−1. In order converge the bound

state for values of the total angular momentum in the range J =0.5-6.5, the NO

rotational basis included channels up to jmax = 18. These predictions of the bound-

state energies of the Ar–NO complex are in good agreement with the CCSD(T)

calculations, as can be seen in Table 5.2 and Fig. 5.4.

We also calculated the bound-state energies within the coupled states (CS)

approximation, which ignores the Coriolis coupling. For these CS calculations we

used the same parameters and separately performed calculations for all possible

values of the body-fixed frame projection quantum number, P , of the total angular

momentum, J⃗ . These CS calculations were used to identify the P quantum number

for the close-coupling bound-state energies shown in Table 5.2.
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Figure 5.4: Relative positions of the lowest bend-stretch states of the Ar–NO

complex. Only the positive parity states are shown. The states are labeled with

the nominal value of P , which corresponds to the projection of the total angular

momentum, J , onto the Ar–NO bond axis, R. The dependence of the energy of

the states is shown as a function of total angular momentum. The dashed levels

correspond to the first excited state with P = 3/2 to help distinguish these states

from the second excited states with P = 1/2.

The bound state predictions using the UHFBR-XDM PESs are lower in energy

relative to those calculated using the CCSD(T) potentials. This is consistent with

the deeper wells in both the VA′ and VA′′ UHFBR-XDM PESs. The predicted disso-
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Table 5.2: Lowest bound state energies of Ar+NO in cm−1.

CCSD(T) UHFBR-XDM

P J = 1/2 J = 3/2 J = 5/2 P J = 1/2 J = 3/2 J = 5/2

1/2 -83.157 -82.973 -82.660 1/2 -86.990 -86.819 -86.511

1/2 -82.948 -82.720 -82.345 1/2 -86.896 -86.651 -86.267

3/2 -79.436 -79.090 3/2 -83.295 -82.946

3/2 -79.015 -78.669 3/2 -83.160 -82.811

5/2 -72.040 5/2 -76.018

5/2 -71.491 5/2 -75.806

1/2 -69.371 -69.196 -68.903 1/2 -67.518 -67.353 -67.072

1/2 -68.205 -68.002 -67.665 1/2 -67.106 -66.881 -66.513

1/2 -63.523 -63.442 -63.284 1/2 -62.704 -62.609 -62.397

1/2 -63.120 -62.942 -62.630 3/2 -62.349 -62.027

3/2 -62.480 -62.054 3/2 -62.043 -61.698

3/2 -61.919 -61.549 1/2 -61.992 -61.739 -61.340

1/2 -56.701 -56.562 -56.331 3/2 -57.314 -57.013

3/2 -56.331 -56.061 3/2 -56.355 -56.050

1/2 -55.276 -55.056 -55.038 1/2 -53.920 -53.743 -53.448

3/2 -55.372 -54.698 1/2 -53.694 -53.507 -53.316

5/2 -52.516 5/2 -53.195

5/2 -51.672 5/2 -52.569

1/2 -50.742 -50.554 -50.239 5/2 -48.803

1/2 -48.527 -48.335 -48.014 5/2 -48.029

ciation energy, D0, of the lowest bound state of the Ar–NO complex from Johnson’s

PES is closer in energy to the experimental value of D0 than from the CCSD(T)

calculations, as can be seen in Table 5.3. The dissociation energy predicted by

the UHFBR-XDM PES is very close to both the RCCSD(T) results of Cybulski et

al. [224] and the experimental value of Tsuji et al. [213].
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Table 5.3: Spectroscopic data, in cm−1, for the Ar–NO complex.

D0 ωstretch
1 ωbend

2

UHFBR-

XDM

87.0 24.3 3.7

CCSD(T) 83.2 19.7 3.7

RCCSD(T) 86.73 – –

Experiment 87.84 405

The bound state parities, as predicted by UHFBR-XDM and CCSD(T) calcu-

lations, are shown in Fig. 5.5. The lowest bound state of the Ar–NO complex should

have positive parity and the next lowest bound states have the same parities as those

predicted by the CCSD(T) calculations [211]. The UHFBR-XDM PESs incorrectly

predict that the lowest bound state will have negative parity. Table 5.4 shows that

the incorrect assignment of the bound-state parities leads to qualitatively incorrect

predictions for transition energies out of several of the lowest bound states of the

Ar–NO complex, i.e. negative energies. The slight differences between Vdif from the

UHFBR-XDM and CCSD(T) calculations may give rise to this discrepancy in the

parity of the bound states.

The rotational constants for the Ar–NO complex as predicted from both the

CCSD(T) and UHFBR-XDM potentials are in good agreement with the CCSD(T)

predictions and experimental values of Wen et al. [219] These rotational constants
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Table 5.4: Transition energies in cm−1 for several pure rotational transitions in the

Ar–NO complex. See Fig. 5.5 for the explanation of state labeling

Transistion Exp.1 CCSD(T)2 UHFBR-XDM2

J = 1/2, o(−) → J = 1/2, o(+) 0.020 0.023 -0.024

J = 1/2, o(−) → J = 3/2, o(+) 0.035 0.003 0.055

J = 3/2, o(−) → J = 1/2, o(+) 0.014 0.052 -0.099

J = 3/2, o(−) → J = 3/2, o(+) 0.029 0.032 -0.020

J = 3/2, o(+) → J = 3/2, e(−) 0.226 0.256 0.163

J = 3/2, o(+) → J = 5/2, o(−) 0.574 0.589 0.578

J = 3/2, e(+) → J = 5/2, e(−) 0.123 0.099 0.116
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Figure 5.5: Relative positions of the lowest bend-stretch states of the Ar–NO

complex with P = 1/2. The zero of energies are -83.16 cm−1 and -87.00 cm−1 for the

CCSD(T) and UHFBR-XDM predictions respectively. The + and − labels indicate

the total parity of each state. The e/o labeling is a shorthand for determining

allowed transitions and is consistent with Ref. [211]
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are shown in Table 5.5. The rotational constants were found with the following fit:

Eν,J,P = Eν,P +Bν,P0J(J + 1) + a(J +
1

2
), (5.3)

where Bν,P0 is the rotational constant listed in Table 5.5.
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Table 5.5: Rotational constants, Bν,P0, in cm−1.

Band1 Exp.2 CCSD(T)3 UHFBR-XDM3

A 0.0680 0.0686 0.0691

B 0.0683 0.0688 0.0695

B1 0.0681 0.0680 0.0688

C 0.0632 0.0627 0.0647

D1 0.0738 0.0638 0.0642

E 0.0653 0.0657 0.0656

D 0.0681 0.0584 0.0634

F 0.0691 0.0664 0.0661

G 0.0625 0.0631 0.0458

H 0.0665 0.0590 0.0575

We also present predictions of the bound-state calculations using both po-

tentials within Close-Coupling (CC), Centrifugal Decoupled (CD) and Adiabatic

Bender (AB) approaches, shown in Table 5.6. The predictions of the relative

energies of the lowest bound states by UHFBR-XDM and CCSD(T) calculations

are in good agreement. At higher energies the relative spacing between states is

not consistent, which reflects the subtle differences between the UHFBR-XDM and

CCSD(T) PESs, including the deeper UHFBR-XDM wells. The CD and AB ener-

gies from UHFBR-XDM are in good agreement with CCSD(T) as is shown in Table

5.6. With the exception of the bound state parities, these results are in very good

agreement with those from Alexander’s CCSD(T) PESs [209,210].
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Table 5.6: Relative energies in cm−1 of the lowest bound states of the Ar–NO

complex.

CC1 CC CD2 AB3

J4 P 5 n6 νs
7 π8= 1 π = 1 π = −1 π = −1

CCSD(T) XDM CCSD(T) XDM CCSD(T) XDM CCSD(T) XDM

1
2

1
2

1 0 0 0.020 0.020 0 0 0 0 0

2 0 0.230 0.920 0.207 0.116 0.192 0.051 0.090 0.051

3 0 13.79 19.47 13.80 19.50 13.78 19.46 13.54 18.21

4 0 14.96 19.91 14.96 19.88 14.94 19.85 16.11 20.00

1 1 19.74 24.30 19.55 24.30 19.64 24.27 20.10 24.97

2 1 19.96 25.01 20.14 25.01 20.02 24.97 23.18 26.65

3
2

1
2

1 0 0.210 0.171 0.178 0.191 0.210 0.212 0.209 0.212

2 0 0.428 0.363 0.466 0.334 0.403 0.264 0.298 0.261

3 0 13.97 19.68 13.97 19.62 13.97 19.66 13.73 18.42

4 0 15.16 20.01 15.17 20.15 15.12 20.05 16.31 20.19

1 1 19.59 24.40 19.86 24.38 19.83 24.47 20.27 25.15

2 1 20.71 25.26 20.66 25.23 20.20 25.16 23.37 26.84

5.4 Adiabatic Bender States

The UHFBR-XDM adiabatic bender potentials, shown in Fig. 5.6, are very

similar to those based on CCSD(T) calculations. However, the UHFBR-XDM

P = 1/2, n = 1, 2 adiabatic bender potentials do not have the same strongly

avoided crossing as do the equivalent CCSD(T) potentials. This is related to the

anisotropy of the VA′ PES from the linear to T-shaped geometry. As can be seen

in lower panels of Fig. 5.1, there is an increasing barrier from θ = 0◦ to θ = 90◦

in the CCSD(T) PES, whereas the UHFBR-XDM PES has a very small barrier in
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this region. Accordingly, the lowest two CCSD(T) adiabatic bender potentials have

a much stronger avoided crossing. The P = 1/2, 3/2, n = 1, 2 bender potentials

are predicted to be about 5 cm−1 lower in the UHFBR-XDM calculations, while the

P = 1/2, n = 3, 4 bender potentials are predicted to be at about the same energy

with both methods.

The CCSD(T) and UHFBR-XDM predictions of the distribution function,

ρPn(R, θ), which shows the probability of finding the Ar atom for given values of R

and θ, is shown in Figs. 5.6 and 5.7 . In general, the distribution functions predicted

by UHFBR-XDM and CCSD(T) calculations are in good agreement. However,

the UHFBR-XDM calculations tend to predict more localized distribution func-

tions than those predicted by CCSD(T) calculations, which reflects the incorrect

anisotropy of the UHFBR-XDM potential energy surfaces.

5.5 Scattering Calculations

Initial and final state resolved differential cross section calculations with col-

lision energy of Ecol = 530 cm−1 for the UHFBR-XDM and CCSD(T) potentials

are shown in Figure 5.8 for spin-orbit conserving collisions and Fig. 5.9 for spin-

orbit changing collisions. We show the DCS for both parity-conserving and parity-

changing transitions to compare with the recent experiment of Eyles et al [220].

The theoretical cross sections were averaged over a Gaussian distribution of angles

with a FWHM = 8◦. We scale the theoretical DCSs such that the integral of the
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Figure 5.6: Adiabatic bender potential energy curves for the Ar–NO complex. The

solid and dashed curves correspond to P = 1/2 and P = 3/2, respectively. The

states are labeled with by the value of n, which correspond to the nth-eigenvector

of the W (R) matrix for a given value of P . The horizontal lines correspond to the

lowest vibrational level for each adiabatic bender potential, see Table 5.6. Note:

the P = 1/2, n = 1 and n = 2, as well as, P = 3/2, n = 1 and n = 2 vibrational

energies are nearly indistinguishable graphically.

DCS matches experiment for both parity-conserving and parity-changing collisions.

The integral cross sections calculated for Ecol = 442 cm−1 and Ecol = 1774

cm−1, are shown in Figs. 5.10 and 5.11, respectively. For scattering calculations at

the highest collision energy of 1774 cm−1, we used jmax = 33. The integral cross
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Figure 5.8: DCS for spin-orbit conserving transitions with collision energy Ecol =

530 cm−1 from DFT (red) CCSD(T) (blue) and experimental resultset al [220–222]

(black) for the Ar+NO(2Π1/2, v = 0, j = 1/2, p = +1) → Ar+NO(2Π1/2, v =

0, j = j′, p = p′). The overall parity of the state p = ϵ(−1)j−1/2 and ϵ = +1 for e

and ϵ = −1 for f . Final states with positive parity (parity conserving) are shown

with solid lines band those with overall negative parity (parity changing) are shown

with dashed lines.

sections predicted by UHFBR-XDM and CCSD(T) at these two energies are in good

agreement. The theoretical cross sections at Ecol = 442 cm−1 were averaged over

a Gaussian distribution of collisional energies with a FWHM = 10% of Ecol. The

calculations for Ecol = 1774 cm−1 were found using a 4:1 relative population of
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Figure 5.9: DCS for spin-orbit changing transitions with collision energy Ecol =

530 cm−1 from DFT (red) CCSD(T) (blue) and experimental resultset al [220–222]

(black) for the Ar+NO(2Π1/2, v = 0, j = 1/2, p = +1) → Ar+NO(2Π3/2, v =

0, j = j′, p = p′). The overall parity of the state p = ϵ(−1)j−1/2 and ϵ = +1 for e

and ϵ = −1 for f . Final states with positive parity (parity conserving) are shown

with solid lines band those with overall negative parity (parity changing) are shown

with dashed lines.

the j = 1/2 and j = 3/2 rotational levels of the NO molecule to simulate thermal

distribution of initial rotational states. To maintain a collisional energy of 1774
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cm−1 the calculations for the j = 3/2 rotational level were performed at a total

energy of 1779 cm−1, as done previously [209].
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Figure 5.10: Integral cross sections with Ecol = 442 cm−1. (upper) SO-conserving,

F1, Ar+NO(2Π1/2, v = 0, j = 1/2, p = +1) → Ar+NO(2Π1/2, v = 0, j =

j′, p = p′) . (lower) SO-changing, F2, Ar+NO(2Π1/2, v = 0, j = 1/2, p = +1)

→ Ar+NO(2Π3/2, v = 0, j = j′, p = p′). The black triangles correspond to the

Joswig experiments [215]. These cross sections are normalized such that the total

cross section, F1+F2 , for both theoretical calculations and the experimental values

are equal.

5.6 Discussion

In this chapter we showed the performance of the UHFBR-XDM potentials for

the open-shell Ar–NO ground state system derived from the Becke-Johnson disper-
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Cross section predictions for SO conserving transitions, ω = ω′ = 1/2, F1. (lower)

Cross section predictions for SO changing transitions, ω = 1/2 → ω′ = 3/2, F2.

sion correction formalism in the bound state and scattering calculations. The new

potentials are compared to the previous ones based on the CCSD(T) Ar–NO poten-

tials extrapolated to the basis set limit by Alexander [210] and newer RCCSD(T)

PESs by Cybulski [224].

Johnson’s new UHFBR-XDM potentials agree remarkably well with the CCSD(T)

surfaces. The positions of minima are very similar, with the well being slightly more

attractive in case of the UHFBR-XDM potentials, especially for the A′ adiabatic
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surface. The fact that the well depth is deeper by about 8 cm−1 for the A′ adiabatic

surface shifts the zero-point-corrected dissociation energy closer to the experimental

value of Tsuji et al. [213] (Table 5.3). The agreement with CCSD(T) is promising

if we keep in mind that the UHFBR-XDM model is by far the less computationally

demanding method of the two.

The computational cost of computing the XDM dispersion is negligible rela-

tive to the HF calculation. Thus we have obtained accuracy close to CCSD(T) level

with essentially the cost of HF. The UHFBR-XDM potentials (Figures 5.1 and5.1)

exhibit somewhat different anisotropy in the vicinity of collinear arrangements of

the atoms. Specifically near the collinear approaches, the UHFBR-XDM PESs are

more repulsive and the A′ adiabat is flatter in comparison to the CCSD(T) PES.

The diabatic surfaces, Vsum and Vdif , for both UHFBR-XDM and CCSD(T)

are shown in Fig. 5.3. The UHFBR-XDM model predicts saddle points for collinear

geometries, while the CCSD(T) exhibits small local minima. The general anisotropy

is similar with the global minimum being in the T-shape geometry (near 90 degrees)

showing the near-homonuclear character of the Vsum PES. In case of UHFBR-XDM,

the difference potential calculations show a slightly wider repulsive region than the

CCSD(T) diabat.

The dissociation energy predicted from UHFBR-XDM is in better agreement

with both Cybulski’s RCCSD(T) PESs and experiment as compared to the CCSD(T)

189



predictions. The UHFBR-XDM stretching frequency, ωstretch, shown in Table 5.3, is

also slightly closer to experiment. While the theoretical frequencies are off by about

50%, one has to keep in mind that the experimental value can be ambiguous [233].

As shown in Fig. 5.5, the UHFBR-XDM PESs predict the incorrect parity

of the bound-state wave functions. The incorrect assignment of the bound-state

parities leads to qualitatively incorrect predictions of the transition energies out of

the lowest bound states (Table 5.4). The source of this discrepancy between the

UHFBR-XDM and CCSD(T) is not well understood and may serve as a target for

improving future DFT surfaces for open-shell systems.

The Close-Coupling bound states were used to estimate the rotational con-

stants of the Ar–NO complex using both potential models. The UHFBR-XDM

PES results, shown in Table 5.5, are in very good agreement with both CCSD(T)

and experimental results. In the Adiabatic Bender approximation (Fig. 5.6), the

avoided crossing region in the UHFBR-XDM curves is slightly weaker than for the

CCSD(T) curves. We also show ro-vibrational wave functions obtained from the

Adiabatic Bender approximation in Figs. 5.6-5.7. The wave functions correspond-

ing to the UHFBR-XDM potential are more localized due to the deeper well, but

generally similar to those using CCSD(T).

From the scattering calculations we have obtained observables such as inte-

gral cross sections (ICSs) and differential cross sections (DCSs) using both potential

models. We find very good agreement with the initial and final state resolved exper-

iments of Eyles et al [220] for both UHFBF-XDM and CCSD(T) DCSs for spin-orbit

conserving transitions (Fig. 5.8) and spin-orbit changing transitions (Fig. 5.11) at
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Ecol = 530 cm−1. The theoretical cross sections tend to over-estimate the amount

of backscattering and the DFT results universally predict more backscattering than

the CCSD(T) results. However, the CCSD(T) results are consistent with Eyles [220]

and the new DFT potential performs remarkably well when compared to experiment.

In Figure 5.10 the ICSs from the UHFBR-XDM and CCSD(T) calculations are

compared with the experimental results of Joswig et al. [215] The total experimental

ICS’s are scaled to match the corresponding total theoretical cross sections. The

total ICS is composed of transitions to both F1 and F2 spin-orbit manifolds,

ICStot =
∑
j′

2∑
i=1

σ(j′, F ′
i ).

As one can see, both UHFBR-XDM and CCSD(T) results reproduce experi-

ment quite well in case of the SO-conserving transitions. The UHFBR-XDM poten-

tial gives better agreement with experiment for the lowest j′ quantum numbers. The

propensities in SO-changing transitions are well reproduced by both theoretical po-

tentials, but the magnitude of the experimental cross sections is approximately twice

as high as than those from calculations for j′ up to 7.5. For a pure homo-nuclear PES

only ∆j = even transitions are allowed. The near homo-nuclear character of the

ArNO PESs angular anisotropy allows for all transitions but maintains a propensity

for ∆j = even transitions. Both UHFBR-XDM and CCSD(T) ICS results show this

∆j = even propensity.

To probe the repulsive part of the UHFBR-XDM PESs we performed scat-
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tering calculations of the ICSs at collision energy of 1774 cm−1 with respect to the

j = 1/2 and j = 3/2 initial rotational states. The inelastic cross sections for spin-

orbit manifold conserving and spin-orbit manifold changing transitions are shown in

Figure 5.11. The j = 3/2 state was added with a weight of 0.2 to 0.8 of the j = 1/2

cross sections to simulate the thermal distribution of the rotational states of NO.

The UHFBR-XDM cross sections are slightly smaller especially for the j′ = 1.5

final rotational state, but for higher j′ they are similar to CCSD(T). The repulsive

wall is reproduced quite well and the agreement with experiment is almost as good

as CCSD(T). One could use the low cost UHFBR-XDM method and extend the

potential to include vibrational modes of the NO molecule to investigate the NO

vibrational de-excitation upon collisions with Ar in future studies.

5.7 Conclusions

We report a comparison of the bound states and scattering results obtained

on the new potential energy surfaces for the ground state Ar–NO(X2Π) system and

those previously reported with Alexander’s CCSD(T) PESs. The new UHFBR-

XDM PESs are qualitatively and quantitatively similar to CCSD(T) calculations.

The UHFBR-XDM Vsum PES is characterized by moderately deeper van der Waals

well and a lower zero-order corrected dissociation energy, which is in better agree-

ment with Cybulski’s recent PES and experiment relative to previous Alexander’s

CCSD(T) results.
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The anisotropy of the UHFBR-XDM surfaces does not agree with that of the

CCSD(T) surfaces, especially in the vicinity of collinear geometries. Similarly, the

anisotropies of the half-difference potential, Vdif , in the T-shape region are markedly

different for these two surfaces. These facts may explain why the UHFBR-XDM po-

tential predicts opposite parity splittings to those obtained with CCSD(T) PESs.

One possible source of discrepancy between the XDM results and the reference

CCSD(T) potential could be neglect of the three-body contribution to the disper-

sion energy, which will stabilize the collinear geometries. However, tests using the

many-body generalization of the XDM model [234] indicate that this effect is not

sufficiently large to account for the error and it is more likely due to the underlying

dynamical correlation functional.

In the scattering calculations, the UHFBR-XDM PES performs very well com-

pared to CCSD(T) and experiment, in spite of a pronounced preference for back

scattering. The integral cross sections presented in this work agree fairly well with

experiment, especially for the lowest rotational quantum numbers. The UHFBR-

XDM scheme, as applied for the Ar-NO system, is in good agreement with both

coupled-cluster methods and with experiments with the added benefit of great sav-

ings in computational time. The agreement between DFT, existing theory and

experiment presented in this work is promising for the use of DFT with dispersion

functionals to accurately model small, open-shell systems and serves as a benchmark

for application of this method to larger molecular colliders.
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Chapter 6: Conclusions and Future Directions

6.1 Conclusions

The underlying goal of the research presented was to investigate and visualize

the quantum effects in nonadiabatic atom-diatom reactions. This work spanned two

areas of reactive scattering theory, i) method development for simulating the quan-

tum dynamics of the atom-diatom reactions (Chapters 2-3), and ii) the calculation,

representation and modeling of the potential energy surfaces used in these dynamics

simulations (Chapters 4-5 and Appendix A).

6.1.1 Reaction Dynamics

In the first part of this thesis we derived a novel extension of an existing

finite-element based algorithm for simulating the time-independent quantum reac-

tive scattering dynamics of atom-diatom reactions. We improved upon previous

implementations of the finite-element approach to reactive scattering problems. In

our approach we included the scattering amplitudes in the vector of unknowns to

simultaneously solve directly for the scattering wave function and scattering am-

plitudes. The method of Askar [18] and later used by others [111–118] solves the
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dynamical equations with multiple pairs of artificial, fixed boundary conditions.

The scattering amplitudes are extracted by taking the linear combination of the

artificial standing wave solutions that satisfies the time-independent formulation of

Schrödinger equation. We showed that the speed-up expected from our method is on

the order of the total number of open vibrational states in the reactant and product

channels.

We rigorously tested our FE method and our results agreed with well known

benchmark reactions including H+H2, F+HCl and F+H2 for all collision energies

tested. Our was designed to be totally general, easy to use, freely available to the

public and we have included a very thorough companion reference, which has been

made available, alongside the source code, online [119].

Our interest in the quantum scattering dynamics of atom-diatom reactions was

to better understand the nature of nonadiabatic transitions within reactive chemical

systems. To this end, the FE scattering algorithm presented in the first half of Chap-

ter 3 was extended to chemical reactions that evolve on multiple, coupled potential

energy surfaces. With this coupled-surfaces algorithm in hand, we used the fluid-

flow picture of the scattering wave-function as a tool to visualize nonadiabaticity in

atom-diatom reactions.

To account for the fact that electronic occupancy of the scattering partners

can change during the reaction, we derived a basis-independent generalization of

the scattering boundary conditions. We then extended our MATLAB scattering

software to handle reactions that evolve on multiple potentials. We provided the

results for the nonadiabatic reactions of F+HCl, F+H2 and Li+CaH on the lowest
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set of coupled potential surfaces. Our results for these reactions included never

before seen insights and visualizations of nonadiabatic dynamics for atom-diatom

molecules.

Specifically, we showed that the flux of the current density as well as the mixing

angle can shed light on the mechanisms of nonadiabatic behavior for this class of

reactions. The flux in the current density allowed us to identify the locations of

nonadiabatic behavior. The appearance of oscillations and nodal structures in the

flux of the current density as well as the gradient of the mixing angle allowed us to

discriminate between nonadiabatic transitions that are kinetically or vibrationally

mediated. In summary, this work provided a new set of tools for understanding

nonadiabaticity in atom-diatom reactions in reduced dimensionality.

6.1.2 Potential Surfaces

In the second half of this work we discussed various aspects of potential energy

surfaces relevant for nonadiabatic atom-diatom reactions. In the first portion of

Chapter 4, we derived the time-reversal invariant Kramers basis for the potential

energy matrix for atom-diatom reactions of the type A(2P ) + BC and A(3P ) +

B2. For A(2P ) + BC reactions the derivation of the Kramers basis here provided

corrections to a previous definition [62]. The Kramers basis was an ideal basis for

reactive scattering calculations as it allowed us to minimize the number of states

needed to fully describe the nonadiabatic coupling, which reduced the computational

complexity of scattering dynamics simulations.
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Also in Chapter 4 we presented a new set of highly accurate ab initio calcula-

tions for the O(3P ) + H2 potential energy surfaces, diabatic coupling and spin-orbit

matrix elements. We used the explicitly correlated variant of the internally con-

tracted multi-reference configuration-interaction method with single and double ex-

citations with the addition of the Davidson correction MRCISD−F12 +Q, which

is known to be close in accuracy to the complete basis set limit. These new calcula-

tions estimated the barrier height of the O(3P ) + H2 reaction on the lowest potential

surface, 1A′′, to be 65.9 cm−1 lower than the previous calculations from Rogers and

coworkers [182]. From these new potential surfaces we concluded that the nonadi-

abatic mixing terms, namely spin-orbit and diabatic mixing, must be included for

an accurate account of the quantum dynamics of O(3P )+H2. We were also able to

conclude that of these two nonadiabatic terms the spin-orbit coupling will be the

dominant factor in nonadiabatic adiabatics. Furthmore, because it was shown that

the spin-orbit coupling varies little with nuclear geometry, one can achieve accurate

scattering results by assuming the spin-orbit coupling matrix elements are constant

in the reactant channel.

The use of DFT for modeling the potential surfaces of small open-shell chem-

icals systems, i.e. systems with long range effects) is not well studied. In Chapter

5 we compared a set of new potential energy surfaces for the Ar-NO ground state

system computed calculated using DFT with previously published potentials based

on ab initio principles. We have shown these DFT potentials exhibited qualitative

and quantitative agreement with both ab initio potential surfaces and experiment.

The minimum geometries of the new UHFBR-XDM DFT potentials agreed
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very well with previously published CCSD(T) results. The DFT surfaces predicted

a slightly deeper van der Waals well (8 cm−1 lower) relative to the CCSD(T) sur-

faces. As a result, the bound state energies predicted using the DFT potentials are

slightly lower in energy relative to those predicted from CCSD(T) surfaces. The

lower energy DFT bound state predictions were in better agreement with exper-

imental values than those from CCSD(T) predictions. The scattering predictions

from the DFT surfaces also agreed very well with the CCSD(T) results and known

experimental values for the wide range of energies studied. The results from this

section were in such good agreement with the more accurate ab initio surfaces, and

more importantly with experiment, that we concluded the computationally cheaper

DFT potential surfaces show great promise to be used to model the long range forces

in small open-shell systems.

6.2 Future Directions

6.2.1 Three-Dimensional Scattering Software

The work presented in Chapter 3 provides never before seen visualizations of

nonadiabaticity dynamics in atom-diatom collisions. However, in its current state

our scattering software can only handle collinear atom-diatom reactions. To be

truly state-of-the-art this software would need to be extended to rotating atom-

diatom reactions. We have made some progress towards this goal including three-

dimensional bound state calculations and some very preliminary results for the three-

dimensional scattering dynamics of the symmetrical H+H2 reaction. However, there
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is much work to do. A general software suite that can predict the nonadiabatic effects

of rotating atom-diatom reactions evolving on n-coupled potential surfaces would be

very exciting. A three dimensional algorithm would allow for the direct comparison

with modern experiment and further our intuition of the nature of nonadiabaticity

in chemical reactions.

6.2.2 Photodissociation Spectrum

Photodetachment, photofragmentation and photodissociation of negative ionic

species has long been an important tool for probing the transition states of molecular

species [235]. The general principle of a photodissociation study is to trap an anionic

species, e.g. FH−
2 , and expose the system to a laser beam with enough energy to eject

the extra electron. This induces the system, formerly trapped on the bound anionic

surface, to relax to the lower energy, reactive surface. The FH−
2 system is especially

amenable to this type of study because the center of the anionic bound state of

lies in geometries very near the transition state of the neutral species. Once on the

reactive F+H2 surface the system proceeds to one of the three product channels.

The spectra of the product distributions can be used to infer the barrier height and

resonances in these spectra can be used to determine the normal mode frequencies

of the transition state.

Extending the reactive scattering software developed in the first half to study

atom-diatom interactions in full dimensionality would enable the prediction of nona-

diabatic photodissociation spectrum. Using our FEM method, the computation of
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the photodissociation spectrum would be straight-forward. From Neumark et al.

the photodissociation spectrum, P (E), is determined, theoretically using a Franck-

Condon factor for the overlap between the scattering wave function and the bound

state wave function [236]

P (E) =
∑
n

| ⟨Ψn(E)|Ψi⟩ |2

where E is the collision energy of the reaction, n and i are the quantum num-

bers of the reactive products and anionic bound states, respectively. Our algorithm

can easily compute these wave functions and using the sparse FEM matrix repre-

sentation, these overlap integrals would be trivial to compute. There may be very

interesting physics revealed in nonadiabatic photodetachment studies.

6.2.3 The Roaming Mechanism

Roaming in chemical reactions is a recently discovered ‘third’ pathway to

molecular dissociation. The first pathway to dissociation, and the one studied most

extensively in this work, is a reactive collision that advances through a saddle-point

or transition state. The second pathway to dissociation can occur whenever the ki-

netic energy of the bound nuclei exceeds the dissociation energy; this can be thought

of as ‘pulling’ on the bond until it breaks. The roaming pathway can be seen as a

combination of these two pathways and leads to unexpected physics in molecular

collisions. In the first pathway classical trajectories of reactive collisions are tightly

clustered around the minimum energy path from reactants to products. Roaming

pathways explore large parts of the configuration space and move back and forth
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Figure 6.1: The isomerization mechanism for ketene.

between trajectories resembling bond breaking events and trajectories that resem-

ble reactive collisions. The two dimensional model of the organic ketene molecule

developed to study the ‘roaming’ of hydrogen atoms during isomerization is shown

in Fig. 6.1.

Classical trajectory studies have shown that the isomerization of ketene can

occur via roaming trajectories. The two dimensional model of ketene isomerization

may be suitable to use in our reactive scattering software. The coupled motion of

the hydrogen atoms, as shown in Fig. 6.1, will only accurately be described by

quantum mechanics. It would be very interesting to adapt our reactive scattering

code to study the quantum mechanical analogue of roaming in chemical reactions

involving large organic molecules.

6.2.4 O(3P,1D)+H2

Our calculations of the O+H2 system were limited to the lowest 3P potential

surfaces. Based on our analysis of this system we expect the 1D surfaces to play

a significant role in the nonadiabatic dynamics. This study would require the cal-

culation of the potential energy surfaces for the combined 14 surfaces (nine triplet
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and 5 singlet). However, there are considerable technical difficulties that one would

face to develop such a large potential surface, specifically the size of the active space

required to converge calculations required when one includes the 1D surface. With

the resources available at the present time a calculation of this magnitude would

requires months of computation. However, a study of the scattering dynamics of

this system including a new, extended potential energy surface would be unprece-

dented and provide a complete picture of the nonadiabatic dynamics of O+H2 for

reactions.

6.2.5 Modeling Dispersion Forces with DFT Potentials

While, the DFT potential surfaces studied in Chapter 5 were much more af-

fordable computationally than their CCSD(T) analogues, their predictions were not

perfect. Specifically, the parity of the lowest bound states of the Ar-NO complex

on the electronic ground state as predicted by DFT do not agree with CCSD(T)

calculations or with experimental evidence. A systematic study of similar open-shell

system would i) provide more evidence for the utility of DFT models to describe

the long range dispersive interactions and ii) investigate the discrepancy of parity

in the bound states calculations.

The Ar-NO van der Waals well arises from interactions between the dipole-

moment of the NO molecule and an instantaneous dipole in the noble gas. Choosing

a set of collision partners with varying polarizability would be a natural choice to

investigate this discrepancy. Candidates for collision parters are other noble gases
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such as neon, krypton and xenon, with polarizabilities in atomic units of 2.38 α0,

16.47 α0 and 29.67 α0, respectively, as compared to 10.77 α0 for argon [237].

203



Appendix A: Statistical Learning and Potential Energy Surfaces

A.1 Introduction

To model molecular collision dynamics requires fitting the underlying poten-

tial energy surfaces to some functional form. Depending on the application and

the amount of available data points there exist a host of possible fitting procedures

including least squares and moving least squares, splines and Morse-splines, three

body expansions, Legendre expansions, interpolative routines such as Shepard in-

terpolation, and trajectory based sampling, to name a few [238–242]. With each of

these methods, one implicitly assumes the functional form of a given fitting method

is valid for the system of interest. In this section we discuss the use of neural net-

works, a type of statistical learning algorithm, which can model an n-dimensional

function to arbitrary accuracy, while remaining agnostic about the choice of func-

tional form.

Neural networks, quite simply, are statistical tools based on nonlinear regres-

sion or classification. Because neural networks are very fast to evaluate and can

model molecular PES’s at precisions near the accuracy of the ab initio points, there

has been increasing interest in their use in theoretical chemistry [243–254]. Neural

networks are powerful and supported in popular programming languages [255].
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The standard implementation of a neural network is the so-called multi-layer

perceptron (MLP) neural network architecture. A network with MLP architecture

has an input layer, one or more hidden layers, and an output layer. Each layer has a

set of neurons and each neuron in a given layer is connected to every neuron in the

following layer (called feed-forward) but to no other layers. MLP architectures have

been successfully used to fit a range of PESs [243–254]. Furthermore, Witkoskie and

Doren provide an in depth analysis of using neural networks with MLP architecture

to fit potential energy surfaces [256].

Though popular, neural networks are powerful, they are not a magic bullet to

the potential fitting problem. Common issues include i) training time and number

of data points needed to accurately train the networks (especially relevant in high

dimensional surfaces) and ii) overfitting, or training the network to be overly sen-

sitive to noise in the tested sample, which reduces the interpolative power of the

network, and iii) identifying an ’optimal’ neural net, i.e. a network with the fewest

number of layers, neurons and connections that achieves a desired accuracy. The

first two introduce an art to use of neural networks, while the third can treated

systematically.

In a recent study Wilamowski and coworkers [258] have shown that network

architectures with connections to future layers are more flexible, more accurate

and make it easier to identify optimal architectures. It is the goal of this work to

develop efficient strategies for identifying optimal neural networks to model PES’s

using networks with connections to future layers.

The organization of this Appendix is as follows, first we introduce the formal-
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ism of the feed-forward MLP network and show how, in their simplest form, neural

networks reduce to simple linear regression. Next we discuss how the permutation-

invariant input parameters developed by Guo and coworkers, [250,251] ensure spatial

symmetry in neural networks. Motivated by Wilamowski’s recent work we perform

several numerical experiments to identify optimal network architectures for molecu-

lar PESs. Finally, we provide a brief discussion and conclusion based on our results.

For assessment purposes, we focus on fitting the ab initio H3 PES of Mielke [124] in

1 and 2 dimensions.

A.2 Neural Networks

Neural networks are multi-stage statistical models first developed to model the

human brain. For the purpose of modeling PES’s, neural networks serve as another

non-linear fitting method. The form of a typical feed-forward neural network is

an input layer followed by at least one hidden layer and finally followed by the

output layer. In the case of PES modeling the input layer may be composed of the

spatial coordinates themselves, or some transformation of these inputs, as in Guo’s

symmetrized polynomials [250]. The middle layers of the neural network are called

‘hidden’ because their features are derived by a series of non-linear transformations

of the input data, and not directly observed in the data set. The output layer is

typically a linear transformation of the last hidden layer. Figure A.1 shows the

structure of a feed-forward neural network.

For a given set of inputs (spatial coordinates or transformed coordinates) and
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Figure A.1: Diagram of a feed-forward neural network with j hidden layers each

made up of m neurons for a regression problem. Note: every node in a given layer

is connected to every other node in the following layer, however, we omit many of

these connections for clarity.
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corresponding outputs (value of the PES) a neural network is acomplicated nonlinear

function of many parameters. For a given set of parameters in the neural network

we can use the root mean squared error (RMSE) to measure how well the network

models the data,

R(β) =
∑
k

(N(xk,β) − vk)2,

where R(β) is the RMSE for the fit, N is the neural network function, xk =

[xk1, . . . , x
k
n]T is a set of the input parameters corresponding to the kth geometry

at which one wishes to evaluate the potential, vk, and β is the set of all parame-

ters in the fit. To optimize the fit of a given network, one searches for the global

minimum R(β). Here, we use MATLAB’s neural network fitting toolbox [255] to

build and optimize neural networks. We use MATLAB’s implementation of the

Levenberg-Marquadt algorithm for optimizing the non-linear parameters.

We now define the exact form of the neural network function, N(xk,β). Each

node in a given stage of the network takes a linear combination of the values from

the previous stage and applies some ‘activation function’. These activation functions

mimic the neurons in the human brain. A typical activation function is the ‘sigmoid’

(hyperbolic tangent) function. The value of a given node in the network can be

written as

wi+1
j = σi+1

(
βi
0j +

mi∑
k=1

βi
kjw

i
k

)
,

where βi is a matrix of size (mi + 1)× (mi+1 + 1), with elements βi
jk referring to the

weight between the jth node in the ith layer and the kth node in the i + 1st layer.
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Note mi is the number of nodes in the ith layer excluding the bias node. In this

work we will use a linear transfer function from the input and to output layers, and

for all hidden layers we use a hyperbolic tangent transfer function, that is

σi(x) =


x i = 1, j + 1

tanh(x) i ̸= 1, j + 1

Note: the hyperbolic tangent function can be slow to evaluate numerically. MAT-

LAB for example, uses the following implementation of the hyperbolic tangent sig-

moid function,

tansig(n) =
2

1 + exp[−2n]
− 1,

which has been shown to speed up the training process [257].

We can write the value of the nodes in a given layer in matrix form as follows

wi+1 = σ
(
wiβi

)

where wi = [1, wi
1, . . . , w

i
m]. For a system with j hidden layers, the output node, y,

can thus be written in terms of the nodes of the last layer in the neural network

N(xk,β) = yk = wj+1βj+1. (A.1)

A.2.1 Single Hidden-Layer Feed-Forward Network

Here we consider a neural network composed of an input layer with n values,

a single output node and one hidden layer with m nodes. For a given input point,

xk, the output of this network can be written as
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yk = w2β2 = σ(w1β1)β2, (A.2)

where σ(x) is applied element-wise. In this case the values w1 = [1, xk1, . . . , xn] is

the set of input values, β1 is a matrix of size (n+ 1) × (m+ 1) and β2 is matrix of

size (m+ 1) × 1. Hence there are a total of (m+ 1)(n+ 2) total parameters in this

fit. To optimize this neural network, one applies the Levenberg-Marquadt algorithm

using the derivative of the output function with respect to each fitting parameter

to determine the gradient-descent step size.

If the transfer function is chosen as the linear function, the single-hidden layer

network reduces to a linear regression, namely

yk = w1β1β2 = w1β1β2 = w1β.

Thus, adding the sigmoid transfer functions in the neural network can be viewed as

a non-linear generalization of the standard linear regression problem.

A.3 Identifying Ideal Neural Network

Architectures for PES Fitting

The only neural network architecture considered up to this point have been

single and multilayer perceptron (MLP). The MLP architecture is by far the most

commonly used neural network because it lends itself quite naturally to program-

matic handling. There are many studies on the applications of MLP networks

applied to fitting molecular PESs [243–254].
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In an MLP topology the output of every neuron in a given layer (and, typically

an additional bias node) are connected to every neuron in the next layer. However,

no connections are made to any other layers in the network. In this section we

discuss neural network architectures where neurons in a given layer are connected

to all future layers. Specifically, we consider two additional architectures, one that

improves on the MLP architecture, the bridged multilayer perceptron (BMLP) which

is an MLP topology with each neuron connected to all future neurons, and the fully

connected cascade (FCC) topology, which is a BMLP network with a single neuron

per layer. The three network architectures are shown in Figs. A.2-A.4.

x

x2

1

b b

y

Figure A.2: MLP neural network architecture with 2 inputs, 4 neurons in 2 layers,

2 bias nodes, and 13 weights in a 2-3-1 architecture.
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Figure A.3: BMLP neural network architecture with 2 inputs, 4 neurons in three

layers, 3 bias nodes, and 16 weights in a 2-2-1-1 architecture.
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Figure A.4: FCC neural network architecture with 2 inputs, 4 neurons in four

layers,1 bias node, and 18 weights in a 2-1-1-1-1 architecture.

A.3.1 Network Depth and Connectivity 1D

It is well known that across many applications deep networks, sometimes called

deep-belief networks (DBN) perform better than shallow, broad networks with the

same number of neurons [258, 259]. In this section we investigate the dependence

of network performance on network depth using the RMSE of the network fit for a

given PES as the metric for network performance.

For simplicity we start with fitting the one dimensional H2 potential energy

curve. The points used as training data in this section are generated from the H3 PES
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of Mielke and coworkers (which is a functional fit to quantum chemical calculations)

[124]. Figure A.5 shows the results of a series of calculations assessing network fitting

performance, as a function of architecture, number of neurons and number of layers

in the network. We have used exclusively MATLAB’s neural network fitting toolbox

to train these neural networks [260]. In all cases we average 250 network fits trained

using the Levenberg-Marquardt (LM) algorithm, using the mean-squared error to

measure performance, with a maximum number of iterations set to 1E5. We use

approximately 300 points in the range rHH = [0.8 − 8] both as training data.

The FCC architectures have, by definition, the same number of neurons and

layers. The (B)MLP architectures, in theory, have multiple possible configurations

for a fixed number of neurons. When possible, we use evenly populated layers, for ex-

ample a (B)MLP network with three layers and six neurons would use the 2-2-2-1 ar-

chitecture (with one output neuron). In any case where there is ambiguity about the

network structure we use the following architecture n1 . . . n1−n2 . . . n2−1 (again with

one output neuron) where n1 = floor(nneurons/nlayers) and n2 = ceil(nneurons/nlayers).

For a/an (B)MLP architecture with 10 neurons and 4 layers we would have n1 = 2

and n2 = 3. The corresponding architecture would be 2-2-3-3-1. We have chosen

this scheme for simplicity.

A.3.2 Fitting the Collinear H3 PES with PIP Input Layer

A fitted potential for triatomic systems that involve spatial symmetries such as

A+A2, B+A2, and A+BA must account for these symmetries to avoid unnatural
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Figure A.5: RMSE performance of the FCC, MLP, and BMLP network architec-

tures fitting the 1D H2 potential as a function of the number of neurons. Shown is

the optimal performance from a batch of 250 fits. Each panel denotes a different

number of layers used in each architecture, (B)MLPN with N layers. Note: FCC

architectures always have as many layers as they do neurons. The FCC results are

identical in each panel. The output neuron of each network is not counted.
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Figure A.6: Average time per fit for the FCC, MLP, and BMLP network architec-

tures fitting the 1D H2 potential curve as a function of the number of neurons. The

markers denote the number of layers.
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artifacts in dynamical calculations. In other words, the model that is fit to the

ab initio data must be identical at any points of symmetry. Recently, Guo and

coworkers [250,251] introduced the use of permutation-invariant polynomials (PIPs)

to account for such symmetries in neural network models of reactive PES’s.

Instead of using the spatial internuclear separation coordinates, rij, as inputs

to the neural network, Guo and coworkers use the following symmetrized polynomial

functions of the internuclear separation coordinates,

G = Ŝ
N∏
i<j

p
lij
ij

where N is the number of atoms in the system, Ŝ is the symmetrization operator,

which contains projections for all possible intersystem symmetries, pij = log(rij),

and lij is the order of the monomial. From Ref. [250], these polynomials are given

for an A3 system as

G1 = (p12 + p23 + p13)/3,

G2 = (p12p23 + p12p13 + p13p23)/3,

and

G3 = p12p23p13.

For an B + A2 system, the PIPs can be written as

G1 = (p13 + p23))/2,

G2 = p13p23,
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and

G2 = p12

These PIP models have been used successfully to model triatomic [250], tetraatomic

[251] and molecule-surface [261] PES’s. In this section we extend the use of these

new architectures to fit the collinear H3 PES. Figure A.7 shows the results of an ex-

periment testing network fitting performance, as a function of architecture, number

of neurons and number of layers in the network. Here, we use train each network a

total of 50 times. We use approximately 1500 points in the range rH1H2 = [0.8 − 8]

bohr, rH2H3 = [0.8− 8] bohr as training data. Figure A.9 of a similar experiment to

those shown in Fig. A.7, only in this case we use the PIP inputs for an A3 system

defined above.

A.3.3 Neural Networks and Multibody Expansions

The model derived by Guo and coworkers [250] discussed in the previous sec-

tion naively fits a neural network to a set of training points in all coordinate space.

To ensure an accurate fit, a dense grid of points must be sampled in the relevant

regions of coordinate space. However, fitting the total electronic PES across all

points in coordinate space does not take advantage of the simpler behavior of the

reactive PES and one of the atoms separates.

For example the PES for the B+A2 reaction can be written in a so-called

multi-body expansion as

V (rBA1 , rBA2 , rA1A2) = V (1) +
∑

i=BA1,BA2,A1A2

V (2)(ri) + V (3)(rBA1 , rBA2 , rA1A2),

217



# neurons
5 6 7 8 9 10

R
M

SE
 / 

eV

10-4

10-3

10-2

10-1

FCC
MLP4
BMLP4

# neurons
4 5 6 7 8 9 10

R
M

SE
 / 

eV

10-4

10-3

10-2

10-1

FCC
MLP3
BMLP3

# neurons
3 4 5 6 7 8 9 10

R
M

SE
 / 

eV

10-4

10-3

10-2

10-1

FCC
MLP2
BMLP2

# neurons
2 4 6 8 10

R
M

SE
 / 

eV

10-4

10-3

10-2

10-1

100
FCC
MLP1
BMLP1

1 layer

3 layers 4 layers

2 layers

Figure A.7: RMSE performance of the FCC, MLP, and BMLP network architec-

tures fitting the collinear H3 PES as a function of the number of neurons. Shown

is the optimal performance from a batch of 50 fits. Each panel denotes a different

number of layers used in each architecture, (B)MLPN with N layers. Note: FCC

architectures always have as many layers as they do neurons. The FCC results are

identical in each panel. The output neuron of each network is not counted.

where the constant V (1) term is due from the additive energy of asymptotically

separated atoms, the V (2)(ri) terms are the asymptotic two-body potentials and

V (3) is the interaction potential.
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Figure A.8: Average time per fit for the FCC, MLP, and BMLP network archi-

tectures fitting the collinear H3 PES as a function of the number of neurons. The

markers denote the number of layers.

The interaction potential is exactly zero in any of the asymptotic regions of

space,

lim
ri→∞

V (3)(rBA1 , rBA2 , rA1A2) = 0

for any ri. Because the three-body term vanishes asymptotically, training the neural

network using points in these regions is unnecessary. The potential in the asymptotic

channels is simply the diatomic term which can very easy be calculated and modeled

with a 1-dimensional spline function or another neural network.

A.4 Discussion and Conclusions

Motivated by a recent study by Wilamowski and coworkers [258] we have

attempted to determine some general guidelines for identifying optimal neural net-
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Figure A.9: RMSE performance of the FCC, MLP, and BMLP network architec-

tures fitting the collinear (2D) H3 PES as a function of the number of neurons.

Shown is the optimal performance from a batch of 50 fits. Each panel denotes a

different number of layers used in each architecture, (B)MLPN with N layers. Note:

FCC architectures always have as many layers as they do neurons. The FCC results

are identical in each panel. The output neuron of each network is not counted.
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Figure A.10: Average time per fit for the FCC, MLP, and BMLP network archi-

tectures fitting the collinear H3 PES as a function of the number of neurons. The

markers denote the number of layers.
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Figure A.11: RMSE performance of the FCC, MLP, and BMLP network architec-

tures fitting the three-body term of the multi-body expansion for the collinear H3

PES as a function of the number of neurons.
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Figure A.12: Average time per fit for the FCC, MLP, and BMLP network archi-

tectures fitting the three-body term of the multi-body expansion for the collinear

H3 PES as a function of the number of neurons.

work topologies for fitting molecular PES’s. According to Wilamowski, the ideal

neural network is the network that achieves the desired error tolerance with the

fewest neurons, a condition which provides maximum generalization capability, or,

equivalently, minimizes overfitting.

From the network performance for fitting the 1D H2 potential, shown in Fig.

A.5, we can draw many conclusions. It is clear that the FCC architecture is superior

in almost every experiment to the (B)MLP architectures for the same number of

neurons for fitting the 1D H2 potential curve. The 1-neuron, 1-layer fit in the top

left panel of Fig, A.5 is anomolous. All toplogies share the same 1-1 configuration.

We also see the accuracy of the network fits increase with both the number of

neurons and the number of layers. The (B)MLP architectures become comparable
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Figure A.13: RMSE performance of the FCC, MLP, and BMLP network architec-

tures fitting the three-body term of the multi-body expansion for the collinear H3

PES as a function of the number of neurons.
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Figure A.14: Average time per fit for the FCC, MLP, and BMLP network archi-

tectures fitting the three-body term of the multi-body expansion for the collinear

H3 PES as a function of the number of neurons.

to the FCC networks as the number of layers increases. This is not unexpected;

the BMLP architectures is identical to FCC and the MLP architecture is nearly

identical to the FCC architecture when nneurons = nlayers. We also see that the FCC

architecture only requires three neurons, whereas the BMLP and MLP architectures

require four neurons in two layers and six neurons in four layers, respectively, to

achieve comparable results. These results are consistent with Wilamowski’s findings

for the N -parity problem [258].

Based on the time to train the networks for the 1D problem (Fig. A.6) we

can see it takes more time to train FCC networks, on average, than either MLP

or BMLP networks. This is reasonable, as FCC networks have more weights than

their of the MLP and BMLP networks. From these results it seems the BMLP
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architecture may be a decent compromise between accuracy and time to train. FCC

networks may take more time to train, but their ideal architecture is easy to identify;

simply increase the number of neurons until the desired accuracy is achieved.

The results of training neural networks to model the 2D H2 potential points

are shown in Figs. A.7-A.10. The 2D training results are less accurate than the 1D

results (Fig. A.5) for a given network architecture. The 2D training also requires

much more time to train per network. We used 1500 points to train the networks for

the 2D problem and 300 training points for the 1D problem. This is not exceptional.

The decrease in number of points per dimension explains the former, and the increase

in total number of points explains the latter. Increasing the number of training data

would increase the accuracy of the 2D networks, but we preferred shorter training

times to overall accuracy.

We also notice that Guo’s method of symmetrized PIP inputs is always more

accurate than those networks trained without symmetrized inputs (Figs. A.7-A.10).

The networks with PIP inputs are able to achieve a reasonable RMSE of < 1 meV

with 6 neurons using the FCC architecture. Whereas 9 neurons are required if the

PIP inputs are not used. Furthermore, we know networks with PIP inputs will

not have any artificial dynamics with respect to lack of spatial symmetries. The

timing of the two methods is comparable, and this is reasonable as both use the

same number of training data.

In every experiment fitting neural networks to the collinear H3 data we observe

the same trend with respect to the three network topologies. FCC topologies always

outperform the (B)MLP topologies. As in the 1D case, increasing the depth of the
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network improves the fit of every topology. MLP topologies can be ‘too deep’ for

a fixed number of neurons, and accordingly, can not be used at all as seen (see the

lower panels of Figs. A.7 and A.9). In Fig. A.9, we see that after a second hidden

layer is performed the BMLP topology is on par with FCC in terms of accuracy.

Considering the relative timing in Figs. A.8 and A.10, i.e. FCC is always slower,

BMLP topologies with 2 or more layers using PIP inputs are the preferred choice

for these collinear PES’s.

In Figs. A.11-A.14 we present the results of an experiment using the three

topologies to fit the three-body term and adding back the one and two body terms.

Using Figs. A.7 and A.9 as a reference we see the three-body fits with and without

the PIP inputs are more accurate in every case. We also note that the fitting the

three-body PES takes less time by almost a factor of two, which can be seen by

comparing Fig. A.12 with Fig. A.8 and Fig. A.14 with Fig. A.10, respectively.

It is common to in the literature to find MLP architectures of 1–2 hidden layers

with 5-10 neurons per layer to fit molecular PES’s [248–251]. Based on these results,

this choice of network architecture may work but is far from optimal. Wilamowski

gives the rule of thumb: optimal networks are those with the highest performance

per neuron [258]. We have seen in every study that the MLP topology are inferior

to the BMLP and FCC topologies. As in Wilamowski’s study, we have found that

the most straightforward method to identifying the ideal network architecture is to

use the FCC topology and increase the number of neurons until the desired error

tolerance has been achieved.

We have confirmed Guo’s [250] symmetrized input method drastically improves

227



the fit for a all architectures studied. We have also shown that using a multi-body

expansion of a molecular PES can reduce the computational resources required to

fit a neural network by up to a factor of two. These savings can be used to train

more data leading to boosts in network accuracy. Based on these results, we show

the optimal network topology for fitting molecular H3 PES’s is the FCC architecture

with a symmetrized PIP input layer used to fit a multi-body expansion of the PES.

There are many aspects of using neural networks to fit PES’s that are not

addressed in this study. Specifically, future studies may target new training al-

gorithms, such as Wilamowski’s next-best-neuron algorithm, for improved speeds

and accuracies in network fits. Adaptive and dynamic training algorithms, capable

of pruning unimportant connections in the FCC architecture during the training

process, may also lead to significant increase in performance.
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