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The Packet Reservation Multiple Access (PRMA) protocol and its variants

have been considered as possible access schemes for communication media for indoor

communications, terrestrial communications and satellite communications. Most re-

cently, PRMA (and its variants) has been considered for applications such as beyond

third generation and/or fourth generation communication systems, cooperative com-

munication, and multimedia communication in dynamic environments.

In this dissertation, equilibrium behavior of general voice and/or data systems

employing PRMA are studied along with means for control of this behavior. The

main objective is to determine conditions guaranteeing a unique equilibrium for

these systems, as multistability can result in an unacceptable user experience. Sys-

tems considered include voice systems, voice and data systems, and voice systems

with high propagation delay (these are studied both for an error-free channel and a

random error channel). Also, various control schemes are introduced and their ef-



fect on these system is analyzed at equilibrium. Control schemes considered include

a price based control, state estimation-based control, and control using multiple

transmission power and capture. For each type of control, the effect of the control

on the equilibrium structure of the system is studied, in the spirit of the methodol-

ogy of bifurcation control. In bifurcation control, the number and nature of steady

state solutions of a system are managed by appropriate design of system control

laws. Several sufficient conditions for uniqueness of operating points of the PRMA

systems under the studied control schemes is determined. Numerical analysis of

the equilibrium equations of the systems is provided to support the analytical stud-

ies. The equilibrium behavior of voice systems and voice-data systems employing

frame-based PRMA is also studied. Effects of price based control on these systems

is analyzed. Further, the price based control studied in conjunction with the PRMA

systems is extended to a finite buffer finite user slotted ALOHA system, and the

equilibrium behavior of the system is studied using a tagged user approach.

Among the contributions of the dissertation are analytical sufficient conditions

guaranteeing a unique equilibrium point for the various classes of systems studied,

control law designs that result in improved system capacity, and extensive numerical

studies including comparisons with two previously proposed approaches. Analysis is

also given proving the Markovian nature of the system’s stochastic dynamics (under

some basic assumptions) and the existence of a unique stationary probability law.
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Chapter 1

Background, Motivation, and Outline of Dissertation

This chapter serves to provide motivation for our research and necessary back-

ground information for the rest of this dissertation.

Packet Reservation Multiple Access (PRMA) was introduced in [1] as a com-

bination of slotted-ALOHA [2], [3], [4] and TDMA (Time Division Multiple Access

Protocol) [5]. However, PRMA protocol can also be viewed as a variation of reser-

vation ALOHA with added features of speech activity detection and packet drop

probability. It is assumed that a speech activity detector in the PRMA protocol can

divide activities of a voice terminal into ”on” or ”off” states. Further, the PRMA

protocol, in order to consider delay sensitivity of speech, can drop packets waiting

for transmission more that a predetermined threshold.

Also, it is noted that reservation ALOHA can be considered as an explicit

reservation protocol, meaning reservation packets are used for making reservation.

However, the PRMA protocol can be considered as an implicit reservation protocol

since no reservation channel is allocated. Also, as discussed later, in the PRMA

protocol, we assume that only speech terminals can make reservation (data terminals

cannot reserve time slots). In contrast, in the reservation ALOHA no difference

exists between speech and data terminals.

Since the PRMA protocol is based on ALOHA protocol, same nonlinear be-
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havior and instability of ALOHA type protocols is seen in the PRMA protocols. For

example, based on a given set of parameters, a stable PRMA protocol is designed.

The stable protocol has an acceptable throughput and delay. However, it has been

shown that if parameters of the system and/or protocol changes, the behavior of the

system can dramatically change. In one example, a stable system designed based on

the PRMA protocol can have a unique operating point with small delay and hight

throughput. However, minor changes in the parameters of the system can result in

multiple operating points, some with very high delay and low throughput.

Combination of contention algorithm for burst-type data, reservation algo-

rithm for periodic-type data, and use of speech activity detector, makes PRMA

based protocols attractive. The PRMA protocol was introduced and has been

widely considered and researched for providing speech and data communications

in a terrestrial microcell system. Different variations of the PRMA protocol have

been proposed and studied, which a set of these variations is summarized in this

chapter. Also, modified versions of the PRMA protocol have been the subject of

research, with the goal of application to low earth orbit mobile satellite systems

(LEO-MSSs). These modified versions (such as the PRMA with hindering states

(PRMA-HS)) have taken into account high round trip delays that exist in satel-

lite communication. More recently the PRMA protocol and/or modifications of the

protocol have been studied for, for example, cooperative packet speech communi-

cations [6], multimedia communication in environments with dynamic nature (such

as motorways and airports) [7], [8], and [9], and beyond third generation and/or

fourth generation of communication systems [10] and [11]. Utilizing speech activ-
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ity detector of the PRMA protocol and deploying a relay node in [6] introduces a

novel cooperative multiple access protocol for speech packets. Further, a centralized

Mini-slot PRMA protocol based on OFDMA/TDD (orthogonal frequency division

multiplexing / time division duplex) for access network architecture and media ac-

cess control technique for beyond 3G systems is introduced and studied in [10] based

on the system requirements.

Our goal in this dissertation is to address nonlinear behavior and instabilities

of the PRMA protocol. We will consider several variations of the PRMA protocol

(PRMA voice only, PRMA voice-data, PRMA-HS voice only, PRMA-HS voice-data,

Framed PRMA voice only, and Framed PRMA voice-data) and study bifurcations

that occur in their equilibrium state. Further, we consider several schemes to control

the bifurcations. These schemes will include price based control, control using mul-

tiple power level and capture effect, and state estimation-based control. Moreover,

we extend our analysis to PRMA protocols over random error channels.

Since ALOHA type systems are backbone of the PRMA protocols, in this

chapter we, first, review nonlinear instabilities and bistable behavior of ALOHA

type systems. Later, we review background information and modeling of PRMA and

Packet Reservation Multiple Access with Hindering States (PRMA-HS) protocols

and their stability issues.

3



1.1 Nonlinear Instability in Slotted-ALOHA and Reservation-ALOHA

Packet switching has found many applications in communications because of

its ability to handle traffic with a high ratio of peak-to-average. One application of

packet switching to radio channels is the packet radio. However, one important be-

havior of packet radio is its bistability, which means that the system can possess two

statistically stable equilibrium points, one in a desirable low-delay region, and the

other in an undesirable high-delay region. Since stability is statistical in nature, the

system oscillates between these two points. Unstable behavior of the synchronous

systems (S-ALOHA) was originally predicted by Rettberg [12] using a deterministic

model. Metacalfe [13] used a steady-state analysis to demonstrate existence of two

stable equilibriums. Kleinrock and Lam [14] also developed models to include effects

of system dynamics and control strategies. Carleial and Hellman [15] also developed

similar models independently to study bistable behavior of S-ALOHA systems.

S-ALOHA: Consider a finite or infinite number of terminals transmitting pack-

ets on a shared communication medium to an access point (such as a base station).

The channel is slotted and each slot is equal to transmission time of a packet. Packets

arrive at terminals randomly and terminals can send their packets at the beginning

of next time slot (in case of deferred first transmission). A transmission in a time

slot is successful if a single terminal attempts transmission during the time slot. If

a collision happens, terminals will go to a retransmission state and will retransmit

their packets in future time slots according to some permission probability. If a fi-

nite number of terminals (M) are sharing the communication medium, this channel
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can be viewed as a discrete-time Markov chain with M + 1 states, corresponding

to the number of terminals in retransmission mode. One-step transition probability

matrix can be written easily. The Markov chain can be shown to be irreducible,

aperiodic and positive-recurrent; therefore, stationary probability density function

exists. The system’s expected throughput at each state is calculated. Expected

drift is an interesting indicator of the system behavior, which shows how the system

tends to move in its random walk over the stat space. Depending on system pa-

rameters, a graph of expected drift may intersect a zero line at either one or three

points. In the case of one point, the system has only one equilibrium point and it is

stable because the expected drift’s graph changes from positive to negative at that

point. However, in the case of three points, the system has two stable fixed points

at the two ends and one unstable equilibrium point in between. Starting from state

zero, the system drifts toward the first stable equilibrium point. Note, however,

that the concept of stability is deployed in the statistical sense. Therefore, if the

system passes the second equilibrium point, which is unstable, it drifts toward the

second stable equilibrium point, which is in a region of states with a high number of

terminals in retransmission mode and high delay. Usually the system will not return

to the desirable stable equilibrium point. The same behavior is seen in stationary

probability density of the Markov chain. In the case of only one stable equilibrium

point, the probability density is unimodal, with a peak around the stable point.

However, when the system exhibits two stable equilibrium points, the probability

density function becomes bimodal with two peaks around the stable points.

Kleinrock and Lam [14] used a fluid approximation to study the stability be-
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havior of ALOHA protocol with an infinite population model. They calculated

expected channel throughput at each state using an equilibrium contour. They also

calculated a channel load line as channel input. The intersection of these two graphs

is the equilibrium point(s) of the system. As Kleinrock and Lam defined, a slotted

ALOHA channel is said to be stable if the equilibrium contour and its load line

intersect exactly at one point. Otherwise, the channel is unstable. A point on the

load line is said to be a stable equilibrium point if it acts as a “sink”. If it is the only

stable point, it is a globally stable equilibrium point. Otherwise, it is a locally sta-

ble equilibrium. Further, an equilibrium point is said to be an unstable equilibrium

point if fluid flow emanates from it and this is the same bistable behavior previously

observed using the fluid approximation by Kleinrock and Lam. Jenq [3] showed

that both the input-output packet flow balance principle (used by Kleinrock and

Lam) and the concept of expected drift (used by Carleial and Hellman [15]) used

for stability analysis of the slotted ALOHA system are mathematically equivalent.

Jenq also showed that the slotted ALOHA system can only have either one or three

equilibrium points.

R-ALOHA: A performance analysis of reservation ALOHA (R-ALOHA) was

first done by Lam [16]. In that work he did not address stability issues of R-

ALOHA. Later, Tasaka [17] studied stability and performance of the reservation

ALOHA packet broadcast system. He used an approximate method called equilib-

rium point analysis (EPA) to study a multidimensional Markov chain. R-ALOHA

is simple in principle and easy to implement like S-ALOHA, but it is more suitable

for multi-packet messages. It is assumed that each terminal handles one message at
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a time and the number of packets in one message is geometrically distributed. In

R-ALOHA, a channel is slotted and N time slots are grouped to a frame. In any

time slot a terminal with no message generates a message with probability σ, and

the number of packets in this message is distributed geometrically with average of

1/γ. A terminal with a message to transmit cannot generate new messages. Time

slots are either reserved or unreserved. The terminal will send its first packet im-

mediately on an available time slot. If the packet arrives successfully at an access

point, that time slot will be reserved for that terminal and the terminal will send the

rest of its packets without contention in that slot in future frames. A terminal can

only reserve one time slot in a frame. If a collision occurs, the terminal will attempt

re-transmission in other available time slots with some probability. The R-ALOHA

system can be modeled with a Markov chain. The Markov chain is irreducible,

aperiodic, and positive-recurrent and therefore, has a unique stationary probability

density function. However, because of the large number of states, it is difficult to

use the technique of Markov analysis. Therefore, an approximate method, EPA, is

used. Strictly speaking, an equilibrium point is defined as a point, which satisfies the

condition that the expected increase in the number of users in each state is zero at

that point. Tasaka showed that, like S-ALOHA, the R-ALOHA has either one stable

equilibrium point or two stable and one unstable equilibrium points depending on

system parameters. Tasaka also showed that the one equilibrium point correspond

to a unimodal stationary distribution and the three equilibrium points corresponds

to a bimodal stationary probability distribution. He also showed that error in the

approximate method EPA is due to the shape of the stationary distribution around
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its peaks.

Onozato and Noguchi [18] developed a new tool to study behavior of a multi-

access communication system. Based on a Markovian model introduced by Lam

and Carleial, Onozato and Noguchi introduced an approximate birth and death for

slotted ALOHA and gave a detailed analytical description of cusp catastrophe in

S-ALOHA. They also introduced a measure for the bistable behavior of S-ALOHA

as the ratio of the two peaks in the steady-state probability density function, and

they studied the changes in this measure as system parameters change.

In another work, Onozato, Liu, and Noguchi [19] studied effect of capture

on stability of slotted ALOHA systems. They assumed that terminals sharing the

slotted ALOHA channel are divided into two groups and there is no capture effect

among the terminals of the same group. Only when a collision between packets

of different groups occurs, capture effect may occur. They studied stability of the

system by modeling the capture effect in the concept of probability.

Recently Sakakibara et al. [20] and [21] studied how limiting the number

of retransmissions affects the stability of slotted ALOHA systems with no capture.

They showed that a slotted ALOHA system has a unimodal steady-state probability

distribution, for any values of system parameters, if the number of retransmissions

is limited to, at most, eight. They have also shown that increasing the number of

retransmission trials enlarges the bistable region.
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1.2 Packet Reservation Multiple Access (PRMA)

In this section, we present a brief review of the packet reservation multiple ac-

cess protocol. A two-way wireless communication with star topology is considered

in which terminals send their packets to an access point (such as a base station)

(uplink) using PRMA protocol as medium access control scheme. The access point

broadcasts a continuous stream of packets to the terminals (downlink). These pack-

ets contain feedback information, voice, and/or data packets. The uplink channel is

subject to collisions but the downlink is not.

As noted above, the evolution of the PRMA protocol from slotted ALOHA is

due to use of speech activity detector that can detect period of silence or talkspurt

for voice terminals. Therefore, the PRMA protocol provides reservation for voice

terminals that successfully transmit a packet. Further, in comparison to reservation

ALOHA protocol, the PRMA protocol considers delay sensitivity of speech packets

by dropping packets in the buffer of a voice terminal that have been waiting for

transmission for more than a predetermined threshold. The PRMA protocol was

mainly developed for voice terminals. However, it has been shown that the PRMA

protocol can effectively support different traffic such as voice, data, multimedia, etc.

The PRMA channel is divided into time slots of duration τ seconds. N consec-

utive slots are grouped to form a frame with duration T seconds. We assume that

Mv voice terminals and Md data terminals use the shared communication medium

based on the PRMA protocol [1], [22], [23], [24]. In this assumption, voice and data

terminals are separate terminals. However, a system with terminals having both
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voice and data capabilities can also be considered.

1.2.1 PRMA Voice Subsystem

A speech activity detector is used for voice terminals to detect when a speaker

is silent or talking. During a talkspurt, speech information gathered at a terminal in

Nτ seconds is assembled in one packet. Duration of a talkspurt is much larger than a

packet size. Therefore, first packet of the talkspurt is followed by new packets every

Nτ seconds. In other words, a speech terminal generates one voice packet every N

time slots. During the talkspurt, the voice terminal generates speech information

with the source rate Rs bits/s and the channel bit rate is Rc bits/s. The packet

header is H bits. Therefore, N , the number of slots in one frame is:

N = b RcT

RsT + H
c

Let t1 and t2 be mean duration of talkspurt and silent gap, respectively. Assume

that these mean durations are much larger that τ . Hence, σv, probability that a

silent gap is terminated in a time slot, and γ, probability of a talkspurt ending in a

time slot, are as follows [23], [24]:

σv = 1− exp(−T/Nt2),

γ = 1− exp(−T/Nt1).

In the PRMA protocol, it is assumed that all transitions happen at end of a

time slot. A speech terminal in its silence gap is in a silent (SIL) state. When

a talkspurt starts, the speech terminal transitions to contending state (CON). A
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terminal in CON state, if it has permission, contends for reservation by transmit-

ting a speech packet on an unreserved time slot. Permission is generated at each

contending terminal, with a fixed probability pv, and is independent for each ter-

minal. A transmission of a contending terminal is successful if: (1) the time slot is

unreserved, (2) speech terminal has permission to transmit, (3) no other contending

voice terminal has permission to transmit, and (4) no backlogged data terminal has

permission to transmit.

The access point (such as a base station) transmits result of the contention in

that time slot to all the terminals in a feedback message. A successful transmission

will grant the speech terminal a reservation of that time slot. The terminal will

transition to state RESN−1. In the same time slot in the next frame, the terminal

will send next speech packet with no contention (like TDMA). The probability that

a talkspurt ends in a particular frame is given by [23], [24]

γf = 1− (1− γ)N ≈ Nγ.

When the talkspurt ends, the terminal transitions back to the SIL state.

Since speech packets need prompt delivery, each packet can only tolerate a

maximum delay. Packets that wait more than this maximum permissible delay are

dropped. A contending voice terminal contends for reservation by transmitting first

packet of its speech message on available time slots, if it has permission. The voice

terminal will drop the first packet if it has not been able to successfully transmit the

packet before the permissible delay. Then, the terminal contends for reservation with

next packet in the message. The process continues until the terminal successfully
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transmits a packet. A main performance measurement of the PRMA protocol is

packet drop probability (Pdrop) defined as the average number of packets dropped

versus the average number of packets in a voice message. A packet drop probability

of less than one percent is acceptable for the PRMA protocol in order to cause a

minimal degradation in the speech quality. Therefore, one important parameter

that is evaluated is capacity of a PRMA carrier, defined as the maximum number

of user terminals that can share the channel with a packet drop probability of less

than one percent. Another important performance measure for the voice subsystem

in the PRMA protocol is throughput, defined as the average number of packets

successfully transmitted per slot [23], [24].

1.2.2 PRMA Data Subsystem

Modeling and characterizing data subsystem is more difficult than voice sub-

system because data traffic can vary from a short message (such as an e-mail) to

a large data message (such as transfer of large files). Because of this difficulty, in

this dissertation, we consider a simple data traffic model similar to models used in

previous studies of slotted ALOHA and PRMA.

We assume that data packet generation at each data terminal is Poisson with

a slot arrival rate of σd. Also for simplicity, we assume that each data terminal has

a buffer of one packet long. Although, results are easily extendable to buffers with

infinite capacity. A data terminal is called backlogged, BLK , if its buffer is not

empty. A backlogged data terminal transmits its packet on an unreserved time slot,
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if it has permission to transmit. Permission is generated according to a permission

probability pd which is the same for all data terminals and is generated independently

from other terminals. Because the speech packets need prompt delivery, permission

probability for speech terminals is assumed to be larger than that of data terminals,

pv ≥ pd. A data packet’s transmission is successful if (1) time slot is unreserved,

(2) data terminal has permission to transmit, (3) no other backlogged data terminal

has permission, and (4) no contending voice terminal has permission.

The access point (such as the base station) provides feedback to all terminals

regarding outcome of transmission of this data terminal. A successful transmission

does not grant the data terminal a slot reservation. Important performance para-

meters for the data subsystem can include average throughput and average delay.

Average delay is defined from the time a packet arrives in the data terminal to the

time it is successfully transmitted.

1.2.3 PRMA - System Model

Nanda et al. showed that PRMA system can be modeled by a Markov chain

[23], [24]. Figures 1.1 and 1.2 show Markov chain models for each terminal in voice

and data subsystem, respectively. The number of voice terminals in contending

mode is denoted by c, r is the number of voice terminals holding reservations, sv

(sd) is the number of voice (data) terminals in silent mode, and b is the number of

backlogged data terminals. Transition probabilities for the Markov model can be

written such that state of the system is the number of terminals in each terminal
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(1 − γf)
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N
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N
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b

1 − σv
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Figure 1.1: Markov chain model for PRMA voice subsystem.

SIL BLK

(1 −

r

N
)pd(1 − pd)

b−1(1 − pv)
c

1 − (1 −

r

N
)pd(1 − pd)

b−1(1 − pv)
c1 − σd

σd

Figure 1.2: Markov chain model for PRMA data subsystem.

state. Presentation of the transition probability matrix for the PRMA system is

omitted in this chapter, but revised transition probabilities (considering control

schemes) are presented in the next chapter.

Although systems employing the PRMA protocol can be modeled with Markov

chain, Markov analysis of the Markov model becomes very difficult as the number

of speech and data terminals increases. Therefore, Nanda et al. [23] suggested using

equilibrium point analysis (EPA) as a tool to investigate behavior of the protocol
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at steady state as described by Tasaka [17]. At equilibrium, it is assumed that

the expected number of terminals exiting a state is equal to the expected number of

terminals entering that state. This is the main idea behind the EPA. In order to find

equilibrium equations for PRMA Voice-Data system, we consider each subsystem

separately. The state of the system at equilibrium consists of the expected number

of contending voice terminals (C), silent voice terminals (Sv), voice terminals in

reservation mode (R), backlogged data terminals (B), and silent data terminals

(Sd). For the voice subsystem, at SIL state, the expected number of voice terminals

leaving this state is equal to the expected number of terminal entering this state,

(
R

N
)γf = Svσv.

Similarly at CON ,

Svσv = (1− R

N
)Cpvwv(C, B),

here wv(C, B) =





(1− pv)
C−1(1− pd)

B C ≥ 1

(1− pd)
B C < 1

.

Also, it is noted that the total number of voice terminals is fixed. Therefore,

Sv + C + R = Mv. Equilibrium equations, as noted above, can be simplified to one

equation with two states C and B.

F1(C, B) = Mv − C − (
γf

σv

+ N)(
Cpvwv(C, B)

γf + Cpvwv(C,B))
= 0, (1.1)

and

R = (
Nσv

γf + Nσv

)(Mv − C).

Further, equilibrium equation for data subsystem is determined by equating flow
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out of the BLK state to flow into this state:

Sdσd = (1− R

N
)Bpdwd(C, B).

Here wd(C, B) =





(1− pd)
B−1(1− pv)

C B ≥ 1

(1− pv)
C B < 1

.

Using the fact that the total number of data terminals is fixed (B +Sd = Md),

and by substituting R, the above-noted equilibrium equation simplifies to

F2(C,B) = Md −B − (
γf

σd

)(
Bpdwd(C,B)

γf + Cpvwv(C, B))
= 0. (1.2)

Equilibrium points of the system are roots of the following two equations:

F1(C, B) = 0, F2(C,B) = 0.

1.2.4 Performance Measures in PRMA Protocol

In this subsection we consider important performance measures for the PRMA

protocol namely packet drop probability, system throughput, and delay.

1.2.4.1 Packet Drop Probability

As previously mentioned, an important performance measure concerning voice

terminals in the PRMA protocol is packet drop probability. A voice terminal in

contending state will drop all packets that are waiting more than D time slots. In

order to calculate the drop probability, the probability that a terminal obtains a

reservation j slots after the beginning of the talkspurt is calculated. No packets is

dropped if j ≤ D. But if j > D, one packet is dropped, plus one packet for each
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additional frame (N slots) that the terminal waits for reservation. Since all the

studies are at equilibrium, packet drop probability is calculated at steady state [23],

[24]:

Pdrop = γf
υD

1− (1− γf )υN
, (1.3)

here υ is probability of no successful transmission:

υ = υ(C, R, B) = 1− (1− R

N
)pv(1− pv)

C(1− pd)
B.

1.2.4.2 System Throughput

Another important performance measure of the PRMA protocol is average

throughput defined as portion of time slots in one frame that successfully carry

packets from terminals to the access point (such as a base station). Like packet

drop probability, average throughput is studied at equilibrium [23], [24].

η =
R

N
+ (Md −B)σd. (1.4)

1.2.4.3 Data Packet Delay

Data packet delay is defined as average waiting time for a data packet from

the time it is generated in a silent data terminal until it is successfully transmitted.

Here, it is assumed that each data terminal has a one-packet buffer. Therefore, data

packet delay at equilibrium is [24]:

Wav =
1

(1− R
N

)Bpdwd(C, B)
. (1.5)
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1.2.5 Other PRMA Protocols Studied in the Literature:

Although, the focus of our research in this dissertation is on bifurcations and

stability issues of the pure PRMA protocol, many variations of the PRMA protocol

have been studied in the literature. It is contemplated that bifurcation analysis of

this dissertation can be extended to these variations. This subsection summarizes

a subset of other protocols that have been based on PRMA protocol. Further, we

summarize control schemes introduced for the PRMA protocol in the literature and

briefly compare with our studies.

1. PRMA with Transmission Errors: In the PRMA protocol proposed by Good-

man [1], it is assumed that transmission channel is error free. However, some

researchers have focused their attention on modeling the PRMA scheme over

random packet error uplink channels [25] (again assuming that the downlink

channel is error free). Packet header errors may cause access point (such as a

base station) to be unable to decode a header of a received packet correctly

and interpret result of a transmission as collision or an event that no packet

was transmitted, even if the terminal is in a reservation state and has packets

to transmit. Thus, the access point can announce an unsuccessful packet re-

ception. In this case, a packet header transmission error causes a reservation

terminal to lose its reservation prematurely. Hence, terminal needs to start

contending for another reservation and risk packet dropping while waiting. It

is noted that, in this dissertation, we also extend our bifurcation analysis and

control to the PRMA protocols over random packet error channels.
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2. IPRMA: Integrated packet reservation multiple access provides a reservation

mechanism for both speech and data terminals [26]. In IPRMA, speech ter-

minals are allowed to contend for reservation slots on a frame-by-frame basis

while data terminals may reserve multiple slots across a frame to increase

throughput. These enhancements lead to fewer collisions, which results in

improvement in overall system performance.

3. Joint CDMA-PRMA Protocol: The joint CDMA-PRMA was first proposed by

Brand and Aghvami as an extension to PRMA protocol for an uplink channel

in a cellular communication system [27]. The joint CDMA-PRMA channel is

organized into time-slots, which, in turn, are grouped into frames in the same

way as in PRMA. Each user spreads its data with short direct sequences before

accessing the channel such that several users can share a time slot using code

division multiple access.

4. MD-PRMA: Multidimensional PRMA was proposed as media access control

(MAC)protocol of wireless communication uplink channel [28]. MD-PRMA

can be viewed as an extension to PRMA or a generalization to joint CDMA-

PRMA, which embraces both code-division PRMA and frequency-division

PRMA. In conventional PRMA, time is divided into slots, but in MD-PRMA

slots are not only defined in time domain but also in an additional domain,

either the “frequency domain” or the “code domain”. Increasing number of

slots in one frame in this way increases efficiency of multiplexing.

5. Effect of Mobility: Packet reservation multiple access is a scheme to transmit
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a mixture of voice and data packets in micro-cells. An advantage of PRMA is

that it needs little central control. A voice terminal that moves to another cell

loses its reservation. Therefore, it needs to contend with other terminals to

transmit its remaining packets. The terminal also needs to register with the

new base station. This delay, which is modeled as a fixed delay by researchers,

may force the terminal to drop voice packets, thereby, degrading its perfor-

mance. Researchers have proposed models to capture effect of voice terminal

mobility and have studied its effect on packet drop probability of the PRMA

[29] and [30].

6. PRMA for Multimedia Wireless System: There are studies on the PRMA

scheme to extend this media access control (MAC) protocol for multimedia

traffic [31]. The main issue in designing a MAC protocol for multimedia traffic

is to guarantee different quality of service parameters for different types of

traffic while, at the same time, achieving high throughput. These studies

propose an efficient MAC protocol that integrates voice, data, and real time

variable bit rate video by reserving a number of time slots at the beginning

of a frame for video packets and letting the other video packets contend with

voice and data packets for the rest of time slots in that frame.

7. Exponential back off scheme for slotted ALOHA protocol: Jeong et al. in-

troduced an exponential back off scheme for slotted ALOHA protocol in local

wireless environment [32]. They considered a deferred first transmission (DFT)

mode of slotted ALOHA where retransmission probability is adjusted at the
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end of each time slot based on received feedback (idle, success, collision) from

the base station and an exponential function. Retransmission probability is

multiplied by 1/q, 1, or q, if previous time slot was idle, successful transmis-

sion, or collision, respectively. Further, as an example of a slotted ALOHA

system, Jeong et al. illustrated simulation results for a PRMA voice system

with the exponential back of scheme for q = 0.5. As part of this dissertation,

we introduce, model, and analytically study effects of a general price based

control on the PRMA protocol. The general price based control is a more gen-

eral control scheme that the exponential back off scheme can be considered

as a special case of. Further, we analytically study equilibrium equations of

controlled PRMA voice system, PRMA voice and data system, and PRMA

voice system with delay, and provide conditions for bifurcation control for

these system.

8. MD-PRMA with prioritized Bayesian broadcast: Brand et al. in [27] revisited

pseudo-Bayesian broadcast estimation of [33] for calculating transmission per-

mission probability for slotted ALOHA systems. In pseudo-Bayesian broadcast

it is assumed that probability values can be approximated reasonably well by a

Poisson distribution and therefore, mean of the Poisson distribution is needed

to be estimated and optimum permission probability would be inverse of the

mean. The mean is updated at the end of each time slot based on feedback

information, by decrementing by 1 in case of an idle slot or successful trans-

mission or is incremented by (e−2)−1 in case of collision. Further, the mean is

21



calculated based on the updated mean and an estimated value of arrival rate.

Brand et al. illustrated simulation results for a MD-PRMA voice system and

PRMA voice and data system with and without acknowledgement delays em-

ploying the pseudo-Bayesian scheme. However, as mentioned above, as part of

this dissertation, the introduced general price based control is a more general

control scheme that can include the pseudo-Bayesian scheme. Further, an-

other goal of this dissertation is to analytically model and study equilibrium

behavior of PRMA systems and determine conditions for bifurcation control

for these system.

1.3 Packet Reservation Multiple Access with Hindering States

Packet Reservation Multiple Access with Hindering States (PRMA-HS) was

first proposed by Re et al. [34] as a medium access control scheme for low earth

orbit-mobile satellite systems (LEO-MSSs). This protocol, which is designed to

support both voice and data traffic in LEO-MSSs, is a modified version of PRMA

protocol. PRMA protocol was first proposed for terrestrial microcellular networks.

However, its interesting features have motivated many researchers to investigate its

applicability to LEO-MSS [34], [35], [36], and [37].

Since in terrestrial microcellular round trip delay is much lower than packet

transmission time, terminals in a PRMA system are able to receive outcome of their

transmissions (feedback signal) almost immediately. This in not true for LEO-MSSs

and therefore, large round trip delay (RTD) reduces efficiency of PRMA protocol in
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LEO-MSSs [34]. In MSS, a user terminal stops contending while waiting for result

of its transmission. This information is received after a round trip delay (RTD).

Therefore, the user terminal has fewer attempts before the maximum tolerable delay

is reached and as a result, packet dropping probability increases. It is usually

assumed that RTD is equal to the maximum RTD and is always less than a frame

time. Therefore, a user terminal knows result of its transmission before beginning

of the same slot in the next frame.

Limitations of the PRMA protocol in LEO-MSS, motivated researchers to

introduce PRMA-HS protocol as a modification to PRMA. In PRMA-HS the user

terminal contends for available time slots while it is waiting for the outcome of

its first attempt (waiting time). The first successful attempt by the user terminal

is recorded in a database by the satellite in order to ignore successive successful

transmission attempts by the same terminal in its waiting time. After the first

successful transmission, the terminal enters a block of hindering states HIN , which

are used to model the waiting time.

1.3.1 PRMA-HS Voice Subsystem

When a talkspurt starts, a voice terminal in the silent state, SIL, transitions

to a contending state CON . A terminal in CON state, contends for reservation

by transmitting a speech packet on an available time slot, if it has permission to

transmit. A contending terminal successfully transmits its packet if (1) the time

slot is unreserved, (2) it has permission to transmit, (3) no other speech packets are
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transmitted simultaneously, and (4) no data packets are transmitted at that time

slot. When the contending terminal successfully transmits a packet, an access point

(such as a satellite), using a feedback message, informs all the terminals that the time

slot is reserved. Terminals will receive this feedback message after RTD time slots

(the round trip delay). We assume that RTD = N/d time slots, where d is an integer

which is a divisor of N . During this waiting time, the contending voice terminal can

still attempt transmissions. But these transmissions can only harm other contending

voice terminals, since the first successful attempt of the voice terminal is recorded at

the base station, and other successive successful transmissions will be ignored. After

a voice terminal has successfully transmitted its first voice packet, the waiting time

to receive the positive feedback is modeled by the hindering states HIN states. For

the voice terminal, CON and HIN states are indistinguishable. After N/d time

slots, the voice terminal enters a series of N−N/d slots in state RES ′. In this state,

the terminal waits until its reserved time slot arrives. If the terminal has no more

packets to transmit, it enters the SIL state. Otherwise, it enters the RES state. It

transmits one speech packet in its reserved time slot in every frame. The terminal

transmits its last packet at the end of the talkspurt and moves to SIL state.

1.3.2 PRMA-HS Data Subsystem

Researchers have studied different data traffic sources for the PRMA-HS pro-

tocol. These sources can include web traffic, email traffic, and multimedia. However,

it this dissertation, we assume that data terminals, similar to the PRMA data sub-
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system, cannot reserve time slots and they have a buffer with one-packet capacity.

A data terminal with no packet to transmit is in silent state SIL. With probability

σd a data packet arrives and the terminal moves to backlogged mode, BLK. The

data terminal in BLK tries to transmit its packet on available time slots. It will

be successful if the time slot is available, it has permission to transmit, no other

data packet is transmitted , and no speech packet is transmitted. After the suc-

cessful transmission, the data terminal enters a series of N −N/d hindering states,

HIN , which models the waiting time. Any successful transmissions during the wait-

ing time is ignored by the base station. After RTD time slots, the data terminal

receives the feedback signal and moves back to silent mode.

1.3.3 PRMA-HS System Model

Re et al. in [34] and Benelli et al. in [35] showed that the behavior of the

PRMA-HS protocol can be modeled as a Markov process. Figures 1.3 and 1.4 show

the Markov model for each voice and data terminal, respectively. The number of

contending voice terminals is c, the number of voice terminals with reservations is

r, hv is the number of voice terminals in hindering state, b is the number of data

terminals in BLK mode, and hd is the number of data terminals in hindering state.

sv and sd are the number of silent voice and data terminals, respectively.

Unfortunately, because of large state space, precise analysis of the Markov

process is very complex. Instead, Re et al. [34] and Benelli et al. [35] used an

equilibrium point analysis (EPA) as described by Tasaka [17]. In this subsection,
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Figure 1.3: Markov chain model for PRMA-HS voice subsystem.
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Figure 1.4: Markov chain model for PRMA-HS data subsystem.

we briefly present equilibrium equations of the PRMA-HS system. Let equilibrium

values of state variables be denoted by (C,R∗, Hv, B, Hd). First, we consider the

voice subsystem. Notice that at equilibrium, the number of voice terminals in each

state HINi is Hv

(N/d)
for i = N − 1, ..., N − N/d. In the same way, the number of

terminals at equilibrium in state RES ′i is R′
N−(N/d)

for i = N − N/d − 1, ..., 0. It is

easy to show that

Hv

N/d
=

R′

N −N/d
.

Also, the number of voice terminals in each state RESi is R
N

for i = 0, ..., N −1. We

define R∗ = R + R′ as number of voice terminals in RES and RES ′. Notice that

R∗ + Hv

N
=

R

N
+

R′

N −N/d
.

Equilibrium equation at SIL is found by equating flow out of the state to flow into

the state:

(
R∗ + Hv

N
)γf = Svσv.
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Similarly at CON :

Svσv = (1− R∗ + Hv

N
)Cpvwv(C, B).

Here wv(C, B) =





(1− pv)
C+Hv−1(1− pd)

B+Hd C ≥ 1

(1− pv)
Hv(1− pd)

B+Hd C < 1

.

At RESN−1:

R

N
= (

R∗ + Hv

N
)(1− γf ).

Also, Sv + C + R∗ + Hv = Mv. Above equilibrium equations can be simplified

as:

F1(C, B) = Mv − C − (
γf

σv

+ N)(
Cpvwv(C, B)

γf + Cpvwv(C,B)
) = 0, (1.6)

here

Hv = γf (
N

d
)ω(Mv − C), R∗ = (d− γf )(

N

d
)ω(Mv − C).

In the same way, equilibrium equations for data subsystem can be found by equating

the expected number of data terminals leaving a state to the expected number of

terminals entering that state. Equilibrium condition at the SIL is:

Sdσd = (
d

N
)Hd,

and equilibrium equation at BLK can be written as:

Sdσd = (1− R∗ + Hv

N
)Bpdwd(C,B).

Here wd(C,B) =





(1− pd)
B+Hd−1(1− pv)

C+Hv B ≥ 1

(1− pd)
Hd(1− pv)

C+Hv B < 1

. Since Sd + B + Hd =

Md:

F2(C, B) = Md −B − (
N

d
+

1

σd

)γf (
Bpdwd(C, B)

γf + Cpvwv(C,B)
) = 0, (1.7)
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here

Hd = (
Nσd

Nσd + d
)(Md −B).

Therefore, equilibrium points of the PRMA-HS voice-data system are solutions of

the following equations:

F1(C,B) = 0, F2(C,B) = 0.

1.3.4 Performance Measures in PRMA-HS Protocol

Drop Probability - As in the PRMA model, voice packet drop probability at

equilibrium can be defined as [23], [24], [34], and [35]:

Pdrop = γ
υD

1− (1− γ)υN
,

here υ is probability of no successful transmission:

υ = υ(C,R∗, Hv, B, Hd) = 1− (1− R∗ + Hv

N
)pv(1− pv)

C+Hv(1− pd)
B+Hd (1.8)

System Throughput - Another important performance measure of the PRMA-

HS protocol is average throughput defined as portion of time slots in one frame that

successfully carry packets from terminals to an access point. Like drop probability,

average throughput is studied at equilibrium [23], [24].

η =
R∗ + Hv

N
+ (Md −B −Hd)σd. (1.9)

Data Packet Delay - As stated earlier in the PRMA protocol, an important

performance measure for the data subsystem in PRMA-HS is the data packet average
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delay. It is assumed that each data terminal has a one-packet buffer and that the

data packet delay at equilibrium is:

Wav =
1

(1− R∗+Hd

N
)Bpdwd(C,B)

. (1.10)

1.3.5 Other PRMA-HS Protocols Studied in Literature

As part of this dissertation, our focus is to study nonlinear instability and

bifurcation control of pure PRMA-HS protocol. However, it is contemplated that

the analysis of this dissertation can be extend to other variations of the PRMA-HS

protocol. Next, we briefly summarize a subset of protocols introduced in literature

that are based on the PRMA-HS protocol.

1. MPRMA: MPRMA is a modified version of the PRMA protocol for both

voice and data terminals [38]. The voice subsystem is exactly the same as

the voice subsystem in PRMA-HS. However, the data subsystem is modified.

When a contending data terminal successfully transmits its first packet (re-

quest packet), this packet is stored in a buffer on a satellite to form a queue

of data terminals that need to transmit. A controller on board of the satellite

manages the data terminals’ requests. The controller assigns an available time

slot in next frame (not reserved by voice terminals) to a data terminal accord-

ing to an access probability. Hence, depending on activity of voice terminals,

a variable number of time slots is assigned to data terminals. This policy is

particularly suitable for available bit-rate (ABR) like data traffic.

2. S-PRMA: Another extension of the PRMA protocol that has drawn satellite
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communication researchers’ attention is a protocol named satellite PRMA (S-

PRMA) [39]. The focus is again on the uplink of a two-way LEO satellite

wireless network. The carrier is divided into slots and N slots are grouped

together as one frame. At the end of each time slot, the satellite broadcasts a

feedback to acknowledge status of that time slot. In order to maintain a good

performance, round trip delay should be less than the frame time, a condition

that is satisfied by most LEO satellites. Also it is assumed that both uplink

and downlink channels are error free. This protocol is very similar to the

PRMA-HS with following differences:

• Each unreserved time slot is divided into two sets of mini-slots. These

two sets are devoted to voice and data terminals.

• Mini-slots in each set are contended among the associated (voice or data)

terminals. User terminals in the contending state uniformly choose one

mini-slot in their set if they have permission to transmit.

• If a voice terminal successfully transmits a request, the satellite grants it

the use of an available time slot for the time the terminal needs.

• If a data terminal successfully sends a request, its request is stored in a

virtual first in first out (FIFO) queue in the satellite.

• Any time slot that is left unreserved by voice terminals is granted to

the data terminal with its request at the head of the queue, with some

probability.

3. CD-PRMA-HS: CD-PRMA-HS is application of the PRMA-HS scheme to a
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hybrid time code-division air interface [37] and [40]. As in the PRMA-HS pro-

tocol, in the CD-PRMA-HS scheme channel is divided into slots and N slots

are grouped together as a frame. Voice terminals acquire reservation on a

talkspurt basis. Whereas data terminals must acquire a reservation on a data-

gram basis. If a datagram arrives in a data terminal while it has a reservation

with the satellite, the data terminal maintains its reservation until its buffer is

empty. One difference between CD-PRMA-HS and PRMA-HS is that in CD-

PRMA-HS, reservation is based on slot codes, meaning that each time slot is

further divided into codes. Therefore, transmission attempts are random not

only in time but also in the code domain. Collisions happen if more than two

mobile terminals randomly choose one slot code. It is assumed that orthog-

onal codes are used in downlink and joint detection is used in uplink so that

the intracell interference has a negligible impact on the signal-to-interference

ratio. Voice and data terminals choose slot codes independently and with

different probabilities. Voice terminal permission probability is greater than

data terminal because voice terminals have a higher service priority than data

terminals.

4. Dynamic Reservation PRMA-HS: In this modification of PRMA-HS, each time

frame is divided into three parts: 1) reservation mini-slots, 2) slots for voice

traffic, and 3) slots for data traffic [41]. Number of slots and mini-slots in

each part is calculated dynamically. Generally, slots are assigned in following

order subject to availability: slots for voice packets based on their reserva-
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tion, reservation mini-slots for voice packet based on estimated number of

voice terminals, slots for data traffic based on registered slot requirements,

and reservation mini-slots for data terminals from residual capacity. Also,

permission probabilities for both voice and data terminals are calculated dy-

namically based on a frame-based Bayesian algorithm for the delayed feedback

environment.

1.4 Outline of Dissertation

In this chapter, we briefly reviewed stability issues of ALOHA systems and

background information on PRMA and PRMA-HS protocols. In Chapter 2, we

study equilibrium behavior of voice-only PRMA and PRMA-HS systems over error-

free and random error channels, we study price based control and state estimation-

based control and study equilibrium behavior of the controlled system, and we also

study effects of using multiple power levels at terminals and capture at an access

point on the bifurcations of the systems. In Chapter 3, we present equilibrium

studies of voice+data PRMA systems and extend our control analysis of Chapter 2

to the voice-data system. Also, we briefly review extension of the price based control

scheme to voice-data PRMA-HS system. In this chapter, we also compare and

discuss the studied control schemes with two previously presented control schemes

for a PRMA-HS voice+data system using simulations. In Chapter 4 we present

equilibrium studies of a finite buffered finite users slotted ALOHA system with price

based control. Chapter 5 includes equilibrium studies of framed PRMA voice-only
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and voice+data systems with the price based control. Finally, Chapter 6 concludes

the dissertation.
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Chapter 2

Equilibrium Analysis and Control for PRMA and PRMA-HS

Protocols for Voice Terminals

As discussed before, nonlinear instability (such as bistability) and bifurca-

tions are noticed in random access protocols such as ALOHA-like protocols. In this

chapter, we focus our analysis on PRMA and PRMA-HS protocols. We consider a

system of only voice terminals that employs either PRMA or PRMA-HS as its access

protocol. We propose different control schemes and analytically study equilibrium

behavior of the system with the proposed schemes. We prove that, under some

conditions, these control schemes can control nonlinear instabilities of the system

by either completely eliminating bifurcations or delaying bifurcations and there-

fore, depending on situation, we can achieve an expanded operating range. More

information on bifurcation control can be found in [42].

In this chapter, we start with the PRMA protocol and first introduce a General

Price Based Control for the PRMA voice system. We model the PRMA system with

the controller using a Markov model and we analyze the Markov model. Further, we

analyze specific variations of the General Price Based Control to study equilibrium

behavior of the system. We can prove that, under some conditions, these specific

variations can control bifurcations that occur in the system. Also, we study the

control scheme for a PRMA system that operates over a random error channel.
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Moreover, we study effects of capture phenomenon (using multiple power levels)

on controlling bifurcations in PRMA system. Later in this chapter, we extend our

analysis to the PRMA-HS voice only system.

2.1 General Price Based Control for PRMA Protocol

The general Price Based Control studied in this dissertation is, in part, moti-

vated by the price based rate control scheme studied by Yuen and Marbach in [43]

and [44]. Their work was also motivated by the popularity of wireless local area

networks using the IEEE 802.11 standard for channel access, and is similar to price

based rate control schemes for wireline network. They showed that the proposed

rate control mechanism achieves a sustainable throughput as the number of nodes

increases and (under appropriate assumptions) there exists a unique operating point.

General Price Based Control (GPBC) operates based on feedback information

sent back from an access point (such as a base station). As discussed before, at the

end of each time slot, the access point informs all terminals on status of that time

slot. If time slot n is reserved, feedback information from base station indicates

whether same time slot in next frame (time slot N + n) will be still reserved or

not. A reserved time slot can become idle if terminal reserving that time slot has

transmitted all its packets. If time slot n is not reserved, feedback information from

the access point indicates whether no transmission, a successful transmission, or

collision occurred during that time slot.

In this section we assume that channel is error free. Later, we assume that the
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channel is a “random packet error channel”, where only errors that corrupt packet

headers can occur randomly in the uplink channel [25]. Terminals use feedback

information from the access point to adjust their permission probability. We assume

that the permission probability, pv, is a function of a control signal u. Control signal

is updated at end of each time slot based on following:

un+1 =





un if slot n is reserved and reservation is kept,

un + φ if slot n is reserved and reservation is lost,

[un − αI(Zn = 0) + βI(Zn = 1) + ξI(Zn ≥ 2)]+ if slot n is not reserved.

(2.1)

Here α, ξ, and φ are positive real numbers and β is a real number. [x]+

denotes max(0, x). Random variable Zn indicates the number of packets that are

transmitted at the beginning of time slot n. Permission probability, pv, is updated

at the end of each time slot based on new value of control signal u.

Assumption 2.1. We assume that permission probability pv(u) is continuous,

bounded (0 ≤ pv(u) ≤ 1), and strictly decreasing in u (u ∈ [0, +∞)). Further-

more, there exists a positive constant umax such that pv(u) = 0 when u ≥ umax.

Based on update equation (2.1) and assumption 2.1, if time slot n is not

reserved and there is no packet transmission at this time slot (Zn = 0), control

signal decreases and permission probability is increased. If there is a collision at

time slot n (Zn ≥ 2), control signal is increased by ξ and permission probability is

decreased. In the case of a successful packet transmission at time slot n (Zn = 1),

depending on β, permission probability is either increased or decreased. Further, if
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time slot n is reserved but it becomes free, control signal is increased by φ. In other

cases, control signal is unchanged.

PRMA system with voice terminals with General Price Based Control can be

modeled by a Markov chain which extends the Markov model pointed out in chapter

1. State of system at the beginning of time slot n is given by Xn = (cn, rn, un). Here

c is the number of voice terminals in contending mode, r is the number of voice

terminals in reservation, and u is control signal. Without loss of generality, it can

be assumed that the Markov chain starts at initial state X0 = (c0, r0, u0) = (0, 0, 0),

c ∈ {0, 1, 2, · · · ,Mv}, r ∈ {0, 1, 2, · · · , N}, and u ∈ Γ = {min(uMAX , [φe−αa+βb+

ξd]+)|a, b, d, e ∈ Z+}. Here uMAX = umax + max(Nφ, β, ξ). However, it should be

noticed that the state space of the system ℵ is only a subset of {0, 1, 2, · · · ,Mv} ×

{0, 1, 2, · · · , N}×Γ. Because, at least, the total number of contending and reserving

voice terminals at each time slot can not be higher than the total number of voice

terminals. Also, for rn = N , control signal could only take values greater than or

equal to [β]+. Note that state space ℵ is countable.

The transition probabilities for this Markov chain are:

Pr(cn+1 = c′, rn+1 = r′, un+1 = u′|cn = c, rn = r, un = u) = (2.2)

• fv(c
′ − c; Mv − c− r, σv)(r/N)γf

if c ≤ c′ ≤ Mv − r, r′ = r − 1, u′ = u + φ

• fv(c
′ − c; Mv − c− r, σv)(r/N)(1− γf )

if c ≤ c′ ≤ Mv − r, r′ = r, u′ = u

• fv(c
′ − c; Mv − c− r, σv)(1− r/N)(1− pv)

c
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if c ≤ c′ ≤ Mv − r, r′ = r, u′ = u + max(−u,−α)

• fv(c
′ − c; Mv − c− r, σv)(1− r/N)(1− (1− pv)

c − cpv(1− pv)
c−1)

if c ≤ c′ ≤ Mv − r, r′ = r, u′ = u + ξ

• fv(c
′ − c + 1; Mv − c− r, σv)(1− r/N)cpv(1− pv)

c−1

if c− 1 ≤ c′ ≤ Mv − r − 1, r′ = r + 1, u′ = u + max(−u, β)

• 0 Otherwise

Here, fv(k; n, σv) =




n

k


 σk

v (1− σv)
n−k

2.2 Price Based Control

In this section, we study a special case of the General Price Based Control

introduced above. We assume φ = 0, therefore, control signal is updated only

during available time slots.

Proposition 2.1. The Markov chain defined on ℵ through (2.2) (for φ = 0) is

irreducible and aperiodic.

The irreducibility of the Markov chain is proved, in the Appendix A, by show-

ing that all states in the state space communicate with each other.

Proposition 2.2. Under Assumption 2.1, the Markov chain given by (2.2) (for

φ = 0) is positive recurrent.
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In order to show that the Markov chain is positive recurrent, as shown in

Appendix A, it is necessary to find a non-negative Lyapunov function V (c, r, u) that

satisfies following mean drift criteria [45], [46], [47], [48], [49]:

Proposition 2.3. An irreducible and aperiodic Markov chain defined on a countable

state space Σ is positive recurrent if and only if there exists a non-negative function

V (i), i ∈ Σ, ε > 0, b < +∞ and a finite set Ω such that:

E(∆V (i)) = E(V (j)− V (i)|i) ≤ −ε i 6∈ Ω

E(∆V (i)) < b i ∈ Ω

Since state space of the PRMA system with Price Based Control is large,

analysis using transition probabilities is very difficult. Therefore, stationary behav-

ior of the system is analyzed using equilibrium point analysis (EPA). In EPA it is

assumed that the system is in equilibrium, therefore, any change in states of the

system is zero. One-step expected change (mean drift) of control signal at state

(c, r, u) is defined as follows:

d(c, r, u) = E(un+1 − un|cn = c, rn = r, un = u).

By using definition of control signal in (2.1), with assumption that φ = 0, expected

drift is determined as following:

d(c, r, u) =(max(−α,−u)− ξ)(1− r/N)(1− pv)
c

+(max(β,−u)− ξ)(1− r/N)cpvwv(c, u)

+ξ(1− r/N).
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Here wv(c, u) =





(1− pv(u))c−1 c ≥ 1

1 c < 1

. Relaxed drift equation is:

d(c, r, u) =− (α + ξ)(1− r/N)(1− pv)
c + (β − ξ)(1− r/N)cpvwv(c, u) + ξ(1− r/N).

(2.3)

As discussed in chapter 1 regarding the equilibrium equations of the PRMA voice

system and considering the relaxed expected drift equation of the control parameter

at equilibrium, a point (C,R,U) is called an equilibrium point of the PRMA voice

system, if

(Mv − C −R)σv − (1−R/N)Cpv(U)wv(C, U) = 0,

(R/N)γf − (1−R/N)Cpv(U)wv(C, U) = 0,

− (α + ξ)(1− pv(U))C + (β − ξ)Cpv(U)wv(C, U) + ξ = 0. (2.4)

Here, C, R, and U are equilibrium values of expected values of the states of the

system. Since set of equations (2.4) is nonlinear, it is not easy to find the conditions

for the control parameters (α, β, ξ) to ensure the uniqueness of the operating point

of the controlled PRMA system. Lemma 2.1 below defines two sets of conditions

for set of equations (2.4) to have a unique fixed point.

Remark 2.1. Based on the first two equations of the set of equations (2.4), it

can be shown that R = min(N,Nω(Mv − C)), where ω = σv

γf+Nσv
. Therefore,

when the equilibrium equations of the system is considered, it is assumed that C ∈

[max(0,Mv − 1
ω
), Mv], R ∈ [0, N ], and pv ∈ [0, 1]. However, it can easily be shown,

using the set of equation (2.4), that C = 0, Mv − 1
ω
, C = Mv, R = 0, R = N ,
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pv = 0, pv = 1 (for β = ξ as considered in Lemma 2.1), or a combination thereof,

cannot be solutions to the set of equilibrium equations (2.4).

Lemma 2.1. There exists a set of control parameters (α, β, ξ) for which the set of

equations (2.4) has a unique solution in (C, U) and the system has a single operating

point if any of conditions (1a), (1b), or (2) below hold:

(1a) Mv ≥ 1 + 1
ω

and −ωγf < ξ
α+ξ

[(
ln( ξ

α+ξ
)

Mv− 1
ω

+ 1) exp(− ln( ξ
α+ξ

)

Mv− 1
ω

)− 1],

(1b) Mv < 1 + 1
ω

and either

(Mv − 1)ωγf

1− (Mv − 1)ω
≤ ξ

α + ξ
Mv(exp(− 1

Mv

ln(
ξ

α + ξ
))− 1), or

− ωγf < 1− ξ

α + ξ
+ ln(

ξ

α + ξ
),

(2) −1 + ξ
α+ξ

− ln( ξ
α+ξ

) < ω
γf

[ ξ
α+ξ

Mv(exp(− 1
Mv

ln( ξ
α+ξ

))− 1) + γf ]
2.

Proof. We will show the existence of the control parameters (α, β, ξ) with β = ξ

such that the conditions holds. We first prove the lemma for conditions (1a) and

(1b). Given β = ξ, set of equations (2.4) can be simplified as follows

F1(C,U) = Cpvwv(C,U)− (Mv − C)ωγf

1− (Mv − C)ω
= 0, (2.5)

F2(C,U) = −(α + ξ)(1− pv)
C + ξ = 0, (2.6)

here ω = σv

γf+σvN
and pv = pv(U). Function F1(C,U) is derived by solving the

first two equations of the set of equations (2.4) for R and then substituting R in

any of the first two equations. The number of terminals in reservation state is R =

max(N,Nω(Mv−C)). However, as discussed earlier, R = N cannot be an operating

point of the system. Therefore, it is assumed that max(0,Mv − 1
ω
) < C < Mv such
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that R < N . Now let us define following new functions

f(C, U) = Cpvwv(C,U), g(C) =
(Mv − C)ωγf

1− (Mv − C)ω
.

Solving equation (2.6) for pv and then substituting it in f(C, U), we have

f(C) =





ξ
α+ξ

C(exp(−1
C

ln( ξ
α+ξ

))− 1) C ≥ 1

C(1− exp( 1
C

ln( ξ
α+ξ

))) C < 1

(2.7)

Therefore, fixed point(s) of equations (2.5) and (2.6) is same as fixed point(s) of

f(C) = g(C). It is easy to show that first and second derivatives of f(C) in the

range of max(0,Mv − 1
ω
) < C < Mv are as follows





df
dC

< 0 C ≥ 1

df
dC

> 0 C < 1

,





d2f
dC2 > 0 C ≥ 1

d2f
dC2 < 0 C < 1.

It can also be shown that dg
dC

< 0 and d2g
dC2 > 0, for this range of C. Also, notice that

f(Mv) =
ξ

α + ξ
Mv(exp(− 1

Mv

ln(
ξ

α + ξ
))− 1) > g(Mv) = 0.

Based on these facts, in order to prove that f(C) = g(C) has exactly one solution,

for the conditions stated in the lemma, we consider following cases:

• Case 1 - Mv ≥ 1+ 1
ω
: In this case, g(C) is strictly decreasing and as C → Mv−

1
ω

+
, g(C) → +∞. Also, f(C) is strictly decreasing, f(Mv− 1

ω
) < g((Mv− 1

ω
)+),

and f(Mv) > g(Mv). We define h(c) = g(c) − f(c). As discussed above,

h(Mv− 1
ω
) > 0 and h(Mv) < 0. Therefore, if we choose the control parameters

such that dh
dC

< 0, then h(C) = 0 will have a unique solution. As discussed

above, both functions f(C) and g(C) have positive second order derivatives,
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therefore,

df

dC
(Mv − 1

ω
) <

df

dC
<

df

dC
(Mv),

dg

dC
(Mv − 1

ω
) <

dg

dC
<

dg

dC
(Mv).

Hence, if the control parameters are chosen such that dg
dC

(Mv) < df
dC

(Mv − 1
ω
),

then dh
dC

< 0 and h(C) = 0 will have a unique solution.

• Case 2 - 1
ω
≤ Mv < 1 + 1

ω
: In order to make sure that there exist only one

solution, we chose the control parameters (α, β, ξ) such that either dg
dC

(Mv) <

df
dC

(1) or g(1) < f(Mv).

• Case 3 - 0 < Mv < 1
ω
: In this case g(C) is positive, strictly decreasing, with

positive second derivative. Also, f(C) is positive, strictly, increasing with

negative second order derivative for 0 ≤ C < 1, and strictly decreasing with

positive second order derivative for 1 ≤ C ≤ Mv. In same way as Case 2, we

choose control parameters such that dg
dC

(Mv) < df
dC

(1) or g(1) < f(Mv). It is

easy to show that in this case f(C) = g(C) has exactly one solution. Figure

2.1 shows both functions f(C) and g(C) for this case where g(1) < f(Mv).

Now we prove the results assuming condition (2) holds. Given β = ξ, we

simplify the set of three equations (2.4) as the following single equation:

h(C) = −Mv + C +
1

ω

f(C)

γf + f(C)
= 0. (2.8)

Here f(C) is the same as defined earlier in equation (2.7). It can easily be shown,

using equation (2.7), that h(0) = −Mv, h(Mv − 1
ω
) < 0, and h(Mv) > 0. The first
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Figure 2.1: Functions f(C) and g(C)
for Case 3 and g(1) < f(Mv).
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Figure 2.2: Functions f(C) and g(C)
for Case 3 and g(1) < f(Mv), which is
zoomed.

derivative of h(C) is

h′(C) = 1 +
γf

ω

f ′(C)

(γf + f(C))2
,

where f ′(C) = df
dC

and h′(C) = dh
dC

. We showed earlier in the proof that f ′(C) > 0

for C < 1, and therefore, h′(C) > 0 for C < 1. So h(C) is negative for C =

max(0,Mv− 1
ω
), is positive for C = Mv, and has a positive slope for C < 1. Next, we

show that, under condition (2), the slope is also positive for 1 ≤ C ≤ Mv, which will

result in a unique solution to h(C) = 0 within interval max(0, Mv − 1
ω
) ≤ C ≤ Mv.

Consider then the case C ≥ 1 and we will show that if condition (2) is satisfied,

then h′(C) > 0. Let us define h1(C) = −f ′(C) and h2(C) = ω
γf

(γf + f(C))2.

It is noted that h1(C) > 0 and h′1(C) < 0 for C ≥ 1. Therefore, h1(Mv) ≤

h1(C) ≤ h1(1).

It can also be shown that h2(C) > 0 and h′2(C) < 0 for C ≥ 1. Therefore,

h2(Mv) ≤ h2(C) ≤ h2(1).

Hence, if the control parameters are chosen such that h1(1) < h2(Mv) (in
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other words, −f ′(1) < ω
γf

(γf + f(Mv))
2), then h′(C) > 0. Therefore, h(C) = 0 has

a unique solution in the interval 0 ≤ C ≤ Mv.

It can easily be shown, using equation (2.6), that pv is one-to-one function of

C. Also, as mentioned before, pv is also a one-to-one function of U (for 0 < pv < 1).

Therefore, it can easily be shown that for a given C, there exists a unique U .

Therefore, under conditions stated in the lemma, the set of equations (2.5) and

(2.6) or equation (2.8) has a unique solution in 0 < C < Mv and 0 < U < umax.

Designing the Control: In order to ensure that the controlled system has a

unique operating point, we select the control parameters based on Lemma 2.1. We

choose β = ξ arbitrary positive real number. Then, α is chosen such that other

condition of this lemma is satisfied.

Also, in order to be able to use the relaxed form of expected drift (in the

set of equations (2.4)), we make a small change in assumption 2.1. Permission

probability pv(u) is continuous and bounded (0 ≤ pv(u) ≤ 1) function of control

signal (u). Here, we assume pv(u) = 1 for u ∈ [0, max(α,−β)], strictly decreasing

for u ∈ (max(α,−β), umax), and pv(u) = 0 for u ∈ [umax, +∞). In this case, since

equilibrium value of permission probability is less than 1, equilibrium value of control

signal u will be greater than both α and −β and therefore, relaxed expected drift

equation at equilibrium can be used.

Also, the control parameters can be chosen such that the number of contend-

ing terminals at equilibrium equals to a pre-chosen value. This, enables a system

designer to select system parameters such that at equilibrium, system operates at a
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given load in order to meet a certain throughput, delay, or drop probability criteria.

2.3 Control Using State Estimation

In this section, we propose another control scheme based on an estimation of

state of the PRMA system. As we show later, this control scheme is another special

case of the General Price Based Control introduced earlier.

As discussed before, state of the PRMA system at each time slot n is (cn, rn).

At the beginning of each time slot, the number of voice terminals that have slot

reservation (r) is known to all terminals in the system. However, the number of

contending voice terminals is not known. As it is shown below, we can choose

permission probability as a function of the number of contending voice terminals

to maximize system throughput or minimize packet drop probability of the system.

However, since the number of contending voice terminals is not known, we use an

estimated value. The estimated number of contending terminals is calculated based

on the number of voice terminals with a reservation.

As discussed earlier, average throughput is the number of time slots that carry

one packet. At equilibrium, the average throughput is:

η =
R

N
=

R

N
(1− γf ) + (1−R/N)Cpvwv(C)

Therefore, derivative of η with respect to permission probability pv is:

dη

dpv

=





(1− R
N

)C(1− pv)
C−2(1− Cpv) C ≥ 1

(1− R
N

)C C < 1.
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Hence, depending on equilibrium value of C, maximum throughput happens at:

p∗v =





1
C

C ≥ 1

1 C < 1.

(2.9)

Further, as discussed before, a PRMA voice terminal drops all packets that

wait longer than D time slots for a reservation. Average packet drop probability at

equilibrium was shown to be

Pdrop = γf
νD

1− (1− γf )νN
, ν = ν(C, R, pv) = 1− (1− R

N
)pv(1− pv)

C .

Derivative of Pdrop with respect to permission probability pv is

dPdrop

dpv

= −dPdrop

dν
(1− R

N
)(1− (C + 1)pv)(1− pv)

C−1.

Here
dPdrop

dν
= γf

DνD−1(1−(1−γf )νN )+(1−γf )NνD+N−1

(1−(1+γf )νN )2
> 0. Therefore, minimum packet

drop probability occurs at:

p∗v =
1

C + 1
. (2.10)

If permission probability is chosen as indicated in equations (2.9) or (2.10),

system throughput is maximized or system packet drop probability is minimized.

However, as discussed above, the number of contending voice terminals is not known

to the system. Therefore, here we use the estimated number of contending terminals

to be used with equations (2.9) or (2.10). As discussed before, at equilibrium,

the number of contending terminals is a function of the number terminals with

reservation C = max(0,Mv − R
Nω

).

At the beginning of time slot n + 1, the number of contending voice terminals

is estimated as ĉn = max(0,Mv − rn

Nω
) and the permission probability is updated
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(depending on maximizing throughput or minimizing packet drop probability) as

pvn+1 =





1
ĉn

ĉn ≥ 1

1 ĉn < 1,

pvn+1 =
1

ĉn + 1
.

Next, we show that we can model control with state estimation as a special case

of General Price Based Control. We define control signal un = N − rn. Therefore,

dynamics of control signal can be written as following

un+1 =





un if slot n is reserved and reservation is kept,

un + 1 if slot n is reserved and reservation is lost,

[un − I(Zn = 1)]+ if slot n is not reserved.

In other words, control using state estimation is a special case of General Price

Based Control with φ = 1, α = ξ = 0, and β = −1. Therefore, as discussed before

in analysis of General Price Based Control, the PRMA system with state estimation

can be modeled by a Markov chain.

Proposition 2.4. The Markov chain defined on ℵ through (2.2) (for φ = 1, α =

ξ = 0, and β = −1) is irreducible, aperiodic, and positive recurrent.

Detailed proof of Proposition 2.4 is presented in the Appendix B. Next, we

use Equilibrium Point Analysis to study equilibrium behavior of the system. We

show if some conditions on system parameters are met, the PRMA system with

state estimation control scheme has unique equilibrium point.
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2.3.1 Maximizing Throughput - EPA

In the first case we consider, permission probability is chosen as function of

control signal to maximize average throughput of the system. At equilibrium

pv(U) =





1
C

C ≥ 1

pvmax C < 1.

Parameter pvmax can be chosen to be very close to 1. Equilibrium equations of

the system are written as follows:

(Mv − C)γfω − (1− (Mv − C)ω)Wv(C) = 0,

Wv(C) =





(1− 1
C
)C−1 C ≥ 1

pvmaxC C < 1,

(2.11)

Equilibrium equation (2.11) is nonlinear and following lemma defines one suf-

ficient condition on system parameters to have a unique fixed point.

Remark 2.2. Equation (2.11) is derived with consideration that R = min(N, Nω(Mv−

C)), where ω = σv

γf+Nσv
. Therefore, when the equilibrium equations of the system is

considered, it is assumed that C ∈ [max(0, Mv − 1
ω
),Mv] and R ∈ [0, N ]. However,

it can easily be shown that C = 0, C = Mv − 1
ω
, C = Mv, R = 0, R = N , or a

combination thereof, cannot be solutions to equilibrium equation (2.11).

Lemma 2.2. Equilibrium equation (2.11) has a unique solution in C and the system

has a single operating point if any of conditions (1) or (2) below hold:

(1) Mv > 1
ω

+ 1 and −γfω < ( 1
Mv− 1

ω

+ ln(1− 1
Mv− 1

ω

))(1− 1
Mv− 1

ω

)Mv− 1
ω
−1,

(2) Mv < 1
ω

+ 1 and
(Mv−1)ωγf

1−(Mv−1)ω
< (1− 1

Mv
)Mv−1.
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Proof. We define g(C) =
(Mv−C)ωγf

1−(Mv−C)ω
. Also, as mentioned before

Wv(C) =





(1− 1
C
)C−1 C ≥ 1

pvmaxC C < 1,

Therefore, roots of equation (2.11) are same as fixed points of g(C) = Wv(C)

in the range of max(0,Mv − 1
ω
) < C < Mv. It is easy to show that first and second

derivatives of Wv(C) are




dWv

dC
< 0 C ≥ 1

dWv

dC
= pvmax > 0 C < 1

,





d2Wv

dC2 > 0 C ≥ 1

d2Wv

dC2 = 0 C < 1.

It can be shown that dg
dC

< 0 and d2g
dC2 > 0, for this range of C (max(0,Mv − 1

ω
) <

C < Mv). Also, notice that

Wv(Mv) = (1− 1

Mv

)Mv−1 > g(Mv) = 0.

Based on these facts, in order to derive conditions such that Wv(C) = g(C) has

exactly one solution, we consider following different cases:

• Case 1 - Mv > 1 + 1
ω
: In this case, g(C) is strictly decreasing, positive,

and with positive second order derivative. Also, Wv(C) is positive, strictly

decreasing, with positive second order derivative, Wv(Mv− 1
ω
) < g((Mv− 1

ω
)+),

and Wv(Mv) > g(Mv). We define h(C) = g(C) − Wv(C) and we can show

that if h(C) is strictly decreasing, then h(C) = 0 has a unique solution. Since

both g(C) and Wv(C) have positive second order derivatives, therefore

dWv

dC
(Mv − 1

ω
) <

dWv

dC
<

dWv

dC
(Mv),

dg

dC
(Mv − 1

ω
) <

dg

dC
<

dg

dC
(Mv).
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Figure 2.3: Functions W (C) and g(C)
for Case 3 where g(1) < f(Mv) and
pvmax = .99.
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Figure 2.4: Figure 2.3 zoomed in.

Hence, if dg
dC

(Mv) < dWv

dC
(Mv− 1

ω
) then h(C) is strictly decreasing and h(C) = 0

has a unique solution.

• Case 2 - 1
ω

< Mv < 1 + 1
ω
: If g(1) < Wv(Mv), it is guaranteed that the

equation has a unique solution.

• Case 3 - 0 < Mv < 1
ω
: In this case g(C) is positive, strictly decreasing, with

positive second derivative. Also, Wv(C) is positive, strictly increasing, and

with zero second order derivative for 0 < C < 1. Further, Wv(C) is strictly

decreasing with positive second order derivative for 1 ≤ C ≤ Mv. In the same

way as Case 2, if g(1) < Wv(Mv), it is easy to show that Wv(C) = g(C) has

exactly one solution. Figure 2.3 shows both functions Wv(C) and g(C) for

this case where g(1) < Wv(Mv).

Therefore, under conditions defined in the lemma, the system has a unique operating

point in the interval of 0 < C < Mv.
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If the parameters of the system are chosen based on Lemma 2.2, it can be

shown that the unique equilibrium of the system is a stable equilibrium point. We

illustrate the stability based on the fact that small changes in the equilibrium point

will force the system back to the equilibrium point. It can be shown that the

difference between “inflow” and “outflow” for number of contending terminals is

(1− (Mv − C)ω)(g(C)−Wv(C)), where g(C) and Wv(C) are as defined in Lemma

2.2. As discussed earlier (1 − (Mv − C)ω) > 0, therefore, if number of contending

terminals is increased slightly above its equilibrium value, the difference between

“inflow” and “outflow” will be negative. Hence, the number of contending terminals

will decrease. In the same manner, if number of contending terminals is decreased

slightly below its equilibrium value, the difference between “inflow” and “outflow”

will be positive, hence, the number of contending terminals is increased. Therefore,

it can be shown that small changes in the unique equilibrium will force the system

back to the equilibrium.

2.3.2 Minimizing Packet Drop Probability - EPA

Here, permission probability is chosen as function of control signal to mini-

mize average packet drop probability of the system. At equilibrium pv(U) = 1
C+1

.

Equilibrium equations of the system are written as follows:

(Mv − C)γfω − (1− (Mv − C)ω)Wv(C) = 0,

Wv(C) =





C
C+1

(1− 1
C+1

)C−1 C ≥ 1

C
C+1

C < 1,

(2.12)
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Remark 2.3. Equation (2.12) is derived with consideration that R = min(N, Nω(Mv−

C)), where ω = σv

γf+Nσv
. Therefore, when the equilibrium equations of the system is

considered, it is assumed that C ∈ [max(0, Mv− 1
ω
),Mv]and R ∈ [0, N ]. However, it

can easily be shown that C = 0, Mv− 1
ω
, C = Mv, R = 0, R = N , or a combination

thereof, cannot be solutions to equilibrium equation (2.12).

The following Lemma summarizes one sufficient for parameters of the system

to have a unique solution under this controller.

Lemma 2.3. Equilibrium equation (2.12) has a unique solution in C and the system

has a single operating point if any of conditions (1) or (2) below hold:

(1) Mv > 1
ω

+1 and −γfω < ( 1
Mv+1− 1

ω

+ln(1− 1
Mv+1− 1

ω

))(1− 1
Mv+1− 1

ω

)Mv− 1
ω ,

(2) Mv < 1
ω

+ 1 and either

(Mv − 1)ωγf

1− (Mv − 1)ω
< (1− 1

Mv + 1
)Mv , or

− γfω < 0.5(0.5 + ln(.5)).

Proof. We define g(C) =
(Mv−C)ωγf

1−(Mv−C)ω
. Therefore, roots of equation (2.12) are same as

fixed points of g(C) = Wv(C). It is easy to show that first and second derivatives

of Wv(C) are




dWv

dC
< 0 C ≥ 1

dWv

dC
> 0 C < 1

,





d2Wv

dC2 > 0 C ≥ 1

d2Wv

dC2 < 0 C < 1.

It is noted that max(0,Mv − 1
ω
) < C < Mv. As shown before, dg

dC
< 0 and d2g

dC2 > 0,

for this range of C. Also, notice that

Wv(Mv) = (1− 1

Mv + 1
)Mv−1 > g(Mv) = 0.
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Based on these facts, in order to derive conditions such that Wv(C) = g(C) has

exactly one solution, we consider following different cases:

• Case 1 - Mv > 1 + 1
ω
: In this range, g(C) is strictly decreasing and positive.

Also, W (C) is positive, Wv(Mv − 1
ω
) < g((Mv − 1

ω
)+), and Wv(Mv) > g(Mv).

Therefore, similar to proof of previous Lemma, if dg
dC

(Mv) < dWv

dC
(Mv − 1

ω
),

then it is easy to show that Wv(C) = g(C) has exactly one solution.

• Case 2 - 1
ω

< Mv < 1 + 1
ω
: If g(1) < Wv(Mv) or dg

dC
(Mv) < dWv

dC
(1+), it is

guaranteed that the equation has a unique solution.

• Case 3 - 0 < Mv < 1
ω
: In this case g(C) is positive, strictly decreasing, and

its second derivative is positive. Also, Wv(C) is positive, strictly increasing,

and with negative second order derivative for 0 < C < 1. Further, Wv(C) is

strictly decreasing with positive second order derivative for 1 ≤ C ≤ Mv. In

the same way as Case 2, if g(1) < Wv(Mv) or dg
dC

(Mv) < dWv

dC
(1+), then it is

easy to show that Wv(C) = g(C) has exactly one solution.

Therefore, under conditions defined in the lemma, the system has a unique operating

point in the interval of 0 < C < Mv. It can easily be shown that C = 0 or C = Mv

cannot be the operating point of the system.

Therefore, under conditions defined in the lemma, the system has a unique

operating point in the interval of 0 < C < Mv.
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2.4 Bifurcation Control Using Multiple Transmission Power Levels

In this section, we examine effects of power capture phenomenon in controlling

bifurcations in the PRMA system. We will show that using multiple transmission

power levels at terminals and using capture effect at the access point (such as the

base station) can control bifurcations by either completely eliminating the bifurca-

tions or postponing them for higher values of bifurcation parameter. Hence, power

capture phenomenon can increase capacity of the PRMA system by allowing more

voice terminals sharing common communication medium.

Power capture in wireless networks is possible because, when packet collision

occurs, there are multiple packets arriving at a receiver at the same time which the

receiver may be able to decode a packet with highest power. Therefore, terminals

can transmit their packets at multiple discrete power levels and a packet with highest

power level may be captured. In perfect power capture model, it is assumed that

a packet is captured at a receiver if and only if it has the highest power among all

other packets that overlap it. In a more accurate model, a packet is captured if its

signal-to-interference-plus-noise ratio is greater than a decodability threshold [50],

[51], [52].

A voice terminal in CON state, contends for a reservation by transmitting a

speech packet on an available time slot, if it has permission to send. In this section,

we consider m different power levels P1 > P2 > · · · > Pm. Assume that packet

lengths in different power levels are the same. A contending terminal with permission

to transmit, will choose a power level Pi with probability qi, i ∈ {1, 2, .., m}. In this
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section, we assume the perfect power capture model. Also, we assume that distance

between the terminals and the base station are equal. Hence, received power and

transmission power are interchangeable. A contending terminal will successfully

transmit its packet on a time slot if 1) the time slot is unreserved, 2) terminal has

permission to transmit, and 3) no other speech packets with equal or higher power

levels are transmitted simultaneously. When the contending terminal successfully

transmits a packet, base station, using a feedback message, informs all the terminals

that the time slot is reserved. The terminal with reservation enters the reservation

state, RES. It will transmit a speech packet in its reserved time slot in every frame.

Since the terminal has successfully reserved the time slot, it is assumed that this

terminal will send the rest of its packets with the lowest power level, Pm. The

terminal transmits its last packet at the end of the talkspurt and moves to SIL

state.

We study equilibrium behavior of the PRMA system using equilibrium point

analysis. Equilibrium equations of the system can be written as follows

F (C) = Mv − C − (
γf

σv

+ N)(
CpvWv(C)

γf + CpvWv(C)
), (2.13)

with Wv(C) =
∑m

h=1 vh(C), and

vh(C) =





qh(1− pv

∑h
t=1 qt)

C−1 C ≥ 1

qh C < 1

.

In an X − α state-control space, a simple static bifurcation of a fixed point of

(2.13) is said to occur at (X0; αc) if following conditions are satisfied [53]:

• F (X0; αc) = 0,
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• DXF has a zero eigenvalue while all of its other eigenvalues have nonzero real

parts at (X0; αc).

First condition ensures that the considered solution is a fixed point of equation

(2.13), and the second condition implies that this fixed point is a nonhyperbolic fixed

point. Let Fα be the derivative of F with respect to the control parameter α and

construct the matrix [DXF | Fα]. At a saddle-node bifurcation, Fα does not belong

to the range of matrix DXF . In other words, matrix [DXF | Fα] has a rank of n at

saddle-node bifurcation points. Considering n to be the number of the states of the

system.

A Simple static bifurcation of the fixed points of equation (2.13) happens at

(C0; Mvc), if F (C0; Mvc) = 0 and FC(C0; Mvc) = 0. Here FC(· ; ·) is the derivative of

F (· ; ·) with respect to C.

FC(C) = −1− (
γf

σv

+ N)(
γf (W (C) + CpvWC(C))

(γf + CpvW (C))2
), (2.14)

with WC(C) =
∑m

h=1 whC
(C), and

whC
(C) =





qh(1− pv

∑h
t=1 qt)

C−1 ln(1− pv

∑h
t=1 qt) C ≥ 1

0 C < 1

.

Equation (2.14) is only in terms of C. Roots of this equation, gives critical values

of C0 where bifurcations happen. The critical values of the control parameter is

found by solving F (C0; Mvc) = 0 for Mvc . Since FMv(· ; ·) = 1, then [FC | FMv ] at

bifurcation points (C0; Mvc) has a rank of one. Therefore, these bifurcation points

are saddle-nodes.
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Figure 2.5: FC vc. C

Figure 2.5 illustrates FC(C, Mv) as a function of C for the PRMA system with

voice terminal with and without power capture. In the case that power capture

is not used, FC(C,Mv) has two roots. Figure 2.5 shows that using power capture,

equation FC(C, Mv) will either have no root or its roots are at higher values of

C0. Higher values of C0 results in higher values for the critical control parameter

Mvc . Therefore, the bifurcations are delayed for the higher values of the control

parameter.

2.5 Performance Analysis of PRMA Over Random Error Channel

Previously, we studied Markov model and equilibrium point equations of the

PRMA system with General Price Based Control. We assumed that packet colli-
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sions are the only source of error in the system. Here, we study effects of General

Price Based Control on the PRMA system over “random packet error channels”

[25]. We assume an uplink channel where only errors that corrupt packet header are

considered [25]. The reason for this assumption is that these errors directly affect

behavior of the PRMA system [25]. If packet header error occurs while a terminal

is in reservation mode, it may lose its reservation before a message is completely

transmitted. Hence, voice terminal is moved back to contending state and it con-

tends again for rest of the packets in the message. Therefore, the terminal may face

more packet droppings. Also, if packet header error happens while a contending

voice terminal sends a packet on an available time slot with no collision, base sta-

tion cannot decode the message and cannot grant the terminal a reserved time slot.

Therefore, random packet error channel directly affects the PRMA system. As dis-

cussed in [25], it is assumed that packet header errors occur randomly, independent

of each other and with a fixed probability ∆. Next, we introduce the Markov chain

model for the PRMA system with the General Price Based Control scheme over the

random packet error channel.

2.5.1 General Price Based Control

Figure 2.6 illustrates Markov model for the PRMA system over random packet

error channel. Here, we assume that when a contending voice terminal transmits

a packet on an available time slot without collision, it will reserve that time slot if

no packet header error happens. If there is a header packet error, the access point
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Figure 2.6: Markov Chain Model for PRMA Voice System over Random Packet

Error Channel.

(such as the base station) interprets the error either as a collision or as an event

that no packet was transmitted [25]. When there is a header error in a contending

packet, we assume that with a fixed probability q the access point sends back a

collision feedback and with probability 1 − q it sends an idle feedback. We define

the following events: An = {at an available time slot n, one packet transmitted with

error - base station assumed idle} and Bn = {at an available time slot n, one packet

transmitted with error - base station assumed collision}.

Therefore, update algorithm (2.1) for control signal is changed as follows:

un+1 =





un if slot n is reserved and reservation is kept,

un + φ if slot n is reserved and reservation is lost,

[un − αI(Zn = 0 ∨ An) + βI(Zn = 1 ∧ no error) + ξI(Zn ≥ 2 ∨Bn)]+

if time slot n is not reserved.

(2.15)
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Transition probabilities for this Markov chain can be written as follows:

Pr(cn+1 = c′, rn+1 = r′, un+1 = u′|cn = c, rn = r, un = u) = (2.16)

• fv(c
′ − c; Mv − c− r, σv)(r/N)γf

if c ≤ c′ ≤ Mv − r, r′ = r − 1, u′ = u + max(−u, φ)

• fv(c
′ − c− 1; Mv − c− r, σv)(r/N)(1− γf )∆

if c + 1 ≤ c′ ≤ Mv − r + 1, r′ = r − 1, u′ = u + max(−u, φ)

• fv(c
′ − c; Mv − c− r, σv)(r/N)(1− γf )(1−∆)

if c ≤ c′ ≤ Mv − r, r′ = r, u′ = u

• fv(c
′ − c; Mv − c− r, σv)(1− r/N)((1− pv)

c + (1− q)∆cpv(1− pv)
c−1

if c ≤ c′ ≤ Mv − r, r′ = r, u′ = u + max(−u,−α)

• fv(c
′ − c + 1; Mv − c− r, σv)(1− r/N)cpv(1− pv)

c−1(1−∆)

if c− 1 ≤ c′ ≤ Mv − r − 1, r′ = r + 1, u′ = u + max(−u, β)

• fv(c
′ − c; Mv − c− r, σv)(1− r/N)(1− (1− pv)

c − (1− q∆)cpv(1− pv)
c−1

if c ≤ c′ ≤ Mv − r, r′ = r, u′ = u + ξ

• 0 Otherwise.

Here, fv(k; n, σv) =




n

k


 σk

v (1− σv)
n−k.

It should be mentioned that the Markov chain modeling the PRMA system

over the random packet error channel has the same state space ℵ as before.
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2.5.2 Price Based Control

A special case of General Price Based Control (over random packet error chan-

nel) is when φ = 0.

Proposition 2.5. The Markov chain defined on ℵ through equation (2.16) (for

φ = 0) is irreducible and aperiodic. Also Under Assumption 2.1, the Markov chain

is positive recurrent.

Proof of Proposition 2.5 is similar to proof of Propositions 2.1 and 2.2 and

therefore, the details of the proof are omitted. Next, we analyze performance of

the PRMA system with price based control scheme over the random packet error

channel using equilibrium point approach. Similar analysis as in previous sections

can be used. A point (C,R,U) is an equilibrium point of the system if:

(Mv − C −R)σv + (R/N)(1− γf )∆− (1−R/N)Cpv(U)wv(C, U)(1−∆) = 0

(R/N)γf − (Mv − C −R)σv = 0

(−α(1−q)∆ + β(1−∆)− ξ(1− q∆))Cpv(U)wv(C, U)− (α + ξ)(1− pv(U))C + ξ = 0

(2.17)

Set of equations (2.17) defines equilibrium equations of the PRMA system with

voice terminals over the random error channel with price based control scheme. The

goal in using price based scheme is to control bifurcations that might occur in the

number of equilibrium points of the system and therefore, to increase capacity of

the system. The following lemma introduces two different sets of conditions for the

control parameters as sufficient conditions on uniqueness of the operating point of

the system.
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Remark 2.4. Based on the first two equations of the set of equations (2.17),

it can be shown that R = min(N, Nω(Mv − C)), where ω = σv

γf+Nσv
. There-

fore, when the equilibrium equations of the system is considered, it is assumed that

C ∈ [max(0,Mv − 1
ω
),Mv], R ∈ [0, N ], and pv ∈ [0, 1]. However, it can easily be

shown, using the set of equation (2.17), that C = 0, Mv − 1
ω
, C = Mv, R = 0,

R = N , pv = 0, pv = 1 (for β = α(1−q)∆+ξ(1−q∆)
1−∆

as considered in Lemma 2.4), or a

combination thereof, cannot be solutions to the set of equilibrium equations (2.17).

Lemma 2.4. There exists a set of control parameters (α, β, ξ) for which the set

of equations (2.17) has a unique solution in (C, U) and the system has a single

operating point if any of conditions (1a), (1b), or (2) below hold:

(1a) Mv > 1 + 1
ω

and − ωγ′f
(1−∆)

< ξ
α+ξ

[(
ln( ξ

α+ξ
)

Mv− 1
ω

+ 1) exp(− ln( ξ
α+ξ

)

Mv− 1
ω

)− 1],

(1b) Mv < 1 + 1
ω

and either

(Mv − 1)ωγ′f
(1−∆)(1− (Mv − 1)ω)

≤ ξMv

α + ξ
(exp(− 1

Mv

ln(
ξ

α + ξ
))− 1), or

− ωγ′f
(1−∆)

< 1− ξ

α + ξ
+ ln(

ξ

α + ξ
),

(2) −1+ ξ
α+ξ

−ln( ξ
α+ξ

) < ω
γ′f (1−∆)

[(1−∆) ξ
α+ξ

Mv(exp(− 1
Mv

ln( ξ
α+ξ

))−1)+γ′f ]
2,

here γ′f = γf + (1− γf )∆.

The existence of the control parameters (α, β, ξ) with β = α(1−q)∆+ξ(1−q∆)
1−∆

such

that the conditions hold can be proved in a similar manner to proof of Lemma 2.1.

Next, we extend our control analysis of the PRMA system over random packet error

channel to two other special cases of the General Price Based Control.
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2.5.3 State Estimation-Based Control

Maximizing Throughput - Control using state estimation over random

packet error channel is a special case of General Price Based Control for φ = 1,

α = ξ = 0, and β = −1. Similar to proof of Proposition 2.4, Markov chain defined

on ℵ through equation (2.16) (for φ = 1, α = ξ = 0, and β = −1) is irreducible,

aperiodic, and under Assumption 2.1, positive recurrent.

As discussed previously regarding state estimation control scheme, first, we

consider a case where permission probability is chosen as function of control signal

to maximize average throughput of the system. At equilibrium

pv(U) =





1
C

C ≥ 1

pvmax C < 1.

Parameter pvmax can be chosen to be very close to 1. Equilibrium equations of

the system are written as follows:

(Mv − C)ω(γf + (1− γf )∆)− (1− (Mv − C)ω)Wv(C)(1−∆) = 0,

Wv(C) =





(1− 1
C
)C−1 C ≥ 1

pvmaxC C < 1,

(2.18)

Lemma 2.5. Equilibrium equation (2.18) has a unique solution in C and the system

has a single operating point if any of conditions (1) or (2) below hold:

(1) Mv > 1
ω
+1 and −ω(γf+(1−γf )∆)

(1−∆)
< ( 1

Mv− 1
ω

+ln(1− 1
Mv− 1

ω

))(1− 1
Mv− 1

ω

)Mv− 1
ω
−1,

(2) Mv < 1
ω

+ 1 and
(Mv−1)ω(γf+(1−γf )∆)

1−(Mv−1)ω(1−∆)
< (1− 1

Mv
)Mv−1.

Proof is straight forward and very similar to proof of lemma 2.2.
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Minimizing Packet Drop Probability - Next, as discussed before, per-

mission probability is chosen as function of control signal to minimize average packet

drop probability of the (errorless) system. At equilibrium pv(U) = 1
C+1

. Equilibrium

equations of the system are written as follows:

(Mv − C)ω(γf + (1− γf )∆)− (1− (Mv − C)ω)Wv(C)(1−∆) = 0,

Wv(C) =





C
C+1

(1− 1
C+1

)C−1 C ≥ 1

C
C+1

C < 1,

(2.19)

Lemma 2.6. Equilibrium equation (2.19) has a unique solution in C and the system

has a single operating point if any of conditions (1) or (2) below hold:

(1) Mv > 1
ω

+ 1 and

−ω(γf + (1− γf )∆)

(1−∆)
< (

1

Mv + 1− 1
ω

+ ln(1− 1

Mv + 1− 1
ω

))(1− 1

Mv + 1− 1
ω

)Mv− 1
ω ,

(2) Mv < 1
ω

+ 1 and either

− ω(γf + (1− γf )∆)

(1−∆)
< 0.5(0.5 + ln(0.5)), or

(Mv − 1)ω(γf + (1− γf )∆)

1− (Mv − 1)ω(1−∆)
< (1− 1

Mv + 1
)Mv−1.

Proof is straight forward and very similar to proof of lemma 2.3.

2.6 Numerical Results

In this section we compare our analytical results with numerical. We consider

a PRMA voice only system with following parameters [23]: Rc = 720, 000 bits/s,
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Rs = 32, 000 bits/s, T = 0.016 s, H = 64 bits, Dmax = 0.032 s, t1 = 1.00 s, and

t2 = 1.35 s.

Figures 2.7, 2.8, and 2.9 show packet drop probability (Pdrop) for the system

when Mv is taken as bifurcation parameter and no control is used. In these figures,

permission probability is fixed at pv = 0.2, pv = 0.3, and pv = 0.4, respectively.

Next, we design a price based control for the same PRMA system. We choose

β = ξ = 1. Then, α is chosen to be α = 0.114 such that the number of contending

terminals for Mv = 40 is C = 0.3037. Figure 2.10 shows bifurcation diagram for the

packet drop probability, when Mv is bifurcation parameter. We can see that using

price based control, bifurcations are eliminated. Moreover, capacity of the PRMA

system has increased to 40 from 39 when pv = 0.2, 28 when pv = 0.3, and from 21

when pv = 0.4.

Further, we design state estimation control schemes. Figure 2.11 illustrates bi-

furcation diagram for packet drop probability, when state estimation control scheme

is based on maximum throughput. Here, it is assumed that pvmax = 0.9. We can ob-

serve that bifurcations are eliminated and capacity of the PRMA system is increased

to 44. Figure 2.12 illustrates bifurcation diagram for packet drop probability, when

state estimation control scheme is based on minimum packet drop probability. It

can be observed that bifurcations are controlled and capacity of the system is 44.

Now we consider the same voice PRMA system over random packet error

channel. Figure 2.13 shows bifurcation diagram for packet drop probability when

error probability (∆) is bifurcation parameter, Mv = 25, and pv = 0.3. This figure

illustrates that only for small values of ∆ system has an acceptable drop probability
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(less than 0.01). Also figure 2.14 shows bifurcation diagrams for drop probability

when Mv is chosen as bifurcation parameter and for two different values of ∆. The

plus signs show packet drop probability for ∆ = 0.05 and the points are for ∆ = 0.01.

It can be noticed that for ∆ = 0.01 capacity of the system is 27 and for ∆ = 0.05

capacity is 24.

Next, we use price based control with same parameters as before, β = ξ = 1

and α = 0.114. Figure 2.15 shows bifurcation diagram for packet drop probability

for both ∆ = 0.01 and ∆ = 0.05. It is seen that capacity of the system is increased

to 29 and 37 for ∆ = 0.01 and ∆ = 0.05, respectively. Here we have assumed that

q = 1.

Also, figure 2.16 illustrates effects of state estimation control scheme (based

on maximum throughput) on nonlinear behavior of the PRMA system. If error

probability is ∆ = 0.01, bifurcations of the operating points of the system is com-

pletely eliminated and capacity of the PRMA system is increased to 43. However,

for the case where ∆ = 0.05, although the bifurcations are not completely eliminated

(PRMA system has three equilibrium points at Mv = 44), but they are controlled

by delaying the bifurcations. In this case, capacity of the system is increased to 41.

Figure 2.17 illustrates effects of state estimation control (based on minimizing

packet drop probability) on behavior of the PRMA system over random packet error

channel for ∆ = 0.01 and ∆ = 0.05. Bifurcations are controlled and capacity of the

system is Mv = 43 for ∆ = 0.01 and Mv = 41 or ∆ = 0.05.

Finally, figure 2.18 illustrates a bifurcation diagram for packet drop probability

when the PRMA system utilizes power capture with two power levels. The highest
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Figure 2.7: Bifurcation diagram for
packet drop probability with no control
(pv = 0.2)
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Figure 2.8: Bifurcation diagram for
packet drop probability with no control
(pv = 0.3)

power level is chosen with probability q1 = 0.2 and the terminals choose the lowest

power level with probability q2 = 0.8. Figure 2.18 shows that bifurcations are

completely controlled by the capture effect and capacity is increased to 41. Here, it

is assumed that pv = 0.3 Use of multiple power levels is not limited to controlling

bifurcations in equilibrium points of the PRMA system when Mv is the bifurcation

parameter. Figures 2.19 and 2.20 show that capture effect eliminates bifurcation

when permission probability pv is the bifurcation parameter. In this case Mv is

fixed at 40.
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Figure 2.9: Bifurcation diagram for
packet drop probability with no control
(pv = 0.4)
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Figure 2.10: Bifurcation diagram for
packet drop probability with the price
based control (α = 0.114, β = ξ = 1)
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Figure 2.11: Bifurcation diagram for
packet drop probability with state es-
timation control (maximizing through-
put) (pvmax = 0.9)

20 25 30 35 40 45 50 55 60 65 70
10

−15

10
−10

10
−5

10
0

Total Number of Voice Terminals (M
v
)

P
ac

ke
t D

ro
p 

P
ro

ba
bi

lit
y 

(P
−d

ro
p)

Figure 2.12: Bifurcation diagram for
packet drop probability with state es-
timation control (minimizing Pdrop)
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Figure 2.13: Bifurcation diagram for
packet drop probability with no control
(∆ is bifurcation parameter, pv = 0.3,
Mv = 25)
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Figure 2.14: Bifurcation diagram for
packet drop probability with no control
(pv = 0.3 and two different values of ∆)
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Figure 2.15: Bifurcation diagram for
packet drop probability with control
(∆ = 0.05, ∆ = 0.01, α = 0.114,
β = ξ = 1)
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Figure 2.16: Bifurcation diagram for
packet drop probability with state es-
timation control (maximizing through-
put) (∆ = 0.05, ∆ = 0.01, pvmax = 0.9)
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Figure 2.17: Bifurcation diagram for
packet drop probability with state es-
timation control (minimizing Pdrop)
(∆ = 0.05 and ∆ = 0.01)
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Figure 2.18: Bifurcation diagram for
packet dropping probability with power
capture (q1 = 0.2 and q2 = 0.8)
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Figure 2.19: Bifurcation diagram for
packet drop probability with no cap-
ture
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Figure 2.20: Bifurcation diagram for
packet drop probability at equilibrium
with power capture (q1 = 0.2 and q2 =
0.8)
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2.7 General Price Based Control for PRMA-HS protocol

Continuing with a system that only employs voice terminals, we further, con-

sider a PRMA-HS protocol. As discussed earlier in chapter 1, in reviewing the

PRMA-HS protocol, round trip delay RTD is defined as time that takes for a ter-

minal to receive feedback information from time it has transmitted a packet. For

the PRMA-HS protocol, it is assumed that RTD is less than duration of a frame.

We can define round trip delay as RTD = N
d

times slots, assuming d is an integer

devisor of N . For the sake of simplicity in notation, in modeling the PRMA-HS sys-

tem using Markov chain, we assume that d = N and therefore, RTD = 1 time slot.

However, our analysis can be expanded to any value of round trip delay. For equi-

librium point analysis of the system, however, we ease the assumption of RTD = 1,

and we provide sufficient conditions for bifurcation control for any value of RTD

less than or equal to a frame size.

In the PRMA-HS protocol, at the end of each time slot (for example time

slot n), terminals receive a feedback message regarding status of RTD time slot ago

(time slot n − RTD). The status message can indicate that if a reserved time slot

n−RTD is still reserved or now it is free. The feedback message can indicate that

if an available time slot n−RTD had no transmission, one successful transmission,

or collision. Terminals use this feedback information to adjust their permission

probability. We assume that permission probability pv is a function of a control

signal u. Control signal is updated at the end of each time slot based on equation

(2.20).
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un+1 =





un if slot n− 1 is reserved and reservation is kept,

un + φ if slot n− 1 is reserved and reservation is lost,

[un − αI(Zn−1 = 0) + βI(Zn−1 = 1 ∧ by a CON )

+ ξI((Zn−1 ≥ 2) ∨ (Zn−1 = 1 ∧ by a HIN))]+

if slot n− 1 is not reserved.

(2.20)

Here φ, α, and ξ are positive real numbers and β is a real number. [x]+ denotes

max(0, x). Random variable Zn is the number of packets that are transmitted at

beginning of time slot n. Permission probability pv is updated at end of each time

slot based on new value of the control signal u.

Assumption 2.2. We assume that permission probability pv(u) is continuous,

bounded (0 ≤ pv(u) ≤ 1), and strictly decreasing in u (u ∈ [0, +∞)). Further-

more, there exists a positive constant umax such that pv(u) = 0 when u ≥ umax.

Based on update equation (2.20), if time slot n−1 is reserved and its reservation

is kept, control signal u is unchanged. However, if reservation of time slot n − 1

is lost, control signal u is increased by φ and as a result, permission probability is

decreased. In the case that time slot n − 1 is not reserved, if there is no packet

transmission at time slot n− 1 (Zn−1 = 0), control signal decreases and as a result,

permission probability is increased. If there is a collision at time slot n−1 (Zn−1 ≥ 2)

or a successful transmission by a terminal in HIN state (Zn−1 = 1 ∧ by a HIN),
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control signal is increased by ξ and therefore, permission probability is decreased.

For a successful packet transmission at time slot n− 1 by a contending/backlogged

terminal (Zn−1 = 1 ∧ by a CON), depending on value of β, permission probability

is either increased or decreased.

To model the PRMA-HS protocol with General Price Based Control, choosing

the right system state is important. The state of the system is chosen to be Xn =

(Yn−1, Yn), here Yn = (cn, rn, hvn , un) and

c ∈ {0, 1, 2, · · · ,Mv}, r ∈ {0, 1, 2, · · · , N}, hv ∈ {0, 1},

u ∈ Γ = {min(uMAX , [fφ− aα + eβ + dξ]+)|f, a, e, d ∈ Z+}.

Here uMAX = umax + max(Nφ + β, ξ). Then state space ℵ is a subset of

({0, 1, 2, · · · ,Mv} × {0, 1, 2, · · · , N} × {0, 1} × Γ)2,

with following constraints. If ((c, r, hv, u), (c1, r1, hv1 , u1)) ∈ ℵ

• c + r + hv ≤ Mv and c1 + r1 + hv1 ≤ Mv

• r + hv ≤ N and r1 + hv1 ≤ N

• c− 1 ≤ c1 ≤ Mv − r − hv

• r − 1 ≤ r1 ≤ r + 1

• For hv = 1 , control signal u1 ≥ [β]+

• For r = N , control signal u ≥ [β]+ and u1 ≥ [β]+
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State space is countable and transition probabilities are written as follows:

Pr(Xn+1 = X1|Xn = X) = (2.21)

• V (c1, c, r, hv)(
r−1+hv−1

N
)γf (

r+hv

N
+ Θ + Θnc)

if c ≤ c1 ≤ Mv − hv − r, r1 = r − 1, hv1 = hv, u1 = u + φ

• V (c1 + 1, c, r, hv)(
r−1+hv−1

N
)γfΘ

c

if c− 1 ≤ c1 ≤ Mv − hv − r − 1, r1 = r − 1, hv1 = hv + 1, u1 = u + φ

• V (c1, c, r, hv)(
r−1+hv−1

N
)(1− γf )(

r+hv

N
+ Θ + Θnc)

if c ≤ c1 ≤ Mv − hv − r, r1 = r, hv1 = hv, u1 = u

• V (c1 + 1, c, r, hv)(
r−1+hv−1

N
)(1− γf )Θ

c

if c− 1 ≤ c1 ≤ Mv − hv − r − 1, r1 = r, hv1 = hv + 1, u1 = u

• V (c1, c, r, hv)Θ
nc
−1(

r+hv

N
+ Θ + Θnc)

if c ≤ c1 ≤ Mv − hv − r, r1 = r, hv1 = hv, u1 = [u− α]+

• V (c1 + 1, c, r, hv)Θ
nc
−1Θ

c

if c− 1 ≤ c1 ≤ Mv − hv − r − 1, r1 = r, hv1 = hv + 1, u1 = [u− α]+

• V (c1, c, r, hv)Θ
c
−1(

r+hv

N
+ Θ + Θnc)

if c ≤ c1 ≤ Mv − hv − r, r1 = r + 1, hv1 = hv − 1, u1 = [u + β]+

• V (c1 + 1, c, r, hv)Θ
c
−1Θ

c

if c− 1 ≤ c1 ≤ Mv − hv − r − 1, r1 = r + 1, hv1 = hv, u1 = [u + β]+

• V (c1, c, r, hv)Θ−1(
r+hv

N
+ Θ + Θnc)

if c ≤ c1 ≤ Mv − hv − r, r1 = r, hv1 = hv, u1 = u + ξ
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• V (c1 + 1, c, r, hv)Θ−1Θ
c

if c− 1 ≤ c1 ≤ Mv − hv − r − 1, r1 = r, hv1 = hv + 1, u1 = u + ξ

• 0 Otherwise

here

X1 = ((c, r, hv, u), (c1, r1, hv1 , u1)),

X = ((c−1, r−1, hv−1 , u−1), (c, r, hv, u)),

V (c1, c, r, hv) =




Mv − c− r − hv

c1 − c


 σc1−c

v (1− σv)
Mv−c1−r−hv ,

Θc = (1− r + hv

N
)cpv(1− pv)

c+hv−1,

Θnc = (1− r + hv

N
)(1− pv)

c+hv ,

Θ = (1− r + hv

N
)−Θnc −Θc,

Θc
−1 = (1− r−1 + hv−1

N
)c−1pv−1(1− pv−1)

c−1+hv−1−1,

Θnc
−1 = (1− r−1 + hv−1

N
)(1− pv−1)

c−1+hv−1 ,

Θ−1 = (1− r−1 + hv−1

N
)−Θnc

−1 −Θc
−1,

pv = pv(u), pv−1 = pv(u−1).

2.8 Price Based Control

In this section we study a special case of General Price Based Control assuming

φ = 0. Therefore, control signal is only updated during an available time slot.
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Proposition 2.6. The Markov chain defined on ℵ through (2.21) (considering φ =

0) is irreducible, aperiodic, and positive recurrent.

Detailed proof is presented in the Appendix C. Because of large size of the

state space, studying the PRMA-HS system with priced base control using transi-

tion probabilities is very difficult. Therefore, stationary behavior of the system is

analyzed using equilibrium point analysis (EPA). In EPA it is assumed that the sys-

tem is in equilibrium, therefore, any change in any state is zero. One-step expected

change (mean drift) of the control signal at state X is defined as:

d(X) = E(un+1 − un|Xn = X).

Using definition of control signal in (2.20) (assuming φ = 0), expected drift is

determined as:

d(X) =(max(−α,−u)− ξ)(1− r−1 + hv−1

N
)(1− pv−1)

c−1+hv−1

+(max(β,−u)− ξ)(1− r−1 + hv−1

N
)c−1pv−1(1− pv−1)

c−1+hv−1−1

+ξ(1− r−1 + hv−1

N
)

Or relaxed drift equation is:

dr(X) =− (α + ξ)(1− r−1 + hv−1

N
)(1− pv−1)

c−1+hv−1

+(β + ξ)(1− r−1 + hv−1

N
)[c−1pv−1(1− pv−1)

c−1+hv−1−1

+ξ(1− r−1 + hv−1

N
) (2.22)

As discussed in chapter one with respect to equilibrium equation of the PRMA-

HS system, note that at equilibrium, the number of voice terminals in each state
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HINi is Hv
(N/d)

for i = N−1, · · · , N−N/d. In the same way, the number of terminals,

at equilibrium, in state RES
′
i is R′

N−(N/d)
for i = N − N/d − 1, · · · , 0. It is easy to

show that

Hv

N/d
=

R′

N −N/d
.

Also, the number of voice terminals in each state RESi is R
N

for i = 0, · · · , N − 1.

We define R∗ = R +R′ as the number of voice terminals in RES and RES
′
. Notice

that

R∗ + Hv

N
=

R

N
+

R′

N −N/d
.

A point (C, R∗, Hv, U) is called an equilibrium point, if

(Mv − C −R∗ −Hv)σv − (1− R∗ + Hv

N
)Cpvwv(C) = 0,

(
R∗ + Hv

N
)γf − (Mv − C −R∗ −Hv)σv = 0,

(
R∗ + Hv

N
)γf − (

d

N
)Hv = 0,

(α + ξ)(1− pv)
C+Hv − (β − ξ)Cpvwv(C)− ξ = 0. (2.23)

Here wv(C) =





(1− pv(U))C+Hv−1 C ≥ 1

(1− pv(U))Hv C < 1

. Also, it is noted that for the

equilibrium point analysis we consider a round trip delay of N/d time slots. Set of

equations (2.24) modeling equilibrium equations of the system can be simplified as:

F1(C, U) =Mv − C − (
1

ω
)(

Cpvwv(C)

γf + Cpvwv(C)
) = 0,

F2(C, U) =(α + ξ)(1− pv)
C+Hv − (β − ξ)Cpvwv(C)− ξ = 0. (2.24)

We analyze conditions on the control parameters (α, β, ξ) such that equilibrium

equations (2.24) have a unique operating point and in lemma below we present two
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conditions for uniqueness of operating points of the system.

Remark 2.5. Based on the first two equations of the set of equations (2.23), it can

be shown that R∗ + Hv = min(N,Nω(Mv − C)), where ω = σv

γf+Nσv
. Therefore,

when the equilibrium equations of the system is considered, it is assumed that C ∈

[max(0,Mv − 1
ω
),Mv], R∗ + Hv ∈ [0, N ], and pv ∈ [0, 1]. However, it can easily be

shown, using the set of equation (2.23), that C = 0, Mv− 1
ω
, C = Mv, R∗+Hv = 0,

R∗ + Hv = N , pv = 0, pv = 1 (for β = ξ as considered in Lemma 2.7), or a

combination thereof, cannot be solutions to the set of equilibrium equations (2.23).

Lemma 2.7. We define f+(C) = ξ
α+ξ

C(exp(
− ln( ξ

α+ξ
)

C+Hv
)−1). Here Hv = γfω(N

d
)(Mv−

C). There exists a set of control parameters (α, β, ξ) for which the set of equations

(2.24) has a unique solution in (C, U) and the system has a single operating point if

1

ln( ξ
α+ξ

)
(exp(

ln( ξ
α+ξ

)

Mv

)− 1) <
1− (N/d)γfω

Mv

, and

ln(
ξ

α + ξ
) <

−2γf (N/d)ωMv(1 + γf (N/d)ω(Mv − 1))

1− γf (N/d)ω
, and

any of conditions (1a), (1b), or (2) below hold:

(1a) Mv ≥ 1 + 1
ω

and −γfω < df+

dC
(Mv − 1

ω
),

(1b) Mv ≤ 1 + 1
ω

and either

− (Mv − 1)ωγf

1− (Mv − 1)ω
≤ ξ

α + ξ
Mv(exp(− 1

Mv

ln(
ξ

α + ξ
))− 1), or

− γfω <
df+

dC
(1),

(2)
ξ

α + ξ
[(1 +

(1− γf (N/d)ω) ln( ξ
α+ξ

)

(1 + Ĥv)2
) exp(− 1

1 + Ĥv

ln(
ξ

α + ξ
))− 1] <

ω

γf

[
ξ

α + ξ
Mv(exp(− 1

Mv

ln(
ξ

α + ξ
))− 1) + γf ]

2,
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here, Ĥv = γf (N/d)ω(Mv − 1).

Proof. We will show the existence of the control parameters (α, β, ξ) with β = ξ

such that the conditions hold. First, we prove the lemma for conditions (1a) and

(1b). Let us define the following new functions

f(C, U) = Cpvwv(C), g(C) =
(Mv − C)ωγf

1− (Mv − C)ω
.

Equilibrium point(s) of equation (2.24) are the same as fixed point(s) of f(C,U) =

g(C). Solving F2(C, U) = 0 in equation (2.24) for pv and substituting it in f(C, U),

we will have

f(C) =





ξ
α+ξ

C(exp(
− ln( ξ

α+ξ
)

C+Hv
)− 1) C ≥ 1

C(1− exp(
ln( ξ

α+ξ
)

C+Hv
)) exp(

Hv ln( ξ
α+ξ

)

C+Hv
) C < 1

(2.25)

It is easy to show that if the following two conditions are satisfied then df
dC

< 0 and

d2f
dC2 > 0, respectively, in the range of 1 ≤ C < Mv.

1

ln( ξ
α+ξ

)
(exp(

ln( ξ
α+ξ

)

Mv

)− 1) <
1− (N/d)γfω

Mv

(2.26)

ln(
ξ

α + ξ
) <

−2γf (N/d)ωMv(1 + γf (N/d)ω(Mv − 1))

1− γf (N/d)ω
(2.27)

Also, we can numerically show that df
dC

> 0 in the range of 0 < C < 1. We define

b = γf (N/d)ω and a = ξ
α+ξ

. It can be noticed that 0 < a, b < 1. We can show that

for the values of 0 < a < 1 and 0 < b < 1 and 0 < Mv < 201, df
dC

> 0 for C < 1.

Also, note that max(0,Mv − 1
ω
) < C < Mv. In this range of C, we can show

that dg
dC

< 0 and d2g
dC2 > 0. Also, notice that

f(Mv) =
ξ

α + ξ
Mv(exp(− 1

Mv

ln(
ξ

α + ξ
))− 1) > g(Mv) = 0.
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Based on these facts in order to prove that f(C) = g(C) has exactly one solution,

for the conditions stated in the lemma, we consider different cases:

• Case 1 - Mv > 1 + 1
ω
: In this case, g(C) is strictly decreasing with positive

second derivative. Also, if the above-noted conditions for first and second

derivatives of f are satisfied, then f(C) is strictly decreasing, with positive

second derivative, f(Mv − 1
ω
) < g((Mv − 1

ω
)+), and f(Mv) > g(Mv). Since

second derivative of both f(C) and g(C) are positive, if we chose control

parameters such that dg
dC

(Mv) < df
dC

(Mv − 1
ω
), then we can show that, for the

desired range of C, dg
dC

< df
dC

. Therefore, g(C) = f(C) has a unique solution.

• Case 2 - Mv < 1 + 1
ω
: In this case, if the above-noted conditions for first

and second derivatives of f are satisfied, then f(C) is strictly decreasing, with

positive second derivative for 1 < C < Mv and f is strictly increasing for

max(0,Mv − 1
ω
) < C ≤ 1. Therefore, the control parameters are chosen such

that either dg
dC

(Mv) < df
dC

(1) or g(1) < f(Mv).

Now we prove the result assuming condition (2) holds. Given β = ξ, we

simplify the set of two equations (2.24) as the following single equation

h(C) = −Mv + C +
1

ω

f(C)

γf + f(C)
= 0. (2.28)

Here f(C) is the same as defined earlier in the proof. It can easily be shown using

equation (2.25) that h(0) = −Mv, h(Mv − 1
ω
) < 0, and h(Mv) > 0. The first

derivative of h(C)

h′(C) = 1 +
γf

ω

f ′(C)

(γf + f(C))2
,
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where f ′(C) = df
dC

and h′(C) = dh
dC

. We showed earlier in the proof that f ′(C) > 0

for C < 1, and therefore, h′(C) > 0 for C < 1. So h(C) is negative for C =

max(0,Mv− 1
ω
), is positive for C = Mv, and has a positive slope for C < 1. Next we

show that the slope is also negative for 1 ≥ C < Mv, which will result in a unique

solution to h(C) = 0 in the interval of max(0, Mv − 1
ω
) < C < Mv. Consider the

case 1 ≤ C < Mv and we will show that if condition (2) is satisfied, then h′(C) > 0.

Let us define h1(C) = −f ′(C) and h2(C) = ω
γf

(γf + f(C))2.

Under conditions set in this lemma, it is noted that h1(C) > 0 and h′1(C) < 0

for C ≥ 1. Therefore, h1(Mv) ≤ h1(C) ≤ h1(1
+).

It can also be shown that h2(C) > 0 and h′2(C) < 0 for C ≥ 1. Therefore,

h2(Mv) ≤ h2(C) ≤ h2(1
+).

Hence, if the control parameters are chosen such that h1(1
+) < h2(Mv) (in

other words, −f ′(1+) < ω
γf

(γf + f(Mv))
2), then h′(C) > 0. Therefore, h(C) = 0 has

a unique solution in the interval of 0 ≤ C ≤ Mv.

It can easily be shown, using equation F2(C, U), that pv is one-to-one function

of C. Also, as mentioned before, pv is a one-to-one function of U (for 0 < pv < 1).

Therefore, it can easily be shown that for a given C, there exists a unique U .

Therefore, under conditions stated in the lemma, the set of equations (2.24) or

equation (2.28) has a unique solution in 0 < C < Mv and 0 < U < umax.

Designing the Control: In order to ensure that the controlled system has a

unique operating point, we select the control parameters based on Lemma 2.7. We

choose β = ξ as arbitrary positive real number. Then α is chosen such that other
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conditions of this lemma is satisfied.

Also, in order to be able to use the relaxed form of the expected drift (equation

(3.3)), we make a small change in assumption 2.2. Permission probability pv(u) is

continuous and bounded (0 ≤ pv(u) ≤ 1). But we assume that pv(u) = 1 for

u ∈ [0, max(α,−β)], strictly decreasing for u ∈ (max(α,−β), umax), and pv(u) = 0

for u ∈ [umax, +∞). In this case, since equilibrium value of permission probability

is less than 1, equilibrium value of the control signal u will be greater than both α

and −β and therefore, relaxed expected drift equation at the equilibrium could be

used.

2.9 Control Using State Estimation

Next, we consider a control scheme based on the state estimation control we

introduced in previous sections. As discussed before, the number of voice terminals

with reservation is the only state of the system that is known to all terminals in the

system. Therefore, we choose the control signal un = N − rn. Assuming that round

trip delay is 1 time slot, dynamics of control signal can be written as following

un+1 =





un if slot n− 1 is reserved and reservation is kept,

un + 1 if slot n− 1 is reserved and reservation is lost,

[un − I(Zn−1 = 1) by a CON V T ]+ if slot n− 1 is not reserved.

Later in this section, we define permission probability as a function of the

control signal to maximize throughput of the system or minimize packet drop prob-

ability. It is noted that control using state estimation is a special case of General
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Price Based Control with φ = 1, α = ξ = 0, and β = −1. Therefore, as discussed

before in analysis of General Price Based Control, the PRMA-HS Voice system with

state estimation can be modeled by a Markov chain.

Proposition 2.7. The Markov chain defined on ℵ through (2.21) (for φ = 1,

α = ξ = 0, β = −1, and considering the system only employs voice terminals)

is irreducible, aperiodic, and positive recurrent.

Proof of Proposition 2.7 is presented in the Appendix D. Next, we consider

Equilibrium Point Analysis to study equilibrium behavior of the system. We show

if some conditions on system parameters are met, the system with state estimation

control scheme has unique equilibrium point. First, permission probability is cho-

sen as a function of control signal such that average throughput of the system is

maximized. Second, we choose permission probability as a function of control signal

such that average packet drop probability is minimized.

Maximizing Throughput - EPA: Average throughput is the number of

time slots that carry one packet: η = R∗+Hv

N
. By using equation (2.23) and definition

of the average throughput at equilibrium:

η =
R∗ + Hv

N
(1− γf ) + (1− R∗ + Hv

N
)Cpvwv(C).

Depending on equilibrium value of C, maximum throughput at equilibrium

happens at:

p∗v =





1
C+Hv

C ≥ 1,

1
1+Hv

C < 1.
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Given C = Mv − d
Nω(d−γf )

R∗ and Hv =
γf

d−γf
R∗, equilibrium equation of the

controlled system can be written as:

(Mv − C)ωγf

1− (Mv − C)ω
−W (C) = 0, (2.29)

W (C) =





C
C+Hv

(1− 1
C+Hv

)C+Hv−1 C ≥ 1,

C
1+Hv

(1− 1
1+Hv

)Hv C < 1,

and

ω =
σv

Nσv + γf

, Hv = γfω(N/d)(Mv − C).

Remark 2.6. Equation (2.29) is derived with consideration that R∗ + Hv =

min(N, Nω(Mv − C)). Therefore, when the equilibrium equations of the system is

considered, it is assumed that C ∈ [max(0,Mv − 1
ω
),Mv]and R ∈ [0, N ]. However,

it can easily be shown that C = 0, Mv − 1
ω
, C = Mv, R∗ + Hv = 0, R∗ + Hv = N ,

or a combination thereof, cannot be solutions to equilibrium equation (2.29).

Lemma 2.8. Let us define f+(C) = (1− 1
C+Hv

)C+Hv−1. Here Hv = γfω(N/d)(Mv−

C). Also, we define C̃ = Mv − 1
ω
. Set of equations (2.29) has a unique solution in

C and the system has a single operating point if any of conditions (1) or (2) below

hold:

(1) Mv > 1
ω

+ 1 and −γfω < df+

dC
(C̃),

(2) Mv < 1
ω

+ 1 and either

−γfω <
df+

dC
(1) or

(Mv − 1)ωγf

1− (Mv − 1)ω
(1 + Ĥv) < (1− 1

Mv

)Mv−1.

Here Ĥv = γfω(N/d)(Mv − 1).
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Proof. We can rewrite set of equations (2.29) as following

(
(Mv − C)ωγf

1− (Mv − C)ω
)(

max(1, C) + Hv

C
)− f(C) = 0.

Here

f(C) =





(1− 1
C+Hv

)C+Hv−1 C ≥ 1,

(1− 1
1+Hv

)Hv C < 1,

and we define the following new functions

h(C) =
max(1, C) + Hv

C
, g(C) =

(Mv − C)ωγf

1− (Mv − C)ω
.

Therefore, it is noted that solutions of set of equations (2.29) is the same as roots

of g(C)h(C) = f(C). It is easy to show that:





df
dC

< 0 C ≥ 1,

df
dC

> 0 C < 1.





d2f
dC2 > 0 C ≥ 1,

d2f
dC2 > 0 C < 1.

Also, d(g(C)h(C))
dC

< 0 and d2(g(C)h(C))
dC2 > 0. Note that max(0,Mv − 1

ω
) < C < Mv.

Finally,

f(Mv) = (1− 1

Mv

)Mv−1 > g(Mv)h(Mv) = 0.

Based on these facts and in order to prove that g(C)h(C) = f(C) has exactly one

solution, for the conditions stated in the lemma, we consider different cases:

• Case 1 - Mv > 1 + 1
ω
: In this case g(C)h(C) is positive, strictly decreasing,

and with positive second derivative. Also, f(C) is positive, strictly decreasing,

with positive second derivative, g((Mv− 1
ω
)+)h((Mv− 1

ω
)+) > f(Mv− 1

ω
), and

f(Mv) > g(Mv). Since second derivative of both f(C) and g(C)h(C) are

87



positive, if the system parameters are chosen such that d(gh)
dC

(Mv) < df
dC

(C̃),

then d(g(C)h(C))
dC

< df(C)
dC

for the desired range of C and therefore, g(C)h(C) =

f(C) has a unique solution.

• Case 2 - Mv < 1 + 1
ω
: In this case, if system parameters are chosen such that

either d(gh)
dC

(Mv) < df
dC

(1) or g(1)h(1) < f(Mv) it is guaranteed that the system

has a unique operating point.

Minimizing Packet Drop Probability - EPA: Average packet drop prob-

ability at equilibrium is

Pdrop = γf
νD

1− (1− γf )νN
,

here ν = ν(C, R∗, Hv, pv) = 1 − (1 − R∗+Hv

N
)pv(1 − pv)

C+Hv . It can be shown that

packet drop probability is minimized if

p∗v =
1

C + Hv + 1

Given C = Mv − d
Nω(d−γf )

R∗ and Hv =
γf

d−γf
R∗, equilibrium equation of the

controlled system can be written as:

(Mv − C)ωγf

1− (Mv − C)ω
−W (C) = 0, (2.30)

W (C) =





C
C+Hv+1

(1− 1
C+Hv+1

)C+Hv−1 C ≥ 1,

C
C+Hv+1

(1− 1
C+Hv+1

)Hv C < 1.

and

ω =
σv

Nσv + γf

, Hv = γfω(N/d)(Mv − C).
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Remark 2.7. Equation (2.30) is derived with consideration that R∗ + Hv =

min(N, Nω(Mv − C)). Therefore, when the equilibrium equations of the system is

considered, it is assumed that C ∈ [max(0,Mv − 1
ω
),Mv]and R ∈ [0, N ]. However,

it can easily be shown that C = 0, Mv − 1
ω
, C = Mv, R∗ + Hv = 0, R+Hv = N , or

a combination thereof, cannot be solutions to equilibrium equation (2.30).

Lemma 2.9. Let us define f+(C) = (1− 1
C+Hv+1

)C+Hv−1. Here Hv = γfω(N/d)(Mv−

C). Also, we define C̃ = Mv − 1
ω
. Set of equations (2.30) has a unique solution in

C and the system has a single operating point if any of conditions (1) or (2) below:

(1) Mv > 1
ω

+ 1 : −γfω < df+

dC
(C̃),

(2) Mv < 1
ω

+ 1 and either

−γfω <
df+

dC
(1) or

(Mv − 1)ωγf

1− (Mv − 1)ω
(2 + Ĥv) < (1− 1

Mv + 1
)Mv−1.

Here Ĥv = γfω(N/d)(Mv − 1).

Proof of Lemma 2.9 is very similar to proof of Lemma 2.8.

2.10 Performance Analysis of PRMA-HS Voice Only system over

Random Packet Error Channel

In previous sections, we studied a PRMA-HS system employing voice terminals

on an uplink channel without any error. In this section, we assume that uplink

channel is a “random packet error channel” [25] and we study the PRMA-HS system

with the General Price Based Control. The analysis of this section closely follows

study of PRMA system with General Price Based Control over random error channel.
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2.10.1 General Price Based Control

Figures 3.1 and 3.2 of chapter 3 illustrate general Markov models for the

PRMA-HS system over random packet error channel (employing both voice and

data terminals). In this section, we assume that when a contending voice terminal

transmits a packet on an available time slot without any collision, it reserves that

time slot if no packet header error happens. If there is a header packet error, access

point (such as base station and/or satellite) interprets the error either as a collision

or as an event that no packet was transmitted [25]. If there is a packet header error

in a contending packet, we assume that with a fixed probability q the base station

sends a collision feedback and with probability 1− q it sends an idle feedback. We

define following events: An = {at an available time slot n, 1 packet transmitted with

error - access point assumed idle} and Bn = {at an available time slot n, 1 packet

transmitted with error - access point assumed collision}.

Therefore, control signal update algorithm (2.20) is changed as follows. As

in pervious sections, and only for notation purposes, we assume that d = N and

therefore, round trip delay is one time slot.

un+1 =





un if slot n− 1 is reserved and reservation is kept,

un + φ if slot n− 1 is reserved and reservation is lost,

[un − αI(Zn−1 = 0 ∨ An−1) + βI(Zn−1 = 1 ∧ no error)

+ ξI(Zn−1 ≥ 2 ∨Bn−1]
+ if slot n− 1 is not reserved.

(2.31)

Note that in random packet error channel, control signal at time slot n + 1
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is decreased by α if time slot n − 1 was either idle or a successful transmission by

a contending or hindering terminal contained a packet header error and the access

point assumed an idle time slot. Also, control signal is increased by ξ if either time

slot n− 1 had a collision or a packet header error in a successful transmission by a

contending or hindering terminal, which was assumed to be collision by the access

point. In the case of a successful transmission with no packet header error, control

signal is updated by β. If time slot n − 1 was reserved and the reservation is lost

(either because of packet header error or because all packet of voice message are

transmitted) control signal is increased by φ.

Transition probabilities for this Markov chain can be written as before con-

sidering packet random error. It is noted that the Markov chain modeling the

PRMA-HS system over random packet error channel has the same state space ℵ as

PRMA-HS system.

2.10.2 Price Based Control

An special case of General Price Based Control is for φ = 0. Transition prob-

abilities for this Markov chain can be written as before considering packet random

error. It is noted that the Markov chain modeling the PRMA-HS system over ran-

dom packet error channel has the same state space ℵ as PRMA-HS system. We can

prove that this Markov model is irreducible, aperiodic, and under Assumption 2.2,

the Markov chain is positive recurrent.

Next, we study performance of the PRMA-HS system with price based control
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scheme over random packet error channel using the equilibrium point approach.

Same analysis as in previous section can be used. A point (C,R∗, Hv, U) is an

equilibrium point of the system if:

(Mv − C −R∗ −Hv)σv + (
R∗ + Hv

N
)(1− γf )∆

− (1− R∗ + Hv

N
)Cpvwv(C)(1−∆) = 0,

(
R∗ + Hv

N
)γf − (Mv − C −R∗ −Hv)σv = 0,

(R/N)− (
R∗ + Hv

N
)(1− γf )(1−∆) = 0,

(−α(1− q)∆ + β(1−∆)− ξ(1− q∆))(C + Hv)pvwv(C)

− (α + ξ)(1− pv)
C+Hv + ξ = 0. (2.32)

Here pv = pv(U), R∗ = R + R′, and R′
N−N/d

= Hv

N/d
. Next, we derive a set of sufficient

conditions on the control parameters such that this system has a unique equilibrium

point.

Lemma 2.10. We define f+(C) = ξ
α+ξ

C(exp(
− ln( ξ

α+ξ
)

C+Hv
)−1). Here Hv = γfω(N

d
)(Mv−

C). There exists a set of control parameters (α, β, ξ) for which the set of equations

(2.32) has a unique solution in (C, U) and the system has a single operating point

if any of conditions (1a), (1b), or (2) below:

(1a) Mv ≥ 1 + 1
ω

and

1

ln( ξ
α+ξ

)
(exp(

ln( ξ
α+ξ

)

Mv

)− 1) <
1− (N/d)γfω

Mv

, and

ln(
ξ

α + ξ
) <

−2γf (N/d)ωMv(1 + γf (N/d)ω(Mv − 1))

1− γf (N/d)ω
, and

−ωγ′f
1−∆

<
df+

dC
(C̃),
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(1b) Mv ≤ 1 + 1
ω

and

1

ln( ξ
α+ξ

)
(exp(

ln( ξ
α+ξ

)

Mv

)− 1) <
1− (N/d)γfω

Mv

, and

ln(
ξ

α + ξ
) <

−2γf (N/d)ωMv(1 + γf (N/d)ω(Mv − 1))

1− γf (N/d)ω
, and either

(Mv − 1)ωγf

1− (Mv − 1)ω
≤ ξ

α + ξ
Mv(exp(− 1

Mv

ln(
ξ

α + ξ
))− 1), or

−ωγ′f
1−∆

<
df+

dC
(1),

here, C̃ = Mv − 1
ω
,

(2)
1

ln( ξ
α+ξ

)
(exp(

ln( ξ
α+ξ

)

Mv

)− 1) <
1− (N/d)γfω

Mv

, and

ln(
ξ

α + ξ
) <

−2γf (N/d)ωMv(1 + γf (N/d)ω(Mv − 1))

1− γf (N/d)ω
, and

ξ

α + ξ
[(1 +

(1− γf (N/d)ω) ln( ξ
α+ξ

)

(1 + H̃v)2
) exp(− 1

1 + H̃v

ln(
ξ

α + ξ
))− 1] <

ω

γ′f (1−∆)
[(1−∆)

ξ

α + ξ
Mv(exp(− 1

Mv

ln(
ξ

α + ξ
))− 1) + γ′f ]

2,

here, H̃v = γf (N/d)ω(Mv − 1) and γ′f = γf + (1− γf )∆.

Proof of Lemma 2.10 and exitance of the control parameters (α, β, ξ) with

β = α(1−q)∆+ξ(1−q∆)
1−∆

such that the conditions hold is shown similar to proof of Lemma

2.7.

2.10.3 State Estimation-Based Control

In this subsection we consider state estimation-based control over random

packet error channel, a special case of General Price Based Control for φ = 1,

α = ξ = 0, and β = −1.
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Maximizing Throughput - EPA: Depending on equilibrium value of C,

permission probability is chosen as following to maximize throughput of the system:

p∗v =





1
C+Hv

C ≥ 1,

1
1+Hv

C < 1.

Equilibrium equations of the system can be written as follows

(Mv − C)ω(γf + (1− γf )∆)− (1− (Mv − C)ω)Wv(C)(1−∆) = 0,

W (C) =





C
C+Hv

(1− 1
C+Hv

)C+Hv−1 C ≥ 1,

C
1+Hv

(1− 1
1+Hv

)Hv C < 1.

(2.33)

Lemma 2.11. Let us define f+(C) = (1 − 1
C+Hv

)C+Hv−1. Here Hv = ω(γf + (1 −

γf )∆)(N/d)(Mv − C). Also, we define C̃ = Mv − 1
ω
. Set of equations (2.33) has a

unique solution in C and the system has a single operating point if any of conditions

(1) or (2) below hold:

(1) Mv > 1
ω

+ 1 and − (γf+(1−γf )∆)ω

1−∆
< df+

dC
(C̃),

(2) Mv < 1
ω

+ 1 and either

− (γf + (1− γf )∆)ω

1−∆
<

df+

dC
(1) or

(Mv − 1)ω(γf + (1− γf )∆)

(1− (Mv − 1)ω)(1−∆)
(1 + Ĥv) < (1− 1

Mv

)Mv−1.

Here Ĥv = ω(γf + (1− γf )∆)(N/d)(Mv − 1).

Proof is similar to proof of Lemma 2.8.

Minimizing Packet Drop Probability - EPA: Permission probability is

chosen as following to minimize packet drop probability of the system:

p∗ =
1

C + Hv + 1
.
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Equilibrium equations of the system can be written as follows

(Mv − C)ω(γf + (1− γf )∆)− (1− (Mv − C)ω)Wv(C)(1−∆) = 0,

W (C) =





C
C+Hv+1

(1− 1
C+Hv+1

)C+Hv−1 C ≥ 1,

C
C+Hv+1

(1− 1
C+Hv+1

)Hv C < 1.

(2.34)

Lemma 2.12. Let us define f+(C) = (1 − 1
C+Hv

)C+Hv−1. Here Hv = ω(γf + (1 −

γf )∆)(N/d)(Mv − C). Also, we define C̃ = Mv − 1
ω
. Set of equations (2.34) has a

unique solution in C and the system has a single operating point if any of conditions

(1) or (2) below hold:

(1) Mv > 1
ω

+ 1 and − (γf+(1−γf )∆)ω

1−∆
< df+

dC
(C̃),

(2) Mv < 1
ω

+ 1 and either

− (γf + (1− γf )∆)ω

1−∆
<

df+

dC
(1) or

(Mv − 1)ω(γf + (1− γf )∆)

(1− (Mv − 1)ω)(1−∆)
(2 + Ĥv) < (1− 1

Mv + 1
)Mv−1.

Here Ĥv = ω(γf + (1− γf )∆)(N/d)(Mv − 1).

Proof is similar to proof of Lemma 2.9.

2.11 Numerical Results

Consider a PRMA-HS voice only system with following parameters [23]: Rc =

720, 000 bits/s, Rs = 32, 000 bits/s, T = 0.016 s, H = 64 bits, RTD = 1 time slot,

Dmax = 0.032 s, t1 = 1.00 s, and t2 = 1.35 s. Figures 2.21, 2.22, and 2.23 illustrate

packet drop probability (Pdrop) for the system when Mv is taken as bifurcation
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parameter and no control is used. In these figures, permission probability is fixed

at pv = 0.2, pv = 0.3, and pv = 0.4, respectively.

Next, we design a price based control for the same PRMA-HS voice system

and compare bifurcation diagrams. We choose β = ξ = 1. The control parameter

α is chosen to be α = 1.04 such that conditions in Lemma 2.7 is satisfied. Figure

2.24 shows bifurcation diagram for packet drop probability, when Mv is bifurcation

parameter. We can see that by using the price based control, bifurcations are

eliminated. Moreover, capacity of the PRMA-HS system has increased to 42 from

38 when pv = 0.2, 28 when pv = 0.3, and 21 when pv = 0.4.

Further, we design state estimation control schemes for PRMA-HS system

with voice terminals. Figure 2.25 illustrates bifurcation diagram for packet drop

probability, when state estimation control scheme is based on maximum through-

put. We can observe that bifurcations are eliminated and capacity of the PRMA

system is increased to 43. Figure 2.26 illustrates bifurcation diagram for packet drop

probability, when state estimation control scheme is based on minimum packet drop

probability. It can be observed that bifurcations are controlled and capacity of the

system is 43.

Next, we consider the same voice PRMA-HS system over random packet error

channel. Figure 2.27 shows bifurcation diagram for packet drop probability when

error probability (∆) is the bifurcation parameter, Mv = 25, and pv = 0.3. This fig-

ure shows that only for small values of ∆ system has an acceptable drop probability

(less than 0.01). Also, figure 2.28 shows bifurcation diagrams for drop probability

when Mv is chosen as the bifurcation parameter and for two different values of ∆.
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Plus signs show packet drop probability for ∆ = 0.05 and points are for ∆ = 0.01.

It can be noticed that for ∆ = 0.01 capacity of the system is 27 and for ∆ = 0.05

capacity is 24.

Further, we use the price based bifurcation control with the same parameters

as before, β = ξ = 1 and α = 1.04. Figure 2.29 shows bifurcation diagram for the

packet drop probability for both ∆ = 0.01 and ∆ = 0.05 when Mv is the bifurcation

parameter. Capacity of the system is increased to 41 and 38 for ∆ = 0.01 and

∆ = 0.05, respectively. Here we assumed that q = 1.

Figure 2.30 illustrates effects of state estimation control scheme (based on

maximum throughput) on nonlinear behavior of the PRMA-HS system. If error

probability is ∆ = 0.01, bifurcations of the operating points of the system is com-

pletely eliminated and capacity of the PRMA-HS system is increased to 42. How-

ever, for the case where ∆ = 0.05, although the bifurcations are not completely

eliminated (PRMA-HS voice system has three equilibrium points at Mv = 42), but

they are controlled by delaying the bifurcations. In this case, capacity of the system

is increased to 39. Figure 2.31 illustrates effects of state estimation control (based

on minimizing packet drop probability) on behavior of the PRMA-HS system over

random packet error channel for ∆ = 0.01 and ∆ = 0.05. Bifurcations are controlled

and capacity of the system is Mv = 43 for ∆ = 0.01 and Mv = 41 for ∆ = 0.05.
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2.12 Summary and Future Lines of Work

In this chapter, we studied the equilibrium behavior of voice systems employing

PRMA or PRMA-HS protocols as their medium access control scheme. We studied

how small changes in system parameters can transfer a system with one operating

point to a system with several operating points, therefore, limiting capacity of the

system. Further, we introduced price based control and state estimation-based con-

trol and studied the effects of these control schemes on the equilibrium behavior of

PRMA and PRMA-HS voice systems. We derived sufficient conditions on control

and system parameters such that the controlled systems will have unique equilib-

rium points. The controlled systems were analyzed over error-free and random error

channels. Also, we considered the voice system with PRMA and PRMA-HS that

employs multiple transmission power at the terminals and capture effect at the

access point and studied the effects of multiple power levels and capture on bifur-

cations of the equilibrium points of the system. Future lines of research can include

extending the analysis of introduced control schemes to other variations of PRMA

protocol for voice systems, studying a dynamic control scheme based on state obser-

vation in addition to stat estimation, and extending the bifurcation analysis using

multiple power levels to more accurate models of capture that deals with signal-to-

interface-plus-noise ration and different distances of terminals from the access point.

Also, similar price based control can be used adjust rate of generating voice mes-

sages and/or the average number of voice packets in a message. Further, as future

work, robustness of the introduced controlled schemes can be studied considering
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variations in system parameters.
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Figure 2.21: Bifurcation diagram for
packet drop probability with no control
(pv = 0.2)
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Figure 2.22: Bifurcation diagram for
packet drop probability with no control
(pv = 0.3)
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Figure 2.23: Bifurcation diagram for
packet drop probability with no control
(pv = 0.4)
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Figure 2.24: Bifurcation diagram for
packet drop probability with the price
based control (α = 1.04, β = ξ = 1)
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Figure 2.25: Bifurcation diagram for
packet drop probability with state es-
timation control (maximizing through-
put)
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Figure 2.26: Bifurcation diagram for
packet drop probability with state es-
timation control (minimizing Pdrop)
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Figure 2.27: Bifurcation diagram for
packet drop probability no control (∆ is
bifurcation parameter, pv = 0.3, Mv =
25)
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Figure 2.28: Bifurcation diagram for
packet drop probability with no control
(pv = 0.3 and two different values for
∆)
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Figure 2.29: Bifurcation diagram for
packet drop probability with control
(∆ = 0.05, ∆ = 0.01, α = 1.04,
β = ξ = 1)
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Figure 2.30: Bifurcation diagram for
packet drop probability with state ob-
servation control (maximizing through-
put) (∆ = 0.05 and ∆ = 0.01)
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Figure 2.31: Bifurcation diagram for
packet drop probability with state es-
timation control (minimizing Pdrop) for
∆ = 0.05 and ∆ = 0.01.
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Chapter 3

Equilibrium Analysis and Control for PRMA and PRMA-HS

Protocols for Voice and Data Terminals

Focus of our analysis in previous chapter was on a system employing voice

terminals using the PRMA or PRMA-HS protocols. However, in this chapter, we

expand our analysis to a system that employs both voice and data terminals. We

study nonlinear instabilities of the PRMA and PRMA-HS protocols and introduce

a General Price Based Control.

We start this chapter by modeling the PRMA-HS protocol with General Price

Based Control as a Markov chain. Further, we consider the PRMA protocol as a

special case of the PRMA-HS protocol (with round trip delay of zero) and analyt-

ically study stability of specific variations of the PRMA voice-data system using

equilibrium point analysis. Also, we consider an uplink channel of the system with

random packet error, and study our control schemes over this channel.

3.1 General Price Based Control

As discussed in previous chapters, we define round trip delay for PRMA-HS

protocol as RTD = N
d

times slots, assuming d is an integer devisor of N . For the

sake of simplicity in notation, for modeling the system based on Markov chain, we

assume that d = N and therefore, RTD = 1 time slot. However, our analysis can
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be expanded to any value of round trip delay and equilibrium equation analysis is

based on more general values of delay.

In the PRMA-HS protocol, at the end of each time slot (for example, time

slot n), terminals receive a feedback message regarding status of RTD time slot

ago (time slot n − RTD). Voice and data terminals use this feedback information

to adjust their permission probability. We assume that permission probabilities, pv

and pd, are functions of a control signal u. Control signal is updated at the end of

each time slot based on equation (3.1).

un+1 =





un if slot n− 1 is reserved and reservation is kept,

un + φ if slot n− 1 is reserved and reservation is lost,

[un − αI(Zn−1 = 0) + βI(Zn−1 = 1 ∧ by a CON or BLK)

+ ξI((Zn−1 ≥ 2) ∨ (Zn−1 = 1 ∧ by a HIN))]+

if slot n− 1 is not reserved.

(3.1)

Here φ, α, and ξ are positive real numbers and β is a real number. [x]+ denotes

max(0, x). Random variable Zn shows the number of packets that are transmitted

at beginning of time slot n. Permission probabilities, pv and pd, are updated at end

of each time slot based on new value of the control signal u.

Assumption 3.1. We assume that permission probabilities pv(u) and pd(u) are

continuous, bounded (0 ≤ pv(u), pd(u) ≤ 1), and strictly decreasing in u (u ∈
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[0, +∞)). Furthermore, there exists a positive constant umax such that pv(u) =

pd(u) = 0 when u ≥ umax.

Based on update equation (3.1), if time slot n−1 is reserved and its reservation

is kept, control signal u is unchanged. However, if reservation of time slot n − 1

is lost, control signal u is increased by φ and as a result, permission probabilities

are decreased. In the case that time slot n− 1 is not reserved, if there is no packet

transmission at time slot n− 1 (Zn−1 = 0), control signal decreases and as a result,

permission probabilities are increased. If there is a collision at time slot n−1 (Zn−1 ≥

2) or a successful transmission by a terminal in HIN state (Zn−1 = 1∧ by a HIN),

control signal is increased by ξ and therefore, permission probabilities are decreased.

For a successful packet transmission at time slot n− 1 by a contending/backlogged

terminal (Zn−1 = 1 ∧ by a CON or BLK), depending on value of β, permission

probabilities are either increased or decreased.

We define system state as Xn = (Yn−1, Yn) in order to model the PRMA-HS

protocol with General Price Based Control. Here

Yn = (cn, rn, hvn , bn, hdn , un),

c ∈ {0, 1, 2, · · · ,Mv}, r ∈ {0, 1, 2, · · · , N}, hv ∈ {0, 1},

b ∈ {0, 1, 2, · · · ,Md}, hd ∈ {0, 1},

u ∈ Γ = {min(uMAX , [fφ− aα + eβ + dξ]+)|f, a, e, d ∈ Z+}.

Here uMAX = umax + max(Nφ + β, ξ). Then state space ℵ is a subset of

({0, 1, 2, · · · ,Mv} × {0, 1, 2, · · · , N} × {0, 1} × {0, 1, 2, · · · ,Md} × {0, 1} × Γ)2,
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with following constraints. If ((c, r, hv, b, hd, u), (c1, r1, hv1 , b1, hd1 , u1)) ∈ ℵ

• c + r + hv ≤ Mv and c1 + r1 + hv1 ≤ Mv

• b + hd ≤ Md and b1 + hd1 ≤ Md

• r + hv ≤ N and r1 + hv1 ≤ N

• c− 1 ≤ c1 ≤ Mv − r − hv

• b− 1 ≤ b1 ≤ Md − hd

• r − 1 ≤ r1 ≤ r + 1

• hv + hd ≤ 1 and hv1 + hd1 ≤ 1

• For hv = 1 or hd = 1, control signal u1 ≥ [β]+

• For r = N , control signal u ≥ [β]+ and u1 ≥ [β]+

State space is countable and transition probabilities are written as follows:

Pr(Xn+1 = X1|Xn = X) = (3.2)

• V (c1, c, r, hv)D(b1, b, hd)(
r−1+hv−1

N
)γf (

r+hv

N
+ Θ + Θcb)

if c ≤ c1 ≤ Mv − hv − r, b ≤ b1 ≤ Md − hd, r1 = r − 1, hv1 = hv, hd1 = hd, u1 =

u + φ

• V (c1 + 1, c, r, hv)D(b1, b, hd)(
r−1+hv−1

N
)γfΘ

c

if c−1 ≤ c1 ≤ Mv−hv−r−1, b ≤ b1 ≤ Md−hd, r1 = r−1, hv1 = hv +1, hd1 =

hd, u1 = u + φ
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• V (c1, c, r, hv)D(b1 + 1, b, hd)(
r−1+hv−1

N
)γfΘ

b

if c ≤ c1 ≤ Mv − hv − r, b− 1 ≤ b1 ≤ Md − hd − 1, r1 = r − 1, hv1 = hv, hd1 =

hd + 1, u1 = u + φ

• V (c1, c, r, hv)D(b1, b, hd)(
r−1+hv−1

N
)(1− γf )(

r+hv

N
+ Θ + Θcb)

if c ≤ c1 ≤ Mv − hv − r, b ≤ b1 ≤ Md − hd, r1 = r, hv1 = hv, hd1 = hd, u1 = u

• V (c1 + 1, c, r, hv)D(b1, b, hd)(
r−1+hv−1

N
)(1− γf )Θ

c

if c− 1 ≤ c1 ≤ Mv − hv − r − 1, b ≤ b1 ≤ Md − hd, r1 = r, hv1 = hv + 1, hd1 =

hd, u1 = u

• V (c1, c, r, hv)D(b1 + 1, b, hd)(
r−1+hv−1

N
)(1− γf )Θ

b

if c ≤ c1 ≤ Mv − hv − r, b − 1 ≤ b1 ≤ Md − hd − 1, r1 = r, hv1 = hv, hd1 =

hd + 1, u1 = u

• V (c1, c, r, hv)D(b1, b, hd)Θ
cb
−1(

r+hv

N
+ Θ + Θcb)

if c ≤ c1 ≤ Mv − hv − r, b ≤ b1 ≤ Md − hd, r1 = r, hv1 = hv, hd1 = hd, u1 =

[u− α]+

• V (c1 + 1, c, r, hv)D(b1, b, hd)Θ
cb
−1Θ

c

if c− 1 ≤ c1 ≤ Mv − hv − r − 1, b ≤ b1 ≤ Md − hd, r1 = r, hv1 = hv + 1, hd1 =

hd, u1 = [u− α]+

• V (c1, c, r, hv)D(b1 + 1, b, hd)Θ
cb
−1Θ

b

if c ≤ c1 ≤ Mv − hv − r, b − 1 ≤ b1 ≤ Md − hd − 1, r1 = r, hv1 = hv, hd1 =

hd + 1, u1 = [u− α]+
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• V (c1, c, r, hv)D(b1, b, hd)Θ
c
−1(

r+hv

N
+ Θ + Θcb)

if c ≤ c1 ≤ Mv − hv − r, b ≤ b1 ≤ Md − hd, r1 = r + 1, hv1 = hv − 1, hd1 =

hd, u1 = [u + β]+

• V (c1 + 1, c, r, hv)D(b1, b, hd)Θ
c
−1Θ

c

if c− 1 ≤ c1 ≤ Mv − hv − r − 1, b ≤ b1 ≤ Md − hd, r1 = r + 1, hv1 = hv, hd1 =

hd, u1 = [u + β]+

• V (c1, c, r, hv)D(b1 + 1, b, hd)Θ
c
−1Θ

b

if c ≤ c1 ≤ Mv−hv−r, b−1 ≤ b1 ≤ Md−hd−1, r1 = r+1, hv1 = hv−1, hd1 =

hd + 1, u1 = [u + β]+

• V (c1, c, r, hv)D(b1, b, hd)Θ
b
−1(

r+hv

N
+ Θ + Θcb)

if c ≤ c1 ≤ Mv − hv − r, b ≤ b1 ≤ Md − hd, r1 = r, hv1 = hv, hd1 = hd − 1, u1 =

[u + β]+

• V (c1 + 1, c, r, hv)D(b1, b, hd)Θ
b
−1Θ

c

if c− 1 ≤ c1 ≤ Mv − hv − r − 1, b ≤ b1 ≤ Md − hd, r1 = r, hv1 = hv + 1, hd1 =

hd − 1, u1 = [u + β]+

• V (c1, c, r, hv)D(b1 + 1, b, hd)Θ
b
−1Θ

b

if c ≤ c1 ≤ Mv − hv − r, b − 1 ≤ b1 ≤ Md − hd − 1, r1 = r, hv1 = hv, hd1 =

hd, u1 = [u + β]+

• V (c1, c, r, hv)D(b1, b, hd)Θ−1(
r+hv

N
+ Θ + Θcb)

if c ≤ c1 ≤ Mv−hv−r, b ≤ b1 ≤ Md−hd, r1 = r, hv1 = hv, hd1 = hd, u1 = u+ξ
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• V (c1 + 1, c, r, hv)D(b1, b, hd)Θ−1Θ
c

if c− 1 ≤ c1 ≤ Mv − hv − r − 1, b ≤ b1 ≤ Md − hd, r1 = r, hv1 = hv + 1, hd1 =

hd, u1 = u + ξ

• V (c1, c, r, hv)D(b1 + 1, b, hd)Θ−1Θ
b

if c ≤ c1 ≤ Mv − hv − r, b − 1 ≤ b1 ≤ Md − hd − 1, r1 = r, hv1 = hv, hd1 =

hd + 1, u1 = u + ξ

• 0 Otherwise

here

X1 = ((c, r, hv, b, hd, u), (c1, r1, hv1 , b1, hd1 , u1)),

X = ((c−1, r−1, hv−1 , b−1, hd−1 , u−1), (c, r, hv, b, hd, u)),

V (c1, c, r, hv) =




Mv − c− r − hv

c1 − c


 σc1−c

v (1− σv)
Mv−c1−r−hv ,

D(b1, b, hd) =




Md − b− hd

b1 − b


 σb1−b

d (1− σd)
Md−b1−hd ,

Θc = (1− r + hv

N
)cpv(1− pv)

c+hv−1(1− pd)
b+hd ,

Θb = (1− r + hv

N
)bpd(1− pd)

b+hd−1(1− pv)
c+hv ,

Θcb = (1− r + hv

N
)(1− pv)

c+hv(1− pd)
b+hd ,

Θ = (1− r + hv

N
)−Θcb −Θc −Θb,

Θc
−1 = (1− r−1 + hv−1

N
)c−1pv−1(1− pv−1)

c−1+hv−1−1(1− pd−1)
b−1+hd−1 ,

Θb
−1 = (1− r−1 + hv−1

N
)b−1pd−1(1− pd−1)

b−1+hd−1
−1(1− pv−1)

c−1+hv−1 ,
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Θcb
−1 = (1− r−1 + hv−1

N
)(1− pv−1)

c−1+hv−1 (1− pd−1)
b−1+hd−1 ,

Θ−1 = (1− r−1 + hv−1

N
)−Θcb

−1 −Θc
−1 −Θb

−1,

pv = pv(u), pv−1 = pv(u−1), pd = pd(u), pd−1 = pd(u−1).

3.2 Price Based Control

In this section, we study a special case of General Price Based Control assum-

ing φ = 0. Therefore, control signal is only updated during an available time slot.

Because of large size of the state space, studying the PRMA-HS system with priced

base control using transition probabilities is very difficult. Therefore, stationary

behavior of the system is analyzed using equilibrium point analysis (EPA). In EPA

it is assumed that the system is in equilibrium, therefore, any change in any state

is zero. One-step expected change (mean drift) of the control signal at state X is

defined as: d(X) = E(un+1 − un|Xn = X). By using definition of control signal in

(3.1) (assuming φ = 0), expected drift is determined as:

d(X) = (max(−α,−u)− ξ)(1− r−1 + hv−1

N
)(1− pv−1)

c−1+hv−1 (1− pd−1)
b−1+hd−1

+(max(β,−u)− ξ)(1− r−1 + hv−1

N
)[c−1pv−1(1− pv−1)

c−1+hv−1−1(1− pd−1)
b−1+hd−1

+b−1pd−1(1− pd−1)
b−1+hd−1

−1(1− pv−1)
c−1+hv−1 ] + ξ(1− r−1 + hv−1

N
).

Or relaxed drift equation is:

dr(X) =− (α + ξ)(1− r−1 + hv−1

N
)(1− pv−1)

c−1+hv−1 (1− pd−1)
b−1+hd−1

+(β + ξ)(1− r−1 + hv−1

N
)[c−1pv−1(1− pv−1)

c−1+hv−1−1(1− pd−1)
b−1+hd−1

+b−1pd−1(1− pd−1)
b−1+hd−1

−1(1− pv−1)
c−1+hv−1 ] + ξ(1− r−1 + hv−1

N
). (3.3)
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Now we derive equilibrium equations of the system. As discussed in chap-

ter 1 with respect to equilibrium equation of the PRMA-HS system, note that

at equilibrium, the number of voice terminals in each state HINi is Hv
(N/d)

for

i = N − 1, · · · , N − N/d. In the same way, the number of terminals, at equi-

librium, in state RES
′
i is R′

N−(N/d)
for i = N − N/d − 1, · · · , 0. It is easy to show

that

Hv

N/d
=

R′

N −N/d
.

Also, the number of voice terminals in each state RESi is R
N

for i = 0, · · · , N − 1.

We define R∗ = R +R′ as the number of voice terminals in RES and RES
′
. Notice

that

R∗ + Hv

N
=

R

N
+

R′

N −N/d
.

A point (C, R∗, Hv, B, Hd, U) is called an equilibrium point, if

(Mv − C −R∗ −Hv)σv − (1− R∗ + Hv

N
)Cpvwv(C,B) = 0,

(
R∗ + Hv

N
)γf − (Mv − C −R∗ −Hv)σv = 0,

(
R∗ + Hv

N
)γf − (

d

N
)Hv = 0,

(Md −B −Hd)σd − (1− R∗ + Hv

N
)Bpdwd(C,B) = 0,

(Md −B −Hd)σd − (
d

N
)Hd = 0,

(α + ξ)(1− pv)
C+Hv(1− pd)

B+Hd − (β − ξ)(Cpvwv(C,B) + Bpdwd(C, B))− ξ = 0,

(3.4)

here wv(C, B) =





(1− pv(U))C+Hv−1(1− pd(U))B+Hd C ≥ 1

(1− pv(U))Hv(1− pd(U))B+Hd C < 1

,
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and wd(C,B) =





(1− pd(U))B+Hd−1(1− pv(U))C+Hv B ≥ 1

(1− pd(U))Hd(1− pv(U))C+Hv B < 1

.

Set of equations (3.4) can be simplified as following:

F1(C,B,U) =Mv − C − (
1

ω
)(

Cpvwv(C, B)

γf + Cpvwv(C,B)
) = 0,

F2(C,B,U) =Md −B − (
N

d
+

1

σd

)γf (
Bpdwd(C, B)

γf + Cpvwv(C, B)
) = 0,

F3(C,B,U) =(α + ξ)(1− pv)
C+Hv(1− pd)

B+Hd

− (β − ξ)(Cpvwv(C,B) + Bpdwd(C, B))− ξ = 0, (3.5)

here ω = σv

γf+σvN
, pv = pv(U), pd = pd(U), and:

Hv = γf (
N

d
)ω(Mv − C),

R∗ = (d− γf )(
N

d
)ω(Mv − C),

Hd = (
Nσd

Nσd + d
)(Md −B).

In the next few sections, we focus our analysis on the PRMA protocol with

voice and data terminals, therefore, assuming round trip delay is negligible.

3.3 PRMA Voice and Data

In this section we consider a PRMA system that employs both voice and data

terminals. Here, we assume that round trip delay is negligible and from now on

in this chapter we assume that permission probabilities for both voice and data

terminals are the same, pv = pd = p.

Proposition 3.1. The Markov chain defined on ℵ through (3.2) (considering φ = 0,
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the system employs voice and data terminals, and round trip delay is negligible) is

irreducible, aperiodic, and positive recurrent.

Detailed proof is presented in the Appendix E. Set of equations (3.4) modeling

equations of the PRMA-HS voice-data system can be simplified as following for the

PRMA voice-data system considered in this section

(Mv − C −R)σv − (1− R

N
)Cpw(C,B) = 0,

(
R

N
)γf − (Mv − C −R)σv = 0,

(Md −B)σd − (1− R

N
)Bpw(C, B) = 0,

(α + ξ)(1− p)C+B − (β − ξ)(C + B)pw(C,B)− ξ = 0. (3.6)

here w(C,B) =





(1− p(U))C+B−1 C + B ≥ 1

1 C + B < 1

.Set of equations (3.6) can be

further simplified as following:

F1(C, B, U) =Mv − C − (
1

ω
)(

Cpw(C, B)

γf + Cpw(C,B)
) = 0,

F2(C, B, U) =Md −B − (
γf

σd

)(
Bpw(C, B)

γf + Cpw(C,B)
) = 0,

F3(C, B, U) =(α + ξ)(1− p)C+B − (β − ξ)(C + B)pw(C, B)− ξ = 0, (3.7)

Remark 3.1. Based on the first two equations of the set of equations (3.6), it

can be shown that R = min(N,Nω(Mv − C)), where ω = σv

γf+Nσv
. Also, based on

first and third equations of the set of equations (3.6), it can easily be shown that

B(C) = MdC

(Mv−C)
γf ω

σd
+C

. Therefore, when the equilibrium equations of the system is

considered, it is assumed that C ∈ [max(0,Mv − 1
ω
),Mv], R ∈ [0, N ], B ∈ [0,Md],

and p ∈ [0, 1]. However, it can easily be shown, by using the set of equation (3.6),
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that C = 0, Mv − 1
ω
, C = Mv, B = 0, B = Md, R = 0, R = N , p = 0, p = 1 (for

β = ξ as considered in Lemma 3.1), or a combination thereof, cannot be solutions

to the set of equilibrium equations (3.6).

Lemma 3.1. Let us define f+(C) = ξ
α+ξ

(C + B)(exp( −1
C+B

ln( ξ
α+ξ

)) − 1). Here

B(C) = MdC

(Mv−C)
γf ω

σd
+C

. There exists a set of control parameters (α, β, ξ) for which

the set of equations (3.7) has a unique solution in (C, U) and the system has a single

operating point if any of conditions (1), (2), or (3) below hold:

(1)
γf ω

σd
< 1, Mv − 1

ω
> Ĉ, and −γfω(1 + Md

Mv
) < df+

dC
(C̃),

(2)
γf ω

σd
< 1, Mv − 1

ω
< Ĉ, and either

− γfω(1 +
Md

Mv

) <
df+

dC
(Ĉ), or

(Mv − Ĉ)ωγf + (Md − B̂)σd

1− (Mv − Ĉ)ω
≤ ξ

α + ξ
(Mv + Md)(exp(

−1

Mv + Md

ln(
ξ

α + ξ
))− 1),

(3)
γf ω

σd
≥ 1, Mv < 1

ω
+ Ĉ and

(Mv − Ĉ)ωγf + (Md − B̂)σd

1− (Mv − Ĉ)ω
≤ ξ

α + ξ
(Mv + Md)(exp(

−1

Mv + Md

ln(
ξ

α + ξ
))− 1).

Here C̃ = Mv − 1
ω
, Ĉ + B̂ = 1, and B̂ = B(Ĉ).

Proof. We will show the existence of control parameters (α, β, ξ) with β = ξ such

that the conditions hold. We define following new functions

f(C, U) = (C + B)pw(C,U) g(C) =
(Mv − C)ωγf + (Md −B)σd

1− (Mv − C)ω
.

It is easy to show that equilibrium points of set of equations (3.7) are same

as fixed points of f(C,U) = g(C). Note that R = min(N,Nω(Mv − C)) and B =
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MdC

(Mv−C)
γf ω

σd
+C

. Solving F3(C, U) = 0 in equation (3.7) for p (assuming β = ξ) and

substituting it in f(C,U), we have

f(C) =





ξ
α+ξ

(C + B)(exp( −1
C+B

ln( ξ
α+ξ

))− 1) C + B ≥ 1

(C + B)(1− exp( 1
C+B

ln( ξ
α+ξ

))) C + B < 1

It is easy to show that first and second derivatives of f(C) are as follows

df

dC
< 0 for C + B ≥ 1 and

df

dC
> 0 for C + B < 1.

And if
γf ω

σd
< 1

d2f

dC2
> 0 for C + B ≥ 1 and

d2f

dC2
< 0 for C + B < 1.

Note that max(0,Mv − 1
ω
) < C < Mv. Also, in this range of values of C and for

γf ω

σd
< 1, it is easy to show that dg

dC
< 0 and d2g

dC2 > 0. Also, note that

f(Mv) =
ξ

α + ξ
(Mv + Md)(exp(− 1

(Mv + Md)
ln(

ξ

α + ξ
))− 1) > g(Mv) = 0.

We define Ĉ such that B(Ĉ)+ Ĉ = 1. Since B is a strictly increasing function of C,

Ĉ is unique. Further, for simplification in notations, we define C̃ = Mv − 1
ω
. Now

based on the above-noted facts, in order to prove that f(C) = g(C) has exactly one

solution, for the conditions stated in the lemma, we consider different cases:

• Case 1:
γf ω

σd
< 1

1. Mv > Ĉ + 1
ω
: In this case we only consider Mv − 1

ω
< C < Mv. In

this range, g(C) is positive and strictly decreasing with positive second

derivative. Also, f(C) is positive, strictly decreasing, with positive second

derivative, f(Mv − 1
ω
) < g((Mv − 1

ω
)+), and f(Mv) > g(Mv). Therefore,
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if the control parameters are chosen such that g(C) − f(C) is strictly

decreasing in the range of C, then g(C)−f(C) = 0 has a unique solution.

Since both functions g(C) and f(C) have positive second derivatives, we

choose the control parameters such that dg
dC

(Mv) < df
dC

(C̃).

2. 1
ω

< Mv < Ĉ + 1
ω
: In this case, in order to make sure that there exist only

one solution, we chose the control parameters (α, β, ξ) such that either

dg
dC

(Mv) < df
dC

(Ĉ) or g(Ĉ) < f(Mv).

3. 0 < Mv < 1
ω
: In this case, g(C) is positive, strictly decreasing, and with

positive second derivative. Also, f(C) is positive, strictly increasing for

0 < C < Ĉ, and strictly decreasing for 1 ≤ C ≤ Mv. In the same

way, we choose control parameters such that either dg
dC

(Mv) < df
dC

(Ĉ) or

g(Ĉ) < f(Mv). It is easy to show that in this case f(C) = g(C) has

exactly one solution.

• Case 2:
γf ω

σd
≥ 1

– 0 < Mv < 1
ω

+ Ĉ: In this case, g(C) is positive and strictly decreasing.

Also, f(C) is positive, strictly increasing for 0 < C < Ĉ, and strictly

decreasing for Ĉ ≤ C ≤ Mv. We choose control parameters such that

g(Ĉ) < f(Mv).

It can easily be shown, by using F3(C,B, U) of equation (3.7), that p is one-

to-one function of C. Also, as mentioned before, p is also a one-to-one function of

U (for 0 < p < 1). Therefore, it can easily be shown that for a given C, there exists
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a unique U . Therefore, under conditions stated in the lemma, the set of equations

(3.7) has a unique solution in 0 < C < Mv and 0 < U < uMAX .

3.4 State Estimation-Based Control

Next, we consider a control scheme based on the state estimation control (as

introduced in previous chapter) for the PRMA-HS voice-data system. As discussed

before, the number of voice terminals with reservation (or the number of reserved

time slots) is the only state of the system that is known to all terminals in the

system. Therefore, we choose the control signal un = N − rn. Assuming that round

trip delay is 1 time slot, dynamics of control signal can be written as following

un+1 =





un if slot n− 1 is reserved and reservation is kept,

un + 1 if slot n− 1 is reserved and reservation is lost,

[un − I(Zn−1 = 1) by a CON V T ]+ if slot n− 1 is not reserved.

Later in this section, we define permission probabilities as functions of control

signal to maximize throughput of the system or minimize packet drop probability.

It is noted that control using state estimation is a special case of General Price

Based Control with φ = 1, α = ξ = 0, and β = −1. Therefore, as discussed before

in analysis of General Price Based Control, the PRMA-HS Voice-Data system with

state estimation can be modeled by a Markov chain.

Next, we consider Equilibrium Point Analysis to study equilibrium behavior

of the PRMA voice-data system. We show if some conditions on system parameters

are met, the system with state estimation control scheme has unique equilibrium
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point. However, in order to analytically prove that the state estimation scheme

can control bifurcations that happen in the system, we consider the special cases of

PRMA Voice and Data system.

3.4.1 PRMA Voice and Data System

In this subsection, we consider a PRMA system that employs both voice and

data terminals. We assume the round trip delay is negligible and for mathematical

simplicity, we assume that permission probabilities for both voice and data terminals

are the same pv = pd = p. First, we consider a case where permission probability is

chosen such that system throughput is maximized. Later, we consider a case where

permission probability is chosen to minimize packet drop probability.

Before analyzing equilibrium equations of the system, we consider the Markov

chain modeling the system.

Proposition 3.2. The Markov chain defined on ℵ through (3.2) (for φ = 0, consid-

ering the system employs voice and data terminals, and round trip delay is negligible)

is irreducible, aperiodic, and positive recurrent.

Proof is presented in Appendix F.

Maximizing Throughput - EPA: Average system throughput at equilib-

rium for the PRMA Voice-Data system is

η =
R

N
(1− γf ) + (1−R/N)(C + B)pw(C, B),

here w(C,B) =





(1− p)C+B−1 C + B ≥ 1

1 C + B < 1.
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Depending on the equilibrium value of C + B, maximum throughput occurs

at:

p∗ =





1
C+B

C + B ≥ 1

1 C + B < 1.

Given C = Mv − (1 +
γf

Nσv
)R and B = MdC

(Mv−C)
γf ω

σd
+C

, equilibrium equations are

as follows

(Mv − C)γfω + (Md −B)σd

(1− (Mv − C)ω)
−W (C) = 0, (3.8)

W (C) =





(1− 1
C+B

)C+B−1 C + B ≥ 1

(C + B)pmax C + B < 1,

Parameter pmax can be chosen to be very close to 1. The following Lemma summa-

rizes one sufficient condition for system parameters such that the PRMA voice-data

system will have a unique operating point.

Remark 3.2. Equation (3.8) is derived with consideration that R = min(N,Nω(Mv−

C)) and B = MdC

(Mv−C)
γf ω

σd
+C

, where ω = σv

γf+Nσv
. Therefore, when the equilibrium

equations of the system is considered, it is assumed that C ∈ [max(0, Mv − 1
ω
), Mv],

B ∈ [0,Md], and R ∈ [0, N ]. However, it can easily be shown that C = 0,

C = Mv − 1
ω
, C = Mv, B = 0, B = Md, R = 0, R = N , or a combination

thereof, cannot be solutions to equilibrium equation (3.8).

Lemma 3.2. Let us define W+(C) = (1− 1
C+B

)C+B−1. Here B(C) = MdC

(Mv−C)
γf ω

σd
+C

.

Set of equations (3.8) has a unique solution in C and the system has a single oper-

ating point if any of conditions (1), (2), or (3) below hold:
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(1)
γf ω

σd
≥ 1, Mv < Ĉ + 1

ω
, and

(Mv − Ĉ)ωγf + (Md − B̂)σd

1− (Mv − Ĉ)ω
< (1− 1

Mv + Md

)Mv+Md−1,

(2)
γf ω

σd
< 1, Mv > Ĉ + 1

ω
, and −γfω(1 + Md

Mv
) < dW+

dC
(C̃),

(3)
γf ω

σd
< 1, Mv < Ĉ + 1

ω
, and either

− γfω(1 +
Md

Mv

) <
dW+

dC
(Ĉ), or

(Mv − Ĉ)ωγf + (Md − B̂)σd

1− (Mv − Ĉ)ω
< (1− 1

Mv + Md

)Mv+Md−1,

Here C̃ = Mv − 1
ω
, Ĉ + B̂ = 1, and B̂ = B(Ĉ).

Proof. We define g(C) =
(Mv−C)ωγf+(Md−B)σd

1−(Mv−C)ω
. Solutions of set of equations (3.8) are

the same as fixed points of g(C) = W (C). It is easy to show that





dW
dC

< 0 C + B ≥ 1

dW
dC

> 0 C + B < 1





d2W
dC2 > 0 C + B ≥ 1

d2W
dC2 < 0 C + B < 1.

Also, it can be shown that

dg

dC
< 0, and

d2g

dC2
> 0 if

γfω

σd

< 1.

Note that max(0,Mv − 1
ω
) < C < Mv and

W (Mv) = (1− 1

Mv + Md

)Mv+Md−1 > g(Mv) = 0.

We define Ĉ such that B(Ĉ) + Ĉ = 1. Since B(C) is a strictly increasing function

of C, it is easy to show that Ĉ is unique. Also, in order to simplify notations, we

define C̃ = Mv− 1
ω
. Now based on these facts and in order to derive conditions such

that W (C) = g(C) has exactly one solution, we consider following different cases:
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• Case 1:
γf ω

σd
< 1

1. Mv > Ĉ + 1
ω
: In this case, g(C) is positive and strictly decreasing with

a positive second derivative. Also, W (C) is positive and strictly de-

creasing with positive second derivative, W (Mv − 1
ω
) < g((Mv − 1

ω
)+),

and W (Mv) > g(Mv). Therefore, similar to previous uniqueness Lem-

mas, if the system parameters are chosen such that dg
dC

(Mv) < dW
dC

(C̃), it

can be shown that dg
dC

< dW
dC

for the desirable range of C and therefore,

g(C) = W (C) has a unique solution.

2. Mv < Ĉ + 1
ω
: In this case, if dg

dC
(Mv) < dW

dC
(C̃) or g(Ĉ) < W (Mv), it is

guaranteed that the g(C) = W (C) has a unique solution.

• Case 2:
γf ω

σd
≥ 1

1. 1
ω

< Mv < Ĉ + 1
ω
: In this case, if g(Ĉ) < W (Mv), it is guaranteed that

the equation has a unique solution.

2. 0 < Mv < 1
ω
: In this case, g(C) is positive and strictly decreasing.

Also, W (C) is positive, strictly increasing for 0 < C < Ĉ, and strictly

decreasing for Ĉ ≤ C ≤ Mv. In the same way as above, if g(Ĉ) < W (Mv),

it is easy to show that W (C) = g(C) has exactly one solution.

It can easily be shown that B is a one-to-one function of C. Therefore, set of

equations (3.8) has a unique solution in (C, B) for max(0, Mv − 1
ω
) < C < Mv and

0 < B < Md.

Minimizing Packet Drop Probability - EPA Average packet drop prob-
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ability at equilibrium is

Pdrop = γf
νD

1− (1− γf )νN
,

where ν = ν(C, R, B, p) = 1 − (1 − R
N

)p(1 − p)C+B. It can be shown that packet

drop probability is minimized if

p∗ =
1

C + B + 1

Given C = Mv − (1 +
γf

Nσv
)R and B = MdC

(Mv−C)
γf ω

σd
+C

, equilibrium equations are

as follows

(Mv − C)γfω + (Md −B)σd

(1− (Mv − C)ω)
−W (C) = 0, (3.9)

W (C) =





C+B
C+B+1

(1− 1
C+B+1

)C+B−1 C + B ≥ 1

C+B
C+B+1

C + B < 1,

Lemma 3.3. Let us define W+(C) = (1− 1
C+B+1

)C+B. Here B(C) = MdC

(Mv−C)
γf ω

σd
+C

.

Set of equations (3.9) has a unique solution in C and the system has a single oper-

ating point if any of conditions (1), (2), or (3) below hold:

(1)
γf ω

σd
≥ 1, Mv < Ĉ + 1

ω
, and

(Mv − Ĉ)ωγf + (Md − B̂)σd

1− (Mv − Ĉ)ω
< (1− 1

Mv + Md + 1
)Mv+Md ,

(2)
γf ω

σd
< 1, Mv > Ĉ + 1

ω
, and −γfω(1 + Md

Mv
) < dW+

dC
(C̃),

(3)
γf ω

σd
< 1, Mv < Ĉ + 1

ω
, and either

− γfω(1 +
Md

Mv

) <
dW+

dC
(Ĉ), or

(Mv − Ĉ)ωγf + (Md − B̂)σd

1− (Mv − Ĉ)ω
< (1− 1

Mv + Md + 1
)Mv+Md ,

Here C̃ = Mv − 1
ω
, Ĉ + B̂ = 1, and B̂ = B(Ĉ).

Proof is similar to proof of Lemma 3.2.
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3.5 Bifurcation Control Using Multiple Transmission Power Levels

In this section, we examine effects of power capture phenomenon in controlling

bifurcations in the PRMA-HS system employing voice and data terminals. We will

show that using multiple transmission power levels at terminals and using capture

effect at base station, we can control bifurcations by postponing them for higher

values of system parameters. Hence, power capture phenomenon can increase ca-

pacity of the PRMA-HS system by allowing more voice and data terminals sharing

common communication medium.

Equilibrium equations for the PRMA-HS system can be written as following

F1(X) = Mv − C − (
γf

σv

+ N)(
CpvWv(C, Hv, B, Hd)

γf + CpvWv(C, Hv, B,Hd)
) = 0, (3.10)

F2(X) = Md −B − (
N

d
+

1

σd

)γf (
BpdWd(C, Hv, B, Hd)

γf + CpvWv(C,Hv, B, Hd)
) = 0.

here

Hv = γf (
N

d
)ω(Mv − C), Hd = (

Nσd

Nσd + d
)(Md −B), X = (C B),

Wv(C, Hv, B, Hd) =
m∑

h=1

vh(C, Hv, B, Hd),

Wd(C, Hv, B, Hd) =
m∑

h=1

dh(c, hv, b, hd),

vh(C, Hv, B, Hd) =





qh(1− pv

∑h
t=1 qt)

C+Hv−1(1− pd

∑h
t=1 qt)

B+Hd C ≥ 1,

qh(1− pv

∑h
t=1 qt)

Hv(1− pd

∑h
t=1 qt)

B+Hd C < 1,

dh(C, Hv, B,Hd) =





qh(1− pv

∑h
t=1 qt)

C+Hv(1− pd

∑h
t=1 qt)

B+Hd−1 B ≥ 1,

qh(1− pv

∑h
t=1 qt)

C+Hv(1− pd

∑h
t=1 qt)

Hd B < 1.

Note that round trip delay (RTD) is N
d

time slots. Effects of using multiple trans-
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mission power levels at terminals and using capture effect at base station on the

stability of the system is examined in the numerical results section of this chapter.

3.6 Performance Analysis of PRMA and PRMA-HS Voice-Data over

Random Packet Error Channel

In previous sections, we considered a PRMA-HS system employing voice and

data terminals on an uplink channel where collisions were only source of error. In

this section, we assume that uplink channel is a “random packet error channel” [25]

and we study the PRMA-HS system with the General Price Based Control. The

analysis of this section closely follows study of PRMA system with General Price

Based Control over random error channel in previous chapter.

3.6.1 General Price Based Control

Figures 3.1 and 3.2 illustrate Markov models for the PRMA-HS system over

random packet error channel. In this section, we assume that when a contending

voice terminal transmits a packet on an available time slot without any collision, it

reserves that time slot if no packet header error happens. If there is a header packet

error, the access point (base station and/or satellite) interprets the error either as

a collision or as an event that no packet was transmitted [25]. If there is a packet

header error in a contending packet, we assume that with a fixed probability q the

base station sends a collision feedback and with probability 1 − q it sends an idle

feedback. We define following events: An = {at an available time slot n, 1 packet

124



transmitted with error - access point assumed idle} and Bn = {at an available time

slot n, 1 packet transmitted with error - access point assumed collision}.

Therefore, control signal update algorithm (3.1) is changed as follows. As

in pervious sections, and only for notation purposes, we assume that d = N and

therefore, round trip delay is one time slot.

un+1 =





un if slot n− 1 is reserved and reservation is kept,

un + φ if slot n− 1 is reserved and reservation is lost,

[un − αI(Zn−1 = 0 ∨ An−1) + βI(Zn−1 = 1 ∧ no error)

+ ξI(Zn−1 ≥ 2 ∨Bn−1]
+ if slot n− 1 is not reserved.

(3.11)

Note that in random packet error channel, control signal at time slot n + 1

is decreased by α if time slot n − 1 was either idle or a successful transmission by

a contending or hindering terminal contained a packet header error and the base

station assumed an idle time slot. Also, control signal is increased by ξ if either

time slot n− 1 had a collision or a packet header error in a successful transmission

by a contending or hindering terminal, which was assumed to be collision by the

base station. In the case of a successful transmission with no packet header error,

control signal is updated by β. If time slot n − 1 was reserved and the reservation

is lost (either because of packet header error or because all packet of voice message

are transmitted) control signal is increased by φ.

Transition probabilities for this Markov chain can be written as before con-

sidering packet random error. It is noted that the Markov chain modeling the
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1 11
RESN−2 RESN−1RES0

(1 − γf)(1 − ∆)

RES ′

0

1
RES ′

N−
N

d
−1

1

1

SIL CON

HINN−2 HINN−
N

d

1 1 1

HINN−1

(1 − γf)(1 − ∆)

(1 − γf)∆

(1 − γf)∆

γf

γf

1 − (1 −

r+hv

N
)pv(1 − pv)

c+hv−1(1 − pd)
b+hd(1 − ∆)

(1 −

r+hv

N
)pv(1 − pv)

c+hv−1(1 − pd)
b+hd(1 − ∆)

1 − σv

σv

Figure 3.1: Markov Chain Model for PRMA-HS Voice Subsystem over Random

Packet Error Channel.
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HINN−1HINN−2

1 11

SIL

1 − σd

1

HIN
N−

N

d

BLK

1 − (1 −

r+hv

N
)pd(1 − pd)

b+hd−1(1 − pv)
c+hv(1 − ∆)

σd
(1 −

r+hv

N
)pd(1 − pd)

b+hd−1(1 − pv)
c+hv(1 − ∆)

Figure 3.2: Markov Chain Model for PRMA-HS Data Subsystem over Random

Packet Error Channel.

PRMA-HS system over random packet error channel has the same state space ℵ as

PRMA-HS system.

3.6.2 Price Based Control

An special case of General Price Based Control is for φ = 0. Transition prob-

abilities for this Markov chain can be written as before considering packet random

error. It is mentioned that the Markov chain modeling the PRMA-HS system over

random packet error channel has the same state space ℵ as PRMA-HS system. We

can prove that this Markov model is irreducible, aperiodic, and under Assumption

3.1, the Markov chain is positive recurrent.

Next, we study performance of the PRMA-HS system with price based control

scheme over random packet error channel using the equilibrium point approach.

Same analysis as in previous sections can be used. A point (C, R∗, Hv, B, Hd, U) is
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an equilibrium point of the system if:

(Mv − C −R∗ −Hv)σv + (
R∗ + Hv

N
)(1− γf )∆

− (1− R∗ + Hv

N
)Cpvwv(C,B)(1−∆) = 0,

(
R∗ + Hv

N
)γf − (Mv − C −R∗ −Hv)σv = 0,

(R/N)− (
R∗ + Hv

N
)(1− γf )(1−∆) = 0,

(Md −B −Hd)σd − (1− R∗ + Hv

N
)Bpdwd(C,B)(1−∆) = 0,

(Md −B −Hd)σd − (
d

N
)Hd = 0,

(−α(1− q)∆ + β(1−∆)− ξ(1− q∆))[(C + Hv)pvwv(C,B) + (B + Hd)pdwd(C,B)]

− (α + ξ)(1− pv)
C+Hv(1− pd)

B+Hd + ξ = 0. (3.12)

Here pv = pv(U), pd = pd(U), R∗ = R + R′, and R′
N−N/d

= Hv

N/d
. Next, we consider

a specific system, PRMA system with voice and data terminals. We derive a set

of conditions on the control parameters such that these systems have a unique

equilibrium point.

3.6.3 PRMA Voice and Data

Here, we consider a PRMA system that employs both voice and data terminals.

We assume that round trip delay is negligible and from now on in this subsection

we assume that permission probabilities for both voice and data terminals are the

same, pv = pd = p. Set of equations (3.12) for a PRMA system with voice and data
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terminals is summarized as following

(Mv − C −R)σv + (R/N)(1− γf )∆− (1−R/N)Cpw(C, B, U)(1−∆) = 0,

(R/N)γf − (Mv − C −R)σv = 0,

(Md −B)σd − (1−R/N)Bpw(C, B, U)(1−∆) = 0,

(−α(1− q)∆ + β(1−∆)− ξ(1− q∆))(C + B)pw(C,B, U)

− (α + ξ)(1− p)C+B + ξ = 0. (3.13)

Here p = p(U) and w(C, B, U) =





(1− p(U))C+B−1 C + B ≥ 1

1 C + B < 1.

Remark 3.3. Based on the second equation of the set of equations (3.13), it can

be shown that R = min(N, Nω(Mv − C)), where ω = σv

γf+Nσv
. Also, based on

first and third equations of the set of equations (3.6), it can easily be shown that

B(C) = MdC

(Mv−C)
ω(γf +(1−γf )∆)

σd
+C

. Therefore, when the equilibrium equations of the

system is considered, it is assumed that C ∈ [max(0,Mv − 1
ω
),Mv], R ∈ [0, N ],

B ∈ [0,Md], and p ∈ [0, 1]. However, it can easily be shown, using the set of

equation (3.13), that C = 0, Mv − 1
ω
, C = Mv, B = 0, B = Md, R = 0, R = N ,

p = 0, p = 1 (for β = α(1−q)∆+ξ(1−q∆)
1−∆

as considered in Lemma 3.4), or a combination

thereof, cannot be solutions to the set of equilibrium equations (3.13).

Lemma 3.4. Let us define f+(C) = ξ
α+ξ

(C + B)(exp( −1
C+B

ln( ξ
α+ξ

)) − 1). Here

B(C) = MdC

(Mv−C)
ω(γf +(1−γf )∆)

σd
+C

. There exists a set of control parameters (α, β, ξ) for

which the set of equations (3.13) has a unique solution in (C,U) and the system has

a single operating point if any of conditions (1), (2) or (3) below hold:

(1)
γf ω

σd
< 1, Mv − 1

ω
> Ĉ, and −ω(γf+(1−γf )∆)

1−∆
(1 + Md

Mv
) < df+

dC
(C̃),
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(2)
γf ω

σd
< 1, Mv − 1

ω
< Ĉ, and either

−ω(γf + (1− γf )∆)

1−∆
(1 +

Md

Mv

) <
df+

dC
(Ĉ). or

(Mv − Ĉ)ω(γf + (1− γf )∆) + (Md − B̂)σd

(1−∆)(1− (Mv − Ĉ))ω
≤

ξ

α + ξ
(Mv + Md)(exp(

−1

Mv + Md

ln(
ξ

α + ξ
))− 1),

(3)
γf ω

σd
≥ 1, Mv < 1

ω
+ Ĉ, and

(Mv − Ĉ)ω(γf + (1− γf )∆) + (Md − B̂)σd

(1−∆)(1− (Mv − Ĉ))ω
≤

ξ

α + ξ
(Mv + Md)(exp(

−1

Mv + Md

ln(
ξ

α + ξ
))− 1).

Here C̃ = Mv − 1
ω
, Ĉ + B̂ = 1, and B̂ = B(Ĉ).

Proof of Lemma 3.4 is similar to proof of Lemma 3.1 considering

β = α(1−q)∆+ξ(1−q∆)
1−∆

.

3.6.4 State Estimation-Based Control

In this subsection, we consider state estimation-based control over random

packet error channel for a PRMA voice-data system, a special case of General Price

Based Control for φ = 1, α = ξ = 0, and β = −1.

Maximizing Throughput - EPA: Depending on the equilibrium value of

C + B, maximum throughput occurs at:

p∗ =





1
C+B

C + B ≥ 1

pmax C + B < 1.
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Equilibrium equations can be written as:

(Mv − C)ω(γf + (1− γf )∆) + (Md −B)σd

(1− (Mv − C)ω)(1−∆)
−W (C) = 0,

W (C) =





(1− 1
C+B

)C+B−1 C + B ≥ 1

(C + B)pmax C + B < 1,

(3.14)

here

ω =
σv

γf + Nσv

, B =
MdC

(Mv − C)
ω(γf+(1−γf )∆)

σd
+ C

.

Remark 3.4. Equation (3.14) is derived with consideration that R = min(N, Nω(Mv−

C)) and B = MdC

(Mv−C)
ω(γf +(1−γf )∆)

σd
+C

, where ω = σv

γf+Nσv
. Therefore, when the equi-

librium equations of the system is considered, it is assumed that C ∈ [max(0,Mv −
1
ω
),Mv], B ∈ [0,Md], and R ∈ [0, N ]. However, it can easily be shown that C = 0,

C = Mv − 1
ω
, C = Mv, B = 0, B = Md, R = 0, R = N , or a combination thereof,

cannot be solutions to equilibrium equation (3.14).

Lemma 3.5. Let us define W+(C) = (1− 1
C+B

)C+B−1. Here

B(C) = MdC

(Mv−C)
ω(γf +(1−γf )∆)

σd
+C

. Set of equations (3.14) has a unique solution in C

and the system has a single operating point if any of conditions (1), (2), or (3) below

hold:

(1)
γf ω

σd
≥ 1, Mv < Ĉ + 1

ω
, and

(Mv − Ĉ)ω(γf + (1− γf )∆) + (Md − B̂)σd

(1− (Mv − Ĉ)ω)(1−∆)
< (1− 1

Mv + Md

)Mv+Md−1,

(2)
γf ω

σd
< 1, Mv > Ĉ + 1

ω
, and −ω(γf+(1−γf )∆)

1−∆
(1 + Md

Mv
) < dW+

dC
(C̃),
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(3)
γf ω

σd
< 1, Mv < Ĉ + 1

ω
, and either

− ω(γf + (1− γf )∆)

1−∆
(1 +

Md

Mv

) <
dW+

dC
(Ĉ), or

(Mv − Ĉ)ω(γf + (1− γf )∆) + (Md − B̂)σd

(1− (Mv − Ĉ)ω)(1−∆)
< (1− 1

Mv + Md

)Mv+Md−1,

Here C̃ = Mv − 1
ω
, Ĉ + B̂ = 1, and B̂ = B(Ĉ).

Lemma 3.5 can be proved similar to proof of Lemma 3.2.

Minimizing Packet Drop Probability - EPA: Permission probability is

chosen such that packet drop probability (of the error free system) is minimized:

p∗ =
1

C + B + 1
.

Equilibrium equations can be written as:

(Mv − C)ω(γf + (1− γf )∆) + (Md −B)σd

(1− (Mv − C)ω)(1−∆)
−W (C) = 0,

W (C) =





( C+B
C+B+1

)(1− 1
C+B+1

)C+B−1 C + B ≥ 1

C+B
C+B+1

C + B < 1,

(3.15)

here

ω =
σv

γf + Nσv

, B =
MdC

(Mv − C)
ω(γf+(1−γf )∆)

σd
+ C

.

Lemma 3.6. Let us define W+(C) = (1− 1
C+B+1

)C+B. Here

B(C) = MdC

(Mv−C)
ω(γf +(1−γf )∆)

σd
+C

. Set of equations (3.15) has a unique solution and the

system has a single operating point under either condition (1), (2), or (3) below:

(1)
γf ω

σd
≥ 1, Mv < Ĉ + 1

ω
, and

(Mv − Ĉ)ω(γf + (1− γf )∆) + (Md − B̂)σd

(1− (Mv − Ĉ)ω)(1−∆)
< (1− 1

Mv + Md + 1
)Mv+Md ,
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(2)
γf ω

σd
< 1, Mv > Ĉ + 1

ω
, and −ω(γf+(1−γf )∆)

1−∆
(1 + Md

Mv
) < dW+

dC
(C̃),

(3)
γf ω

σd
< 1, Mv < Ĉ + 1

ω
, and either

− ω(γf + (1− γf )∆)

1−∆
(1 +

Md

Mv

) <
dW+

dC
(Ĉ), or

(Mv − Ĉ)ω(γf + (1− γf )∆) + (Md − B̂)σd

(1− (Mv − Ĉ)ω)(1−∆)
< (1− 1

Mv + Md + 1
)Mv+Md ,

Here C̃ = Mv − 1
ω
, Ĉ + B̂ = 1, and B̂ = B(Ĉ).

Proof is similar to proof of Lemma 3.3.

3.7 Numerical Results

Next, we consider a PRMA voice and data system with following parameters

[23]: Rc = 720, 000 bits/s, Rs = 32, 000 bits/s, T = 0.016 s, H = 64 bits, d = 1,

Dmax = 0.032 s, t1 = 1.00 s, t2 = 1.35 s, and σd = 0.0002. Figures 3.3, 3.4, and

3.5 illustrate packet drop probability (Pdrop) for the system when Mv is taken as

bifurcation parameter, and no control is used. In these figures, permission proba-

bility is fixed at p = 0.1, p = 0.2, p = 0.3, and Md = 25. Also, figure 3.6 illustrates

bifurcation diagram for Pdrop when Md is bifurcation parameter, Mv = 30, and

p = 0.2.

We design a price based control for the same voice-data PRMA system and

compare bifurcation diagrams. We choose β = ξ = 1. Control parameter α is

chosen to be α = 0.0532 such that the number of contending terminals for Mv = 32

is C = 0.3376. Mv = 32 is the capacity of the system for fixed value of p = 0.1

where the number of contending voice terminals is C = 0.3376. Figure 3.7 shows
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bifurcation diagram for packet drop probability for Mv as bifurcation parameter. We

can see that by using the price based control, bifurcations are eliminated. Moreover,

capacity of the PRMA system has increased to Mv = 32 and Md = 25 from Mv = 20

and Md = 25 when pv = 0.2 and from Mv = 5 and Md = 25 when pv = 0.3.

Also, we consider effects of the price based control on the PRMA system

when Md is chosen as bifurcation parameter. Figure 3.8 is bifurcation diagram for

controlled PRMA system with α = 0.0644 and β = ξ = 1. The control parameter

α is chosen such that at Mv = 30, Md = 57, and p = 0.1 the number of contending

voice terminals is 0.2805. Mv = 30 and Md = 57 is capacity of uncontrolled system.

Further, we design a control scheme based on above-noted state estimation

minimizing system throughput. We define pvmax = 0.9. Figure 3.9 shows bifurca-

tion diagram for packet drop probability. In this figure, the total number of voice

terminals (Mv) is chosen as bifurcation parameter. It is observed that bifurcations

in operating points of the system is eliminated and capacity of the system is in-

creased to Mv = 43 and Md = 25. Capacity of the PRMA system has increased

from Mv = 32 and Md = 25 when pv = 0.1, Mv = 20 and Md = 25 when pv = 0.2,

and from Mv = 5 and Md = 25 when pv = 0.3. Also, figure 3.10 shows bifurcation

diagram for packet drop probability of the controlled system as Md is bifurcation

parameter. It is noted that in this case bifurcations are not completely eliminated.

However, the voice-data system is controlled in a sense that bifurcations are delayed

for larger values of the bifurcation parameter. Capacity of the system is increased

to Mv = 30 and Md = 679 from Mv = 30 and Md = 14 when pv = 0.2.

Figure 3.11 illustrates bifurcation diagram for a system with state estimation
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control scheme minimizing packet drop probability. It is noted that bifurcations

are eliminated and capacity of the system is Mv = 43 and Md = 25. Also, figure

3.12 shows bifurcation diagram (for Md as bifurcation parameter) for the system

with state estimation control scheme minimizing Pdrop. Bifurcations are delayed

and capacity of the system is Mv = 30 and Md = 676.

Next, we consider the same PRMA voice-data system over random packet

error channel. Figure 3.13 shows bifurcation diagram for drop probability when Mv

is chosen as bifurcation parameter and for two different values of ∆. Plus signs

show packet drop probability for ∆ = 0.1 and points are for ∆ = 0.01. In this case

Md = 25 and p = 0.2. For ∆ = 0.01 capacity of the system is Mv = 19 and Md = 25

and for ∆ = 0.1 capacity is Mv = 18 and Md = 25.

We use the price based control with α = 0.125 and β = ξ = 1 as the control

parameters. This value of α is chosen such that for Mv = 39, Md = 25, and pd = 0.2,

the number of contending terminals is C = 0.3837 which results in maximum packet

drop probability of less than 0.01. Figure 3.14 shows bifurcation diagrams for packet

drop probability for both ∆ = 0.01 and ∆ = 0.1 when Mv is bifurcation parameter.

It is seen that capacity of the system is increased to Mv = 36 and Md = 25 for

∆ = 0.01 and Mv = 21 and Md = 25 for ∆ = 0.1. Here we assumed that q = 1.

Figure 3.15 shows effects of the state estimation control scheme (maximizing

throughput) on nonlinear behavior of the PRMA voice-data system. If error prob-

ability is ∆ = 0.01, although bifurcations of the operating points of the system is

not completely eliminated (PRMA system has three equilibrium points at Mv = 46)

but it is delayed for larger values of bifurcation parameter. Also, capacity of the
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PRMA system is increased to Mv = 43 and Md = 25. In the case where ∆ = 0.1,

bifurcations are also not completely eliminated (PRMA system has three equilib-

rium points for Mv = 39− 42), but they are controlled by delaying the bifurcations.

In this case, capacity of the system is increased to Mv = 38 and Md = 25.

Figure 3.16 illustrates bifurcation diagrams for the system with state estima-

tion control (minimizing packet drop probability) over random packet error channel.

In the case ∆ = 0.01, capacity of the system is Mv = 43 and Md = 25. For the case

∆ = 0.1, capacity of the system is Mv = 37 and Md = 25.

Figure 3.17 illustrates another exemplary bifurcation diagram for the PRMA

voice-data system with pd = 0.044, pv = 0.3, Md = 36, and Mv is the bifurcation

parameter. The capacity of the system is Mv = 23 and Md = 36 simultaneous

voice and data terminals. Next, we examiner effects of using two power levels at the

terminals and capture at the access point on the stability of the system. Figure 3.18

illustrates this case where each of the power levels is chosen with probability 0.5.

It can be observed that although bifurcations are not completely eliminated, they

occur at larger values of the bifurcation parameter and the capacity of the system

is increased to Mv = 43 and Md = 36 simultaneous voice and data terminals.

Further, we studied the effects of the studied control schemes (price based con-

trol and state estimation-based control (maximizing throughput)) by simulating the

probabilistic behavior of a PRMA-HS voice+data system. We considered a system

with both voice and data terminals that share a common communication medium

using a PRMA-HS protocol, therefore, round trip delay is not negligible. Also, in

order to compare the behavior of the studied control schemes with two previously
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presented control schemes, we used the exponential scheme introduced in [32] and

the Bayesian scheme of [27] in the simulations. We assumed similar system para-

meters are in effect, Rc = 720, 000 bits/s, Rs = 32, 000 bits/s, T = 0.016 s, H = 64

bits, Dmax = 0.032 s, t1 = 1.00 s, t2 = 1.35 s, and σd = 0.0002. We considered

Md = 25 to be fixed and for two different values of the round trip delay (1 and

10 time slots) we simulated the behavior of the system for different values of total

number of voice terminals (Mv). Table below represents the capacity of the system

without a controller, with price based control, state estimation-based control (max-

imizing throughput), and Bayesian and exponential schemes. Figures 3.19 and 3.20

summarize the packet drop probability (Pdrop) derived from simulations for differ-

ent values of Mv for delay of 1 and 10 time slots. It is noted that differences that

might exist between simulations and analysis can be the result of approximations in

deriving packet drop probability expressions.

Control Scheme Capacity (delay=1 slot) Capacity (delay=10 slots)

No control (pv = 0.1) Mv = 27 Mv = 19

Price Based Control Mv = 35 Mv = 29

Maximize η Mv = 33 Mv = 27

Bayesian Mv = 31 Mv = 28

Exponential Mv = 34 Mv = 16
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3.8 Summary and Future Lines of Work

In this chapter we focused our analysis on a voice and data system that em-

ploys PRMA as the medium access protocol. We studied the equilibrium behavior

of the system and analyzed the effects of the price based control and the state

estimation-based control on bifurcations of the system. These analysis were both

over error-free and random error channels and we derived some sufficient conditions

on system and the control parameters to guarantee uniqueness of operating point

of the system. We further extended the multiple power level and capture effect to

the PRMA voice and data system. For the analysis of this chapter, we assumed

that permission probabilities for voice and data terminals are the same. For future

line of research, a more general case can be considered. Further, future lines of

research can include extending the analysis of this chapter to variations of voice-

data PRMA system, more specifically, voice-data PRMA-HS systems, studying a

dynamic control scheme based on state observation in addition to stat estimation,

and extending the bifurcation analysis using multiple power levels to more accurate

models of capture that deals with signal-to-interface-plus-noise ration and different

distances of terminals from the access point. Also, for future work, the robustness

of the control schemes can be studied, for example, when the system parameters are

not exactly known. Further, similar price based control can be used to control rate

of generation of voice and/or data messages and also to control the average number

of voice packets in a voice message.
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Figure 3.3: Bifurcation diagram for
packet drop probability with no control
(p = 0.1 and Mv is bifurcation parame-
ter)
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Figure 3.4: Bifurcation diagram for the
packet drop probability with no control
(p = 0.2 and Mv is bifurcation parame-
ter)
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Figure 3.5: Bifurcation diagram for
packet drop probability with no control
(p = 0.3 and Mv is bifurcation parame-
ter)
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Figure 3.6: Bifurcation diagram for the
packet drop probability with no control
(p = 0.2 and Md is bifurcation parame-
ter)
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Figure 3.7: Bifurcation diagram for
packet drop probability with price
based bifurcation control (α = 0.0532,
β = ξ = 1, Mv bifurcation parameter)
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Figure 3.8: Bifurcation diagram for
packet drop probability with the price
based bifurcation control (α = 0.0644,
β = ξ = 1, Md bifurcation parameter)
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Figure 3.9: Bifurcation diagram for
packet drop probability with state es-
timation control (maximizing through-
put) (pmax = 0.9 and Mv bifurcation
parameter)

0 100 200 300 400 500 600 700 800 900
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Total Number of Data Terminals (M
d
)

P
ac

ke
t D

ro
p 

P
ro

ba
bi

lit
y 

(P
dr

op
)

Figure 3.10: Bifurcation diagram
for packet drop probability with
state estimation control (maximizing
throughput)(pmax = 0.9 and Md is bi-
furcation parameter)
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Figure 3.11: Bifurcation diagram for
packet drop probability with state esti-
mation control (minimizing Pdrop) (Mv

bifurcation parameter)
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Figure 3.12: Bifurcation diagram for
packet drop probability with state esti-
mation control (minimizing Pdrop) (Md

bifurcation parameter)
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Figure 3.13: Bifurcation diagram for
packet drop probability with no control
(p = 0.2 and two different values for ∆)
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Figure 3.14: Bifurcation diagram for
packet drop probability with control
(∆ = 0.1, ∆ = 0.01, α = 0.0532,
β = ξ = 1)
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Figure 3.15: Bifurcation diagram for
packet drop probability with state es-
timation control (maximizing through-
put) (∆ = 0.1, ∆ = 0.01, Mv bifurca-
tion parameter, pmax = 0.9)
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Figure 3.16: Bifurcation diagram for
packet drop probability with state es-
timation control (minimizing Pdrop)
(∆ = 0.1, ∆ = 0.01, Mv bifurcation
parameter)
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Figure 3.17: Bifurcation diagram for
packet drop probability with no control
(pv = 0.3, pd = 0.044, Md = 36, Mv bi-
furcation parameter, pmax = 0.9)
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Figure 3.18: Bifurcation diagram for
packet drop probability with capture
effect (q1 = q2 = 0.5)
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Figure 3.19: Simulation results for
PRMA-HS voice+data system with de-
lay of 1 time slot
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Figure 3.20: Simulation results for
PRMA-HS voice+data system with de-
lay of 10 time slot
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Chapter 4

Stability Analysis for Finite Buffered Slotted ALOHA Protocol

Using Tagged User Approach

As discussed before, bistable behavior in slotted ALOHA protocol is an im-

portant phenomenon. Changes in system parameters, transmits a system with a

stable equilibrium point to a system with two stable equilibrium points, one with

short delay and other one congested. Carleial and Hellman first noticed the bistable

behavior of ALOHA type systems [15]. They demonstrated and analyzed this impor-

tant aspect of the dynamics of ALOHA protocol. At the same time, Kleinrock and

Lam showed the same bistable behavior in ALOHA protocol using an input-output

packet flow balance principle [14]. That is, the system possesses two statistically

stable equilibrium points, one in a desirable low-delay region, and the other in an

undesirable high-delay region. Tasaka studied R-ALOHA using equilibrium point

analysis [17]. The dynamic behavior of the protocol was studied and it was shown

that under high traffic, the system has multiple equilibrium points. Onozato and

Noguchi developed a new tool for performance evaluation of a multiaccess communi-

cation system. They gave an explicit analytical description of a cusp catastrophe in

a computer communication system [18] and showed that sudden changes in behavior

of slotted ALOHA system, which can be observed in throughput, average delay, and

the average number of backlogged terminals, are induced by smooth alteration of
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the control parameters.

Also Fayolle et al. [54] showed that the slotted ALOHA channel with infi-

nite population, poisson arrivals, and fixed retransmission probabilities is unstable.

Many researchers studied the unstable behavior of the slotted ALOHA system and

proposed retransmission control schemes in order to stabilize the channel. Fayolle et

al. [54] assumed that the number of blocked terminals is exactly known to all termi-

nals. They used this information to adaptively change retransmission probability.

Clare [55] and Rivest [33] updated retransmission probability based on the estimate

of number of blocked terminals. They used idle, success, and collision feedback to

compute this estimate. Hajek and Van Loon [56] estimated retransmission proba-

bility directly based on the idle, success, and collision feedback through a scheme

called stochastic approximation.

In this chapter, we study bistable behavior of the slotted ALOHA protocol

with finite population of users and finite buffer and we examine a retransmission

control algorithm based on the price based control scheme, which, in part, is mo-

tivated by the price based rate control scheme studied by Yuen and Marbach in

[43] and [44]. In this chapter, we assume that a finite number of terminals share a

common communication medium. Slotted ALOHA protocol is used as the medium

access protocol. Also, in this system each terminal has a finite buffer. In general,

Markov analysis is the only available approach for exact analysis of multiple ac-

cess systems. But Markov analysis is especially difficult to use for exact analysis of

buffered systems because of large dimension of its state space. Therefore, approxi-

mation techniques have been introduced to analyze buffered multiple access systems.
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One approximation approach introduced by Wan and Sheikh [57, 58, 59], is Tagged

User Approach (TUA). In this technique it is assumed that communication channel

is symmetric, meaning that statistical behavior of each user in the system is the

same. This assumption helps the Markov analysis by reducing dimension of the

state space describing the system. The basic idea in TUA is to assume that each

user always operates at its own equilibrium probability distribution, independently

of other terminals, though its equilibrium probability distribution is determined by

the behavior of all users in the system because of interfering queue problem. Hence,

in this approach, the performance of the system is studied by analyzing the behavior

of an arbitrarily chosen terminal named as tagged user. In this chapter, we study

bifurcations in equilibrium probability distribution of the slotted ALOHA protocol

with finite user and finite buffer using the TUA. Also, we analyze the price based

control for the slotted ALOHA protocol using the same approach.

4.1 System Model

We consider a slotted ALOHA system with finite users population M . Each

user has a finite buffer L. Time is divided into slots and each time slot is equal

to a packet transmission time. Also, we assume that round trip delay is negligible,

therefore, a terminal will know transmission status of a packet immediately after it

had finished the transmission. We assume that the communication channel is noise

free. A packet arrives into a terminal’s queue in a time slot with probability λ and

no packet arrives in a time slot with probability 1−λ. If an arriving packet finds the
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buffer full, it is dropped. Also, in this chapter we assume that packet transmissions

follow defer first transmission (DFT). Meaning that there is no difference between

new packets and backlogged packets and they are transmitted with a permission

probability p.

Since it is assumed that the channel is symmetric and all users have identi-

cal statistical behavior, therefore, in the tagged user approach, an arbitrary user is

chosen and we observe its behavior. By using this approach, it is implied that all

users in the system are working at their equilibrium probability distribution. There-

fore, probability that a busy tagged terminal (with non-empty buffer) successfully

transmits a packet given it has permission to transmit is

ps = (1− p(1− p0))
M−1. (4.1)

Here p0 is probability that a terminal has an empty buffer. Now our focus will be

on the tagged user’s buffer. Transmission of a packet in the tagged user’s queue will

be successful with probability pps and will fail with probability 1− pps. Therefore,

service time for its queue is geometrically distributed with mean 1/pps. Hence, as

Wan and Sheik show in [58], the user’s queue can be treated as a Geo/Geo/1/K

queue. Figure 4.1 shows Markov model for the tagged user’s buffer. Since in a

Geo/Geo/1/K queue, total probability flow through any closed boundary must be

zero, following relations are easy to obtain:
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Figure 4.1: Probability flow chart of the buffer.

λp0 = µ(1− λ)p1,

...

λ(1− µ)pi = µ(1− λ)pi+1,

...

λ(1− µ)pL−1 = µpL, (4.2)

here i = 1, 2, · · · , L− 2, and µ is the mean service time:

µ = pps = p(1− p(1− p0))
M−1. (4.3)

From (4.2), pi, i = 1, 2, · · · , L− 1 can be expressed in terms of p0:

pi = [
λ(1− µ)

µ(1− λ)
]i−1 λ

µ(1− λ)
p0, pL = [

λ(1− µ)

µ(1− λ)
]L−1 λ

µ
p0.

In order to calculate p0, it is noted that sum of above probabilities should be 1:

p0 = (
µ

µ− λ
− λ2

µ(µ− λ)
[
λ(1− µ)

µ(1− λ)
]L−1)−1. (4.4)

Equations (4.3) and (4.4) are sufficient to solve two unknown variables µ and p0.
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4.2 Stability Analysis

Equilibrium point(s) of the slotted ALOHA system with finite users and finite

buffer is (are) solution(s) of the equations (4.3) and (4.4) in µ and p0. Unfortunately,

these two equations are nonlinear equations and an analytical solution seems to be

very difficult. Therefore, numerical approach is used to find equilibrium point(s).

Wan and Sheikh in [58] show that number and stability of equilibrium points changes

as parameters of the system change. They show that for a range of parameters, the

system has only one stable equilibrium point which corresponds to a well-behaved

system (uncongested system). In this case, the system is globally stable. When

parameters change, the slotted ALOHA system, has two stable and one unstable

equilibrium points. One of the stable equilibrium points corresponds to high value

of idle probability p0 (desirable operating point [58]). But other stable fixed point

corresponds to a system with small values of p0 (saturation point [58]). Due to

disturbances, the slotted ALOHA system tends to oscillate between these two equi-

librium points. For further values of system parameters, the system possesses one

stable equilibrium point but at an undesirable region.

Figure 4.2 shows an exemplary bifurcation diagram for idle probability, p0,

when the total number of users in the system, M , changes. It shows that when the

number of users is less than 96, the slotted ALOHA system with a finite buffer size

of L = 5, has only one equilibrium point. λ = 0.0034 and permission probability

p = 0.025 are fixed. For these values of M , system has a globally stable equilibrium

point which corresponds to high values of idle probability and also, high throughput.
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But for values of 96 ≤ M ≤ 107, figures 4.2 and 4.3 show that system possesses

three equilibrium points. Smallest and largest values of p0 correspond to locally

stable equilibrium points and middle point is an unstable fixed point. When M is

increased (M > 107), once again the system has only one globally stable equilibrium

point with small values for p0, which corresponds to a congested system with many

collisions. Figure 4.3 shows channel throughput defined as

Sout = MSµ = Mµ(1− p0),

here Su is one terminal throughput, defined as the number of packets transmitted

successfully in one time slot. Since the channel is shared by M users with identical

statistical behavior, channel throughput is Sout = MSu [58].

Also, figures 4.4 and 4.5 show exemplary bifurcation diagrams for user idle

probability (p0) and channel throughput (Sout) when permission probability, p, is

the bifurcation parameter and the total number of terminals M is fixed at 100.

Figures 4.6 and 4.8 show bifurcation diagrams for idle probability p0 when queue

size L or arrival rate λ are bifurcation parameters, respectively. In the first case

λ = 0.0034, p = 0.025, and M = 100. In the second case p = 0.025, L = 5, and

M = 100.
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Figure 4.2: Bifurcation diagram for
user idle probability (p0) when the total
number of users (M) is bifurcation pa-
rameter. p = 0.025, λ = 0.0034, L = 5.
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Figure 4.3: Bifurcation diagram for
channel throughput (Sout) when the to-
tal number of users (M) is bifurcation
parameter. p = 0.025, λ = 0.0034,
L = 5.
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Figure 4.4: Bifurcation diagram for
user idle probability (p0) when permis-
sion probability (p) is bifurcation para-
meter. M = 100, λ = 0.0034, L = 5.
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Figure 4.5: Bifurcation diagram for
channel throughput (Sout) when per-
mission probability (p) is bifurcation
parameter. M = 100, λ = 0.0034,
L = 5.
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Figure 4.6: Bifurcation diagram for
user idle probability (p0) when queue
size (L) is bifurcation parameter. M =
100, λ = 0.0034, p = 0.025.
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Figure 4.7: Bifurcation diagram for
channel throughput (Sout) when queue
size (L) is bifurcation parameter. M =
100, λ = 0.0034, p = 0.025.
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Figure 4.8: Bifurcation diagram for
user idle probability (p0) when arrival
rate (λ) is bifurcation parameter. M =
100, p = 0.025, L = 5.
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Figure 4.9: Bifurcation diagram for
channel throughput (Sout) when arrival
rate (λ) is bifurcation parameter. M =
100, p = 0.025, L = 5.
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4.3 Price Based Control

As we discussed in previous section, the slotted ALOHA system with the finite

number of users and finite capacity buffer shows a bifurcation phenomenon when a

parameter of the system changes.

Yuen and Marbach in [43] and [44] use a price-based rate control for slotted

ALOHA system with infinite users and buffer capacity of one packet. They show that

by controlling arrival rate (and, in addition, controlling transmission probability)

they can stabilize the system. In this section, a price based control, based on Yuen

and Marbach’s work, is introduced to eliminate bifurcations in the slotted ALOHA

system. The goal is to adaptively change permission probability at the end of each

time slot based on outcome of packet transmissions in that time slot. Permission

probability, p, is a function of control signal u.

Assumption 4.1. We assume permission probability p(u) is continuous, bounded

(0 ≤ p(u) < 1), and strictly decreasing (u ∈ [0, +∞)). Furthermore, there exists a

positive constant umax such that p(u) = 0 when u ≥ umax.

The control signal u is updated at each time slot using following equation [43]:

un+1 = [un − αI(Zn = 0) + βI(Zn = 1) + γI(Zn ≥ 2)]+. (4.5)

At the end of each time slot, users know the outcome of their transmission. Zn is a

random variable corresponding to the number of transmission in time slot n. The

control parameters α and γ are positive real numbers and β is a real number. Also,

[x]+ = max(0, x).
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At time slot n+1, value of control signal increases if a collision happens in time

slot n. If no user transmits in time slot n, value of control signal is decreased. In the

case of a successful transmission, depending on whether the system is conservative

or aggressive, value of control signal is decreased or increased.

In order to study effects of the price based control on the slotted ALOHA

system with finite users and finite buffer, the tagged user approach is used. In this

approach, it is assumed that the system is at the equilibrium. Hence, expected

change in control signal is zero.

pr(Zn = 0) = (1− p(1− p0))
M ,

pr(Zn = 1) = Mp(1− p0)(1− p(1− p0))
M−1,

pr(Zn ≥ 2) = 1−Mp(1− p0)(1− p(1− p0))
M−1 − (1− p(1− p0))

M . (4.6)

Therefore,

E(un+1 − un|un = u, p0) = max(−α,−u)(1− p(1− p0))
M ,

+ max(β,−u)Mp(1− p0)(1− p(1− p0))
M−1,

+ γ(1−Mp(1− p0)(1− p(1− p0))
M−1 − (1− p(1− p0))

M), (4.7)

here p = p(u). State (p∗0, u
∗) is an operating point of the system if it is a solution

to equilibrium equations of the system. Consider a relaxed case, the equilibrium

equations of the slotted ALOHA system follow

0 = −(α + γ)(1− p(1− p0))
M + (β − γ)Mp(1− p0)(1− p(1− p0))

M−1 + γ, (4.8)

µ = pps = p(1− p(1− p0))
M−1, (4.9)

p0 = (
µ

µ− λ
− λ2

µ(µ− λ)
[
λ(1− µ)

µ(1− λ)
]L−1)−1. (4.10)
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Proposition 4.1. Let Assumption 4.1 hold, then equation (4.8) has a unique solu-

tion in y = p(1− p0).

Proof. In order to prove Proposition 4.1, following definitions are necessary:

y = p(1− p0),

du(y) = −(α + γ)(1− y)M + (β − γ)My(1− y)M−1 + γ.

Derivative of du(y) is given by

d′u(y) = M(1− y)M−2[−(α + γ + Mβ − γ))y + α + β].

Hence, value of y that makes the derivative zero is found as follows

y∗ =
α + β

α + γ + M(β − γ)
.

Now to prove the proposition, four different cases are considered.

Case (1): 0 ≤ γ ≤ β: In this case,

0 < y∗ < 1 and du(y
∗) = [

(M − 1)(β − γ)

α + γ + M(β − γ)
]M−1(β − γ) + γ > γ > 0.

Note that du(1) = γ > 0 and d′u(y) < 0 fory ∈ (y∗, 1]. Therefore, in this range of

y, du(y) is positive and strictly decreasing and hence, du(y) = 0 does not have any

solution. However, du(0) = −α < 0 and d′u(y) > 0 for y ∈ [0, y∗). Therefore, in

this range of values of y, du(y) is strictly increasing from −α < 0 to du(y
∗) > 0 and

hence, there exists exactly one solution for du(y) = 0 for y ∈ [0, y∗).

Case (2): M−1
M

γ − α
M
≤ β ≤ γ: In this case 1 < y∗. Therefore, for y ∈ [0, 1],

d′u(y) > 0 and du(y) is an strictly increasing function of y from du(0) = −α < 0 to

du(1) = γ > 0. Hence, du(y) = 0 for y ∈ [0, 1] has exactly one solution.
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Figure 4.10: Drift function du(y) for different values of β.

Case (3): −α ≤ β ≤ M−1
M

γ − α
M

: In this case y∗ < 0. Hence, for y ∈ [0, 1],

d′u(y) > 0. Therefore, du(y) in this range is strictly increasing and has exactly one

zero.

Case (4): β ≤ −α: In this case, and also

0 < y∗ < 1, α + γ < −(β − γ),
(M − 1)(β − γ)

α + γ + M(β − γ)
< 1.

Therefore, du(y
∗) = [ (M−1)(β−γ)

α+γ+M(β−γ)
]M−1(β − γ) + γ < (β − γ) + γ = β ≤ −α < 0.

For y ∈ [0, y∗), d′u(y) < 0 and therefore, du(y) is strictly decreasing from −α to

du(y
∗) < −α. However, for y ∈ (y∗, 1], d′u(y) > 0 and du(y) is strictly increasing

from du(y
∗) < −α < 0 to du(1) = γ > 0. Therefore, in this range, du(y) has exactly

one zero.

Figure 4.10 summarizes drift function du(y) for different cases of β. It is clear

that cases 2 and 3 can be combined to one case where −α ≤ β ≤ γ.

Therefore, Proposition 4.1 proves that equation (4.8) has exactly one solution
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for any given control parameters (α, β, γ). Solution to du(y) = 0 is called ỹ.

du(ỹ) = 0, ỹ = p(1− p0).

System throughput is defined as the average number of packets successfully

transmitted in each time slot. Wan and Sheikh [58] suggested that since all packets

that arrive in a terminal with a queue which is not full will be transmitted (no

packet is dropped), therefore, throughput for a single terminal can be defined as

follows

Su = λ(1− pL),

here pL is probability that terminal queue is full and λ is average packet arrival rate.

Also, single terminal throughput can be defined as average service rate (µ) times

probability that the terminal is busy (1− p0). In other words,

Su = µ(1− p0).

Or the service rate, µ, can be written as µ = Su

1−p0
. Therefore, using equation (4.9),

throughput at a point ỹ is

S̃u = p(1− p0)(1− p(1− p0))
M−1 = ỹ(1− ỹ)M−1.

Proposition 4.2. For any given value of arrival rate 0 ≤ λ ≤ 1 and queue size

L ≥ 0:

(µ− λ)(µ− L) + λ(1− µ)(1− F (µ)) ≤ 0, ∀ 0 ≤ µ ≤ 1, (4.11)

here

F (µ) =
λ

µ
[
λ(1− µ)

µ(1− λ)
]L−1.
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Proof. This proposition can be proved numerically. Numerical analysis shows that

for any given value of arrival rate 0 ≤ λ ≤ 1 and queue size L ≥ 0, equation (4.11)

has a maximum at µ = λ. At this point, equation (4.11) equals to zero. Therefore,

for any other value of 0 ≤ µ 6= λ ≤ 1 this equation is always negative.

Proposition 4.3. Let Assumption 4.1 hold and 0 ≤ λ ≤ 1, for given control para-

meters (α, β, γ), set of equations (4.8), (4.9), and (4.10) has exactly one solution.

Proof. In order to prove this proposition the following definitions are necessary:

F (µ) =
λ

µ
[
λ(1− µ)

µ(1− λ)
]L−1,

g(µ) =
µ

µ− λ
− λ2

µ(µ− λ)

λ

µ
[
λ(1− µ)

µ(1− λ)
]L−1 =

µ

µ− λ
− λ2

µ− λ
F (µ).

Therefore, using above definitions and also equation (4.10), probability that the

queue is full, pL, can be rewritten as follows

pL = [
λ(1− µ)

µ(1− λ)
]L−1 λ

µ
p0 =

F (µ)

g(µ)
.

Since µ = µ(p0) is a function of p0, using equation (4.9), probability pL is rewritten

as a function of p0 as follows

pL(p0) =
F (µ(p0))

g(µ(p0))
.

Note that solution to set of equations (4.8), (4.9), and (4.10) is the same as solution

to following equation

S̃u = λ(1− pL(p0)).

In this proof, define Sload = λ(1− pL(p0)). Derivative of Sload with respect to p0 is

dSload

dp0

= −λ

dF
dµ

g − dg
dµ

F

(g(µ(p0)))2

dµ

dp0

.
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Here

µ =
S̃u

1− p0

⇒ dµ

dp0

=
S̃u

(1− p0)2
> 0 for 0 < p0 < 1.

Also,

g(µ) =
µ

µ− λ
− λ2

µ− λ
F (µ) ⇒ dg(µ)

dµ
=

−λ

(µ− λ)2
− λ[

−F (µ)

(µ− λ)2
+

dF
dµ

µ− λ
].

And,

dF (µ)

dµ
=

µ− L

µ(1− µ)
F (µ).

Therefore,

dF

dµ
g − dg

dµ
F =

1

(µ− λ)2
[µ(µ− λ)

dF

dµ
+ λF (1− F )]

=
F (µ)

(µ− λ)2(1− µ)
[(µ− λ)(µ− L) + λ(1− µ)(1− F (µ))].

Using Proposition 4.2 and the fact that F (µ) ≥ 0, it is easy to see that dF
dµ

g− dg
dµ

F ≤

0. Hence

dSload

dp0

≥ 0.

Therefore, Sload = λ(1 − pL) is an increasing function of p0. Hence, if Sload(0) ≤

S̃u ≤ Sload(1 − ỹ) then Sload(p0) = S̃u has exactly one solution. (It is obvious that

0 ≤ p0 ≤ 1− ỹ)

Proposition 4.4. Function g(µ) is defined as before

g(µ) =
µ

µ− λ
− λ2

µ(µ− λ)
[
λ(1− µ)

µ(1− λ)
]L−1, (4.12)

is a decreasing function of µ for 0 < µ < 1.
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Proof. In order to prove the proposition, derivative of g(µ) with respect to µ is

found

g′(µ) =
λ

(µ− λ)2
[−1 +

λL(1− µ)L−2

µL+1(1− λ)L−1
((L− µ)(µ− λ) + µ(1− µ))].

Define h(µ) as follows

h(µ) =
λL(1− µ)L−2

µL+1(1− λ)L−1
((L− µ)(µ− λ) + µ(1− µ)).

Derivative of h(µ) with respect to µ is

h′(µ) =
λL(1− µ)L−3

µL+2(1− λ)L−1
(µ− λ)(−2µ2 + 4Lµ− L2 − L).

For 0 < µ < 1, the part (−2µ2 + 4Lµ − L2 − L) is always negative. Therefore, for

0 < µ < λ, derivative h′(µ) is positive and for λ < µ < 1 it is negative. Hence, point

µ = λ is maximum of h(µ) for 0 < µ < 1. Therefore, it is safe to say that

h(µ) ≤ h(µ = λ) = 1 0 < µ < 1.

It is easy to show

g′(µ) ≤ 0 0 < µ < 1.

Therefore, g(µ) is a decreasing function of µ for 0 < µ < 1. Define f(p0) =

1
g(µ(p0))

, where µ = S̃u

1−p0
.

f ′(p0) =
df

dp0

= −
dµ
dp0

dg
dµ

(g(µ(p0)))2
= − S̃ug

′(µ)

(1− p0)2(g(µ))2
≥ 0 0 < p0 < 1.

Hence, f(p0) is an increasing function of p0 for 0 < p0 < 1. Next, limit values of

f(p0) when p0 goes to 0 and 1 is calculated.

f(p0) = [
S̃u

S̃u − λ(1− p0)
− λ2(1− p0)

2

S̃u(S̃u − λ(1− p0))
[
λ(1− p0 − S̃u)

S̃u(1− λ)
]L−1]−1
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Now the limits are found

lim
p0→0+

f(p0) = [
S̃u

S̃u − λ
− λ2

S̃u(S̃u − λ)
[
λ(1− S̃u)

S̃u(1− λ)
]L−1]−1 > 0

Note that S̃u = λ(1− pL) and since 0 ≤ pL ≤ 1, then S̃u ≤ λ. Also,

lim
p0→1−

f(p0) = 1.

4.4 Designing the Controller

In this section we study the design of the controller through selecting the

set of control parameters (α, β, γ). Given a desired operating throughput S̃u, the

control parameters are found such that the system will have a unique operating

point with the given throughput. However, it is noted that we proved that the

slotted ALOHA system with the price based control has a unique operating point

if the equilibrium value of the control signal is greater than the maximum of α

and −β (u > max{α,−β} - the relaxed drift equation). Therefore, in designing

the controller, we choose the parameters such that equilibrium value of the control

parameter will satisfy the above criteria. To do so we can consider two different cases

based on one-terminal arrival rate, λ. Notice that maximum one user throughput

is 1
M

(1− 1
M

)M−1 which happens when y = 1
M

.

In this section we make a small change in the Assumption 4.1. We define

continuous function p(u) such that p(u) = 1 for 0 ≤ u ≤ max{α,−β}. And for

max{α,−β} < u ≤ umax, p(u) is strictly decreasing. Furthermore, p(u) = 0 for

u ≥ umax. Now we define two different cases:
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Case 1: λ ≥ 1
M

(1− 1
M

)M−1 - we first find ỹ such that S̃u = ỹ(1− ỹ)M−1. The

control parameters α and γ are arbitrarily chosen to be small positive real numbers.

The control parameter β is calculated as follows

β =
(α + γ)(1− ỹ)M + γMỹ(1− ỹ)M−1 − γ

Mỹ(1− ỹ)M−1
(4.13)

It is easy to show that the controlled system has a unique operating point at ỹ. And

the system has no operating points for the values of u < max{α,−β}.

Case 2: 0 < λ < 1
M

(1 − 1
M

)M−1 - For λ in this range, since the maximum

allowable one user throughput is Su = λ, we consider two sperate cases. For a

given operating point S̃u = λ it is easy to show that using the above algorithm

for choosing the control parameters will result in a system with unique operating

point. However, for the case where the given operating point ỹ < λ, we change the

algorithm in order to make sure that the operating point of the system happens only

for u > max{α,−β}. As before, we choose positive parameter γ arbitrarily. We use

ỹ to calculate β and α as follows

−β = α = γ{1−Mỹ(1− ỹ)M−1 − (1− ỹ)M

Mỹ(1− ỹ)M−1 + (1− ỹ)M
}

This ensures that the equilibrium value of the control parameter is greater than

max{α,−β}. Therefore, the system has a unique operating point at ỹ.

4.5 Simulation Results

In this section we examine effects of the price based control on a finite popu-

lation slotted ALOHA with finite buffer, numerically and through simulations. We
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consider a slotted ALOHA system with the finite number of users M and finite buffer

L = 5. Also, arrival rate is λ = 0.0034 and permission probability is p = 0.025.

Bifurcation diagrams for idle probability p0 and throughput Sout are shown in fig-

ures 4.2 and 4.3, respectively, for 75 ≤ M ≤ 125. In order to design the price based

control, we choose α = 1 and γ = 1 arbitrarily. The control parameter β = 2.5138

is calculated using equation (4.13) such that at M = 75 one user throughput is

at its maximum value Su = λ = 0.0034. Figure 4.11 illustrates that bifurcation is

eliminated completely. In this range of M , system throughput is almost fixed at

Sout = 0.2547. Figure 4.12 illustrates bifurcation diagram for one user throughput

Su. Further, we examine accuracy of our numerical analysis with respect to simula-

tions. For each value of M we run a simulation 5 times with an initial empty queue

for all the terminals and 5 times with a full initial queue for all the terminals. Each

run of the simulation consists of 80000 time slots. We calculate an average channel

throughput. Also,

p(u) =





1 0 ≤ u ≤ max{α,−β}

{(1− u−max{α,−β}
150

)3}+ u > max{α,−β}

Where {x}+ = max{0, x}. Figure 4.13 illustrates a comparison between numerical

analysis and simulations. Diamonds show numerical results for channel throughput

for the uncontrolled system using TUA, which is the same as figure 4.3. These

diamonds show stable and unstable fixed points of the system. Crosses show the

result of simulations on the uncontrolled system. We can see that at beginning and

end of the graph simulation results follow numerical results closely. However, in the

region where numerical analysis show three equilibrium points, simulation results
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are different than numerical. The reason is that actual system is oscillating between

two stable fixed points and therefore, result throughput is an average of throughput

at those two stable fixed points. Finally the asterisks show simulation results for

channel throughput for the controlled system. We can see that average throughput

is almost fixed for this range of M and is very close to average throughput calculated

numerically Sout = 0.2547.

Also, we look at effects of the price based control on the system when queue size

L is the bifurcation parameter. Figures 4.6 and 4.7 illustrate bifurcation diagrams

with no control for idle probability and system throughput. A controller is designed

by choosing α = 1 and γ = 1 arbitrarily and β = 1.2 such that for a system

with N = 100 terminals, one user throughput is at its maximum value, Su = λ =

0.0034. Bifurcation diagrams for idle probability is shown in Figures 4.14. It is clear

that bifurcations are eliminated completely. Also, it can be observed that system

throughput is fixed as queue size changes. This is the result of using the price based

control. Since the control parameters are chosen such that the system will operate

at a pre-given throughput.

4.6 Summary

In this chapter revisited the bistable behavior of finite buffered finite user

slotted ALOHA system. We used a tagged user approach to study equilibrium

behavior of the system. We applied the price based control proved that, under some

conditions, the controlled system has a unique operating point.
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Figure 4.11: Bifurcation diagram for
user idle probability (p0) with price
based bifurcation, the total number of
users (M) bifurcation parameter, λ =
0.0034, and L = 5.
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Figure 4.12: Bifurcation diagram for
channel throughput (Su) with price
based bifurcation, the total number of
users (M) bifurcation parameter, λ =
0.0034, and L = 5.
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M = 100.
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Chapter 5

Equilibrium Analysis and Control for Framed PRMA Protocol for

Voice and Data Terminals

5.1 Introduction

In our analysis of PRMA protocols in previous chapters, we assumed that

feedback information is sent to terminals as soon as packets are received at an

access point (such as a base station). In the PRMA protocols, feedback information

is transmitted at the end of each time slot. However, it this chapter, we consider a

PRMA protocol (with no round trip delay) and we assume that feedback information

is only sent at the end of a frame. There are several reasons to consider transmitting

feedback information at the end of frames, instead of end of time slots. Convenience

for the base station and saving in signalling (such as feedback signals overhead) can

be considered few exemplary improvements of framed PRMA over PRMA.

Further, for framed PRMA, we assume that each contending terminal (a non-

reserved terminal with packet to transmit) can only transmit one packet during each

frame. This assumption may improve stability of the system. Several researches have

studied frame slotted ALOHA and its applications [61], [62], [63], [64], and [65].

Also, framed PRMA was introduced as a contention TDMA (C-TDMA) protocol in

[66].
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In this chapter, we study the nonlinear behavior of framed PRMA at equi-

librium and apply price based control scheme introduced in previous chapters to

analyze stability of the system.

5.2 Price Based Control - Framed PRMA Voice-only

In this section we model framed PRMA that only employs voice terminals. A

voice terminal is in silent state if it has no packets to transmit. With probability σv

a new voice message is generated. We assume that transmission attempts for first

packet of the voice message starts at the beginning of the next frame and therefore,

we assume that state transitions occur at the beginning of each time frame. Based

on feedback information received at the end of each frame, the terminals, at the

beginning of next frame, have exact knowledge of the number of reserved time

slots (in that frame) and outcomes of transmissions in previous frame. The voice

terminals in contending state, at the beginning of a frame, if they have permission

to transmit their packets, randomly choose an “available” time slot of the frame

and will transmit their packet at that time slot. If the transmission was successful,

the successful terminal reserves that time slot and can transmit the reminder of its

packets at that time slot in next frames without contention.

As part of feedback information, terminals are informed of the number of colli-

sions, successful transmissions, and idle time slots (time slots with no transmission)

in a time frame. Each terminal updates its control signal based on this information.

Packet transmission for contending terminals is based on the control signal. We
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assume that the control signal u is the same for all the terminals and is updated at

the end of time frame n as following:

un+1 = [un − αwn + ξvn]+. (5.1)

Here, the control parameters α and ξ are positive real numbers. [x]+ denotes

max(0, x). Random variable wn indicates the number of (non-reserved) time slots

in frame n with no transmission. Also, random variable vn indicates the number of

time slots in frame n with one or more transmissions. Here, we assume that times

slots with successful transmissions and time slots with collisions have similar effect

on the control signal u.

Next, we consider how the control signal u can affect transmission behavior of

contending terminals. For the framed PRMA with price based control, we assume

all contending terminals have permission to transmit their packets, at the beginning

of time frame n. However, we assume that the number of “available” time slots for

the contending terminals is controlled by the control signal u. Assume that at the

beginning of time frame n, the number of reserved time slots is given by rn. We

define δn as the number of “available” time slots for contending voice terminals as

following:

δn =





dN−rn

ρ(un)
e if rn < N,

1 if rn = N.

Assumption 5.1. We assume that ρ(u) is continuous, bounded (0 ≤ ρ(u) ≤ N),

and strictly decreasing in u (u ∈ [0, +∞)). Furthermore, there exists a positive

constant umax such that ρ(u) = 0 when u ≥ umax.
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At the beginning of a time frame n, contending voice terminals calculate the

control signal u (or receive update control signal from the access point), determine

the parameter ρ(u) (or receive the updated parameter ρ(u)), and randomly choose

one time slot out of δn “available” times slots. If δn ≤ N − rn, the contending

voice terminals transmit in their chosen time slot. However, if δn > N − rn, only

contending voice terminals that have chosen time slots less than N−rn can transmit

their packets. Other contending terminal will not transmit. This case is similar to

having permission probability less than 1 where only terminals that have permission

to transmit choose one free time slot.

Considering dynamic behavior of framed PRMA with price based control, state

of the system at the beginning of time frame n is given by Xn = (cn, rn, un). Without

loss of generality, it can be assumed that the system starts at initial state X0 =

(c0, r0, u0) = (0, 0, 0). Also, c ∈ {0, 1, 2, · · · ,Mv}, r ∈ {0, 1, 2, · · · , N}, and u ∈ Γ =

{min(uMAX , [−αa+ξd]+)|a, d ∈ Z+}. Where uMAX = umax +max(Nξ). However, it

is noted that state space ℵ is only a subset of {0, 1, 2, · · · ,Mv}×{0, 1, 2, · · · , N}×Γ.

Because, at least, the total number of contending and reserving voice terminals at

each time slot could not be higher than total the number of voice terminals. Also,

for rn = N , control signal could only take values greater than or equal to ξ. Note

that state space ℵ is countable. Time evolution of the states of the system is as

following:

cn+1 = cn + yn − qn, rn+1 = rn + qn − zn,
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here,

yn : the number of terminals transitioned from SIL to CON,

qn : the number of terminals transitioned from CON to RES,

zn : the number of terminals transitioned from RES to SIL.

1) yn : Random variable yn represents the number of terminals in SIL that

generate a new message in frame n. Given the number of contending and reserved

voice terminals are known, statistics of yn is

Pr(yn = y|cn = c, rn = r) =




Mv − c− r

y


 σy

v(1− σv)
Mv−c−r−y,

here 0 ≤ y ≤ Mv − c− r. Further, the average number of terminals that transition

from SIL to CON at the end of frame n, given the number of contending and

reserved terminals are known, is determined as following:

E(yn|cn = c, rn = r) = (Mv − c− r)σv.

2) zn : Random variable zn presents the number of terminals in reservation

state that move to silent state by transmitting all their packets. As noted, we assume

that the communication channel is error free. Given the number of contending and

reserved terminals are known, statistics of zn is

Pr(zn = z|cn = c, rn = r) =




r

z


 γz

f (1− γf )
r−z,

here 0 ≤ z ≤ r. Further, the average number of terminals that transition from

RES to SIL at the end of frame n, given the number of contending and reserved
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terminals are known, is determined as following:

E(zn|cn = c, rn = r) = rγf .

3) qn : Random variable qn presents the number of contending voice terminals

that have successfully transmitted packets in frame n. As noted, at the beginning of

each time frame, each contending terminal determines (or receives) parameter ρ(un)

based on received feedback information. Next, the terminal calculates (or receives)

the number of “available” time slots δn = dN−rn

ρ(un)
e, and it randomly chooses one of δn

“available” slots. As discussed, if δn ≤ N−rn, chosen time slots exists in time frame

n and the terminal transmits its packet at that time slot. However, if δn > N − rn,

and the chosen time slot does not belong to the time frame, the terminal will not

transmit its packet.

Collisions happen if more than two contending terminals choose the same time

slot. As shown in [67], statistics for qn can be determined as following

Pr(qn = q|cn = c, rn = r, un = u)

=





∑min(N−r,c)
i=q




N − r

i







i

q







c

i


 i!(−1)i−q (N−r−pi)c−i

(N−r)c pi, if δ > N − r,

∑min(N−r,c)
i=q




N − r

i







i

q







c

i


 i!(−1)i−q (δ−i)c−i

δc , if δ ≤ N − r.

where p ≡ N−r
δ

and 0 ≤ q ≤ min(N − r, c).

Further, as shown in [66], the number of contending terminals with successful
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transmission can be given by

qn =
cn∑
i=1

χi,

where χi is a random variable with values belonging to {0, 1}. Random variable

χi is 1 if ith contending terminal succeed (no other contending terminal transmits

in the slot chosen by the ith terminal among min(δn, N − rn) available time slots).

Therefore, probability of success for ith terminal is

Pr(χi = 1|cn = c, rn = r, un = u) =





(1− 1
δ
)c−1 if δ ≤ N − r,

N−r
δ

(1− 1
δ
)c−1 if δ > N − r,

here δ = δ(un). Therefore, the expected number of successful contending terminals

(given the number of contending and reserved terminals and control signal is known)

is given by

E(qn|cn = n, rn = r, un = u) = E[
c∑

i=1

χi|cn = n, rn = r, un = u]

=





c(1− 1
δ
)c−1 if δ ≤ N − r,

cN−r
δ

(1− 1
δ
)c−1 if δ > N − r.

Next we consider expected change of control signal. One step expected change

(mean drift) of control signal at state (c, r, u) is:

d(c, r, u) =E(un+1 − un|cn = c, rn = r, un = u),

= max(−u,−αE(wn|cn = c, rn = r, un = u)

+ ξE(vn|cn = c, rn = r, un = u)).
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Relaxed drift equation is:

d(c, r, u) =− αE(wn|cn = c, rn = r, un = u) + ξE(vn|cn = c, rn = r, un = u),

=





−αδ(1− 1
δ
)c + ξ(δ − δ(1− 1

δ
)c) if δ ≤ N − r,

−α(N − r)(1− 1
δ
)c + ξ(N − r − (N − r)(1− 1

δ
)c) if δ > N − r.

Now, we study behavior of framed PRMA using equilibrium point analysis. It is

assumed that any change in states of the system at equilibrium is zero. Similar

to the PRMA system and based on the averages determined above, equilibrium

equations of the framed PRMA system are derived. A point (C,R, U) is called an

equilibrium point, if

(Mv − C −R)σv − C((
N −R

δ
)I(δ > N −R) + I(δ ≤ N −R))wv(C, U) = 0,

Rγf − C((
N −R

δ
)I(δ > N −R) + I(δ ≤ N −R))wv(C, U) = 0,

− (α + ξ)(1− 1

δ
)C + ξ = 0. (5.2)

Here wv(C, U) =





(1− 1
δ
)C−1 C ≥ 1

1 C < 1

and δ = δ(U) = dN−R
ρ(U)

e.

In order to determine solution of set of equations (5.2), for given system and

control parameters, we assume two different cases (1) δ > N−R and (2) δ ≤ N−R.

For each case, we present sufficient conditions for the control parameter such that

the system has a unique operating point (solution of the set of equations (5.2) is

unique). The analysis do not examine whether the unique solution satisfies the

assumption made.

Remark 5.1. Based on the first two equations of the set of equations (5.2), it

is easy to show that R = min(N,ω(Mv − C)), where ω = σv

γf+σv
. Therefore,
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when the equilibrium equations of the system is considered, it is assumed that C ∈

[max(0,Mv − N
ω
),Mv], R ∈ [0, N ], and δ ∈ [1,∞). However, it can easily be shown,

using the set of equation (5.2) and considering each of the cases δ > N − R and

δ ≤ N − R, that C = 0, Mv − N
ω
, C = Mv, R = 0, R = N (resulting in

δ = 1 > N − R = 0), δ = 1, δ → +∞, or a combination thereof, cannot be

solutions to the set of equilibrium equations (5.2).

Lemma 5.1. Assuming that δ > N − R, there exists a set of control parameters

(α, ξ) for which the set of equations (5.2) has a unique solution in (C, U) and the

system has a single operating point if any of conditions (1a), (1b), or (2) below hold:

(1a) Mv ≥ 1 + N
ω

where ω = σv

γf+σv
, and

−ωγf

N
<

ξ

α + ξ
[(

ln( ξ
α+ξ

)

Mv − N
ω

+ 1) exp(−
ln( ξ

α+ξ
)

Mv − N
ω

)− 1],

(1b) Mv ≤ 1 + N
ω

and either

(Mv − 1)ωγf

N − (Mv − 1)ω
≤ ξ

α + ξ
Mv(exp(− 1

Mv

ln(
ξ

α + ξ
))− 1), or

− ωγf

N
< 1− ξ

α + ξ
+ ln(

ξ

α + ξ
),

(2) − 1 + ξ
α+ξ

− ln( ξ
α+ξ

) ≤ ω
Nγf

[ ξ
α+ξ

Mv(exp(− 1
Mv

ln( ξ
α+ξ

))− 1) + γf ]
2.

Proof. We will show the existence of control parameters (α, ξ) such that the condi-

tions hold. We first consider conditions (1a) and (1b) and prove that under these

conditions the system has a unique operating point. Assuming that δ > N −R, set

of equations (5.2) can be simplified as follows

F1(C,U) = C
1

δ
wv(C, U)− (Mv − C)ωγf

N − (Mv − C)ω
= 0, (5.3)

F2(C,U) = −(α + ξ)(1− 1

δ
)C + ξ = 0, (5.4)
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here max(0,Mv − N
ω
) < C < Mv and R = ω(Mv − C). Now let us define following

new functions

f(C, U) = C
1

δ
wv(C, U), g(C) =

(Mv − C)ωγf

N − (Mv − C)ω
.

Solving equation (5.4) for δ and then substituting it in f(C,U), we have

f(C) =





ξ
α+ξ

C(exp(−1
C

ln( ξ
α+ξ

))− 1) C ≥ 1,

C(1− exp( 1
C

ln( ξ
α+ξ

))) C < 1.

(5.5)

Fixed point(s) of equations (5.3) and (5.4) is same as fixed point(s) of f(C) = g(C).

For the given range of C, it is easy to show that first and second derivatives of f(C)

are as follows




df
dC

< 0 C ≥ 1

df
dC

> 0 C < 1

,





d2f
dC2 > 0 C ≥ 1

d2f
dC2 < 0 C < 1.

It can also be shown that dg
dC

< 0 and d2g
dC2 > 0 for the given range of C. Also, notice

that

f(Mv) =
ξ

α + ξ
Mv(exp(− 1

Mv

ln(
ξ

α + ξ
))− 1) > g(Mv) = 0.

Based on these facts, in order to prove that f(C) = g(C) has exactly one solution,

for the conditions (1a) and (1b) stated in the lemma, we consider following cases:

• Case 1 - Mv > 1+ N
ω
: For Mv− N

ω
< C ≤ Mv, g(C) is strictly decreasing and

positive. f(C) is positive and strictly decreasing with positive second order

derivatives. Also, f(Mv− N
ω
) < g((Mv− N

ω
)+), and f(Mv) > g(Mv). We define

h(C) = g(C)−f(C). As mentioned, h(Mv−N
ω
) > 0 and h(Mv) < 0. Therefore,

if we choose the control parameters such that dh
dC

< 0, then h(C) = 0 will have
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a unique solution. Since both functions f(C) and g(C) have positive second

order derivatives, then

df

dC
(Mv − N

ω
) <

df

dC
<

df

dC
(Mv),

dg

dC
(Mv − N

ω
) <

dg

dC
<

dg

dC
(Mv).

Hence, if the control parameters are chosen such that dg
dC

(Mv) ≤ df
dC

(Mv − N
ω
),

then dh
dC

< 0 for the range of C and h(C) = 0 has a unique solution.

• Case 2 - N
ω

< Mv < 1 + N
ω
: In order to make sure that there exists only one

solution, we chose the control parameters (α, ξ) such that either dg
dC

(Mv) ≤
df
dC

(1) or g(1) < f(Mv).

• Case 3 - 0 < Mv < N
ω
: In this case g(C) is positive, strictly decreasing, with

positive second derivative. Also, f(C) is positive, strictly, increasing with

negative second order derivative for 0 ≤ C < 1, and strictly decreasing with

positive second order derivative for 1 ≤ C ≤ Mv. In same way as Case 2, we

choose control parameters so dg
dC

(Mv) ≤ df
dC

(1) or g(1) < f(Mv). It is easy to

show that in this case f(C) = g(C) has exactly one solution.

Next we prove the result assuming condition (2) holds. The set of three equations

(5.2) can be simplified, under assumption δ > N−R, as the following single equation:

h(C) = −Mv + C +
N

ω

f(C)

γf + f(C)
= 0. (5.6)

Here, f(C) is the same as defined earlier in the proof. It can easily be shown

using equation (5.5) that h(0) = −Mv, h(Mv − N
ω
) < 0, and h(Mv) > 0. The first

176



derivative of h(C) is

h′(C) = 1 +
Nγf

ω

f ′(C)

(γf + f(C))2
,

where f ′(C) = df
dC

and h′(C) = dh
dC

. We showed earlier in the proof that f ′(C) > 0

for 0 ≤ C < 1. Therefore, for this range of C, h′(C) > 0. So h(C) is negative for

C = max(0, Mv − N
ω
), is positive for C = Mv, as has a positive slope for 0 ≤ C < 1.

Next we show that the slope is also positive for 1 ≤ C ≤ Mv, which will imply that

a unique solution for h(C) = 0 exist within interval 0 ≤ C ≤ Mv. Consider the case

1 ≤ C ≤ Mv and we will show that if condition (2) is satisfied, then h′(C) > 0. We

define h1(C) = −f ′(C) and h2(C) = ω
Nγf

(γf + f(C))2.

It is noted that h1(C) > 0 and h′1(C) < 0 for C ≥ 1. Therefore, h1(Mv) <

h1(C) < h1(1).

Also, h2(C) > 0 and h′2(C) < 0 for C ≥ 1. Therefore, h2(Mv) < h2(C) <

h2(1).

Hence, if the control parameters are chosen such that h1(1) ≤ h2(Mv) (in other

words, −f ′(1) < ω
Nγf

(γf + f(Mv))
2), then h′(C) > 0. Therefore, h(C) = 0 has a

unique solution.

It can easily be shown, using equation (5.4), that δ is one-to-one function of

C. Further, for the equilibrium studies we assume that δ = N−R
ρ(U)

. As mentioned

before, ρ is also a one-to-one function of u (for 0 < ρ < N). Therefore, it can easily

be shown that for a given C, there exists a unique U . Therefore, under conditions

stated in the lemma, the set of equations (5.3) and (5.4) or equation (5.6) has a

unique solution in 0 < C < Mv and 0 < U < umax.
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Lemma 5.2. Assuming that δ ≤ N − R, there exist a set of control parameters

(α, ξ) for which the set of equations (5.2) has a unique solution in (C, U) and the

system has a single operating point if ξ
ξ+α

> e−1.

Proof. Under the assumption of this lemma, set of equations (5.2) can be simplified

as follows

F1(C,U) = −Mv + C +
1

ωγf

Cwv(C, U) = 0, (5.7)

F2(C,U) = −(α + ξ)(1− 1

δ
)C + ξ = 0, (5.8)

here R = ω(Mv − C), and max(0,Mv − N
ω
) < C ≤ Mv. Now let us define following

new function

f(C, U) = Cwv(C, U).

Solving equation (5.8) for δ and then substituting it in f(C,U), we have

f(C) =





ξ
α+ξ

C exp(−1
C

ln( ξ
α+ξ

)) C ≥ 1,

C C < 1.

with first derivative of

df

dC
=





ξ
α+ξ

exp(−1
C

ln( ξ
α+ξ

))(1 +
ln( ξ

α+ξ
)

C
) C ≥ 1,

1 C < 1.

Equation 5.7 can be rewritten as F1(C) = −Mv +C + 1
ωγf

f(C) = 0. It is noted that

F1(0) = −Mv, F1(Mv − N
ω
) < 0 and F1(Mv) > 0. Also, derivative of F1(C) is

dF1

dC
= 1 + (

1

ωγf

)
df

dC
.
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For C < 1 it is easy to show that dF1

dC
> 0. However, for C ≥ 1, if the control

parameters are chosen such that 1+
ln( ξ

α+ξ
)

C
> 0, then it is easy to show that dF1

dC
> 0.

So F1(C) is negative for C = max(0,Mv − N
ω
), is positive for C = Mv, and has a

positive slope for max(0,Mv − N
ω
) < C ≤ Mv. Therefore, F1(C) = 0 has a unique

solution for this range of C. We will show that if ξ
α+ξ

> e−1 then 1 +
ln( ξ

α+ξ
)

C
> 0 for

C ≥ 1.

ξ

α + ξ
> e−1,

ln(
ξ

α + ξ
) > −1,

− ln(
ξ

α + ξ
) < 1 ≤ C,

− ln( ξ
α+ξ

)

C
< 1,

1 +
ln( ξ

α+ξ
)

C
> 0.

Therefore, if ξ
α+ξ

> e−1 then dF1

dC
> 0. Hence, F1(C) = 0 will have a unique operating

point.

It can easily be shown, using equation (5.8), that δ is one-to-one function of

C. Further, for the equilibrium studies we assume that δ = N−R
ρ(U)

. As mentioned

before, ρ is also a one-to-one function of u (for 0 < ρ < N). Therefore, it can easily

be shown that for a given C, there exists a unique U . Therefore, under conditions

stated in the lemma, the set of equations (5.7) and (5.8) has a unique solution in

0 < C < Mv and 0 < U < umax.

In order to be able to use the relaxed form of expected drift, we make a small

change in assumption 5.1. The update equation (5.1) reproduced here is un+1 =
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[un−αwn +ξvn]+. As noted before, ρ(u) is continuous and bounded (0 ≤ ρ(u) ≤ N)

function of control signal u. However, here, we assume ρ(u) = N for u ∈ [0, Nα],

strictly decreasing for u ∈ (Nα, umax), and ρ(u) = 0 for u ∈ [umax, +∞).

For u < Nα, ρ(u) = N and δ = 1. Hence, if at the beginning of time frame n

the value of control signal un is less than Nα, then only one time slot is available for

contention in that time frame. If the number of contending voice terminals at the

beginning of time frame n is more than zero (cn > 0), the available time slot will

have at least one transmission. However, if no terminal is contending (cn = 0), the

available time slot will be idle. For a given state (cn, rn, un) = (c, r, u), the update

control signal is as following:





un+1 = un + ξ if cn > 0,

un+1 = [un − α]+ if cn = 0.

However, at equilibrium, it can be shown that the value of contending terminals is

greater than zero (C > 0). Therefore, the expected drift of the control signal at

equilibrium is ξ > 0 (if equilibrium value of control signal is less than Nα). Hence,

it can be confirmed that equilibrium value of control signal cannot be less than Nα

and therefore, relaxed expected drift for control signal can be used.

It is noted that the control parameters can be chosen such that the number

of contending terminals at equilibrium equals to a pre-chosen value. This, enables a

system designer to select system parameters such that at equilibrium, system works

at a given load in order to meet a certain throughput, delay, or drop probability

criteria.
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5.3 Price Based Control - Framed PRMA Protocol for Voice and

Data Terminals

In this section we consider a framed PRMA system that employs both voice

and data terminals. As we studied in the PRMA voice and data system, we assume

that voice and data terminal share the same communication medium. Behavior of

voice terminals is the same as discussed before. We assume that data terminals

have a buffer with capacity of one packet, however, our analysis is easily extend-

able to buffers with higher capacities. Also, we assume that data terminals, unlike

voice terminals, can not reserve time slots. At the beginning of each time frame,

each terminal with packets to transmit (contending voice terminals and backlogged

data terminals) randomly chooses an “available” time slot for transmission. At the

beginning of each frame, terminals have knowledge of how many time slots in that

frame are reserved and therefore, how many time slots are free. Depending on a

control signal (as explained later), “available” time slots are either a subset of free

time slots or include free time slots.

If the umber of “available” time slots are less than free time slots, the difference

is left without any transmission. However, if the number of “available” time slots

are greater than the number of free time slots, if the chosen time slot is after the

end of free slots, the terminal that has chosen that slot will not transmit.

Therefore, a terminal successfully transmits at a chosen time slot, if the chosen

time slot is before the end of free time slot and other terminals have not chosen that

time slot. A successful voice terminal reserves that time slot in future frames.
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However, a successful data terminal enters a silent state and awaits generation of

new data packets.

At the end of each time frame, the base station transmits feedback information

to the terminals indicating outcome of transmissions in that frame. Therefore, voice

and data terminals are informed of the number of collisions, successful transmissions,

and idle time slots (“available” time slots with no transmission) in that time frame.

Each terminal updates a control signal u based on this information. The

number of “available” time slots in next frame is further updated based on the

control signal and the updated number of free time slots in next frame. The control

signal u is updated at the end of time frame n as following:

un+1 = [un − αwn + ξvn]+ (5.9)

Here, the control parameters α and ξ are positive real number. [x]+ denotes

max(0, x). Random variable wn indicates the number of “available” time slots in

frame n with no transmission. Also, random variable vn indicates the number of

time slots in frame n with one or more transmissions.

At the beginning of frame n, the number of “available” time slots δn is updated

based on control signal un and the number of free time slots N − rn as following:

δn =





dN−rn

ρ(un)
e if rn < N,

1 if rn = N.

Assumption 5.2. We assume that parameter ρ(u) is continuous, bounded (0 ≤

ρ(u) ≤ N), and strictly decreasing in u (u ∈ [0, +∞)). Furthermore, there exists a

positive constant umax such that ρ(u) = 0 when u ≥ umax.
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Considering dynamic behavior of framed PRMA with voice and data termi-

nal and with price based control, state of the system at the beginning of time

slot n is given by Xn = (cn, rn, bn, un). Without loss of generality, it can be as-

sumed that the system starts at initial state X0 = (c0, r0, b0, u0) = (0, 0, 0, 0). Also,

c ∈ {0, 1, 2, · · · ,Mv}, r ∈ {0, 1, 2, · · · , N}, b ∈ {0, 1, 2, · · · ,Md}, and u ∈ Γ =

{min(uMAX , [−αa+ξd]+)|a, d ∈ Z+}. Where uMAX = umax +max(Nξ). However, it

is noted that state space ℵ is only a subset of {0, 1, 2, · · · ,Mv} × {0, 1, 2, · · · , N} ×

{0, 1, 2, · · · ,Md}×Γ. Because, at least, the total number of contending and reserv-

ing voice terminals at each time slot could not be higher than the total number of

voice terminals. Also, for rn = N , control signal could only take values greater than

or equal to ξ. Note that state space ℵ is countable.

Time evolution of the states of the system is as following:

cn+1 = cn + ycn − qcn , rn+1 = rn + qcn − zcn , bn+1 = bn + ybn − qcn .

Where,

ycn : the number of voice terminals transitioned from SIL to CON,

qcn : the number of voice terminals transitioned from CON to RES,

zcn : the number of voice terminals transitioned from RES to SIL,

ybn : the number of data terminals transitioned from SIL to BLK,

qbn : the number of data terminals transitioned from BLK to SIL.

1) ycn : Random variable ycn represents the number of voice terminals in

SIL that generate a new message in frame n. Given the number of contending and
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reserved voice terminals and backlogged data terminals are known, statistics of ycn

is:

Pr(ycn = yc|cn = c, rn = r, bn = b) =




Mv − c− r

yc


 σyc

v (1− σv)
Mv−c−r−yc ,

here 0 ≤ yc ≤ Mv − c − r. Further, the average number of voice terminals that

transition from SIL to CON during time frame n (given control signal, the number

of contending and reserved voice terminals, and the number of backlogged data

terminals are known) is determined as following:

E(ycn |cn = c, rn = r, bn = b) = (Mv − c− r)σv.

2) zcn : Random variable zcn presents the number of voice terminals in

reservation state that move to silent state by transmitting all their packets. Statistics

of zcn is:

Pr(zcn = zc|cn = c, rn = r, bn = b) =




r

zc


 γzc

f (1− γf )
r−zc ,

here 0 ≤ zc ≤ r. Further, the average number of voice terminals that transition

from RES to SIL during time frame n is determined as following:

E(zcn |cn = c, rn = r, bn = b) = rγf .

3) qcn : Random variable qcn presents the number of contending voice ter-

minals that have successfully transmitted packets in frame n. As noted, at the

beginning of each time frame, each contending terminal updates parameter ρ(un)

based on received feedback information, determines the number of “available” time

slots δn, and randomly chooses one of the “available” time slots.
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If δn ≤ N − rn, the chosen time slot is in time frame n. However, N − rn− δn

time slots are left without contention and transmission. In case δn > N − rn, if the

chosen time slot does not belong to time frame n, the terminal that have chosen

that time slot, will not transmit. This is similar to the assumption that terminal

does not have permission to transmit.

In order to determine the statistics for qcn , we take the following approach.

As mentioned before, we assumed that each voice or data terminals have permission

probability of 1 and randomly chooses one of the unreserved time slots to transmit.

We define random variable qn representing the number of terminals (voice and data)

that successfully transmit. Statistics for qn can be determined, as shown in [66] and

[67], to be

Pr(qn = q|cn = c, rn = r, bn = b, un = u)

=





∑min(N−r,c+b)
i=q




N − r

i







i

q







c + b

i


 i!(−1)i−q (N−r−pi)c+b−i

(N−r)c+b pi if δ > N − r,

∑min(N−r,c+b)
i=q




N − r

i







i

q







c + b

i


 i!(−1)i−q (δ−i)c+b−i

δc+b if δ ≤ N − r,

here p ≡ N−r
δ

and 0 ≤ q ≤ min(N − r, c + b). Since both voice and data terminals

behave in the same manner in choosing a time slot from the pool of the “available”

time slots, statistics for qcn given the number of successful transmission qn can be

determined as follows

Pr(qcn = qc|cn = c, rn = r, bn = b, un = u, qn = q) =




q

qc


 (

c

c + b
)qc(

b

c + b
)q−qc ,
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here 0 ≤ qc ≤ min(q, c).

Further, as shown in [66], the number of contending terminals with successful

transmission can be given by

qcn =
cn∑
i=1

χci
,

here χci
is a random variable with values belonging to {0, 1}. Random variable χci

is 1 if ith contending voice terminal succeed (no other terminal transmits in the slot

chosen by the ith terminal among min(δn, N − rn) available time slots). Therefore,

probability of success for ith terminal is

Pr(χci
= 1|cn = c, rn = r, bn = b, un = u) =





(1− 1
δ
)c+b−1 if δ ≤ N − r,

N−r
δ

(1− 1
δ
)c+b−1 if δ > N − r,

here δ = δ(un). Therefore, the expected number of successful contending terminals

(given the number of contending, backlogged, and reserved terminals and control

signal is known) is:

E(qcn|cn = c, rn = r, bn = b, un = u) = E[
c∑

i=1

χci
|cn = n, rn = r, bn = b, un = u]

=





c(1− 1
δ
)c+b−1 if δ ≤ N − r,

cN−r
δ

(1− 1
δ
)c+b−1 if δ > N − r.

4) ybn : Random variable ybn represents the number of data terminals in SIL

that generate a new packet in frame n. Statistics of ybn is:

Pr(ybn = yc|cn = c, rn = r, bn = b) =




Md − b

yb


 σyb

d (1− σd)
Md−b−yb ,
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here 0 ≤ yb ≤ Md−b. Further, the average number of data terminals that transition

from SIL to BLK during time frame n is determined as following:

E(ybn|cn = c, rn = r, bn = b) = (Md − b)σd.

5) qbn : Random variable qbn presents the number of backlogged data termi-

nals that have successfully transmitted packets in frame n. Similar to qcn , statistics

for qbn can be determined, given the number of successful transmission qn, as follows

Pr(qbn = qb|cn = c, rn = r, bn = b, un = u, qn = q) =




q

qb


 (

b

c + b
)qb(

c

c + b
)q−qb ,

here 0 ≤ qb ≤ min(q, c).

Further, as shown in [66], the number of backlogged data terminals with suc-

cessful transmission can be given by

qbn =
bn∑
i=1

χbi
,

here χbi
is a {0, 1}-random variable. Random variable χbi

is 1 if ith backlogged data

terminal succeed (no other terminal transmits in the slot chosen by the ith terminal

among min(δn, N − rn) available time slots). Therefore, probability of success for

ith terminal is

Pr(χbi
= 1|cn = c, rn = r, bn = b, un = u) =





(1− 1
δ
)c+b−1 if δ ≤ N − r,

N−r
δ

(1− 1
δ
)c+b−1 if δ > N − r,

here δ = δ(un). Therefore, the expected number of successful backlogged data

terminals (given the number of contending, backlogged, and reserved terminals and
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control signal is known) is given by

E(qbn|cn = c, rn = r, bn = b, un = u) = E[
b∑

i=1

χbi
|cn = n, rn = r, bn = b, un = u]

=





b(1− 1
δ
)c+b−1 if δ ≤ N − r,

bN−r
δ

(1− 1
δ
)c+b−1 if δ > N − r.

Based on the above statistics, one step expected change (mean drift) of control

signal at state (c, r, b, u) is:

d(c, r, b, u) =E(nn+1 − un|cn = c, rn = r, bn = n, un = u)

= max(−u,−αE(wn|cn = c, rn = r, bn = b, un = u)

+ξE(vn|cn = c, rn = r, bn = b, un = u)).

Relaxed drift equation is:

d(c, r,b, u) =

−αE(wn|cn = c, rn = r, bn = b, un = u) + ξE(vn|cn = c, rn = r, bn = b, un = u)

=





−αδ(1− 1
δ
)c+b + ξ(δ − δ(1− 1

δ
)c+b) if δ ≤ N − r,

−α(N − r)(1− 1
δ
)c+b + ξ(N − r − (N − r)(1− 1

δ
)c+b) if δ > N − r.

Next, we study the behavior of the framed PRMA voice and data system using

equilibrium point analysis. A point (C, R, B, U) is called an equilibrium point, if

(Mv − C −R)σv − C((
N −R

δ
)I(δ > N −R) + I(δ ≤ N −R))w(C, B, U) = 0,

Rγf − C((
N −R

δ
)I(δ > N −R) + I(δ ≤ N −R))w(C, B, U) = 0,

(Md −B)σd −B((
N −R

δ
)I(δ > N −R) + I(δ ≤ N −R))w(C,B, U) = 0,

− (α + ξ)(1− 1

δ
)C+B + ξ = 0. (5.10)
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Here w(C, B, U) =





(1− 1
δ
)C+B−1 C + B ≥ 1

1 C + B < 1

and δ = δ(U). Similar to the

framed PRMA voice system, we consider two different cases: (1) δ > N − R and

(2) δ ≤ N −R. For each case we determine solution to the set of equations (5.10)

and determine if the solution satisfies the assumption made in the case.

Remark 5.2. Based on the first two equations of the set of equations (5.10), it

is easy to show that R = min(N, ω(Mv − C)), where ω = σv

γf+σv
. Also, based on

the first and second equations of the set of equations (5.10), it is easy to show that

B(C) = MdC

(Mv−C)
γf ω

σd
+C

. Therefore, when the equilibrium equations of the system is

considered, it is assumed that C ∈ [max(0,Mv − N
ω
),Mv], B ∈ [0,Md], R ∈ [0, N ],

and δ ∈ [1,∞). However, it can easily be shown, using the set of equation (5.10)

and considering each of the cases δ > N −R and δ ≤ N −R, that C = 0, Mv − N
ω
,

C = Mv, B = 0, B = Md, R = 0, R = N (resulting in δ = 1 > N − R = 0), δ = 1,

δ → +∞, or a combination thereof, cannot be solutions to the set of equilibrium

equations (5.10).

Lemma 5.3. Assuming δ > N −R, let us define

f+(C) =
ξ

α + ξ
(C + B)(exp(

−1

C + B
ln(

ξ

α + ξ
))− 1).

Here B(C) = MdC

(Mv−C)
γf ω

σd
+C

. There exists a set of control parameters (α, ξ) for which

the set of equations (5.10) has a unique solution in (C, U) and the system has a

single operating point if any of condition (1), (2), or (3) below hold:

(1)
γf ω

σd
< 1, Mv − N

ω
> Ĉ, and −γf ω

N
(1 + Md

Mv
) < df+

dC
(C̃),

189



(2)
γf ω

σd
< 1, Mv − N

ω
< Ĉ, and either

− γfω

N
(1 +

Md

Mv

) <
df+

dC
(Ĉ), or

(Mv − Ĉ)ωγf + (Md − B̂)σd

N − (Mv − Ĉ)ω
≤ ξ

α + ξ
(Mv + Md)(exp(

−1

Mv + Md

ln(
ξ

α + ξ
))− 1),

(3)
γf ω

σd
≥ 1, Mv < N

ω
+ 1, and

(Mv − Ĉ)ωγf + (Md − B̂)σd

N − (Mv − Ĉ)ω
≤ ξ

α + ξ
(Mv + Md)(exp(

−1

Mv + Md

ln(
ξ

α + ξ
))− 1).

Here, C̃ = Mv − N
ω
, Ĉ + B̂ = 1, and B̂ = B(Ĉ).

Proof. We define following new functions

f(C, U) = (C + B)
1

δ
w(C, B, U) g(C) =

(Mv − C)ωγf + (Md −B)σd

N − (Mv − C)ω
.

Note that R = min(N, ω(Mv − C)), B = MdC

(Mv−C)
γf ω

σd
+C

, and max(0,Mv − N
ω
) < C <

Mv. Solving relaxed expected drift of control signal in equation (5.10) for δ and

substituting it in f(C,U), we have

f(C) =





ξ
α+ξ

(C + B)(exp( −1
C+B

ln( ξ
α+ξ

))− 1) C + B ≥ 1

(C + B)(1− exp( 1
C+B

ln( ξ
α+ξ

))) C + B < 1

It is easy to show that equilibrium points of set of equations (5.10) are same

as fixed points of f(C) = g(C). First and second derivatives of f(C) are as follows

df

dC
< 0 for C + B ≥ 1 and

df

dC
> 0 for C + B < 1.

And if
γf ω

σd
< 1

d2f

dC2
> 0 for C + B ≥ 1 and

d2f

dC2
< 0 for C + B < 1.
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Also, for the range of C mentioned above and for
γf ω

σd
< 1, first and second derivatives

of g(C) are as follows dg
dC

< 0 and d2g
dC2 > 0. Also, note that

f(Mv) =
ξ

α + ξ
(Mv + Md)(exp(− 1

(Mv + Md)
ln(

ξ

α + ξ
))− 1) > g(Mv) = 0.

We define Ĉ such that B(Ĉ)+ Ĉ = 1. Since B is a strictly increasing function of C,

Ĉ is unique. Further, for simplification in notations, we define C̃ = Mv − N
ω
. Now

based on the above-noted facts, in order to prove that f(C) = g(C) has exactly one

solution, for the conditions stated in the lemma, we consider different cases:

• Case 1:
γf ω

σd
< 1

1. Mv > Ĉ + N
ω
: In this case we only consider Mv − N

ω
< C ≤ Mv. In

this range, g(C) is positive and strictly decreasing with positive second

derivative. Also, f(C) is positive, strictly decreasing with positive second

derivative, f(Mv− N
ω
) < g((Mv− N

ω
)+), and and f(Mv) > g(Mv). There-

fore, if the control parameters are chosen such that g(C)−f(C) is strictly

decreasing in the range of C, then g(C)−f(C) = 0 has a unique solution.

Since both functions g(C) and f(C) have positive second derivatives, we

choose the control parameters such that dg
dC

(Mv) < df
dC

(C̃).

2. N
ω

< Mv < Ĉ + N
ω
: In this case, in order to make sure that there exist

only one solution, we chose the control parameters (α, ξ) such that either

dg
dC

(Mv) < df
dC

(Ĉ) or g(Ĉ) < f(Mv).

3. 0 < Mv < N
ω
: In this case, g(C) is positive, strictly decreasing, and with

positive second derivative. Also, f(C) is positive, strictly increasing for
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0 < C < Ĉ, and strictly decreasing for Ĉ ≤ C ≤ Mv. In the same

way, we choose control parameters such that either dg
dC

(Mv) < df
dC

(Ĉ) or

g(Ĉ) < f(Mv). It is easy to show that in this case f(C) = g(C) has

exactly one solution.

• Case 2:
γf ω

σd
≥ 1

– 0 < Mv < Ĉ + N
ω
: In this case, g(C) is positive, strictly decreasing.

Also, f(C) is positive, strictly increasing for 0 < C < Ĉ, and strictly

decreasing for Ĉ ≤ C ≤ Mv. We choose control parameters such that

g(Ĉ) < f(Mv).

Therefore, set of equations (5.10) has a unique solution for the case δ > N −R.

It can easily be shown that δ is one-to-one function of C. Further, for the

equilibrium studies we assume that δ = N−R
ρ(U)

. As mentioned before, ρ is also a

one-to-one function of u (for 0 < ρ < N). Therefore, it can easily be shown that

for a given C, there exists a unique U . Therefore, under conditions stated in the

lemma, the set of equations (5.10) for the case δ > N − R has a unique solution in

0 < C < Mv and 0 < U < umax.

Lemma 5.4. Assuming δ ≤ N − R, set of equations (5.10) has a unique solution

and the system has a single operating point if ξ
α+ξ

> e−1.

Proof. Under the assumption of this lemma, set of equation (5.10) can be simplified
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as follows

F1(C,B, U) = −(Mv − C)γfω − (Md −B)σd + (C + B)w(C,B, U) = 0,

F2(C,B, U) = −(α + ξ)(1− 1

δ
)C+B + ξ = 0.

Here w(C,B,U) =





(1− 1
δ
)C+B−1 C + B ≥ 1

1 C + B < 1

, R = min(N, ω(Mv − C)),

B = MdC

(Mv−C)
γf ω

σd
+C

, and max(0,Mv − N
ω
) < C < Mv. We define following new

function

f(C, U) = (C + B)w(C, B, U).

Solving F2(C, B, U) for δ and substituting it in f(C, U), we have

f(C) =





ξ
α+ξ

(C + B) exp( −1
C+B

ln( ξ
α+ξ

)) C + B ≥ 1,

C + B C + B < 1,

with first derivative of

df

dC
=





ξ
α+ξ

exp( −1
C+B

ln( ξ
α+ξ

))(1 + B′)(1 +
ln( ξ

α+ξ
)

C+B
) C + B ≥ 1,

1 + B′ C + B < 1.

Here, B′ = dB
dC

=
MvMd

γf ω

σd

((Mv−C)
γf ω

σd
+C)2

> 0. Further, we rewrite equation F1(C, B, U) = 0

as following

F1(C) = −(Mv − C)γfω − (Md −B)σd + f(C) = 0.

Note that F1(0) = −Mv −Md and F1(Mv) > 0. Also, first derivative of F1(C) is

dF1

dC
= γfω + σd +

df

dC
.

For C + B < 1, it is easy to show that dF1

dC
> 0. However, for C + B ≥ 1, if the

control parameters are chosen such that (1 + B′)(1 +
ln( ξ

α+ξ
)

C+B
) > 0, then it is easy to
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show that dF1

dC
> 0. Next, we will show that if ξ

α+ξ>e−1 then (1+B′)(1+
ln( ξ

α+ξ
)

C+B
) > 0

for C + B ≥ 1.

ξ

α + ξ
> e−1,

ln(
ξ

α + ξ
) > −1,

− ln(
ξ

α + ξ
) < 1 ≤ C + B,

− ln( ξ
α+ξ

)

C + B
< 1,

1 +
ln( ξ

α+ξ
)

C
> 0,

(1 + B′)(1 +
ln( ξ

α+ξ
)

C
) > 0.

Therefore, if ξ
α+ξ

> e−1 then dF1

dC
> 0. Hence, F1(C) = 0 will have a unique operating

point.

It can easily be shown that δ is one-to-one function of C. Further, for the

equilibrium studies we assume that δ = N−R
ρ(U)

. As mentioned before, ρ is also a

one-to-one function of u (for 0 < ρ < N). Therefore, it can easily be shown that

for a given C, there exists a unique U . Therefore, under conditions stated in the

lemma, the set of equations (5.10) for the case δ > N − R has a unique solution in

0 < C < Mv and 0 < U < umax.

5.4 Numerical Results

In this section we verify our analysis in previous sections with numerical re-

sults. First, we consider a Framed PRMA system that employs only voice terminals.
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Using numerical analysis (based on the equilibrium equations of the system), we il-

lustrate nonlinear behavior and bifurcations of the system and further, we illustrate

effects of the price based control. Next in this section, we consider a Framed PRMA

system that employs both voice and data terminals.

A Framed PRMA system with voice terminals with following parameters are

considered ([66]) σv = 0.0055, γf = 0.05, N = 25, and D = 75. Figures 5.1, 5.3, and

5.5 illustrate bifurcation diagrams for the Framed PRMA system with permission

probability of pv = 1. It is noticed that although the number of voice terminals less

than 213 results in packet drop probability of less that 0.01, however, because of the

bifurcations that occurs, the capacity of the system is limited to 170.

Next, we design a price based control and study the behavior of the Frame

PRMA system with the controller. In order to design the control parameters, we

choose ξ = 1. Further, we calculate α = 0.35 such that packet drop probability in

the case where δ < N − R is less than 0.01. Figures 5.2, 5.4, and 5.6 illustrate bi-

furcation diagrams for the Framed PRMA system with the price based control. The

bifurcation diagram for packet drop probability illustrate that although bifurcations

are not completely eliminated, however, they are controlled by being delayed for

larger values of the bifurcation parameter. Also, it is noted that the capacity of the

system in increased from 170 simultaneous voice terminals to 210.

Now a Framed PRMA system with voice and data terminals with following

parameters is considered ([66]-in part) σv = 0.0055, σd = 0.002, γf = 0.05, N = 25,

and D = 75. Figures 5.7, 5.9, 5.11, and 5.13 illustrate bifurcation diagrams for

the Framed PRMA system with permission probability of pv = 1, fixed Md = 100,
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Figure 5.1: Bifurcation diagram for
packet drop probability with no control
(pv = 1 and Mv is bifurcation parame-
ter)
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Figure 5.2: Bifurcation diagram for
the packet drop probability with PBBC
(α = 0.35, ξ = 1, Mv is bifurcation pa-
rameter)
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Figure 5.3: Bifurcation diagram for the
number of contending terminals with
no control (pv = 1 and Mv is bifurca-
tion parameter)
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Figure 5.4: Bifurcation diagram for the
number of contending terminals with
PBBC (α = 0.35, ξ = 1, Mv is bifurca-
tion parameter)
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Figure 5.5: Bifurcation diagram for the
number of reserved terminals with no
control (pv = 1 and Mv is bifurcation
parameter)
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Figure 5.6: Bifurcation diagram for
the number of reserved terminals with
PBBC (α = 0.35, ξ = 1, Mv is bifurca-
tion parameter)

and Mv as bifurcation parameter. It is noticed that although the number of voice

terminals less than 206 results in packet drop probability of less that 0.01, however,

because of the bifurcations that occurs, the capacity of the system is limited to

Mv = 108 and Md = 100.

Further, figures 5.15, 5.17, 5.19, and 5.21 illustrate bifurcation diagrams for

the Framed PRMA system with permission probability of pv = 1, fixed Mv = 100,

and Md as bifurcation parameter. It is noticed that although the number of data

terminals less than 1570 results in packet drop probability of less that 0.01, however,

because of the bifurcations that occurs, the capacity of the system is limited to

Mv = 100 and Md = 111.

Next, we design a price based control and study the behavior of the Frame

PRMA system with the controller. In order to design the control parameters, we

choose ξ = 1. Further, we calculate α = 0.35 such that packet drop probability in
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the case where δ < N−R is less than 0.01. Figures 5.8, 5.10, 5.12, and 5.14 illustrate

bifurcation diagrams for the Framed PRMA system with the price based control with

Mv as bifurcation parameter. The bifurcation diagram for packet drop probability

illustrate that although bifurcations are not completely eliminated, however, they

are controlled by being delayed for larger values of the bifurcation parameter. Also,

it is noted that the capacity of the system in increased from Mv = 108 and Md = 100

simultaneous voice terminals to Mv = 203 and Md = 100.

Figures 5.16, 5.18, 5.20, and 5.22 illustrate bifurcation diagrams for the Framed

PRMA system with the price based control with Md as bifurcation parameter. The

bifurcation diagram for packet drop probability illustrate that although bifurcations

are not completely eliminated, however, they are controlled by being delayed for

larger values of the bifurcation parameter. Also, it is noted that the capacity of the

system in increased from Mv = 100 and Md = 111 simultaneous voice terminals to

Mv = 100 and Md = 1482.

5.5 Summary and Future Lines of Work

In this chapter we studied a voice system and a voice-data system that employ

Framed PRMA. We assumed that instead of transmitting feedback information dur-

ing each time slot, like PRMA system, the feedback information regarding the status

of transmissions are send at the end of each time frame. We studied the equilibrium

behavior of the system and analyzed the effects of the price based control on bista-

bility of the system. For each of voice and voice-data system, we further derived
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Figure 5.7: Bifurcation diagram for
packet drop probability with no control
(p = 1, Md = 100, Mv is bifurcation
parameter)
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Figure 5.8: Bifurcation diagram for
the packet drop probability with PBBC
(α = 0.35, ξ = 1, Md = 100, Mv is bi-
furcation parameter)

sufficient conditions on the control parameters under each condition δleqN − R or

δ > N −R such that the controlled system has a unique equilibrium point. Future

lines of research can include extending theses analysis to determine sufficient con-

ditions for uniqueness of the equilibrium point of the system, studying a dynamic

bifurcation control based on state observation, and extending state estimation bi-

furcation control, as discussed in previous chapters, to the Framed PRMA.
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Figure 5.9: Bifurcation diagram for the
number of contending terminals with
no control (p = 1, Md = 100, Mv is
bifurcation parameter)
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Figure 5.10: Bifurcation diagram for
the number of contending terminals
with PBBC (α = 0.35, ξ = 1, Md =
100, Mv is bifurcation parameter)
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Figure 5.11: Bifurcation diagram for
the number of reserved terminals with
no control (p = 1, Md = 100, Mv is
bifurcation parameter)
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Figure 5.12: Bifurcation diagram for
the number of reserved terminals with
PBBC (α = 0.35, ξ = 1, Md = 100, Mv

is bifurcation parameter)
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Figure 5.13: Bifurcation diagram for
the number of backlogged data termi-
nals with no control (p = 1, Md = 100,
Mv is bifurcation parameter)
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Figure 5.14: Bifurcation diagram for
the number of backlogged data termi-
nals with PBBC (α = 0.35, ξ = 1,
Md = 100, Mv is bifurcation parame-
ter)
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Figure 5.15: Bifurcation diagram for
packet drop probability with no control
(p = 1, Mv = 100, Md is bifurcation
parameter)
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Figure 5.16: Bifurcation diagram for
the packet drop probability with PBBC
(α = 0.35, ξ = 1, Mv = 100, Md is bi-
furcation parameter)
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Figure 5.17: Bifurcation diagram for
the number of contending terminals
with no control (p = 1, Mv = 100, Md

is bifurcation parameter)
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Figure 5.18: Bifurcation diagram for
the number of contending terminals
with PBBC (α = 0.35, ξ = 1, Mv =
100, Md is bifurcation parameter)
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Figure 5.19: Bifurcation diagram for
the number of reserved terminals with
no control (p = 1, Mv = 100, Md is
bifurcation parameter)
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Figure 5.20: Bifurcation diagram for
the number of reserved terminals with
PBBC (α = 0.35, ξ = 1, Mv = 100, Md

is bifurcation parameter)
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Figure 5.21: Bifurcation diagram for
the number of backlogged data termi-
nals with no control (p = 1, Mv = 100,
Md is bifurcation parameter)
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Figure 5.22: Bifurcation diagram for
the number of backlogged data termi-
nals with PBBC (α = 0.35, ξ = 1,
Mv = 100, Md is bifurcation parame-
ter)
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Chapter 6

Conclusion

We studied equilibrium behavior and control for design of Packet Reserva-

tion Multiple Access (PRMA) protocols. In Chapter 2, we considered a system of

voice terminals that employs PRMA as the medium access scheme. We studied

the equilibrium behavior of the system and illustrated how small changes in system

parameters can dramatically change the equilibrium behavior of the system. Fur-

ther, we studied a price based control scheme for the PRMA system that updates

permission probability of voice terminals based on a feedback information received

from an access point indicating result of transmission in previous time slot. Contri-

butions of this chapter include Markov analysis of the price based controlled system

and analytical sufficient conditions guaranteeing a unique equilibrium point for the

controlled system. We further introduced a state estimation-based controller, which

updates permission probability based on estimate of one of the states of system to

maximize throughput or minimize packet drop probability. Among contributions of

this chapter are analytical sufficient conditions guaranteeing a unique equilibrium

point for the controlled system. We also considered using multiple levels of trans-

mission power at terminals and capture effect at the access point and studied its

effects on bifurcations of the PRMA system. These are studied both for an error-free

channel and a random error channel.
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Moreover, we extended our analysis of the PRMA voice system to the PRMA

with hindering states (PRMA-HS) in Chapter 2. For the PRMA-HS system, unlike

the PRMA system, round trip delay plays a significant role in modeling the system.

We studied the equilibrium behavior of the PRMA-HS voice system without and

with the control schemes introduced earlier for both an error-free channel and a

random error channel. Among contributions of this chapter are analytical sufficient

conditions guaranteeing a unique equilibrium point for the controlled system.

In Chapter 3, we studied a general price based control for voice and data

system employing PRMA-HS. We studied the equilibrium behavior of a PRMA

voice-data system with and without price based control and state estimation-based

control over error-free and random error channels. In Chapter 3, a Markov model of

the controlled system (under some conditions) is analyzed and analytical sufficient

conditions for system and control parameters of the controlled systems are derived

such that the controlled system posses a unique operating point.

In Chapter 4, we revisited a finite terminals finite buffered slotted ALOHA

system and we studied equilibrium effects of a price based control on bistability of

the system using the tagged user approach. Among contributions of this chapter,

we illustrated that bifurcations of the system can be controlled by appropriately

choosing the control parameters.

Finally, in chapter 5, we considered a Framed PRMA system with voice only

terminals and voice and data terminals. Unlike the PRMA system that feedback

information is transmitted to the terminals at the end of each time slot, in Framed

PRMA it is assumed that feedback information for a frame is transmitted at the
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end of a time frame. We extended the price based control scheme to the Framed

PRMA and studied the equilibrium behavior of the controlled system.
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Appendix A

Proof of Propositions 2.1, 2.2

In order to prove that Markov chain (2.2) (for φ = 0) is positive recurrent, first

we show that the Markov chain’s state space is countable. Then, the irreducibility

and aperiodicity of the chain is examined.

A.1 Proof of Proposition 2.1 - Markov Chain is Irreducible and Ape-

riodic

A.1.1 Countable State Space

The state (c, r, u) belongs to the following state space:

({0, 1, 2, · · · ,Mv}×{0, 1, 2, · · · , N − 1} × U ∪ V )

∪ ({0, 1, 2, · · · ,Mv} × {N} × U ′ ∪ V ′),

here

U = {u|u = −αa + βb + ξd ≥ 0; a, b, d ∈ Z+},

V = {v|v = u0 − αa + βb + ξd > 0; a, b, d ∈ Z+},

U ′ = {u′|u′ = −αa + βb + ξd ≥ [β]+; a, b, d ∈ Z+},

V ′ = {v′|v′ = u0 − αa + βb + ξd > [β]+; a, b, d ∈ Z+}.
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Without loss of generality, it is assumed that u0 /∈ U , therefore, sets U and V (U ′

and V ′) are disjoint. The state space of the Markov chain is a subset of the following

set:

ℵ = {0, 1, 2, · · · ,Mv} × {0, 1, 2, · · · , N} × U ∪ V.

Using the fact that every subset of a countable set is also countable, to show that the

state space is countable it suffices to show that the set ℵ is countable. Consider the

general case where α, β, and ξ are just arbitrary real numbers. Then there exists a

one-to-one correspondence between u ∈ U (or v ∈ V ) and the corresponding triplet

(a, b, d). Now since set {(a, b, d)|a, b, d ∈ Z+} is enumerable, we conclude that U

and V , and hence the state space, are countable sets.

A.1.2 Irreducible State Space

As far as the stability analysis is concerned, only absorbing communication

sets are relevant. We show that set of states with control starting at u0 /∈ U is a

non-absorbing set. Suppose v = u0 − αa ∈ V where a = bu0

α
c when u0

α
/∈ Z, and

a = bu0

α
c − 1 when u0

α
∈ Z. Consider two different cases:

1) r ∈ {0, 1, 2, · · ·N − 1}: Transition probability from state (c, r, v) to state

(c, r, 0) is: P ((c, r, v), (c, r, 0)) = (1− σv)
Mv−c−r(1− r

N
)(1− pv(v))c > 0. But 0 ∈ U

(0 /∈ V ), hence there exists some m > 0 such that:

Pm((c0, r0, u0), (c0, r0, 0)) = Pm−1((c0, r0, u0), (c0, r0, v))P ((c0, r0, v), (c0, r0, 0)) > 0
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2) r = N : The probability of reaching state (c, N, [β]+) from state (c,N, v) for

any (c, r) ∈ {0, 1, 2, · · · ,Mv} × {N} is:

P ((c,N, v), (c,N, [β]+)) =P ((c,N, v), (c,N − 1, v))× P ((c,N − 1, v)(c,N − 1, 0))

× P ((c,N − 1, 0), (c,N, [β]+))

=(1− σv)
Mv−c−Nγf (1− σv)

Mv−c−N+1(1− N − 1

N
)(1− pv(v))c

(Mv − c−N + 1)σv(1− σv)
Mv−c−N

(1− N − 1

N
)cpv(0)(1− pv(0))c−1

((1− σv)
Mv−c−N+1(

N − 1

N
)(1− γf ))

2N−2

> 0

But [β]+ /∈ V , hence P ((c0, N, u0), (c0, N, [β]+)) > 0

Therefore, set V is non-absorbing. As a result, only irreducibility of the fol-

lowing subset of the state space is examined:

({0, 1, 2, · · · ,Mv} × {0, 1, 2, · · · , N − 1} × U) ∪ ({0, 1, 2, · · · ,Mv} × {N} × U ′).

Lemma A.1. Suppose (c, r, u) and (c, r, v) are two states in the state space

({0, 1, 2, · · · ,Mv}×{0, 1, 2, · · · , N −1}×U)∪ ({0, 1, 2, · · · ,Mv}×{N}×U ′). Then

(c, r, u) and (c, r, v) communicate ((c, r, u) ↔ (c, r, v)).

Proof. Consider two different cases:

Case 1: (c, r, u), (c, r, v) ∈ {0, 1, 2, · · · ,Mv} × {0, 1, 2, · · · , N − 1} × U

Suppose m = du
α
e and v = −αa + βb + ξd. Then according to the transition
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probabilities:

P ((c, r, u), (c, r, v)) ≥P ((c, r, u), (c, r, 0))P ((c, r, 0), (c, r, ξd))

P ((c, r, ξd), (c, r, βb + ξd))P ((c, r, βb + ξd), (c, r, v)).

In order to show that two states (c, r, u) and (c, r, v) communicate, it should be

shown that transition probability from one to the other is positive.

1) (c, r, u) → (c, r, 0): Define x = b m
N−r

c

P ((c, r, u), (c, r, 0)) ≥
x−1∏
i=0

(
N−r−1∏

k=0

P ((c, r, [u− (i(N − r) + k)α]+), (c, r, [u− (i(N − r) + k + 1)α]+)))

(P ((c, r, [u− (i + 1)(N − r)α]+), (c, r, [u− (i + 1)(N − r)α]+)))r

×
m−x(N−r)−1∏

k=0

P ((c, r, [u− (x(N − r) + k)α]+), (c, r, [u− (x(N − r) + k + 1)α]+))

=
x−1∏
i=0

N−r−1∏

k=0

(1− σv)
Mv−c−r(1− r/N)(1− pv([u− (i(N − r) + k)α]+))c

((1− σv)
Mv−c−r(r/N)(1− γf ))

xr

×
m−x(N−r)−1∏

k=0

(1− σv)
Mv−c−r(1− r/N)(1− pv([u− (x(N − r) + k)α]+))c

> 0.
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2) (c, r, 0) → (c, r, ξd): Define y = b d
N−r

c

P ((c, r, 0), (c, r, ξd)) ≥
y−1∏
i=0

N−r−1∏

k=0

P ((c, r, (i(N − r) + k)ξ), (c, r, (i(N − r) + k + 1)ξ))

(P ((c, r, (i + 1)(N − r)ξ), (c, r, (i + 1)(N − r)ξ)))r

×
d−y(N−r)−1∏

k=0

P ((c, r, (y(N − r) + k)ξ), (c, r, (y(N − r) + k + 1)ξ))

=

y−1∏
i=0

N−r−1∏

k=0

(1− σv)
Mv−c−r(1− r/N)(1− cpv(1− pv)

c−1 − (1− pv)
c)

((1− σv)
Mv−c−r(r/N)(1− γf ))

yr

×
d−y(N−r)−1∏

k=0

(1− σv)
Mv−c−r(1− r/N)(1− cpv(1− pv)

c−1 − (1− pv)
c)

> 0.

3) (c, r, ξd) → (c, r, βb + ξd): Define z = b b
N
c. In this section of proof we consider

a case where r ≥ b−Nz. However, proof is similar if r < b−Nz.

P ((c, r, ξd), (c, r, βb + ξd)) ≥
r−1∏

k=0

P ((c, r − k, ξd), (c, r − k − 1, ξd))

×
z−2∏
i=0

N−1∏

k=0

P ((c, k, ξd + (iN + k)β), (c, k + 1, ξd + (iN + k + 1)β))

N−1∏

k=0

P ((c,N − k, ξd + (i + 1)Nβ), (c,N − k − 1, ξd + (i + 1)Nβ))
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×
N−1∏

k=0

P ((c, k, ξd + ((z − 1)N + k)β), (c, k + 1, ξd + ((z − 1)N + k + 1)β))

×
N+b−zN−r−1∏

k=0

P ((c,N − k, ξd + zNβ), (c,N − k − 1, ξd + zNβ))

×
N−1∏

k=N+b−zN−r

P ((c, r − b + zN, ξd + zNβ), (c, r − b + zN, ξd + zNβ))

×
b−Nz−1∏

k=0

P ((c, r − b + zN + k, u1), (c, r − b + zN + k + 1, u2))

> 0.

Where u1 = ξd + (zN + k)β, u2 = ξd + (zN + k + 1)β.

4) (c, r, βb + ξd) → (c, r,−αa + βb + ξd): Define w = b a
N−r

c

P ((c, r, βb + ξd), (c, r,−αa + βb + ξd)) ≥
w−1∏
i=0

N−r−1∏

k=0

P ((c, r, ξd + βb− (i(N − r) + k)α), (c, r, ξd + βb− (i(N − r) + k + 1)α))

(P ((c, r, ξd + βb− (i + 1)(N − r)α), (c, r, ξd + βb− (i + 1)(N − r)α)))r×
a−w(N−r)−1∏

k=0

P ((c, r, ξd + βb− (w(N − r) + k)α), (c, r, ξd + βb− (w(N − r) + k + 1)α))

=
w−1∏
i=0

N−r−1∏

k=0

(1− σv)
Mv−c−r(1− r/N)(1− pv(ξd + βb− (i(N − r) + k)α))c

× ((1− σv)
Mv−c−r(r/N)(1− γf ))

wr

×
a−w(N−r)−1∏

k=0

(1− σv)
Mv−c−r(1− r/N)(1− pv(ξd + βb− (w(N − r) + k)α))c

> 0.
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Case 2: (c, r, u), (c, r, v) ∈ {0, 1, 2, · · · ,Mv} × {N} × U ′

Suppose m = du
α
e and v = −αa + βb + ξd then according to the transition

probabilities:

P ((c,N, u), (c, N, v)) ≥P ((c,N, u), (c,N − 1, 0))P ((c,N − 1, 0), (c,N − 1, ξd))

P ((c,N − 1, ξd), (c,N − 1, β(b− 1) + ξd))

P ((c,N − 1, β(b− 1) + ξd), (c,N, v))

Now we show that state (c,N, v) is reachable from stat (c,N, u) with positive prob-

ability.

1) (c,N, u) → (c,N − 1, 0):

P ((c,N, u), (c,N − 1, 0)) ≥

P ((c,N, u), (c,N − 1, u))
m−1∏
i=0

P ((c,N − 1, [u− iα]+), (c,N − 1, [u− (i + 1)α]+))

(P ((c,N − 1, [u− (i + 1)α]+), (c,N − 1, [u− (i + 1)α]+)))N−1

= (1− σv)
Mv−c−Nγf

m−1∏
i=0

(1− σv)
Mv−c−N+1(1− N − 1

N
)(1− pv(u− iα))c

((1− σv)
Mv−c−N+1N − 1

N
(1− γf ))

m(N−1) > 0

2) (c,N − 1, 0) → (c,N − 1, ξd):

P ((c,N − 1, 0), (c,N − 1, ξd)) ≥
d−1∏
i=0

P ((c,N − 1, iξ), (c,N − 1, (i + 1)ξ))(P ((c,N − 1, (i + 1)ξ), (c,N − 1, (i + 1)ξ)))N−1
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=
d−1∏
i=0

(1− σv)
Mv−c−N+1(1− N − 1

N
(1− cpv(iξ)(1− pv(iξ))

c−1 − (1− pv(iξ))
c))

((1− σv)
Mv−c−N+1N − 1

N
(1− γf ))

d(N−1)

> 0

3) (c,N − 1, ξd) → (c,N − 1, β(b− 1) + ξd). Define y = b b−1
N
c

P ((c,N − 1, ξd), (c,N − 1, β(b− 1) + ξd)) ≥
N−2∏

k=0

P ((c,N − 1− k, ξd), (c,N − 1− k − 1, ξd))

×
y−2∏
i=0

N−1∏

k=0

P ((c, k, (iN + k)β + ξd), (c, k + 1, (iN + k + 1)β + ξd))

N−1∏

k=0

P ((c,N − k, (i + 1)Nβ + ξd), (c,N − k − 1, (i + 1)Nβ + ξd))

×
N−1∏

k=0

P ((c, k, ((y − 1)N + k)β + ξd), (c, k + 1, ((y − 1)N + k + 1)β + ξd))

×
b−yN−1∏

k=0

P ((c,N − k, yNβ + ξd), (c,N − k − 1, yNβ + ξd))

×
N−1∏

k=b−yN

P ((c,N − b + yN, yNβ + ξd), (c,N − b + yN, yNβ + ξd))

×
b−yN−2∏

k=0

P ((c,N − b + yN + k, u3), (c,N − b + yN + k + 1, u4))

> 0.

Where u3 = (yN + k)β + ξd, u4 = (yN + k + 1)β + ξd.
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4) (c,N − 1, β(b− 1) + ξd) → (c,N,−αa + βb + ξd)

P ((c,N − 1, β(b− 1) + ξd), (c,N,−αa + βb + ξd)) ≥
a−1∏
i=0

P ((c,N − 1,−iα + β(b− 1) + ξd), (c,N − 1,−(i + 1)α + β(b− 1) + ξd))

(P ((c,N − 1,−(i + 1)α + β(b− 1) + ξd), (c,N − 1,−(i + 1)α + β(b− 1) + ξd)))N−1

× P ((c,N − 1,−αa + β(b− 1) + ξd), (c,N, v))

=
a−1∏
i=0

(1− σv)
Mv−c−N+1(1− N − 1

N
)(1− pv(−iα + β(b− 1) + ξd))c

× ((1− σv)
Mv−c−N+1(N − 1/N)(1− γf ))

a(N−1)

× (Mv − c−N + 1)σv(1− σv)
Mv−c−N(1− N − 1

N
)cpv(1− pv)

c−1

> 0

So far we proved that the arbitrary state (c, r, v) is reachable from any state

(c, r, u) with positive probability ((c, r, u) → (c, r, v)). Since two states are chosen

arbitrarily, then (c, r, u) ↔ (c, r, v) or both states communicate.

Now in this part, all states that communicate with (0, 0, 0) are examined. It

is assumed that 0 ≤ r < N . The case where r = N is very similar.

1) (c, r, u) → (0, 0, 0): Consider two different cases:

A) N − r > c

P ((c, r, u), (0, 0, [u− α(N − c− r) + βc]+)) ≥
c−1∏

k=0

P ((c− k, r + k, [u + kβ]+), (c− k − 1, r + k + 1, [u + (k + 1)β]+))

×
N−c−r−1∏

k=0

P ((0, r + c, [u− kα + βc]+), (0, r + c, [u− (k + 1)α + βc]+))

215



×
r+c−1∏

k=0

P ((0, r + c− k, u5), (0, r + c− k − 1, u5))

> 0

where u5 = [u− α(N − c− r) + βc]+. Using lemma A.1, (0, 0, u5) ↔ (0, 0, 0).

B) N − r ≤ c. Define x = b c−(N−r)
N

c.

P ((c, r, u), (0, 0, [u− α(N − c + (N − r) + xN) + βc]+)) ≥
N−r−1∏

k=0

P ((c− k, r + k, [u + kβ]+), (c− k − 1, r + k + 1, [u + (k + 1)β]+))

×
x−1∏
i=0

N−1∏

k=0

P ((c− (i + 1)N + r,N − k, [u6]
+), (c− (i + 1)N + r,N − k − 1, [u6]

+))

N−1∏

k=0

P ((c4 − k, k, [u6 + kβ]+), (c4 − k − 1, k + 1, [u6 + (k + 1)β]+))

×
N−1∏

k=0

P ((c− (N − r)− xN, N − k, [u7]
+), (c− (N − r)− xN, N − k − 1, [u7]

+))

×
c−(N−r)−xN−1∏

k=0

P ((c5 − k, k, [u7 + kβ]+), (c5 − k − 1, k + 1, [u7 + (k + 1)β]+))

×
N−c+(N−r)+xN−1∏

k=0

P ((0, c5, [u− kα + βc]+), (0, c5, [u− (k + 1)α + βc]+))

×
c−(N−r)−xN−1∏

k=0

P ((0, c5 − k, u8), (0, c5 − k − 1, u8))

> 0

where

u6 = u + (N − r + iN)β c4 = c− (i + 1)N + r

u7 = u + (N − r + xN)β c5 = c− (N − r)− xN

u8 = [u− α(N − c + (N − r) + xN) + βc]+

216



According to Lemma A.1, (0, 0, [u− α(N − c + (N − r) + xN) + βc]+) ↔ (0, 0, 0)

2) (0, 0, 0) → (c, r, u)

• (0, 0, 0) → (0, 0, u): Immediate result of Lemma A.1.

• (0, 0, 0) → (c, r, u): Using Lemma A.1, it is obvious that there exist a m1 > 0

such that: Pm1((c, r, [βr + ξ]+), (c, r, u)) > 0. Therefore:

P ≥ P ((0, 0, 0), (c + r, 0, 0))× P ((c + r, 0, 0), (c + r, 0, ξ))

×
r−1∏

k=0

P ((c + r − k, k, [kβ + ξ]+), (c + r − k − 1, k + 1, [(k + 1)β + ξ]+))

× Pm1((c, r, [βr + ξ]+), (c, r, u))

> 0

The above suggest that the state space is an absorbing communication set and

therefore, irreducible.

A.1.3 Aperiodic State Space:

It remains to show that the Markov chain (2.2) defined on the state space is

aperiodic. Since the Markov chain is irreducible, it suffices to show the aperiodicity

for a single state (c, r, u). Any state (c, r, u) communicates with (0, 0, 0). There-

fore, there exists m1 > 0 and m2 > 0 such that Pm1((c, r, u), (0, 0, 0)) > 0 and

Pm2((0, 0, 0), (c, r, u)) > 0. Let m = m1 + m2. Then:

Pm((c, r, u), (c, r, u)) ≥ Pm1((c, r, u), (0, 0, 0))Pm2((0, 0, 0), (c, r, u)) > 0

Pm+1((c, r, u), (c, r, u)) ≥ Pm1((c, r, u), (0, 0, 0))P ((0, 0, 0), (0, 0, 0))Pm2((0, 0, 0), (c, r, u)) > 0
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where P ((0, 0, 0), (0, 0, 0)) = (1− σv)
Mv > 0. Hence the period for any state (c, r, u)

is 1 and the chain is aperiodic.

A.2 Proof of Proposition 2.2 - Markov Chain is Positive Recurrent

So far we proved that the state space is countable, irreducible, and aperiodic.

In this section, using the Proposition 2.3, we show that the Markov chain is positive

recurrent and hence, it has a unique stationary probability distribution. Following

non-negative Lyapunov function is chosen:

V (c, r, u) = u + Kr(1− σv + f(u))c

where:

• K > 0 is any real constant,

• f(.) : R→ [0, 1) is non-increasing, continuous, and bounded,

• there exists û > umax such that f(u) = 0 for u ≥ û.

Note that V (c, r, u) satisfies the requirement that it is non-negative. Following

definition of simplifying notations is also necessary:

pv = pv(u) f = f(u) fα = f(u− α)

fβ = f(u + β) fξ = f(u + ξ)

218



Expected drift of the Lyapunov function is a calculated as follows:

E(∆V |(c, r, u)) =E(V (cn+1, rn+1, un+1)− V (cn, rn, un)|(cn, rn, un) = (c, r, u))

=E(un+1 − un|(c, r, u))

+ KE(rn+1(1− σv + f(un+1))
cn+1 − rn(1− σv + f(un))cn|(c, r, u))

First E(rn+1(1− σv + f(un+1))
cn+1|(c, r, u)) is calculated:

E(rn+1(1− σv + f(un+1))
cn+1|(c, r, u)) =

− (1− σv + f)c(1− σ2
v + σvf)Mv−c−r(

r

N
)γf

+ r(1− σv + f)c(1− σ2
v + σvf)Mv−c−r(

r

N
)

+ r(1− σv + fα)c(1− σ2
v + σvfα)Mv−c−r(1− r

N
)(1− pv)

c

+ (r + 1)(1− σv + fβ)c−1(1− σ2
v + σvfβ)Mv−c−r(1− r

N
)cpv(1− pv)

c−1

+ r(1− σv + fξ)
c(1− σ2

v + σvfξ)
Mv−c−r(1− r

N
)(1− (1− pv)

c − cpv(1− pv)
c−1).

Hence:

E(∆V |(c, r, u)) =

− (α + ξ)(1− r

N
)(1− pv)

c + (β − ξ)(1− r

N
)cpv(1− pv)

c−1 + ξ(1− r

N
)

−Kr(1− σv + f)c

−K(1− σv + f)c(1− σ2
v + σvf)Mv−c−r(

r

N
)γf

+ Kr(1− σv + f)c(1− σ2
v + σvf)Mv−c−r(

r

N
)

+ Kr(1− σv + fα)c(1− σ2
v + σvfα)Mv−c−r(1− r

N
)(1− pv)

c

+ K(r + 1)(1− σv + fβ)c−1(1− σ2
v + σvfβ)Mv−c−r(1− r

N
)cpv(1− pv)

c−1

+ Kr(1− σv + fξ)
c(1− σ2

v + σvfξ)
Mv−c−r(1− r

N
)(1− (1− pv)

c − cpv(1− pv)
c−1).
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In order to prove that the Markov chain 2.2 is positive recurrent, a finite set Ξ is

found such that for states outside this set, expected drift in Lyapunov function,

V (c, r, u) is negative. Consider u ≥ û−min(−α, β). Then pv = f = fα = fβ = fξ =

0:

E(∆V |(c, r, u)) =−K(1− σv)
c(1− σ2

v)
Mv−c−r(

r

N
)γf

+ (Kr(1− σv)
c(1− σ2

v)
Mv−c−r −Kr(1− σv)

c)(
r

N
)

+ (Kr(1− σv)
c(1− σ2

v)
Mv−c−r −Kr(1− σv)

c − α)(1− r

N
)

=−K(1− σv)
c(1− σ2

v)
Mv−c−r(

r

N
)γf

−Kr(1− σv)
c(1− (1− σ2

v)
Mv−c−r)− α(1− r

N
)

≤−K(1− σv)
c(1− σ2

v)
Mv−c−r(

r

N
)γf − α(1− r

N
)

≤−K(1− σv)
Mv(1− σ2

v)
Mv(

r

N
)γf − α(1− r

N
)

=− (K(1− σv)
Mv(1− σ2

v)
Mvγf )(

r

N
)− α(1− r

N
)

≤−min(K(1− σv)
Mv(1− σ2

v)
Mvγf , α)

Hence take ε = min(K(1 − σv)
Mv(1 − σ2

v)
Mvγf , α). Now consider the case where

u < û−min(−α, β), then:

E(∆V |(c, r, u)) ≤

(β − ξ)(1− r

N
)cpv(1− pv)

c−1 + ξ(1− r

N
)

+ Kr(1− σv + f)c(1− σ2
v + σvf)Mv−c−r

+ Kr(1− σv + fα)c(1− σ2
v + σvfα)Mv−c−r

+ K(r + 1)(1− σv + fβ)c−1(1− σ2
v + σvfβ)Mv−c−r

220



+ Kr(1− σv + fξ)
c(1− σ2

v + σvfξ)
Mv−c−r

≤K(4N + 1)4Mv + max(β, ξ)

Hence, we take b = K(4N + 1)4Mv + max(β, ξ) and define Ξ as:

Ξ = {0, 1, · · · , Mv} × {0, 1, · · · , N} × {u|0 ≤ u = −aα + bβ + dξ ≤ û−min(−α, β)}

Hence:

E(∆V |(c, r, u)) ≤ −ε (c, r, u) /∈ Ξ

E(∆V |(c, r, u)) ≤ b (c, r, u) ∈ Ξ

and Markov chain (2.2) is positive recurrent.
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Appendix B

Proof of Proposition 2.4 - Markov Chain is Irreducible, Aperiodic,

and Positive Recurrent

State (c, r, u) belongs to following state space:

ℵ = {0, 1, 2, · · · ,Mv} × {0, 1, 2, · · · , N} × {0, 1, 2, · · · , N}

Note that c + r ≤ Mv, u = N − r, and ℵ is a countable set. Since a subset

of a countable set is also countable, thereby, the state space of the system is also

countable. Next, we show that all states in the state space communicate. Since

we have r + u = N , our focus is to show that (c, r) ↔ (c′, r′). First, we show

(c, r) → (0, 0). Consider two cases.

Case 1 - c + r ≤ N

P ((c, r), (0, 0)) ≥
c−1∏

k=0

P ((c− k, r + k), (c− k − 1, r + k + 1))

×
r−1∏

k=0

P ((0, r + c− k), (0, r + c− k − 1))

×
N−c−r−1∏

k=0

P ((0, c), (0, c))

×
c−1∏

k=0

P ((0, c− k), (0, c− k − 1))
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=
c−1∏

k=0

(1− σv)
Mv−c−r(1− (r + k)/N)(c− k)pv(1− pv)

c−k−1

×
r−1∏

k=0

(1− σv)
Mv−c−r+k((r + c− k)/N)γf

×
N−c−r−1∏

k=0

(1− σv)
Mv−c(1− c/N)

×
c−1∏

k=0

(1− σv)
Mv−c+k((c− k)/N)γf

> 0

Case 2 - c + r > N . We define x = b c−N+r
N

c. Since c − N + r − xN ≤ N

based on case 1 above (c −N + r − xN, 0) → (0, 0). Therefore, here we show that

(c, r) → (c−N + r − xN, 0).

P ((c, r), (c−N + r − xN, 0)) ≥
N+r−1∏

k=0

P ((c− k, r + k), (c− k − 1, r + k + 1))

×
x−1∏
i=0

N−1∏

k=0

P ((c−N + r − iN,N − k), (c−N + r − iN,N − k − 1))

N−1∏

k=0

P ((c−N + r − iN − k, k), (c−N + r − iN − k − 1, k + 1))

×
N−1∏

k=0

P ((c−N + r − xN, N − k), (c−N + r − xN, N − k − 1))
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=
N+r−1∏

k=0

(1− σv)
Mv−c−r(1− (r + k)/N)(c− k)pv(1− pv)

c−k−1

×
x−1∏
i=0

N−1∏

k=0

(1− σv)
Mv−c−r+k+iN((N − k)/N)γf

N−1∏

k=0

(1− σv)
Mv−c−r+(i+1)N(1− k/N)c1pv(1− pv)

c1−1

×
N−1∏

k=0

(1− σv)
Mv−c−r+(x+1)N((N − k)/N)γf

> 0,

here c1 = c−N + r − iN − k.

Next, we show (0, 0) → (c′, r′):

P ((0, 0), (c′, r′)) ≥

P ((0, 0), (c′ + r′, 0))×
r′∏

k=0

P ((c′ + r′ − k, k), (c′ + r′ − k − 1, k + 1))

=




Mv

c′ + r′


 σc′+r′

v (1− σv)
Mv−c′−r′

×
r′∏

k=0

(1− σv)
Mv−c′−r′(1− k/N)(c′ + r′ − k)pv(1− pv)

c′+r′−k−1

> 0,

Therefore, (c, r) ↔ (c′, r′). Hence, the state space is an absorbing communi-

cation set and irreducible. Next, we show that the Markov chain is aperiodic. As

we showed above, any state (c, r) communicates with (0, 0). Therefore, there exists

m1 and m2 such that Pm1((c, r), (0, 0)) > 0 and Pm2((0, 0), (c, r)) > 0. We define
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m = m1 + m2. Also note that P ((0, 0), (0, 0)) = (1− σv)
Mv . Therefore:

Pm((c, r), (c, r)) > Pm1((c, r), (0, 0))Pm2((0, 0), (c, r)) > 0,

Pm+1((c, r), (c, r)) > Pm1((c, r), (0, 0))P ((0, 0), (0, 0))Pm2((0, 0), (c, r)) > 0.

Hence, period for each state is 1 and therefore, the Markov chain is aperiodic. So

far we showed that Markov chain defined on ℵ through (2.2) (for φ = 1, α = ξ = 0,

and β = −1) is irreducible and aperiodic. Further, since the state space is finite, the

Markov chain is positive recurrent and a unique stationary probability distribution

exists.

225



Appendix C

Proof of Proposition 2.6

In this Appendix, we consider the PRMA-HS Voice system employing price

based control and we show that state space defining the Markov chain for this system

is countable and the Markov chain is aperiodic, irreducible, and positive recurrent.

As discussed before, for the PRMA-HS Voice system we assume that round trip

delay is one time slot. This assumption is merely for mathematical notations and

the proposition can be proved for any round trip delay (in terms of the number of

time slots) less than a frame.

Countable State Space - State (Y, Y1) belongs to a state space that is a

subset of

ℵ = ({0, 1, 2, · · · ,Mv} × {0, 1} × {0, 1, 2, · · · , N} × U ∪ V )2,

here

Y = (c, r, hv, u) Y1 = (c1, r1, hv1 , u1),

U = {u|u = −αa + βe + ξd ≥ 0; a, e, d ∈ Z+},

V = {v|v = u0 − αa + βe + ξd > 0; a, e, d ∈ Z+}.

Without loss of generality, it is assumed that u0 /∈ U therefore, sets U and V are

disjoint. Using the fact that every subset of a countable set is also countable, to

show that the state space is countable it suffices to show that the set ℵ is count-
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able. Consider the general case where α, β, and ξ are just arbitrary real numbers.

Then there exists a one-to-one correspondence between u ∈ U (or v ∈ V ) and the

corresponding triplet (a, e, d). Now since set {(a, e, d)|a, e, d ∈ Z+} is enumerable,

we conclude that U and V , and hence the state space, are countable sets.

Irreducible State Space - As far as the stability analysis is concerned, only

absorbing communication sets are relevant. As proved in the PRMA Voice only

system (and as will be proved for PRMA Voice-Data system), it is easy to show

that set of states with controls starting at u0 /∈ U is a non-absorbing set. Therefore,

sets V is non-absorbing. As a result, only irreducibility of the following subset of

the state space is examined:

({0, 1, 2, · · · ,Mv} × {0, 1} × {0, 1, 2, · · · , N} × U)2.

However, as mentioned before, at least the following constraints exist on states

of the system which belong to a subset of ℵ

• c + r + hv ≤ Mv and c1 + r1 + hv1 ≤ Mv

• r + hv ≤ N and r1 + hv1 ≤ N

• c− 1 ≤ c1 ≤ Mv − r − hv

• r − 1 ≤ r1 ≤ r + 1

• hv + hv1 ≤ 1

• For hv = 1, control signal u1 ≥ [β]+

• For r = N , control signal u ≥ [β]+ and u1 ≥ [β]+
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Next, we show that if Xu = ((c, r, hv, u), (c1, r1, hv1 , u1)) and

Xv = ((c, r, hv, v), (c1, r1, hv1 , v1)) are two states in the state space, then Xu and Xv

communicate (Xu ↔ Xv).

Note that since c, r, hv, c1, r1, hv1 , u, u1, v, v1 are chosen such that Xu and Xv

are valid states, it is obvious that (c1, r1, hv1 , u1) is reachable from (c, r, hv, u) in one

time slot and (c1, r1, hv1 , v1) is reachable from (c, r, hv, v). Therefore, it suffices to

show that (c, r, hv, v) is reachable from (c, r, hv, u).

If hv = 0, using similar proof for PRMA voice only system, it is easy to show

that (c, r, 0, v) is reachable from (c, r, 0, u).

If hv = 1 and hv1 = 0, with positive probability point (c, r, 1, u) transitions to

point (c1, r + 1, 0, [u + β]+) in next time slot. Based on proof of PRMA voice only

system, point (c + 1, r, 0, v) is reachable from (c1, r + 1, 0, [u + β]+) (in the PRMA

voice only system we proved that states in the absorbing state space communicate

with each other). Point (c + 1, r, 0, v) transitions to point (c, r, 1, v) in one time

slot with positive probability (a contending voice terminal successfully transmits its

voice packet).

If hv = 1 and hv1 = 1, with positive probability point (c, r, 1, u) transitions

to point (c1, r + 1, 1, [u + β]+) in next time slot and can transition to point (c1, r +

2, 0, [u + 2β]+). As proved in the PRMA voice only system that all the states

communicate, point (c1, r+2, 0, [u+2β]+) can transition to point (c+1, r, 0, v) with

positive probability that can transition to (c, r, 1, v) in one time slot.

Therefore, we can show that Xu → Xv. Since Xu and Xv are chosen arbitrarily,

it can be shown that Xv → Xu and thus, Xu ↔ Xv.
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Further, for a given state Xu = ((c, r, hv, u), (c1, r1, hv1 , u1)) in the state space,

it is easy to prove that Xu ↔ O where O = ((0, 0, 0, 0), (0, 0, 0, 0)).

If the system is at state Xu, during time all contending terminals can make

reservation and eventually all the reserved terminal lose their reservation until the

number of contending and reserved voice terminals is zero. Therefore, Xu →

((0, 0, 0, u2), (0, 0, 0, u3)). However, as shown above ((0, 0, 0, u2), (0, 0, 0, u3)) → O.

Thus, Xu → O.

In order to show O → Xu, we again focus on (0, 0, 0, 0) and (c, r, hv, u), because

c, r, hv, c1, r1, hv1 , u, u1 are chosen such that point (c1, r1, hv1 , u1) is reachable from

(c, r, hv, u) in one time slot. If hv = 0, we proved in the PRMA voice only system

that (c, r, 0, u) is reachable from (0, 0, 0, 0). If hv = 1, using the PRMA voice only

system, we can again show that point (0, 0, 0, 0) can transition to point (c+1, r, 0, u)

with positive probability and point (c + 1, r, 0, u) can transition to point (c, r, 1, u)

in one time slot with positive probability. Therefore, Xu is reachable form O.

Thus Xu ↔ O.

The above derivations proves that the state space is an absorbing communi-

cation set and therefore, irreducible.

Aperiodic State Space- In the same way as the PRMA voice only system

it can be proved that the Markov chain is aperiodic considering:

P (((0, 0, 0, 0), (0, 0, 0, 0)), ((0, 0, 0, 0), (0, 0, 0, 0))) = (1− σv)
Mv > 0.

Markov Chain is Positive Recurrent- So far we proved that the state

space is countable and the Markov chain is irreducible and aperiodic. Here, using the
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Proposition 2.3, we show that the Markov chain is positive recurrent and hence, it

has a unique stationary probability distribution. Following non-negative Lyapunov

function is chosen:

V (X) = u + Kr(1− σv + f(u))c

where:

• X = ((c−1, r−1, hv−1 , u−1), (c, r, hv, u))

• K > 0 is any real constant,

• f(.) : R→ [0, 1) is non-increasing, continuous, and bounded,

• there exists û > umax such that f(u) = 0 for u ≥ û.

Note that V (c, r, b, u) satisfies the requirement that it is non-negative. Following

definition of simplifying notations is also necessary:

pv = pv(u) pv−1 = pv(u−1) f = f(u)

fα = f(u− α) fβ = f(u + β) fξ = f(u + ξ)

Expected drift of the Lyapunov function is a calculated as follows:

E(∆V |X) =E(V (Xn+1)− V (Xn)|Xn = X)

=E(un+1 − un|X)

+ KE(rn+1(1− σv + f(un+1))
cn+1 − rn(1− σv + f(un))cn |X)

First E(rn+1(1− σv + f(un+1))
cn+1|X) is calculated:
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E(rn+1(1− σv + f(un+1))
cn+1 − rn(1− σv + f(un))cn | Xn = X) =

(r − 1)(1− σv + f)c(1− σv
2 + σvf)Mv−c−r−hv(

r−1 + hv−1

N
)γf (

r + hv

N
+ Υ + ΥNc)

+ (r − 1)(1− σv + f)c−1(1− σv
2 + σvf)Mv−c−r−hv(

r−1 + hv−1

N
)γfΥ

c

+ r(1− σv + f)c(1− σv
2 + σvf)Mv−c−r−hv(

r−1 + hv−1

N
)(1− γf )(

r + hv

N
+ Υ + ΥNc)

+ r(1− σv + f)c−1(1− σv
2 + σvf)Mv−c−r−hv(

r−1 + hv−1

N
)(1− γf )Υ

c

+ r(1− σv + fα)c(1− σv
2 + σvfα)Mv−c−r−hvΥNc

−1(
r + hv

N
+ Υ + ΥNc)

+ r(1− σv + fα)c−1(1− σv
2 + σvfα)Mv−c−r−hvΥNc

−1Υ
c

+ (r + 1)(1− σv + fβ)c(1− σv
2 + σvfβ)Mv−c−r−hvΥc

−1(
r + hv

N
+ Υ + ΥNc)

+ (r + 1)(1− σv + fβ)c−1(1− σv
2 + σvfβ)Mv−c−r−hvΥc

−1Υ
c

+ r(1− σv + fξ)
c(1− σv

2 + σvfξ)
Mv−c−r−hvΥ−1(

r + hv

N
+ Υ + ΥNc)

+ r(1− σv + fξ)
c−1(1− σv

2 + σvfξ)
Mv−c−r−hvΥ−1Υ

c.

Where

X1 = ((c, r, hv, b, hd, u), (c1, r1, hv1 , b1, hd1 , u1)),

Υc = (1− r + hv

N
)cpv(1− pv)

c+hv−1,

ΥNc = (1− r + hv

N
)(1− pv)

c+hv ,

Υ = (1− r + hv

N
)−ΥNc −Υc,

Υc
−1 = (1− r−1 + hv−1

N
)c−1pv−1(1− pv−1)

c−1+hv−1−1,

ΥNc
−1 = (1− r−1 + hv−1

N
)(1− pv−1)

c−1+hv−1 ,

Υ−1 = (1− r−1 + hv−1

N
)−ΥNc

−1 −Υc
−1.
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Hence E(∆V | X) is:

E(∆V | X) =

−K(1− σv + f)c(1− σv
2 + σvf)Mv−c−r−hv(

r−1 + hv−1

N
)γf (

r + hv

N
+ Υ + ΥNc)

−K(1− σv + f)c−1(1− σv
2 + σvf)Mv−c−r−hv(

r−1 + hv−1

N
)γfΥ

c

+ Kr(1− σv + f)c(1− σv
2 + σvf)Mv−c−r−hv(

r−1 + hv−1

N
)(

r + hv

N
+ Υ + ΥNc)

+ Kr(1− σv + f)c−1(1− σv
2 + σvf)Mv−c−r−hv(

r−1 + hv−1

N
)Υc

+ Kr(1− σv + fα)c(1− σv
2 + σvfα)Mv−c−r−hvΥNc

−1(
r + hv

N
+ Υ + ΥNc)

+ Kr(1− σv + fα)c−1(1− σv
2 + σvfα)Mv−c−r−hvΥNc

−1Υ
c

+ K(r + 1)(1− σv + fβ)c(1− σv
2 + σvfβ)Mv−c−r−hvΥc

−1(
r + hv

N
+ Υ + ΥNc)

+ K(r + 1)(1− σv + fβ)c−1(1− σv
2 + σvfβ)Mv−c−r−hvΥc

−1Υ
c

+ Kr(1− σv + fξ)
c(1− σv

2 + σvfξ)
Mv−c−r−hvΥ−1(

r + hv

N
+ Υ + ΥNc)

+ Kr(1− σv + fξ)
c−1(1− σv

2 + σvfξ)
Mv−c−r−hvΥ−1Υ

c

−Kr(1− σv + f)c − (α + ξ)ΥNc
−1 + (β − ξ)Υc

−1 + (1− r−1 + hv−1

N
)ξ.

In order to prove that the Markov chain is positive recurrent, a finite set Ξ

is found such that for states not in that set expected drift in Lyapunov function is

negative. Hence, consider two cases:

• u−1 > û − 2 min(−α, β): In this case: pv−1 = pv = f = fα = fβ = fξ = 0.

232



Expected drift in the Lyapunov function is:

E(∆V | X) =−K(1− σv)
c(1− σv

2)Mv−c−r−hv(
r−1 + hv−1

N
)γf

+ Kr(1− σv)
c(1− σv

2)Mv−c−r−hv −Kr(1− σv)
c

− α(1− r−1 + hv−1

N
)

=−K(1− σv)
c(1− σv

2)Mv−c−r−hv(
r−1 + hv−1

N
)γf

−Kr(1− σv)
c(1− (1− σv

2)Mv−c−r−hv)

− α(1− r−1 + hv−1

N
)

≤−K(1− σv)
c(1− σv

2)Mv−c−r−hv(
r−1 + hv−1

N
)γf

− α(1− r−1 + hv−1

N
)

≤−K(1− σv)
Mv(1− σv

2)Mv(
r−1 + hv−1

N
)γf

− α(1− r−1 + hv−1

N
)

≤−min(K(1− σv)
Mv(1− σv

2)Mvγ, α).

Hence we take ε = min(K(1− σv)
Mv(1− σv

2)Mvγf , α).

• u−1 ≤ û − 2 min(−α, β): In this case, upper bound for expected drift of

Lyapunov function is found as following:

E(∆V | X) ≤Kr(1− σv + f)c(1− σv
2 + σvf)Mv−c−r−hv

+Kr(1− σv + f)c−1(1− σv
2 + σvf)Mv−c−r−hv

+Kr(1− σv + fα)c(1− σv
2 + σvfα)Mv−c−r−hv

+Kr(1− σv + fα)c−1(1− σv
2 + σvfα)Mv−c−r−hv
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+ K(r + 1)(1− σv + fβ)c(1− σv
2 + σvfβ)Mv−c−r−hv

+ K(r + 1)(1− σv + fβ)c−1(1− σv
2 + σvfβ)Mv−c−r−hv

+ Kr(1− σv + fξ)
c(1− σv

2 + σvfξ)
Mv−c−r−hv

+ Kr(1− σv + fξ)
c−1(1− σv

2 + σvfξ)
Mv−c−r−hv

+ max(β, ξ)

≤ 2K(4N + 1)4Mv + max(β, ξ)

Hence take b = 2K(4N + 1)4Mv + max(β, ξ).

Define

Ψ = {0, 1, · · · ,Mv} × {0, 1, · · · , N} × {0, 1}

Ψu = {u | u = −aα + eβ + dξ, u < û− 2 min(−α, β), a, e, d ∈ Z+}.

Take finite set Ξ to be Ξ = (Ψ×Ψu)× (Ψ×Ψu). For the values of ε, b, and Ξ stated

before:

E(∆V | Xn = X) ≤ −ε X /∈ Ξ,

E(∆V | Xn = X) ≤ b X ∈ Ξ.

Therefore, the Markov chain is positive recurrent.
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Appendix D

Proof of Proposition 2.7

State (Y, Y1) = ((c, r, hv, u), (c1, r1, hv1 , u1)) belongs to a state space that is a

subset of:

ℵ = ({0, 1, 2, · · · ,Mv} × {0, 1} × {0, 1, 2, · · · , N} × {0, 1, 2, · · · , N})2.

Note that u = N − r, u1 = N − r1, and ℵ is a countable set. Since a subset

of a countable set is also countable, thereby, the state space of the system is also

countable.

Next, we show that all states in the state space communicate. Since we have

r + u = N and r1 + u1 = N , our focus is to show that ((c, r, hv), (c1, r1, hv1)) ↔

((c′, r′, h′v), (c
′
1, r

′
1, h

′
v1

)). However, as discussed above, it is noted that values of

Y, Y1, Y
′, Y ′

1 are chosen such that Y1 is reachable from Y in one time slot and Y ′
1

is reachable from Y ′ in one time slot (where (Y ′, Y ′
1) = ((c′, r′, h′v), (c

′
1, r

′
1, h

′
v1

))).

Therefore, it suffices to show that (c, r, hv) ↔ (c′, r′, h′v).

In order to prove that (c, r, hv) ↔ (c′, r′, h′v), we show that point O = (0, 0, 0)

is reachable form every point (c, r, hv) with positive probability and also, every point

(c, r, hv) is reachable from O.

Based on the proofs presented for the PRMA voice only system and the fact

that hindering states (such as hv, h
′
v, hv1 , h

′
v1

) only model delays, it is easy to show

that (c, r, hv) ↔ (0, 0, 0), and therefore, (Y, Y1) ↔ (Y ′, Y ′
1).
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Further, in the same way as the PRMA voice only system it can be proved

that the Markov chain is aperiodic considering:

P (((0, 0, 0, N), (0, 0, 0, N)), ((0, 0, 0, N), (0, 0, 0, N))) = (1− σv)
Mv > 0.

So far we showed that Markov chain defined on ℵ through (3.2) (for φ = 1,

α = ξ = 0, β = −1, and RTD = 1) is irreducible and aperiodic. Further, since the

state space is finite, the Markov chain is positive recurrent and a unique stationary

probability distribution exists.
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Appendix E

Proof of Proposition 3.1

As discussed before, for the PRMA Voice-Data system we assume that round

trip delay is negligible. However, we ease the assumption that pv = pd.

Countable State Space - State (c, r, b, u) belongs to the following state

space:

({0, 1, 2, · · · ,Mv} × {0, 1, 2, · · · ,Md} × {0, 1, 2, · · · , N − 1} × U ∪ V )

∪ ({0, 1, 2, · · · ,Mv} × {0, 1, 2, · · · ,Md} × {N} × U ′ ∪ V ′),

here

U = {u|u = −αa + βe + ξd ≥ 0; a, e, d ∈ Z+},

V = {v|v = u0 − αa + βe + ξd > 0; a, e, d ∈ Z+},

U ′ = {u′|u′ = −αa + βe + ξd ≥ [β]+; a, e, d ∈ Z+},

V ′ = {v′|v′ = u0 − αa + βe + ξd > [β]+; a, e, d ∈ Z+}.

Without loss of generality, it is assumed that u0 /∈ U therefore, sets U and V (U ′

and V ′) are disjoint. The state space of the Markov chain is a subset of the following

set:

ℵ = ({0, 1, 2, · · · ,Mv} × {0, 1, 2, · · · , Md} × {0, 1, 2, · · · , N} × U ∪ V ).

Using the fact that every subset of a countable set is also countable, to show that the

state space is countable it suffices to show that the set ℵ is countable. Consider the
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general case where α, β, and ξ are just arbitrary real numbers. Then there exists a

one-to-one correspondence between u ∈ U (or v ∈ V ) and the corresponding triplet

(a, e, d). Now since set {(a, e, d)|a, e, d ∈ Z+} is enumerable, we conclude that U

and V , and hence the state space, are countable sets.

Irreducible State Space - As far as the stability analysis is concerned, only

absorbing communication sets are relevant. As proved in the PRMA Voice only

system, it is easy to show that set of states with controls starting at u0 /∈ U is a

non-absorbing set. Therefore, sets V and V ′ are non-absorbing. As a result, only

irreducibility of the following subset of the state space is examined:

({0, 1, 2, · · · ,Mv} × {0, 1, 2, · · · ,Md} × {0, 1, 2, · · · , N − 1} × U)

∪ ({0, 1, 2, · · · ,Mv} × {0, 1, 2, · · · ,Md} × {N} × U ′).

Next, we show that if (c, r, b, u) and (c, r, b, v) are two states in the state space

({0, 1, 2, · · · ,Mv}×{0, 1, 2, · · · ,Md}×{0, 1, 2, · · · , N−1}×U)∪({0, 1, 2, · · · ,Mv}×

{0, 1, 2, · · · ,Md}×{N}×U ′), then (c, r, b, u) and (c, r, b, v) communicate ((c, r, b, u) ↔

(c, r, b, v)).

As discussed in the PRMA Voice only system, we can consider two different

cases where either r < N or r = N . Here, we consider the case where r < N . The

case r = N is similar and can be easily proved.

Assume m = du
α
e and v = −αa + βb + ξd. Then according to the transition
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probabilities:

P ((c, r, b, u), (c, r, b, v)) ≥ P ((c, r, b, u), (c, r, b, 0))P ((c, r, b, 0), (c, r, b, ξd))

P ((c, r, b, ξd), (c, r, b, βb + ξd))P ((c, r, b, βb + ξd), (c, r, b, v)).

In order to show that two states (c, r, b, u) and (c, r, b, v) communicate, it should be

shown that transition probability from one to the other is positive.

1) (c, r, b, u) → (c, r, b, 0): Define x = b m
N−r

c

P ((c, r, b, u), (c, r, b, 0)) ≥
x−1∏
i=0

(
N−r−1∏

k=0

P ((c, r, b, [u− (i(N − r) + k)α]+), (c, r, b, [u− (i(N − r) + k + 1)α]+)))

(P ((c, r, b, [u− (i + 1)(N − r)α]+), (c, r, b, [u− (i + 1)(N − r)α]+)))r

×
m−x(N−r)−1∏

k=0

P ((c, r, b, [u− (x(N − r) + k)α]+), (c, r, b, [u− (x(N − r) + k + 1)α]+))

=
x−1∏
i=0

N−r−1∏

k=0

(1− σv)
Mv−c−r(1− σd)

Md−b(1− r/N)(1− pv(u1))
c(1− pd(u1))

b

((1− σv)
Mv−c−r(1− σd)

Md−b(r/N)(1− γf ))
xr

×
m−x(N−r)−1∏

k=0

(1− σv)
Mv−c−r(1− σd)

Md−b(1− r/N)(1− pv(u2))
c

> 0.

Here u1 = [u− (i(N − r) + k)α]+ and u2 = [u− (x(N − r) + k)α]+.
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2) (c, r, b, 0) → (c, r, b, ξd): Define y = b d
N−r

c

P ((c, r, b, 0), (c, r, b, ξd)) ≥
y−1∏
i=0

N−r−1∏

k=0

P ((c, r, b, (i(N − r) + k)ξ), (c, r, b, (i(N − r) + k + 1)ξ))

(P ((c, r, b, (i + 1)(N − r)ξ), (c, r, b, (i + 1)(N − r)ξ)))r

×
d−y(N−r)−1∏

k=0

P ((c, r, b, (y(N − r) + k)ξ), (c, r, b, (y(N − r) + k + 1)ξ))

> 0

3) (c, r, b, ξd) → (c, r, b, βb + ξd): Define z = b e
N
c. Here, we consider a case where

r ≥ e−Nz. However, proof is similar if r < e−Nz.

P ((c, r, b, ξd), (c, r, b, βb + ξd)) ≥
r−1∏

k=0

P ((c, r − k, b, ξd), (c, r − k − 1, b, ξd))

×
z−2∏
i=0

N−1∏

k=0

P ((c, k, b, ξd + (iN + k)β), (c, k + 1, b, ξd + (iN + k + 1)β))

N−1∏

k=0

P ((c,N − k, b, ξd + (i + 1)Nβ), (c,N − k − 1, b, ξd + (i + 1)Nβ))

×
N−1∏

k=0

P ((c, k, b, ξd + ((z − 1)N + k)β), (c, k + 1, b, ξd + ((z − 1)N + k + 1)β))

×
N+b−zN−r−1∏

k=0

P ((c,N − k, b, ξd + zNβ), (c,N − k − 1, b, ξd + zNβ))
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×
N−1∏

k=N+b−zN−r

P ((c, r − e + zN, b, ξd + zNβ), (c, r − e + zN, b, ξd + zNβ))

×
b−Nz−1∏

k=0

P ((c, r − e + zN + k, b, u3), (c, r − e + zN + k + 1, b, u4))

> 0.

Here u3 = ξd + (zN + k)β, u4 = ξd + (zN + k + 1)β.

4) (c, r, b, βe + ξd) → (c, r, b,−αa + βe + ξd): Define w = b a
N−r

c

P ((c, r, b, βe + ξd), (c, r, b,−αa + βe + ξd)) ≥
w−1∏
i=0

N−r−1∏

k=0

P ((c, r, b, ξd + βe− (i(N − r) + k)α), (c, r, b, ξd + βe− (i(N − r) + k + 1)α))

(P ((c, r, b, ξd + βe− (i + 1)(N − r)α), (c, r, b, ξd + βe− (i + 1)(N − r)α)))r×
a−w(N−r)−1∏

k=0

P ((c, r, b, ξd + βe− (w(N − r) + k)α), (c, r, b, ξd + βe− (w(N − r) + k + 1)α))

=
w−1∏
i=0

N−r−1∏

k=0

(1− σv)
Mv−c−r(1− σd)

Md−b(1− r/N)(1− pv(u5))
c(1− pd(u5))

b

× ((1− σv)
Mv−c−r(1− σd)

Md−b(r/N)(1− γf ))
wr

×
a−w(N−r)−1∏

k=0

(1− σv)
Mv−c−r(1− σd)

Md−b(1− r/N)(1− pv(u6))
c(1− pd(u6))

b

> 0.

Here u5 = ξd + βe− (i(N − r) + k)α and ξd + βe− (w(N − r) + k)α. As mentioned

above, for the case r = N , the proof of communication between states of the state

space is very similar to the same case of PRMA Voice only system.

So far we proved that the arbitrary state (c, r, b, v) is reachable from any state

(c, r, b, u) with positive probability ((c, r, b, u) → (c, r, b, v)). Since two states are
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chosen arbitrarily, then (c, r, b, u) ↔ (c, r, b, v) or both states communicate.

Now in this part, all states that communicate with (0, 0, 0, 0) are examined.

It is assumed that 0 ≤ r < N . The case where r = N is very similar.

1) (c, r, u) → (0, 0, 0): Consider two different cases:

A) N − r > c. Define y = bN
b
c.

P ((c, r, b, u), (0, 0, 0, [u− 2α(N − c− r) + β(c + b)]+)) ≥
c−1∏

k=0

P ((c− k, r + k, b, [u + kβ]+), (c− k − 1, r + k + 1, b, [u + (k + 1)β]+))

×
N−c−r−1∏

k=0

P ((0, r + c, b, [u− kα + βc]+), (0, r + c, b, [u− (k + 1)α + βc]+))

×
r+c−1∏

k=0

P ((0, r + c− k, u7), (0, r + c− k − 1, u7))

×
N−c−r−1∏

k=0

P ((0, 0, b, [u7 − kα]+), (0, 0, b, [u7 − (k + 1)α]+))

×
y−1∏
i=0

N−1∏

k=0

P ((0, 0, b1 − k, [u8 + (iN + k)β]+), (0, 0, b1 − k − 1, [u8 + (iN + k + 1)β]+))

×
b−yN−1∏

k=0

P ((0, 0, b2 − k, [u8 + (yN + k)β]+), (0, 0, b2 − k − 1, [u8 + (yN + k + 1)β]+))

> 0,

here u7 = [u−α(N − c− r)+βc]+, u8 = [u−2α(N − c− r)+βc]+, b1 = b− iN , and

b2 = b−yN . As proved earlier, it is easy to show that (0, 0, 0, [u8+bβ]+) ↔ (0, 0, 0, 0).
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B) N − r ≤ c. Define x = b c−(N−r)
N

c and y = bN
b
c.

P ((c, r, b, u), (0, 0, b, [u− 2α(N − c + (N − r) + xN) + β(c + b)]+)) ≥
N−r−1∏

k=0

P ((c− k, r + k, b, [u + kβ]+), (c− k − 1, r + k + 1, b, [u + (k + 1)β]+))

×
x−1∏
i=0

N−1∏

k=0

P ((c− (i + 1)N + r,N − k, b, [u9]
+), (c− (i + 1)N + r,N − k − 1, b, [u9]

+))

N−1∏

k=0

P ((c4 − k, k, b, [u9 + kβ]+), (c4 − k − 1, k + 1, b, [u9 + (k + 1)β]+))

×
N−1∏

k=0

P ((c− (N − r)− xN, N − k, b, [u10]
+), (c− (N − r)− xN, N − k − 1, b, [u10]

+))

×
c−(N−r)−xN−1∏

k=0

P ((c5 − k, k, b, [u10 + kβ]+), (c5 − k − 1, k + 1, b, [u10 + (k + 1)β]+))

×
N−c+(N−r)+xN−1∏

k=0

P ((0, c5, b, [u− kα + βc]+), (0, c5, b, [u− (k + 1)α + βc]+))

×
c−(N−r)−xN−1∏

k=0

P ((0, c5 − k, b, u11), (0, c5 − k − 1, b, u11))

×
N−c+(N−r)+xN−1∏

k=0

P ((0, 0, b, [u11 − kα]+), (0, 0, b, [u11 − (k + 1)α]+))

×
y−1∏
i=0

N−1∏

k=0

P ((0, 0, b1 − k, [u12 + (iN + k)β]+), (0, 0, b1 − k − 1, [u12 + (iN + k + 1)β]+))

×
b−yN−1∏

k=0

P ((0, 0, b2 − k, [u12 + (yN + k)β]+), (0, 0, b2 − k − 1, [u12 + (yN + k + 1)β]+))

> 0,

243



here

u9 = u + (N − r + iN)β c4 = c− (i + 1)N + r

u10 = u + (N − r + xN)β c5 = c− (N − r)− xN

u11 = [u− α(N − c + (N − r) + xN) + βc]+ b1 = b− iN

u12 = [u− 2α(N − c + (N − r) + xN) + βc]+ b2 = b− yN

Also, as proved before, (0, 0, 0, [u−2α(N−c+(N−r)+xN)+β(c+b)]+) ↔ (0, 0, 0, 0)

2) (0, 0, 0, 0) → (c, r, b, u)

• (0, 0, 0, 0) → (0, 0, 0, u): Immediate result of previous discussions.

• (0, 0, 0, 0) → (c, r, b, u): It is obvious that there exist a m1 > 0 such that:

Pm1((c, r, b, [βr + ξ]+), (c, r, b, u)) > 0. Therefore:

P ≥ P ((0, 0, 0, 0), (c + r, 0, b, 0))× P ((c + r, 0, b, 0), (c + r, 0, b, ξ))

×
r−1∏

k=0

P ((c + r − k, k, b, [kβ + ξ]+), (c + r − k − 1, k + 1, b, [(k + 1)β + ξ]+))

× Pm1((c, r, b, [βr + ξ]+), (c, r, b, u))

> 0

The above derivations suggest that the state space is an absorbing communication

set and therefore, irreducible.

Aperiodic State Space- It remains to show that the Markov chain defined

on the state space is aperiodic. Since the Markov chain is irreducible, it suffices

to show the aperiodicity for a single state (c, r, b, u). Any state (c, r, b, u) commu-

nicates with (0, 0, 0, 0). Therefore, there exists m1 > 0 and m2 > 0 such that
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Pm1((c, r, b, u), (0, 0, 0)) > 0 and Pm2((0, 0, 0), (c, r, b, u)) > 0. Let m = m1 + m2.

Then:

Pm((c, r, b, u), (c, r, b, u)) ≥ Pm1((c, r, b, u), (0, 0, 0))Pm2((0, 0, 0, 0), (c, r, b, u)) > 0

Pm+1((c, r, b, u), (c, r, b, u)) ≥

Pm1((c, r, b, u), (0, 0, 0, 0))P ((0, 0, 0, 0), (0, 0, 0, 0))Pm2((0, 0, 0, 0), (c, r, b, u)) > 0

where P ((0, 0, 0, 0), (0, 0, 0, 0)) = (1 − σv)
Mv(1 − σd)

Md > 0. Hence the period for

any state (c, r, b, u) is 1 and the chain is aperiodic.

Markov Chain is Positive Recurrent- So far we proved that the state

space is countable and the Markov chain is irreducible and aperiodic. Here, using the

Proposition 2.3, we show that the Markov chain is positive recurrent and hence, it

has a unique stationary probability distribution. Following non-negative Lyapunov

function is chosen:

V (c, r, b, u) = u + Kr(1− σv + f(u))c

here:

• K > 0 is any real constant,

• f(.) : R→ [0, 1) is non-increasing, continuous, and bounded,

• there exists û > umax such that f(u) = 0 for u ≥ û.

Note that V (c, r, b, u) satisfies the requirement that it is non-negative. Following
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definition of simplifying notations is also necessary:

pv = pv(u) pd = pd(u) f = f(u)

fα = f(u− α) fβ = f(u + β) fξ = f(u + ξ)

Expected drift of the Lyapunov function is a calculated as follows:

E(∆V |(c, r, b, u)) =

E(V (cn+1, rn+1, bn+1, un+1)− V (cn, rn, bn, un)|(cn, rn, bn, un) = (c, r, b, u)) =

E(un+1 − un|(c, r, b, u))

+ KE(rn+1(1− σv + f(un+1))
cn+1 − rn(1− σv + f(un))cn|(c, r, b, u))

First E(rn+1(1− σv + f(un+1))
cn+1|(c, r, b, u)) is calculated:

E(rn+1(1− σv + f(un+1))
cn+1|(c, r, b, u)) =

− (1− σv + f)c(1− σ2
v + σvf)Mv−c−r(

r

N
)γf

+ r(1− σv + f)c(1− σ2
v + σvf)Mv−c−r(

r

N
)

+ r(1− σv + fα)c(1− σ2
v + σvfα)Mv−c−r(1− r

N
)(1− pv)

c(1− pd)
b

+ (r + 1)(1− σv + fβ)c−1(1− σ2
v + σvfβ)Mv−c−r(1− r

N
)cpv(1− pv)

c−1(1− pd)
b

+ r(1− σv + fβ)c(1− σ2
v + σvfβ)Mv−c−r(1− r

N
)bpd(1− pd)

b−1(1− pv)
c

+ r(1− σv + fξ)
c(1− σ2

v + σvfξ)
Mv−c−r

(1− r

N
)(1− (1− pv)

c(1− pd)
b − cpv(1− pv)

c−1(1− pd)
b − bpd(1− pd)

b−1(1− pv)
c)
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Hence:

E(∆V |(c, r, b, u)) =

− (α + ξ)(1− r

N
)(1− pv)

c(1− pd)
b + ξ(1− r

N
)

+ (β − ξ)(1− r

N
)(cpv(1− pv)

c−1(1− pd)
b + bpd(1− pd)

b−1(1− pv)
c)

−Kr(1− σv + f)c

−K(1− σv + f)c(1− σ2
v + σvf)Mv−c−r(

r

N
)γf

+ Kr(1− σv + f)c(1− σ2
v + σvf)Mv−c−r(

r

N
)

+ Kr(1− σv + fα)c(1− σ2
v + σvfα)Mv−c−r(1− r

N
)(1− pv)

c(1− pd)
b

+ K(r + 1)(1− σv + fβ)c−1(1− σ2
v + σvfβ)Mv−c−r(1− r

N
)cpv(1− pv)

c−1(1− pd)
b

+ Kr(1− σv + fβ)c(1− σ2
v + σvfβ)Mv−c−r(1− r

N
)bpd(1− pd)

b−1(1− pv)
c

+ Kr(1− σv + fξ)
c(1− σ2

v + σvfξ)
Mv−c−r

(1− r

N
)(1− (1− pv)

c(1− pd)
b − cpv(1− pv)

c−1(1− pd)
b − bpd(1− pd)

b−1(1− pv)
c)

In order to prove that the Markov chain is positive recurrent, a finite set Ξ is found

such that for states outside this set, expected drift in Lyapunov function, V (c, r, b, u)

is negative. Consider u ≥ û−min(−α, β). Then pv = pd = f = fα = fβ = fξ = 0:

E(∆V |(c, r, b, u)) =−K(1− σv)
c(1− σ2

v)
Mv−c−r(

r

N
)γf

+ (Kr(1− σv)
c(1− σ2

v)
Mv−c−r −Kr(1− σv)

c)(
r

N
)

+ (Kr(1− σv)
c(1− σ2

v)
Mv−c−r −Kr(1− σv)

c − α)(1− r

N
)
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=−K(1− σv)
c(1− σ2

v)
Mv−c−r(

r

N
)γf

−Kr(1− σv)
c(1− (1− σ2

v)
Mv−c−r)− α(1− r

N
)

≤−K(1− σv)
c(1− σ2

v)
Mv−c−r(

r

N
)γf − α(1− r

N
)

≤−K(1− σv)
Mv(1− σ2

v)
Mv(

r

N
)γf − α(1− r

N
)

=− (K(1− σv)
Mv(1− σ2

v)
Mvγf )(

r

N
)− α(1− r

N
)

≤−min(K(1− σv)
Mv(1− σ2

v)
Mvγf , α)

Hence take ε = min(K(1 − σv)
Mv(1 − σ2

v)
Mvγf , α). Now consider the case where

u < û−min(−α, β), then:

E(∆V |(c, r, b, u)) ≤

(β − ξ)(1− r

N
)(cpv(1− pv)

c−1(1− pd)
b + bpd(1− pd)

b−1(1− pv)
c)

+ Kr(1− σv + f)c(1− σ2
v + σvf)Mv−c−r

+ Kr(1− σv + fα)c(1− σ2
v + σvfα)Mv−c−r

+ K(r + 1)(1− σv + fβ)c−1(1− σ2
v + σvfβ)Mv−c−r

+ Kr(1− σv + fξ)
c(1− σ2

v + σvfξ)
Mv−c−r

≤K(4N + 1)4Mv + max(β, ξ).

Therefore, we take b′ = K(4N + 1)4Mv + max(β, ξ) and define Ξ as:

Ξ = {0, 1, · · · ,Mv} × {0, 1, · · · ,Mv} × {0, 1, · · · , N}

× {u|0 ≤ u = −aα + eβ + dξ ≤ û−min(−α, β)}
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Hence:

E(∆V |(c, r, b, u)) ≤ −ε (c, r, b, u) /∈ Ξ

E(∆V |(c, r, b, u)) ≤ b′ (c, r, b, u) ∈ Ξ

and Markov chain is positive recurrent.
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Appendix F

Proof of Proposition 3.2

State (c, r, b, u) belongs to following state space:

ℵ = {0, 1, 2, · · · ,Mv} × {0, 1, 2, · · · ,Md} × {0, 1, 2, · · · , N} × {0, 1, 2, · · · , N}.

Note that c + r ≤ Mv, u = N − r, and ℵ is a countable set. Since a subset

of a countable set is also countable, thereby, the state space of the system is also

countable. Next, we show that all states in the state space communicate. Since

we have r + u = N , our focus is to show that (c, r, b) ↔ (c′, r′, b′). First, we show

(c, r, b) → (0, 0, 0). Consider two cases.

Case 1 - c + r ≤ N . Define y = b b
N
c

P ((c, r, b), (0, 0, 0)) ≥
c−1∏

k=0

P ((c− k, r + k, b), (c− k − 1, r + k + 1, b))

×
r−1∏

k=0

P ((0, r + c− k, b), (0, r + c− k − 1, b))

×
N−c−r−1∏

k=0

P ((0, c, b), (0, c, b))

×
c−1∏

k=0

P ((0, c− k, b), (0, c− k − 1, b))

×
y−1∏
i=0

N−1∏

k=0

P ((0, 0, b− iN − k), (0, 0, b− iN − k − 1))

×
b−yN−1∏

k=0

P ((0, 0, b− yN − k), (0, 0, b− yN − k − 1))
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=
c−1∏

k=0

(1− σv)
Mv−c−r(1− σd)

Md(1− (r + k)/N)(c− k)pv(1− pv)
c−k−1(1− pd)

b

×
r−1∏

k=0

(1− σv)
Mv−c−r+k(1− σd)

Md((r + c− k)/N)γf

×
N−c−r−1∏

k=0

(1− σv)
Mv−c(1− σd)

Md(1− c/N)(1− bpd(1− pd)
b−1)

×
c−1∏

k=0

(1− σv)
Mv−c+k(1− σd)

Md−b((c− k)/N)γf

×
y−1∏
i=0

N−1∏

k=0

(1− σv)
Mv(1− σd)

Md−b+iN+k(b− iN − k)pd(1− pd)
b−iN−k−1

×
b−yN−1∏

k=0

(1− σv)
Mv(1− σd)

Md−b+yN+k(b− yN − k)pd(1− pd)
b−yN−k−1

> 0

Case 2 - c + r > N . We define x = b c−N+r
N

c and y = b b
N
c. Since c−N + r −

xN ≤ N based on case 1 above (c − N + r − xN, 0, b) → (0, 0, 0). Therefore, here

we show that (c, r, b) → (c−N + r − xN, 0, b).

P ((c, r, b), (c−N + r − xN, 0, b)) ≥
N+r−1∏

k=0

P ((c− k, r + k, b), (c− k − 1, r + k + 1, b))

×
x−1∏
i=0

N−1∏

k=0

P ((c−N + r − iN, N − k, b), (c−N + r − iN,N − k − 1, b))

N−1∏

k=0

P ((c−N + r − iN − k, k, b), (c−N + r − iN − k − 1, k + 1, b))

×
N−1∏

k=0

P ((c−N + r − xN,N − k, b), (c−N + r − xN, N − k − 1, b))
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=
N+r−1∏

k=0

(1− σv)
Mv−c−r(1− σd)

Md−b(1− (r + k)/N)(c− k)pv(1− pv)
c−k−1(1− pd)

b

×
x−1∏
i=0

N−1∏

k=0

(1− σv)
Mv−c−r+k+iN(1− σd)

Md−b((N − k)/N)γf

N−1∏

k=0

(1− σv)
Mv−c−r+(i+1)N(1− σd)

Md−b(1− k/N)c1pv(1− pv)
c1−1(1− pd)

b

×
N−1∏

k=0

(1− σv)
Mv−c−r+(x+1)N(1− σd)

Md−b((N − k)/N)γf

> 0,

here c1 = c−N + r − iN − k. Next, we show (0, 0, 0) → (c′, r′, b′):

P ((0, 0, 0), (c′, r′, b′)) ≥

P ((0, 0, 0), (c′ + r′, 0, b′))×
r′∏

k=0

P ((c′ + r′ − k, k, b′), (c′ + r′ − k − 1, k + 1, b′))

=




Mv

c′ + r′


 σc′+r′

v (1− σv)
Mv−c′−r′ ×




Md

b′


 σb′

d (1− σd)
Md−b′

×
r′∏

k=0

(1− σv)
Mv−c′−r′(1− σd)

Md−b′(1− k/N)(c′ + r′ − k)pv(1− pv)
c′+r′−k−1(1− pd)

b′

> 0.

Therefore, (c, r, b) ↔ (c′, r′, b′). Hence, the state space is an absorbing com-

munication set and irreducible. Next, we show that the Markov chain is aperiodic.

As we showed above, any state (c, r, b) communicates with (0, 0, 0). Therefore, there

exists m1 and m2 such that Pm1((c, r, b), (0, 0, 0)) > 0 and Pm2((0, 0, 0), (c, r, b)) > 0.

We define m = m1+m2. Also note that P ((0, 0, 0), (0, 0, 0)) = (1−σv)
Mv(1−σd)

Md−b.
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Therefore:

Pm((c, r, b), (c, r, b)) >Pm1((c, r, b), (0, 0, 0))Pm2((0, 0, 0), (c, r, b)) > 0,

Pm+1((c, r, b), (c, r, b)) > Pm1((c, r, b), (0, 0, 0))P ((0, 0, 0), (0, 0, 0))Pm2((0, 0, 0), (c, r, b))

> 0.

Hence, period for each state is 1 and therefore, the Markov chain is aperiodic.

So far we showed that Markov chain defined on ℵ through (3.2) (for φ = 1,

α = ξ = 0, β = −1, and RTD = 0) is irreducible and aperiodic. Further, since the

state space is finite the Markov chain is positive recurrent and a unique stationary

probability distribution exists.
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