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Allostery is a biological process in which action, often ligand binding, at one 

site of the protein alters the function at another site. It provides a mechanism for 

modulating protein functions in a variety of cellular events ranging from signaling, 

metabolism, to transcription regulation. Despite the critical role of allostery in biology 

and intense research during the past few decades, the mechanism of long-range 

communication through the protein is still elusive. The Escherichia coli biotin protein 

ligase (BirA) is a bifunctional protein that catalyzes post-translational biotinylation and 

represses transcription initiation. It serves as a model system to investigate long-range 

allosteric communication, as binding of the effector molecule, bio-5’-AMP, promotes 

the repressor complex assembly by enhancing BirA homodimerization occurring at a 

surface 30Å away. Previous studies have established that disorder-to-order transitions 



 
 

of several loop segments on the ligand binding and dimerization surfaces contribute to 

BirA allostery. In this dissertation, integrated structural, functional, and computational 

approaches were used to investigate the molecular mechanisms of allosteric 

communication between these transitions. Double-mutant cycle analysis demonstrated 

reciprocal coupling between residues on two distant surfaces, and results of molecular 

dynamics simulations indicated that functional coupling occurs via modulation of 

structure and dynamics of surface loops undergo disorder-to-order transitions. Further 

structural and simulation-based network analyses revealed that these transitions are 

linked to formation of a residue network, and alanine substitutions of residues at 

network positions perturb both input (effector binding) and output (dimerization) of 

allostery. In addition, Force Distribution Analysis showed that perturbed loop folding 

is associated with redistribution of mechanical stress experienced by network residues. 

The combined results indicated a mechanism for BirA allosteric regulation in which 

disorder-to-order transitions and joint network formation enables long-range 

communication through the protein. Finally, results of functional measurements 

indicated a conserved allosteric regulation mechanism among Escherichia coli (Ec), 

Staphylococcus aureus (Sa), and Bacillus subtilis (Bs), as bio-5’-AMP binding to Sa 

and BsBirA induces homodimerization similar to that observed for EcBirA. 
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Chapter 1: Introduction 

A. Introduction to allostery 

1. Summary 

 Allostery is the regulation of protein function at one site by action, usually 

effector binding, at another site. This type of regulation is found in a variety of cellular 

processes ranging from signaling1, transcription regulation,2 to metabolism3. Due to its 

importance in biology, allostery has been the center of intense research since the 1960s. 

However, how distant functional sites communicate across a protein remains to be 

elucidated. In this dissertation, combined functional, structural, and computational 

approaches were employed to investigate the molecular mechanisms of long-range 

communication in a model system, the Escherichia coli biotin protein ligase (BirA). 

We hope that results of our study can provide insights into understanding general 

mechanisms of allosteric regulation, which can be utilized to design new drugs that 

modulate enzyme function through allostery. 

2. A brief history of allostery 

The first observation of allostery was reported over a century ago by Christian 

Bohr and his colleagues, who discovered that oxygen binding to hemoglobin yielded a 

sigmoidal curve instead of a hyperbolic one observed for independent binding events.4 

They also reported that the presence of carbon dioxide weakened oxygen binding to 

hemoglobin.4 Unknown to Bohr at that time, both observations are associated with 
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hemoglobin allostery. The sigmoidal binding curve reflects positive cooperativity 

among the four hemoglobin subunits, as oxygen binding to one subunit enhances 

subsequent binding events through conformational changes.5, 6 The effect of carbon 

dioxide, also known as the “Bohr effect”, is primarily caused by the release of protons 

as a result of bicarbonate formation in the blood.7 These protons serve as heterotropic 

negative effectors of hemoglobin and alter the protein structure to a conformation 

unfavorable for oxygen binding.5, 6  

Following the observation by Bohr, a number of phenomenological models 

were proposed to explain the cooperativity in hemoglobin and other allosteric proteins. 

These include the Hill8, Adair9, Klotz10 and Pauling11 equations which provide pure 

mathematical descriptions of cooperative binding. In the 1960s, two important models, 

the concerted Monod-Wyman-Changeux (MWC) model12 and the sequential 

Koshland-Némethy-Filmer (KNF) model13, were proposed to explain the mechanism 

of allosteric regulation in hemoglobin (Figure 1). Both models describe allostery as a 

conformational exchange between the low-affinity tense (T) and the high-affinity 

relaxed (R) states. Binding of oxygen shifts the conformation to the R state, while 

negative allosteric effectors, such as protons, are predicted to stabilize the T state. The 

difference between the two models is whether the four subunits undergo structural 

changes simultaneously (MWC) or independently (KNF). In the KNF model, oxygen 

binding to one subunit induces the T-to-R transition of neighboring subunits, thereby 

increasing the likelihood of subsequent oxygen binding events.13 By contrast, the 

MWC model postulates that all 4 subunits undergo conformational changes 
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simultaneously. As a result, the protein exists in an equilibrium between the T and R 

states, and positive cooperativity is generated by shifting the equilibrium towards the 

R state.12 Both models are consistent with experimental observations and explain the 

sigmoidal oxygen binding curve. However, neither MWC nor KNF models address the 

molecular mechanism of transition between the two states, and how oxygen binding 

promotes these hypothetical structural changes was unknown. 

 The development in X-ray crystallography in the 1960s allowed for the 

elucidation of detailed structural features of hemoglobin allostery for the first time. 

Although earlier studies had acquired structures of hemoglobin, their resolutions were 

too low to reveal the details of the T-R state transition.14, 15 In 1968 and 1970, Max 

Perutz and his colleagues finally obtained high-resolution (2.8 Å) crystal structures of 

horse oxy- and deoxy-hemoglobin.16, 17 Based on these structures, Perutz proposed that 

the stereochemical change at the heme porphyrin ring is critical for hemoglobin 

allostery.5, 6 In this model, oxygen binding to the heme group “pulls” the iron atom into 

the plane of the porphyrin ring and repositions the histidine attached to the iron (Figure 

2). This results in a chain of events including the breakage of inter-subunit salt bridges 

that are responsible for the stabilization of the deoxy-conformation (T state). The two-

state structural transition model proposed by Perutz has now been challenged by the 

discovery of additional ligand-bound hemoglobin structures,18, 19 and NMR 

measurements showed that hemoglobin, like many other proteins, is dynamic in 

solution.20, 21 Nonetheless, Perutz’s data yielded the first molecular model to explain 

the allosteric mechanism in hemoglobin. 
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Figure 1. Schematic diagrams of the MWC and KNF models 

 
Figure 2. (A) Structure models of deoxy- (left) and oxy- (right) hemoglobin generated 

in Pymol22 using PDB files 2DN1 and 2DN2.23 Heme groups and oxygen molecules 

are highlighted in red. (B) Structures of the heme group showing that oxygen binding 

shifts the iron atom into the plane of the porphyrin ring. The figure was taken from the 

Wikipedia page “Heme”.24 
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The idea that allostery occurs via rigid body movements, such as conformational 

changes in hemoglobin, dominated the field throughout the 1960s and 1970s. However, 

this view was challenged by Alan Cooper and David Dryden who proposed that 

allostery can occur solely by altering protein dynamics.25 The authors demonstrated, 

using statistical thermodynamics, that changes in frequency and amplitude of protein 

fluctuations upon effector binding can yield several kJ/mol of cooperative free energy 

purely through the entropic term. In other words, dynamic changes alone are capable 

of generating allosteric responses in the absence of structural changes. Following the 

proposal of this hypothesis, a number of NMR studies reported significant 

contributions of dynamic changes to allostery,26-28 and dynamics have now been 

accepted as an indispensable part of allosteric regulation. 

 Inspired by results of molecular dynamics simulations,29, 30 Cooper and Dryden 

further proposed that allosteric response is the redistribution of pre-existing 

conformational states.25, 31 According to their theory, the protein exists as an ensemble 

of conformations which, based on their probabilities of appearance, form a population 

distribution. Effector binding is predicted to shift the population towards a specific 

state, while changes in protein dynamics (flexibility) alter the width of the distribution. 

The work by Cooper and Dryden was prescient, and the ensemble theory based on their 

idea has now been widely accepted as a general model for allostery.32-34 Nevertheless, 

as a thermodynamic model, the ensemble theory does not reveal the chemical basis of 

allostery, and the mechanisms underlying the inter-site communication have not been 

fully resolved. 
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3. Biophysical methods to investigate allosteric mechanisms 

A variety of structural, solution, and computational approaches have been 

employed to investigate the mechanisms of long-range communication in allosteric 

regulation. The following section introduces several commonly used biophysical 

methods and highlights their strengths and weaknesses in elucidating allostery. Due to 

the limitations of each biophysical technique, combined approaches are usually 

required to obtain a complete picture of allosteric regulation. 

(1) Structure-based approaches 

 Structural analysis is by far the most frequently used method to study allostery, 

and the majority of our understanding of allosteric mechanisms comes from analyses 

of protein structures. X-ray crystallography, cryogenic electron microscopy (cryo-EM), 

and NMR spectroscopy are the top three techniques to acquire protein structures, each 

with its unique advantages and drawbacks. As the most popular approach, X-ray 

crystallography applies to all allosteric proteins provided that they are able to form 

diffractable protein crystals. By comparison, cryo-EM is a crystal-free technique that 

has gained much more attention in the past few years due to advancement in data 

collection and analysis.35-37 Recent studies have reported several cryo-EM structures 

with resolutions comparable (≈2Å) to that of crystal structures.38, 39 However, structure 

determination of small proteins by cryo-EM remains challenging as the signal-to-noise 

ratio of data drops with particle size. Finally, NMR spectroscopy is least popular among 

the three methods because it requires multiple measurements and a substantial amount 

of effort to solve the structure de novo.40 Moreover, the technique is only applicable to 
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small proteins, as larger ones experience spectra overlapping and line broadening that 

complicate peak assignment. Nevertheless, NMR structures better representation of 

solution conformations, as they are shown as an ensemble of most likely 

conformations. 

 It should be noted that structures alone do not tell the full story of allostery, 

because structural models acquired from X-ray crystallography or cryo-EM are usually 

static images that represent the end states of allosteric regulation. Therefore, they do 

not explain how the allosteric signal is transmitted across the protein. In addition, as 

predicted by Cooper and Dryden, dynamic changes are also integral to allosteric 

regulation.25 For instance, structural analysis failed to reveal the dynamic basis of 

allosteric regulation in tetracycline repressor (TetR). TetR is a transcription repressor 

in which binding of the effector molecule, tetracycline, impairs DNA binding at a 

distant functional site (Figure 3).41, 42 Comparison of TetR-DNA complex crystal 

structures with and without tetracycline bound suggested that structural transitions in 

the DNA binding domain (DBD) are responsible for effector-induced de-repression.43 

However, this model fails to explain why free TetR, which binds to DNA tightly, adopts 

a conformation incompatible with DNA binding.42 A later study using equilibrium 

unfolding experiments suggested that tetracycline binding prevents repressor complex 

assembly by inducing the ordering of the DBD, thereby making it less flexible to 

sample conformations favorable for DNA binding.44 These studies indicate that 

attempts to elucidate allosteric mechanisms using only structure-based approaches are 
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insufficient and can be misleading, and structural analysis needs to be combined with 

dynamic measurements to yield a more complete understanding of allostery. 

 

Figure 3. Structure of TetR dimer bound to its effector molecule, tetracycline (green 

spheres). The figure was generated in Pymol22 using PDB entry 2TCT.45 

(2) Nuclear magnetic resonance (NMR) spectroscopy 

 NMR spectroscopy is another powerful tool to investigate the mechanisms of 

long-range allosteric communication. In addition to direct structure determination, 

chemical shift changes provide valuable information regarding structural and/or 

dynamic transitions associated with external stimuli, such as effector binding or amino 

acid substitutions. For example, in a recent study by Yunyao et al.,46 the authors 

proposed a method to predict allosteric participants by determining the number of 

possible chemical shifts in various states of the protein. The authors reasoned that for 
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an allosteric protein with two coupled binding sites, there should be four 

conformational substates, namely the apo, doubly-bound, and two singly-bound states 

(Figure 4). Non-allosteric residues that respond to binding of one ligand, such as ligand 

A, are expected to have only two chemical shifts representing either the ligand-free (1 

and 3) or bound (2 and 4) state. By comparison, residues involved in allosteric coupling 

are predicted to have four distinct chemical shifts. Using the potassium ion channel 

KcsA as the model system, the authors demonstrated that the new method was able to 

identify potential allosteric residues that were not detected by conventional structural 

analysis. Their predictions were validated by mutagenesis studies, which showed that 

that amino acid substitutions of identified residues affect KcsA allostery.46, 47 

 

Figure 4. Thermodynamic cycle illustrating the four conformational substates of an 

allosteric protein with two binding sites. 
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 A more detailed chemical shift analysis carried out by Freiburger et al. 

facilitated the elucidation of allosteric mechanism in aminoglycoside N-(6’)-

acetyltransferase-Ii (AAC(6’)-Ii).48 AAC(6’)-Ii is an enzyme that transfers the acetyl 

group from acetyl coenzyme A (AcCoA) to the 6’ position of aminoglycoside 

antibiotics to render drugs ineffective against bacteria.49 Combined structural and 

functional studies indicated that binding of the first AcCoA molecule to the 

homodimeric enzyme is positively coupled to the second AcCoA binding.50, 51 Results 

of NMR measurements showed that the enzyme undergoes substantial structural and 

dynamic changes upon AcCoA binding, and allosteric regulation in AAC(6’)-Ii is well-

characterized by a two-state model.48 However, the mechanism of this cooperative 

binding was poorly understood, and it is unclear if AAC(6’)-Ii allostery can be 

described by the MWC or KNF model.48 

 The key to distinguishing between the two models is to identify the 

conformation of singly-bound AAC(6’)-Ii. In the MWC model, the singly-bound 

enzyme exists in an equilibrium between the free (apo) and fully-bound (holo) states, 

and AcCoA binding shifts this equilibrium towards the holo state. By contrast, the KNF 

model predicts that the singly-bound AAC(6’)-Ii is a heterodimer, with one monomer 

resembling the apo conformation and the other mimicking the holo form. Not 

surprisingly, NMR spectroscopy did not detect any distinct signal for the intermediate 

state, as it probably overlapped with apo and holo peaks on the spectra. To dissect the 

signal of the singly-bound AAC(6’)-Ii, Freiburger et al. developed a joint analysis of 

NMR and isothermal titration calorimetry (ITC) data.48 They first determined the 
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species distribution at different substrate concentrations using ITC, and this 

information was utilized to calculate the contribution of singly-bound proteins to the 

signal intensity of each NMR peak. (Figure 5A, B) The KNF model predicts that the 

NMR signal of the singly-bound protein will be split equally into apo and holo peaks 

at a 1:1 ratio. On the other hand, if AAC(6’)-Ii allostery is consistent with the MWC 

model, the contributions of singly-bound species to apo and holo peak intensities 

should be either 0 or 100%, as the species distribution has been taken into consideration 

in the calculation. Results of the analysis showed that for the majority of the residues, 

the NMR signal of singly-bound state contributes equally to corresponding apo or holo 

peaks (Figure 5C, 100% contribution is normalized to 2), thereby supporting the KNF 

model for AAC(6’)-Ii allostery. 

 The major drawback of NMR chemical shift analysis is that it is difficult to 

distinguish effects caused by external stimuli, such as effector binding, from those 

generated by allostery. Therefore, this method usually serves as a tool to generate 

hypothesis for allosteric mechanisms, and results of chemical shift analysis require 

validation by other biophysical methods. 

 Another application of NMR spectroscopy is to characterize the dynamic basis 

of allosteric regulation.26, 52, 53 Advances in NMR methods have enabled observation of 

dynamic events over a range of timescales from picosecond-nanosecond side chain 

fluctuations to millisecond or longer protein folding and domain movements (Table 

1).54, 55 The most frequently used technique is the Carr–Purcell–Meiboom–Gill 

(CPMG) relaxation dispersion, which monitors microsecond to millisecond timescale 
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Figure 5. Results of joint NMR and ITC analysis on AAC(6’)-Ii allostery. (A) Species 

distribution plot showing fractions of apo (0-bound), singly-bound, and holo (2-bound) 

enzyme as a function of AcCoA concentration. (B) Intensity profiles of the apo (dashed 

line) and holo (solid line) peaks for residue Leu56 as a function of AcCoA 

concentration. (C) Histograms of the relative contribution of the singly-bound signal to 

all distinguishable apo and holo peaks. 100% contribution is normalized to 2. Figures 

were taken from the paper by Freiburger et al.48 
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motions that are most relevant to protein conformational exchanges.56, 57 Analysis of 

relaxation data yields the exchange rate, the population of each state, and the chemical 

shift difference between the two states, which enable the characterization of both 

kinetics and thermodynamic properties of the conformational exchange.  

Table 1. Common NMR techniques to study protein dynamics 

Technique Timescale Reference 

EXSY (magnetization exchange spectroscopy) >100 ms 58 

CPMG (Carr–Purcell–Meiboom–Gill) 100 ms–100 µs 56, 57 

RDC (residual dipolar couplings) <10 ms 59 

Spin relaxation ns–ps 60, 61 

 CPMG relaxation dispersion has been employed to investigate the dynamic 

basis of allosteric regulation in many proteins including dihydrofolate reductase 

(DHFR). DHFR is a critical metabolic enzyme that catalyzes the nicotinamide adenine 

dinucleotide phosphate (NADPH)-dependent reduction of dihydrofolate (DHF) to 

tetrahydrofolate (THF).62 Under saturating ligand concentrations, the enzyme cycles 

through five major intermediates in which the product (THF) release serves as the rate-

limiting step (Figure 6).63 Kinetic measurements demonstrated that NADPH binding to 

the enzyme:THF (E:THF) complex increases the rate of THF dissociation by 

approximately 8-fold (Table 2).63 As the two substrates occupy distinct binding sites,64 

NADPH binding probably induces the product release via allostery. Structural analysis 

suggested that the domain movement upon NADPH binding may contribute to product 

release,65 but it does not explain why binding of the almost identical NADP+ fails to 
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induce a similar effect. Dynamic measurements using CPMG relaxation dispersion 

demonstrated that NADPH-induced population shift is responsible for elevated THF 

dissociation.66, 67 According to the results of NMR measurements, NADPH binding to 

E:THF populates a higher energy state that resembles the conformation of the 

E:NADPH complex, the following intermediate in the catalytic cycle (Figure 6).66 

Further investigation of this minor conformational state showed that the two substrates 

generate a steric clash in the active site that favors the rejection of THF.67 By contrast, 

this steric hindrance is not observed in the ground state, and neither E:THF nor 

E:THF:NADP+ complexes sample the same excited state observed for the 

E:THF:NADPH complex.63, 66 In summary, NADPH binding induced-product release 

occurs by populating a conformation that is unfavorable for simultaneous binding of 

both THF and NADPH.  

 
Figure 6. Schematic representation of the E. coli DHFR catalytic cycle showing its five 

primary intermediates and rate constants for each step. The figure was taken from the 

paper by Schnell et al., 2004.68 
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Table 2. Rate constants of THF dissociation from different DHFR complexes. Values 

were taken from the paper published by Fierke et al. in 1987.63  

Enzyme species koff (s-1) 

E:THF 1.4±0.2 

E:NADP+:THF 2.4±0.2 

E:NADPH:THF 12±2 

 Although NMR spectroscopy is powerful in elucidating allosteric mechanisms, 

it has its own limitations. First, chemical shift changes or dynamic information alone 

do not reveal the mechanisms of allosteric communication, and interpretation of NMR 

data usually depends on prior structural and functional studies. Second, spectral 

analysis relies on the correct assignment of resonance peaks to corresponding nuclei, 

but spectra of large proteins (>100 kDa) usually contain many overlapping peaks that 

are difficult to identify with certainty. The slow tumbling of these proteins also results 

in line broadening and further increases the difficulty of peak assignment. Although 

isotopic labeling techniques, such as 19F labeling69 or methyl-specific 13C labeling70, 

effectively reduce the number of signals, some proteins are still not suitable for analysis 

by NMR. Moreover, selective labeling limits the scope of analysis to those labeled 

residues.  

(3) Functional measurements 

 One critical step to understanding allostery is to link structure and dynamic 

information to protein function. Studies using structure-based approaches and NMR 
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measurements can identify structural transitions or dynamic changes that may be 

important for allostery, but these hypotheses require validation by functional 

measurements. The classic approach is to use site-direct mutagenesis, as perturbations 

that disrupt allosterically important transitions are predicted to alter the energetic 

coupling between effector binding and the functional response. The magnitude of this 

coupling, also known as the coupling free energy, can be quantitatively determined by 

thermodynamic or kinetic measurements. 

 In some cases, functional measurements can provide insights into allosteric 

mechanisms. For example, ITC measurements on Staphylococcus aureus chromosomal 

Zn-regulated repressor (CzrA) showed that the negative allosteric coupling between Zn 

and DNA binding is entropic in origin, suggesting the critical role of dynamics in CzrA 

allosteric regulation.71 Results of cyclic adenosine monophosphate (cAMP) binding 

measurements supported dynamically-driven allostery in catabolite activator protein 

(CAP), as the second cAMP binds CAP with large unfavorable entropy but slightly 

favorable enthalpy.26 In both cases, predictions generated by thermodynamic 

measurements were consistent with results of NMR measurements, which showed that 

dynamic changes are dominant in allosteric regulation of these proteins. Nevertheless, 

interpretation of results obtained from functional measurements usually requires 

additional structural or dynamic information, as thermodynamics alone do not reveal 

the mechanisms of allosteric regulation. 
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(4) Molecular dynamics (MD) simulation 

 MD simulation is a valuable complement to “wet-lab” experiments in studying 

allostery as it provides an all-atom description of protein motions in both space and 

time. A typical MD simulation starts with a high-resolution structural model obtained 

from X-ray crystallography, cryo-EM, or NMR spectroscopy. The structural 

information is then converted into potential energies using a force field, which is a 

collection of terms that describe interaction energies, in order to process atomic 

interactions quantitatively in silico. Finally, all atoms and molecules are allowed to 

interact using Newton’s laws of motion, and the position of every atom is recorded at 

a fixed time interval. In other words, results of MD simulations, also known as 

trajectories, are a series of snapshots of the protein at different time points. 

 Compared to “wet-lab” experiments, MD simulation is not restricted by 

technical limitations such as protein expression, purification or crystallization. This 

feature allows for easy implementation of external stimuli including ligand binding, 

amino acid substitutions, and even mechanical forces.72, 73 These advantages have 

enabled MD simulation to study some challenging systems including G-protein 

coupled receptors74 and ion channels75. 

 Analysis of MD simulation data not only provides explanations of experimental 

observations but also generates testable hypotheses for mechanistic studies. The classic 

strategy is to compare a parameter of interest between trajectories of different protein 

states. For example, comparison of correlated motions76 or root-mean-square 

deviations (RMSD)76-78 highlights structural transitions upon effector binding, while 
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comparing root-mean-square fluctuations (RMSF)78 may reveal the dynamic basis of 

allostery. One example is the investigation of the allosteric activation mechanism in 

human glucokinase, an important metabolic enzyme that regulates glucose hemostasis 

in the blood. 79-81 It consists of an N-terminal small domain and a C-terminal large 

domain, with the glucose binding site located in the interdomain cleft. Activation by 

natural substrate binding induces notable structural changes, including the transition 

from an open conformation to a more compact closed state. (Figure 7)82 Previous 

studies have identified several potent allosteric activators which promote enzyme 

activity by binding at an allosteric site 20Å away from the active site,83, 84 but their 

mechanism of action was unclear. To investigate the mechanism of allosteric activation 

in glucokinase, MD simulations were performed on the active conformation of 

glucokinase in the presence and absence of an allosteric effector.79, 84 Similar to the 

substrate binding-induced activation, analysis of simulation data showed that activator 

binding decreases the cleft-angle between the two domains. This yields a more rigid 

glucokinase conformation and maintains the enzyme in the closed state (Figure 8, 

Green). By contrast, the free protein is more dynamic and less likely to sample the 

closed conformation (Figure 8, Red). Results of MD simulation suggest that in addition 

to structural transitions, dynamic changes also contribute to the activation of 

glucokinase. This hypothesis is supported by later NMR studies showing that order-

disorder transitions of an active site loop and ordering of the small domain play a 

critical role in glucose binding-induced activation of glucokinase.85, 86 
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Figure 7. Structures of apo- and holo-glucokinase. Glucose binding induces significant 

structural changes from an open conformation to a closed form.  Color code: Red, the 

151-180 loop; Green, glucose; Yellow, an allosteric activator that maintains closed 

conformation. Models were made using Pymol22 with PDB files 1V4S and 1V4T.82 

 

Figure 8. Cleft-angle profiles between two domains of glucokinase in the absence (red) 

and presence (green) of an allosteric activator. Larger angles indicate more open 

conformations.79 The figure was adapted from the paper by Zhang et al., 2006.79 



 
 
 

20 
 

 MD simulation is also used to identify residue networks that are important for 

allosteric communication. An increasing number of studies have demonstrated that 

allosteric communication between distant functional sites occurs through networks of 

coupled amino acids, rather than a specific pathway that involves only a chain of 

connecting residues.87-91 Naturally, identification of putative networks in the protein is 

important to elucidate the allosteric mechanism. Several structure-based algorithms 

have been developed to analyze amino acid networks in the protein,92-94 but the 

drawback of these approaches is that they rely heavily on static structure models that 

do not necessarily represent conformations in solution. For instance, residue 

interactions that form or break transiently due to intrinsic dynamics will not be 

identified in crystal structures. This results in altered network topology and may affect 

subsequent identification of allosteric residues. 

 Multiple simulation-based network approaches have been applied to identify 

residues and networks that may be important for allostery.95 One example is the energy-

based network analysis proposed by Ribeiro and Ortiz.96, 97 In this approach, the protein 

structure is transformed into a mathematical graph where residues are represented as 

nodes, and node interactions are drawn as edges. Compared to other network 

approaches, the major difference of this new analysis is that it determines the network 

topology based on interaction energies. This is based on the assumption that allosteric 

signal preferentially propagates through the pathway that cost the minimum amount of 

energy. Therefore, the new network analysis not only reveals what residues are in 

contact, but also provides information on the most likely (shortest) contacts between 
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any pair of residues.96 This feature can be utilized to quantitatively evaluate the 

participation of a residue in these contacts. Residues that are critical for allostery are 

predicted to have high participation in inter-residue communication, and top candidates 

identified by this analysis would form a network through which allosteric signal is 

propagated.96, 97 

 To test the effectiveness of this new approach, the authors performed the 

network analysis on an allosteric enzyme, the imidazole glycerol phosphate synthase 

(IGPS), using different network algorithms. IGPS is a heterodimer that consists of HisH 

and HisF monomers (Figure 9). Binding of an effector molecule in the HisF monomer, 

which is one 25Å away from the active site, enhances the catalytic activity of IGPS by 

about 5000-fold.98, 99 In the work by Ribeiro and Ortiz, the authors calculated shortest 

paths between residues in the effector binding and active sites using several different 

network algorithms. Results of the calculations showed that these approaches yielded 

different communication pathways, but the energy-based network analysis correctly 

identified residues important for allosteric communication.99 These include residues 

D98f (blue) and K181h (red) which forms a crucial salt bridge connecting the two 

subunits. By comparison, analysis using well-established Pearson correlation 

coefficients failed to highlight this interaction.96 Therefore, the network analysis 

developed by Ribeiro and Ortiz can effectively identify important network residues 

with high accuracy. 
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Figure 9. Structure of IGPS heterodimer showing residues identified in the network 

analysis. The figure was adapted from the paper by Ribeiro and Ortiz.99 

 

 Despite the power of MD simulation in studying allosteric mechanisms, it 

should be noted that the results of MD simulations still require validation by 

experiments. This is mostly because force fields that characterize atomic interactions 

are far from perfect, and Newton’s laws of motion do not take quantum effects into 

consideration. Another restriction of MD simulation is the limitation in computing 

power. Common microsecond timescale simulations can take days to complete on 

supercomputers, while millisecond level simulations are only achieved on a few 

systems.100 One alternative is to use faster but less accurate coarse-grained simulation, 

in which a small group of atoms, such as a residue, are treated as a single particle during 
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the calculation. This reduces the complexity of the system and lowers the requirement 

for computing power, albeit at the cost of accuracy.101 

 In summary, this section describes several commonly used structural, dynamic, 

functional, and computational approaches to study allostery. Each method has its 

expertise in revealing a particular aspect of allosteric mechanisms, but the complex 

nature of allostery, as demonstrated in some examples below, requires the use of 

multiple methods simultaneously to reveal the full story of allosteric regulation. 

4. Application of integrated biophysical methods to investigate allosteric 

mechanisms 

 As described above, the investigation of allosteric mechanisms by a single 

approach cannot yield a complete picture of allostery. In this part of the chapter, I will 

introduce several examples in which allosteric mechanisms were studied using 

integrated biophysical techniques and discuss the significance of results generated by 

these methods. In the first example, studies on glucokinase revealed an allosteric 

mechanism in which substitutions at locations distant from the active site modulate 

enzyme function by affecting the disorder-to-order transition of an active site loop. The 

second example of CzrA highlights the importance of dynamics in allosteric regulation 

and demonstrates the predictive power of MD simulations. In the third system, 

combined biophysical approaches revealed a distributed allosteric network in Src 

kinase that links the kinase domain to regulatory regions on the other side of the protein. 

This example demonstrates the application of network theory in studying allostery. 
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(1) Human glucokinase 

 Disorder plays an important role in allosteric regulation, and its significance in 

the thermodynamics of allostery has been well-characterized.102, 103 However, the 

molecular mechanisms of how disorder contributes to allosteric regulation have not 

been not fully elucidated. Human glucokinase provides a model system to investigate 

the role of disorder in allostery, as activation of the enzyme is associated with the 

disorder-to-order transition of an active site loop, and distant amino acid substitutions 

alter enzyme activity by modulating the dynamics of this loop.82, 85, 104 

 Human glucokinase is a special member of the hexokinase family that catalyzes 

the conversion of glucose and ATP to glucose-6’-phosphate, the first step of glucose 

metabolism.105, 106 It is the predominant hexokinase in the liver and pancreatic β cells 

and is responsible for maintaining glucose homeostasis in the blood.107, 108 

Dysregulation of enzyme function by genetic mutations in the glucokinase gene is 

associated with severe metabolic diseases such as maturity-onset diabetes of the young 

(MODY) or permanent neonatal diabetes mellitus (PNMD).109 Given its critical role in 

glucose metabolism, glucokinase has become a potential target to treat diabetes,110, 111 

and studies have identified several allosteric activators that enhance the enzyme 

activity.83 Therefore, a better understanding of allosteric activation mechanisms in 

glucokinase can facilitate the design of novel drugs that treat non-insulin dependent 

diabetes and metabolic diseases caused by loss-of-function genetic mutations. 

 As the regulatory function of glucokinase is closely connected to its unique 

kinetic features, elucidation of allosteric regulation in glucokinase would be impossible 
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without a thorough understanding of its kinetic cooperativity. Kinetic measurements 

demonstrated that the activity of glucokinase exhibits a sigmoidal dependence on 

glucose concentration with a Hill coefficient of 1.7 (Figure 10).3 As the midpoint of the 

curve is comparable to physiological blood glucose level (4 to 7 mM), the kinetic 

cooperativity allows the enzyme to respond sensitively to sugar uptake while 

maintaining glucose homeostasis in the blood.112 Allosteric activators or substitutions 

that generate hyperactive variants also modulate enzyme function by removing the 

glucose-dependent cooperativity in glucokinase.83, 104. 

 

Figure 10. Dependence of glucokinase (GCK) activity on glucose concentration. The 

figure was adapted from the paper by Whittington et al.104 

 

 The positive kinetic cooperativity observed for glucokinase is characteristic of 

allosteric regulation, but unlike “classic” allosteric proteins, which have multiple 

subunits, glucokinase is monomeric and has only one glucose binding site.82 Two 

theoretical models have been proposed to explain the kinetic cooperativity in 
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monomeric enzymes: the mnemonic model113 and the ligand-induced slow transition 

(LIST) model114. Both models postulate that the enzyme undergoes a slow 

conformational exchange between the active and inactive conformations. The 

mnemonic model proposes that the enzyme “memorizes” the active conformation 

temporarily after turnover, thereby allowing it to skip the slow exchange process at 

high substrate concentrations. By contrast, the LIST model states that the enzyme in 

both conformations can catalyze the reaction, albeit at different rates. The positive 

cooperativity upon effector binding is generated by population shift towards the faster 

conformation. The major difference is that there is only one catalytically active 

complex in the mnemonic model, while the LIST model had two separate catalytic 

cycles. For glucokinase, both models were supported by multiple sources of evidence, 

and no consensus had been reached for decades.115 Moreover, like other 

phenomenological models, neither mnemonic nor LIST models reveal the chemical 

basis of the cooperativity in glucokinase. 

 Structural analysis revealed that glucose binding-induced activation is 

accompanied by large-scale conformational changes. X-ray crystal structures showed 

that glucokinase adopts a palm-shaped conformation with two domains: the large and 

small domains (Figure 7).82 The two domains are connected by a deep cleft, which 

forms the active site for glucose phosphorylation. Binding of the effector molecule, 

glucose, leads to the movement of two domains from an open conformation towards a 

more closed form. In addition, effector binding is also accompanied by the disorder-to-

order transition of an active site loop comprised of residues 151-180 in the small 
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domain.82 The release of phosphorylated glucose, on the other hand, triggers the order-

to-disorder transition and returns the enzyme to the open conformation. However, 

structures alone do not provide insight into the mechanism of kinetic cooperativity 

because they only demonstrate equilibrium models of the protein. 

 To investigate the dynamic basis of glucose-induced allosteric activation of 

glucokinase, the Brüschweiler group at Ohio State University carried out a series of 

studies using NMR spectroscopy.85, 86, 115, 116 Results of their NMR measurements 

showed that glucokinase samples multiple conformations in solution, and glucose 

binding alters the dynamics of the protein by stabilizing specific conformations.116 A 

further investigation showed that these dynamic changes mostly originated from the 

ordering of the small domain, including the disorder-to-order transition of the 151-180 

loop.85 These results suggest that kinetic cooperativity may be linked to the dynamics 

of the small domain.  Consistent with the hypothesis, amino acid substitutions that 

lead to hyperactivity decreased dynamics of the small domain in the unliganded state.85 

Overall, results of combined structural and dynamic measurements indicate that the 

ordering of the small domain and folding of the 151-180 loop contribute to the glucose-

dependent allosteric activation of glucokinase. 

 To better understand the kinetic cooperativity in glucokinase, the Brüschweiler 

group characterized conformational exchanges in the protein using CPMG relaxation 

dispersion experiments. Results of the measurements revealed that the free enzyme 

exchanges between the active and inactive conformation at a rate of 510±50 s-1, a value 

that is comparable to the rate of enzyme turnover (220 s-1). By contrast, conformational 
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exchange on the millisecond timescale was not detected in the substrate-bound 

glucokinase, suggesting that there is only one active catalytic complex.86 The slow 

kinetics of conformational exchange in combination with the absence of second 

catalytic cycle support the mnemonic model in which the glucokinase “memorizes” the 

active state shortly after the turnover: At low glucose concentrations, glucokinase 

undergoes the complete catalytic cycle which results in an enzyme that significantly 

deviates from Michaelis–Menten kinetics (Figure 11). At high glucose concentrations, 

the transitions to the disordered, inactive state upon product release is bypassed due to 

rapid glucose binding, and the enzyme runs through a shorter catalytic cycle with a 

faster rate of catalysis. 

 

Figure 11. Schematic diagrams showing the model for glucose-dependent kinetic 

cooperativity in glucokinase. The structure models were generated using the same 

method as described in Figure 7. The figure is adapted from the paper by Larion et al.86 
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 Mutagenesis studies highlighted the critical role of the disordered 151-180 loop 

in long-range allosteric activation. Although prior studies established the model for the 

kinetic cooperativity in glucokinase, how amino acid substitutions modulate enzyme 

function from a distant site remained to be elucidated. Combined NMR and proteolysis-

based approaches revealed two different mechanisms for substitution-induced 

allosteric activation, both of which result in highly active and non-cooperative 

glucokinases.104 In the α-type mechanism, glucokinase is activated by shifting the 

ensemble of the free enzyme towards the more ordered glucose-bound state. This is 

supported by results of NMR measurements which demonstrated a more rigid structure 

upon substitution. In addition, the susceptibility of the 151-180 loop to proteolysis is 

decreased, indicating a more ordered active site loop. By comparison, substitutions that 

activate glucokinase via the β-type mechanism do not affect the overall conformation. 

Instead, they increase the mobility of the 151-180 loop, which is predicted to enhance 

the turnover rate by promoting product release. Notably, a number of these 

substitutions occur at the site where effector binds, suggesting that effector-induced 

allosteric response may also enhance enzyme activity through the same mechanism 

(Figure 12). Overall, results of these studies indicate allosteric activation by amino acid 

substitutions can occur through modulation of the disorder-to-order transition of the 

active site loop. 

 In summary, the combined structural, functional, and dynamic studies revealed 

the mechanism of glucose-dependent kinetic cooperativity in glucokinase and 

highlighted the importance of the disorder 151-180 loop in allosteric regulation. 
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Nonetheless, a number of questions remain to be addressed. For example, how the 

disorder-to-order transition of the active site loop contributes to glucose 

phosphorylation remains elusive. In addition, studies have demonstrated that residue 

substitutions at positions distant from the active site loop alter its disorder-to-order 

transition upon glucose binding, but it is unclear how distant sites communicate across 

the protein. Finally, the mechanisms of allosteric activation by effector binding remain 

to be investigated. It is possible that these allosteric activators also enhance glucokinase 

activity by increasing the mobility of the active site loop. 

 

Figure 12. Holo-glucokinase structure (PDB: 1V4S82) demonstrating locations of 

amino acid substitutions that lead to α-type activation (S64P, T65I, V455M) (magenta) 

or β-type activation (M197V, I211F, Y214C) (orange).104 The 151-180 loop is colored 

in red, and the allosteric effector is colored in yellow. 
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(2) Staphylococcus aureus chromosomal Zn-regulated repressor 

 Regulation of transcription repression by allostery is common in biology, and 

its mechanisms have been studied extensively in a number of systems.44, 117, 118 The 

most important question is how effector binding at one site alters DNA binding affinity 

at a distant site. The long-range communication between functional sites was once 

considered to be mediated by structural changes.43 However, the importance of 

dynamic changes in allostery cannot be underestimated, and allosteric regulation in 

some cases is driven entirely by changes in conformational dynamics.117 In this section, 

I will briefly describe the investigation of allosteric mechanism in chromosomal Zn-

regulated repressor (CzrA) using a combination of biophysical methods. Studies on 

CzrA also demonstrated the predictive power of computational tools, as results 

obtained from MD simulations are highly consistent with those of solution 

measurements. 

 CzrA is an allosterically regulated Zn(II) sensor protein that controls Zn 

homeostasis in S. aureus. In the absence of the effector molecule, Zn(II), CzrA binds 

to DNA and represses transcription of the CzrB gene which encodes a membrane-

bound Zn exporter. When Zn(II) accumulates in the cytoplasm, metal binding releases 

the protein from the DNA and activates transcription of the CzrB gene to export excess 

Zn(II),119, 120 which is toxic as it prevents uptake of manganese.121 

 Zn binding-induced allosteric response does not occur via conformational 

changes. Crystal structures show that CzrA exists as a homodimer, with the metal 

binding site located at the dimer interface distant from the DNA binding domain 
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(Figure 13).122 Despite the strong negative coupling between Zn and DNA binding,71 

both apo- and Zn2-CzrA share the almost identical “open” conformation, and the 

structural alignment yielded a global RMSD of 1.6Å.122 By contrast, the DNA-bound 

CzrA adopts a more “closed” conformation that is favorable for DNA binding.52 The 

lack of structural changes upon Zn binding suggests that dynamics play an important 

role in CzrA allostery. Consistent with this prediction, ITC measurements show that 

the +6 kcal/mol coupling free energy between Zn and DNA binding is entropic in 

origin, indicating a dynamically driven allosteric response.71 

 To better understand the nature of allosteric regulation in CzrA, molecular 

dynamics (MD) simulations were performed on all four states of CzrA proteins.123 

Consistent with crystal structures, both apo and Zn2-CzrA adopt an open conformation 

in simulations, while DNA binding stabilizes the closed conformation. Analyses of 

simulation data using root-mean-square fluctuations (RMSF) or correlated motions as 

metrics both indicated that Zn binding quenches internal dynamics near the metal 

binding site, whereas DNA binding enhances the mobility of these residues. Further 

investigation revealed a hydrogen bonding pathway that connects Zn and DNA binding 

sites. As this pathway is only present in the Zn2-CzrA state, the authors speculated that 

Zn binding-induced dynamic quenching stabilizes the pathway to prevent CzrA from 

sampling the high DNA binding affinity conformation. By contrast, the effect of DNA 

binding may destabilize the hydrogen bonding pathway and ultimately results in 

increased protein mobility. 
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Figure 13. Thermodynamic cycle illustrating the negative coupling between Zn and 

DNA binding to CzrA.71 All structure models were generated in Pymol.22 Apo- and 

Zn2-CzrA structures (PDB: 1R1U and 1R1V) were solved by X-ray crystallography,122 

while the structure of CzrA in the DNA-bound form was obtained by NMR 

spectroscopy (PDB: 2KJB).52 The structure of Zn2-CzrA-DNA complex, however, 

remains to be solved. 

 

 The hypothesis generated by MD simulations is supported by results of NMR 

measurements published 5 years later.123 NMR measurements performed on apo and 

Zn2-CzrA demonstrated that Zn binding is associated with redistribution and quenching 

of the picosecond to nanosecond (ps-ns) side chain dynamics in the core of the protein. 

This is consistent with the results of MD simulations and suggests that fast side-chain 

motions are critical for allostery.124 As simulations only lasted for 120 ns,123 Zn-
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induced dynamic quenching at microsecond to millisecond (µs-ms) timescales was not 

detected in the initial study. Nonetheless, mutagenesis experiments showed that 

changes in slow dynamics alone are insufficient to promote de-repression. For example, 

double substitutions V66A/L68V and V66A/L68A, which abolish allosteric coupling 

in CzrA, lead to altered and even complete loss of Zn binding-induced dynamic 

quenching associated with ps-ns side chain dynamics. By contrast, Zn binding still 

quenches µs-ms timescale backbone motions identical to that observed in the wild type 

protein, indicating that slow dynamic changes alone do not modulate allosteric 

response in CzrA.124 

 Overall, the combined biophysical studies indicate that CzrA allostery occurs 

through modulation of fast internal dynamics, but not slow motions, upon Zn binding. 

This work also demonstrates the predictive power of computational approaches, as 

results of MD simulations are highly consistent with that of NMR measurements. 

However, more experiments are required to elucidate the mechanism of allosteric 

communication in CzrA. For instance, MD simulations predicted that the hydrogen 

bonding pathway is crucial for communication between Zn and DNA binding sites, but 

evidence supporting this hypothesis is lacking. Moreover, how quenching in side chain 

dynamics near the Zn binding site alters protein ensemble remains unclear. As µs or 

even ms timescale simulations are becoming more accessible now, simulations at 

longer timescales may reveal the linkage between local dynamic changes and 

alterations in global conformations. 
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(3) Cellular Src (c-Src) kinase 

 The mechanisms of long-range communication between functional sites have 

always been the key information to understanding allosteric regulation. When 

addressing this challenge, network theory has become increasingly popular as allosteric 

communication in many proteins has been found to occur through networks of 

residues.125-128 Naturally, the identification of residue networks is critical to elucidating 

the mechanisms of allosteric communication. In this section, combined structural, 

functional, and computational approaches identified residue networks that may play an 

important role in inter-domain communication in c-Src kinase. 

Cellular Src (c-Src) kinase is a member of mammalian Src family tyrosine 

protein kinases that function in a large number of cellular signaling pathways including 

proliferation, differentiation, migration, and survival.129 Due to its critical role in 

cellular activities, the enzyme is subjected to tight regulation by kinases and 

phosphatases,130 and continuous activation of c-Src kinase has been demonstrated to be 

oncogenic.129, 131, 132 However, popular tyrosine kinase inhibitor drugs, such as imatinib 

(Gleevec)133 and dasatinib (Sprycel)134 which target the active site of c-Abl kinase, are 

not effective against c-Src kinase, even though they share almost identical kinase 

domains.135 The failure of conventional anti-cancer drugs suggests that highly 

conserved active site in c-Src kinase may not be an ideal target. Instead, effector 

molecules that bind allosteric sites in distant regulatory domains may yield higher 

selectivity for the protein. 
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Figure 14. Structures of (A) inactive and (B) active c-Src kinases. Activation of the 

enzyme by dephosphorylation of pY527 breaks interdomain interactions and relieves 

the auto-inhibition by SH2 and SH3 regulatory domains. Color code: Purple, the kinase 

domain; Green, SH2 domain; Red, SH3 domain; Cyan, the activation loop; Black, 

ligand molecules that stabilize specific conformations. Figures were made in Pymol22 

using PDB files 2SRC136 and 1Y57137. 

 

The mechanisms of allosteric regulation in c-Src kinase have been studied 

extensively using integrated biophysical approaches. The kinase consists of 5 segments 

from the N-terminus to the C-terminus: four Src-homology (SH4, SH3, SH2, and SH1) 

domains, followed by a tail at the end of the C-terminus (the C-terminal tail). The SH1 

domain is the highly conserved tyrosine kinase domain, while SH2, SH3 domains and 

the C-terminal tail are important for regulating enzyme activity.130, 138-140 X-ray crystal 

structures showed that c-Src kinase activation is accompanied by loss of interdomain 
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interactions and domain movements. In the native, down-regulated state, c-Src kinase 

adopts a closed conformation in which regulatory domains are packed and bind to the 

kinase domain (Figure 14A).141, 142 Interactions between regulatory domains and the 

kinase domain are predicted to auto-inhibit the enzyme by stabilizing the inactive 

conformation. Activation of the enzyme, which usually occurs via dephosphorylation 

of the residue pY527 or autophosphorylation of residue Y416, leads to the loss of 

interdomain interactions (Figure 14B). As a result, SH2 and SH3 domains rotate about 

130o relative to the inactive conformation, and the kinase domain adopts an open 

conformation that is active for catalysis.137 

 MD simulations on the kinase domain revealed a residue network that links the 

active site to the domain interface. Previous studies have established that 

phosphorylation of residue Y416 in the activation loop, or dephosphorylation of Y527 

in the C-terminal tail activates the kinase and results in structural changes from a closed 

state to an open conformation.130, 136, 137, 143 However, neither of the two residues are 

located near the interface between regulatory domains and the kinase domain. To 

investigate the mechanism of this communication, Foda et al. simulated catalytic 

domain of c-Src kinase in its active and inactive conformations.91 Direct comparison 

of simulated structures revealed an extensive network of contacting residues that spans 

40Å across the entire kinase domain (Figure 15, left),91 and activation of the enzyme is 

accompanied by the rearrangement of network interactions (Figure 15, right). 

 Functional measurements indicated that perturbations to the network have 

significant effects on enzyme catalysis. For example, alanine substitution of W260, 
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which is distant from the active site, greatly enhances the enzyme activity and abolishes 

allosteric coupling.91, 138 Protonation of active site residue D404 activates the enzyme 

and triggers the structural change of the kinase domain to the active conformation.91, 

144 Therefore, Foda et al. hypothesized that the residue network identified facilitates 

the communication between regulatory domains and the kinase domain. However, as 

simulations were carried out on the kinase domain only, this network only reveals the 

communication within the kinase domain. 

 

Figure 15. Residue networks identified in the simulated kinase domain in its inactive 

(left) and active (right) conformations. The figure was adapted from the paper by Foda 

et al., 2015.91 
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 MD simulations performed on the multidomain complex provided more 

insights into the mechanisms of interdomain allosteric communication in c-Src kinase. 

In a recent study by Tse and Verkhivker, the authors identified potential allosteric 

networks in the full complex using a systematic network analysis similar to that 

described in the previous section.145 In this approach, the protein is also represented as 

a 2D graph in which residues are treated as nodes, and interactions between them are 

drawn as edges. The difference between the two methods is that the edges are weighted 

by fluctuation cross-correlation between residue pairs rather than interaction 

energies.146, 147 Once the graph was established, shortest (most probable) paths between 

each residue pair were calculated, and node betweenness was determined by the 

number of shortest paths passing through each node. Nodes with high betweenness 

values were proposed to have a significant contribution to long-range communication 

and function in allostery. 

 Results of the network analysis highlighted a set of high betweenness nodes that 

may participate in interdomain communication in c-Src kinase (Figure 16).145 Most of 

these residues are located in the regulatory domain, but residues in the kinase domain, 

such as W260, H384, and F405, overlap with the previously identified network.91 This 

suggests that allosteric communication within the kinase domain may occur through 

the network proposed by Foda et al., while interdomain communication is handled by 

residues identified in this work. Inspection of high betweenness residues showed that 

they form two networks that bridge SH2 and SH3 regulatory domains to the kinase 

domain. For example, the network identified in the SH2 domain of the inactive complex 
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connects the critical pY527 to the active site (Figure 16A). The SH3 domain, which is 

also important for regulating enzyme function, is predicted to communicate with the 

kinase domain through linker residues L255 and W260 (Figure 16A). These two 

residues were hypothesized to act as central nodes in mediating allosteric 

communication, as they were also identified as bridging residues in the active 

conformation (Figure 16B). The hypothesis is supported by functional studies showing 

that alanine substitution of either L255 or W260 results in the enhancement of enzyme 

activity and loss of allosteric response.91, 148, 149 Overall, results of MD simulations in 

this work revealed two residue networks that may be important for allosteric 

communication between regulatory domains and the kinase domain. 

 In summary, combined structural and computational analyses identified 

potential allosteric networks that link regulatory domain with the active site, and 

functional studies indicated that some of the network residues play a critical role in 

regulating enzyme function. Nevertheless, the presence of this putative allosteric 

network requires validation by solution measurements. Site-directed mutagenesis may 

reveal if these network residues participate in the allosteric response of c-Src kinase, 

and NMR studies can elucidate if network residues are dynamically coupled. 
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Figure 16. Illustration of high betweenness residues identified by network analysis in 

c-Src kinase. (A & B) Structures of (A) inactive and (B) active c-Src kinase showing 

positions of high centrality nodes identified in the analysis. (C & D) Results of network 

analysis showing the betweenness value for each residue. Figures A and B were made 

in Pymol22 using PDB files 2SRC136 and 1Y57137. Figures C and D were adapted from 

the paper by Tse and Verkhivker, 2015.145 
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B. Allosteric regulation in the Escherichia coli biotin protein ligase 

 Biotin protein ligases, which catalyze biotin transfer to acceptor proteins, are 

essential for the survival of the majority of organisms. In many bacteria, these enzymes 

not only participate in post-translational modification but also transcription 

repression.150 For example, in the well-studied E. coli system, co-repressor binding to 

its biotin protein ligase (BirA) allosterically activates BirA homodimerization to 

promote DNA binding and subsequent transcription repression.151, 152 As allosteric 

regulation by BirA involves structural and dynamic changes on distant functional 

surfaces,153, 154 the protein provides another model system to study the molecular 

mechanisms of long-range allosteric communication. 

 As described above, E. coli BirA is a bifunctional protein that acts as a 

metabolic enzyme and a transcription repressor.152, 155 It first catalyzes the conversion 

of biotin and ATP to an intermediate, biotinoyl-5’-adenylate (bio-5’-AMP). The 

resulting BirA·bio-5’-AMP complex, or holoBirA, has two possible fates (Figure 17): 

It can either homodimerize and bind sequence-specifically to the 40 bp biotin operator 

(bioO) to repress transcription of biotin biosynthetic genes.156-158 Alternatively, 

holoBirA can form a heterodimer with the biotin carboxyl carrier protein (BCCP) 

subunit of acetyl-CoA carboxylase and transfer biotin to the acceptor protein.155 This 

activates acetyl-CoA carboxylase to synthesize malonyl-CoA, the starting material for 

fatty acid synthesis.159 

 Partitioning between the two functions is a kinetic process regulated by the 

demand for and supply of biotin (Figure 17).160-163 During the exponential growth when 
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the demand for biotin is high, increased apoBCCP concentration favors 

heterodimerization between holoBirA and the acceptor protein, thereby maintaining a 

constant supply of substrate for fatty acid synthesis. Under conditions when the demand 

for biotin is low, decreased apoBCCP concentration allows for the accumulation of 

holoBirA. This leads to elevated homodimerization and transcription repression of 

biotin biosynthetic genes, which ultimately limits the production of biotin. In summary, 

the kinetic competition between homo and heterodimerization enables the regulation 

of a functional switch between metabolism and transcription repression depending on 

the organism’s requirement for nutrients and metabolites. 

 

Figure 17. Schematic diagram showing the bifunctionality of E. coli BirA. HoloBirA 

can either heterodimerize with apoBCCP and catalyze biotin transfer, or homodimerize 

to bind biotin operator (bioO) and repress transcription. The figure is adapted from the 

paper by Wang and Beckett.164 
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 Transcription repression by BirA is an allosterically regulated process. Kinetic 

studies indicated that assembly of the repression complex occurs in two steps: 

homodimerization followed by DNA binding (Figure 18).165 The first step is regulated 

by allostery, as binding of the effector molecule, bio-5’-AMP, enhances the 

dimerization equilibrium constant by 1000-fold, or -4 kcal/mol in terms of free 

energy.166 In the second step, the resulting homodimer binds to bioO to repress 

transcription, and DNase I footprinting measurements indicated that both apo and 

holoBirA dimers have the same affinity for DNA.166 Given that dimerization is the pre-

requisite for DNA binding, the two-step repressor complex assembly is allosterically 

regulated solely at the dimerization step. From the thermodynamic perspective, the 

Gibbs free energy of assembling the repressor complex, ΔGTOT, is also enhanced by -4 

kcal/mol upon effector binding (Figure 18). These results, combined with prior 

knowledge on the kinetic partitioning between two dimerization processes, reveal a 

biotin regulatory system which modulates transcription repression through effects of 

biotin on BirA dimerization. 

 Previous studies on the mechanism of allosteric regulation in BirA has 

established that disorder-to-order transitions on two distant functional surfaces play an 

important role in the regulation. Crystal structures showed that BirA is composed of 

three distinct domains: an N-terminal DNA binding domain, a central catalytic domain, 

and a C-terminal domain that functions in homodimerization and biotin transfer (Figure 

19).153, 154, 167, 168 Comparison of apo and holoBirA structures revealed that most 

significant structural changes occur on two functional surfaces separated by 30Å 
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(Figure 19).153, 154 On the ligand binding surface, the adenylate binding loop (ABL) and 

the biotin binding loop (BBL) fold around the effector molecule and form a 

hydrophobic cluster surrounding the adenylate part of bio-5’-AMP. On the 

dimerization surface, effector binding is coupled to ordering and packing of two surface 

loops comprised of residues 140-146 and 193-199, as well as the extension of an α-

helix from residue A146 to P143 (Figure 19). By contrast, biotin binding, which does 

not elicit allosteric response, fails to induce disorder-to-order transitions on both 

surfaces.169 In the biotin-bound form, the ABL on the ligand binding surface is 

disordered, and the other surface loops, while more organized compared to apoBirA, 

are significantly less ordered than those in the holo enzyme.153, 154, 169 

 

Figure 18. Thermodynamic cycle showing that the repressor-complex assembly is 

solely dependent on homodimerization. Effector binding enhances the free energies of 

both dimerization and repressor complex assembly by -4 kcal/mol. 
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Figure 19. Bio-5’-AMP binding induces disorder-to-order transitions on both 

functional surfaces. The inset demonstrates the hydrophobic cluster that forms upon 

effector binding, which includes residues P126 (blue), F124 (pink), M211 (cyan), V214 

(yellow), V218 (brown), V219 (green), W223 (lavender). Loops that undergo disorder-

to-order transitions are comprised of residues 140-146 (red), 193-199 (green) on the 

dimerization surface, and 116-124 (orange), 211-222 (cyan) on the ligand binding 

surface. Figures were adapted from the paper by Wang and Beckett, 2017.170 

 

 Results of functional measurements support the critical role of disorder-to-order 

transitions in BirA allostery. To test if disorder-to-order transitions contribute to 

allosteric regulation, alanine substitutions were made at positions that undergo these 

transitions on the dimerization and ligand binding surfaces. Functional effects of these 

substitutions on both input (bio-5’-AMP binding) and output (homodimerization) of 

BirA allostery were determined by ITC and sedimentation equilibrium, respectively. 

Results of these measurements showed that most alanine substitutions on the ligand 
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binding surface, which are predicted to disrupt the hydrophobic cluster, perturb not 

only bio-5’-AMP binding but also dimerization (Figure 20).171, 172 These results provide 

direct evidence that disorder-to-order transitions on the ligand binding surface 

participate in BirA allostery. Similarly, alanine substitution of G142 on the 

dimerization surface leads to complete loss of the allosteric response and significantly 

weaker bio-5’-AMP binding affinity.173, 174 Moreover, structural analysis indicated that 

the G142A substitution also results in the loss of disorder-to-order transitions on both 

functional surfaces,174 which provides direct evidence supporting the role of disorder-

to-order transitions in BirA allostery. Although other alanine substitutions at positions 

on the dimerization surface only affect holoBirA dimerization (Figure 20),173, 175 these 

substitutions probably alter dimerization through their effects on allostery as 

substituted residues do not contribute directly to the dimer interface. In summary, the 

combined results of structural and functional studies indicate that allosteric regulation 

occurs via disorder-to-order transitions on two distant functional surfaces.  

 Structural and functional studies have demonstrated long-range communication 

from one functional surface to another in BirA, but its detailed molecular mechanism 

remained to be elucidated. First, the thermodynamic cycle of BirA allostery predicts 

reciprocal coupling between distant disorder-to-order transitions, but experimental 

results supporting this hypothesis were lacking. Second, disorder-to-order transitions 

play an important role in allostery. However, how these transitions contribute to 

effector-linked dimerization is unclear. Finally, the mechanisms of long-range 

communication between the two surfaces remained to be elucidated. In this 
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dissertation, I will describe the work we have done to address these questions. In the 

second chapter, double-mutant cycle analysis was used to test reciprocal coupling 

between functional surfaces, and molecular dynamics simulations revealed structural 

and dynamic bases of allosteric regulation via disorder-to-order transitions. The 

mechanism of long-range allosteric communication was investigated in the third 

chapter, and results of integrated approaches reveal an allosteric network that is coupled 

to disorder-to-order transitions. 

 

Figure 20. Alanine substitutions at positions on two functional surfaces affect input and 

output of BirA allostery. Color code: Red, residues on the dimerization surface; Blue: 

residues in the hydrophobic cluster on the ligand binding surface; Yellow, other 

residues on the ligand binding surface; Black: wild type. (A) Gibbs free energies of 

bio-5’-AMP binding to BirA variants. (B) Homodimerization free energies of holoBirA 

variants. 
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C. Biotin regulatory systems in other biotin protein ligases 

 Biotin protein ligases (BPLs) are widespread among bacteria and archaea.150 

These enzymes are classified into two types based on their functionalities: Class I 

enzymes only catalyze biotin transfer, while Class II BPLs act as transcription 

repressors and biotin protein ligases. Despite the broad distribution of BPLs among 

bacteria and archaea, and their importance in the survival of these organisms, few 

proteins in the family have been subjected to biochemical studies. 

 Previous studies on Bacillus subtilis and Staphylococcus aureus BPLs (Bs and 

SaBirA), both of which are class two enzymes, provide some insights into their biotin 

regulatory system. In E. coli BirA (EcBirA), the coupling between bio-5’-AMP binding 

and dimerization generates a steep dependence of transcription repression on biotin 

concentration (Figure 21).176 Similar to EcBirA, both in vivo and in vitro studies 

demonstrate that BsBirA is sensitive to biotin concentration, suggesting that EcBirA 

and BsBirA share the same biotin regulatory system.177, 178 However, the coupling free 

energy between bio-5’-AMP binding and dimerization for BsBirA are yet to be 

determined. By contrast, two independent studies on SaBirA yielded results 

inconsistent with each other.178, 179 Sedimentation equilibrium measurements showed 

that, unlike EcBirA, apo-SaBirA dimerizes with an equilibrium dissociation constant 

(KD) similar to that of holo-SaBirA.179 The measured KD for apo-SaBirA dimerization 

is in the micromolar range, suggesting that SaBirA represses transcription regardless 

of bio-5’-AMP binding. On the other hand, in vivo measurements show that 

transcription repression by SaBirA is dependent on biotin concentration, which 
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suggests a biotin regulatory system similar to EcBirA.178 The contradictory results 

require further investigation of the biotin regulatory systems in SaBirA. 

 

Figure 21. The dependence of biotin operator (bioO) occupancy by BirA dimer on 

biotin concentration. The figure is adapted from the paper by He and Beckett, 2018.176 
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D. Organization of the dissertation 

 The first chapter of this dissertation introduces the history of allostery and 

biophysical approaches to investigate its molecular mechanisms. A literature review is 

also included to demonstrate how integrated approaches were employed to elucidate 

allosteric mechanisms in different allosteric systems. 

 The second chapter describes the work that was published in Biochemistry in 

2017. In this work, combined functional and computational approaches were employed 

to investigate the mechanism of long-range allosteric communication in BirA. Results 

of functional measurements demonstrated that single alanine substitutions on distant 

surfaces generate non-additive effects in bio-5’-AMP binding and holoBirA 

dimerization. This non-additivity provides direct evidence for reciprocal coupling 

between residues on the ligand binding and dimerization surfaces. Molecular dynamics 

simulations performed by Dr. Matysiak’s lab revealed that these alanine substitutions 

perturb BirA functions by altering both conformation and dynamics of loops that 

undergo disorder-to-order transitions. In addition, the coupling in bio-5’-AMP binding 

is correlated with changes in loop packing on the ligand binding surface. These results 

indicate that allosteric communication in BirA occurs via modulation of disorder-to-

order transitions on two coupled functional surfaces. 

 The third chapter describes our recent progress in investigating the mechanism 

of long-range allosteric coupling in BirA. Results of integrated structural, functional, 

and computational methods demonstrated that disorder-to-order transitions on distant 

surfaces are communicated via a distributed residue network in the protein. This 
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network, which was initially identified by structural analysis, was extended by 

simulation-based network analysis carried out in collaboration with Dr. Matysiak’s lab. 

Proton linkage analysis supported the presence of the network in solution, and 

functional measurements demonstrated the critical role of this network in BirA 

allostery. Finally, force distribution analysis, which was also completed by Dr. 

Matysiak’s lab, revealed a connection between disorder-to-order transitions on distant 

surfaces and residues in the network. The combined results indicate that disorder-to-

order transitions and residue network function collectively to mediate long-range 

allosteric communication in BirA. 

 The fourth chapter presents the study carried out on biotin protein ligases from 

other organisms. Previous in vivo measurements indicated that Bacillus subtilis and 

Staphylococcus aureus biotin protein ligases (Bs and SaBirA) repress transcription in 

a biotin-dependent manner similar to that observed for E. coli BirA (EcBirA). Results 

of sedimentation equilibrium measurements in this study showed that 

homodimerization of Bs and SaBirA, like EcBirA, is significantly enhanced upon bio-

5’-AMP binding. Structural alignment of Ec and SaBirA also revealed a highly similar 

allosteric mechanism involving disorder-to-order transitions on distant functional 

surfaces. However, alignment of the three sequences showed relatively low sequence 

conservation across the protein, especially for loop segments that undergo disorder-to-

order transitions. Overall, these results revealed a conserved allosteric function in Ec, 

Bs, and SaBirA with divergent sequence identity. 
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 The final chapter summarizes the results obtained in this research and their 

contributions to elucidating allosteric mechanisms in E. coli BirA. I will also propose 

experiments that will further expand our knowledge of BirA allostery and discuss the 

significance of this work for understanding allosteric regulation in other proteins. 
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Chapter 2: Long distance modulation of disorder-to-order transitions in 

protein allostery 

A. Contribution statement 

 The work presented in this chapter was completed in collaboration with Dr. 

Silvina Matysiak’s group at the Fischell Department of Bioengineering, University of 

Maryland, College Park, and it was published in Biochemistry in 2017.170 Dr. Gregory 

Custer in Dr. Matysiak’s group conducted the molecular dynamics simulations and the 

majority of computational analyses. Our lab performed all non-computational 

experiments including cloning, protein purification, and functional measurements. We 

also contributed to the interpretation of simulation results and analysis of their 

biological significance. 

B. Introduction 

Allosteric regulation occurs when a signal, typically associated with binding, 

impinges on one site in a protein to alter function in another, often distant, site. This 

type of regulation is integral to numerous biological processes, including 

transmembrane signaling,180 transcription initiation,181 and metabolism.104 Although 

allostery has been appreciated for well more than a century,4 the mechanisms by which 

allosteric signals are transmitted through proteins continue to be a subject of intense 

research. Protein disorder can play important roles in allostery, and recent experimental 

results on a number of systems confirm its significance for both the thermodynamics 

and kinetics of allosteric regulation.25, 102-104, 117, 124, 182 Approaches that combine 
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experiment with computation hold great promise for revealing the molecular details of 

protein allostery. 

The Escherichia coli BirA protein/biotin repressor provides a model system for 

elucidation of the molecular basis of allostery. Binding of the small molecule effector 

bio-5’-AMP is positively coupled to BirA homodimerization, which is a prerequisite 

for site-specific binding to the biotin operator sequence on DNA (Figure 22B).165, 183 

Operator binding by the holoBirA dimer results in repression of biotin biosynthetic 

operon transcription initiation.155, 184 The -4 kcal/mol enhancement of BirA 

dimerization that accompanies effector binding links metabolic demand for and 

production of biotin.160 The BirA structure indicates a distance between the ligand 

binding and dimerization surfaces of approximately 30 Å (Figure 22A).153, 154 

Moreover, comparison of apo- and holoBirA structures reveals that effector binding is 

accompanied by disorder-to-order transitions in protein segments on both functional 

surfaces. Loops on the ligand binding surface containing residues 116-124 [biotin 

binding loop (BBL)] and 211-222 [adenylate binding loop (ABL)], which are 

disordered in apoBirA, fold around the bio-5’-AMP ligand to form a hydrophobic 

cluster in the holoprotein (Figure 22A). Ligand binding is also coupled to the extension 

of an α-helix by three residues as well as ordering and packing of loops containing 

residues 140-146 and 193-199 on the dimerization surface. 

 Experimental studies support critical roles for the disorder-to-order transitions 

in BirA allosteric signaling. Alanine substitutions at residue positions in the 

hydrophobic cluster that assembles around the ligand both weaken binding of the BirA 
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monomer to bio-5’-AMP and compromise coupled dimerization (Figure 22A).171, 172 

Alanine replacements of dimerization surface loop residues, many of which do not 

contribute directly to the dimer interface, result in altered dimerization.173 Substitution 

of glycine at position 142 with alanine in the 140-146 loop on the dimerization surface 

results in the complete loss of the functional allosteric response and defects in the 

disorder-to-order transitions on both the dimerization and ligand binding surfaces.174 

Although these experimental results provide evidence supporting the contributions of 

disorder-to-order transitions to BirA allostery, the mechanism by which these 

transitions are reciprocally communicated remains to be determined. 

Molecular dynamics simulations can provide a fruitful approach to elucidating 

allosteric mechanisms. For example, coarse-grained and all-atom simulations have 

yielded insight into the molecular origins of allosteric communication in the GroEL 

folding chaperone and protein kinase C, respectively.185, 186 Simulations can provide a 

detailed molecular understanding of the results of functional measurements and, more 

importantly, generate hypotheses that can be subjected to further experimental tests. 

The thermodynamic cycle relevant to allosteric coupling in BirA (Figure 22B) 

predicts reciprocal communication between the ligand binding and dimerization 

surfaces. However, experimental results thus far obtained support only unidirectional 

communication from the ligand binding to the dimerization surface and vice versa. In 

this work, results of double-mutant cycle analysis provide direct evidence of reciprocal 

communication between the two BirA functional surfaces. Results of all-atom 

molecular dynamics simulations reveal that the communication, and its perturbation by 
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amino acid substitution, occurs through reciprocal modulation of the conformational 

and dynamic features of disorder-to-order transitions in the two distant coupled sites. 

 
Figure 22. (A) Bio-5′-AMP binding to apoBirA highlighting loops on the ligand 

binding and dimerization surfaces. Figures were created in VMD187 with input PDB 

files 1BIA1153 for apoBirA and 2EWN154 for holoBirA. The boxed region illustrates 

the hydrophobic cluster that forms upon bio-5′-AMP binding: P126 (blue), F124 (pink), 

M211 (cyan), V214 (yellow), V218 (brown), V219 (green), W223 (lavender). NTD 

denotes the amino-terminal domain, and CTD denotes the carboxy-terminal domain. 

(B) Thermodynamic cycle illustrating coupling between bio-5′-AMP binding and BirA 

dimerization. The coupling free energy, ΔG°c, is defined as the difference between the 

Gibbs free energy of holoBirA and apoBirA dimerization. No error for ΔGo
dim,apo is 

reported because it is estimated by extrapolation of the value measured in 50 mM 

KCl.166  
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C. Materials and Methods 

1. Chemicals and biochemicals 

 All chemicals and biochemical were at least reagent grade. The d-biotin 

(Sigma-Aldrich) solution was prepared quantitatively in standard buffer [10 mM Tris 

(pH 7.50 ± 0.02 at 20 oC), 200 mM KCl, and 2.5 mM MgCl2]. Biotinoyl-5’-adenylate 

(bio-5’-AMP) was synthesized and purified as previously described.157, 188 Fresh 

solutions were prepared by dissolving lyophilized powder into Milli-Q H2O, and bio-

5’-AMP concentrations in the resulting solutions were determined by absorption 

spectroscopy at 259 nm using a molar extinction coefficient of 15400 M-1 cm-1. 

2. Mutagenesis, expression, and purification of BirA double variants 

 Coding sequences for BirA double-alanine variants were constructed by site-

directed mutagenesis using the Quick-Change II XL Kit (Agilent Technologies) with 

mutagenic oligonucleotides purchased from Integrated DNA Technologies. In all 

cases, the mutagenesis template was a pBtac2 plasmid (Boehringer Mannheim) 

derivative containing the C-terminally (His)6-tagged BirA189 coding sequence with a 

mutation at the appropriate codon (P143A, D197A, or M211A). All mutations were 

verified by sequencing the entire coding sequence (ACGT Inc.). 

 The BirA variants were expressed and purified as previously reported,171 with 

the exception of the addition of a final Q-Sepharose column chromatography step. 

Protein concentrations were determined using a molar extinction coefficient of 47510 

M-1 cm-1 at 280 nm, which was calculated from the amino acid composition.190 All 
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proteins were at least 97% pure as indicated by Coomassie staining of samples 

subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. 

3. Isothermal titration calorimetry (ITC) 

 Biotin and bio-5’-AMP binding parameters were measured by ITC using a 

MicroCal VP-ITC (Malvern Instruments) instrument equipped with a 1.44 mL cell. All 

titrations were carried out in standard buffer at 20 °C. In direct titrations, 22 × 13 μL of 

5-20 μM ligand (biotin or bio-5’-AMP) was titrated into a solution containing the 

appropriate BirA variant at a concentration of 0.5-2 μM. All c values (c = nKAC, where 

n is the binding stoichiometry, KA is the equilibrium association constant, and C is the 

protein concentration) were in the range of 10−1000 required for accurate equilibrium 

constant determination. The high bio-5’-AMP binding affinity of D197A/F124A BirA 

[KD = (8 ± 2) × 10-10 M] required the use of displacement titrations in which biotin was 

displaced by bio-5’-AMP.191 In these titrations, 22 × 12 μL volumes of a 22 μM bio-

5’-AMP solution were titrated into a 2.2 μM BirA solution saturated with 4.4 μM biotin. 

4. Sedimentation equilibrium 

 Homodimerization equilibrium association constants of holoBirA variants were 

measured by sedimentation equilibrium using a Beckman Optima XL-I analytical 

ultracentrifuge equipped with a four-hole An-60 Ti rotor (Beckman Coulter). Standard 

12 mm six-channel cells with charcoal-filled Epon centerpieces and quartz windows 

were used in all experiments. For all measurements, bio-5’-AMP was combined with 

protein at a 1.5:1 molar ratio in standard buffer. Samples containing 60, 50, and 40 μM 
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protein were centrifuged at 18000, 21000, and 24000 rpm, respectively, at 20 °C, and 

absorbance scans at 300 nm were acquired at each speed after 8 h. An additional scan 

obtained at each speed 1 h after the first scan confirmed that equilibrium had been 

achieved. 

5. Data analysis 

 ITC data were analyzed by a nonlinear least-squares method in Microcal Origin 

7.0 using a single-site binding model for direct titrations and the competitive model for 

displacement titrations. 

 Sedimentation equilibrium data were analyzed using WinNonlin version 

1.060.32 Nine absorbance versus radius profiles were globally analyzed using the 

following equation for a monomer-dimer model to obtain the equilibrium dissociation 

constant (KD) for homodimerization: 

 𝑐𝑐(𝑟𝑟) = 𝑐𝑐(𝑟𝑟𝑜𝑜)𝑒𝑒
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚�𝑟𝑟2−𝑟𝑟𝑜𝑜

2�
2 + 1

𝐾𝐾𝐷𝐷
[𝑐𝑐(𝑟𝑟𝑜𝑜)]2𝑒𝑒

2𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚�𝑟𝑟2−𝑟𝑟𝑜𝑜
2�

2 + 𝛿𝛿   (1) 

where 𝑐𝑐(𝑟𝑟) is the protein concentration at position r, 𝛿𝛿 is the baseline offset, and 𝑐𝑐(𝑟𝑟𝑜𝑜) 

is the protein concentration at reference radial position 𝑟𝑟𝑜𝑜. A reduced molecular weight, 

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚, of 1.22 used for the BirA monomer was calculated using equation 2: 

 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀(1−𝑣𝑣�𝜌𝜌)
𝑅𝑅𝑅𝑅

𝜔𝜔2        (2) 

where 𝑣̅𝑣 is the partial specific volume of the protein, 𝜌𝜌 is the density of the buffer, 𝜔𝜔 is 

the angular velocity of the rotor, 𝑅𝑅 is the gas constant, and 𝑇𝑇 is the temperature. The 

partial specific volume of 0.755 cm3/g was experimentally determined,183 and the 

solvent density was calculated using Sednterp (http://www.jphilo.mailway.com). 

http://www.jphilo.mailway.com/
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6. Molecular dynamics (MD) simulations and analysis 

 Computational studies described in this work were carried out by Dr. 

Matysiak’s group at the Fischell Department of Bioengineering, University of 

Maryland, College Park. 

 MD simulations were performed using the coordinates of a monomer (chain A) 

of the BirA dimer of Protein Data Bank (PDB) entry 2EWN.154 This structure, which 

is of the BirA dimer bound to the corepressor analog biotinol-5’-AMP (btnOH-AMP), 

was chosen because it is the most complete of the available BirAwt structures, with all 

residues modeled in the dimerization and ligand binding surfaces. Amino acid 

substitutions in the protein sequence were made in PyMOL.192 For simulations, the 

protein model was placed in a rhombic dodecahedral box with walls extending ∼1 nm 

past the protein and solvated with ∼20300 SPC/E34 water molecules. For the R213A 

simulation, one Na+ counterion replaced a randomly chosen water molecule to render 

the system neutral. Prior to production runs, the energy of the system was minimized 

using the steepest descent method, followed by NVT and NPT equilibration runs of 

100 ps each, using position restraints with a force constant of 1000 kJ mol-1 nm-2 on 

the protein. Production runs were performed without position restraints, using an NPT 

ensemble with a temperature of 300 K and a pressure of 1 bar. These runs were carried 

out for 1 μs, with the last 500 ns of the simulation used for all analysis as, on the basis 

of global root-mean-square deviation (RMSD) of backbone positions in the central 

domain relative to starting structure, all simulated variants equilibrate within the first 

500 ns of simulation time (Figure 23). 
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Figure 23. Global root-mean-square deviation (RMSD) time series for backbone 

positions (C, CA, and N atoms) of the central domain (residues 80-115,127-139, 147-

192, 200-210, and 224-269) in the apoBirAwt simulation, which has the longest 

equilibration time. Global RMSD values were generated by aligning backbone atoms 

of each frame of simulated structure to the same atoms in the starting structure. 

 

 All MD simulations were conducted using the GROMACS 4.6 simulator193-196 

and the OPLS-AA force field.197 Parameters for btnOH-AMP were constructed by 

analogy to existing molecule/functional group force fields, as done by others,198 and 

are available upon request. Simulations were run using a time step of 2 fs, with neighbor 

list updates every five steps. Temperatures of protein and water were maintained 

independently using the V-rescale algorithm199 with a time constant of 0.1 ps. Ions, 

where present, were grouped with water for temperature coupling, while btnOH-AMP 

was grouped with protein. Isotropic pressure coupling in NPT simulations used the 
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Parrinello-Rahman barostat200 with a time constant of 2 ps and a compressibility of 4.5 

× 10-5 bar-1. Bond lengths were constrained using the LINCS algorithm.201 

 MD structure images were rendered using VMD.187 To identify the 

representative structure shown for the dimer interface of each variant, a pairwise 

RMSD matrix was calculated, using the GROMACS tool g_cluster,193-196 for residues 

140−146 and 193−199 in the dimer interface using all structures from the last 500 ns 

of each trajectory. The structure with the minimum dimer interface RMSD relative to 

all other structures was then taken as the representative structure. As shown, each 

representative structure has been aligned to the backbone of the btnOH-AMP-bound 

representative structure, including residues 135-155 and 189-204. 

 For pairwise energy difference plots, the Coulombic and Lennard-Jones 

energies between each pair of residues were output over time using GROMACS.193-196 

The Coulombic and Lennard-Jones energies for each pair were then summed and 

averaged for the last 500 ns of each trajectory. The energy shown in the difference map 

is the average energy for each pair minus the average energy for that pair in the 

holoBirA simulation. As the average energy for all pairs shown was negative 

(attractive), more negative values would indicate stronger interaction. In the difference 

maps, this means that negative values are found for a pair when their interaction is 

stronger than in holoBirAwt and positive values when the interaction is weaker. 

 Helicity in the simulation of residues 140-152 was quantified by measuring the 

per-residue average RMSD of an ideal helix (RMSDhx). As both 310- and α-helices 

form in the segment, both were considered in this analysis. Ideal helices were 
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constructed using heavy backbone atoms only (N, CA, C, and O), setting the φ and ψ 

angles to -49° and -26°, respectively, for the α-helix and to -57° and -47°, respectively, 

for the 310-helix.202 A five-residue ideal α-helix and 310-helix were used to calculate 

RMSDα and RMSD310, respectively. For each residue, i, in the range of residues 140-

152, the five-residue ideal helices were aligned to a five-residue segment centered on 

residue i, and RMSD was calculated between the structures. The smaller of either 

RMSDα or RMSD310 was taken as the RMSDhx for that residue in each structure. The 

RMSD shown is the average per-residue RMSDhx across the last 500 ns of each 

trajectory. 

 Principal component analysis was performed on the last 500 ns of each 

trajectory. The covariance matrix was calculated for the main-chain backbone atoms 

(N, CA, and C) of residues 140-146 and 193-199 in the dimer interface, using the 

GROMACS program g_covar. Root-mean-square fluctuations of these residues along 

the principal eigenvectors of the covariance matrix were calculated using the 

GROMACS program g_anaeig.193-196 
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D. Results 

1. Molecular design of BirA variants with double-alanine substitutions 

 Communication between the ligand binding and dimerization surfaces of BirA 

was investigated using double-mutant cycle analysis. In this approach, the functional 

effect of introducing alanine substitutions at positions 1 and 2, one on each surface, 

was compared to the sum of the effect observed for the singly substituted parent 

variants.203-205 The effect of substituting two residues simultaneously is quantified 

using the following equation: 

 ∆∆𝐺𝐺12o = ∆𝐺𝐺12o − ∆𝐺𝐺𝑤𝑤𝑤𝑤o        (3) 

where ∆∆𝐺𝐺12o  is the difference between the measured free energy of bio-5’-AMP 

binding or dimerization for the double-alanine variant, ∆𝐺𝐺12o , and that of the wild-type 

protein, ∆𝐺𝐺𝑤𝑤𝑤𝑤o . Functional coupling between two residues is assessed by comparing the 

magnitude of ∆∆𝐺𝐺12o  to the sum of the energetic effects of each parent single-alanine 

substitution on either function, which are expressed as 

 ∆∆𝐺𝐺1o = ∆𝐺𝐺1o − ∆𝐺𝐺𝑤𝑤𝑤𝑤o         (4) 

and 

 ∆∆𝐺𝐺2o = ∆𝐺𝐺2o − ∆𝐺𝐺𝑤𝑤𝑤𝑤o         (5) 

where ∆∆𝐺𝐺1o and ∆∆𝐺𝐺2o are the energetic consequences of single-alanine substitutions 

at positions 1 and 2, respectively, for each function, and their sum is 

 ∆∆𝐺𝐺1+2o = ∆∆𝐺𝐺1o + ∆∆𝐺𝐺2o       (6) 

 Coupling between two residues is indicated by the following inequality: 

 ∆∆𝐺𝐺12o ≠ ∆∆𝐺𝐺1+2o         (7) 
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 The magnitude of the energetic coupling, ∆𝐺𝐺co, between the two residues is 

defined as 

 ∆𝐺𝐺co = ∆∆𝐺𝐺12o − ∆∆𝐺𝐺1+2o       (8) 

 Previous studies have demonstrated that several single-alanine substitutions on 

the BirA dimerization and ligand binding surfaces alter bio-5’-AMP binding and/or 

dimerization.171-173 In the construction of the BirA double-alanine variants, it was 

important to select two residues that, when simultaneously replaced with alanine, could 

yield a protein with dimerization energetics accessible to the sedimentation equilibrium 

technique. With that restriction in mind, three BirA variants, P143A/M211A, 

D197A/F124A, and G281A/M211A, were constructed (Figure 24). Single-alanine 

substitution at M211 or F124 on the ligand binding surface alters the Gibbs free energy 

of bio-5’-AMP binding by 2-3 kcal/mol, while single-alanine substitutions at P143, 

D197, and G281 on the dimerization surface have no effect (Table 3).172, 175 The 

dimerization penalties for the singly substituted variants range from 0.5 to 2.3 

kcal/mol172, 173 (Table 4). 

 Biotin binding measurements performed using ITC as described below 

indicated that all variants bind to the ligand with parameters similar to those measured 

for BirAwt (Table 5), which indicates that double alanine substitutions do not perturb 

protein folding. 
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Table 3. Bio-5’-AMP binding parameters of BirA variantsa 

Proteinb KD (M) ΔG° 
(kcal/mol) 

ΔH° 
(kcal/mol) 

-TΔS° 
(kcal/mol) n 

wtc 5±2×10-11 -13.8±0.2 -15±1 1±1 0.93±0.01 

P143Ac 8±2×10-11 -13.5±0.2 -12.20±0.01 -1.3±0.2 0.96±0.01 

D197Ac 9±3×10-11 -13.5±0.2 -12.4±0.2 -1.1±0.3 1.21±0.02 

G281Ac 8±3×10-11 -13.6±0.2 -12.7±0.2 -0.9±0.3 0.89±0.01 

F124A 5±2×10-9 -11.1±0.2 -19.3±0.2 8.2±0.3 0.80±0.06 

M211A 2.4±0.4×10-9 -11.58±0.09 -16.3±0.1 4.7±0.1 1.01±0.02 

P143A/M211A 1.1±0.3×10-9 -12.0±0.1 -17.4±0.4 5.4±0.4 0.86±0.03 

D197A/F124A 8±2×10-10 -12.2±0.1 -15.4±0.2 3.2±0.2 0.83±0.02 

G281A/M211A 1.7±0.5×10-9 -11.8±0.2 -16.9±0.4 5.1±0.4 0.97±0.04 

aAll experiments were performed in Standard Buffer at 20 °C. The reported 

uncertainties are standard deviations from at least three independent measurements. 

The Gibbs free energies of and entropic contributions to binding were calculated using 

the equations ΔG° = RTlnKD and ΔG° = ΔH° − TΔS°, respectively. KD is the 

equilibrium dissociation constant of bio-5’-AMP binding. bResidue positions on the 

dimerization surface are shown in bold. cPreviously published values.175 
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Table 4. Dimerization properties of wt and variant holoBirA proteinsa 

Proteinb KD (M) ΔG° (kcal/mol) 

wtc 14±6×10-6 -6.4±0.2 

P143Ad 8±2×10-5 -5.5±0.2 

D197Ad 1.0±0.6×10-3 -4.1±0.3 

G281Ad 18±8×10-5 -5.0±0.3 

F124Ae 2±0.8×10-5 -6.2±0.2 

M211Ae 14±6×10-5 -5.2±0.2 

P143A/M211A 1.0±0.5×10-3 -4.0±0.2 

D197A/F124A 2±1×10-4 -3.7±0.2 

G281A/M211A 4±1×10-4 -4.6±0.2 

aAll measurements were carried out in Standard Buffer at 20 °C. The reported 

uncertainties are standard deviations from at least three independent measurements. 

The Gibbs free energy of binding was calculated using the equation ΔG° = RTlnKD, 

where KD is the equilibrium dissociation constant of dimerization. bResidue positions 

on the dimerization surface are shown in bold. cPreviously published results from 

reference 206.206 dPreviously published results  from reference 173173. ePreviously 

published results from reference 172.172 
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Table 5. Biotin binding parameters of BirA double variants are similar to those of wt. 

Protein KD (M) 
ΔG° 

(kcal/mol) 
ΔH° 

(kcal/mol) 
-TΔS° 

(kcal/mol) 
n 

wt 4.7±0.8×10-8 -9.8±0.1 -20.1±0.4 10.3±0.4 0.93±0.01 

P143A/M211A 4.1±0.4×10-8 -9.91±0.06 -20.4±0.3 10.5±0.3 0.78±0.01 

D197A/F124A 3.7±0.4×10-8 -9.97±0.06 -22.8±0.4 12.8±0.4 0.90±0.05 

G281A/M211A 3.5±0.5×10-8 -10.01±0.09 -20.7±0.2 10.7±0.2 0.84±0.03 

ITC measurements were performed in Standard Buffer at 20 °C. The reported 

uncertainties are standard deviations from at least three independent measurements. 

The Gibbs free energies of and entropic contributions to binding were calculated using 

the equations ΔG° = RTlnKD and ΔG° = ΔH° − TΔS°, where KD is the equilibrium 

dissociation constant of biotin binding. 

 

Figure 24. HoloBirAwt model (PDB entry 2EWN154) showing the positions of 

dimerization surface residues P143 (red), D197 (green), and G281 (blue) and ligand 

binding surface residues F124 (pink) and M211 (cyan). 
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2. Bio-5’-AMP binding measurements reveal coupling between residues on the two 

BirA surfaces 

 Binding of bio-5’-AMP to the three BirA variants was measured using ITC. The 

range of thermodynamic parameters associated with binding of the effector to the 

variants necessitated the use of two different approaches for the measurements. The 

tight binding of bio-5’-AMP to BirAwt requires the use of the competitive binding 

technique, a method in which bio-5’-AMP is titrated into a BirA solution that is 

saturated with biotin to compete off the biotin.191, 207 The resulting data are analyzed 

using a competitive binding model to obtain the parameters governing bio-5’-AMP 

binding. In these titrations, the measured heat signal reflects the difference between the 

heats of binding of bio-5’-AMP to and dissociation of biotin from the protein. For 

BirAwt, this difference of approximately 6 kcal/mol is sufficiently large for accurate 

measurement.207 The same is true for the D197A/F124A double variant (Table 3). 

 By contrast, the molar enthalpies of bio-5’-AMP binding are significantly more 

negative for the P143A/M211A and G281A/M211A variants. Consequently, the net 

binding enthalpies for these variants in displacement titrations are too small for reliable 

measurement, which necessitated the use of direct bio-5’-AMP titrations for these 

proteins. To achieve acceptable c values of 300-400 (c = nKAC, where n is the binding 

stoichiometry, KA is the equilibrium association constant, and C is the protein 

concentration), the titrations were performed at a relatively low protein concentration 

of 0.5 μM. Nevertheless, data obtained from the measurements are of high quality and 

described well by a single-site binding model (Figure 25A). 
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 The bio-5’-AMP binding measurements reveal coupling between the ligand 

binding and dimerization surfaces for two of the variants. For BirAP143A/M211A and 

BirAD197A/F124A, the addition of an alanine substitution to the dimerization surface 

partially “rescues” the binding defect associated with the alanine substitution in the 

ligand binding surface as evidenced by the negative or favorable values of the coupling 

free energies of -0.7 ± 0.3 and -1.4 ± 0.4 kcal/mol, respectively (Figure 25C and Table 

6). The detailed thermodynamics of the single- and double-variant binding parameters 

indicate that for the P143A/M211A variant the coupling is enthalpic in origin while for 

the D197A/F124A variant it is entropically based. No coupling in bio-5’-AMP binding 

is observed between residues M211 and G281 (Figure 25C and Table 6). 

3. Homodimerization measurements reveal coupling between G281 and M211 

 The dimerization energetics of the bio-5’-AMP-bound variants were 

determined by sedimentation equilibrium. For all variants, the relatively modest 

dimerization free energies necessitated the performance of the measurements at 

holoBirA concentrations in the range of 40-60 μM. Moreover, even at these high 

concentrations, a maximal dimerization fraction dimer of approximately 15% was 

indicated in the analysis of the equilibrium species distributions. Nevertheless, global 

analysis of the data using a monomer-dimer model yielded equilibrium dissociation 

constants and Gibbs free energies with good precision. Moreover, the residuals of the 

analyses indicate excellent agreement between the data and model (Figure 25B). For 

all doubly substituted variants, the dimerization was significantly weaker than that 

measured for either singly substituted parent (Table 4). The free energies of 
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dimerization for the singly and doubly alanine substituted variants for the G281/M211 

pair indicate a coupling free energy of -0.9 ± 0.4 kcal/mol. No coupling in dimerization 

is observed for the P143A/M211A and D197A/F124A variants (Figure 25D and Table 

6). 

Table 6. Thermodynamics of bio-5’-AMP binding and dimerization properties for BirA 

variants and coupling between residues on two function surfaces  

Proteina ΔG°b5p 
(kcal/mol) 

ΔΔG°b5p 
(kcal/mol) 

ΔG°c,b5p 
(kcal/mol)b 

ΔG°dim 
(kcal/mol) 

ΔΔG°dim 
(kcal/mol) 

ΔG°c,dim 
(kcal/mol)c 

wt -13.8±0.2 - - -6.4±0.2 - - 

P143A -13.5±0.2 0.3±0.3 - -5.5±0.2 0.9±0.3 - 

D197A -13.5±0.2 0.3±0.3 - -4.1±0.3 2.3±0.4 - 

G281A -13.6±0.2 0.2±0.3 - -5.0±0.3 1.4±0.4 - 

F124A -11.1±0.2 2.7±0.3 - -6.2±0.2 0.2±0.3 - 

M211A -11.58±0.09 2.2±0.3 - -5.2±0.2 1.2±0.3 - 

P143A/M211A -12.0±0.1 1.8±0.2 -0.7±0.3 -4.0±0.2 2.4±0.3 0.2±0.4 

D197A/F124A -12.2±0.1 1.6±0.2 -1.4±0.4 -3.7±0.2 2.7±0.3 0.1±0.4 

G281A/M211A -11.8±0.2 2.0±0.3 -0.4±0.4 -4.6±0.2 1.8±0.3 -0.9±0.4 

aResidue positions on the dimerization surface are shown in bold. b&cCoupling free 

energies in bbio-5’-AMP binding and choloBirA dimerization calculated using equation 

8. The numbers reported were calculated based on unrounded values. 
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Figure 25. Coupling between distant residues in ligand binding and dimerization. (A) 

ITC titration of BirAP143A/M211A with bio-5′-AMP at 20 °C (top) and the best-fit curve 

obtained using a single-site binding model (bottom). (B) Sedimentation equilibrium 

measurements for holoBirAP143A/M211A. Solid lines represent best fits to a monomer-

dimer model obtained from global analysis of nine data sets (top) with residuals of the 

fit (bottom). (C and D) Histograms showing coupling free energies of residue pairs in 

bio-5′-AMP binding (ΔGc,bind°) and dimerization (ΔGc,dim°). 
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4. Molecular origins of functional coupling in BirA 

 The structural and dynamic origins of the observed coupling between residues 

P143 and M211 were investigated using all-atom molecular dynamics simulations. All 

simulations were carried out by Dr. Gregory Custer in Dr. Matysiak’s lab. Simulations 

reached equilibrium in 500 ns (Figure 23), and analysis was performed on 

representative structures from the final 500 ns of each 1 μs trajectory. Simulations of 

apoBirAwt and holoBirAwt (biotinol-5’-AMP-bound) protein monomers were first 

carried out to validate the approach. For both species, the simulations were on the 

monomer that had been extracted from the holoBirA dimer (PDB entry 2EWN), with 

the apoprotein species generated by removing the biotinol-5’-AMP ligand from the 

holoBirA monomer structure. Crystal structures indicate that effector binding results in 

ABL and BBL folding around the bio-5’-AMP in the ligand binding region and 

disorder-to-order transitions and concomitant packing of the 140-146 and 193-199 

loops on the dimerization surface.153, 154 Therefore, simulation results were first 

analyzed by comparing pairwise interaction energies for residues in these two regions 

in the equilibrium structures of the two species. Comparison of the interaction energy 

maps for holo and apoBirAwt indicates that, consistent with experimentally observed 

ligand-linked disorder-to-order transitions of surface loops, fewer interactions are 

present in the ligand binding and dimerization surfaces of the apo-repressor than in the 

holo-repressor (Figure 26A,C). Thus, for the wild-type protein, the simulations yield 

results that are consistent with experimentally determined structures. 
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Figure 26. Comparison of wt apo and holo simulations. (A) Difference average 

interaction energy map for residues pairs in the dimerization surface of the wt apo 

simulation. (B) Per-residue average RMSD to ideal helix for wt apo (black) and holo 

(green). Error bars represent 95% confidence intervals. (C) Difference average 

interaction energy map for residues pairs in the ligand binding region of the wt apo 

simulation. (D) Root-mean-square deviation (RMSD) time series for C, CA, and N 

atoms of residues 211- 223, after aligning to C, CA, and N atoms of the central domain 

(residues 80-115,127-139, 147- 192, 200-210, and 224-269). Values smoothed using a 

sliding average with a 0.5 ns window. BirA variants shown are wt apo (black) and wt 

holo (green). 
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5. Simulated structures indicate diversity in holoBirA variant monomers 

 Variants with alanine substitutions at M211, P143, and P143/M211 were also 

subjected to simulations, all in their holo-monomer forms, by Dr. Matysiak’s group. In 

experiments, alanine substitution at M211 results in weaker bio-5’-AMP binding and 

dimerization.172 The P143A substitution on the dimerization surface results in no 

perturbation of bio-5’-AMP binding but does alter homodimerization.173, 175 Finally, as 

indicated in the results of double-mutant cycle experiments described above, residues 

P143 on the dimerization surface and M211 on the ligand binding surface are 

functionally coupled in bio-5’-AMP binding. 

 The structure of each variant differs at multiple residue positions from that of 

holoBirAwt. The average structure from simulations for each variant was first compared 

to that of holoBirAwt by performing pairwise three-dimensional (3D) alignments using 

trjconv in GROMACS.196 The alignments yield backbone RMSD difference plots, 

which for the sake of clarity include only residues for the protein’s central and C-

terminal domains (Figure 27). The DNA binding domain was omitted because the 

available BirAwt structures indicate a high degree of structural variability both within 

the domain and in its position relative to the central domain.154 The plots indicate that 

structural differences between each variant and the wild-type protein are distributed 

throughout the central and C-terminal domains (Figure 27). Moreover, in the BirA 3D 

structure, the majority of these differences are located at loop positions. 

 Residues in the loops that play well-characterized roles in ligand binding and 

dimerization show variant-specific structural deviations (Figure 27). For example, the 
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structure of the ABL of only the M211A variant differs significantly from its structure 

in holoBirAwt. For dimerization surface loops comprised of residues 140-146 and 193-

199, structural differences are observed in BirAP143A and BirAP143A/M211A. However, 

while only the 140-146 loop shows a large deviation in the single variant, both loops 

diverge significantly for the double variant. In all variants, the structure of the BBL 

differs from its structure in holoBirAwt, with the holoBirAM211A loop exhibiting the 

largest deviations. Discussion of detailed structural and dynamic differences in the 

ligand binding and dimerization loops of the variants is provided below. 

 Structural differences are observed for a few additional central and C-terminal 

domain residues of all variants. The RMSD for residue A166, which is located near the 

protein’s ligand binding surface, is relatively large and roughly equal for the three 

variants. In the P143A variant, C-terminal residues D282 and I305 show relatively 

large deviations from their structures in holoBirAwt, which are significantly smaller in 

the other two variants. All three of these residues are far from the locations of amino 

acid substitutions in the BirA structure. 
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Figure 27. HoloBirA variant structures differ significantly from that of holoBirAwt. The 

plots show the root-mean-square deviation of backbone atom positions for each holo 

variant monomer relative wild-type BirA: (A) BirAM211A, (B) BirAP143A, and (C) 

BirAP143A/M211A. 
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6. Interaction energies on the ligand binding and dimerization surfaces are altered in 

the holoBirA variants 

 Comparison of the energy maps of the simulated holoBirA variant structures 

provides structural insight into energetic perturbations associated with single-alanine 

substitutions at M211 or P143 and the coupling between these two residues in bio-5’-

AMP binding. For each variant, a “difference” average interaction energy map was 

obtained by subtracting the energy map for holoBirAwt from that of the variant (Figure 

28). Consistent with the experimentally observed compromised binding of BirAM211A 

to bio-5’-AMP (Figure 28A), the difference energy map for the ligand binding region 

of this variant shows a significant loss of interactions both within and between the ABL 

and BBL. By contrast, the ligand binding surface energy map for BirAP143A, which 

binds to bio-5’-AMP with an affinity identical to that of BirAwt, shows only minor 

differences from that of holoBirAwt (Figure 28B). Combining the P143A substitution 

on the dimerization surface with the M211A substitution yields interaction energies on 

the ligand binding surface that are more similar to those of holoBirAwt (Figure 28C), 

consistent with the experimentally observed ability of the P143A substitution to 

partially reverse the penalty to bio-5’-AMP binding associated with the single-alanine 

substitution of M211. 

 Interaction energy maps also reveal perturbations on the dimerization surface 

of the alanine variants. These maps provide information about interactions within and 

between the 140-146 and 193-199 loops. Despite its weaker dimerization, the map for 

the M211A variant shows little difference from that of holoBirAwt (Figure 28D). The 
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dimerization surface energy map for holoBirAP143A indicates loss of interactions 

localized to the 140-146 loop (Figure 28E). The P143A/M211A double variant shows 

loss of interactions both within the 140-146 loop and between this loop and the 193-

199 loop (Figure 28F). 

 

Figure 28. Difference average interaction energy maps for residue pairs in the ligand 

binding (top panels) and dimerization (bottom panels) surfaces of (A and D) 

holoBirAM211A, (B and E) holoBirAP143A, and (C and F) holoBirAP143A/M211A. 
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7. Detailed structural and dynamic basis of allosteric modulation of BirA dimerization 

 Further analysis of simulations of apo- and holoBirAwt indicates detailed 

structural differences on the dimerization surface that are consistent with 

experimentally determined structures. In crystal structures of both apo- and holoBirAwt, 

an α-helix spans the width of the protein from the dimerization to the ligand binding 

surface (Figure 22).153, 154 In the apo structure, this helix is comprised of residues 146-

164, while in the holo structure, the helix is kinked at residue 146 and extended on its 

N-terminus to include residues 142-145. MD simulations yield results similar to these 

experimental observations (Figure 26A, B). In the median structure from the apoBirAwt 

simulation, residues 148-166 are helical while residues 143-147 are not. By contrast, 

simulations of the holoBirAwt species indicate a structure with a break in the helix at 

residues 146-149, preceded at the amino terminus by a short 310-helix that terminates 

at P143. Notably, the helical extension is correlated with disruption of the interaction 

between residues 146 and 150 that is detected in the apoBirAwt energy map (Figure 

26A). These structural differences observed in simulated BirAwt structures indicate that 

the presence of a ligand is transmitted to the dimerization surface in a manner consistent 

with the differences observed in experimentally determined structures. 

 The detailed structure of each simulated holoBirA variant dimerization surface 

indicates variant-specific deviations from the structure of holoBirAwt. Like holoBirAwt, 

the M211A variant shows the 310-helical structure for residues 142-145 (Figure 29A, 

B). However, the structure of the BBL, which is known to function in dimerization,208 

in the M211A variant differs from its structure in holoBirAwt. The analysis was carried 
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out by first aligning the central domain regions of the equilibrated structures of each 

holo variant with that of the holoBirAwt median structure, followed by measurement of 

the RMSD for the BBL backbone atoms. The RMSD values of central domain regions 

of all variants, which range from 0.7 to 1.1 Å (Figure 30), indicate a high degree of 

structural similarity over the simulation trajectories. However, the BBL RMSD time 

course for the M211A variant deviates significantly from those of holoBirAwt and the 

other two variants. Consistent with the large RMSD, in the median simulated structures, 

the holoBirAM211A BBL conformation differs from that in holoBirAwt (Figure 29C, D). 

In the P143A and P143A/M211A variants, the helical conformation of residues 142-

145 is absent (Figure 29A,B) but the BBL conformation is identical to that found in the 

wild-type protein (Figure 29C). 

 Simulation results indicate that alanine substitutions on either the ligand 

binding or dimerization surface can alter the dynamics of the 140-146 and 193-199 

loops. Principle component analysis of the motions associated with these loops 

indicates that 60% of the motion is captured in the major component (Figure 29E). In 

holoBirAwt and holoBirAM211A, the motion, as indicated by the root-mean-square 

fluctuation along the principle eigenvector, is relatively minor (Figure 29F). By 

contrast, markedly enhanced motion for the two loops is observed in both P143A and 

P143A/M211A (Figure 29F).  
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Figure 29. Alanine substitutions perturb the structure and dynamics of the dimerization 

surface loops. (A) Dimerization surface loops 140−146 and 193−199 for holoBirAwt 

(green) and holoBirAP143A/M211A (purple). (B) Per-residue average RMSD from an ideal 

helix for residues 140−152. Error bars represent 95% confidence intervals. (C) RMSD 

time series for BBL residues 116−124 (C, CA, and N atoms). (D) Alignment of the 

BBL structures of holoBirAwt (green) and holoBirAM211A (cyan). (E) Dimer interface 

loops of the median holoBirAwt structure shown with the principal eigenvector of the 

covariance matrix for residues 140−146 and 193−199. (F) Root-mean-square 

fluctuation (RMSF) of residues 140−146 and 193− 199 (C, CA, and N atoms) along 

the principal eigenvector. 
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Figure 30. Root-mean-square deviation (RMSD) time series for C, CA, and N atoms 

of the central domain (residues 80-115, 127-139,147-192, 200-210, and 224-269) of 

BirA variants. Values smoothed using a sliding average with a 0.5 ns window. BirA 

variants shown are wt (green), R213A (orange), M211A (cyan), P143A (red), 

P143A/M211A (purple). 

 

Loop packing on the ligand binding surface is correlated with the Gibbs free 

energy of bio-5’-AMP binding and is sensitive to amino acid substitution on the 

dimerization surface. The conformation of the adenylate binding loop (residues 211- 

222), which packs on the adenine ring of bio-5’-AMP in the holoBirAwt structure 

(Figure 31A), was analyzed for BirA variant simulation trajectories. The analysis was 

carried out as described above for the BBL. The RMSD values of the loop segment are 

similar for holoBirAwt and the P143A variant, both of which bind with similar affinities 
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to bio-5’-AMP (Figure 31B). By contrast, the loop in the M211A variant, which binds 

weakly to bio-5’-AMP, exhibits a large RMSD (Figure 31B). Notably, control 

simulations performed on the R213A variant, which, although it has a substitution in 

the ABL, binds to bio-5’-AMP with an affinity similar to that of BirAwt,172 indicate an 

RMSD time course similar to that of the wild-type protein (Figure 31B). Finally, 

addition of the P143A substitution on the dimerization surface to the ABL variant, 

BirAM211A, results in a loop RMSD similar to that observed for holoBirAwt (Figure 

31B). 

 

Figure 31. Loop packing at the ligand binding surface is influenced by substitutions on 

the dimerization surface. (A) HoloBirA central domain. (B) RMSD time series for C, 

CA, and N atoms of residues 211−223. Values were smoothed using a sliding average 

with a 0.5 ns window. 
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E. Discussion 

 The thermodynamics of allosteric systems are, as indicated in the cycle 

provided in Figure 22, bidirectional or reciprocal. For BirA, this means that because 

bio-5’-AMP binding enhances dimerization, dimerization also promotes bio-5’-AMP 

binding. Previous experimental studies were capable of detecting only unidirectional 

communication from the ligand binding site to the dimerization surface and vice 

versa.171-174 The thermodynamic analysis of the BirA double-alanine variants presented 

in this work demonstrates long-distance reciprocal coupling between the two functional 

sites in the protein. For all doubly substituted variants, coupling is energetically 

favorable. These results do not rule out the existence of residue pairs that are coupled 

in both functions. For residue pairs that are coupled in effector binding, both 

substitutions are in the BirA central domain. By contrast, for the G281A/M211A pair 

that is coupled in dimerization, one substitution is in the central domain and the second 

in the C-terminal domain. Additional studies are required to determine if this 

relationship between functional coupling and BirA domain structure is a general 

property of the system. 

 The coupling of ligand binding and dimerization observed in the double-alanine 

variants indicates a context dependence of the functional effect of each single-alanine 

substitution or epistasis. Protein epistasis is ubiquitous and thought to be important for 

evolution.209 The E. coli biotin repressor is a member of a large family of biotin ligase 

proteins that are widely distributed in archaea and eubacteria.150 Although all of these 

proteins catalyze the transfer of biotin to biotin-dependent carboxylases, only a subset, 
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including the E. coli protein, also function as transcription repressors. It is likely that 

the inter-residue interactions detected in this work that function in the coupling of bio-

5’-AMP binding to dimerization make up a small fraction of epistatic interactions that 

accompanied evolution of bifunctionality in this protein family. The results of 

molecular dynamics simulations indicate that coupling between residues P143 and 

M211 is exerted through modulation of the disorder-to-order transitions on both the 

dimerization and ligand binding surfaces. In simulations, introduction of the M211A 

substitution, which results in a large penalty on effector binding, severely perturbs 

adenylate binding loop folding and concomitant formation of the hydrophobic cluster. 

By contrast, introduction of the P143A substitution, which does not alter effector 

binding, has minor effects on the structure and interaction energetics of the ligand 

binding loops. Simultaneous alanine replacements at M211 and P143, which yield an 

effector binding free energy intermediate between those of the M211A and wild-type 

proteins, also partially reverse the ABL folding defect. Given that the Gibbs free energy 

of bio-5’-AMP binding for the double variant is still 1.8 kcal/mol less favorable than 

that of either BirAwt or BirAP143A, the detailed structure of the double-variant ligand 

binding surface still deviates from that of the wild type. Thus, the P143A substitution 

on the dimerization surface communicates to the ligand binding surface to enhance loop 

packing and increase bio-5’-AMP binding affinity. A similar phenomenology is 

observed on the dimerization surface. In addition to its effect on ABL folding, the 

M211A substitution is accompanied by an alteration in the BBL structure. As the BBL 

is known to function in both bio-5’-AMP binding and dimerization,189, 208 the altered 
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conformation in the M211A variant may be responsible for its weaker dimerization 

energetics. The P143A substitution results in significant structural and energetic 

perturbations to the 140-146 loop on that surface. Addition of the M211A substitution 

on the ligand binding surface, which results in even weaker dimerization, yields a 

dimerization surface in which the internal structures of the 140-146 and 193-199 loops 

are significantly perturbed as well as the interloop interaction. These same changes in 

the double-alanine variant are accompanied by a reversal of the effect of the single 

M211A substitution on the BBL conformation. 

 Although the ligand binding and dimerization loops show some of the largest 

structural and energetic variations, other residues in BirA central and C-terminal 

domain loops exhibit deviations from their positions in the wild-type protein. One 

possibility is that these deviations simply reflect the intrinsic loop flexibility. 

Alternatively, these residues may serve as additional sites of allosteric communication 

in the protein. For example, the backbone RMSD for residue 166 is relatively large 

(3−4 Å) for all variants. This residue is at the C-terminus of the α-helix comprised of 

residues 146-164 in apoBirA that is extended to residue P143 at its N-terminus in the 

holoprotein,154 a structural feature that is absent in the weakly dimerizing proteins 

BirAP143A and BirAP143A/M211A. In the model derived from X-ray crystallography, the 

distance between the A166 side chain and that of residue A229, located in the ABL, is 

3.5 Å. Moreover, the pairwise energy maps obtained from MD simulations indicate 

that this interaction is energetically compromised, albeit by a modest 1−2 kJ/mol, in all 

three variants. In addition to residue 166, residues in the C-terminal domain loop 
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positions show structural differences in the variants. Results of X-ray crystallography 

indicate that the C-terminal domain is rotated 3° relative to the central domain in 

holoBirA relative to apoBirA, which brings the C-terminal domains of the two 

monomers in the dimer closer together.154 Consistent with these structural results, 

alanine substitutions in loops containing residues 280-283 and 306-316 are known to 

alter dimerization energetics.172, 176 The structural perturbations in the loops observed 

in the variants suggest the existence of communication between residues in the ligand 

binding and dimerization surfaces with the C-terminus. 

 The combined results of experiments and simulations reveal that allosteric 

communication in BirA occurs through reciprocal modulation of the disorder-to-order 

transitions on two distant functional surfaces. The simulation results obtained with the 

P143A/M211A pair predict that structural and dynamic correlates to the functional 

communication between these two residues are primarily localized to the ligand 

binding and dimerization surfaces. However, the data also provide limited evidence of 

the distribution of the allosteric response to residues that are far removed from the 

coupled sites. Additional experimental and computational studies are required to obtain 

a more comprehensive picture of the sites of allosteric communication in BirA and to 

define structural networks in the protein core that connects these sites.95, 97, 210 
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Chapter 3: Integration of distant disorder-to-order transitions with a 

residue network in allostery 

A. Contribution statement 

 The work presented in this chapter was completed in collaboration with Dr. 

Silvina Matysiak’s group at the Fischell Department of Bioengineering, University of 

Maryland, College Park. All molecular dynamics simulations were conducted by Dr. 

Gregory Custer, and the network analysis was performed by Christopher Look and Riya 

Samanta. Riya Samanta also carried out Force Distribution Analysis on BirA wild-type 

and variants. Our lab performed to all non-computational experiments such as protein 

purification and functional measurements. We also contributed to the identification of 

residue networks described in this work and facilitated the analysis of simulation data. 

B. Introduction 

 Allostery, or energetic coupling between events that occur at distinct sites in a 

protein, is a widespread phenomenon. As “the second secret of life”,211 it is utilized in 

virtually all biological processes including metabolism,212 cell signaling,1 and 

transcription regulation213. Consequently, its mechanism remains the subject of intense 

research. Although recent studies highlight the importance of disorder for protein 

allostery,44, 85, 214 the physico-chemical basis of its contribution to long-range energetic 

coupling remains to be elucidated. 

 The E. coli biotin protein ligase (BirA) provides an ideal model system for 

determining how disorder-to-order transitions are communicated in allostery. BirA is a 
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transcription repressor that is allosterically activated for homodimerization via 

biotinyl-5’-adenylate (bio-5’-AMP) binding.183 The resulting holoBirA homodimer 

binds to DNA to repress transcription of the biotin biosynthetic operon.157, 165 Structural 

studies reveal that bio-5’-AMP binding is accompanied by disorder-to-order transitions 

on the coupled ligand binding and dimerization surfaces, which are separated by more 

than 30Å (Figure 32).153, 154, 169 The adenylate binding (ABL) and biotin binding loops 

(BBL) on the ligand binding surface, which are disordered in apoBirA, fold around bio-

5’-AMP in holoBirA. On the dimerization surface effector binding is coupled to the 

extension of an α-helix and ordering/packing of two loop segments. Functional 

measurements performed on BirA variants with single and multiple amino acid 

substitutions indicate that the disorder-to-order transitions on each functional surface 

are critical for BirA allostery171-173 and that the distant folding processes are coupled.170, 

174 The molecular mechanism of this coupling has yet to be determined. 

 Comparison of apo and holoBirA structures reveals that the disorder-to-order 

transitions linked to effector binding are accompanied by formation of an electrostatic 

network.176 In the holoBirA structure the network incorporates the effector molecule 

and several charged/polar amino acid side chains. Only a subset of these interactions 

can form in apoBirA because the BBL, which contributes residues R118, R119, and 

R121 to the network, is disordered in the absence of ligand.153, 169 Despite its presence 

in the holoBirA structure, the significance of the network in solution and its 

contribution to allostery are not known. 
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Figure 32. Structural analysis of disorder-to-order and network formation upon bio-5’-

AMP binding to BirA. (A) BirA structures with loop disorder-to-order transitions 

highlighted: 140-146 (Red), 193-199 (Green), BBL (Orange), and ABL (Cyan). The 

dashed segments indicate disorder. (B) Network interactions in holoBirA with the 

following side chain color codes: Red, negatively charged; Blue, positively charged; 

Black, ligand. Models were created in Pymol with 1BIA153 and 2EWN154 as input. 

 

 Results of computational analysis predict a role for the electrostatic network in 

allostery. Simulations reveal that an alanine substitution that perturbs both the disorder-

to-order transition on the ligand binding surface and bio-5’-AMP-linked dimerization, 

also disrupts the network.176 Additionally, analysis of the network in simulated BirA 

variant structures predicts the correlation of its rearrangement with altered bio-5’-AMP 

binding-linked dimerization.176  

 In this work, we applied computational and experimental methods to investigate 

the nature of the electrostatic network, its role in BirA allostery and its relationship to 

the effector-linked disorder-to-order transitions. Computational analysis reveals an 

extensive residue network that includes a majority of the residues identified from 
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structural analysis. Measurements of proton linkage to effector binding support 

network formation in solution. Results of ITC and sedimentation equilibrium 

measurements reveal that disruption of the network by alanine substitutions 

significantly perturbs both allosteric effector binding and effector-linked dimerization. 

Finally, Force Distribution Analysis reveals the linkage between the network and 

disorder-to-order transitions on the two functional surfaces. These results support a 

mechanism in which a residue network and disorder-to-order transitions function in 

concert to enable long-distance energetic coupling in protein allostery. 
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C. Materials and Methods 

3.1 Chemicals and biochemicals 

 All chemicals and biochemicals were at least reagent grade. The d-biotin 

(Sigma-Aldrich) stock solutions were prepared in Standard Buffer [10 mM Tris (pH 

7.50 ± 0.02 at 20 °C), 200 mM KCl, and 2.5 mM MgCl2] and stored in -80oC. The 

biotinoyl-5’-adenylate (bio-5’-AMP) was synthesized and purified as previously 

described 157, 215 and the bio-5’-AMP analog, biotinol-5’-adenylate (btnOH-AMP), was 

purchased from RNA-Tech (Leuven, Belgium). The btnOH-AMP and bio-5’-AMP 

stock solutions, which were stored at -80oC, were prepared by dissolving the dry 

powder into Milli-Q water. Concentrations were determined by absorption 

spectroscopy at 259 nm using a molar extinction coefficient of 15400 M-1cm-1. 

3.2 Mutagenesis, expression, and purification of BirA variants 

 Mutations in the BirA coding sequence were generated by oligonucleotide-

directed mutagenesis using a pBtac2 (Boehringer Mannheim) plasmid derivative that 

carries the C-terminally (His)6-tagged BirAwt coding sequence. PCR reactions were 

performed using either Pfu Ultra (Agilent) or KOD (Millipore-Sigma) DNA 

polymerase and mutations were verified by sequencing the entire coding sequence 

(ACGT Inc.). 

 Each BirA variant was expressed in Escherichia coli strain HMS174/pMS421 

transformed with the appropriate pBtac2-BirA-His derivative plasmid.189 The variant 

proteins were purified as previously reported,171 with the exception of the introduction 
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of a Q-sepharose chromatography step prior to final chromatography on SP-sepharose. 

Protein concentrations were determined by absorption spectroscopy at 280 nm using a 

molar extinction coefficient of 47510 M-1cm-1 calculated from the amino acid 

composition.190 Protein purity was estimated at >95% based on SDS-PAGE analysis.216 

3.3 Circular dichroism (CD) spectroscopy 

 The CD spectra were acquired by a JASCO J-810 (JASCO) spectrophotometer 

that is equipped with a temperature controller unit. All spectra were collected using a 

2mm pathlength quartz cuvette at 20 °C. Data were recorded at 1nm intervals from 260 

to 200nm at a scan speed of 50nm/min and a bandwidth of 1nm. To minimize the signal 

background from salt, spectra for the majority of the BirA variants were acquired in 

low salt Standard Buffer (10 mM Tris, 50 mM KCl, 2.5 mM MgCl2, pH = 7.5 at 20 

°C). Due to its limited solubility in 50 mM KCl, spectra for the BirAE313A variant were 

acquired Standard Buffer containing 200 mM KCl. Each final spectrum was the 

average of three measurements. 

3.4 Isothermal titration calorimetry (ITC) 

 All titrations were carried out using a VP-ITC calorimeter (Malvern) equipped 

with a 1.44mL cell. Proteins were prepared for titration by exhaustive dialysis against 

the binding buffer, removal of any resulting precipitate by filtration through a 0.22 μm 

PES syringe filter (SIMSII), and concentration determination by UV absorbance at 280 

nm. Bio-5’-AMP binding measurements were carried out in Standard Buffer and proton 

linkage measurements were performed in Standard Buffer in which Tris was replaced 
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by 10 mM Bistris, Citrate, or MES. Ligand stock and concentrated protein were diluted 

into dialysis buffer to the working concentrations immediately before titrations. 

Titrations designed to obtain only molar binding enthalpies were carried out 

under conditions of total association at partial saturation (TAPS),217 in which the ligand 

quantitatively binds to the protein in the first few injections. For each measurement, 

the sample cell contained a BirA variant at a concentration of 2-5 µM and the injection 

syringe was filled with a 20-50 µM ligand solution. A total of 14 injections were made 

including an initial 2 µL injection, followed by 6×13µL injections, each of which 

provides the heat of ligand binding plus ligand dilution. After saturating the protein 

with a 120 µL ligand injection, 6×13 µL injections were performed to obtain the ligand 

dilution heat. The net ligand binding heat was obtained by subtracting the ligand 

dilution heat from the heat of the six initial ligand injections. 

 Equilibrium binding titrations were carried out using either the direct or 

displacement method. In direct titrations a bio-5’-AMP solution at a concentration of 

5-20 µM was titrated into the sample cell containing the BirA variant at 0.5-2 µM. The 

titrations were initiated with a 2 µL injection, followed by another 17×16 µL 

injections.7 In displacement (competitive) titrations one 2 µL plus 22×13 µL volumes 

of a bio-5’-AMP solution were injected into a biotin-saturated BirA solution. The 

reported binding parameters were based on at least two independent titrations, with the 

majority representing at least three. 
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3.5 Sedimentation equilibrium measurements 

 HoloBirA dimerization was measured by sedimentation equilibrium in 

Standard Buffer at 20 °C using an Optima XL-I analytical ultracentrifuge equipped 

with a four-hole An-60 Ti rotor (Beckman Coulter). In order to ensure saturation, bio-

5’-AMP was added to protein at a 1.5:1 molar ratio under stoichiometric conditions. 

Samples containing 60, 50, 40 µM holoBirA monomer were loaded into standard 12 

mm six channel cells and centrifuged at 18000, 21000, 24000 rpm, respectively. After 

8 and 9 hours of centrifugation at each speed absorbance scans (step size=0.001 cm, 5 

averages) were acquired at 300 nm. Overlays of the two scans indicated that the system 

had reached equilibrium. At least two independent measurements of the equilibrium 

dimerization constant were performed for each variant. 

3.6 Data analysis 

 ITC data were analyzed using the Microcal software suite in Origin 7.0. The 

heat of ligand dilution, which was calculated from the average of the heats of the final 

3-5 injections, was subtracted from each raw injection heat. Injection heats were then 

normalized to molar enthalpy and the resulting isotherm was analyzed using a single-

site binding model for direct titrations and the competitive binding model for 

displacement titrations. 

 Sedimentation equilibrium data were analyzed using Nonlin218 in 

Heteroanalysis version 1.1.0.58 (https://core.uconn.edu/resources/biophysics#au-

software). The equilibrium dissociation constant (KD) for dimerization was obtained by 

global nonlinear least squares analysis of nine data sets using a monomer-dimer model: 

https://core.uconn.edu/resources/biophysics#au-software
https://core.uconn.edu/resources/biophysics#au-software
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where c(r) is the protein concentration at position r, c(ro) is the protein concentration at 

reference radial position ro, KA is the equilibrium association constant governing 

dimerization, δ is the baseline offset, σm is the reduced molecular weight for the BirA 

monomer calculated using the equation: 

 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀(1−𝑣𝑣�𝜌𝜌)
𝑅𝑅𝑅𝑅

𝜔𝜔2        (2) 

where M is His-tagged BirA monomer molecular weight of 36100 g/mol, 𝑣̅𝑣  is the 

partial specific volume which was experimentally determined as 0.755 cm3/g,183 𝜌𝜌 is 

the buffer density calculated using Sednterp Version 1.09, 𝜔𝜔 is the angular velocity of 

the rotor, RT is the gas constant × temperature (K). 

3.7 Molecular dynamics (MD) simulations and analysis 

 All MD simulations described in this chapter were conducted by Dr. Silvina 

Matysiak’s group at the Fischell Department of Bioengineering, University of 

Maryland, College Park. Simulations were performed on BirA, both wild-type and 

variant, in complex with the corepressor analog biotinol-5’-AMP (btnOH-AMP), with 

chain A of the BirA dimer structure in Protein Data Bank (PDB) entry 2EWN154 used 

as the starting configuration of the complex. The simulation trajectories used in this 

study were taken from our previous publications.170 The GROMACS 4.6 simulator 219-

221 with the OPLS-AA force field222 was used for simulation. For each simulation, the 

protein was placed in a rhombic dodecahedral box with boundaries extending out ~1 

nm from the protein. The system was then solvated with ~20300 SPC/E water 
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molecules.223 Random replacement of a water molecule with a Na+ counterion rendered 

the system neutral. The duration of the production run, using an NPT ensemble at 300 

K and 1 atm, was 1 µs, with the final 500 ns used for analysis. 

 The shortest communication paths between BirA residues were calculated using 

a method based on Ribeiro, et al. 2014.96 To calculate shortest paths, a network between 

BirA residues was first constructed based on the MD simulation, with the final 500 ns 

of the simulation trajectory used for analysis. Each protein residue is considered a 

single node in the network. Connections between a pair of nodes (residues) by an edge 

required contact for at least 20% of the simulation time analyzed. A distance-based 

cutoff was used to identify contacts between residues, with distances between all pairs 

of atoms in the residues considered. The distance cutoff for each pair of atoms was 1.7 

times the sum of their van der Waals radii. For each residue, i, edges with residues i±1 

and i±2 were excluded. The weight (or length), ωij, of each edge in the network was 

calculated using the pairwise interaction energy, εij between residues i and j connected 

by that edge. This pairwise interaction energy was defined as the sum of all non-bonded 

interactions between the residues and was calculated at each time step. The weight, ωij, 

was calculated from εij as follows: 

 𝜔𝜔𝑖𝑖𝑖𝑖 = 𝜀𝜀𝑖𝑖𝑖𝑖
−1/3         (3) 

 The shortest pathways between all residue pairs, excluding pairs (i, i±1) and (i, 

i±2), were calculated after every 80 ps using the Floyd-Warshal algorithm,224 providing 

an ensemble of shortest paths between all residue pairs. In order to identify residues 

most likely to be a part of the network, the final 500 ns of the entire trajectory is first 
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divided into 50 sets. The likelihood of appearance of a particular residue in the shortest 

path is calculated for the set and normalized to the residue with the highest number of 

shortest paths. This likelihood was generated for each set and finally averaged across 

all 50 sets.  

 Force Distribution Analysis, based on the method outlined in Stacklies, et al 

2011225 and Costescu and Grater 2013,226 was carried out for wild type and variant 

holoBirA species. Residue pairwise forces, which are based on bonded and non-bonded 

interactions, were used to calculate the Punctual Stress using the Time-Resolved Force 

Distribution Analysis (TRFDA) code. These calculations were carried out on reruns of 

the final 500 ns of each MD trajectory. The Punctual Stress for each residue, i, is the 

sum of the absolute values of pairwise forces applied by all other residues, j, on that 

residue.  

 𝑆𝑆𝑖𝑖 = ∑ �𝐹𝐹𝑖𝑖𝑖𝑖�𝑗𝑗,𝑖𝑖≠𝑗𝑗         (4) 

 This calculation generates the Punctual Stress for each residue in the 317 

residues that were modeled in the structure for every frame and then averaged across 

all frames. The averaged values thus obtained were used to compute the absolute 

difference between punctual stress of variant and wt. 
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D. Results 

1. Computational analysis reveals an extensive residue network in holoBirA 

 The electrostatic network previously identified in holoBirAwt was based on 

inspection of the structure, a snapshot of the protein, determined by X-ray 

crystallography. Computational analysis of all-atom MD equilibrium trajectories was 

used to obtain a more comprehensive picture of residue networks that may function in 

BirA allostery. The analysis of holoBirAwt was carried out, as described in Materials & 

Methods, using a method based on inter-residue interaction energies.96, 97 

 The computational analysis by Dr. Matysiak’s group reveals a more extensive 

network than that obtained from structural analysis. The 317 residues analyzed were 

ranked according to the magnitudes of their "node betweenness" and those with values 

in the top 5%, which included 16 total residues, were designated as having a high 

likelihood of network participation. Of the 16, 6 belong to the network derived from 

inspection of the structure (Figure 33A). Only residues R119 and R121 of the original 

network are not included among the high likelihood nodes. The effector, bio-5’-AMP, 

which was identified from the structure as a network participant, is also a high 

likelihood node. Included among the computationally identified nodes are residues 

P126, R235, and W223, which have previously been shown to function either in BirA 

allostery in vitro171, 172 or in BirA-mediated transcription repression in vivo152, 167, 227. 

All three of these residues are in segments that undergo disorder-to-order transitions 

upon bio-5’-AMP binding. The majority of the residue network in the holoBirA 

monomer defines a continuous surface on one face of the protein from the N-terminal-
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central domain interface to the interface formed between the central and C-terminal 

domain (Figure 33B). 

 

Figure 33. Computationally determined residue network in holoBirA. (A) Node 

betweenness values for each residue with error bars representing one standard deviation 

of 50 sets of averaged probabilities (B) Positions of high likelihood network residues 

on the holoBirA structure. Color code (A & B): Red, btnOH-AMP ligand; Blue, 

network residues in both the structure and computation; Orange, residues identified 

solely from computation. (C) Proton release is linked to effector binding. Solid lines 

result from linear regression using Equation 5 with error bars representing the 67% 

confidence interval of each individual measurement. 
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2. The network forms in solution 

 Although the structural and computational analyses are consistent with network 

formation upon bio-5’-AMP binding, experimental support of its solution relevance is 

lacking. Formation of electrostatic interactions upon ligand binding is likely to be 

linked to proton release from or uptake by the protein and Isothermal Titration 

Calorimetry (ITC) provides an ideal method to detect this linkage.228 For example, if 

ligand binding is linked to proton release, the measured heat signal in ITC reflects the 

sum of the ligand binding heat and the heat of buffer ionization. Measurement of the 

apparent heat of binding in buffers characterized by a range of ionization enthalpies 

yields data that adhere to the following relationship: 

 ∆𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜 = 𝑛𝑛𝐻𝐻+∆𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜 + ∆𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖       (5) 

where ΔHapp
o is the measured molar heat of binding, ΔHint is the intrinsic binding 

enthalpy, and ΔHion
o is the buffer ionization enthalpy. Linear regression of the 

dependence of ΔHapp
o on ΔHion

o yields nH+, the number of protons released from or 

absorbed by the protein upon ligand binding. 

 ITC measurements, which were performed using the TAPS method, indicate 

effector binding to BirA is accompanied by proton release. Measurements were carried 

out at pH 6.0 to enhance protonation of ionizable groups on the protein. Additionally, 

the contribution of the BirA dimerization heat to the measured enthalpy for the wild 

type protein was minimized by using the relatively weak allosteric activator, btnOH-

AMP,229 for the measurements. Consistent with network formation in solution, btnOH-

AMP binding to BirAwt is linked to proton release (Figure 33C, Table 7). Moreover, 
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amino acid substitutions at residues K172 or Y178, both of which are predicted to 

contribute to the network, alter the proton linkage (Figure 33C, Table 7). These results 

support the linkage of effector binding to network formation in solution. 

Table 7. Proton release linked to effector binding to BirA 

Buffering agent 
ΔHo

app (kcal/mol) 

wt K172A Y178C 

Bistris -10.6 ± 0.2 -12.1 ± 0.1 -11.8 ± 0.1 

MES -10.1 ± 0.2 -11.6 ± 0.1 -10.2 ± 0.1 

Citrate -9.4 ± 0.1 -11.2 ± 0.1 -9.7 ± 0.2 

nH+ -0.166 ± 0.005 -0.12 ± 0.02 -0.35 ± 0.07 

Measurements were performed at 20 °C, pH 6.0 in Standard Buffer containing the 

appropriate buffering agent at 10 mM concentration. The reported errors were 

propagated from results of at least two independent TAPS measurements. The number 

of protons released was obtained from linear regression of the data using Equation 5. 

 

3. The network residues function in effector binding 

 Allosteric effector binding activates the BirA monomer for homodimerization. 

The contributions of the network residues in this binding/activation process were 

assessed by measuring bio-5’-AMP binding to eight BirA variants with substitutions at 

network positions using ITC. Circular dichroism spectra indicated that the folded 

conformations of all eight variant proteins were identical to that of BirAwt (Figure 34). 
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Figure 34. CD Spectra for all variants are similar to that of BirAwt. Spectra are the 

average of three measurements. Spectra were acquired at 20 °C in Standard Buffer 

containing 50 mM KCl for all variants except for that of BirAE313A which was acquired 

in 200 mM KCl. 

 

For variants with alanine substitutions at R118, K183 and E313 both the 

equilibrium constants and the binding enthalpies were obtained from standard 

titrations, in which bio-5’-AMP is injected into a solution containing apoBirA. 

Representative data obtained for BirAR118A reveal that the binding is well described by 

a single site model and that the binding free energy is 2.2 ± 0.2 kcal/mol less favorable 

than that measured for BirAwt (Figure 35A, Table 8). Bio-5’-AMP binding to BirAwt, 

BirAR121A and BirAY178C occurs in the picomolar concentration range and, 

consequently, the displacement method, in which addition of bio-5’-AMP competes 

biotin off the protein, was used for these two variants 191, 207 (Figure 36, Table 8). 

Although bio-5’-AMP also binds very tightly to variants BirAK172A and BirAD176A, the 

heat signals in displacement titrations were too small to obtain reliable data. 

Consequently, the direct titration method was used for these variants (Figure 36). Since 
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the c-values, the product of the equilibrium constant and the protein concentration, 

employed for these titrations were large (>1000), the reported equilibrium constants 

should be considered upper limits. Accurate bio-5’-AMP binding enthalpies for all of 

the tight-binding variants were obtained using the TAPS method. 

 Results of the binding measurements reveal that electrostatic network residues 

contribute significantly to bio-5’-AMP binding. Alanine substitutions of residues 

R118, R119, K183, and E313 have impacts of +2 to +4 kcal/mol on the binding free 

energy. Even for variants that bind bio-5’-AMP with free energies similar to that 

measured for BirAwt, the binding enthalpy and/or the entropy is altered (Figure 35B, 

Table 8). 
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Figure 35. Network residues function in bio-5’-AMP binding and holoBirA 

dimerization. (A) Titration of BirAR118A with bio-5’-AMP (top) with analysis of the 

resulting data using a single-site binding model (bottom). (B) Histograms showing 

thermodynamics of bio-5’-AMP binding, with error bars representing one standard 

deviation or propagated error calculated from at least two independent measurements. 

(C) HoloBirAR121A sedimentation equilibrium measurement performed at 18k (red), 

21k (green), 24k (blue) rpm with protein samples prepared at 60 µM (left), 50 µM 

(middle), 40 µM (right) protein concentrations. Top: Absorbance vs radius profiles with 

best-fits to a monomer-dimer model shown as solid lines. Bottom: Residuals of the fit. 

(D) Dimerization free energies for network variants obtained from at least two 

independent measurements with error bars representing the 67% confidence intervals. 
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Figure 36. ITC measurements of bio-5’-AMP binding to BirA variants. For each variant 

the top panel shows the baseline adjusted thermogram and the bottom panel shows the 

binding isotherm and best-fit curves to a single-site or competitive binding model. 
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 Table 8. Bio-5’-AMP binding thermodynamics of BirA variants 

Protein KD(M) 
ΔGo 

(kcal/mol) 
ΔHo 

(kcal/mol) 
-TΔSo 

(kcal/mol) 
n 

wta,b 4(±1)×10-11 -14.0±0.2 -15.1±0.4 0.9±0.4 0.88±0.02 

R118Ac 1.3(±0.3)×10-9 -11.9±0.1 -13.2±0.4 1.3±0.4 0.88±0.06 

R119Ab 9(±2)×10-10 -12.1±0.1 -14.7±0.2 2.6±0.2 0.83±0.02 

R121Aa,b 1.0(±0.2)×10-10 -13.4±0.1 -14.1±0.3 0.7±0.3 0.94±0.05 

K172Ab 1.5(±0.4)×10-10 -13.2±0.2 -15.8±0.2 2.6±0.3 0.90±0.01 

D176Ab 5(±6)×10-11 -13.8±0.4 -15.9±0.3 2.1±0.4 0.86±0.02 

Y178Ca,b 1.0(±0.2)×10-10 -13.4±0.1 -13.4±0.2 0±0.2 1.0±0.1 

K183Ac 2.2(±0.6)×10-8 -10.3±0.2 -13.4±0.4 3.1±0.4 0.83±0.02 

E313Ac 1(±0.9)×10-8 -10.9±0.5 -16.3±0.5 5.4±0.7 0.79±0.03 

Measurements were carried out in Standard Buffer at 20 °C. The reported errors 

represent the larger of either the standard deviation or propagated error obtained from 

at least two independent measurements. The Gibbs free energies and entropic 

contributions were calculated using equations ΔGo = RTlnKD and ΔGo = ΔHo - TΔSo, 

respectively. aEquilibrium constants obtained from displacement titrations. b&cBinding 

enthalpies obtained from bTAPS or cquilibrium titrations. 
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4. Function of the network in BirA allosteric output, holoBirA dimerization 

 The output of bio-5’-AMP-linked allosteric activation of BirA is a 1000-fold 

enhancement of its homo-dimerization166 and the contributions of network residues to 

this output were assessed by measuring the dimerization free energies of the variants 

in their holo (bio-5’-AMP bound) forms using sedimentation equilibrium. For each 

variant the measurements were performed at three speeds on protein samples prepared 

at three concentrations and the resulting 9 data sets were globally analyzed using a 

monomer-dimer model. Results obtained for holoBirAR121A, which indicate excellent 

agreement between the data and the model, yield an equilibrium dimerization constant 

of 7(±2)×10-4
 M, 40-fold weaker than that measured for holoBirAwt (Figure 35C). 

Notably, with this weak dimerization the maximal fraction dimer at highest holoBirA 

concentration is relatively low, at 16.4% of the total monomer concentration. 

Nevertheless, analysis of the data using a single-species model yielded an average 

molecular weight of 42 ± 1 kDa, higher than the 36 kDa expected for the monomer. 

Moreover, the square root of the variance value associated with a monomer-dimer fit 

was smaller than that obtained using a single-species model. Results of sedimentation 

equilibrium measurements performed on all variants with network residue substitutions 

indicate significantly weaker dimerization than that measured for holoBirAwt, with 

penalties to dimerization free energy ranging from +2 to +4 kcal/mol (Figure 35D and 

37, Table 9). 
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Figure 37. Absorbance versus radius profiles for holoBirA variants prepared at three 

loading concentrations (left> middle> right) and centrifuged at three rotor speeds. (red< 

green<blue). For each variant the top panel shows the data and best fit curves to a 

monomer-dimer association model and the bottom panel shows the residuals of the fit. 
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Table 9. Dimerization energetics of BirA variants 

Variant KD (M) ΔGo (kcal/mol) 

wt 1.6(±0.5)×10-5 -6.4±0.2 

R118A 1.0(±0.6)×10-3 -4.1±0.5 

R119A 1.1(±0.8)×10-3 -4.0±0.8 

R121A 6(±2)×10-4 -4.3±0.3 

K172Aa 1.4(±0.8)×10-3 -3.8±0.5 

D176Aa 1(±1)×10-2 -2.6±0.4 

Y178Cb 7(±3)×10-4 -4.3±0.3 

K183A 4(±1)×10-4 -4.5±0.2 

E313A 5(±2)×10-4 -4.4±0.2 

All measurements were carried out in Standard Buffer at 20oC. Errors were propagated 

from at least two independent measurements. The Gibbs free energies of dimerization 

were calculated using the equation ΔGo = RTlnKD. aFrom reference 173.173 bFrom 

reference 176.176 

 



 
 
 

114 
 

5. Force Distribution Analysis indicates coupling between disorder-to-order 

transitions and the network in BirA allostery 

 Network function in coupling distant disorder-to-order transitions in BirA was 

investigated using Force Distribution Analysis (FDA). The analysis was conducted in 

collaboration with Dr. Matysiak’s group. If the network functions in this coupling, bio-

5’-AMP-linked folding is expected to be accompanied by changes in the force 

experienced by network residues. FDA enables calculation of the sum of the 

mechanical, or punctual, stress experienced by each amino acid from all pairwise-

residue forces.  Coupling between the network to disorder-to-order transitions was 

evaluated by performing FDA on the holo-forms of BirAwt and variants with alanine 

substitutions at P143, M211, and both P143 and M211 (Figure 38). Single alanine 

substitutions of residues P143 and M211, which perturb the disorder-to-order 

transitions at the dimerization and ligand binding surfaces, respectively, alter both 

effector binding and effector-linked dimerization.170, 172, 173 Measurements performed 

on the double variant, BirAP143A/M211A, revealed energetically favorable coupling 

between the two distant residues in effector binding. 

 The FDA indicates that perturbations to disorder-to-order transitions correlate 

with alterations in the stress experienced by network residues. The analysis was carried 

out on the equilibrium portion, the final 500 ns, of the MD trajectories obtained for 

each holo-variant and the results are presented as the difference in punctual stress at 

each residue in a variant relative to that experienced by the same residue in holoBirAwt. 

For each single alanine variant significant punctual stress differences (>400pN) are 
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observed at the substituted residue position as well as at network residues (Figure 38A, 

B). For example, in BirAP143A, in addition to P143, large perturbations to punctual stress 

are observed for network residues R118, K183, and E313. In the double variant, which 

revealed energetically favorable coupling between the distant P143 and M211,170 the 

punctual stress perturbations for most residues are significantly smaller than those 

observed for either singly substituted parent. Control analyses were performed on 

variants with alanine substitution at residue R213 and an aspartic acid substitution at 

G154 (Figure 39). For the former substitution, which has minor effects on ligand 

binding and effector-induced dimerization, relatively small alterations in punctual 

stress at network residues were observed. By contrast, for BirAG154D, in which allostery 

is enhanced, the punctual stress values at several network residues show large 

perturbations. The combined results reveal correlations among perturbation to disorder-

to-order transitions, functional effects on allostery, and force distribution in the residue 

network. 
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Figure 38. Force Distribution Analysis reveals coupling between disorder-to-order 

transitions and the network. (A) Absolute punctual stress difference in a variant relative 

holoBirAwt at each residue position. (B) HoloBirA structural model with positions of 

amino acid substitutions, P143A and M211A, and network positions that show 

significant punctual stress changes in the variants (blue). The color scheme for protein 

segments that undergo disorder-to-order transitions is identical to that used in Figure 

32. (C) Numerical values of punctual stress differences for the variants. 
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Figure 39. Punctual stress distribution for BirA proteins with substitutions at R213 and 

G154. (A) Absolute punctual stress difference between the variant and holoBirAwt at 

each residue position (B) HoloBirA model showing locations of substitutions and loops 

that undergo disorder-to-order transitions (red, green, orange, cyan). The loop color 

schemes are identical in A and B. 
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E. Discussion 

 Although the significance of disorder for protein allostery is well-documented, 

the molecular basis of its function in allosteric communication is unknown for many 

systems. In E. coli BirA, coupled disorder-to-order transitions on two distant functional 

surfaces are critical for activating the protein for dimerization. In this work, combined 

experimental and computational studies reveal the role of a residue network in 

communication between the folding transitions. 

 Computational analysis yields a network that, although more extensive, 

overlaps significantly with that derived from structural analysis. Effector binding is 

indispensable to formation of many network interactions, either due to direct network 

residue contacts or because many network residues are in segments that become 

ordered concomitant with bio-5’-AMP binding. Notably, residues P126 and W223, 

both of which participate in disorder-to-order transitions at the ligand-binding site, are 

among the computationally identified network residues.171, 172 Comparison of the apo 

and holoBirA structures reveals that although some network interactions form in the 

absence of ligand, the bond distances become shorter upon effector binding. For 

example, in the “hinges” of the two ligand binding loops, the distances between the 

charged groups on R235 and E110 are decreased by 0.9 angstroms and the hydrogen 

bond length between the side chain OH of Y132 and the backbone carbonyl of P126 is 

significantly shortened.153, 154 Overall, the majority of the network residues in 

combination with the ligand form a continuous surface from the ligand binding site 

loop termini to the C-terminal domain (Figure 33). Although the network includes one 
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C-terminal domain residue, E313, no N-terminal DNA binding domain residues 

participate in the network. This is consistent with the decoupling of dimerization 

energetics from the affinity of the resulting holoBirA dimer for DNA observed for a 

number of BirA variants.230 

 Experimental studies reveal the importance of the network for BirA allostery. 

In this work measurements performed on BirA variants with alanine substitutions of 

network residues reveal important functional roles for the network in both bio-5’-AMP 

binding and coupled dimerization. Additionally, previous genetic studies indicated that 

residue R235 contributes to BirA-mediated transcription repression. Finally, residues 

P126 and W223 contribute to both effector binding and holoBirA dimerization.171, 172 

Only two residues, R119 and R121, which were designated as network residues based 

on structure, were not identified in the computational analysis. Experimental 

measurements reveal that both of these residues are important for bio-5’-AMP-induced 

dimerization. While structural data suggest that the R119 may directly contribute to the 

dimerization interface, no such role for R121 is evident from the structure. Analyses of 

holoBirA dimer simulation trajectories may yield additional information about these 

two residues. 

 The residue network and the disorder-to-order-transitions are integrated in BirA 

allosteric activation. First, residues that directly participate in disorder-to-order, 

including P126 and W223, contribute to both the network and to allostery. Second, as 

mentioned above, many network interactions are enabled by disorder-to-order 

transitions. Finally, Force Distribution Analysis (FDA) indicates that perturbations of 
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disorder-to-order in the ligand binding and dimerization surfaces alter punctual stress 

at network positions. Moreover, the magnitudes of these stress perturbations correlate 

with the functional effects of amino acid substitutions. However, information regarding 

changes in stress directionality (compression or expansion) cannot be extracted from 

the current analysis. The observed alterations in punctual stress do not reveal which 

residues experience a change in stress directionality or may have the same 

directionality but a change in magnitude. 

 The coupled residue network and disorder-to-order transitions likely enhance 

BirA dimerization by reducing the entropic penalty associated with the process. The 

modest Gibbs free energy of holoBirA dimerization at 20oC reflects large opposing 

enthalpic and entropic contributions of +41 and -47.5 kcal/mol, respectively.206 While 

solvent release is known to contribute significantly to this thermodynamic signature,231 

the configurational entropy of the BirA monomer could impact the overall dimerization 

free energy through its effect on the dimerization entropy. Thus, the very weak 

dimerization (ΔGo= -2.5 kcal/mol)166 of apoBirA, in which loops on both the 

dimerization and ligand binding surfaces are disordered and the network is absent, 

likely reflects the penalty of reducing the protein configurational entropy upon 

dimerization. Thermodynamic measurements of bio-5’-AMP binding to several BirA 

variants revealed a linear correlation between the heat capacity change of bio-5’-AMP 

binding to the monomer and the dimerization free energy of the resulting holo 

monomer, with less negative heat capacity changes associated with weaker 

dimerization.175 These results are consistent with tuning of allosteric activation in these 
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variants via the extent to which effector binding induces folding and/or a reduction of 

the monomer internal dynamics.232, 233 In the present work, a number of the network 

variants, all of which are perturbed in allostery, bind to bio-5’-AMP with entropies that 

are more unfavorable than that measured for BirAwt (Figure 35B, Table 8). These 

relatively unfavorable entropies may reflect decreased solvent release due to reduced 

ligand-linked folding. Direct dynamic measurements will reveal the relationship 

between allostery, local folding, network formation and BirA internal dynamics. 

 BirA allostery reflects contributions from several segments that are distributed 

throughout the protein primary structure (Figure 40). At a biological level this 

distributed mechanism renders the allosteric response robust to changes in protein 

sequence. Indeed, amino acid substitutions at 16 different residues that contribute to 

disorder-to-order transitions and/or the network result in holoBirA dimerization free 

energies within ±1 kcal/mol of that measured for holoBirAwt (Figure 40). Several of 

the residues at which substitutions result in modest energetic perturbations to 

dimerization are located at the network periphery. This suggests that amino acid 

substitutions preserve allosteric function provided that the network core remains intact 

to redistribute energetic perturbations that accompany the substitution. 

 Disorder can play an important role in the thermodynamics of allostery,102 and 

manipulation of disorder provides a mechanism for altering allosteric coupling in 

proteins.172-174, 234 The results reported in this work illustrate the critical role that residue 

networks can play in connecting distant disorder-to-order transitions in allostery. The 

work also highlights the great advantage of integrating computational and experimental 
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approaches for identifying these networks, testing their functional significance, and 

deciphering how they facilitate long-distance communication in proteins. 

 

Figure 40. Amino acid substitutions tune the BirA allosteric response. (A) Amino acid 

substitutions in BirA yield a broad range of holoBirA dimerization free energies. The 

bracketed line indicates substitutions that alter the dimerization free energy by values 

within ±1 kcal/mol and asterisks signify residues that contribute directly to the dimer 

interface. (B) C-alpha carbons of amino acid positions in (A) shown on one subunit in 

the holoBirA dimer with small spheres signifying modest (within ±1 kcal.mol) and 

large spheres indicating larger (>±1 kcal/mol) effects on the dimerization free energy. 

Color code: Loops, Orange: 116-124; Red: 140-146; Purple: 170-176; Green: 193-199; 

Cyan: 211-222; Blue: 280-283; Yellow: 310-313; Gray: Protein Core. The model was 

created in Pymol22 with PDB file 2EWN154 as input. 
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Chapter 4: A conserved regulatory mechanism in bifunctional biotin 

protein ligases 

A. Introduction 

 Cellular homeostasis relies on communication between metabolism and gene 

expression. The bifunctional biotin protein ligases (BirA) link metabolic demand for 

and production/uptake of biotin.150, 160, 235, 236 In the E. coli system protein : protein 

interactions are critical for effecting this linkage. The ligase binds to biotin followed 

by ATP to produce biotinyl-5’-adenylate (bio-5’-AMP)237 (Figure 41). Adenylate 

binding to BirA enhances the equilibrium association constant and Gibbs free energy 

of dimerization of the protein by 1000-fold and -4 kcal/mol, respectively.183, 238 Given 

that homodimerization is a kinetic prerequisite to biotin operator (bioO) binding, 

transcription repression is regulated by holoBirA dimer availability (Figure 41).239 

When metabolic demand for biotin is high, holoBirA dimerization does not occur 

because the monomer preferentially binds to the abundant acetyl-CoA carboxylase, 

resulting in biotin transfer to the biotin carboxyl carrier protein (BCCP) subunit to 

activate the carboxylase for fatty acid biosynthesis (Figure 41). At low biotin demand, 

when the apoBCCP concentration is decreased, holoBirA monomer accumulates, 

dimerizes and binds to bioO to repress transcription of the biotin biosynthetic operon, 

thereby limiting biotin production when the cellular demand is low. 
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Figure 41. The Escherichia coli Biotin Regulatory System: BirA catalyzes the synthesis 

of bio-50-AMP from biotin and ATP and the resulting holoBirA either transfers biotin 

to apoBCCP or forms a homodimer that binds to the biotin operator to repress 

transcription. 

 

 Bifunctional ligases are present in a broad range of bacteria and archaea.150 

While some of these ligases regulate only transcription of the biotin biosynthetic genes, 

others are predicted to regulate expression of biosynthetic genes and/or those that code 

for biotin transport into the cell.150 Few of these proteins have been subjected to 

biochemical studies. Studies of the Staphylococcus aureus and Bacillus subtilis 

enzymes provide a mixed picture of the functional energetics of the Biotin Regulatory 

System in these organisms. Both in vivo and in vitro measurements performed on the 

B. subtilis BirA (BsBirA) indicate that, like the E. coli enzyme (EcBirA), transcription 
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regulation and biotin operator binding are very sensitive to biotin concentration.177, 178 

However, measurements of S. aureus BirA (SaBirA) binding to its cognate operator 

site using Electrophoretic Mobility Shift Assays (EMSA) indicate a relatively small 

difference in the overall binding energetics for the bio-5’-AMP-bound and ligand free 

forms of the protein, a result that predicts little sensitivity of transcription regulation to 

biotin concentration.179 By contrast, more recent fluorescence anisotropy 

measurements of the binding reveal a large difference in the bioO binding energetics 

of the two species.178 

 Repression complex assembly by the EcBirA occurs in two steps including 

dimerization followed by bioO binding.239 Moreover, in the E. coli system, the large 

difference in the overall two-step repression complex assembly energetics in the 

absence and presence of bio-5’-AMP results from the enhanced dimerization of 

holoBirA relative to apoBirA.230, 238 Previous measurements suggest that this is not the 

case for SaBirA. Homodimerization measurements performed using combined 

sedimentation velocity and equilibrium methods indicate that apoSaBirA dimerizes in 

the micromolar range of protein concentration and with energetics identical to those of 

the biotin-bound species.179 By contrast, apo- and biotin-bound EcBirA dimerize in 

millimolar concentration range.238 No measurements of holoSaBirA dimerization have 

been published. Given that SaBirA, like EcBirA, represses transcription in vivo in a 

biotin-dependent manner,178 the apparent relatively tight dimerization of the apo-

repressor is difficult to rationalize because it should enable DNA binding and 

repression in the absence of biotin. 
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 In this work, we have used sedimentation equilibrium to measure coupling 

between small ligand binding and homodimerization of the bifunctional Sa and Bs BirA 

proteins. Results of these measurements indicate that these two proteins behave 

similarly to the E. coli enzyme in coupling between ligand binding and self-association. 

The one exception is that biotin alone, which has little effect on EcBirA dimerization, 

enhances SaBirA dimerization. The results support conservation of the mechanism of 

response to biotin concentration for the S. aureus, B. subtilis, and E. coli Biotin 

Regulatory Systems. 
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B. Materials and Methods 

1. Chemicals and biochemicals 

 All reagents used were at least ACS grade. The d-biotin (Sigma-Aldrich) 

solutions were prepared in Standard Buffer containing 10 mM Tris (pH = 7.50 ± 0.02 

at 20 °C), 200 mM KCl, 2.5 mM MgCl2, and stored at -80 °C in 1 mL aliquots. Due to 

the absence of an absorption signal for biotin, these solutions were prepared by first 

weighing out the biotin using a microbalance and bringing the final solutions to full 

volume in a volumetric flask. Bio-5’-AMP was synthesized and purified as previously 

described and stored desiccated at -80 °C.240, 241 The bio-5’-AMP solutions were 

prepared by dissolving lyophilized powder into Milli-Q H2O, aliquoting the solution 

into 1 mL volumes and stored at -80oC. The bio-5'-AMP concentration was determined 

by absorption spectroscopy at 259 nm using molar extinction coefficient of 15400 M-

1cm-1. The integrity of the compound was checked by thin layer chromatography. 

2. Expression and purification of Bs and SaBirA 

Both Bs and SaBirA were expressed and purified using methods modified from 

previously published protocols.177, 178 The pET19b plasmid containing the N-terminally 

histidine-tagged BsBirA coding sequence or the pET28b plasmid containing the C-

terminally histidine-tagged SaBirA coding sequence, both obtained from J.E. Cronan's 

laboratory, was transformed into E. coli strain BL21 (λDE3). Cells were grown at 37oC 

in LB broth containing 100 µg/mL ampicillin (BsBirA) or 50 µg/mL kanamycin 
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(SaBirA). Once OD600 of the culture reached 0.8, protein expression was induced for 

12 hours at 30 °C by addition of IPTG to a final concentration of 1 mM. 

 All purification steps were performed at 4oC. For SaBirA purification, the cell 

pellet collected by centrifugation was resuspended in lysis buffer containing 50 mM 

HEPES (pH = 7.8 at 4oC), 250 mM NaCl, 0.1 mM dithiothreitol (DTT), 10 mM 

imidazole, 5% glycerol and lysed by sonication. The crude cell lysate was centrifuged 

again at 8360 g to remove cellular debris and the resulting supernatant was loaded onto 

HisPurTM Ni-NTA resin (ThermoFisher scientific). The resin was washed with at least 

10 column volumes (CV) of Ni-NTA Wash Buffer (lysis buffer containing 60 mM 

imidazole), and SaBirA was eluted in the same buffer using a linear 60-250 mM 

imidazole gradient. Column fractions were analyzed by SDS-PAGE and those 

containing SaBirA were pooled, dialyzed against SP sepharose starting buffer (50 mM 

Tris-HCl, 50 mM KCl, 5% glycerol, 0.1 mM DTT, pH = 7.5 at 4 °C), and the resulting 

sample was loaded onto SP Sepharose Fast Flow resin (GE Healthcare). The resin was 

washed with at least 10 CV of starting buffer, and SaBirA was eluted using a linear 20-

800 mM KCl gradient prepared in the same buffer. To remove residual biotin or bio-

5’-AMP, fractions containing pure SaBirA were pooled and dialyzed against lysis 

buffer, then loaded onto the Ni-NTA resin. At least 20 CV of a solution comprised of 

1 mM ATP, 1 μM E. coli apo-BCCP, and 0.5 mM MgCl2 in lysis buffer was applied to 

the column and exposed to the resin-bound SaBirA for at least 2 h to allow for complete 

biotin transfer. After the incubation, the resin was washed with at least 10 CV of Ni-

NTA wash buffer, after which SaBirA was eluted with Ni-NTA elution buffer (lysis 
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buffer containing 250 mM imidazole). Finally, fractions containing SaBirA were 

pooled, dialyzed against storage buffer containing 50 mM Tris-HCl (pH = 7.5 at 4 °C), 

200 mM KCl, 5% glycerol, 0.1 mM DTT and stored at -80 °C in 1 mL aliquots. 

 The BsBirA was purified using a method similar to that used for SaBirA with a 

few modifications. The lysis buffer composition was 50 mM Tris-HCl, 250 mM NaCl, 

0.5m M tris(2-carboxyethyl)phosphine (TCEP), 10 mM imidazole, 5% glycerol, pH = 

8.7 at 4 °C. The crude cell lysate was centrifuged at 48400 g for 30 min prior to column 

chromatography. In addition, due to the protein’s low solubility in SP sepharose 

starting buffer, SP sepharose column chromatography was replaced by a second Ni-

NTA column chromatography step. The procedure for removing biotin or bio-5’-AMP 

contamination was identical to that used for SaBirA. Purified BsBirA was dialyzed 

against storage buffer containing 50 mM HEPES (pH = 7.8 at 4 °C), 250 mM NaCl, 

0.5 mM TCEP, 5% glycerol and stored at -80 °C in 1 mL aliquots. 

 Protein concentrations were determined by UV absorbance using molar 

extinction coefficients of 39420 M-1cm-1 (BsBirA) and 45380 M-1cm-1
 (SaBirA) at 280 

nm calculated from amino acid compositions.242 All proteins were at least 95% pure as 

assessed by Coomassie-staining of samples subjected to SDS-PAGE. 

3. Biotinylation assay 

 A biotinylation assay, which is a modification of a previously described 

method,243 was performed to ensure that purified Bs and Sa BirA were not 

contaminated with biotin or bio-5’-AMP. Solutions containing 20 μM Bs or Sa BirA, 

20 μM E. coli apo-BCCP, and 500 μM ATP were prepared in Standard Buffer in the 
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absence or presence of 40 μM biotin. As a negative control, a reaction containing all 

components except biotin protein ligase was also prepared. The resulting solutions 

were incubated overnight for 16 h at 20 °C. To prepare for matrix-assisted laser 

desorption/ionization time of flight (MALDI-TOF) mass spectrometry analysis, protein 

solutions were desalted and exchanged into the matrix (50 mM α-Cyano-4-

hydroxycinnamic acid in 70% acetonitrile, 30% water) using C-18 Ziptips (Millipore). 

Spectra were acquired using an Axima-CFR MALDI-TOF (Shimadzu) mass 

spectrometer in linear mode, with insulin (Sigma-Aldrich) and cytochrome c from 

horse heart (Sigma-Aldrich) used as calibration standards. 

4. Sedimentation equilibrium 

 All proteins subjected to sedimentation equilibrium measurements were 

dialyzed exhaustively against the appropriate buffer (Standard Buffer or 20 mM Tris, 

150 mM NaCl, pH = 8.0 at 20 °C) prior to measurements. After filtering the protein 

solutions through 0.22μm PES syringe filters (Simsii), concentrations were determined 

by UV spectroscopy. Solutions were prepared at three final protein concentrations by 

dilution into dialysis buffer. For solutions containing biotin or bio-5’-AMP, the ligand 

was added immediately before centrifugation at a 1.5:1 ligand:protein molar ratio.  

 Sedimentation equilibrium measurements were performed using a Beckman 

Optima XL-I Analytical Ultracentrifuge (Beckman Coulter). A four-hole An-60 Ti 

rotor (Beckman Coulter) and 12-mm six-channel cells equipped with charcoal-filled 

Epon centerpieces and quartz windows were used in all experiments. Centrifugation 

was carried out at three speeds of 17000, 20000 and 23000 rpm for 8 h at each speed 
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and absorbance scans were acquired in step mode with five averages and a spacing of 

0.001 cm. Overlay of a second scan acquired after an additional 1 h at each speed with 

the 8 h scan indicated that equilibrium had been achieved. The wavelengths used for 

data acquisition were 280, 295 or 300 nm, depending on the particular samples 

analyzed. At least three independent sedimentation measurements were carried out for 

each species, apo, biotin, and bio-5’-AMP, of Sa and BsBirA. 

5. Data analysis 

 Sedimentation equilibrium data were analyzed using Nonlin218 in the 

Heteroanalyisis version 1.1.60 package downloaded from Center for Open Research 

Resources and Equipment (COR2E) at the University of Connecticut 

(http://core.uconn.edu/resources/biophysics). Absorbance versus radius profiles were 

globally analyzed using a single ideal species model to obtain the reduced molecular 

weight 𝜎𝜎 using the following equation: 

 𝑐𝑐(𝑟𝑟) = 𝑐𝑐(𝑟𝑟0)𝑒𝑒𝜎𝜎
�𝑟𝑟2−𝑟𝑟𝑜𝑜

2�
2 + 𝛿𝛿        (1) 

where 𝑐𝑐(𝑟𝑟) is the protein concentration at radius 𝑟𝑟, 𝑐𝑐(𝑟𝑟0) is the protein concentration 

at an arbitrary reference radial position 𝑟𝑟0, and 𝛿𝛿 is the baseline offset. The best-fit 

reduced molecular weight was used to calculate the weight average molecular weight 

M of the sample using the following expression244: 

 𝜎𝜎 = 𝑀𝑀(1−𝑣𝑣�𝜌𝜌)
𝑅𝑅𝑅𝑅

𝜔𝜔2           (2) 

where 𝑣̅𝑣 is the partial specific volume of the protein, ρ is the buffer density, ω is the 

angular velocity of the rotor, 𝑅𝑅 is the gas constant and 𝑇𝑇 is the temperature. Partial 

http://core.uconn.edu/resources/biophysics
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specific volumes of 0.7366 cm3/g for BsBirA and 0.7335 cm3/g for SaBirA and buffer 

densities were calculated using Sednterp (http://www.jphilo.mailway.com/ 

download.htm). 

 Data were also analyzed using a monomer-dimer self-association model to 

obtain the equilibrium dissociation constant KD for homodimerization: 

 𝑐𝑐(𝑟𝑟) = 𝑐𝑐(𝑟𝑟𝑜𝑜)𝑒𝑒𝜎𝜎𝑚𝑚
�𝑟𝑟2−𝑟𝑟𝑜𝑜

2�
2 + 1

𝐾𝐾𝐷𝐷
[𝑐𝑐(𝑟𝑟𝑜𝑜)𝑒𝑒𝜎𝜎𝑚𝑚

�𝑟𝑟2−𝑟𝑟𝑜𝑜
2�

2 ]2 + 𝛿𝛿    (3) 

where 𝜎𝜎𝑚𝑚 is the reduced molecular weight for Bs or Sa BirA monomer calculated from 

Eq. (2), and  𝑟𝑟, 𝑐𝑐(𝑟𝑟), 𝑐𝑐(𝑟𝑟0) and 𝛿𝛿 have the same significance as indicated for equation 

1. The reduced molecular weight of the dimer is assumed to be twice that of the 

monomer. 

6. Sequence alignment 

 Sequences of 34 class II bifunctional protein ligases were selected150 and 

alignment was carried out using Clustal Omega.245 The output file was analyzed using 

the Sequence Identity And Similarity (SIAS) tool 

(http://imed.med.ucm.es/Tools/sias.html) to obtain pairwise sequence identities, 

calculated using the mean length of sequences. 
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C. Results 

1. Sa and Bs BirA preparations are free of biotin or bio-5’-AMP contamination 

 Since biotin protein ligases exhibit coupling between small ligand binding and 

dimerization, unambiguous interpretation of sedimentation equilibrium data obtained 

on any of these proteins requires knowledge of the ligation state. Previous studies 

indicate that biotin or bio-5’-AMP may co-purify with biotin protein ligases and a 

standard protocol developed in this laboratory,246 which involves exposure of the 

ligases to a molar excess of apoBCCP in the presence of ATP, can eliminate such 

contamination.177, 178, 246 The Sa and Bs BirA preparations used in the current studies 

were subjected to this published protocol. Before performing sedimentation 

measurements the proteins were assayed for the presence of contaminating biotin or 

bio-5’-AMP.243 In the assay each purified ligase was incubated with ATP and 

apoBCCP in the absence and presence of biotin, and the resulting products were 

subjected to analysis by MALDI-TOF mass spectrometry. The spectra reveal that in 

the absence of added biotin, no biotinylated BCCP was detected for either Sa or Bs 

BirA. By contrast, the expected mass shift of 225 ±1 Da was observed in the control 

reaction to which biotin had been added (Figure 42, Table 10). Thus, neither the Sa or 

Bs BirA preparation used in the measurements reported in this work was contaminated 

with biotin or bio-5’-AMP.  
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Figure 42. Maldi-ToF spectra of biotinylation products: reactions containing 20 µM E. 

coli apo-BCCP, 500 µM ATP, and (A) 20 µM EcBirA, 40 µM biotin; (B) 20 µM 

SaBirA, 40 µM biotin; (C) 20 µM SaBirA; (D) 20 µM BsBirA, 40 µM biotin; (E) 20 

µM BsBirA; and (F) 40 µM biotin were incubated at 20 oC overnight for 16 h. The 

products were subjected to analysis using a SHIMADZU Axima-CFR MALDI-TOF 

instrument. 

Table 10. Maldi-ToF analysis of BCCP samples from biotinylation reactions 

BirA species 
Mass (daltons) 

− biotin + biotin 

SaBirA 9339 ± 1 9565 ± 1 

BsBirA 9343 ± 1 9567 ± 1 

-Enzyme 9348 ± 1  

MALDI mass spectrometry measurements showing mass-to-charge ratio of BCCP after 

the biotinylation assay in the presence or absence of biotin. 
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2. Dimerization measurements on SaBirA indicate coupling between small ligand 

binding and homodimerization 

 Coupling between small ligand binding and SaBirA homodimerization was 

investigated using sedimentation equilibrium measurements. For all species each 

measurement was carried out on protein solutions prepared at three concentrations that 

were subjected to centrifugation at three speeds. Moreover, the concentration versus 

radius profile data obtained for all species were of high quality (Figure 43A). 

 

Figure 43. Absorbance versus radius profiles from sedimentation equilibrium 

measurements carried out on (A) 13, 10, 7 µM holoSaBirA or (B) 12, 9, 6 µM 

holoBsBirA at 17k (red), 20k (green), and 23k (blue) rpm. Solid lines are best-fits to a 

monomer-dimer model obtained from global analysis of nine datasets. The lower 

panels provide the residuals of the fit. 

 Results of the measurements performed on apoSaBirA indicate that it 

undergoes no detectable dimerization in the conditions used for the measurements. 
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Analysis of data obtained at relatively low protein concentrations of approximately 10 

μM indicates that oligomerization state of apoSaBirA is well-described by a single 

species model, with an average molecular weight of 37±1 kDa, consistent with the 

monomer molecular weight predicted from the sequence. In an effort to obtain an 

estimate of the apoSaBirA dimerization constant, measurements were performed at 

protein concentrations up to 100 μM. Analysis of the resulting data indicates that, even 

at these high concentrations, apoSaBirA is best described as a single species with a 

molecular weight consistent with that expected of the monomer (Table 11, Figure 44). 

Attempts to analyze the data using a monomer-dimer model indicate an unrealistically 

large equilibrium dissociation constant (KD), and the fit to the model, as judged by the 

magnitude of the variance of the fit, is not as good as the fit to a single species model 

(Table 11). The data are consistent with a KD for apoSaBirA dimerization in the 

millimolar or higher concentration range, which yields a lower limit for the Gibbs free 

energy of apoSaBirA dimerization of -4.0 kcal/mol (Table 12). 

 Biotin and bio-5’-AMP binding significantly enhances SaBirA dimerization. 

For sedimentation equilibrium measurements performed on small ligand-protein 

complexes, protein solutions were prepared in Standard Buffer at 1.5 : 1 molar ratio of 

the appropriate ligand to protein. The data obtained for the biotin-bound protein are 

well-described by a monomer-dimer model as judged by both the distribution of the 

residuals and the variance of the fit (Table 11, Figure 44), and the analysis yields an 

equilibrium dissociation constant for dimerization of 150 ± 20 µM (Table 12). 

Sedimentation equilibrium measurements performed on holoSaBirA indicate even 
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tighter dimerization for this species. Again, the data are well described by the 

monomer-dimer model (Table 11, Figure 43A) and the analysis yields an equilibrium 

dissociation constant of 3 ± 1 µM. Based on the equilibrium constants, the calculated 

Gibbs free energies for dimerization of biotin-bound and bio-5’-AMP-bound proteins 

are -5.1 ± 0.1 kcal/mol and -7.6 ± 0.2 kcal/mol, respectively (Table 12). 

 

Table 11. Testing sedimentation equilibrium data for Sa and BsBirA against single 

species and monomer-dimer association models 

Protein Ligand 
BirA loading 
concentration 
range (μM) 

Single Species Monomer-
Dimer 

Weight average 
MW (kDa) Variancec Variancec 

SaBirAa 

- 100, 90, 80 37 ± 1 0.0057 0.0060 

biotin 80, 70, 60 54 ± 2 0.0073 0.0070 

bio-5’-AMP 12, 9, 6 70 ± 2 0.0072 0.0060 

SaBirAb 
- 17, 14, 11 37 ± 2 0.0042 0.0042 

bio-5’-AMP 12, 9, 6 60 ± 2 0.0062 0.0058 

BsBirAa 

- 13, 10, 7 43 ± 1 0.0059 0.0057 

biotin 13, 10, 7 43 ± 1 0.0046 0.0043 

bio-5’-AMP 13, 10, 7 68 ± 2 0.0058 0.0054 

Measurements were carried out in aStandard Buffer (10 mM Tris-HCl, 200 mM KCl, 

2.5 mM MgCl2, pH = 7.50±0.02 at 20 °C) or b 20 mM Tris, 150 mM NaCl, pH = 8.0 at 

20 °C at three different rotor speeds. cSquare root of the variance of the fit. 
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Table 12. Thermodynamic parameters governing Sa and BsBirA dimerization 

Protein Ligand 
BirA loading 
concentration 
range (μM) 

KD
c (μM) ΔGo d 

(kcal/mol) 

Maximum 
fraction dimere

 

(%) 

SaBirAa 

- 100-5 N/A N/A N/A 

biotin 100-40 150 ± 20 -5.1 ± 0.1 38 

bio-5’-AMP 19-5 3 ± 1 -7.6 ± 0.2 64 

SaBirAb 
- 17-4 N/A N/A N/A 

bio-5’-AMP 12-6 9 ± 3 -6.8 ± 0.2 49 

BsBirAa 

- 25-7 300 ± 200 -4.7 ± 0.3 7 

biotin 25-7 300 ± 100 -4.8 ± 0.2 7 

bio-5’-AMP 20-7 4 ± 1 -7.4 ± 0.2 56 

Measurements were carried out in aStandard Buffer (10 mM Tris-HCl, 200 mM KCl, 

2.5 mM MgCl2, pH=7.50±0.02 at 20 oC) or b20 mM Tris, 150 mM NaCl, pH = 8.0 at 

20 °C at three different rotor speeds. cThe reported equilibrium dissociation constants 

and Gibbs free energies for dimerization are the mean and standard deviation of at least 

three independent measurements. dGibbs free energies were calculated using equation. 

ΔG = RTlnKD. eThe fraction dimer at the highest protein concentration in the 

concentration versus radius profile. 
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Figure 44. Sedimentation equilibrium absorbance versus radius profiles for Sa and 

BsBirA. Centrifugation was performed at 17k (red), 20k (green) and 23k (blue) rpm 

using (A) 100, 90, 80 μM apoSaBirA, (B) 80, 70 60 μM biotin-bound SaBirA, (C) 17, 

14, 11 μM apoSaBirA, (D) 12, 9, 6 μM holoSaBirA, (E) 13, 10, 7 μM apoBsBirA, and 

(F) 13, 10, 7 μM biotin-bound BsBirA. Solid lines are best-fits obtained from global 

analysis of 9 datasets to the model indicated for each panel, with lower panels providing 

residuals of the fit. Measurements were carried out in Standard Buffer containing 10 

mM Tris, 200 mM KCl, 2.5 mM MgCl2, pH = 7.5 at 20 oC (A, B, E, F) or in 20 mM 

Tris, 150 mM NaCl, pH 8.0 at 20 °C (C and D). 
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3. Dimerization properties of SaBirA are independent of buffer composition 

 Published measurements of SaBirA dimerization yielded results that differ 

significantly from those reported in the previous section.179 However, these 

measurements were carried out in buffer conditions that differ from those used in the 

current studies. The differences include the use of NaCl versus KCl as the monovalent 

salt at 150 mM compared to 200 mM in the current study and a 0.5 unit higher pH. To 

determine if the discrepancy in measured dimerization properties is due to the buffer 

conditions, sedimentation equilibrium analysis of SaBirA was repeated in a buffer 

identical to that used in the previous studies. Measurements performed on apoSaBirA 

indicate that the protein is monomeric (Table 11, Figure 44C). By contrast, data 

obtained with the bio-5’-AMP bound protein are well-described by a monomer-dimer 

model. The equilibrium dimerization constant of 9 ± 3 µM obtained from the 

measurements is similar in magnitude to that obtained in Standard Buffer (Table 11, 

Figure 44D). 

4. Small ligand effects on BsBirA dimerization mirror those observed for EcBirA 

 Results of in vivo measurements of the biotin concentration-dependence of 

transcription repression suggest that BsBirA and EcBirA share the same regulatory 

mechanism.177 To determine the relationship of these in vivo results to the BsBirA self-

association properties, sedimentation equilibrium measurements were carried out on 

apo, biotin-bound, and holoBsBirA. Due to the limited solubility of BsBirA in Standard 

Buffer, relatively low protein concentrations ranging from 7 to 25 µM were used for 
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all measurements. Nevertheless, the data obtained for all samples were of high quality 

(Figure 43B). 

 Sedimentation equilibrium data obtained for apoBsBirA indicate that it 

dimerizes with a modest Gibbs free energy. The variances of the fits indicate that a 

monomer-dimer model provides a better description of the data than does a single 

species model (Table 11, Figure 44E). Moreover, the average molecular weight 

obtained from the single species fit of 43 ± 1 kDa is greater than that expected of the 

monomer (Table 11, Figure 44F). The equilibrium dissociation constant obtained from 

the data analysis is 300 ± 100 µM. The biotin-bound BsBirA also dimerizes weakly 

with a constant identical to that of apoBsBirA. Thus, consistent with observations made 

on EcBirA, biotin has no effect on BsBirA dimerization.183 In contrast, addition of bio-

5’-AMP to BsBirA greatly enhances dimerization, yielding an equilibrium dissociation 

constant of 4 ± 1 µM (Table 11, Figure 43B) 

5. Coupling between Sa and Bs BirA dimerization and ligand binding 

 The results of sedimentation equilibrium measurements on the Sa and Bs BirA 

species can be used to calculate the coupling free energy between small ligand binding 

and dimerization for the two proteins. This coupling free energy, ∆Go
c, is defined as 

the difference between the Gibbs free energies for dimerization of the ligand-bound 

and ligand-free proteins (Figure 45A). The value for coupling between biotin binding 

and dimerization for SaBirA is estimated to be at least -1.1 kcal/mole, based on the 

lower limit for the Gibbs free energy of apoSaBirA dimerization of -4.0 kcal/mol. By 

contrast, consistent with EcBirA, no coupling is observed between biotin binding to 
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BsBirA and its dimerization. Both Sa and Bs BirA dimerization are significantly 

enhanced upon bio-5’-AMP binding. Again, using the lower limit estimate for the 

Gibbs free energy of apoSaBirA dimerization of -4.0 kcal/mol, the estimated coupling 

free energy associated with bio-5’-AMP binding is at least -3.6 kcal/mol. The 

calculated value for BsBirA is -2.7 ± 0.3 kcal/mol (Figure 45B). 

 

Figure 45. Coupling between small ligand binding and dimerization. (A) 

Thermodynamic cycle demonstrating coupling between bio-5’-AMP (blue) binding 

and homodimerization of BirA (red). The coupling free energy, ΔGo
c,dim, is the 

difference between Gibbs free energies of holoBirA, ΔGo
dim,holo, and apoBirA, 

ΔGo
dim,apo, dimerization. (B) Coupling free energies between biotin (red) and bio-5’-

AMP (blue) binding for Bs, Sa, and EcBirA. *Previously published data.166 
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D. Discussion 

 Both Sa and Bs BirA exhibit large thermodynamic coupling between bio-5’-

AMP binding and dimerization. Sedimentation equilibrium analyses were performed 

on the apo, biotin-bound, and bio-5'-AMP-bound species of the two proteins. All 

measurements were performed on protein preparations that were free of biotin or bio-

5’-AMP contamination, and excellent agreement was observed from the results of 

nonlinear least squares analysis of all data. In the absence of ligand, no apoSaBirA 

dimerization was detected, which allows an estimate of a lower limit of 1 mM for the 

equilibrium dissociation constant governing dimerization of this species. By contrast, 

SaBirA dimerization is enhanced upon the addition of either biotin or bio-5’-AMP, 

yielding estimates of the upper limits for the coupling free energies associated with the 

two ligands of -1.1 and -3.6 kcal/mol, respectively. Dimerization free energies of the 

apo and biotin-bound species of BsBirA, both of which can be accurately measured, 

are identical. However, addition of bio-5’-AMP leads to a significant enhancement of 

dimerization, which results in a coupling free energy of -2.7 ± 0.2 kcal/mol. Thus, as 

previously demonstrated for EcBirA, dimerization of both Sa and Bs BirA is 

significantly enhanced concomitantly with bio-5'-AMP binding. 

 The dimerization properties obtained for SaBirA in this work differ 

significantly from those previously reported. The current work indicates no detectable 

dimerization for apoSaBirA and a KD of 150 ± 20 µM for the biotin-bound species. By 

contrast, in the previous study the authors reported KD values for apo and biotin-bound 

SaBirA dimerization of 29 ± 2 µM and 30 ± 2 µM, respectively.179 The buffer 
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conditions used for these previous studies differ from those used for the current 

measurement. However, sedimentation equilibrium measurements of apoSaBirA self-

association performed in this work in that same buffer also indicate no detectable 

dimerization. Moreover, consistent with the results summarized above, measurement 

of holoSaBirA dimerization in that buffer indicates large coupling between bio-5'-AMP 

binding and dimerization (Table 12). No measurements of holoSaBirA dimerization 

were included in the previous study. A possible source of the discrepancy in the results 

is that SaBirA preparations used in previous measurements contained residual biotin or 

bio-5'-AMP contamination. However, as part of the purification protocol, the authors 

exposed SaBirA protein to biotin acceptor protein to remove such contamination. 

Moreover, based on the results of solid phase and immuno-blotting methods, the 

authors of the previous study concluded that the SaBirA preparations used in their 

studies were free of small ligand contamination.179 In this work a more direct mass 

spectrometry-based method of measuring the shift in the mass of apoBCCP to that of 

holoBCCP also indicates no residual contamination of either the Sa or Bs BirA 

preparation with biotin or bio-5'-AMP. Moreover, the large coupling between bio-5'-

AMP binding and SaBirA dimerization observed in the current measurements is 

consistent with both the in vivo biotin concentration-dependence of transcription 

repression and the recently reported effects of small ligands on sequence-specific DNA 

binding to the Sa biotin operator sequence.178 

 The large coupling free energies between bio-5'-AMP binding and dimerization 

measured for Ec, Bs and Sa BirA support a conserved molecular mechanism of 
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allosteric regulation for bifunctional biotin protein ligases/biotin repressors. The 

bifunctional ligases are widely distributed in eubacteria and archaea.150 The EcBirA 

transcription repression function is regulated by combined demand for and supply of 

biotin.160, 236 In conditions of high biotin demand the bio-5'-AMP-BirA complex is 

rapidly consumed in biotin transfer to the BCCP subunit of acetyl-CoA carboxylase.161, 

162 A decrease in biotin demand, which accompanies a decreased growth rate, allows 

accumulation of both biotin and the holoBirA dimer, which can bind to the biotin 

operator to repress biotin biosynthetic operon transcription.163 Henke and Cronan have 

demonstrated in in vivo measurements that, like EcBirA, both Sa and Bs BirA show 

biotin-concentration dependent transcription repression at their respective regulatory 

sequences.177, 178 They have, moreover, shown that over-expression of the biotin 

acceptor proteins results in derepression of the transcription. Finally, they demonstrated 

that for each of these Class II biotin ligases, the overall affinity for the cognate operator 

site is dramatically increased in the presence of bio-5'-AMP. Results presented in this 

work indicate that, as previously reported for EcBirA, the enhanced repression complex 

assembly by Sa and BsBirA reflects bio-5'-AMP-promoted dimerization. 

 The sequences of the three-biotin repressor proteins suggest that conservation 

is not required to achieve similar allosteric function. Alignment of the three sequences 

reveals that relative to EcBirA Sa and BsBirA show 22% and 27% conservation, 

respectively (Figure 46). Despite this low sequence identity, the 3-dimensional 

structures of Ec and SaBirA are very similar (Figure 47A). In the EcBirA structure, 

loops on the dimerization and ligand binding surfaces are known to play critical roles 



 
 
 

146 
 

in bio-5'-AMP binding, dimerization, and coupling between the two processes.172, 174, 

247, 248 Moreover, the disorder-to-order transitions that these loops undergo concomitant 

with bio-5'-AMP binding are key to allosteric activation of EcBirA dimerization. 

Nevertheless, with the exception of the glycine-rich segment of the biotin binding loop 

that is required for biotin binding 189, the sequences of these loop regions in Sa, Bs, and 

Ec BirA show no conservation (Figure 47B). Thus, it appears that in the bifunctional 

biotin ligases, similar functional allostery can be achieved with high sequence 

divergence. 

 

Figure 46. Multiple sequence alignment of Ec, Bs, and SaBirA. Sequence alignment 

was performed using Clustal Omega,245 and the figure was generated in JalView249. 

Residues are colored in blue based on their percentage identities. 
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 Little is known about the relationship of sequence to allosteric function. 

However, protein disorder is now well-established as important for the 

thermodynamics of allostery,102 perhaps because it renders a protein segment poised to 

respond to an allosteric signal. In the disorder-to-order transition accompanying 

allosteric activation of EcBirA, hydrophobic side chains in the ligand binding surface 

loop condense around the bio-5’-AMP ligand to form a cluster (Figure 47A).250, 251  

Perturbation of this cluster through alanine substitution compromises both bio-5'-AMP 

binding and its coupling to dimerization.172, 248 A similar clustering of hydrophobic 

residues in the ligand binding loop around bio-5’-AMP is observed in SaBirA, albeit 

with a very different sequence (Figure 47B). On the EcBirA dimerization surface the 

disorder-to-order transition accompanying allosteric activation includes extension of 

an α-helix, and packing of the two neighboring loops. Although the sequences of the 

analogous loop segments diverge completely from those of EcBirA, the same helical 

extension and interloop packing are observed in comparison of the structures of apo 

and holoSaBirA (Figure 47A). Thus, in Ec and SaBirA the detailed structural features 

of allosteric activation are conserved in the absence of sequence conservation. 
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(Please see figure legend on the next page) 
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Figure 47. Sequence and structural comparison of Ec, Bs, and SaBirA. (A) Disorder-

to-order transitions in SaBirA (top) and EcBirA (bottom) upon bio-5’-AMP (black) 

binding. The models were generated in Pymol22 using PDB files 3V8J: apoSaBirA,252 

3V8L: holoSaBirA,252 1BIA: apoEcBirA,153 and 2EWN: holoEcBirA.154 Color coding 

for surface loops: SaBirA, 143–149, red; 196–202, green; 119–129, orange; 214–228, 

cyan; EcBirA, red, 140–146; green, 193–199; 116–124, orange; 211–222, cyan. Color 

coding for hydrophobic clusters: SaBirA, L216-pink, F219-yellow, I223- brown, 

A227-green; EcBirA, P126-pink, F124-orange, M211-cyan, V214-yellow, V218-

brown, V219-green, W223-white. (B) Sequence alignment of Ec, Bs, and SaBirA 

surface loops on the ligand binding and dimerization surfaces. The output of the 

alignment obtained in Clustal Omega245 was used to generate the figure in JalView.249 

Residues are colored based on the percentage identity with numbering from the EcBirA 

sequence. 
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Chapter 5: Summary and future work 

 The focus of this research is to understand the molecular mechanisms of 

allostery in biotin protein ligases (BirA). E. coli BirA is an allosterically regulated 

transcription repressor in which binding of the effector molecule, bio-5’-AMP, 

enhances homodimerization that involves a surface 30Å away from the ligand binding 

site. Previous studies indicated that disorder-to-order transitions on two distant 

functional surfaces play important roles in allostery.153, 154, 171-174 In this dissertation, 

double-mutant cycle analysis was used to test reciprocal coupling between the two 

surfaces, and molecular dynamics (MD) simulations revealed structural and dynamic 

bases of this coupling. The molecular mechanisms of allosteric communication 

between disorder-to-order transitions were investigated using combined structural, 

functional, and computational approaches. In addition, allosteric regulation in 

Staphylococcus aureus and Bacillus subtilis BirA were also studied by functional 

measurements. 

 Results of double-mutant cycle analysis indicated reciprocal communication 

between the ligand binding and dimerization surfaces. The thermodynamic cycle of 

BirA allostery predicts reciprocal communication between disorder-to-order transitions 

on two functional surfaces, but previous studies using single alanine variants only 

demonstrated unidirectional communication from one surface to another.171-174 In this 

work, double-mutant cycle analysis was employed to test the reciprocity.205 Results of 

functional measurements showed that for all three residue pairs tested, perturbations to 

either bio-5’-AMP binding or dimerization by double alanine substitutions, one at each 
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surface, are smaller compared to the sum of energetic effects of two parent single 

alanine substitutions. The inequality between these two terms indicates that the two 

residues on separate functional surfaces are functionally coupled in either effector 

binding or dimerization, thereby supporting reciprocal communication across the 

protein. 

 MD simulations indicated that energetic coupling between distant surfaces 

occurs through modulation of disorder-to-order transitions. To investigate the 

molecular mechanism of allosteric communication in BirA, we worked in collaboration 

with Dr. Matysiak’s group who performed simulation on wild type holoBirA and 

variants. Analyses of simulations data revealed that single alanine substitutions P143A 

and M211A, which weaken bio-5’-AMP binding and/or dimerization,172, 173 alter 

structure and dynamics of surface loops that undergo disorder-to-order transitions. In 

addition, combining P143A and M211A substitutions reverts the structural and 

dynamic perturbations of the adenylate binding loop on the ligand binding surface, 

which is consistent to the positive coupling in bio-5’-AMP binding between the two 

residues. The combined results showed that alanine substitutions alter BirA allostery 

through their effects on disorder-to-order transitions. 

 Further investigation using integrated structural and computational approaches 

identified a residue network that may participate in allostery. Comparison of apo and 

holoBirA crystal structures revealed formation of an electrostatic network that is 

coupled to bio-5’-AMP binding.176 This network is proposed to function in allostery as 

several residues in the network play an important role in effector-linked dimerization, 
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and in simulations perturbations to BirA allostery are correlated with rearrangement of 

the network.173, 176 In this dissertation, results of simulation-based network analysis, 

which were calculated by Christopher Look and Riya Samanta in Dr. Matysiak’s lab, 

identified a distributed residue network which includes the majority of residues in the 

structurally derived network. In addition, several residues in the newly identified 

network have been shown to function in either BirA allostery or BirA-mediated 

transcription repression.171, 172 These discoveries suggest that the allosteric network in 

BirA is more extensive than previously anticipated. 

  The presence of this residue network in solution was tested by proton linkage 

analysis.228 As the network involves a number of charged residues, network formation 

is predicted to alter the protonation state of these residues, which is reflected by proton 

release/uptake upon effector binding. Consistent with network formation in solution, 

proton linkage analysis showed that effector binding to wild type BirA is associated 

with proton release from the protein. Moreover, substitutions of network residues K172 

and Y178, which are predicted to contribute to the network, alter the effector-linked 

protonation change. Therefore, these results support the hypothesis that effector 

binding is coupled to network formation in solution.  

 Results of functional measurements indicated that the network is critical for 

both input (bio-5’-AMP binding) and output (holoBirA dimerization) of BirA allostery. 

The role of this network in allostery was investigated by measuring the functional 

effects of residue substitutions at network positions. Results of ITC measurements 

demonstrated that these substitutions alter the free energy, enthalpy, or entropy of bio-
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5’-AMP binding. Analyses of sedimentation equilibrium data showed that all 

substitutions perturb the dimerization free energy by at least 2 kcal/mol. These results 

indicate that network residues have significant contributions to BirA allostery. 

 The relationship between the residue network and disorder-to-order transitions 

was investigated by Force Distribution Analysis, which was carried out by Riya 

Samanta in Dr. Matysiak’s group. Results of simulations demonstrated that alanine 

substitutions P143A and M211A, which perturb both allostery and disorder-to-order 

transitions,170 lead to the redistribution of punctual stress. Notably, large punctual stress 

changes upon substitutions are mostly located in the network or loops undergo 

disorder-to-order transitions. In addition, consistent with functional coupling between 

residues P143 and M211, P143A substitution lowers the punctual stress changes of 

network residues induced by the M211A substitution. Overall, results of force 

distribution analysis indicated a linkage between disorder-to-order transitions and the 

residue network. 

 Finally, studies on Bacillus subtilis and Staphylococcus aureus biotin protein 

ligases (Bs and SaBirA) indicated that allosteric regulation in these proteins is similar 

to that observed in E. coli BirA (EcBirA). Previous in vivo measurements showed that 

Bs and SaBirA repress transcription in a biotin-dependent manner,177-179 suggesting that 

the two organisms share the same biotin regulatory system as that in E. coli. In this 

work, results of sedimentation equilibrium measurements showed that effector binding 

to both Bs and SaBirA also enhances homodimerization, and the magnitudes of 

enhancement are similar to the -4 kcal/mol coupling free energy measured for EcBirA. 
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The energetic coupling observed in Bs and SaBirA supports a conserved allosteric 

regulation mechanism for bifunctional biotin protein ligases. Interestingly, despite the 

low sequence conservation among the three proteins, especially at disordered surface 

loops, Ec and SaBirA have similar 3D structures and disorder-to-order transitions,252 

indicating that similar function can be achieved even with divergent sequences. 

From all these results, we proposed a model for allosteric regulation in E. coli BirA, in 

which effector binding communicates to the dimerization surface through disorder-to-

order transitions and a coupled residue network. We further hypothesize that this 

network, which is formed upon effector binding, functions in allostery by enabling 

communication between functional surfaces and the core of the protein. In addition, the 

conserved biotin regulatory systems in Bs and SaBirA, as well as the structural 

similarity between Sa and EcBirA, suggest that allosteric communication in Bs and 

SaBirA may also occur through a similar mechanism. 

 Studies in this work greatly enhanced our understanding of allosteric regulation 

in EcBirA. Nevertheless, future efforts are still required to fully elucidate the 

mechanisms of long-range communication between functional surfaces.  

 First, the mechanism of functional coupling in dimerization is still unknown. 

Combined functional and computational analyses revealed that coupling in bio-5’-

AMP binding, such as that observed between residues P143 and M211, occurs by 

modulating the conformation of the adenylate binding loop. However, how residues 

G281 and M211, one on each functional surface, are coupled in dimerization is yet to 

be determined. MD simulations on holoBirA variants P143A and P143A/M211A 
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showed that compromised holoBirA dimerization is correlated with loss of helical 

extension and loop dynamics on the dimerization surface. Therefore, it is possible that 

coupling in dimerization also occurs by altering disorder-to-order transitions on the 

dimerization surface. MD simulations on BirA single alanine variants G281A, M211A, 

and double variant G281A/M211A may elucidate the mechanism of energetic coupling 

in dimerization. 

 Second, as indicated by punctual stress analysis, the residue network identified 

in this work is linked to disorder-to-order transitions on both functional surfaces. Their 

linkage on the ligand binding surface is supported by crystal structures and MD 

simulations, which showed that residues on the ligand binding surface directly 

participate in the network. However, the connection between disorder-to-order 

transitions on the dimerization surface and the network, which are separated by at least 

15Å, is unclear. As effector binding does not elicit any structural change in the region 

between the dimerization surface and the network, it is likely that allosteric signal is 

propagated via dynamic changes. Analysis of dynamic information in MD simulations 

may reveal the communication mechanism to the dimerization surface, and NMR 

spectroscopy can be used to test the hypothesis generated by computation. 

Third, additional tests are required to obtain a more comprehensive 

understanding of long-range communication between distant sites. In this dissertation, 

analyses using combined biophysical approaches revealed coupling between distant 

disorder-to-order transitions and their connection through a residue network. However, 

amino acid substitutions at positions other than these regions also affect BirA allostery. 



 
 
 

157 
 

For example, V171A and G154D substitutions in the core of the protein significantly 

enhance holoBirA dimerization (Figure 1),173, 176 while residues in the C-terminal 

domain, such as G281, I280, and M310, also participate in allostery.173, 176 It should be 

noted that although the loop comprised of residues 280-283 are located on the 

dimerization surface, it does not undergo the disorder-to-order transition upon effector 

binding. These observations suggest the presence of additional communication 

mechanisms that may be independent of the network identified in this work. It is also 

possible that allosteric regulation in BirA is associated with motions of the entire 

protein rather than specific networks.  

 NMR spectroscopy can be helpful in addressing this question, as it is sensitive 

to structural and dynamic changes upon perturbations, such as effector binding and 

residue substitutions. Comparison of apo and holoBirA spectra can identify residues 

that may participate in allostery, and spectra of BirA variants, which have perturbed 

allostery, can reveal correlated motions that are important in allostery. 

Fourth, structural analysis indicated that SaBirA, like EcBirA, also undergo effector-

induced disorder-to-order transitions on both functional surfaces.252 Therefore, SaBirA 

allostery may also be modulated by altering folding and dynamics of disorder-to-order 

transitions on two functional surfaces. This hypothesis can be tested by substituting 

disordered loop residues in SaBirA to alanine and measure their functional effects on 

bio-5’-AMP binding and dimerization. The network analysis described in this work 

may reveal if SaBirA utilizes a similar residue network to communicate distant 

disorder-to-order transitions. 
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 Finally, given the broad distribution of biotin protein ligases in bacteria and 

archaea,150 it is interesting to know how the allosteric function in Class II (bifunctional) 

ligases evolved without compromising their ability to catalyze biotin transfer. Studies 

on E. coli BirA revealed that the allosteric network in E. coli BirA includes several 

highly conserved residues important for biotinylation, such as K172, D176, and K183, 

and alanine substitutions of these residues lead to compromised biotin transfer.173 By 

contrast, most other residues in the network (unpublished results) and loops that 

undergo disorder-to-order transitions do not contribute to the catalytic function.173 This 

overlap between catalytic and allosteric residues suggests that allosteric regulation in 

Class II ligases may have evolved based on the catalytic function. As these residues are 

highly conserved among Class I and II biotin protein ligases, we further hypothesize 

that Class I ligases also possess residue networks that are a subset of that in Class II 

proteins. Network analysis will be performed on a Class I biotin protein ligase to 

identify the network in Class I proteins. Bioinformatic approaches, such as mutual 

information253 and statistical coupling analyses254, will be carried out to investigate the 

evolutionary relationship of residue networks between two classes of biotin protein 

ligases.  

 Allosteric regulation in BirA involves coupled disorder-to-order transitions on 

distant functional surfaces. Thermodynamic studies have established that disorder is 

beneficial for allosteric coupling,102, 103 but the molecular mechanism of how disorder 

contributes to allostery has not been fully understood. Moreover, few studies focus on 

long-range communication between disordered regions and functional sites. For 
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example, the disorder-to-order transition of the active site loop in glucokinase is 

important for its kinetic cooperativity, and distant substitutions regulate glucokinase 

activity by altering the loop mobility. However, the mechanism of this long-range 

communication is still under investigation.85, 104, 255 In tetracycline repressor (TetR), 

effector binding induces de-repression by promoting ordering of the DNA binding 

domain,44 but the mechanism of allosteric communication between distant functional 

sites is also unknown. In this work, results of combined biophysical approaches 

demonstrated that BirA allostery can be modulated by altering the structure and 

dynamics of disordered surface loops, and long-distance communication between 

disorder-to-order transitions on distant functional surfaces can occur through formation 

of a coupled residue network. It is possible that in other allosteric proteins that involves 

effector-induced disorder-to-order transitions, folding of surface loops may be 

associated with network formation which enables long-range communication between 

distinct functional sites. In addition, studies in this dissertation support the critical role 

of residue networks in allosteric communication which has been reported in a number 

of allosteric systems.87, 89, 127, 128, 256, 257 Finally, our work highlights the advantage of 

integrating computational tools and “wet-lab” experiments to deciphering allosteric 

mechanisms, and demonstrated how predictions made from computational analyses can 

be used to design subsequent experiments. 
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