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Abstract— A distributed control approach is proposed for
self-organization of autonomous swarms. The swarm is mod-
eled as a Markov random field (MRF) on a graph where
the (mobile) nodes and their communication/sensing links
constitute the vertices and the edges of the graph, respectively.
The movement of nodes is governed by the Gibbs sampler.
The Gibbs potentials, local in nature, are designed to reflect
collective goals such as gathering, dispersion, and linear
formation. The algorithm can be run completely in parallel,
and hence it is robust and scalable. Simulation results are
provided to illustrate the proposed method.

I. INTRODUCTION

This paper deals with the self-organization of large
networks of mobile nodes, including but not limited to
mobile sensor networks, robotic swarms conducting wide-
area search, and flocks of unmanned aerial vehicles (UAVs)
performing reconnaissance. Given an initial configuration of
nodes, one wishes to find a distributed maneuver strategy
under which the nodes evolve into a new, desired config-
uration. One such example is in mobile sensor networks
deployed by UAVs, where the initial locations of sensors
are random and they need to move autonomously into some
configuration suitable for the mission. Another example is
mission switching, where the nodes need to reconfigure for
performing a new task. The large number of nodes and the
limited power for communication and signal processing as
well as bandwidth limitations, prohibit centralized coordina-
tion in such networks and necessitate a distributed, scalable
approach.

Inspired by the emergent behaviors demonstrated by
swarms of bacteria, insects, and animals, control methods
that yield desired collective behaviors based on simple local
interactions have received great interest [1], [2], [3], [4],
[5], [6], [7]. Potential functions [8], [9] have often been
involved in these methods, where the motion of nodes is
determined by the gradient flow. An essential problem with
such approaches, however, is that the system dynamics may
get trapped at local minima of the potential function.

A stochastic approach to the control of large-scale
swarms is proposed in this paper based on the theory of
Markov random fields (MRFs). An MRF is a mathematical
generalization of the notion of a one-dimensional temporal
Markov chain to a two (or higher) dimensional spatial lattice
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or graph, and it has been used extensively in statistical
mechanics and quantum mechanics of interacting particles,
as well as with great success in developing image processing
algorithms, see [10], [11], [12] and the references therein.
In this paper a swarm of mobile nodes is modeled as an
MRF on a graph where the nodes and their communica-
tion/sensing links constitute the vertices and the edges of
the graph, respectively. Global objectives, such as gathering
at one place for intensive search, dispersion for maximum
area coverage, or forming linear formations for blanket-
scan, are reflected through the design of Gibbs potentials.
The movement of each node is then governed by simulated
annealing based on the Gibbs sampler. Since the Gibbs
potentials consist of locally coupling terms, the computation
requires only information about the neighboring nodes on
the graph. Sequential sampling, where the nodes take turns
to update their locations, is first described. Extension to
parallel sampling, where each node computes its next move
simultaneously, will also be discussed.

Comparing with the deterministic approaches, the ap-
proach based on the Gibbs sampling can yield desired
configurations corresponding to global minima of the po-
tential function, with only local interactions. The resulting
distributed control law is robust. The computational load
for each node does not increase as the number of nodes
increases, hence it is particularly suitable for control of large
scale mobile networks.

The paper is organized as follows. In Section II some
background on MRFs and the Gibbs sampler is briefly
reviewed. The algorithms for self-organization of swarms
are presented in Section III. Simulation results for three ex-
ample tasks are reported in Section IV. Section V concludes
the paper.

II. MARKOV RANDOM FIELDS AND THE GIBBS

SAMPLER

Let S be a finite set of cardinality σ, with elements
denoted by s and called sites, and let Λ be a finite set
called the the phase space. A random field on S with phases
in Λ is a collection X = {Xs}s∈S of random variables
Xs with values in Λ. A configuration of the system is
x = {xs, s ∈ S} where xs ∈ Λ, ∀s. The product space
Λσ is called the configuration space.

A neighborhood system on S is a family N = {Ns}s∈S,
where Ns ⊂ S, and ∀s ∈ S, 1) s /∈ Ns, 2) r ∈ Ns if and
only if s ∈ Nr. Ns is called the neighborhood of site s.
The random field X is called a Markov random field (MRF)



with respect to the neighborhood system N if, ∀s ∈ S,

P (Xs = xs|Xr = xr, r �= s)
= P (Xs = xs|Xr = xr , r ∈ Ns),

i.e., the conditional probabilities associated with the joint
probability distribution of X are local in character and they
obey the spatial Markovian relationship.

A random field X is a Gibbs random field if and only if
its joint probability distribution is of the form:

P (X = x) =
e−

U(x)
T

Z
, ∀x ∈ Λσ,

where T is the temperature variable (widely used in sim-
ulated annealing algorithms), U(x) is the potential (or
energy) of the configuration x, and Z is the normalizing
constant, called the partition function: Z =

∑
x∈Λσ e−

U(x)
T .

One then considers the following very useful class of
potential functions

U(x) =
∑
s∈Λ

Φs(x),

which is a sum of individual contributions from potentials
Φs for each site. Furthermore one can incorporate the key
idea of local interactions by decomposing Φs(x) into a sum
of clique potentials Ψc(x):

Φs(x) =
∑
c∈Cs

Ψc(x),

where Cs is the collection of all cliques associated with site
s. Formally, a clique is either a single site, or a set of sites
in which every site is a neighbor of every other site.

The celebrated Hammersley-Clifford theorem establishes
that: a Gibbs random field defined by a Gibbs distribution
with the potential expressed in terms of clique potentials,
leads to an MRF with a consistent set of conditional
probabilities; and conversely, for any MRF with a consistent
set of conditional probabilities, there exists an equivalent
Gibbs distribution expressed in terms of local potentials on
cliques.

The Gibbs sampler is a sampling algorithm that results
in a Gibbs distribution Π as a limiting distribution of
a Markov chain. Pick an enumeration scheme for S =
{s1, · · · , sσ}, called a visiting scheme. The Gibbs sampler
(a basic version) works as follows:

• Step 1. Pick an initial configuration x ∈ Λσ;
• Step 2. Update the configuration by visiting each site

si, 1 ≤ i ≤ σ in turn. When visiting si, hold
fixed the values at sj , j �= i, and change xsi to
z ∈ Λ with probability P (z) defined through the local
characteristics:

P (z) =
Π(z|r ∈ Nsi)∑

z′∈Λ Π(z′|r ∈ Nsi)
.

• Step 3. Repeat Step 2.
Note that in the above procedure the evaluation of P (z)
is in general easy thanks to the local nature of potential

functions. Step 2 essentially defines the transition proba-
bilities for a random field-valued Markov chain X(n). One
sequential visit to all sites is called a sweep. It can be shown
[10] that as the number of sweeps tends to infinity, the
distribution of X(n) approaches the Gibbs distribution Π.

As the temperature T in the Gibbs distribution ap-
proaches 0, the Gibbs distribution converges to a uniform
distribution on the space of configurations achieving the
minimum of U(x). Simulated annealing using the Gibbs
sampler, with an appropriate cooling schedule, yields con-
figurations corresponding to the minimizer(s) of U(x) [10].
In particular, by designing U(x) so that its minimizer(s)
correspond to desired configurations, one can (ultimately)
achieve such configurations following successive site up-
dates based on local rules.

III. SELF-ORGANIZATION OF SWARMS

A. Sequential Sampling

For ease of discussion, assume that nodes move on a
two-dimensional plane (It will be clear from the description
below that the extension to three-dimensional space is
straightforward). Discretize the space into a lattice of square
cells, and label each cell with its coordinates (i, j), where
1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny for Nx, Ny > 0. At most
one mobile node is allowed to stay in each cell at any time
instant. Let the number of nodes be K and label them from
1 through K . Denote the location xk = (ik, jk) of node k
by the coordinates of the cell where node k stays.

Each node k has a communication/sensing range Rs and
a moving range Rm < Rs. Node k can detect (through
sensing or communication) the locations of other nodes that
lie within the circle with center xk and radius Rs. These
nodes are the neighbors of node k. The node can go at most
Rm within one move. In general Rs and Rm can be node-
dependent so that one can model a swarm consisting of
nodes with different sensing and moving capabilities. Each
node is also equipped with some computational capability
to perform the calculation to be described next.

A natural neighborhood system on {1, 2, · · · , K} is in-
duced by the aforementioned sensing constraint. This also
leads to a (dynamic) graph where each mobile node is a
vertex of the graph, and the neighborhood system prescribes
the edges between the nodes. One can now define an
MRF on this graph. Here each mobile node k represents
a site, and the associated (dynamic) phase space Λk is
the set of all locations not occupied by other nodes. Note
the difference from Section II, where the phase space is
invariant with respect to the site index and is static. An
admissible configuration in the current setting is one in
which each site takes a different location value.

The Gibbs potential U(x) =
∑

k Φk(x) is designed to
reflect the global objective, where x = {xk, 1 ≤ k ≤ K}
is the configuration of nodes. The local nature of U(x) is
guaranteed by further requiring that Φk(x) depends only on
xk and the values on its neighborhood Nk, i.e., Φk(x) =



Φk(y) whenever xk = yk, and xk′ = yk′ , ∀k′ ∈ Nk. Hence
one can also write Φk(x) as Φ̂k(xk, {xk′ : k′ ∈ Nk}).

Simulated annealing with the Gibbs sampler can then
be used for the evolution of the network. To be specific,
the locations of nodes are updated sequentially with the
following algorithm:

• Step 1. Pick a cooling schedule T (·) and the total
number N of sweeps. Let the sweep number n = 1;

• Step 2. Conduct a sweep of location updates for node
1 through node K sequentially, where node k, 1 ≤
k ≤ K , performs the following:

– Determine the set Lk of candidate locations for the
next move of node k:

Lk
�
= Λk∩{(i, j) :

√
(i − ik)2 + (j − jk)2 ≤ Rm};

– For each l ∈ Lk, evaluate

Φk(xl)
�
= Φ̂k(xk = l, {xk′ : k′ ∈ Nk}), and

P (xk = l) =
e−

Φk(xl)
T(n)

∑
l′∈Lk

e−
Φk(xl′ )

T(n)

.

Note that for the purpose of practical implementa-
tion, the current Nk has been used in the evaluation
of local potential for each candidate move l ∈ Lk;

– Update xk by letting xk = l with probability
P (xk = l), l ∈ Lk;

• Step 3. Let n = n + 1. If n = N , stop; otherwise go
to Step 2.

B. Parallel Sampling

The sequential sampling scheme has two difficulties in
implementation. First each node needs to know the total
number K of nodes and its index to keep track of the token.
This is challenging since K might be huge, and further
more K might be changing as new nodes join in or current
nodes fail. The second problem is that it takes a long time
to finish one sweep. Both problems can be solved using
parallel sampling.

The parallel scheme is identical to the sequential one
except that all the nodes compute their next moves at the
same time. This is possible, again due to the local nature
of the Gibbs potential. The only issue is that two or more
nodes may try to take the same spot for the next move.
To resolve such conflicts, another sampling is taken with a
uniform probability distribution on contending nodes. The
“winner” takes its desired spot, while the “losers” stay put
at their current locations.

IV. SIMULATION RESULTS

In this section examples of Gibbs potentials are presented
for three different missions together with the simulation
results.

A. Gathering

The first example is that the nodes are required to get
close to each other. This happens, for instance, when the
nodes need to perform intensive search in a small area.

The Gibbs potential function for this task is picked to be:
for k ∈ {1, · · · , K},

Φ̂k(xk, {xk′ : k′ ∈ Nk})

= λ1‖xk − z0‖ +

{
λ2∑

k′∈Nk

1
‖xk−x

k′ ‖
if Nk �= ∅

∆ if Nk = ∅
,(1)

where z0 is the reference location for gathering, and λ1 ≥ 0,
λ2 > 0 are scaling constants. The first term in (1) attracts
the nodes close to z0. The second term tends to cluster the
nodes; in particular, it is smaller when node k has more,
closer neighbors. ∆ > 0 is a relatively large constant and
it represents the penalty for having no neighbors.

Fig. 1 shows the self-organization of 200 nodes on a
50 × 50 grid, where the goal is to gather around the cell
(25,25). Sequential sampling is used with λ1 = 0.05, λ2 =
1.0, ∆ = 103, Rm = 2

√
2, Rs = 6

√
2, and a cooling

schedule T (n) = 1
4 log(400+n) . From the figure, the group

completes the task within 30 sweeps.
Fig. 2 shows how the group evolves when λ1 = 0. In

this case there is no fixed attraction point to pull the nodes
together. An interesting observation is that the nodes first
organize locally into several clusters; finally these clusters
merge into one big cluster. This demonstrates one of the
strengths of the algorithm: it can get out of the local
minimum of the potential function due to its stochastic
nature.

B. Dispersion

The second example of mission is dispersion, where the
nodes are desired to stay away from each other. This is
useful, e.g., when the nodes deployed initially in a small
area need to scatter around for wide area coverage. The
following potential function is chosen for this purpose:

Φ̂k(xk, {xk′ : k′ ∈ Nk})

=

{
λ

mink′∈Nk
‖xk−xk′‖ if Nk �= ∅

ε if Nk = ∅ , (2)

where λ is a scaling constant, and ε is a very small number
(having no neighbors is now encouraged).

Fig. 3 shows the simulation results of dispersing 200
nodes. The parameters used are λ = 0.6, ε = 10−8, Rs, Rm,
and the cooling schedule are as same as those in Fig. 1. One
can see that the nodes move and spread themselves over the
whole region. In Fig. 3(d), the minimum inter-node distance
is 2.

C. Formation in Lines

Formation of nodes is important for various applications.
For example, one usage of linear formations is blanket-
search of the whole area. Here how to form linear forma-
tions is explored. In particular, an example will be given



below for linear formations with specified orientations. With
a minor modification, the potential function can be used for
self-organization into lines without directional constraints.

Assume that the formation of lines parallel to the y−axis
is needed (other directional specifications can be accom-
modated similarly). For k ′ ∈ Nk, let dk,k′ be the distance
between node k and k ′, θk,k′ be the angle formed by the line
segment from node k ′ to node k with the x−axis, and mk

be the number of elements in Nk. The potential function
Φ̂k is then expressed as:

Φ̂k(xk, {x′
k : k′ ∈ Nk}) ={

λ
mk

∑
k′∈Nk

dk,k′
Rs

(1 − | sin(θk,k′ )|)2 if mk > 0
∆ if mk = 0

,(3)

where λ > 0 is a scaling constant, ∆ > 0 is a relatively
large number penalizing node k on having no neighbors.
The term

dk,k′
Rs

puts more weight on farther neighbors,
which encourages the formation of long lines.

Fig. 4 through Fig. 6 show the line forming processes
for different Rs, where sequential sampling is used. Other
parameters are: λ = 10, ∆ = 5, the cooling schedule
T (n) = 1

4log(400+n) . When Rs = 10
√

2, the nodes form

one single line (Fig. 4); when Rs = 6
√

2, two lines are
formed (Fig. 5); when Rs = 4

√
2, the nodes evolve into

three lines (Fig. 6). The explanation is that longer sensing
range enables more nodes to interact and collaborate. This
demonstrates that the sensing range Rs has strong impact
on the global behavior, at least in some missions. Note that
this dependence could be exploited to provide more freedom
in self-organization, e.g., missions as concrete as “to form
m lines” or “to have line-to-line distance q meters” may be
accomplished by adjusting the Rs parameter in sampling.

So far the simulation results reported are all obtained
using the sequential sampling. Fig. 7 shows the results of
line-forming based on the parallel sampling. It should be
noted that the parallel scheme delivers comparable results
as the sequential one. In particular, the numbers of lines
formed under the parallel scheme for different R s are
consistent with that in Fig. 4 through Fig. 6.

V. CONCLUSIONS AND DISCUSSIONS

A distributed control scheme has been proposed for self-
organization of large networks of mobile nodes, where the
key idea is simulated annealing based on the Gibbs sampler.
Desired global behaviors can be encoded into the Gibbs
potential function characterized by local interactions. For
illustrative purposes, three examples of potential function
design have been presented. Simulation results have shown
that local movement of the nodes based on local information
leads to emergent behaviors.

The proposed approach is scalable, which is crucial
for autonomous swarms. The computational requirement
for each node remains the same as the number of nodes
increases. Furthermore, the parallel sampling scheme al-
lows the computation to be carried out simultaneously at

each node, which makes the self-organization process very
efficient.

Another advantage is the robustness. Indeed from the
simulation results, what can be expected is the global behav-
ior of the nodes and not the configuration of any individual
node. This eliminates the dependence on any single node
and offers the robustness on aggregate performance through
redundancy of nodes.

This scheme can easily accommodate various constraints.
For instance, in the context of this paper the nodes can
avoid collision with each other automatically. Other con-
siderations, such as obstacle avoidance and threat evasion,
can either be included similarly or encoded in the Gibbs
potential function. Directional constraints or threats can also
be modeled appropriately. In addition to the sensing range,
the effect of sensing noise can be readily reflected through
the final annealing temperature Tf : the lower Tf , the smaller
the noise.

General theory of MRF provides conditions for con-
vergence to the global minimizers of the Gibbs potential.
Note, however, that the moving range constraint Rm poses
difficulty in directly applying classical analysis results. In
particular, due to this constraint, each node can only access
a small subset of its phase space during the location update,
and the sampling algorithm may not lead to the minimizing
configurations of the potential function. Fortunately, in
some cases, additional structures of the problems prove
useful toward establishing the convergence to the global
optimizer; and in some other cases, the configurations cor-
responding to local minima of the potential suffice for the
mission purpose. Classification of these cases and detailed
analysis of them are the subjects of future work.
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Fig. 1. Gathering around a specified location (sequential sampling). (a)
Initial configuration; (b) configuration after 30 sweeps.
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Fig. 2. Gathering without location specified (sequential sampling). Initial
configuration as in Fig. 1 (a). Configurations after (a) 20 sweeps; (b) 50
sweeps; (c) 230 sweeps; (d) 300 sweeps; (e) 490 sweeps; (f) 2000 sweeps.
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Fig. 3. Dispersion (sequential sampling). (a) Initial configuration; (b)
after 5 sweeps; (c) after 10 sweeps; (d) after 70 sweeps.
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Fig. 4. Forming lines parallel to the y− axis: Rs = 10
√

2 (sequential
sampling). (a) Initial configuration; (b) after 5 sweeps; (c) after 10 sweeps;
(d) after 70 sweeps.
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Fig. 5. Forming lines parallel to the y− axis: Rs = 6
√

2 (sequential
sampling). Initial configuration as in Fig. 4(a). (a) After 5 sweeps; (b) after
10 sweeps; (c) after 20 sweeps; (d) after 200 sweeps.
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Fig. 6. Forming lines parallel to the y− axis: Rs = 4
√

2 (sequential
sampling). Initial configuration as in Fig. 4(a). (a) After 5 sweeps; (b) after
10 sweeps; (c) after 20 sweeps; (d) after 350 sweeps.
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Fig. 7. Forming lines using parallel sampling. Initial configuration as in
Fig. 4(a). (a) Rs = 10

√
2, after 70 sweeps; (b) Rs = 6

√
2, after 200

sweeps; (c) Rs = 4
√

2, after 350 sweeps.


