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Modern intelligent agents will need to learn the actions that humans perform.

They will need to recognize these actions when they see them and they will need to

perform these actions themselves. We want to propose a cognitive system that in-

terprets human manipulation actions from perceptual information (image and depth

data) and consists of perceptual modules and reasoning modules that are in inter-

action with each other. The contributions of this work are given along two core

problems at the heart of action understanding: a.) the grounding of relevant infor-

mation about actions in perception (the perception - action integration problem),

and b.) the organization of perceptual and high-level symbolic information for inter-

preting the actions (the sequencing problem). At the high level, actions are repre-

sented with the Manipulation Action Context-free Grammar (MACFG) , a syntactic

grammar and associated parsing algorithms, which organizes actions as a sequence

of sub-events. Each sub-event is described by the hand (as well as grasp type),

movements (actions) and the objects and tools involved, and the relevant informa-

tion about these quantities is obtained from biological-inspired perception modules.



These modules track the hands and objects and recognize the hand grasp, actions,

segmentation, and action consequences. Furthermore, a probabilistic semantic pars-

ing framework based on CCG (Combinatory Categorial Grammar) theory is adopted

to model the semantic meaning of human manipulation actions.

Additionally, the lesson from the findings on mirror neurons is that the two

processes of interpreting visually observed action and generating actions, should

share the same underlying cognitive process. Recent studies have shown that gram-

matical structures underlie the representation of manipulation actions, which are

used both to understand and to execute these actions. Analogically, understanding

manipulation actions is like understanding language, while executing them is like

generating language. Experiments on two tasks, 1) a robot observing people per-

forming manipulation actions, and 2) a robot then executing manipulation actions

accordingly, are presented to validate the formalism. The technical parts of this

thesis are devoted to the experimental setting of task (1), while the task (2) is given

as a live demonstration.
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Preface

John McCarthy, who started the term Artificial Intelligence back in 1955 [1], defines

it as the “science and engineering of making intelligent machines”, in which an

intelligent agent is a system that perceives its environment and takes actions, such

as manipulating objects, that maximize its chances of success. After 60 years of

advancement, we are now in the year of 2015, and the AI research is becoming

highly technical and specialized. Deeply divided subfields emerge that it seems

almost impossible to find connections from each other. The study of AI loses its

unity and many in the field get hold of one or some aspects of the original pursuit

to enjoy for themselves. The case is like the senses of hearing, sight, smell, and

taste, which have specific functions, but cannot be interchanged. The school of

computational perception, including computer vision and speech recognition, focuses

on the aspect “...perceives its environment...”. The school of symbolic AI research

focuses on symbolic reasoning to “maximize its chances of success”, the school of

statistical learning or machine learning, focuses on “maximize its chances of success”

by methods based on probability and mathematical optimization. The school of

robotics, on the other hand, focuses on creating or building “an intelligent agent”,

either physical or virtual, that “takes actions, such as manipulating objects”. The

school of cognitive systems, including some parts of humanoid and human-machine

interaction research, takes a view beyond not only “making intelligent machines”,

but also studying human beings through the methodology of reverse engineering.

Even within a specific school of method, such as deep learning, researchers are

usually divided into subgroups. Some care more about the empirical results on
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specific applications, or the performance without, while some care more about the

method’s innate relation to the biological and physical systems, or the principle

within. Such severe division and the long tradition of conducting vertical research

make it extremely difficult to have a whole picture of AI and pursuit the ultimate

goal: principle within and performance without.

I started my journey in the land of AI by creating robots playing soccer

(RoboCup), a specialized system aiming at a specific application when I was an

undergraduate student. Later I was fortunate enough to start my research in Com-

puter Vision and Computational Linguistics at University of Maryland Computer

Vision Lab by conducting research on the topic of combining vision and language.

This initiates my horizontal viewpoint of AI. With the involvement of the European

Union cognitive system project, some collaborations with symbolic AI researchers

and the deployment of humanoid robots (Baxter robot) in the lab, I set my mind to

conduct a horizontal PhD thesis instead of a usual vertical one. At the beginning

it seemed overwhelmingly difficult, after I set the focus on human manipulation

actions, it started to become feasible. In this thesis, we present researches that are

conducted in the fields of Computer Vision, Computational Linguistics, Robotics

and even Common-sense Reasoning, that all surround the central theme: from un-

derstanding to executing manipulation actions for intelligent agents.

I want to say that the horizontal study presented in this thesis is by no means

close to the ultimate unity of AI. It might advance itself through a continuing

practice, and this is, hopefully, the future work of my research career.
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Chapter 1: Introduction

1.1 Problem Statement and Motivation

Intelligent agent, robots, and cognitive systems interacting with humans need

to be able to interpret human actions. Here we are concerned with manipulation

actions, that are actions performed by agents (humans or robots) on objects, which

result in some physical change of the objects. The sensory-motor bridge connecting

the two tasks is essential, and a great amount of attention in AI, Robotics as well

as Neurophysiology has been devoted to understanding it. Experiments conducted

on primates have discovered that certain neurons, the so-called mirror neurons, fire

during both observation and execution of identical manipulation tasks ( [9,10]). This

suggests that the same process is involved in both the observation and execution of

actions. From a functionalist point of view, such a process should be able to first

build up a semantic structure from observations, reasoning over action goals, and

then the decomposition of same structure should occur when the intelligent agent

executes tasks. Thus in this thesis, we study the three aspects of a such cognitive

system, namely 1) Perception of various aspects of manipulation actions, such as

action consequences, grasp types etc; 2) Reasoning within a grammatical framework

to model manipulation actions in both syntactical and semantic way; 3) Execution
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of manipulation tasks on a humanoid platform (Baxter research robot). We mainly

focus on the first two aspects, and provide some seminal study and results for the

third aspect.

1.2 Related Work

The topic of analyzing human manipulation actions for robotic applications

has been studied from multiple perspectives in the last decade. Due to its innately

interdisciplinary nature, related study span over the fields of Computer Vision,

Robotics, Computational Linguistics and Cognitive Systems. At visual signal pro-

cessing level, [11–13] proposed to use statistical methods to model the relationship

between different entities involved in manipulation actions for better visual ground-

ing. [14, 15] proposed a semantic event chain (SEC) as middle level representation

to model and learn the semantic segment-wise relationship transition from spatial-

temporal video segmentation. In the field of Robotics, [16] studied the transferring

of manipulation skills to robot through a semantic representation obtained from

observing human activities. [17] first discussed a Chomskyan grammar for under-

standing complex actions as a theoretical concept, [18] provided an implementation

of such a grammar using as perceptual input only objects. [19] also modeled the

robot imitation learning using probabilistic activity grammars. In the field of cog-

nitive systems, [20] proposed an integration of information from natural-language

statements and the simultaneous resolution of both visual and linguistic ambiguity

for robot manipulation.
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1.3 Contributions of the thesis

1.3.1 The perception aspect

The input to the systems for interpreting manipulation actions is perceptual

data, specifically sequences of images and depth maps. Therefore, a crucial part of

our system are the vision processes, which obtain atomic symbols from perceptual

data.

Figure 1.1: How general vision, purposive vision and industrial vision fit together,

and where the manipulation action observation locates in the problem space.

The proposed formalism for the modules to visually interpret manipulation

actions lies in the category of purposive vision due to the inherited nature of the

problem itself. Problems such as object recognition and action recognition, which

are considered as general problems in the sense their goal is a complete grounding

of the perceived space. For example, a general object recognition problem asks to

return all possible object areas from the dynamic scene. The object recognition
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problem that we consider under manipulation action setting is specific, in the sense

we only focus on the objects that is used, or under manipulation, or touched by

human hands. Similarly the problem of action recognition that we consider under

manipulation action setting is also a specific problem, because we only care about

these actions that lead to physical change of the object, and therefore sometimes not

even the actions themselves but only their consequences. However, when we make

assumptions towards manipulation actions, they are general assumptions like “an

object can only move or change when one or more effectors interact with it”, because

indeed the world satisfies it. The Figure. 1.1 from [21] shows how general vision,

purposive vision and industrial vision fit together, and we show where the problem,

visually interpretation of manipulation actions, locates in the problem space.

Hands are the main driving force in human manipulation actions. First of all,

during the observation of manipulation actions, human beings pay attention to the

hands and their surrounded area, indicating a considerable computational power

is devoted to hands. Secondly, the change of grasp types of hands characterize a

segmentation of the action into semantically meaningful finer components. From the

viewpoint of processing perception data, the grasp type contains information about

the action itself, and it can be used for prediction or as a feature for recognition.

In this thesis, we investigate two different ways of tracking and analyzing hands.

1) A model based approach for controlled lab setting: a state-of-the-art markerless

hand tracking system is used to obtain fine grain skeleton models of both hands.

Using this data, the manner in which the human grasps the objects is classified

into primitive categories; and 2) A feature based approach for unconstrained input

4



setting: a convolutional neural network framework is used to recognize a patch of

area around each hand into grasp types. Further we show that grasp type can also

be used to infer human action intention at higher level.

The second crucial part of manipulation actions is about objects. Here we

denote objects as both tools and the objects under manipulation. In this thesis,

we also investigate two ways to recognize objects. 1) An attention driven object

monitoring process for controlled lab environment: to obtain objects, first a contour

based attention mechanism locates the object. Next, the manipulated object is mon-

itored using a process that combines stochastic tracking with active segmentation.

Then, the segmented objects are recognized. Finally, with the aid of the monitoring

process, the effect of the object during action is checked and classified into four types

of “consequences” (which are used in the description of the action). 2) A feature

based approach for unconstrained input setting: we train general object detectors

from labeled training data and associate candidate object patches with the left or

right hand, respectively depending on which has the smaller Euclidean distance.

The third part of manipulation action is the action itself. Unlike general action

recognition problem, we are considering these actions that are performed by hands,

segmented with grasp type evolution and characterized by the tool and object under

manipulation. In this thesis, again we investigate two different action recognition

settings. 1) A trajectory based approach for controlled lab data, which makes use of

the trajectories of both hands as well as recognized tool and objects. 2) An inference

approach for unconstrained scenes that based on large natural language corpus to

predict the most likely action happening given the detected subject and patient. We
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further show that a natural language description can be generated using a hidden

Markov modeling over the detected visual components for both static scenery and

manipulation action clips.

1.3.2 The reasoning aspect

Beyond visual modules, our formalism for describing manipulation actions

uses a structure similar to natural language. What do we gain from this formal

description of action? This is equal to asking what one gains from a formal descrip-

tion of language. Chomsky’s contribution to language was the formal description

of language through his generative and transformational grammar [22]. This rev-

olutionized language research, opened up new roads for its computational analysis

and provided researchers with common, generative language structures and syntac-

tic operations on which language analysis tools were built. A grammar for action

would contribute to providing a common framework of the syntax and semantics

of action so that basic tools for action understanding can be built. These tools

would allow researchers to build on when developing action interpretation systems,

without having to start development from scratch.

The vision processes produce a set of symbols: the “Subject”, “Action” and

“Object” triplets, which serve as input to the reasoning module. However, since

perceptual events do not suffice, then how do we determine the beginning and end

of action segments, and how do we combine the individual segments into longer

segments corresponding to a manipulation action? An essential component in the
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description of manipulations is the underlying goal. The goal of a manipulation ac-

tion is the physical change inducing on the object. To accomplish it the hands need

to perform a sequence of sub-actions on the object. A sub-action is referring to a

single movement that hand grasps or releases the object, or the hand changes grasp

type during a movement. Centered around this idea, we developed a grammatical

formalism for parsing and interpreting manipulation action sequences, and investi-

gated the vision modules to obtain from videos the symbolic information used in

the grammatical structure. We studied both the syntactic and semantic modeling

of manipulation actions.

The syntactic part of our reasoning module is the Manipulation Action Context-

Free Grammar (MACFG). This grammar comes with a set of generative rules and a

set of parsing algorithms. The parsing algorithms have two main operations: “con-

struction” and “destruction”. These algorithms dynamically parse a sequence of

tree (or forest ) structures made up from the symbols provided by the vision mod-

ule. The sequence of semantic tree structures could then be used by the cognitive

system to perform reasoning and prediction. We investigated the using of action

grammar to parse both controlled lab data with depth sensing and unconstrained

on-line instructional videos without depth information. Following the well-known

penn-tree bank format, we created a manipulation action tree bank for a set of

manipulation actions that can serve as a knowledge base for robot execution.

The semantic part of our reasoning module is a Manipulation Action Categorial

Combinatory Grammar (MACCG). Here we present an approach for learning the

semantic meaning of manipulation action through a probabilistic semantic parsing
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framework based on CCG theory. The advantage of our approach is twofold: 1)

Learning semantic representations from annotations helps an intelligent agent to

enrich automatically its own knowledge about actions; 2) The logic representation

of the action could be used to infer the object-wise consequence after a certain

manipulation, and can also be used to plan a set of actions to reach a certain action

goal. Equipped with the λ representation for manipulation actions, our system is

able to reason beyond observation and deduce “hidden” action consequences.

1.3.3 The execution aspect

At the end of the thesis, we conduct experiments on a research humanoid plat-

form (Baxter robot) to have it observe human doing manipulation actions, extract

the action representations for reasoning, and then perform the task using its own set

of faculties. We adopt widely used humanoid control techniques such as visual ser-

voring and dynamic movement primitives to control the humanoid. We will briefly

introduce our implementation and show the performance of the robot.

1.4 Outline of the Thesis: The Road Map

The rest of the thesis starts with a study (Chapter 2) on grasp type recognition

for manipulation actions [23]. It is then followed by a study (Chapter 3) on language-

guided manipulation action recognition and scene understanding [24, 25]. After

action recognition, the study (Chapter 4) continues with checking and monitoring

action consequences [26]. In Chapter 5 and Chapter 6, we report the learning of
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syntactical [27] and semantics [28] of manipulation actions respectively. At the end,

in Chapter 7, we present a system of leaning procedural manipulation knowledge

from on-line instructional videos for robot execution [29]. Fig. 1.2 depicts the road

map.

Figure 1.2: The Road Map of the thesis.
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Chapter 2: “Grasp it the First Time”: A Modern Perspective on

Grasp Type for Manipulation Actions

2.1 Introduction

The grasp type contains fine-grain information about human action. Consider

the two scenes in Fig. 2.1 from the VOC challenge. Current computer vision systems

can easily detect that there is one bicycle and one cyclist (human being) in the

image. Through human pose estimation, the system can further confirm that these

two cyclists are riding the bike. But humans can tell that the cyclist on the left

side literally is not “riding” the bicycle since his hands are posing in a “Rest or

Extension” grasp next to the handlebar while the cyclist on the right side is racing

because his hands firmly hold the handlebar with a “Power Cylindrical” grasp. In

other words, the recognition of grasp type is essential for a more detailed analysis

of human action, beyond the processes of current state-of-the-art vision systems.

Moreover, recognizing grasp type can help an intelligent system predict the

human action intention. Consider an intelligent agent looking at the two scenes

in Fig. 2.2(a) and (b). Current state-of-the-art computer vision techniques can

accurately recognize many visual aspects from both of these scenes, such as the fact
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(a) (b)

Figure 2.1: (a) Rest or Extension on the handlebar vs. (b) Firmly power cylindrical

grasping the handlebar.

that there must be a human being standing in the outdoor garden scene, with a knife

in his/her hand. However, we human beings will react dramatically different when

experiencing the two different scenes, because of our ability to recognize immediately

the different ways the person is handling the knife, i.e., the grasp type. We can

effectively infer the possible activity the man is going to do based on his way of

grasping the knife. After seeing scene Fig. 2.2(a), we could believe this man is

going to cut something hard, or even might be malicious, since he is “Power Hook”

grasping the knife. After seeing scene Fig. 2.2(b), we may react with a movement

to acquire the knife (shown in Fig. 2.2(c)) since the man is “Precision Lumbrical”

grasping the knife indicating a passing action. From this example we can see that

the grasp type is a strong cue for us to infer the human action intention.

These are two examples demonstrating how important it is for us to be able to
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(a) (b) (c)

Figure 2.2: (a) Power Hook Grasp a knife vs. (b) Precision Lumbrical Grasp a knife.

(c) A natural reaction when seeing scene (b) is to open the hand to receive the knife.

recognize grasp types. The grasp type is an essential component in the characteri-

zation of human actions of manipulation ( [30]). From the viewpoint of processing

videos, the grasp contains information about the action itself, and it can be used

for prediction or as a feature for recognition. It also contains information about the

beginning and end of action segments, and thus it can be used to segment videos in

time. If we are to perform the action with an intelligent agent, such as a humanoid

robot, grasp is one crucial primitive action ( [31]). Knowledge about how to grasp

the object is necessary so the robot can arrange its effectors. For example, consider

a humanoid with one parallel gripper and one vacuum gripper. When a power grasp

is desired, the robot should select the vacuum gripper for a stable grasp, but when

a precision grasp is desired, the parallel gripper is a better choice. Thus, knowing

the grasp type provides information to plan the configuration of robot’s effectors,

or even the type of effector to use ( [29]).

Here we present a study centered around human grasp type recognition and its

applications in computer vision. The goal of this research is to provide intelligent

systems with the capability to recognize the human grasp type in unconstrained
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static or dynamic scenes. To be specific, our system takes in an unconstrained im-

age patch around the human hand, and outputs which category of grasp type is

used (examples are shown in Fig. 2.3). In the rest of the chapter, we show that this

capability 1) is very useful for predicting human action intention and 2) helps to

further understand human action by introducing a finer layer of granularity. Further

experiments on two publicly available dataset empirically support that we can 1)

infer human action intention in static scenes and 2) segment videos of human manip-

ulation actions into finer segments based on the grasp type evolution. Additionally,

we provide a labeled grasp type image data set and a human intention data set for

further research.

Figure 2.3: Sample outputs. PoC: Power Cylindrical; PoS: Power Spherical; PoH:

Power Hook; PrP: Precision Pinch; PrT: Precision Tripod; PrL: Precision Lumbrical;

RoE: Rest or Extension
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2.2 Related Work

Human hand related: One way to recognize grasp type is through model

based hand detection and tracking [32]. Based on the estimated articulated hand

model, a set of biologically plausible features such as the arches formed by fingers [33]

were used to infer the grasp type involved [30]. These approaches normally use RGB

Depth data and require a calibration phase, which is not applicable or is too fragile

for real world situations. Also a lot of research has been devoted to hand pose

or gesture recognition with promising experimental results [34, 35]. The goal of

these works is to recognize poses such as “POINT”, “STOP” or “YES” and “NO”,

not considering the interaction with objects. When it comes to recognizing grasp

type from unconstrained visual input, inevitably our system has to deal with the

additional challenges introduced by the interaction with unknown objects. Later

in the chapter we will show that the large variation in the scenery will not allow

traditional feature extraction and learning mechanism to work robustly on public

available hand patch testing beds.

The robotics community has been studying perception and control problems

of grasping for decades [36]. Recently, several learning based systems were reported

that infer contact points or how to grasp an object from its appearance [37, 38].

However, the desired grasping type could be different for the same target object,

when used for different action goals. The acquisition of grasp information from

natural static or dynamic scenes is still considered very difficult because of the

large variation in appearance and the occlusions of the hand from objects during
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manipulation.

Vision beyond appearance: The very small number of works in com-

puter vision, which aim to reason beyond appearance models, are also related to

this chapter. [39] proposed that beyond state-of-the-art computer vision techniques,

we could possibly infer implicit information (such as functional objects) from video,

and they call them “Dark Matter” and “Dark Energy”. [26] used stochastic track-

ing and graph-cut based segmentation to infer manipulation consequences beyond

appearance. [40] used a ranking SVM to predict the persuasive motivation (or the

intention) of the photographer who captured an image. More recently, [41] seeks

to infer the motivation of the person in the image by mining knowledge stored in

a large corpus using natural language processing techniques. Different from these

fairly general investigations about reasoning beyond appearance, our chapter seeks

to infer human action intention from a unique and specific point of view: the grasp

type.

Convolutional neural networks: The recent development of deep neural

networks based approaches revolutionized visual recognition research. Different from

the traditional hand-crafted features [42,43], a multi-layer neural network architec-

ture efficiently captures sophisticated hierarchies describing the raw data [44], which

has shown superior performance on standard object recognition benchmarks [45,46]

while utilizing minimal domain knowledge. The work presented in this chapter

shows that with the recent developments of deep neural networks, we can learn a

model to recognize grasp type from unconstrained visual inputs with robustness.

We believe we are among the first to apply deep learning on grasp type recognition.

15



2.3 Our Approach

First, we briefly summarize the basic concepts of Convolutional Neural Net-

works (CNN), and then we present our implementations for grasp type recognition,

human action intention prediction and fine level manipulation action segmentation

using the change of grasp type over time.

2.3.1 Human Grasp Types

A number of grasping taxonomies have been proposed in several areas of re-

search, including robotics, developmental medicine, and biomechanics, each focusing

on different aspects of action. In a recent survey, Feix et al. [47] reported 45 grasp

types in the literature, of which only 33 were found valid. In this work, we use a

categorization into seven grasp types. First we distinguish, according to the most

commonly used classification (based on functionality), into power and precision

grasps [48]. Power grasping is used when the object needs to be held firmly in order

to apply force, such as “grasping a knife to cut”; precision grasping is used in order

to do fine grain actions that require accuracy, such as “pinch a needle”. We then

further distinguish among the power grasps, whether they are cylindrical, spheri-

cal, or hook. Similarly, we distinguish the precision grasps into pinch, tripodal and

lumbrical. Additionally, we also consider a Rest or Extension position (no grasping

performed). Fig. 2.4 illustrates the grasp categories.

Humans, when looking at a photograph, can more or less tell what kind of

grasp the person in the picture is using. The question becomes, whether using the
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Figure 2.4: The grasp types considered. Grasps which cannot be categorized into the

six types here are considered as the “Rest and Extension” (no grasping performed).

current state-of-the-art computer vision technique, whether we can develop a system

that learns the pattern from human labeled data and recognizes grasp type from a

patch around each hand? In the following section, we present our take and show

that a grasp type recognition model with decent robustness can be learned using

Convolutional Neural Network (CNN) techniques.
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2.3.2 CNN for Grasp Type Recognition

Convolutional Neural Network (CNN) is a multilayer learning framework,

which may consist of an input layer, a few convolutional layers and an output layer.

The goal of CNN is to learn a hierarchy of feature representations. Response maps

in each layer are convolved with a number of filters and further down-sampled by

pooling operations. These pooling operations aggregate values in a smaller region by

down-sampling functions including max, min, and average sampling. In this work

we adopt the softmax loss function which is given by:

L(t, y) = − 1

N

N∑
n=1

C∑
k=1

tnk log(
ey

n
k∑C

m=1 e
ynm

) (2.1)

where tnk is the n-th training example’s k-th ground truth output, and ynk is the

value of the k-th output layer unit in response to the n-th input training sample.

N is the number of training samples, and since we consider 7 grasp type categories,

C = 7. The learning in CNN is based on Stochastic Gradient Descent (SGD), which

includes two main operations: Forward and Back Propagation. The learning rate is

dynamically lowered as training progresses. Please refer to [49] for details.

We used a five layer CNN (including the input layer and one fully-connected

perception layer for regression output). The first convolutional layer has 32 filters

of size 5× 5 with max pooling, the second convolutional layer has 32 filters of size

5 × 5 with average pooling, and the third convolutional layer has 64 filters of size

5×5 with average pooling, respectively. Convolutional layer convolves its input with

a bank of filters, then applies point-wise non-linearity and max or average pooling
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operation.

The final fully-connected perception layer has 7 regression outputs. Fully-

connected perception layer applies linear filters to its input, then applies point-wise

non-linearity. Our system considers 7 grasp type classes.

For testing, we pass each target hand patch to the trained CNN model, and

obtain an output of size 7× 1: PGraspType. In the action intention and segmentation

experiments we use the classification for both hands to obtain PGraspType1 for the

left hand, and PGraspType2 for the right hand, respectively. To have a fully automatic

fine level manipulation segmentation approach, we need to localize the input hand

patches from videos and then recognize grasp types using CNN. We use the hand

detection method of [2] to detect hands in the first frame, and then apply a meanshift

algorithm based tracking method [3] on both hands to continuously extract the

image patch around each hand.

2.3.3 Human Action Intention

Our ability to interpret other people’s actions hinges crucially on predicting

their intentionality. Even 18-month-old infants behave altruistically when they ob-

serve an adult accidentally dropping a marker on the floor but out of his reach, and

they can predict his intention to pick up the marker [50]. From the point view of

machine learning for intelligent systems and human-robot collaboration, due to the

differences in the embodiment of humans and robots, a direct mapping of action

signals is problematic. One solution is that the robot predicts the intent of the ob-
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served human activity and implements the same intention using its own sensorimotor

apparatus [51].

Previous studies showed that there are several key factors that affect the grasp

type [52]. One crucial deciding factor for the selection of the grasp type to use is

the intended activity. We choose here a categorization into three human action

intentions, closely related to the functional classification discussed above (Fig. 2.4).

The first category reflects the intention to apply force onto the physical world, such

as for example “cut down a tree with an ax”, and we refer to it as “Force-oriented”.

The second category reflects fine-grained activity where sensitivity and dexterity are

needed, such as “tie shoelaces”, and we refer to it as “Skill-oriented”. The third

category has no intention of specific action, such as “showcasing and posing”, and

we call it “Casual”. Fig. 2.5 illustrates the action intention categories by showing

one typical example of each. We should note that the three categories: “force-

oriented”, “skill-oriented” and “casual” are closely related to the three functional

categories “power” “precision”, and “rest”, respectively (Fig. 2.4). We used a

different labeling, because we encounter a larger variety of hand poses in the static

images used for intention classification than in the videos of human manipulation

activities used for functional categorization.

We investigate the causal relation between human grasp type and action in-

tention by training a classifier using grasp types of both hands as input, and the

category of action intention as output. As shown next, our experiment demonstrates

a strong link. We want to point out that certainly a finer categorization is possible.

For example, “Force oriented” intention can be further divided into sub classes such

20



Figure 2.5: Human action intention categories.

as “Selfish” or “Altruistic” and so on. However, such a classification would require

other dynamic observations. Here we show that from the grasp type in a single

image a classification into basic intentions (shown in Fig. 2.5) is possible.

2.3.4 From Grasp Type to Action Intention

Our hypothesis is that the grasp type is a strong indicator of human action

intention. In order to validate this, we train an additional classifier layer. The

procedure is as follows. For each training image, we first pass the target hand

patches (left hand and right hand, if present) of the main character in the image

to the trained CNN model, and we obtain two belief distributions: PGraspType1 and

PGraspType2. We concatenate these two distributions and use them as our feature

vector for training. We train a support vector machine (SVM) classifier f , which
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takes as input the grasp type belief distributions and derives as output an action

intention distribution PInt of size 3× 1:

PInt = f(PGraspType1, PGraspType2|θ), (2.2)

where θ are the model parameters learned from labeled pairs. Fig. 2.6 shows a

diagram of the approach. We need to point out that in the human action intention

recognition we use belief distributions instead of final class labels of the two hands

as input feature vectors. Thus, a certain category of grasp type does not directly

indicate a certain action intention in our model. A further experiment using detected

grasp type labels of both hands (the grasp type with the highest belief score) to infer

action intention achieves a slightly worse performance, which confirms our claim

here.

2.3.5 Grasp Type Evolution

In manipulation actions involving tools and objects, the details of the small sub

actions contain rich semantics. Current computer vision methods do not consider

them. Consider a typical kitchen action, as shown in Fig. 2.7. In most approaches

the whole sequence would be denoted as “sprinkle the steak”, and the whole segment

would be considered an atomic part for recognition or analysis. However, within this

around 15 second long action, there are several finer segments. The gentleman first

“Pinch” grasps the salt to sprinkle the beef, then he “Extends” to point at the oil

bottle, and later he “Power Spherical” grasps a pepper bottle to further sprinkle

black pepper onto the beef. Here we can see that the dynamic changes of grasp type
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Figure 2.6: Inference of human action intention from grasp type recognition.

characterize the start and end of these finer actions.

Figure 2.7: Grasp type evolution (right hand) in a manipulation action.

In order to see if grasp type evolution actually can help with a finer segmenta-

tion of manipulation actions, we first recognize the grasp type of both hands, frame

by frame, and then output a segmentation at the points in time when any of the

hands has a change in grasp type. We design a third experiment on a public cooking
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video dataset from Youtube for validation.

2.3.6 Finer segment action using grasp type evolution

We adopt a straightforward approach. Let’s denote the sets of grasp types

along the time-line of an action of length M as Gl = {G1
l , G

2
l ...G

M
l } for the left hand

and asGr = {G1
r, G

2
r...G

M
r } for the right hand. Assuming that during a manipulation

action the grasp type evolves gradually, we first apply a one dimensional mode filter

to smooth temporally. Each grasp type detection at time t is replaced by its most

common neighbor in the window of [t− δ/2, t+ δ/2], where δ is the window size.

Then, whenever at a time instance t ∈ [1,M ], if Gt
l 6= Gt+1

l or Gt
r 6= Gt+1

r ,

our system outputs one segment at t, denoted as St. The set St yields a finer

segmentation of the manipulation action clip.

2.4 Experiments

The theoretical framework we presented suggests three hypotheses that deserve

empirical tests: (a) the CNN based grasp type recognition module can robustly

classify input hand patches into correct categories; (b) hand grasp type is a reliable

cognitive feature to infer human action intention; (c) the evolution of hand grasp

types is useful for fine-grain segmentation of human manipulation actions.

To test the three hypotheses empirically, we need to define a set of perfor-

mance variables and how they relate to our predicted results. The first hypothesis

relates to visual recognition, and we can empirically test it by comparing the de-
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Methods PoC PoS PoH PrP PrT PrL RoE Overall

P R P R P R P R P R P R P R Accu

(A) .44 .46 0 NaN 0 NaN 0 0 0 NaN 0 NaN .81 .41 .42

(B) .50 .40 0 NaN 0 NaN .03 .17 0 0 0 0 .62 .36 .36

(C) .59 .60 .38 .62 .38 .58 .62 .60 .56 .66 .36 .40 .69 .56 .59

Table 2.1: Precision (P) and Recall (R) for each grasp type category and overall

accuracy. (A):HoG+BoW+SVM; (B):HoG+BoW+RF; (C): CNN

tected grasp type labels with the ground truth ones using the precision and recall

metrics. We further compare the method with a traditional hand-crafted feature

based approaches to show the advantage of our approach. The second hypothesis

relates to the inference of human action intention, and we can also empirically test it

by comparing the predicted action intention with the ground truth ones on a testing

set. The third hypothesis relates to manipulation action segmentation, and we can

test it by comparing the computed key segment frames with the ground-truth ones.

We used two publicly available datasets: (1) the Oxford hand dataset [2] and (2) a

unconstrained cooking video dataset (YouCook) [53].

2.4.1 Grasp Type Recognition in Static Images

Dataset and Experimental protocol

The Oxford hand dataset is a comprehensive dataset of hand images collected

from various different public image data set sources with a total of 13050 annotated
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hand instances. Hand patches larger than a fixed area of (a bounding box of 1500

sq. pixels) were considered sufficiently ‘large’ and were used for evaluation. This

way we obtained 4672 hand patches from the training set and 660 hand patches from

the testing set (VOC images). We then further augmented the dataset with new

annotations. We categorized each patch into one of the seven classes by considering

its functionality given the image context and its appearance following Fig. 2.4. We

followed the training and testing protocol from the dataset.

For training the grasping type, the image patches were resized to 64 × 64

pixels. The training set contains 4672 image patches and was labeled with the seven

grasping types. We used a GPU based CNN implementation [54] to train the neural

network, following the structure described above.

We compared our approach with traditional hand-crafted feature based ap-

proaches. One was the histogram of oriented gradients (HoG) + Bag of Words

(BoW) + SVM classification, the other HoG + BoW + Random Forest. The num-

ber of orientations we selected for HoG was 32, and the number of dictionary entries

for BoW was 100. The parameters for the baseline methods were tuned to have the

best performance.

Experimental results

We achieved an average of 59% classification accuracy using the CNN based

method. Table 2.1 shows the performance metrics of each grasp type category and

the overall performance in comparison to baseline algorithms. It can be seen that

the CNN based approach has a decent advantage. To provide a full picture of our

CNN based classification model, we also show the confusion matrix in Fig. 2.8. Our
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system mainly confused “Power Cylindrical Grasp” with “Rest or Extension”. We

believe that this is mostly because the fingers form natural curves when resting and

this makes the hand look very similar to a cylindrical grasp with large diameter.

Also our model does not perform well on “Precision Lumbrical” grasp due to the

relatively small amount of training samples in this category. Fig. 2.9 shows some

correct grasp type predictions (denoted by black boxes), and some failure examples

(denoted by red and blue bounding boxes). Blue boxes denote a correct prediction

of the underlying high-level grasp type in either the “Power” or “Precision” cate-

gory, but incorrect recognition in finer categories. Red boxes denote a confusion

between“Power” and “Precision” grasp. Intuitively, the blue marked errors should

be penalized less than the red marked ones.

2.4.2 Inference of Action Intention from Grasp Type

Dataset and Experimental protocol

A subset of 200 images from the Oxford hand dataset serves as testing bed

for action intention classification. Since not every image in the test set contains an

action intention that falls into one of the three major categories described above,

the subset was selected with the following rules: (1) at least one hand of the main

character can be seen from the image and (2) the main character has a clear action

intention. For example, we can infer that the character from Fig. 2.10(a) is going to

perform a skill-oriented actions that requires accuracy, while this is not clear from

the character in Fig. 2.10(b) (pull the rope with force or just posing casually?).
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Figure 2.8: Category pairwise confusion matrix for grasp type classification.

We labeled the 200 images into the three major action intention categories and

used them as ground truth. The grasp type CNN model was used to extract a 14

dimension belief distribution as grasp type feature (which is due to data from both

hands of the main character). A 5 folds cross validation protocol was adopted and

we trained each fold using a linear SVM classifier.

Experimental results

We achieved an average 65% prediction accuracy. Table 2.2 reports precision

and recall metrics for each category of action intention. We also run the same

experiment using grasp type labels instead of belief distributions (GL+SVM). We
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Figure 2.9: Examples of correct and false classification. PoC: Power Cylindrical;

PoS: Power Spherical; PoH: Power Hook; PrP: Precision Pinch; PrT: Precision

Tripod; PrL: Precision Lumbrical; RoE: Rest or Extension.

(a) (b)

Figure 2.10: Clear action intention vs. an ambigous one

can see that it achieves slightly worse performance than using belief distributions.

Fig. 2.11 shows some interesting correct cases, and Fig. 2.12 shows several failure

predictions. We believe that the failure cases are mostly due to the wrong grasp
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Methods F-O S-O C Overall

P R P R P R Accu

GL+SVM .54 .35 .73 .59 .80 .89 .63

GT+SVM .61 .35 .82 .71 .82 .83 .65

Table 2.2: Precision (P) and Recall (R) for each intention category and overall

accuracy. GL: Grasp type Label; GT: Grasp Type belief distribution.

Figure 2.11: Correct examples of predicting action intention.

type recognition inherited from the previous section. Because of the small amount

of pairs with ground truth, we were not able to train for comparison a converging

CNN model, that would predict action intention directly from hand patches.
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Figure 2.12: Failure cases of predicting action intention. The label at the bottom

denotes the human labeling.

2.4.3 Manipulation Action Fine Level Segmentation using Grasp Type

Evolution

In this section we want to demonstrate that the change of grasp type is a good

feature for fine grain level manipulation action temporal segmentation.

Dataset and Experimental protocol

Cooking is an activity, requiring a variety of grasp types, that intelligent agents

most likely need to learn. We conducted our experiments on a publicly available

cooking video dataset collected from the world wide web and fully labeled, called the

Youtube cooking dataset (YouCook) [53]. The data was prepared from open-source

Youtube cooking videos with a third-person view. These features make it a good

empirical testing bed for our third hypothesis.

We conducted the experiment using the following protocols: (1) 8 video clips,

which contain at least two fine grain activities, were reserved for testing; (2) all other

video frames were used for training; (3) we randomly reserved 10% of the training
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Figure 2.13: Left and right hand grasp type recognition along timeline and video

segmentation results compared with ground truth segments.

data as validation set for training the CNNs. For training the grasp type recognition

model, we extended the dataset by annotating image patches containing hands in

the training frames. The image patches were resized to 64× 64 pixels. The training

set contains image patches that was labeled with the seven grasp types. We used

the same CNN implementation [54] to train the neural network, following the same

structures described above.

Action Fine Level Segmentation

For each testing clip, we first picked the top two hand proposals using [2] in the

first frame, and then we applied a meanshift algorithm based tracking method [3] on

both hands to continuously extract an image patch around each hand (Fig. 2.14).

The image patches were further resized to 64×64 and pipelined to the trained CNN
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Figure 2.14: 1st row: sample hand localization on first frame using [2]. 2nd to 5th

row: two sample sequences of hand patches extracted using meanshift tracking [3].

model. We then labeled each hand with the grasp type of highest belief score in each

frame. After applying a one dimensional mode filtering for temporal smoothing, we

computed the grasp type evolution for each hand and segmented whenever one hand

changes grasp type, as described in Sec. 2.3.6.

Fig. 2.13 shows two examples of intermediate grasp type recognition for the

two hands and the detected segmentation. A key frame is considered correct, when

a ground truth key frame lies within 10 frames around it. In the first example, the

subject’s right hand at the beginning holds the tofu using an Extension grasp, and

then she cuts the tofu with a Pinch grasp holding the blade. Then using a precision

Tripod grasp she separates one piece of tofu from the rest, and at the end using a
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Lumbrical grasp she further cuts the smaller piece of tofu. Using the grasp type

evolution, our system can successfully detect two key frames out of the three ground

truth ones. In the second video, the gentleman using a Cylindrical grasp whisks the

bowl at the beginning. Then his left hand extends to reach a small cup, and then

using a Hook grasp he holds the cup. After that, his right hand extends to reach

a spatula and at the end his right hand scoops food out of the small cup using

a Cylindrical grasp. Using the grasp type evolution, our system can successfully

detect three key frames out of the four ground truth ones.

In the 8 test clips, there are 18 ground truth segmentation key frames, and

14 of them are successfully detected, which yields a recall of 78%. Among the 20

detected segmentation key frames, 16 are correct, which yields a precision of 80%.
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Chapter 3: “Get Your Act Together”: Language-Guided Manipula-

tion Action Recognition and Scene Understanding

3.1 Language-Guided Action Recognition

Humans display an uncanny ability to perceive the world that far surpasses

current vision only based systems both in terms of precision and accuracy. This is

largely due to the vast amount of high-level knowledge that humans have acquired

over their lives that enables humans to infer and recognize complex visual inputs.

In the same way, service and personal robots of the future must be endowed with

such knowledge in order to interact and reason with humans and their environments

effectively. This knowledge can be encoded in various forms, of which language is

clearly the most predominant. Language manifests itself in the form of text which

is also extremely accessible from various large research corpora.

The ability to reason is an essential faculty for service and personal robots. A

typical scenario is when the robot needs to understand an action or task which the

human performs for the purpose of learning. Such Learning from Demonstration

(LfD) [55] paradigm is gaining popularity in robotics as shown by the recently
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Figure 3.1: (Top) Ambiguities in action recognition: similar trajectories for different

actions. Tools considered in isolation can only suggest possible actions. (Below)

Language can predict, given the tool and action trajectories, the most likely action

label.

concluded Learning by Demonstration Challenge at AAAI 20111. There are two

interconnected components in LfD. The first component recognizes what actions

occurred and the second component creates an internal representation so that the

action can be recreated by the robot. Unlike the LfD challenge where the robot is

supposed to recreate the one task it was taught (the second component), we address

a variant of the first component where the robot labels the correct action associated

with a set of unlabeled action data (with repetitions) performed by different human

teachers (or actors). Posing our problem in terms of unlabeled data over different

actors is also closer to reality as the robot needs to learn how to generalize the

action so that it can discover, in the second component, an optimal representation

to recreate this action on its own.

1http://www.lfd-challenge.org/
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In this chapter, we consider the task of recognizing human activities from

videos sequences – specifically, activities that involve hand-tools. Action or activity

recognition has remained one of the most difficult problems in computer vision. The

main reason is that detections of key objects that define the action in video – tools,

objects, hands and humans are still unreliable even using current state of the art

object detectors [4,56]. Descriptions based on tracking trajectories of local features

such as STIP [57] and modeling velocity as suggested in [58], are strongly viewpoint

dependent and may be confused when similar movements are used for different

actions, e.g. drinking from a cup vs. peeling. Both actions involve large up-down

hand movements. The main challenge of action recognition is the ambiguity when

these two components: objects and trajectories, are considered in isolation. From

Fig. 3.1(top), detecting a cup or action trajectory in isolation can only suggest some

likely actions. A more reliable prediction can be achieved when we combine both

object detection and trajectories.

A missing component in the above approach is how we can combine object

detection with actions in a logical and intuitive way. To do this, we propose to

model language as a resource of prior knowledge that essentially encodes how actions

and objects (tools) are related. This language model allows us to weigh the video

detections so that the objects and action features that best explain the video are

eventually selected (Fig. 3.1(below)).
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3.1.1 Related Work

Action recognition research spans a long history. Comprehensive reviews of

recent state of the art can be found in [59–61]. Most of the focus was on studying

human actions that were characterized by movement and change of posture, such as

walking, running, jumping etc. Many studies represent actions by modeling body

poses, body joints and body parts [62]. Depending on the extent of the features used,

the literature distinguishes between local and global action models. The former use

spatio-temporal interest points and descriptors based on intensity, gradients and flow

within spatio-temporal cuboids centered on these interest points [57,63]. The latter

compute descriptors over the whole video frame or an extracted human skeleton

or silhouette. For example, [64] used histograms of optical flow and Gorelick et

al. [65] and Yilmaz et al. [66] represented human activities by 3-D space-time shapes.

Another class of approaches model the evolution of actions over time. For example

Bissacco et al. [67] used joint-angle as well as joint trajectories from motion-capture

data and features extracted from silhouettes to represent action profiles. Chaudhry

et al. [68] employed non linear dynamical systems to model the temporal evolution

of optical flow histograms.

Our approach is more closely related to the use of language for object detection

and image annotation. With advances on textual processing and detection, several

works recently focused on using sources of data readily available “in the wild” to

analyze static images. The seminal work of Duygulu et al. [69] showed how nouns

can provide constraints that improve image segmentation. Gupta et al. [70] (and
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references herein) added prepositions to enforce spatial constraints in recognizing

objects from segmented images. Berg et al. [71] processed news captions to discover

names associated with faces in the images, and Jie et al. [72] extended this work to

associate poses detected from images with the verbs in the captions. Some studies

also considered dynamic scenes. [73] studied the aligning of screen plays and videos,

[74] learned and recognized simple human movement actions in movies, and [75]

studied how to automatically label videos using a compositional model based on

AND-OR-graphs that was trained on the highly structured domain of baseball videos

.

These recent works had shown that exploiting co-occurring text information

from scripts and captions aids in the visual labeling task. This chapter takes this

further by using generic text obtained from the English Gigaword corpus [76], which

is a large corpus of English newswire text from which we learn a language model. As

we will show, using general NLP tools, we still can derive interesting relationships

to guide the visual task of action recognition.

3.1.2 Our Approach

The input is a set of |M | videos, M = {md}, d ∈ {1, 2, · · · , |M |} containing

some actions, with each video containing exactly one unique action. The |V | actions

are drawn from the set V = {vj}, j ∈ {1, 2, · · · , |V |}. This means that we have

assumed that the task of segmenting actions from a long video sequence has been

done. In addition, we assume that every action must have an actor that uses a
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particular hand-tool. The same tool can be used in multiple actions. The |N |

tools comes from the set N = {ni}, i ∈ {1, 2, · · · , |N |}. All labels (both actions and

tools) must be known in advance, which is a requirement for learning the appropriate

language model. A summary of the approach is shown in Fig. 3.2.

Figure 3.2: Key components of the approach.: (a) Training the language model from

a large text corpus. (b) Detected tools are queried into the language model. (c)

Language model returns prediction of action. (d) Action features are compared and

beliefs updated.

The high level overview of the approach is as follows (see Fig. 3.2): 1) We first

detect potential tools from the input video. 2) For each identified tool, we query

a trained language model to determine the most likely verbs (actions) associated

with the tool. 3) We then confirm the predicted action using the action features

obtained from the video to update our confidence on the current action label of the

video. This process is repeated until our belief on the action labels is maximized

over all tools and action features. Note that our approach is symmetric, that is,
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we could have started off with action features and inquire the language model in

exactly the same way. Our choice of starting with objects is based on the fact that

object detectors are better researched and are generally more accurate than action

detectors.

For the purpose of this discussion, we shall assume the most general case

where we only have unlabeled video data. This means that the best that we can

do is to perform some form of clustering to discover automatically what is the best

action label that describes the cluster. Intuitively, we want to learn the “meaning”

of actions by grounding them to visual representations obtained from video data.

Hence if we knew this grounding, we can assign action labels to the videos. On the

other hand, if we know the action labels of the video data, we can estimate this

grounding. This leads naturally to an iterative Expectation-Maximization (EM)

formulation where we attempt to determine the optimal grounding parameters that

will assign action labels to videos with the highest probability.

More formally, our goal is to label each video with their most likely action,

along with the tool that is associated with the action. That is, we want to maximize

the likelihood:

L(D;A) = EP(A)[L(D|A)]

= EP(A)[logP(FM ,PI(·),PL(·)|A)] (3.1)

where A is the current (binary) action label assignments of the videos (see eq. (3.3)).

D is the data computed from the video that consists of: 1) the language model PL(·)

that predicts an action given the detected tool (sec. 3.1.2.1), 2) the tool detection
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model PI(·) (sec. 3.1.2.2) and 3) the action features, FM , associated with the video

(sec. 3.1.2.3). We describe how these 3 data components are computed in the fol-

lowing paragraphs and detail how we optimize eq. (3.1) using EM in sec. 3.1.3.1.

3.1.2.1 Language as a predictor of actions

The key component of our approach is the language model that predicts the

most likely verb (action) that is associated with a noun (tool) trained from a large

text corpus. We view the Gigaword Corpus as a large text resource that contains the

information we need to make correct predictions of actions given the detected tools

from the video. We do this by training a language model PL(vj, ni) that returns the

maximum likelihood estimates of an action vj given the tool ni. This can be done

by counting the number of times vj co-occurs with ni in a sentence:

PL(vj|ni) =
#(vj, ni)

#(ni)
(3.2)

As many English words share common meanings, a simple count of the action words

(verbs) defined in V is likely to grossly underestimate the relationship between the

tool and the action it is associated with. For example, in the Gigaword Corpus,

counting the number of times drink co-occurs with cup where the actual words

are used will not be significantly larger than pick and cup. The reason is that

cup can mean a normal drinking cup or a trophy cup. In order to ensure that PL

captures the correct sense of the word (nouns, verbs), we use WordNet to determine

the synonyms and hyponymns of the tools and actions considered. As illustrated

in Fig. 3.3, extending cup to include drinking_glass, wine_glass, mug captures
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the expected action drink in a larger part of the corpus.

Figure 3.3: Enlarging the word class to contain synonyms yields more reasonable

counts: cup only connects weakly with drink. By clustering other closely related

words together, their combined counts increase the desired association between cup

and drink.

We then recompute PL using these enlarged word classes to capture more

meaningful relationships between the co-occurring words. Fig. 3.4 shows the |N | ×

|V | co-occurrence matrix of likelihood scores over all the tools and actions considered

in the experiments, denoted as PL(V |N).

For most of the tool classes, the predicted actions are correct (large values

along the diagonals): for e.g. peeler predicts peeling with high probability (0.94)

and shaker predicts sprinkling at 0.66. This shows that for tools that have a

unique use, our approach can predict the expected action easily. However, there

are many co-occurrences which we could not anticipate. For e.g, using synonyms of

cup makes it more selective to drinking (0.17) but it is sprinkling that has the

highest prediction score (0.29). Investigating further reveals that sprinkling has
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Figure 3.4: Gigaword co-occurrence matrix of tools and predicted actions.

some synonyms such as drizzle moisten splash splosh which have uses that are

also close to cup. Other mis-selected tools-action are also due to the confusion at

the synonyms/hyponymns levels. We also notice that more general actions such

as picking have a more uniform distribution across the tools, which is expected.

In the same way, the tool mat is also very general in its use such that it displays

no significant selectivity to any of the actions. Despite this simplistic model, most

of the entries in PL make sense – and it properly reflects the innate complexity of

language. As will be shown in sec. 3.1.4, although the priors from language are

weak, they are still helpful for the task of action recognition.
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3.1.2.2 Active tool detection strategy

We pursue the following active strategy for detecting, and subsequently rec-

ognizing, relevant tools in the video as illustrated in Fig. 3.5. First, a trained

person detector [4] is used to determine the location of the human actor in the video

frame. The location of the face is also detected using [77]. Optical flow is then com-

puted [78] and we focus on human regions which have the highest flow, indicating

the potential locations of the hands. We then apply a variant of a CRF-based color

segmentation [79] using a trained skin color+flow model to segment the hand-like

regions which are moving. This is justified by the fact that the moving hand is

in contact with the tool that we want to identify. In some cases, the face may be

detected (since it may be moving) but they are removed using the face detector re-

sults. We then apply a trained Partial Least Squares (PLS) object detector similar

to [56] near the detected active hand region that returns a detection score at each

video frame. Averaging out the detection yields PI(ni|md), the probability that a

tool ni ∈ N exists given the video md. We denote PI(N |M) as the set of detection

scores (essentially the likelihood) over all tools in N and all videos in M .

This active approach has two important benefits. By focusing our processing

only on the relevant regions of the video frame, we dramatically reduce the chance

that the tool detector will misfire. At the same time, by detecting the hand locations,

we obtain immediately the action trajectory, which is used to describe the action as

shown in the next section.
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Figure 3.5: (Best viewed in color) Overview of the tool detection strategy: (1)

Optical flow is first computed from the input video frames. (2) We train a CRF

segmentation model based on optical flow + skin color. (3) Guided by the flow

computations, we segment out hand-like regions (and removed faces if necessary) to

obtain the hand regions that are moving (the active hand that is holding the tool).

(4) The active hand region is where the tool is localized. Using the PLS detector

(5), we compute a detection score for the presence of a tool.

3.1.2.3 Action features

Tracking the hand regions in the video provides us with two sets of (left and

right) hand trajectories as shown in Fig. 3.6. We then construct for every video a

feature vector Fd that encodes the hand trajectories. Fd encodes the frequency and
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velocity components. Frequency is encoded by using the first 4 real coefficients of

the Fourier transform in both the x and y directions, fx, fy, which gives a 16-dim

vector over both hands. Velocity is encoded by averaging the difference in hand

positions between two adjacent frames 〈δx〉, 〈δy〉 which gives a 4-dim vector. These

features are then combined to yield a 20-dim vector Fd.

Figure 3.6: Detected hand trajectories. x and y coordinates are denoted as red and

blue curves respectively.

We denote FM as the set of of action features Fd over all videos in M .

3.1.3 Using Language to guide recognition

In this section, we formalize our EM approach to learn a joint tool-action

model that assigns the most likely action label associated with a set of unlabeled

video. We first derive from eq. (3.1) an expression that allows EM to estimate the

parameters of this model, followed by details of the Expectation and Maximization

steps. We then show how to use the learned model to perform testing. Finally,

we consider the case where we have labeled data in which we formulate a simpler

supervised approach.
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3.1.3.1 Unsupervised learning of a joint tool-action model

We first define the latent assignment variable A. To simplify our notations,

we will use subscripts to denote tools i = ni, actions j = vj and videos d = md. For

each i ∈ N , j ∈ V , d ∈ M , Aijd indicates whether an action j is performed using

tool i during video clip d.

Aijd =


1 j is performed using i during d

0 otherwise

(3.3)

and A is a 3D indicator matrix (or a 3D array) over all tools, actions and videos.

Denoting the parameters of the model as C = {Cj} which specifies the ground-

ing of each action j, we seek to determine from eq. (3.1) the maximum likelihood

parameter:

C∗ = arg max
C

∑
A

L(D, A|C) (3.4)

Where,

L(D, A|C) = logP (D, A|C)

= logP (A|D, C)P (D|C) (3.5)

with the dataD comprised of the tool detection likelihoods PI(N |M), the tool-action

likelihoods PL(V |N) and action features FM under the current model parameters

C. Geometrically, we can view C as the superset of the |V | action label centers that

defines our current grounding of each action j in the action feature space.

Using these centers, we can write the assignment given each video d, tool i
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and action j, P (Aijd|D, C) as:

P(Aijd = 1|D, C) = PI(i|d)PL(j|i)Pen(d|j) (3.6)

where Pen(d|j) is an exemplar-based likelihood function defined between the asso-

ciated action feature of video d, Fd and the current model parameter for action j,

Cj as:

Pen(d|j) =
1

Z
exp−||Fd−Cj ||

2

(3.7)

where Z is a normalization factor. What eq. (3.7) encodes is the penalty that we

score against the assignment when there is a large mismatch between Fd and Cj, the

cluster center of action j.

Rewriting eq. (3.6) over all videos M , tools N and actions V we have:

P(A = 1|D, C) = PI(N |M)PL(V |N)Pen(FM |C) (3.8)

where we use the set variables to represent the full data and assignment model

parameters. In the derivation that follows, we will simplify P(A = 1|D, C) as P(A =

1) and P(A = 0) = 1 − P(A = 1). We detail the Expectation and Maximization

steps in the following sections.

Expectation step: We compute the expectation of the latent variable A,

denoted by W , according to the probability distribution of A given our current

model parameters C and data (PI , PL, and FM):

W = EP(A)[A]

= P(A = 1)× 1 + (1− P(A = 1))× 0

= P(A = 1) (3.9)
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According to Eq. 3.6, the expectation of A is:

W = P(A = 1) ∝ PI(N |M)PL(V |N)Pen(FM |C) (3.10)

Specifically, for each i ∈ N, j ∈ V, d ∈M :

Wijd ∝ PI(i)PL(j|i)Pen(d|j) (3.11)

Here, W is a |N | × |V | × |M | matrix. Note that the constant of proportionality

does not matter because it cancels out in the Maximization step.

Maximization step: The maximization step seeks to find the updated pa-

rameters Ĉ that maximize eq. (3.5) with respect to P(A):

Ĉ = arg max
C

EP(A)[logP(A|D, C)P(D|C)] (3.12)

Where D = PI ,PL, FM . EM replaces P(A) with its expectation W . As A,PI ,PL

are independent of the model parameters C, we can simplify eq. (3.12) to:

Ĉ = arg max
C

P(FM |C)

= arg max
C

(
−
∑
i,j,d

Wijd||Fd − Cj||2
)

(3.13)

where we had replaced P(FM |C) with eq. (3.7) since the relationship between FM

and C is the penalty function Pen(FM |C). This enables us to define a target maxi-

mization function as F(C) =
∑

i,j,dWijd||Fd − Cj||2.

According to the Karush-Kuhn-Tucker conditions, we can solve the maximiza-

tion problem by the following constraint:

∂F
∂C

= −2
∑
i,j,d

(Wijd(Fd − Cj)) = 0 (3.14)
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Thus, for each j ∈ V , we have:

Ĉj =

∑
i∈N,j∈V,d∈MWijdFd∑
i∈N,j∈V,d∈MWijd

(3.15)

We then update C = Ĉ within each iteration until convergence.

Testing the learned model: The learned model C∗ can be used to classify

new videos from a held-out testing set. Denoting the input test video as mt, we

predict the most likely action label, v∗t by:

v∗t = arg max
j∈V

∑
i∈N

(
PI(i|mt)PL(j|i)Pen(Ft|C∗j )

)
(3.16)

where Ft is the action features extracted from mt and C∗j is the j action center from

the learned model.

3.1.3.2 Supervised action classification

If we have labeled video data of actions, a supervised approach will be the

most straightforward. Every video, md, is represented by a set of features Fd that

combines Fd (action features), PI (tool detection) and PL together in the following

manner:

Fd = [Fd;PI(N |md);PI(N |md)× PL(V |N)]

= [Fd;PI(N |md);PL(V |md)] (3.17)

where ; means a concatenation of the features vectors. This yields a 20 + |N |+ |V |-

dim vector. What eq. (3.17) means is that for every video md, we concatenate

its Fd together with PI(N |md), the distribution over all |N | tools, and together
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with the verb prediction: PL(V |md), obtained from the text corpus. Given labeled

training videos from all possible actions in V , we can proceed to train discriminative

classifiers (SVM, Bayes Net and Naive Bayes) to predict the action in the testing

video.

3.1.4 Experiments

We performed a series of experiments using a new dataset of human actions

performed with hand-tools to show quantitatively how language aids in action recog-

nition. We first describe the dataset, and report recognition results on both the

unsupervised and supervised scenarios.

3.1.5 The UMD Sushi-Making Dataset

The UMD Sushi-Making Dataset2 consists of 12 actions, performed by 4 actors

using 10 different kitchen tools, for the purpose of preparing sushi. This results in

48 video sequences each of around 1000 frames (30 seconds long). Other well known

datasets such as the KTH, Weizmann or Human-EVA datasets [65, 80, 81] do not

involve hand-tools. The human-object interaction dataset by Gupta et al. [82] has

only 4 objects. The dataset by Messing et al. [58] has only 4 actions with tool use.

The CMU Kitchen Dataset [83] has many tool interactions for 18 subjects making 5

recipes, but many of the actions are blocked from view due to the placements of the

4 static cameras. The head mounted camera gives a limited and shaky top-down

view which cannot be processed easily.

2http://www.umiacs.umd.edu/research/POETICON/umd_sushi/
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Our Sushi-Making dataset provides a clear view of the action in use with the

tools and it simulates an active robotic agent observing the human actor performing

the action in a realistic environment: a kitchen, with a real task: making sushi, that

is made up of several actions that the robot must identify. See Fig. 3.5 for an

example. The 12 actions are: cleaning, cutting, drinking, flipping, peeling, picking

(up), pouring, pressing, sprinkling, stirring, tossing, turning. The tools used are:

tissue, knife, cup, rolling-mat, fruit-peeler, water-pitcher, spoon, shaker, spatula,

mixing-bowl. As was discussed in sec. 3.1.2.1, some of the actions such as picking

or flipping are extremely general and are easily confused. We made this choice to

ensure that the language prediction PL is not perfect and to show that our approach

works even under noisy data.

3.1.5.1 Baseline: Vision-only Recognition

As a baseline, we perform experiments without the language component, that

is PL in eq. (3.17) is not considered as part of Fd. Two experiments: 1) clustering

using K-means and 2) supervised classification are performed.

K-means clustering results: For the case of unlabeled videos, we performed

K-means clustering with k = 12. We used 36 videos in this experiment. As labels,

we took the majority ground truth labels from each cluster to be the predicted labels

of the cluster. We then counted the number of videos that are correctly placed in

the right cluster to derive a measure of accuracy, which is reported in Fig. 3.8(a).

Supervised classification results: From the 48 videos from the UMD Sushi-
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Making dataset, we used 36 videos from 3 actors to train a degree 3 polynomial SVM

classifier for the 12 actions. We set the cost parameter to 1.0 with a tolerance termi-

nation value at 0.001. These parameters were chosen from a separate development

set of 8 videos. The remaining 12 videos were then used for testing. 4-fold cross

validation was performed and the classification accuracy is reported. In addition,

we trained a Naive Bayes (NB) classifier and a Bayes Net (BN) classifier over the

training data. The BN is initialized as a NB with at most 1 parent. We then apply

a simple estimator to estimate the conditional probability tables. All classifiers are

tested using WEKA [84]. We summarize the results in Fig. 3.8(b).

3.1.5.2 Adding Language

In this section, we performed experiments with the aid of the language com-

ponent PL. Three separate experiments are performed: 1) Unsupervised EM, 2)

Semi-Supervised EM where we initialized the model parameters C with 12 known

labels and 3) Supervised classification using trained SVM, Bayes Net and Naive

Bayes classifiers. 36 videos were used for training the joint tool-action model using

EM and 12 videos were held out for testing. For the supervised part, the same

parameters as the baseline were used. We report our unsupervised and supervised

results in Figs. 3.8(a) and 3.8(b) respectively. More detailed results (confusion ma-

trices for each action) can be found online3. In addition, we show in Fig. 3.7 the

improving recognition accuracy of the trained model at each iteration. The evolu-

tion of the action labels versus the ground truth is also presented. Testing on the

3http://www.umiacs.umd.edu/research/POETICON/umd_sushi/res_ICRA2012
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Figure 3.7: (Best viewed in color) (Left) Unsupervised EM: accuracy at each iter-

ation. (Right) Scatterplots of action label assignments at selected iterations. We

see that with each iteration, the assignment label clusters approaches the ground

truth label (boxed in red). Note that we used PCA to reduce the action feature

dimensions to 2 for visualization.

held out video set using the trained model yields a recognition accuracy of 83.33%.

3.1.5.3 Comparison with state of art action features

We compared our approach with a bag-of-words (BoW) representation built

upon state of the art STIP [57] features clustered using K-means with k = 50. We

trained three classifiers: SVM, Naive Bayes and Bayesian Net using the same proce-

dure and parameters as the baseline and we summarize the results in Table 3.1. The

BoW representation using STIP achieves a maximum classification rate of 77.08%

with trained SVM classifiers. Our approach which uses comparatively simpler video

features: Fourier coefficients + velocity eq. (3.17) outperforms the state of the art

significantly. This gain is possible due to the addition of language prediction in the
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Feature Method Accuracy

STIP+Bag of Words

Naive Bayes 56.25%

Bayes Net 75%

SVM 77.08%

Action Features+Language

Naive Bayes 66.67%

Bayes Net 85.41%

SVM 91.67%

Action Features+Language
Unsupervised EM 77.78%

Semi-supervised EM 91.67%

Table 3.1: Classification accuracy: STIP versus our approach.

action feature.

3.1.5.4 Discussion: the effects of adding language

Comparing the unsupervised recognition results, K-means clustering on the

action features alone (with PL) achieves only 69.44% recognition rate. The cluster-

ing accuracy, with the addition of PL and using the EM formulation described in

sec. 3.1.3.1 achieves 77.78% with random initialization of the model C. We show fur-

ther that with correctly initialized parameters from 12 labeled videos, is enough to

increase the accuracy to 91.67%, which is just as good as the SVM classifier (which

is supervised). This result shows that once again, even with no or limited labeled

data, our proposed EM formulation is able to leverage the predictive power of PL

to find the optimal action and its corresponding tool that best explains the video.
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Fig. 3.9 shows some video frames with the predicted action and corresponding tool

using EM.

For the classification results in Fig. 3.8(b) using the three classifiers, we clearly

see that the addition of PL increases the classification accuracy, with the most

dramatic increase when SVM or Naive Bayes are used: from 87.5% to 91.67% (SVM)

and 62.5% to 66.67% when language is added. This shows that even with a simple

model, PL is able to provide additional discriminatory features which improve the

classification. The most important result is that these features are estimated directly

from a generic text corpus and the method is not limited to a particular domain

such as cooking. This fact alone highlights the strength of language in aiding action

classification.

Besides improving action recognition accuracy in both supervised and unsu-

pervised scenarios, another key observation from our results is that language is com-

plementary in aiding many vision related tasks where the use of high-level knowledge

is required. Previous works described in sec. 3.1.1 have shown that language (in a

restricted sense) can be used to simplify ill-posed image problems like segmentation

and annotation. We showed here that the difficult problem of recognizing actions

involves high-level knowledge as well. This is because of the strong relationship

between the actions and the tools that were used to perform these actions. Instead

of learning from a huge amount of training image data on how tools correlate with

actions, we showed that it is possible to obtain such information directly from a

text corpus. Such a text corpus, although noisy, is much easier to obtain than an-

notated image data; and we showed that with the right EM formulation, the noisy
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predictions from PL provides us appreciable gains in recognition rates on unlabeled

video.

Figure 3.8: (a) Unsupervised recognition accuracy: no language (K-Means) ver-

sus language (EM). (b) Classification accuracy: no language versus language. All

reported results have variances within ±0.5%.

3.2 Language Guided Scene Understanding for Robots

What happens when you see a picture? The most natural thing would be to

describe it using words : using speech or text. This description of an image is the

output of an extremely complex process that involves: 1) perception in the Visual

space, 2) grounding to World Knowledge in the Language Space and 3) speech/text

production (see Fig. 3.10). Each of these components are challenging in their own

right and are still considered open problems in the vision and linguistics fields. In

this chapter, we introduce a computational framework that attempts to integrate

these components together. Our hypothesis is based on the assumption that nat-

ural images accurately reflect common everyday scenarios which are captured in
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Figure 3.9: Some predicted action and tools using EM. The wrong prediction (in

red and italicized) of the sprinkle action is due to a high co-occurrence with bowl

in PL(V |N).

Figure 3.10: The processes involved for describing a scene.

language. For example, knowing that boats usually occur over water will enable us

to constrain the possible scenes a boat can occur and exclude highly unlikely ones

– street, highway. It also enables us to predict likely actions (Verbs) given the
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current object detections in the image: detecting a dog with a person will likely

induce walk rather than swim, jump, fly. Key to our approach is the use of a

large generic corpus such as the English Gigaword [76] as the semantic grounding

to predict and correct the initial and often noisy visual detections of an image to

produce a reasonable sentence that succinctly describes the image.

Figure 3.11: Illustration of various perceptual challenges for sentence generation for

images. (a) Different images with semantically the same content. (b) Pose relates

ambiguously to actions in real images.

In order to get an idea of the difficulty of this task, it is important to first

define what makes up a description of an image. Based on our observations of

annotated image data (see Fig. 3.13), a descriptive sentence for an image must

contain at minimum: 1) the important objects (Nouns) that participate in the image,
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2) Some description of the actions (Verbs) associated with these objects, 3) the scene

where this image was taken and 4) the preposition that relates the objects to the

scene. That is, a quadruplet of T = {n, v, s, p} (Noun-Verb-Scene-Preposition) that

represents the core sentence structure. Generating a sentence from this quadruplet

is obviously a simplification from state of the art generation work, but as we will

show in the experimental results (sec. 3.2.4), it is sufficient to describe images.

The key challenge is that detecting objects, actions and scenes directly from images

is often noisy and unreliable. We illustrate this using example images from the

Pascal-Visual Object Classes (VOC) 2008 challenge [85]. First, Fig. 3.11(a) shows

the variability of images in their raw image representations: pixels, edges and local

features. This makes it difficult for state of the art object detectors [4,56] to reliably

detect important objects in the scene: boat, humans and water – average precision

scores reported in [4] manages around 42% for humans and only 11% for boat

over a dataset of almost 5000 images in 20 object categories. Yet, these images

are semantically similar in terms of their high level description. Second, cognitive

studies [86, 87] have proposed that inferring the action from static images (known

as an “implied action”) is often achieved by detecting the pose of humans in the

image: the position of the limbs with respect to one another, under the assumption

that a unique pose occurs for a unique action. Clearly, this assumption is weak as 1)

similar actions may be represented by different poses due to the inherent dynamic

nature of the action itself: e.g. walking a dog and 2) different actions may have

the same pose: e.g. walking a dog versus running (Fig. 3.11(b)). The missing

component here is whether the key object (dog) under interaction is considered.
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Recent works [88, 89] that used poses for recognition of actions achieved 70% and

61% accuracy respectively under extremely limited testing conditions with only 5-6

action classes each. Finally, state of the art scene detectors [5, 90] need to have

enough representative training examples of scenes from pre-defined scene classes for

a classification to be successful – with a reported average precision of 83.7% tested

over a dataset of 2600 images.

Addressing all these visual challenges is clearly a formidable task which is be-

yond the scope of this chapter. Our focus instead is to show that with the addition

of language to ground the noisy initial visual detections, we are able to improve the

quality of the generated sentence as a faithful description of the image. In partic-

ular, we show that it is possible to avoid predicting actions directly from images –

which is still unreliable – and to use the corpus instead to guide our predictions.

Our proposed strategy is also generic, that is, we make no prior assumptions on

the image domain considered. While other works (sec. 3.2.1) depend on strong

annotations between images and text to ground their predictions (and to remove

wrong sentences), we show that a large generic corpus is also able to provide the

same grounding over larger domains of images. It represents a relatively new style

of learning: distant supervision [91, 92]. Here, we do not require “labeled” data

containing images and captions but only separate data from each side. Another

contribution is a computationally feasible way via dynamic programming to deter-

mine the most likely quadruplet T ∗ = {n∗, v∗, s∗, p∗} that describes the image for

generating possible sentences.
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3.2.1 Related Work

Recently, several works from the Computer Vision domain have attempted

to use language to aid image scene understanding. [93] used predefined production

rules to describe actions in videos. [71] processed news captions to discover names

associated with faces in the images, and [72] extended this work to associate poses

detected from images with the verbs in the captions. Both approaches use annotated

examples from a limited news caption corpus to learn a joint image-text model

so that one can annotate new unknown images with textual information easily.

Neither of these works have been tested on complex everyday images where the

large variations of objects and poses makes it nearly impossible to learn a more

general model. In addition, no attempt was made to generate a descriptive sentence

from the learned model. The work of [94] attempts to “generate” sentences by first

learning from a set of human annotated examples, and producing the same sentence

if both images and sentence share common properties in terms of their triplets:

(Nouns-Verbs-Scenes). No attempt was made to generate novel sentences from

images beyond what has been annotated by humans. [95] has recently introduced a

framework for parsing images/videos to textual description that requires significant

annotated data, a requirement that our proposed approach avoids.

Natural language generation (NLG) is a long-standing problem. Classic ap-

proaches [96] are based on three steps: selection, planning and realization. A com-

mon challenge in generation problems is the question of: what is the input? Re-

cently, approaches for generation have focused on formal specification inputs, such
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as the output of theorem provers [97] or databases [98]. Most of the effort in those

approaches has focused on selection and realization. We address a tangential prob-

lem that has not received much attention in the generation literature: how to deal

with noisy inputs. In our case, the inputs themselves are often uncertain (due to

misrecognitions by object/scene detectors) and the content selection and realization

needs to take this uncertainty into account.

3.2.2 Our Approach

Our approach is summarized in Fig. 3.12. The input is a test image where

we detect objects and scenes using trained detection algorithms [4, 5]. To keep

the framework computationally tractable, we limit the elements of the quadruplet

(Nouns-Verbs-Scenes-Prepositions) to come from a finite set of objects N , actions

V , scenes S and prepositions P classes that are commonly encountered. They are

summarized in Table. 3.2. In addition, the sentence that is generated for each image

is limited to at most two objects occurring in a unique scene.

Figure 3.12: Overview of our approach. (a) Detect objects and scenes from input

image. (b) Estimate optimal sentence structure quadruplet T ∗. (c) Generating a

sentence from T ∗.
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Objects n ∈ N Actions v ∈ V Scenes s ∈ S Preps p ∈ P

’aeroplane’ ’bicycle’

’bird’ ’boat’ ’bottle’

’bus’ ’car’ ’cat’ ’chair’

’cow’ ’table’ ’dog’

’horse’, ’motorbike’

’person’ ’pottedplant’

’sheep’ ’sofa’ ’train’

’tvmonitor’

’sit’ ’stand’ ’park’

’ride’ ’hold’ ’wear’

’pose’ ’fly’ ’lie’

’lay’ ’smile’ ’live’

’walk’ ’graze’ ’drive’

’play’ ’eat’ ’cover’

’train’ ’close’ ...

’airport’

’field’

’highway’

’lake’

’room’ ’sky’

’street’

’track’

’in’ ’at’

’above’ ’around’

’behind’ ’below’

’beside’

’between’

’before’ ’to’

’under’ ’on’

Table 3.2: The set of objects, actions (first 20), scenes and preposition classes

considered

Denoting the current test image as I, the initial visual processing first de-

tects objects n ∈ N and scenes s ∈ S using these detectors to compute Pr(n|I)

and Pr(s|I), the probabilities that object n and scene s exist under I. From

the observation that an action can often be predicted by its key objects, Nk =

{n1, n2, · · · , ni}, ni ∈ N that participate in the action, we use a trained Language

model Lm to estimate Pr(v|Nk). Lm is also used to compute Pr(s|n, v), the pre-

dicted scene using the corpus given the object and verb; and Pr(p|s), the predicted

preposition given the scene. This process is repeated over all n, v, s, p where we

used a modified HMM inference scheme to determine the most likely quadruplet:

T ∗ = {n∗, v∗, s∗, p∗} that makes up the core sentence structure. Using the contents

and structure of T ∗, an appropriate sentence is then generated that describes the

image. In the following sections, we first introduce the image dataset used for testing

followed by details of how these components are derived.
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3.2.2.1 Image Dataset

Figure 3.13: Samples of images with corresponding annotations from the UIUC

scene description dataset.

We use the UIUC Pascal Sentence dataset, first introduced in [94] and available

on-line4. It contains 1000 images taken from a subset of the Pascal-VOC 2008

challenge image dataset and are hand annotated with sentences that describe the

image by paid human annotators using Amazon Mechanical Turk. Fig. 3.13 shows

some sample images with their annotations. There are 5 annotations per image, and

each annotation is usually short – around 10 words long. We randomly selected 900

images (4500 sentences) as the learning corpus to construct the verb and scene sets,

{V ,S} as described in sec. 3.2.3.1, and kept the remaining 100 images for testing

4http://vision.cs.uiuc.edu/pascal-sentences/

66



and evaluation.

3.2.3 Object and Scene Detections from Images

(a) (b)

Figure 3.14: (a) [Top] The part based object detector from [4]. [Bottom] The

graphical model representation of an object, for e.g. a bike. (b) Examples of GIST

gradients: (left) an outdoor scene vs (right) an indoor scene [5].

We use the Pascal-VOC 2008 trained object detectors [99] of 20 common ev-

eryday object classes that are defined in N . Each of the detectors are essentially

SVM classifiers trained on a large number of the objects’ image representations from

a large variety of sources. Although 20 classes may seem small, their existence in

many natural images (e.g. humans, cars and plants) makes them particularly im-

portant for our task, since humans tend to describe these common objects as well.

As object representations, the part-based descriptor of [4] is used. This representa-

tion decomposes any object, e.g. a cow, into its constituent parts: head, torso, legs,

which are shared by other objects in a hierarchical manner. At each level, image

gradient orientations are computed. The relationship between each parts is modeled
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probabilistically using graphical models where parts are the nodes and the edges are

the conditional probabilities that relate their spatial compatibility (Fig. 3.14(a)).

For example, in a cow, the probability of finding the torso near the head is higher

than finding the legs near the head. This model’s intuition lies in the assumption

that objects can be deformed but the relative position of each constituent parts

should remain the same. We convert the object detection scores to probabilities

using Platt’s method [100] which is numerically more stable to obtain Pr(n|I). The

parameters of Platt’s method are obtained by estimating the number of positives

and negatives from the UIUC annotated dataset, from which we determine the

appropriate probabilistic threshold, which gives us approximately 50% recall and

precision.

For detecting scenes defined in S, we use the GIST-based scene descriptor

of [5]. GIST computes the windowed 2D Gabor filter responses of an input image.

The responses of Gabor filters (4 scales and 6 orientations) encode the texture gradi-

ents that describe the local properties of the image. Averaging out these responses

over larger spatial regions gives us a set of global image properties. These high

dimensional responses are then reprojected to a low dimensional space via PCA,

where the number of principal components are obtained empirically from training

scenes. This representation forms the GIST descriptor of an image (Fig. 3.14(b))

which is used to train a set of SVM classifiers for each scene class in S. Again,

Pr(s|I) is computed from the SVM scores using [100]. The set of common scenes

defined in S is learned from the UIUC annotated data (sec. 3.2.3.1).
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3.2.3.1 Corpus-Guided Predictions

Figure 3.15: (a) Selecting the ROOT verb from the dependency parse ride reveals

its subject woman and direct object bicycle. (b) Selecting the head noun (PMOD)

as the scene street reveals ADV as the preposition on

Predicting Verbs: The key component of our approach is the trained lan-

guage model Lm that predicts the most likely verb v, associated with the objects

Nk detected in the image. Since it is possible that different verbs may be associated

with varying number of object arguments, we limit ourselves to verbs that take on

at most two objects (or more specifically two noun phrase arguments) as a simpli-

fying assumption: Nk = {n1, n2} where n2 can be NULL. That is, n1 and n2 are

the subject and direct objects associated with v ∈ V . Using this assumption, we

can construct the set of verbs, V . To do this, we use human labeled descriptions of

the training images from the UIUC Pascal-VOC dataset (sec. 3.2.2.1) as a learning

corpus that allows us to determine the appropriate target verb set that is amenable

to our problem. We first apply the CLEAR parser [101] to obtain a dependency

parse of these annotations, which also performs stemming of all the verbs and nouns

in the sentence. Next, we process all the parses to select verbs which are marked

as ROOT and check the existence of a subject (DEP) and direct object (PMOD,

69



OBJ) that are linked to the ROOT verb (see Fig. 3.15(a)). Finally, after removing

common “stop” verbs such as {is, are, be} we rank these verbs in terms of their

occurrences and select the top 50 verbs which accounts for 87.5% of the sentences

in the UIUC dataset to be in V .

Object class n ∈ N Synonyms, 〈n〉

bus autobus charabanc double-decker

jitney motorbus motorcoach

omnibus passenger-vehicle

schoolbus trolleybus streetcar

...

chair highchair chaise daybed throne

rocker armchair wheelchair seat

ladder-back lawn-chair fauteuil

...

bicycle bike wheel cycle velocipede

tandem mountain-bike ...

Table 3.3: Samples of synonyms for 3 object classes.

Next, we need to explain how n1 and n2 are selected from the 20 object classes

defined previously in N . Just as the 20 object classes are defined visually over

several different kinds of specific objects, we expand n1 and n2 in their textual

descriptions using synonyms. For example, the object class n1=aeroplane should

include the synonyms {plane, jet, fighter jet, aircraft}, denoted as 〈n1〉.

To do this, we expand each object class using their corresponding WordNet synsets

up to at most three hyponymns levels. Example synonyms for some of the classes

are summarized in Table 3.3.

We can now compute from the Gigaword corpus [76] the probability that a
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verb exists given the detected nouns, Pr(v|n1, n2). We do this by computing the log-

likelihood ratio [102] , λnvn, of trigrams (〈n1〉 , v, 〈n2〉), computed from each sentence

in the English Gigaword corpus [76]. This is done by extracting only the words in

the corpus that are defined in N and V (including their synonyms). This forms a

reduced corpus sequence from which we obtain our target trigrams. For example,

the sentence:

the large brown dog chases a small young cat around the messy room, forcing the cat to run away

towards its owner.

will be reduced to the stemmed sequence dog chase cat cat run owner5 from

which we obtain the target trigram relationships: {dog chase cat}, {cat run

owner} as these trigrams respect the (n1, v, n2) ordering. The log-likelihood ra-

tios, λnvn, computed for all possible (〈n1〉 , v, 〈n2〉) are then normalized to obtain

Pr(v|n1, n2). An example of ranked λnvn in Fig. 3.16(a) shows that λnvn predicts v

that makes sense: with the most likely predictions near the top of the list.

Predicting Scenes: Just as an action is strongly related to the objects that

participate in it, a scene can be predicted from the objects and verbs that occur in

the image. For example, detecting Nk={boat, person} with v={row} would have

predicted the scene s={coast}, since boats usually occur in water regions. To learn

this relationship from the corpus, we use the UIUC dataset to discover what are the

common scenes that should be included in S. We applied the CLEAR dependency

parse [101] on the UIUC data and extracted all the head nouns (PMOD) in the

PP phrases for this purpose and excluded those nouns with prepositions (marked

5stemming is done using [101]
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as ADV) such as {with, of} which do not co-occur with scenes in general (see

Fig. 3.15(b)). We then ranked the remaining scenes in terms of their frequency to

select the top 8 scenes used in S.

To improve recall and generalization, we expand each of the 8 scene classes

using their WordNet synsets 〈s〉 (up to a max of three hyponymns levels). Similar to

the procedure of predicting the verbs described above, we compute the log-likelihood

ratio of ordered bigrams, {n, 〈s〉} and {v, 〈s〉}: λns and λvs, by reducing the corpus

sentence to the target nouns, verbs and scenes defined in N ,V and S. The probabil-

ities Pr(s|n) and Pr(v|n) are then obtained by normalizing λns and λvs. Under the

assumption that the priors Pr(n) and Pr(v) are independent and applying Bayes

rule, we can compute the probability that a scene co-occurs with the object and

action, Pr(s|n, v) by:

Pr(s|n, v) =
Pr(n, v|s)Pr(s)

Pr(n, v)

=
Pr(n|s)Pr(v|s)Pr(s)

Pr(n)Pr(v)

∝ Pr(s|n)× Pr(s|v) (3.18)

where the constant of proportionality is justified under the assumption that Pr(s)

is equiprobable for all s. (3.18) is computed for all nouns in Nk. As shown in

Fig. 3.16(b), we are able to predict scenes that co-locate with reasonable correctness

given the nouns and verbs.

Predicting Prepositions: It is straightforward to predict the appropriate

prepositions associated with a given scene. When we construct S from the UIUC

annotated data, we simply collect and rank all the associated prepositions (ADV)
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in the PP phrase of the dependency parses. We then select the top 12 prepositions

used to define P . Using P , we then compute the log-likelihood ratio of ordered

bigrams, {p, 〈s〉} for prepositions that co-locate with the scene synonyms over the

corpus. Normalizing λps yields Pr(p|s), the probability that a preposition co-locates

with a scene. Examples of ranked λps are shown in Fig. 3.16(c). Again, we see that

reasonable predictions of p can be found.

Figure 3.16: Example of how ranked log-likelihood values (in descending order)

suggest a possible T : (a) λnvn for n1 = person, n2 = bus predicts v = ride. (b)

λns and λvs for n = bus, v = ride then jointly predicts s = street and finally (c)

λps with s = street predicts p = on.

3.2.3.2 Determining T ∗ using HMM inference

Given the computed conditional probabilities: Pr(n|I) and Pr(s|I) which are

observations from an input test image with the parameters of the trained language

model, Lm: Pr(v|n1, n2), Pr(s|n, v), Pr(p|s), we seek to find the most likely sentence
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structure T ∗ by:

T ∗ = arg max
n,v,s,p

Pr(T |n, v, s, p)

= arg max
n,v,s,p

{Pr(n1|I)Pr(n2|I)Pr(s|I)×

Pr(v|n1, n2)Pr(s|n, v)Pr(p|s)} (3.19)

where the last equality holds by assuming independence between the visual detec-

tions and corpus predictions. Obviously a brute force approach to try all possible

combinations to maximize eq. (3.19) will not be feasible due to the large number of

possible combinations: (20 ∗ 21 ∗ 8) ∗ (50 ∗ 20 ∗ 20) ∗ (8 ∗ 20 ∗ 50) ∗ (12 ∗ 8) ≈ 5× 1013.

A better solution is needed.

Figure 3.17: The HMM used for optimizing T . The relevant transition and emission

probabilities are also shown. See text for more details.

Our proposed strategy is to pose the optimization of T as a dynamic program-

ming problem, akin to a Hidden Markov Model (HMM) where the hidden states are
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related to the (simplified) sentence structure we seek: T = {n1, n2, s, v, p}, and the

emissions are related to the observed detections: {n1, n2, s} in the image if they ex-

ist. To simplify our notations, as we are concerned with object pairs we will write NN

as the hidden states for all n1, n2 pairs and nn as the corresponding emissions (detec-

tions); and all object+verb pairs as hidden states NV. The hidden states are therefore

denoted as: {NN, NV, S, P} with values taken from their respective word classes from

Table 3.2. The emission states are {nn, s} with binary values: 1 if the detections

occur or 0 otherwise. The full HMM is summarized in Fig. 3.17. The rationale for

using a HMM is that we can reuse all previous computation of the probabilities at

each level to compute the required probabilities at the current level. From START,

we assume all object pair detections are equiprobable: Pr(NN|START) = 1
|N |∗(|N |+1)

where we have added an additional NULL value for objects (at most 1). At each

NN, the HMM emits a detection from the image and by independence we have:

Pr(nn|NN) = Pr(n1|I)Pr(n2|I). After NN, the HMM transits to the corresponding

verb at state NV with Pr(NV|NN) = Pr(v|n1, n2) obtained from the corpus statistic6.

As no action detections are performed on the image, NV has no emissions. The

HMM then transits from NV to S with Pr(S|NV) = Pr(s|n, v) computed from the cor-

pus which emits the scene detection score from the image: Pr(s|S) = Pr(s|I). From

S, the HMM transits to P with Pr(P|S) = Pr(p|s) before reaching the END state.

Comparing the HMM with eq. (3.19), one can see that all the corpus and

detection probabilities are accounted for in the transition and emission probabilities

respectively. Optimizing T is then equivalent to finding the best (most likely) path

6each verb, v, in NV will have 2 entries with the same value, one for each noun.
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through the HMM given the image observations using the Viterbi algorithm which

can be done in O(105) time which is significantly faster than the naive approach.

We show in Fig. 3.18 (right-upper) examples of the top viterbi paths that produce

T ∗ for four test images7.

Figure 3.18: Four test images (left) and results. (Right-upper): Sentence structure

T ∗ predicted using Viterbi and (Right-lower): Generated sentences. Words marked

in red are considered to be incorrect predictions.

Note that the proposed HMM is suitable for generating sentences that contain

the core components defined in T which produces a sentence of the form NP-VP-PP,

which we will show in sec. 3.2.4 is sufficient for the task of generating sentences

for describing images. For more complex sentences with more components: such as

adjectives or adverbs, the HMM can be easily extended with similar computations

derived from the corpus.

7Complete results are available at http://www.umiacs.umd.edu/~yzyang/sentence_

generateOut.html
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3.2.3.3 Sentence Generation

Given the selected sentence structure T = {n1, n2, v, s, p}, we generate sen-

tences using the following strategy for each component:

1) We add in appropriate determiners and cardinals: the, an, a, CARD,

based on the content of n1,n2 and s. For e.g., if n1 = n2, we will use CARD=two,

and modify the nouns to be in the plural form. When several possible choices are

available, a random choice is made that depends on the object detection scores:

the is preferred when we are confident of the detections while an, a is preferred

otherwise.

2) We predict the most likely preposition inserted between the verbs and nouns

learned from the Gigaword corpus via Pr(p|v, n) during sentence generation. For

example, our method will pick the preposition at between verb sit and noun table.

3) The verb v is converted to a form that agrees with in number with the

nouns detected. The present gerund form is preferred such as eating, drinking,

walking as it conveys that an action is being performed in the image.

4) The sentence structure is therefore of the form: NP-VP-PP with variations

when only one object or multiple detections of the same objects are detected. A

special case is when no objects are detected (below the predefined threshold). No

verbs can be predicted as well. In this case, we simply generate a sentence that

describes the scene only: for e.g. This is a coast, This is a field. Such

sentences account for 20% of the entire UIUC testing dataset which are scored lower

in our evaluation metrics (sec. 3.2.4.1) since they do not fully describe the image
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content in terms of the objects and actions.

Some examples of sentences generated using this strategy are shown in Fig. 3.18.

3.2.4 Experiments

We performed several experiments to evaluate our proposed approach. The

different metrics used for evaluation and comparison are also presented, followed by

a discussion of the experimental results.

3.2.4.1 Sentence Generation Results

Three experiments are performed to evaluate the effectiveness of our approach.

As a baseline, we simply generated T ∗ directly from images without using the cor-

pus. There are two variants of this baseline where we seek to determine if listing

all objects in the image is crucial for scene description. Tb1 is a baseline that uses

all possible objects and scene detected: Tb1 = {n1, n2, · · · , nm, s} and our sentence

will be of the form: {Object 1, object 2 and object 3 are IN the scene.} and

we simply selected IN as the only admissible preposition. For the second baseline,

Tb2, we limit the number of objects to just any two: Tb2 = {n1, n2, s} and the sen-

tence generated will be of the form {Object 1 and object 2 are IN the scene}. In

the second experiment, we applied the HMM strategy described above but made all

transition probabilities equiprobable, removing the effects of the corpus, and produc-

ing a sentence structure which we denote as T ∗eq. The third experiment produces the

full T ∗ with transition probabilities learned from the corpus. All experiments were
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performed on the 100 unseen testing images from the UIUC dataset and we used

only the most likely (top) sentence generated for all evaluation.

We use two evaluation metrics as a measure of the accuracy of the generated

sentences: 1) ROUGE-1 [103] precision scores and 2) Relevance and Readability

of the generated sentences. ROUGE-1 is a recall based metric that is commonly

used to measure the effectiveness of text summarization. In this work, the short

descriptive sentence of an image can be viewed as summarizing the image content

and ROUGE-1 is able to capture how well this sentence can describe the image

by comparing it with the human annotated ground truth of the UIUC dataset.

Due to the short sentences generated, we did not consider other ROUGE metrics

(ROUGE-2, ROUGE-SU4) which captures fluency and is not an issue here.

Experiment R1,(length) Relevance Readability

Baseline 1, T ∗
b1 0.35,(8.2) 2.84± 1.40 3.64± 1.20

Baseline 2, T ∗
b2 0.39,(6.8) 2.14± 1.13 3.94± 0.91

HMM no corpus, T ∗
eq 0.42,(6.5) 2.44± 1.25 3.88± 1.18

Full HMM, T ∗ 0.44,(6.9) 2.51± 1.30 4.10± 1.03

Human Annotation 0.68,(10.1) 4.91± 0.29 4.77± 0.42

Table 3.4: Sentence generation evaluation results with human gold standard. Human

R1 scores are averaged over the 5 sentences using a leave one out procedure. Values

in bold are the top scores.

A main shortcoming of using ROUGE-1 is that the generated sentences are

compared only to a finite set of human labeled ground truth which obviously does

not capture all possible sentences that one can generate. In other words, ROUGE-1
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does not take into account the fact that sentence generation is innately a creative

process, and a better recall metric will be to ask humans to judge these sentences.

The second evaluation metric: Relevance and Readability is therefore proposed as

an empirical measure of how much the sentence: 1) conveys the image content

(relevance) in terms of the objects, actions and scene predicted and 2) is grammat-

ically correct (readability). We engaged the services of Amazon Mechanical Turks

(AMT) to judge the generated sentences based on a discrete scale ranging from 1–5

(low relevance/readability to high relevance/readability). The averaged results of

ROUGE-1, R1 and mean length of the sentences with the Relevance+Readability

scores for all experiments are summarized in Table 3.4. For comparison, we also

asked the AMTs to judge the ground truth sentences as well.

3.2.4.2 Discussion

The results reported in Table 3.4 reveals both the strengths and some short-

comings of the approach which we will briefly discuss here. Firstly, the R1 scores

indicate that based on a purely summarization (unigram-overlap) point of view, the

proposed approach of using the HMM to predict T ∗ achieves the best results com-

pared to all other approaches with R1 = 0.44. This means that our sentences are the

closest in agreement with the human annotated ground truth, correctly predicting

the sentence structure components. In addition sentences generated by T ∗ are also

succinct: with an average length of 6.9 words per sentence. However, we are still

some way off the human gold standard since we do not predict other parts-of-speech
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such as adjectives and adverbs. Given this fact, our proposed approach performance

is comparable to other state of the art summarization work in the literature [104].

Next, we consider the Relevance+Readability metrics based on human judges.

Interestingly, the first baseline, T ∗b1 is considered the most relevant description of

the image and the least readable at the same time. This is most likely due to the

fact that this recall oriented strategy will almost certainly describe some objects but

the lack of any verb description; and longer sentences that average 8.2 words per

sentence, makes it less readable. It is also possible that humans tend to penalize less

irrelevant objects compared to missing objects, and further evaluations are necessary

to confirm this. Since T ∗b2 is limited to two objects just like the proposed HMM, it

is a more suitable baseline for comparison. Clearly, the results show that adding

the HMM to predict the optimal sentence structure increases the relevance of the

produced sentence. Finally, in terms of readability, T ∗ generates the most readable

sentences, and this is achieved by leveraging on the corpus to guide our predictions

of the most reasonable nouns, verbs, scenes and prepositions that agree with the

detections in the image.

81



Chapter 4: “Can’t Make an Omelette without Breaking Eggs”: De-

tection of Manipulation Action Consequences

4.1 Introduction

Visual recognition is the process through which intelligent agents associate

a visual observation to a concept from their memory. In most cases, the concept

either corresponds to a term in natural language, or an explicit definition in natural

language. Most research in Computer Vision has focused on two concepts: objects

and actions; humans, faces and scenes can be regarded as special cases of objects.

Object and action recognition are indeed crucial since they are the fundamental

building blocks for an intelligent agent to semantically understand its observations.

When it comes to understanding actions of manipulation, the movement of the

body (especially the hands) is not a very good characteristic feature. There is great

variability in the way humans carry out such actions. It has been realized that such

actions are better described by involving a number of quantities. Besides the motion

trajectories, the objects involved, the hand pose, and the spatial relations between

the body and the objects under influence, provide information about the action. In

this work we want to bring attention to another concept, the action consequence.
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It describes the transformation of the object during the manipulation. For example

during a CUT or a SPLIT action an object is divided into segments, during a GLUE

or a MERGE action two objects are combined into one, etc.

The recognition and understanding of human manipulation actions recently

has attracted the attention of Computer Vision and Robotics researchers because

of their critical role in human behavior analysis. Moreover, they naturally relate

to both, the movement involved in the action and the objects. However, so far

researchers have not considered that the most crucial cue in describing manipulation

actions is actually not the movement nor the specific object under influence, but

the object centric action consequence. We can come up with examples, where two

actions involve the same tool and same object under influence, and the motions

of the hands are similar, for example in “cutting a piece of meat” vs. “poking a

hole into the meat”. Their consequences are different. In such cases, the action

consequence is the key in differentiating the actions. Thus, to fully understand

manipulation actions, the intelligent system should be able to determine the object

centric consequences.

Few researchers have addressed the problem of action consequences due to

the difficulties involved. The main challenge comes from the monitoring process,

which calls for the ability to continuously check the topological and appearance

changes of the object-under-manipulation. Previous studies of visual tracking have

considered challenging situations, such as non-rigid objects [3], adaptive appearance

model [105], and tracking of multiple objects with occlusions [106], but none can

deal with the difficulties involved in detecting the possible changes on objects during
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manipulation. In this chapter, for the first time, a system is implemented to conquer

these difficulties and eventually achieve robust action consequence detection.

4.2 Why Consequences and Fundamental Types

Recognizing human actions has been an active research area in Computer

Vision [107]. Several excellent surveys on the topic of visual recognition are available

( [108], [109]). Most work on visual action analysis has been devoted to the study

of movement and change of posture, such as walking, running etc. The dominant

approaches to the recognition of single actions compute as descriptors statistics of

spatio-temporal interest points ( [110], [111]) and flow in video volumes, or represent

short actions by stacks of silhouettes ( [112], [113]). Approaches to more complex,

longer actions employ parametric approaches, such as Hidden Markov Models [114],

Linear Dynamical Systems [115] or Non-linear Dynamical Systems [116], which are

defined on extracted features. There are a few recent studies on human manipulation

actions ( [117], [11], [118]), but they do not consider action consequences for the

interpretation of manipulation actions. Works like [119] emphasize the role of object

perception in action or pose recognition, but they focus on object labels, not object-

centric consequences.

How do humans understand, recognize, and even replicate manipulation ac-

tions? Psychological studies on human manners ( [120] etc.) have pointed out the

importance of manipulation action consequences for both understanding human cog-

nition and intelligent system research. Actions, by their very nature, are goal
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oriented. When we perform an action, we always have a goal in mind, and the

goal affects the action. Similarly, when we try to recognize an action, we also keep a

goal in mind. The close relation between the movement during the action and goal

is reflected also in language. For example, the word “CUT” denotes both the action

in which hands move up and down or in and out with sharp bladed tools, and the

consequence of the action, namely that the object is separated. Very often, we can

recognize an action purely by the goal satisfaction, and even neglect the motion or

the tools used. For example, we may observe a human carry out movement with a

knife, that is ”up and down”, but if the object remains as one whole, we won’t draw

the conclusion that a “CUT” action has been performed. Only when the goal of

the recognition process, here “DIVIDE”, is detected, the goal satisfaction is reached

and a “CUT” action is confirmed. An intelligent system should have the ability

to detect the consequences of manipulation actions, in order to check the goal of

actions.

In addition, experiments conducted in neuronscience [9] show that a monkey’s

mirror neuron system fires when a hand/object interaction is observed, and it will

not fire when a similar movement is observed without hand/object interaction. Re-

cent experiments [10] further showed that the mirror neuron regions responding to

the sight of actions responded more during the observation of goal-directed actions

than similar movements not directed at goals. These evidences support the idea of

goal matching, as well as the crucial role of action consequence in the understanding

of manipulation actions.

Taking an object-centric point of view, manipulation actions can be classified

85



into six categories according how the object is transformed during the manipulation,

or in other words what consequence the action has on the object. These categories

are: DIVIDE, ASSEMBLE, CREATE, CONSUME, TRANSFER, and DEFORM.

Each of these categories is denoted by a term that has a clear semantic meaning in

natural language given as follows:

• DIVIDE: one object breaks into two objects, or two attached objects break

the attachment;

• ASSEMBLE: two objects merge into one object, or two objects build an at-

tachment between them;

• CREATE: an object is brought to, or emerges in the visual space;

• CONSUME: an object disappears from the visual space;

• TRANSFER: an object is moved from one location to another location;

• DEFORM: an object has an appearance change.

To describe these action categories we need a formalism. We use the visual

semantic graph (VSG) inspired from the work of Aksoy et. al [14]. This formalism

takes as input computed object segments, their spatial relationship, and temporal

relationship over consecutive frames. To provide the symbols for the VSG, an active

monitoring process (discussed in sec. 4.4) is required for the purpose of (1) track-

ing the object to obtain temporal correspondence, and (2) segmenting the object

to obtain its topological structure and appearance model. This active monitoring
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(consisting of segmentation and tracking) is related to studies on active segmenta-

tion [121], and stochastic tracking ( [122] etc.).

4.3 Visual Semantic Graph (VSG)

To define object-centric action consequences, a graph representation is used.

Every frame in the video is described by a Visual Semantic Graph (VSG), which is

represented by an undirected graph G(V,E, P ). The vertex set |V | represents the set

of semantically meaningful segments, the edge set |E| represents the spatial relations

between any of the two segments. Two segments are connected when they share

parts of their borders, or when one of the segments is contained in the other. If two

nodes v1, v2 ∈ V are connected, E(v1, v2) = 1, otherwise, E(v1, v2) = 0. In addition,

every node v ∈ V is associated with a set of properties P (v), that describes the

attributes of the segment. This set of properties provides additional information to

discriminate the different categories, and in principle many properties are possible.

Here we use location, shape, and color.

We need to compute the changes of the object over time. In our formulation

this is expressed as the change in the VSG. At any time instance t, we consider two

consecutive VSGs, the VSG at time t−1, denoted as Ga(Va, Ea, Pa) and the VSG at

time t, denoted as Gz(Vz, Ez, Pz). We then define the following four consequences,

where → is used to denote the temporal correspondence between two vertices, 9 is

used to denote no correspondence:

• DIVIDE: {∃v1 ∈ Va; v2, v3 ∈ Vz|v1 → v2, v1 → v3)} or {∃v1, v2 ∈ Va; v3, v4 ∈
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Vz|Ea(v1, v2) = 1, Ez(v3, v4) = 0, v1 → v3, v2 → v4} Condition (1)

• ASSEMBLE: {∃v1, v2 ∈ Va; v3 ∈ Vz|v1 → v3, v2 → v3} or {∃v1, v2 ∈ Va; v3, v4 ∈

Vz|Ea(v1, v2) = 0, Ez(v3, v4) = 1, v1 → v3, v2 → v4} Condition (2)

• CREATE:{∀v ∈ Va;∃v1 ∈ Vz|v 9 v1} Condition (3)

• CONSUME:{∀v ∈ Vz;∃v1 ∈ Va|v 9 v1} Condition(4)

While the above actions can be defined purely on the basis of topological changes,

there are no such changes for TRANSFER and DEFORM. Therefore, we have to

define them through changes in property. In the following definitions, PL represents

properties of location, and P S represents properties of appearance (shape, color,

etc.).

• TRANSFER:{∃v1 ∈ Va; v2 ∈ Vz|PL
a (v1) 6= PL

z (v2)} Condition (5)

• DEFORM: {∃v1 ∈ Va; v2 ∈ Vz|P S
a (v1) 6= P S

z (v2)} Condition (6)

Figure 4.1: Graphical illustration of the changes for Condition (1-6).

A graphical illustration for Condition (1-6) is shown in Fig. 4.1. Sec. 4.4

describes how we find the primitives used in the graph. A new active segmentation

and tracking method is introduced to 1) find correspondences (→) between Va and

Vz; 2) monitor location property PL and appearance property P S in the VSG.
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The procedure for computing action consequences, first decides on whether

there is a topological change between Ga and Gz. If yes, the system checks whether

Condition (1) to Condition (4) are fulfilled and returns the corresponding con-

sequence. If no, the system then checks whether Condition (5) or Condition (6)

is fulfilled. If both of them are not met, no consequence is detected.

4.4 Active Segmentation and Tracking

Previously, researchers have treated segmentation and tracking as two differ-

ent problems. Here we propose a new method combining the two tasks to obtain the

information necessary to monitor the objects under influence. Our methods com-

bines stochastic tracking [122] with a fixation based active segmentation [121]. The

tracking module provides a number of tracked points. The locations of these points

are used to define an area of interest and a fixation point for the segmentation, and

the color in their immediate surroundings are used in the data term of the segmen-

tation module. The segmentation module segments the object, and based on the

segmentation, updates the appearance model for the tracker. Fig 4.2 illustrates the

method over time, which is a dynamically closed-loop process. We next describe the

attention based segmentation (sec. 4.4.1 - 4.4.4), and then the segmentation guided

tracking (sec. 4.4.5).

The proposed method meets two challenging requirements, necessary to detect

action consequences: 1) the system is able to track and segment objects when the

shape or color (appearance) changes; 2) the system is also able to track and segment
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Figure 4.2: Flow chart of the proposed active segmentation and tracking method

for object monitoring.

objects when they are divided into pieces. Experiments in sec. 4.5.1 show that our

method can handle these requirements, while systems implementing independently

tracking and segmentation cannot.

4.4.1 The Attention Field

The idea underlying our approach is, that first a process of visual attention se-

lects an area of interest. Segmentation then is considered the process that separates

the area selected by visual attention from background by finding closed contours

that best separate the regions. The minimization uses a color model for the data

term and edges in the regularization term. To achieve a minimization that is very

robust to the length of the boundary, edges are weighted with their distance from

the fixation center.
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Visual attention, the process of driving an agent’s attention to a certain area,

is based on both bottom-up processes defined on low level visual features, and top-

down processes influenced by the agent’s previous experience [123]. Inspired by

the work of Yang et al. [124], instead of using a single fixation point in the active

segmentation [121], here we use a weighted sample set S = {(s(n), π(n))|n = 1 . . . N}

to represent the attention field around the fixation point (N = 500 in practice). Each

sample consists of an element s from the set of tracked points and a corresponding

discrete weight π where
∑N

n=1 π
(n) = 1.

Generally, any appearance model can be used to represent the local visual

information around each point. We choose to use a color histogram with a dynamic

sampling area defined by an ellipse. To compute the color distribution, every point

is represented by an ellipse, s = {x, y, ẋ, ẏ, Hx, Hy, Ḣx, Ḣy, } where x and y denote

the location, ẋ and ẏ the motion, Hx, Hy the length of the half axes, and Ḣx, Ḣy

the changes in the axes.

4.4.2 Color Distribution Model

To make the color model invariant to various textures or patterns, a color

distribution model is used. A function h(xi) is defined to create a color histogram,

which assigns one of the m-bins to a giving color at location xi. To make the

algorithm less sensitive to lighting conditions, the HSV color space is used with less

sensitivity in the V channel (8× 8× 4 bins). The color distribution for each fixation
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point s(n) is computed as:

p(s(n))(u) = γ

I∑
i=1

k(||y − xi||)δ[h(xi)− u], (4.1)

where u = 1 . . .m, δ(.) is the Kronecker delta function, and γ is the normalization

term γ = 1∑I
i=1 k(||y−xi||)

. k(.) is a weighting function designed from the intuition that

not all pixels in the sampling region are equally important for describing the color

model. Specifically, pixels that are farther away from the point are assigned smaller

weights, k(r) =


1− r2 if r < a

0 otherwise

, where the parameter a is used to adapt the

size of the region, and r is the distance from the fixation point. By applying the

weighting function, we increase the robustness of the color distribution by weakening

the influence from boundary pixels, which possibly belong to the background or are

occluded.

4.4.3 Weights of the Tracked Point Set

In the following weighted graph cut approach, every sample is weighted by

comparing its color distribution with the one of the fixation point. Initially a fixation

point is selected, later the fixation point is computed as the center of the tracked

point set. Let’s call the distribution at the fixation point q, and the histogram of

the nth tracked point, p(s(n)). In assigning weights π(n) to the tracked points we

want to favor points whose color distribution is similar to the fixation point. We use

the Bhattacharyya coefficient ρ[p, q] =
∑m

u=1

√
p(u)q(u) with m the number of bins

to weigh points by a Gaussian with variance σ (σ = 0.2 in practice) and define π(n)
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as:

π(n) =
1√
2πσ

e−
d2

2σ2 =
1√
2πσ

e−
1−ρ[p(s(n)),q]

2σ2 . (4.2)

4.4.4 Weighted Graph Cut

The segmentation is formulated as a minimization that is solved using graph

cut. The unary terms are defined on the tracked points on the basis of their color,

and the binary terms are defined on all points on the basis of edge information. To

obtain the edge information, in each frame, we compute a probabilistic edge map

IE using the Canny edge detector. Consider every pixel x ∈ X in this edge map as

a node in a graph. Denoting the set of all the edges connecting neighboring nodes

in the graph as Ω, and using the label set l = 0, 1 to indicate whether a pixel x is

“inside” (lx = 0) or “outside” (lx = 1), we need to find a labeling f(X) 7−→ l , that

minimizes the energy function:

Q(f) =
∑
x∈X

Ux(lx) + λ
∑

(x,y)∈Ω

Vx,yδ(lx, ly). (4.3)

Vx,y is the cost of assigning different labels to neighboring pixels x and y,

which we defines as Vx,y = e−ηIE,xy + k, with δ(lx, ly) =


1 if lx 6= ly

0 otherwise

, λ =

1, η = 1000, k = 10−16, IE,xy = (IE(x)/Rx + IE(y)/Ry)/2, Rx, Ry are the euclidean

distances between the x, y and the center of the tracked point set St. We use them

as weights to make the segmentation robust to the length of the contours.

Ux(lx) is the cost of assigning label lx to pixel x. In our system, we have a set of

points St, and for each sample s(n), there is a weight π(n). The weight itself indicates
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the likelihood that the area around that fixation point belongs to the “inside” of the

object. It becomes straightforward to assign weights π(n) to the pixel s(n), which are

tracked points as follows: Ux(lx) =


Nπ(n) if lx = 1

0 otherwise

. We assume that pixels

on the boundary of a frame are “outside” of the object, and assign to them a large

weight W = 1010: Ux(lx) =


W if lx = 0

0 otherwise

. Using this formulation, we run a

graph cut algorithm [125] on each frame. Fig. 4.3(a) illustrates the procedure on a

texture-rich natural image from the Berkeley segmentation dataset [126].

(a)

(b)

Figure 4.3: Upper: (1) Sampling of tracked points sampling and filtering; (2)

Weighted graph cut. Lower: Segmentation with different initial fixations. Green

Cross: initial fixation.

Two critical limitations of the previous active segmentation method [121] in

practice are: 1) the segmentation performance largely varies under different initial

fixation points; 2) the segmentation performance also is strongly affected by texture
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edges, which often leads to a segmentation of object parts. Fig. 4.3(b) shows that

our proposed segmentation method is robust to the choice of initial fixation point,

and only weakly affected by texture edges.

4.4.5 Active Tracking

At the very beginning of the monitoring process, a Gaussian sampling with

mean at the initial fixation point and variances σx, σy is used to generate the initial

point set S0. When a new frame comes in, the point set is propagated through a

stochastic tracking paradigm:

st = Ast−1 + wt−1, (4.4)

where A denotes the deterministic, and wt−1 the stochastic component. In our

implementation, we have considered a first order model for A, which assumes that

the object is moving with constant velocity. The reader is referred to [127] for

details. The complete algorithm is given in Algorithm 1

4.4.6 Incorporating Depth and Optical Flow

It is easy to extend our algorithm to incorporate depth (for example from

Kinect) or image motion flow information. Depth information can be used in a

straightforward way during two crucial steps. 1) As described in sec. 4.4.2, we

can add in depth information as another channel in the distribution model. In

preliminary experiments we used 8 bins for the depth, to obtain in RGBD space a

model with 8× 8× 4× 8 bins. 2) Depth can be used to achieve cleaner edge maps,
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Algorithm 1 Active tracking and segmentation

Require: Given the tracked point set St−1 and the target model qt−1, perform the

following steps:

1. SELECT N samples from the set St−1 with probability π
(n)
t−1. Fixation points

with a high weight may be chosen several times, leading to identical copies, while

others with relatively low weights may not be chosen at all. Denote the resulting

set as S ′t−1;

2. PROPAGATE each sample from S ′t−1 by a linear stochastic differential

eq. 4.4. Denote the new set as St

3. OBSERVE the color distributions for each sample of St using eq. 4.1. Weigh

each sample using eq. 4.2.

4. SEGMENTATION using the weighted sample set. Apply the weighted

graph cut algorithm described in sec. 4.4.4. and get the segmented object area

M .

5. UPDATE the target distribution qt−1 by the area M to achieve the new target

distribution qt.
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IE, in the segmentation step 4.4.4.

Optical flow can be incorporated to provide cues for the system to predict the

movement of edges to be used for the segmentation step in the next iteration, and

the movement of the points in the tracking step. We performed some experiments

using the optical flow estimation method proposed by Brox [128] and the improved

implementation by Liu [129].

Optical flow was used in the segmentation by first predicting the contour of

the object in the next frame, and then fusing it with the next frame’s edge map.

Fig. 4.4(a) shows an example of an edge map improved by optical flow. Optical flow

was incorporated into tracking by replacing the first order velocity components for

each tracked point in matrix A (eq. 4.4) by its flow component. Fig. 4.4(b) shows

that the optical flow drives the tracked points to move along the flow vectors into

the next frame.

(a) (b)

Figure 4.4: (a): Incorporating optical flow into segmentation. (b): Incorporating

optical flow into tracking.
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4.5 Experiments

4.5.1 Deformation and Division

To show that our method can segment challenging cases, we first demonstrate

its performance for the case of deforming and dividing objects. Fig. 4.5(a) shows

results for a sequence with the main object deforming, and Fig. 4.5(b) for a syn-

thetic sequence with the main object dividing. The ability to handle deformations

comes from the updating of the target model using the segmentation of previous

frames. The ability to handle division comes from the tracked point set that is used

to represent the attention field (sec. 4.4.1), which guides the weighted graph cut

algorithm (sec. 4.4.4).

4.5.2 The MAC 1.0 Dataset

To quantitatively test our method, we collected a dataset of several RGB+Depth

image sequences of humans performing different manipulation actions. In addition,

several sequences from other publicly available datasets ( [14], [130] and [131]) were

included to increase the variability and make it more challenging. Since the two

action consequences CREATE and CONSUME (sec.4.2) relate to the existence of

the object and would require a higher level attention mechanism, which is out of

this chapter’s scope, we did not consider them. For the other four consequences, six

sequences were collected each to make the first Manipulation Action Consequence
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(a)

(b)

Figure 4.5: (a): Deformation Invariance: upper: state-of-the-art appearance based

tracking [6]; middle: tracking without updating target model; lower: updating target

model. (b): Division Invariance: synthetic cell division sequence.
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(MAC 1.0) dataset.1.

4.5.3 Consequence Detection on MAC 1.0

We first evaluated the method’s ability in detecting the various consequences.

Consequences happen in an event based manner. In our description, a consequence

is detected using the VSG graph at a point in time, if between two consecutive image

frames one of the conditions listed in sec. 4.3 is met. For example, a consequence

is detected for the case of DIVIDE, when one segment becomes two segments in

the next frame (Fig. 4.6), or for the case of DEFORM, when one appearance model

changes to another (Fig. 4.8). We obtained ground truth by asking people not

familiar with the purpose to label the sequences in MAC 1.0.

Fig. 4.6, 4.7, 4.8 show typical example active segmentation and tracking, the

VSG graph, and the corresponding measures used to identify the different action

consequences, as well as the final detection result along the time-line are illustrated.

Specifically, for DIVIDE we monitor the change in the number of segments, for

ASSEMBLE we monitor the minimum Euclidean distance between the contours of

segments, for DEFORM we monitor the change of appearance (color histogram and

shape context [132]) of the segment, and for TRANSFER we monitor the velocity

of the object. Each of the measurements is normalized to the range of [0, 1] for

the ROC analysis. The detection is evaluated, by counting the correct detections

over the sequence. For example, for the case of DIVIDE, at any point in time we

have either the detection, “not divided” or “divided”. For the case of ASSEMBLE

1The dataset is available at www.umiacs.umd.edu/~yzyang.
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, we have either the detection “two parts assembled” or “nothing assembled”, and

for DEFORM, we have either “deformed” or “nor deformed”. The ROC curves

obtained are shown in Fig. 4.9. The graphs indicate that our method is able to

correctly detect most of the consequences. Several failures point out the limitations

of our method as well. For example, for the PAPER-JHU sequence the method has

errors in detecting DIVIDE, because the part that was cut out, connects visually

with the rest of the chapter. For the CLOSE-BOTTLE sequence our method fails

for ASSEMBLE because the small bottle cap is occluded by the hand. However,

our method detects that an ASSEMBLE event happened after the hand move away.

Figure 4.6: “Division” detection on “cut cucumber” sequence. Upper row: Original

sequence with segmentation and tracking; Middle and lower right: VSG representa-

tions; Lower left: Division consequences detection.
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Figure 4.7: “Assemble” detection on “make sandwich 1” sequence; 1st row: Orig-

inal sequence with segmentation and tracking; 2nd row: VSG representation; 3rd

row: Distance between each two segments (red line: bread and cheese, magenta

line: bread and meat, blue line: cheese and meat; 4th row: Assemble consequence

detection.

Figure 4.8: “Deformation” detection on “close book 1” sequence; 1st row: Original

sequence with segmentation and tracking; 2nd row: VSG representation; 3rd row:

appearance description (here color histogram) of each segment; 4th row: measure-

ment of appearance change; 5th row: Deformation consequence detection.

102



(a) (b)

(c) (d)

Figure 4.9: ROC curve of each sequence by categories: (a) TRANSFER, (b) DE-

FORM, (c) DIVIDE, and (d) ASSEMBLE.

4.5.4 Video Classification on MAC 1.0

We also evaluated our method on the problem of classification, although the

problem of consequence detection is quite different from the problem of video classi-

fication. We compared our method with the state-of-the-art STIP + Bag of Words +

classification (SVM or Naive Bayes). The STIP features for each video in the MAC
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1.0 dataset were computed using the method described in [110]. For classification we

used a bag of words + SVM and a Naive Bayes method. The dictionary codebook

size was 1000, and a polynomial kernel SVM with a leave-one-out cross validation

setting was used. Fig. 4.10 shows that our method dramatically outperforms the

typical STIP + Bag of Words + SVM and the Naive Bayes learning methods. How-

ever, this does not come as a surprise. The different video sequences in an action

consequence class contain different objects and different actions and thus different

visual features, and are therefore not well suited for standard classification. On the

other hand, our method has been specifically designed for the detection of manipu-

lation action consequences all the way from low-level signal processing through the

mid-level semantic representation to high-level reasoning. Moreover, different from

a learning based method, it does not rely on training data. After all, the method

stems from the insight of manipulation action consequences.

Figure 4.10: Video classification performance comparison.
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Chapter 5: The Syntax: A Syntactical Grammar for Understanding

Human Manipulation Actions

5.1 Introduction

Cognitive systems that interact with humans must be able to interpret actions.

Here we are concerned with manipulation actions. These are actions performed by

agents (humans or robots) on objects, which result in some physical change of the

object. There has been much work recently on action recognition, with most stud-

ies considering short lived actions, where the beginning and end of the sequence is

defined. Most efforts have focused on two problems of great interest to the study of

perception: the recognition of movements and the recognition of associated objects.

However, the more complex an action, the less reliable individual perceptual events

are for the characterization of actions. Thus, the problem of interpreting manipula-

tion actions involves many more challenges than simply recognizing movements and

objects, due to the many ways that humans can perform them.

Since perceptual events do not suffice, how do we determine the beginning

and end of action segments, and how do we combine the individual segments into

longer ones corresponding to a manipulation action? An essential component in the

105



description of manipulations is the underlying goal. The goal of a manipulation

action is the physical change induced on the object. To accomplish it, the hands

must perform a sequence of sub actions on the object, such as when the hand grasps

or releases the object, or when the hand changes the grasp type during a movement.

Centered around this idea, we develop a grammatical formalism for parsing and

interpreting action sequences, and we also develop vision modules to obtain from

dynamic imagery the symbolic information used in the grammatical structure.

Our formalism for describing manipulation actions uses a structure similar to

natural language. What do we gain from this formal description of action? This is

equal to asking what one gains from a formal description of language. Chomsky’s

contribution to language was the formal description of language through his gen-

erative and transformational grammar [22]. This revolutionized language research,

opened up new roads for its computational analysis and provided researchers with

common, generative language structures and syntactic operations on which lan-

guage analysis tools were built. Similarly, a grammar for action provides a common

framework of the syntax and semantics of action, so that basic tools for action un-

derstanding can be built. Researchers can then use these tools when developing

action interpretation systems, without having to start from scratch.

The input into our system for interpreting manipulation actions is perceptual

data, specifically sequences of images and depth maps. Therefore, a crucial part

of our system is the vision process, which obtains atomic symbols from perceptual

data. In Section 5.3, we introduce an integrated vision system with attention, seg-

mentation, hand tracking, grasp classification, and action recognition. The vision
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processes produce a set of symbols: the “Subject”, “Action”, and “Object” triplets,

which serve as input to the reasoning module. At the core of our reasoning module

is the manipulation action context-free grammar (MACFG). This grammar comes

with a set of generative rules and a set of parsing algorithms. The parsing algorithms

use two main operations – “construction” and “destruction” – to dynamically parse

a sequence of tree (or forest) structures made up from the symbols provided by the

vision module. The sequence of semantic tree structures could then be used by the

cognitive system to perform reasoning and prediction. Figure 5.1 shows the flow

chart of our cognitive system.

Figure 5.1: Overview of the manipulation action understanding system, including

feedback loops within and between some of the modules. The feedback is denoted

by the dotted arrow.

5.2 Related Work

The problem of human activity recognition and understanding has attracted

considerable interest in computer vision in recent years. Both visual recognition
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methods and nonvisual methods using motion capture systems [107,133] have been

used. [108] [109], and [134] provide surveys of the former. There are many ap-

plications for this work in areas such as human computer interaction, biometrics,

and video surveillance. Most visual recognition methods learn the visual signature

of each action from many spatio-temporal feature points (e.g, [110, 111, 135, 136]).

Work has focused on recognizing single human actions like walking, jumping, or run-

ning ( [113, 137]). Approaches to more complex actions have employed parametric

models such as hidden Markov models [114] to learn the transitions between image

frames (e.g, [14,115,116,138]).

The problem of understanding manipulation actions is also of great interest

in robotics, which focuses on execution. Much work has been devoted to learning

from demonstration [139], such as the problem of a robot with hands learning to

manipulate objects by mapping the trajectory observed for people performing the

action to the robot body. These approaches have emphasized signal to signal map-

ping and lack the ability to generalize. More recently, within the domain of robot

control research, [140] have used temporal logic for hybrid controller design, and

later [141] suggested a grammatical formal system to represent and verify robot

control policies. [142] and [143] created a library of manipulation actions through

semantic object-action relations obtained from visual observation.

There have also been many syntactic approaches to human activity recogni-

tion that use the concept of context-free grammars, because they provide a sound

theoretical basis for modeling structured processes. [144] used a grammar to recog-

nize disassembly tasks that contain hand manipulations. [145] used the context-free
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grammar formalism to recognize composite human activities and multi-person in-

teractions. It was a two-level hierarchical approach in which the lower level was

composed of hidden Markov models and Bayesian networks while the higher-level

interactions were modeled by CFGs. More recent methods have used stochastic

grammars to deal with errors from low-level processes such as tracking [146, 147].

This work showed that grammar-based approaches can be practical in activity recog-

nition systems and provided insight for understanding human manipulation actions.

However, as mentioned, thinking about manipulation actions solely from the view-

point of recognition has obvious limitations. In this work, we adopt principles from

CFG-based activity recognition systems, with extensions to a minimalist grammar

that accommodates not only the hierarchical structure of human activity, but also

human-tool-object interactions. This approach lets the system serve as the core

parsing engine for manipulation action interpretation.

[148] suggested that a minimalist generative structure, similar to the one in

human language, also exists for action understanding. [17] introduced a minimalist

grammar of action, which defines the set of terminals, features, non-terminals and

production rules for the grammar in the sensorimotor domain. However, this was a

purely theoretical description. The first implementation used only objects as sensory

symbols [18]. Then [31] proposed a minimalist set of atomic symbols to describe the

movements in manipulation actions. In the field of natural language understanding,

which traces back to the 1960s, [149] proposed the Conceptual Dependency the-

ory [149] to represent content inferred from natural language input. In this theory,

a sentence is represented as a series of diagrams representing both mental and phys-
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ical actions that involve agents and objects. These actions are built from a set of

primitive acts, which include atomic symbols like GRASP and MOVE. [150] have

also discussed the relationship between languages and motion control.

Here we extend the minimalist action grammar of [17] to dynamically parse

the observations by providing a set of operations based on a set of context-free

grammar rules. Then we provide a set of biologically inspired visual processes that

compute from the low-level signals the symbols used as input to the grammar in

the form of (Subject, Action, Object). By integrating the perception modules with

the reasoning module, we obtain a cognitive system for human manipulation action

understanding.

5.3 A Cognitive System For Understanding Human Manipulation

Actions

In this section, we first describe the Manipulation Action Context-Free Gram-

mar and the parsing algorithms based on it. Then we discuss the vision methods:

the attention mechanism, the hand tracking and action recognition, the object mon-

itoring and recognition, and the action consequence classification.

5.3.1 A Context-Free Manipulation Action Grammar

Our system includes vision modules that generate a sequence of “Subject”

“Action” “Patient” triplets from the visual data, a reasoning module that takes in

the sequence of triplets and builds them into semantic tree structures. The binary
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tree structure represents the parsing trees, in which leaf nodes are observations from

the vision modules and the non-leaf nodes are non-terminal symbols. At any given

stage of the process, the representation may have multiple tree structures. For

implementation reasons, we use a DUMMY root node to combine multiple trees.

Extracting semantic trees from observing manipulation actions is the target of the

cognitive system.

Before introducing the parsing algorithms, we first introduce the core of our

reasoning module: the Manipulation Action Context-Free Grammar (MACFG). In

formal language theory, a context-free grammar is a formal grammar in which every

production rule is of the form V → w, where V is a single nonterminal symbol,

and w is a string of terminals and/or nonterminals (w can be empty). The basic

recursive structure of natural languages, the way in which clauses nest inside other

clauses, and the way in which lists of adjectives and adverbs are followed by nouns

and verbs, is described exactly by a context-free grammar.

Similarly for manipulation actions, every complex activity is built of smaller

blocks. Using linguistics notation, a block consists of a “Subject”, “Action” and

“Patient” triplet. Here a “Subject” can be either a hand or an object, and the same

holds for the “Patient”. Furthermore, a complex activity also has a basic recursive

structure, and can be decomposed into simpler actions. For example, the typical

manipulation activity “sawing a plank” is described by the top-level triplet “handsaw

saw plank”, and has two lower-level triplets (which come before the top-level action

in time), namely “hand grasp saw” and “hand grasp plank”. Intuitively, the process

of observing and interpreting manipulation actions is syntactically quite similar to
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Table 5.1: A Manipulation Action Context-Free Grammar.

AP → A O | A HP (1)

HP → H AP | HP AP (2)

H → h

A → a

O → o (3)

natural language understanding. Thus, the Manipulation Grammar (Table 5.1) is

presented to parse manipulation actions.

The nonterminals H, A, and O represent the hand, the action and the object

(the tools and objects under manipulation) respectively, and the terminals h, a, and

o are the observations. AP stands for Action Phrase and HP for Hand Phrase. They

are proposed here as XPs following the X-bar theory, which is used to construct the

logical form of the semantic structure [151].

The design of this grammar is motivated by three observations: (i) Hands are

the main driving force in manipulation actions, so a specialized nonterminal symbol

H is used for their representation; (ii) An Action (A) can be applied to an Object

(O) directly or to a Hand Phrase (HP ), which in turn contains an Object (O), as

encoded in Rule (1), which builds up an Action Phrase (AP ); (iii) An Action Phrase

(AP ) can be combined either with the Hand (H) or a Hand Phrase, as encoded

in rule (2), which recursively builds up the Hand Phrase. The rules discussed in

Table 5.1 form the syntactic rules of the grammar used in the parsing algorithms.
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5.3.2 Cognitive MACFG Parsing Algorithms

Our aim for this project is not only to provide a grammar for representing

manipulation actions, but also to develop a set of operations that can automatically

parse (create or dissolve) the semantic tree structures. This is crucial for practical

purposes, since parsing a manipulation action is inherently an on-line process. The

observations are obtained in a temporal sequence. Thus, the parsing algorithm for

the grammar should be able to dynamically update the tree structures. At any

point, the current leaves of the semantic forest structures represent the actions and

objects involved so far. When a new triplet of (“Subject”, “Action”, “Patient”)

arrives, the parser updates the tree using the construction or destruction routine.

Theoretically, the non-regular context-free language defined in Table 5.1 can

be recognized by a non-deterministic pushdown automaton. However, different from

language input, the perception input is naturally a temporal sequence of observa-

tions. Thus, instead of simply building a non-deterministic pushdown automaton,

it requires a special set of parsing operations.

Our parsing algorithm differentiates between constructive and destructive ac-

tions. Constructive actions are the movements that start with the hand (or a tool)

coming in contact with an object and usually result in a certain physical change

on the object (a consequence), e.g, “Grasp”, “Cut”, or “Saw”. Destructive actions

are movements at the end of physical change inducing actions, when the hand (or

tool) separates from the object; some examples are “Ungrasp” or “FinishedCut”.

A constructive action may or may not have a corresponding destructive action, but
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(a) (b)

Figure 5.2: The (a) construction and (b) destruction operations. Fine dashed lines

are newly added connections, crosses are node deletion, and fine dotted lines are

connections to be deleted.

every destructive action must have a corresponding constructive action. Otherwise

the parsing algorithm detects an error. In order to facilitate the action recognition,

a look-up table that stores the constructive-destructive action pairs is used. This

knowledge can be learned and further expanded.

The algorithm builds a tree structure Ts. This structure is updated as new

observations are received. Once an observation triplet “Subject”, “Action”, and

“Patient” arrives, the algorithm checks whether the “Action” is constructive or de-

structive and then follows one of two pathways. If the “Action” is constructive,

a construction routine is used. Otherwise a destruction routine is used (Refer to

Algorithm 2, Algorithm 3, and Algorithm 4 for details). The process continues till

the last observation. Two illustrations in Figure 5.2 demonstrate how the construc-

tion and the destruction routines work. The parse operation amounts to a chart
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parser [152], which takes in the three nonterminals and performs bottom-up parsing

following the context-free rules from Table 5.1.

Algorithm 2 Dynamic manipulation action tree parsing

Initialize an empty tree group (forest) Ts

while New observation (subject s, action a, patient p) do

if a is a constructive action then

construction(Ts, s, a, p)

end if

if a is a destructive action then

destruction(Ts, s, a, p)

end if

end while

Figure 5.3 shows a typical manipulation action example. The parsing al-

gorithm takes as input a sequence of key observations: “LeftHand Grasp Knife;

RightHand Grasp Eggplant; Knife Cut Eggplant; Knife FinishedCut Eggplant;

RightHand Ungrasp Eggplant; LeftHand Ungrasp Knife”. Then a sequence of six

tree structures is parsed up or dissolved along the time line. We provide more

examples in Section 5.4, and a sample implementation of the parsing algorithm

at http://www.umiacs.umd.edu/~yzyang/MACFG. For clarity, Figure 5.3 uses a

dummy root node to create a tree structure from a forest and numbers the nonter-

minal nodes.
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Algorithm 3 construction(Ts, s, a, p)

Previous tree group (forest) Ts and new observation (subject s, action a and

patient p)

if s is Hand h, and p is an object o then

Find the highest subtrees Th and To from Ts containing h and o. If h or o is

not in the current forest, create new subtrees Th and To, respectively.

parse(Th,a,To), attach it to update Ts.

end if

if s is an object o1 and p is another object o2 then

Find the highest subtree T 1
o and T 2

o from Ts containing o1 and o2 respectively.

If either o1 or o2 is not in the current forest, create new subtree T 1
o or T 2

o . If

both o1 and o2 are not in the current forest, raise an error.

parse(T 1
o ,a,T 2

o ), attach it to update Ts.

end if

5.3.3 Attention Mechanism with the Torque Operator

It is essential for our cognitive system to have an effective attention mechanism,

because the amount of information in real world images is vast. Visual attention, the

process of driving an agent’s attention to a certain area, is based on both bottom-up

processes defined on low-level visual features and top-down processes influenced by

the agent’s previous experience and goals [123]. Recently, [153] have provided a

vision tool, called the image torque, that captures the concept of closed contours

using bottom-up processes. Basically, the torque operator takes simple edges as
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Algorithm 4 destruction(Ts, s, a, p)

Previous tree structures Ts and new observation (subject s, action a and patient

p)

Find corresponding constructive action of a from the look-up table and denote it

as a′

if There exists a lowest subtree T ′a that contains both s and a′ then

Remove every node on the path that starts from root of T ′a to a′.

if T ′a has a parent node then

Connect the highest subtree that contains s with T ′a’s parent node.

end if

Leave all the remaining subtrees as individual trees.

end if

Set the rest of Ts as new Ts.

input and computes, over regions of different sizes, a measure of how well the edges

are aligned to form a closed, convex contour.

The underlying motivation is to find object-like regions by computing the

“coherence” of the edges that support the object. Edge coherence is measured via

the cross-product between the tangent vector of the edge pixel and a vector from

a center point to the edge pixel, as shown in Figure 5.4(a). Formally, the value of

torque, τpq of an edge pixel q within a discrete image patch with center p is defined

as

τpq = ||~rpq||sinθpq , (5.1)
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Figure 5.3: Here the system observes a typical manipulation action example, “Cut

an eggplant”, and builds a sequence of six action trees.

where ~rpq is the displacement vector from p to q, and θpq is the angle between ~rpq

and the tangent vector at q. The sign of τpq depends on the direction of the tangent

vector and for this work, our system computes the direction based on the intensity

contrast along the edge pixel. The torque of an image patch, P , is defined as the

sum of the torque values of all edge pixels, E(P ), within the patch as

τP =
1

2|P |
∑

q∈E(P )

τpq . (5.2)

In this work, our system processes the testing sequences by applying the torque

operators to obtain possible initial fixation points for the object monitoring process.

Figure 5.4 shows an example of the application of the torque operator.

The system also employs a top-down attention mechanism; it uses the hand
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(a) (b) (c)

Figure 5.4: (a) Torque for images, (b) a sample input frame, and (c) torque operator

response. Crosses are the pixels with top extreme torque values that serve as the

potential fixation points.

location to guide the attention. Here, we integrate the bottom-up torque operator

output with hand tracking. Potential objects under manipulation are found when

one of the hand regions intersects a region with high torque responses, after which

the object monitoring system (Section 5.3.5) monitors it.

5.3.4 Hand Tracking, Grasp Classification and Action Recognition

With the recent development of a vision-based, markerless, fully articulated

model-based human hand tracking system [32] (http://cvrlcode.ics.forth.gr/

handtracking/), the system is able to track a 26 degree of freedom model of hand.

It is worth noting, however, that for a simple classification of movements into a

small number of actions, the location of the hands and objects would be sufficient.

Moreover, with the full hand model, a finer granularity of description can be achieved

by classifying the tracked hand-model into different grasp types.

We collected training data from different actions, which then was processed. A

set of bio-inspired features, following hand anatomy [33], were extracted. Intuitively,
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(a) (b)

Figure 5.5: (a) Bones of the human hand. (b) Arches of the hand: (1) one of

the oblique arches; (2) one of the longitudinal arches of the digits; (3) transverse

metacarpal arch; (4) transverse carpal arch. Source: [7].

the arches formed by the fingers are crucial to differentiate different grasp types.

Figure 5.5 shows that the fixed and mobile parts of the hand adapt to various

everyday tasks by forming bony arches: longitudinal arches (the rays formed by

finger bones and associated metacarpal bones), and oblique arches (between the

thumb and four fingers).

In each image frame, our system computed the oblique and longitudinal arches

to obtain an eight parameter feature vector, as in Figure 5.6(a). We further reduced

the dimensionality of the feature space by Principle Component Analysis and then

applied k-means clustering to discover the underlying four general types of grasp,

which are Rest, Firm Grasp, Delicate Grasp (Pinch) and Extension Grasp. To

classify a given test sequence, the data was processed as described above and then

the grasp type was computed using a naive Bayesian classifier. Figure 5.6(c) and

(d) show examples of the classification result.

The grasp classification is used to segment the image sequence in time and also

120



(a) (b) (c) (d)

Figure 5.6: (a) One example of fully articulated hand model tracking, (b) a 3-D

illustration of the tracked model, and (c-d) examples of grasp type recognition for

both hands.

serves as part of the action description. In addition, our system uses the trajectory

of the mass center of the hands to classify the actions. The hand-tracking software

provides the hand trajectories (of the given action sequence between the onset of

grasp and release of the object), from which our system computed global features

of the trajectory, including the frequency and velocity components. Frequency is

encoded by the first four real coefficients of the Fourier transform in all the x, y and z

directions, which gives a 24 dimensional vector over both hands. Velocity is encoded

by averaging the difference in hand positions between two adjacent timestamps,

which gives a six dimensional vector. These features are then combined to yield a

30 dimensional vector that the system uses for action recognition [24].

5.3.5 Object Monitoring and Recognition

Manipulation actions commonly involve objects. In order to obtain the in-

formation necessary to monitor the objects being worked on, our system applies

a new method combining segmentation and tracking [26]. This method combines

stochastic tracking [122] with a fixation-based active segmentation [121]. The track-
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ing module provides a number of tracked points. The locations of these points define

an area of interest and a fixation point for the segmentation. The data term of the

segmentation module uses the color immediately surrounding the fixation points.

The segmentation module segments the object and updates the appearance model

for the tracker. Using this method, the system tracks objects as they deform and

change topology (two objects can merge, or an object can be divided into parts.).

For object recognition, our system simply uses color information. The system

uses a color distribution model to be invariant to various textures or patterns. A

function h(xi) is defined to create a color histogram, which assigns one of the m-bins

to a given color at location xi. To make the algorithm less sensitive to lighting con-

ditions, the system uses the Hue-Saturation-Value color space with less sensitivity

in the V channel (8× 8× 4 bins). The color distribution for segment s(n) is denoted

as

p(s(n))(u) = γ
I∑
i=1

k(||y − xi||)δ[h(xi)− u] , (5.3)

where u = 1 . . .m, δ(.) is the Kronecker delta function and γ is the normalization

term γ = 1∑I
i=1 k(||y−xi||)

. k(.) is a weighting function designed from the intuition that

not all pixels in the sampling region are equally important for describing the color

model. Specifically, pixels that are farther away from the fixation point are assigned

smaller weights,

k(r) =


1− r2 if r < a

0 otherwise ,

(5.4)

where the parameter a is used to adapt the size of the region, and r is the distance
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from the fixation. By applying the weighting function, we increase the robustness

of the distribution by weakening the influence of boundary pixels that may belong

to the background or are occluded.

Since the objects in our experiments have distinct color profiles, the color dis-

tribution model used was sufficient to recognize the segmented objects. We manually

labelled several examples from each object class as training data and used a nearest

k-neighbours classifier. Figure 5.7 shows sample results.

5.3.6 Detection of Manipulation Action Consequences

Taking an object-centric point of view, manipulation actions can be classified

into six categories according to how the manipulation transforms the object, or, in

other words, what consequence the action has on the object. These categories are

Divide, Assemble, Create, Consume, Transfer, and Deform.

To describe these action categories we need a formalism. We use the visual

semantic graph (VSG) inspired by the work of [14]. This formalism takes as input

computed object segments, their spatial relationship, and the temporal relationship

over consecutive frames. Please refer to Chapter 4 for details.

Our system integrated visual modules in the following manner. Since hands are

the most important components in manipulation actions, a state-of-the-art marker-

less hand tracking system obtains skeleton models of both hands. Using this data,

our system classifies the manner in which the human grasps the objects into four

primitive categories. On the basis of the grasp classification, our system finds the
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start and end points of action sequences. Our system then classifies the action

from the hand trajectories, the hand grasp, and the consequence of the object (as

explained above). To obtain objects, our system monitors the manipulated object

using a process that combines stochastic tracking with active segmentation, then

recognizes the segmented objects using color. Finally, based on the monitoring

process, our system checks and classifies the effect on the object into one of four

fundamental types of “consequences”. The final output are sequences of “Subject”

“Action” “Patient” triplets, and the manipulation grammar parser takes them as

input to build up semantic structures.

5.4 Experiments

The theoretical framework we have presented suggests two hypotheses that

deserve empirical tests: (a) manipulation actions performed by single human agents

obey a manipulation action context-free grammar that includes manipulators, ac-

tions, and objects as terminal symbols; (b) a variant on chart parsing that includes

both constructive and destructive actions, combined with methods for hand track-

ing and action and object recognition from RGBD data, can parse observed human

manipulation actions.

To test the two hypotheses empirically, we need to define a set of performance

variables and how they relate to our predicted results. The first hypothesis relates

to representations, and we can empirically test if it is possible to manually generate

target trees for each manipulation action in the test set. The second hypothesis has
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to do with processes, and can be tested by observing how many times our system

builds a parse tree successfully from observed human manipulation actions. The

theoretical framework for this consists of two parts: (1) a visual system to detect

(subject, action, object) triplets from input sensory data and (2) a variant of the

chart parsing system to transform the sequence of triplets into tree representations.

Thus, we further separate the test for our second hypothesis into two sub-tasks: (1)

we measure the precision and recall metrics by comparing the detected triplets from

our visual system with human-labelled ground truth data and (2) given the ground

truth triplets as input, we measure the success rate using our variant of chart parsing

system by comparing it with the target trees for each action. We consider a parse

successful if the generated tree is identical with the manually generated target parse.

Therefore, we consider the second hypothesis supported when (1) our visual system

achieves high precision and recall, and (2) our parsing system achieves a high success

rate. We use the ground truth triplets as input instead of the detected ones because

we cannot expect the visual system to generate the triplets with 100% precision and

recall, due to occlusions, shadows, and unexpected events. As a complete system,

we expect the visual module to have high precision and recall, thus the detected

triplets can be used as input to the parsing module in practice.

We designed our experiments under the setting with one RGBD camera in

a fixed location (we used a Kinect sensor). We asked human subjects to perform

a set of manipulation actions in front of the camera while both objects and tools

were presented within the view of the camera during the activity. We collected

RGBD sequences of manipulation actions being performed by one human, and to
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Category Hand Object Constructive Destructive

Kitchen LeftHand Bread, Cheese, Tomato Grasp, Cut Ungrasp, F inishedCut

RightHand Eggplant, Cucumber Assemble F inishedAssemble

Manu LeftHand P lank Grasp, Saw Ungrasp, F inishedSaw

−facturing RightHand Saw Assemble F inishedAssemble

Table 5.2: “Hands”, “Objects” and “Actions” involved in the experiments.

ensure some diversity, we collected these from two domains, namely the kitchen

and the manufacturing environments. The kitchen action set included “Making a

sandwich”, “Cutting an eggplant”, and “Cutting bread”, and the manufacturing

action set included “Sawing a plank into two pieces” and “Assemble two pieces of

the plank”. To further diversify the data set, we adopted two different viewpoints

for each action set. For the kitchen actions, we used a front view setting; for

manufacturing actions, a side view setting. The five sequences have 32 human-

labelled ground truth triplets. Table 5.4 gives a list of “Subjects”, “Objects”, and

“Actions” involved in our experiments.

To evaluate the visual system, we applied the vision techniques introduced

in Sections 5.3.3 to 5.3.6. To be specific, the grasp type classification module pro-

vides a “Grasp” signal when the hand status changes from “Rest” to one of the

three other types, and an “Ungrasp” signal when it changes back to “Rest”. At

the same time, the object monitoring and the segmentation-based object recog-

nition module provides the “Object” symbol when either of the hands touch an

object. Also, the hand tracking module provides trajectory profiles that enable the

trajectory-based action recognition module to produce “Action” symbols such as

“Cut” and “Saw”. The action “Assemble” did not have a distinctive trajectory
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Figure 5.7: The second row shows the hand tracking and object monitoring. The

third row shows the object recognition result, where each segmentation is labelled

with an object name and a bounding box in different color. The fourth and fifth

rows depict the hand speed profile and the Euclidean distances between hands and

objects. The sixth row shows the consequence detection.

profile, so we simply generated it when the “Cheese” merged with the “Bread”

based on the object monitoring process. At the end of each recognized action, a

corresponding destructive symbol, as defined in Table 5.4, is produced, and the con-

sequence checking module is called to confirm the action consequence. Figure 5.7

shows intermediate and final results of vision modules from a sequence of a per-

son making a sandwich. In this scenario, our system reliably tracks, segments and

recognizes both hands and objects, recognizes “grasp”, “ungrasp” and “assemble”

events, and generates a sequence of triplets along the time-line. To evaluate the

parsing system, given the sequence of ground truth triplets as inputs, a sequence of

trees (or forests) is created or dissolved dynamically using the manipulation action
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context free grammar parser (Section 5.3.1, 5.3.2).

Our experiments produced three results: (i) we were able to manually generate

a sequence of target tree representations for each of the five sequences in our data set;

(ii) our visual system detected 34 triplets, of which 29 were correct (compared with

the 32 ground truth labels), and yielded a precision of 85.3% and a recall of 90.6%;

(iii) given the sequence of ground truth triplets, our parsing system successfully

parsed all five sequences in our data set into tree representations comparing with the

target parses. Figure 5.8 shows the tree structures built from the sequence of triplets

of the “Making a sandwich” sequence. More results for the rest of manipulation ac-

tions in the data set can be found at http://www.umiacs.umd.edu/~yzyang/MACFG.

Overall, (i) supports our first hypothesis that human manipulation actions obey a

manipulation action context-free grammar that includes manipulators, actions, and

objects as terminal symbols, while (ii) and (iii) support our second hypothesis that

the implementation of our cognitive system can parse observed human manipulation

actions. 1

The experimental results support our hypotheses, but we have not tested our

system on a large data set with a variety of manipulation actions. We are currently

testing the system on a larger set of kitchen actions and checking to see if our

hypotheses are still supported.

1As the experiments demonstrate, the system was robust enough to handle situations that

involve hesitation, in which the human grasps a tool, finds that it is not the desired one, and

ungrasps it (as in Figure 5.9).
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Figure 5.8: The tree structures generated from the “Make a Sandwich” sequence.

Figure 5.7 depicts the corresponding visual processing. Since our system detected

six triplets temporally from this sequence, it produced a set of six trees. The order

of the six trees is from left to right.
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Figure 5.9: Example of the grammar that deals with hesitation. This figure shows

key frames of the input visual data and the semantic tree structures.
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Chapter 6: The Semantics: Learning Manipulation Action Seman-

tics through Probabilistic Combinatory Categorial Gram-

mar Parsing

6.1 Introduction

Autonomous robots will need to learn the actions that humans perform. They

will need to recognize these actions when they see them and they will need to

perform these actions themselves. This requires a formal system to represent the

action semantics. This representation needs to store the semantic information about

the actions, be encoded in a machine readable language, and inherently be in a

programmable fashion in order to enable reasoning beyond observation. A formal

representation of this kind has a variety of other applications such as intelligent

manufacturing, human robot collaboration, action planning and policy design, etc.

In this chapter, we are concerned with manipulation actions, that is actions

performed by agents (humans or robots) on objects, resulting in some physical

change of the object. However most of the current AI systems require manually

defined semantic rules. In this work, we propose a computational linguistics frame-

work, which is based on probabilistic semantic parsing with Combinatory Categorial
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Grammar (CCG), to learn manipulation action semantics (lexicon entries) from an-

notations. We later show that this learned lexicon is able to make our system reason

about manipulation action goals beyond just observation. Thus the intelligent sys-

tem can not only imitate human movements, but also imitate action goals.

Understanding actions by observation and executing them are generally con-

sidered as dual problems for intelligent agents. The sensori-motor bridge connecting

the two tasks is essential, and a great amount of attention in AI, Robotics as well

as Neurophysiology has been devoted to investigating it. Experiments conducted

on primates have discovered that certain neurons, the so-called mirror neurons, fire

during both observation and execution of identical manipulation tasks [9, 10]. This

suggests that the same process is involved in both the observation and execution of

actions. From a functionalist point of view, such a process should be able to first

build up a semantic structure from observations, and then the decomposition of that

same structure should occur when the intelligent agent executes commands.

Additionally, studies in linguistics [154] suggest that the language faculty de-

velops in humans as a direct adaptation of a more primitive apparatus for planning

goal-directed action in the world by composing affordances of tools and consequences

of actions. It is this more primitive apparatus that is our major interest in this chap-

ter. Such an apparatus is composed of a “syntax part” and a “semantic part”. In

the syntax part, every linguistic element is categorized as either a function or a

basic type, and is associated with a syntactic category which either identifies it as

a function or a basic type. In the semantic part, a semantic translation is attached

following the syntactic category explicitly.
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Combinatory Categorial Grammar (CCG) introduced by [155] is a theory that

can be used to represent such structures with a small set of combinators such as

functional application and type-raising. What do we gain though from such a for-

mal description of action? This is similar to asking what one gains from a formal

description of language as a generative system. Chomskys contribution to language

research was exactly this: the formal description of language through the formulation

of the Generative and Transformational Grammar [22]. It revolutionized language

research opening up new roads for the computational analysis of language, providing

researchers with common, generative language structures and syntactic operations,

on which language analysis tools were built. A grammar for action would contribute

to providing a common framework of the syntax and semantics of action, so that ba-

sic tools for action understanding can be built, tools that researchers can use when

developing action interpretation systems, without having to start development from

scratch. The same tools can be used by robots to execute actions.

In this chapter, we propose an approach for learning the semantic meaning

of manipulation action through a probabilistic semantic parsing framework based

on CCG theory. For example, we want to learn from an annotated training action

corpus that the action “Cut” is a function which has two arguments: a subject and a

patient. Also, the action consequence of “Cut” is a separation of the patient. Using

formal logic representation, our system will learn the semantic representations of

“Cut”:

Cut :=(AP\NP )/NP : λx.λy.cut(x, y)→ divided(y)
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Here cut(x, y) is a primitive function. We will further introduce the representation

in Sec. 6.3. Since our action representation is in a common calculus form, it enables

naturally further logical reasoning beyond visual observation.

The advantage of our approach is twofold: 1) Learning semantic representa-

tions from annotations helps an intelligent agent to enrich automatically its own

knowledge about actions; 2) The formal logic representation of the action could be

used to infer the object-wise consequence after a certain manipulation, and can also

be used to plan a set of actions to reach a certain action goal. We further validate

our approach on a large publicly available manipulation action dataset (MANIAC)

from [15], achieving promising experimental results. Moreover, we believe that our

work, even though it only considers the domain of manipulation actions, is also a

promising example of a more closely intertwined computer vision and computational

linguistics system. The diagram in Fig.6.1 depicts the framework of the system.

6.2 Related Works

Manipulation Action Grammar: As mentioned before, [148] suggested

that a minimalist generative grammar, similar to the one of human language, also

exists for action understanding and execution. The works closest related to this

chapter are [17,18,31]. [17] first discussed a Chomskyan grammar for understanding

complex actions as a theoretical concept, and [18] provided an implementation of

such a grammar using as perceptual input only objects. More recently, [30] proposed

a set of context-free grammar rules for manipulation action understanding, and [29]
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Figure 6.1: A CCG based semantic parsing framework for manipulation actions.

applied it on unconstrained instructional videos. However, these approaches only

consider the syntactic structure of manipulation actions without coupling seman-

tic rules using λ expressions, which limits the capability of doing reasoning and

prediction.

Combinatory Categorial Grammar and Semantic Parsing: CCG based

semantic parsing originally was used mainly to translate natural language sentences

to their desired semantic representations as λ-calculus formulas [156, 157]. [158]

presented a framework of grounded language acquisition: the interpretation of lan-

guage entities into semantically informed structures in the context of perception
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and actuation. The concept has been applied successfully in tasks such as robot

navigation [159], forklift operation [160] and of human-robot interaction [161]. In

this work, instead of grounding natural language sentences directly, we ground in-

formation obtained from visual perception into semantically informed structures,

specifically in the domain of manipulation actions.

6.3 A CCG Framework for Manipulation Actions

Before we dive into the semantic parsing of manipulation actions, a brief in-

troduction to the Combinatory Categorial Grammar framework in Linguistics is

necessary. We will only introduce related concepts and formalisms. For a complete

background reading, we would like to refer readers to [155]. We will first give a brief

introduction to CCG and then introduce a fundamental combinator, i.e., functional

application. The introduction is followed by examples to show how the combinator

is applied to parse actions.

6.3.1 Manipulation Action Semantics

The semantic expression in our representation of manipulation actions uses a

typed λ-calculus language. The formal system has two basic types: entities and

functions. Entities in manipulation actions are Objects or Hands, and functions are

the Actions. Our lambda-calculus expressions are formed from the following items:

Constants: Constants can be either entities or functions. For example, Knife

is an entity (i.e., it is of type N) and Cucumber is an entity too (i.e., it is of type
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N). Cut is an action function that maps entities to entities. When the event Knife

Cut Cucumber happened, the expression cut(Knife, Cucumber) returns an entity

of type AP, aka. Action Phrase. Constants like divided are status functions that

map entities to truth values. The expression divided(cucumber) returns a true value

after the event (Knife Cut Cucumber) happened.

Logical connectors: The λ-calculus expression has logical connectors like

conjunction (∧), disjunction (∨), negation(¬) and implication(→).

For example, the expression

connected(tomato, cucumber)∧

divided(tomato) ∧ divided(cucumber)

represents the joint status that the sliced tomato merged with the sliced cucumber.

It can be regarded as a simplified goal status for “making a cucumber tomato salad”.

The expression ¬connected(spoon, bowl) represents the status after the spoon fin-

ished stirring the bowl.

λx.cut(x, cucumber)→ divided(cucumber)

represents that if the cucumber is cut by x, then the status of the cucumber is

divided.

λ expressions: lambda expressions represent functions with unknown argu-

ments. For example, λx.cut(knife, x) is a function from entities to entities, which

is of type NP after any entities of type N that is cut by knife.
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6.3.2 Combinatory Categorial Grammar

The semantic parsing formalism underlying our framework for manipulation

actions is that of combinatory categorial grammar (CCG) [155]. A CCG specifies one

or more logical forms for each element or combination of elements for manipulation

actions. In our formalism, an element of Action is associated with a syntactic

“category” which identifies it as functions, and specifies the type and directionality

of their arguments and the type of their result. For example, action “Cut” is a

function from patient object phrase (NP) on the right into predicates, and into

functions from subject object phrase (NP) on the left into a sub action phrase

(AP):

Cut := (AP\NP )/NP. (6.1)

As a matter of fact, the pure categorial grammar is a conext-free grammar

presented in the accepting, rather than the producing direction. The expression

(6.1) is just an accepting form for Action “Cut” following the context-free grammar.

While it is now convenient to write derivations as follows, they are equivalent to

conventional tree structure derivations in Figure. 6.3.2.

Knife Cut Cucumber

N N

NP (AP\NP)/NP NP

>

AP\NP
<

AP
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AP

AP

NP

N

Cucumber

A

Cut

NP

N

Knife

Figure 6.2: Example of conventional tree structure.

The semantic type is encoded in these categories, and their translation can

be made explicit in an expanded notation. Basically a λ-calculus expression is

attached with the syntactic category. A colon operator is used to separate syntactical

and semantic expressions, and the right side of the colon is assumed to have lower

precedence than the left side of the colon. Which is intuitive as any explanation of

manipulation actions should first obey syntactical rules, then semantic rules. Now

the basic element, Action “Cut”, can be further represented by:

Cut :=(AP\NP )/NP : λx.λy.cut(x, y)→ divided(y).

(AP\NP )/NP denotes a phrase of type AP , which requires an element of type NP

to specify what object was cut, and requires another element of type NP to further

complement what effector initiates the cut action. λx.λy.cut(x, y) is the λ-calculus

representation for this function. Since the functions are closely related to the state

update, → divided(y) further points out the status expression after the action was

performed.

A CCG system has a set of combinatory rules which describe how adjacent

syntatic categories in a string can be recursively combined. In the setting of ma-
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nipulation actions, we want to point out that similar combinatory rules are also

applicable. Especially the functional application rules are essential in our system.

6.3.3 Functional application

The functional application rules with semantics can be expressed in the fol-

lowing form:

A/B : f B : g => A : f(g) (6.2)

B : g A\B : f => A : f(g) (6.3)

Rule. (6.2) says that a string with type A/B can be combined with a right-adjacent

string of type B to form a new string of type A. At the same time, it also spec-

ifies how the semantics of the category A can be compositionally built out of the

semantics for A/B and B. Rule. (6.3) is a symmetric form of Rule. (6.2).

In the domain of manipulation actions, following derivation is an example CCG

parse. This parse shows how the system can parse an observation (“Knife Cut Cu-

cumber”) into a semantic representation (cut(knife, cucumber)→ divided(cucumber))

using the functional application rules.
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Knife Cut Cucumber

N N

NP (AP\NP)/NP NP
knife λx .λy .cut(x , y) cucumber
knife → divided(y) cucumber

>

AP\NP
λx .cut(x , cucumber)
→ divided(cucumber)

<

AP
cut(knife, cucumber)
→ divided(cucumber)

6.4 Learning Model and Semantic Parsing

After having defined the formalism and application rule, instead of manually

writing down all the possible CCG representations for each entity, we would like to

apply a learning technique to derive them from the paired training corpus. Here

we adopt the learning model of [156], and use it to assign weights to the semantic

representation of actions. Since an action may have multiple possible syntactic and

semantic representations assigned to it, we use the probabilistic model to assign

weights to these representations.

6.4.1 Learning Approach

First we assume that complete syntactic parses of the observed action are

available, and in fact a manipulation action can have several different parses. The

parsing uses a probabilistic combinatorial categorial grammar framework similar to

the one given by [157]. We assume a probabilistic categorial grammar (PCCG)
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based on a log linear model. M denotes a manipulation task, L denotes the seman-

tic representation of the task, and T denotes its parse tree. The probability of a

particular syntactic and semantic parse is given as:

P (L, T |M ; Θ) =
ef(L,T,M)·Θ∑

(L,T ) e
f(L,T,M)·Θ (6.4)

where f is a mapping of the triple (L, T,M) to feature vectors ∈ Rd, and the

Θ ∈ Rd represents the weights to be learned. Here we use only lexical features,

where each feature counts the number of times a lexical entry is used in T . Parsing

a manipulation task under PCCG equates to finding L such that P (L|M ; Θ) is

maximized:

argmaxLP (L|M ; Θ)

= argmaxL
∑
T

P (L, T |M ; Θ). (6.5)

We use dynamic programming techniques to calculate the most probable parse

for the manipulation task. In this chapter, the implementation from [162] is adopted,

where an inverse-λ technique is used to generalize new semantic representations. The

generalization of lexicon rules are essential for our system to deal with unknown

actions presented during the testing phase.

6.5 Experiments

6.5.1 Manipulation Action (MANIAC) Dataset

[15] provides a manipulation action dataset with 8 different manipulation ac-

tions (cutting, chopping, stirring, putting, taking, hiding, uncovering, and pushing),
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each of which consists of 15 different versions performed by 5 different human ac-

tors1. There are in total 30 different objects manipulated in all demonstrations. All

manipulations were recorded with the Microsoft Kinect sensor and serve as training

data here.

The MANIAC data set contains another 20 long and complex chained ma-

nipulation sequences (e.g. “making a sandwich”) which consist of a total of 103

different versions of these 8 manipulation tasks performed in different orders with

novel objects under different circumstances. These serve as testing data for our

experiments.

[8, 15] developed a semantic event chain based model free decomposition ap-

proach. It is an unsupervised probabilistic method that measures the frequency

of the changes in the spatial relations embedded in event chains, in order to ex-

tract the subject and patient visual segments. It also decomposes the long chained

complex testing actions into their primitive action components according to the

spatio-temporal relations of the manipulator. Since the visual recognition is not the

core of this work, we omit the details here and refer the interested reader to [8,15].

All these features make the MANIAC dataset a great testing bed for both the the-

oretical framework and the implemented system presented in this work.

1Dataset available for download at https://fortknox.physik3.gwdg.de/cns/index.php?

page=maniac-dataset.
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6.5.2 Training Corpus

We first created a training corpus by annotating the 120 training clips from the

MANIAC dataset, in the format of observed triplets (subject action patient) and a

corresponding semantic representation of the action as well as its consequence. The

semantic representations in λ-calculus format are given by human annotators after

watching each action clip. A set of sample training pairs are given in Table.6.1 (one

from each action category in the training set). Since every training clip contains

one single full execution of each manipulation action considered, the training corpus

thus has a total of 120 paired training samples.

Snapshot triplet semantic representation

cleaver chopping carrot

chopping(cleaver, carrot)

→ divided(carrot)

spatula cutting pepper

cutting(spatula, pepper)

→ divided(pepper)

spoon stirring bucket stirring(spoon, bucket)

cup take down bucket

take down(cup, bucket)→

¬connected(cup, bucket) ∧moved(cup)

cup put on top bowl

put on top(cup, bowl)→

on top(cup, bowl) ∧moved(cup)

bucket hiding ball

hiding(bucket, ball)→

contained(bucket, ball) ∧moved(bucket)

hand pushing box pushing(hand, box) → moved(box)

box uncover apple

uncover(box, apple)→

appear(apple) ∧moved(box)

Table 6.1: Example annotations from training corpus, one per manipulation action

category.
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We also assume the system knows that every “object” involved in the corpus

is an entity of its own type, for example:

Knife := N : knife

Bowl := N : bowl

......

Additionally, we assume the syntactic form of each “action” has a main type of

(AP\NP )/NP (see Sec. 6.3.2). These two sets of rules form the initial seed lexicon

for learning.

6.5.3 Learned Lexicon

We applied the learning technique mentioned in Sec. 6.4, and we used the

NL2KR implementation from [162]. The system learns and generalizes a set of

lexicon entries (syntactic and semantic) for each action categories from the training

corpus accompanied with a set of weights. We list the one with the largest weight
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for each action here respectively:

Chopping :=(AP\NP )/NP : λx.λy.chopping(x, y)

→ divided(y)

Cutting :=(AP\NP )/NP : λx.λy.cutting(x, y)

→ divided(y)

Stirring :=(AP\NP )/NP : λx.λy.stirring(x, y)

Take down :=(AP\NP )/NP : λx.λy.take down(x, y)

→ ¬connected(x, y) ∧moved(x)

Put on top :=(AP\NP )/NP : λx.λy.put on top(x, y)

→ on top(x, y) ∧moved(x)

Hiding :=(AP\NP )/NP : λx.λy.hiding(x, y)

→ contained(x, y) ∧moved(x)

Pushing :=(AP\NP )/NP : λx.λy.pushing(x, y)

→ moved(y)

Uncover :=(AP\NP )/NP : λx.λy.uncover(x, y)

→ appear(y) ∧moved(x).

The set of seed lexicon and the learned lexicon entries are further used to

probabilistically parse the detected triplet sequences from the 20 long manipulation

activities in the testing set.
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6.5.4 Deducing Semantics

Using the decomposition technique from [8,15], the reported system is able to

detect a sequence of action triplets in the form of (Subject Action Patient) from each

of the testing sequence in MANIAC dataset. Briefly speaking, the event chain repre-

sentation [14] of the observed long manipulation activity is first scanned to estimate

the main manipulator, i.e. the hand, and manipulated objects, e.g. knife, in the

scene without employing any visual feature-based object recognition method. Solely

based on the interactions between the hand and manipulated objects in the scene,

the event chain is partitioned into chunks. These chunks are further fragmented

into sub-units to detect parallel action streams. Each parsed Semantic Event Chain

(SEC) chunk is then compared with the model SECs in the library to decide whether

the current SEC sample belongs to one of the known manipulation models or rep-

resents a novel manipulation. SEC models, stored in the library, are learned in

an on-line unsupervised fashion using the semantics of manipulations derived from

a given set of training data in order to create a large vocabulary of single atomic

manipulations.

For the different testing sequence, the number of triplets detected ranges from

two to seven. In total, we are able to collect 90 testing detections and they serve as

the testing corpus. However, since many of the objects used in the testing data are

not present in the training set, an object model-free approach is adopted and thus

“subject” and “patient” fields are filled with segment IDs instead of a specific object

name. Fig. 6.3 and 6.4 show several examples of the detected triplets accompanied
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Figure 6.3: System output on complex chained manipulation testing sequence one.

The segmentation output and detected triplets are from [8]

.

with a set of key frames from the testing sequences. Nevertheless, the method we

used here can 1) generalize the unknown segments into the category of object entities

and 2) generalize the unknown actions (those that do not exist in the training corpus)

into the category of action function. This is done by automatically generalizing the

following two types of lexicon entries using the inverse-λ technique from [162]:

Object [ID] :=N : object [ID]

Unknown :=(AP\NP )/NP : λx.λy.unknown(x, y)

Among the 90 detected triplets, using the learned lexicon we are able to parse

all of them into semantic representations. Here we pick the representation with

the highest probability after parsing as the individual action semantic representa-

tion. The “parsed semantics” rows of Fig. 6.3 and 6.4 show several example action

semantics on testing sequences. Taking the fourth sub-action from Fig. 6.4 as an

example, the visually detected triplets based on segmentation and spatial decom-
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Figure 6.4: System output on the 18th complex chained manipulation testing se-

quence. The segmentation output and detected triplets are from [8]

.

position is (Object 014, Chopping,Object 011). After semantic parsing, the system

predicts that divided(Object 011). The complete training corpus and parsed results

of the testing set will be made publicly available for future research.

6.5.5 Reasoning Beyond Observations

As mentioned before, because of the use of λ-calculus for representing action

semantics, the obtained data can naturally be used to do logical reasoning beyond

observations. This by itself is a very interesting research topic and it is beyond this

chapter’s scope. However by applying a couple of common sense Axioms on the

testing data, we can provide some flavor of this idea.

Case study one: See the “final action consequence and reasoning” row of

Fig. 6.3 for case one. Using propositional logic and axiom schema, we can represent

the common sense statement (“if an object x is contained in object y, and object z
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is on top of object y, then object z is on top of object x”) as follows:

Axiom (1): ∃x, y, z, contained(y, x) ∧ on top(z, y)→ on top(z, x).

Then it is trivial to deduce an additional final action consequence in this

scenario that (on top(object 007, object 009)). This matches the fact: the yellow

box which is put on top of the red bucket is also on top of the black ball.

Case study two: See the “final action consequence and reasoning” row of

Fig. 6.4 for a more complicated case. Using propositional logic and axiom schema,

we can represent three common sense statements:

1) “if an object y is contained in object x, and object z is contained in object

y, then object z is contained in object x”;

2) “if an object x is contained in object y, and object y is divided, then object

x is divided”;

3) “if an object x is contained in object y, and object y is on top of object z,

then object x is on top of object z” as follows:

Axiom (2): ∃x, y, z, contained(y, x) ∧ contained(z, y)→ contained(z, x).

Axiom (3): ∃x, y, contained(y, x) ∧ divided(y)→ divided(x).

Axiom (4): ∃x, y, z, contained(y, x) ∧ on top(y, z)→ on top(x, z).

With these common sense Axioms, the system is able to deduce several addi-

tional final action consequences in this scenario:

divided(object 005) ∧ divided(object 010)

∧ on top(object 005, object 012)

∧ on top(object 010, object 012).
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From Fig. 6.4, we can see that these additional consequences indeed match

the facts: 1) the bread and cheese which are covered by ham are also divided,

even though from observation the system only detected the ham being cut; 2) the

divided bread and cheese are also on top of the plate, even though from observation

the system only detected the ham being put on top of the plate.

We applied the four Axioms on the 20 testing action sequences and deduced

the “hidden” consequences from observation. To evaluate our system performance

quantitatively, we first annotated all the final action consequences (both obvious and

“hidden” ones) from the 20 testing sequences as ground-truth facts. In total there

are 122 consequences annotated. Using perception only [8], due to the decomposition

errors (such as the red font ones in Fig. 6.4) the system can detect 91 consequences

correctly, yielding a 74% correct rate. After applying the four Axioms and reasoning,

our system is able to detect 105 consequences correctly, yielding a 86% correct rate.

Overall, this is a 15.4% of improvement.

Here we want to mention a caveat: there are definitely other common sense

Axioms that we are not able to address in the current implementation. However,

from the case studies presented, we can see that using the presented formal frame-

work, our system is able to reason about manipulation action goals instead of just

observing what is happening visually. This capability is essential for intelligent

agents to imitate action goals from observation.
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Chapter 7: Procedural Learning: Robot Learning Manipulation Ac-

tion Plans by “Watching” Unconstrained Videos from the

World Wide Web

7.1 Introduction

The ability to learn actions from human demonstrations is one of the major

challenges for the development of intelligent systems. Particularly, manipulation

actions are very challenging, as there is large variation in the way they can be

performed and there are many occlusions.

Our ultimate goal is to build a self-learning robot that is able to enrich its

knowledge about fine grained manipulation actions by “watching” demo videos. In

this work we explicitly model actions that involve different kinds of grasping, and

aim at generating a sequence of atomic commands by processing unconstrained

videos from the World Wide Web (WWW).

The robotics community has been studying perception and control problems

of grasping for decades [36]. Recently, several learning based systems were reported

that infer contact points or how to grasp an object from its appearance [37, 38].

However, the desired grasping type could be different for the same target object,
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when used for different action goals. Traditionally, data about the grasp has been

acquired using motion capture gloves or hand trackers, such as the model-based

tracker of [32]. The acquisition of grasp information from video (without 3D infor-

mation) is still considered very difficult because of the large variation in appearance

and the occlusions of the hand from objects during manipulation.

Our premise is that actions of manipulation are represented at multiple levels

of abstraction. At lower levels the symbolic quantities are grounded in perception,

and at the high level a grammatical structure represents symbolic information (ob-

jects, grasping types, actions). With the recent development of deep neural network

approaches, our system integrates a CNN based object recognition and a CNN based

grasping type recognition module. The latter recognizes the subject’s grasping type

directly from image patches.

The grasp type is an essential component in the characterization of manip-

ulation actions. Just from the viewpoint of processing videos, the grasp contains

information about the action itself, and it can be used for prediction or as a feature

for recognition. It also contains information about the beginning and end of action

segments, thus it can be used to segment videos in time. If we are to perform the

action with a robot, knowledge about how to grasp the object is necessary so the

robot can arrange its effectors. For example, consider a humanoid with one parallel

gripper and one vacuum gripper. When a power grasp is desired, the robot should

select the vacuum gripper for a stable grasp, but when a precision grasp is desired,

the parallel gripper is a better choice. Thus, knowing the grasping type provides

information for the robot to plan the configuration of its effectors, or even the type
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of effector to use.

In order to perform a manipulation action, the robot also needs to learn what

tool to grasp and on what object to perform the action. Our system applies CNN

based recognition modules to recognize the objects and tools in the video. Then,

given the beliefs of the tool and object (from the output of the recognition), our

system predicts the most likely action using language, by mining a large corpus

using a technique similar to [25]. Putting everything together, the output from

the lower level visual perception system is in the form of (LeftHand GraspType1

Object1 Action RightHand GraspType2 Object2). We will refer to this septet of

quantities as visual sentence.

At the higher level of representation, we generate a symbolic command se-

quence. [30] proposed a context-free grammar and related operations to parse ma-

nipulation actions. However, their system only processed RGBD data from a con-

trolled lab environment. Furthermore, they did not consider the grasping type in the

grammar. This work extends [30] by modeling manipulation actions using a prob-

abilistic variant of the context free grammar, and explicitly modeling the grasping

type.

Using as input the belief distributions from the CNN based visual perception

system, a Viterbi probabilistic parser is used to represent actions in form of a hier-

archical and recursive tree structure. This structure innately encodes the order of

atomic actions in a sequence, and forms the basic unit of our knowledge represen-

tation. By reverse parsing it, our system is able to generate a sequence of atomic

commands in predicate form, i.e. as Action(Subject, Patient) plus the temporal
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information necessary to guide the robot. This information can then be used to

control the robot effectors [139].

Our contributions are twofold. (1) A convolutional neural network (CNN)

based method has been adopted to achieve state-of-the-art performance in grasping

type classification and object recognition on unconstrained video data; (2) a system

for learning information about human manipulation action has been developed that

links lower level visual perception and higher level semantic structures through a

probabilistic manipulation action grammar.

7.2 Related Works

Most work on learning from demonstrations in robotics has been conducted

in fully controlled lab environments [14]. Many of the approaches rely on RGBD

sensors [18], motion sensors [107, 133] or specific color markers [19]. The proposed

systems are fragile in real world situations. Also, the amount of data used for

learning is usually quite small. It is extremely difficult to learn automatically from

data available on the internet, for example from unconstrained cooking videos from

Youtube. The main reason is that the large variation in the scenery will not allow

traditional feature extraction and learning mechanism to work robustly.

At the high level, a number of studies on robotic manipulation actions have

proposed ways on how instructions are stored and analyzed, often as sequences.

Work by [163], among others, investigates how to compare sequences in order to

reason about manipulation actions using sequence alignment methods, which bor-
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row techniques from informatics. This chapter proposes a more detailed representa-

tion of manipulation actions, the grammar trees, extending earlier work. Chomsky

in [148] suggested that a minimalist generative grammar, similar to the one of hu-

man language, also exists for action understanding and execution. The works closest

related to this chapter are [17, 18, 30, 31]. [17] first discussed a Chomskyan gram-

mar for understanding complex actions as a theoretical concept, [18] provided an

implementation of such a grammar using as perceptual input only objects. [30] pro-

posed a set of context-free grammar rules for manipulation action understanding.

However, their system used data collected in a lab environment. Here we process

unconstrained data from the internet. In order to deal with the noisy visual data,

we extend the manipulation action grammar and adapt the parsing algorithm.

The recent development of deep neural networks based approaches revolution-

ized visual recognition research. The work presented in this chapter shows that with

the recent developments of deep neural networks in computer vision, it is possible

to learn manipulation actions from unconstrained demonstrations using CNN based

visual perception.

7.3 Our Approach

We developed a system to learn manipulation actions from unconstrained

videos. The system takes advantage of: (1) the robustness from CNN based vi-

sual processing; (2) the generality of an action grammar based parser. Figure7.1

shows our integrated approach.
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Figure 7.1: The integrated system reported in this work.

7.3.1 CNN based visual recognition

The system consists of two visual recognition modules, one for classification

of grasping types and the other for recognition of objects. In both modules we used

convolutional neural networks as classifiers. First, we briefly summarize the basic

concepts of Convolutional Neural Networks, and then we present our implementa-

tions.

7.3.1.1 Convolutional Neural Network

(CNN) is a multilayer learning framework, which may consist of an input layer,

a few convolutional layers and an output layer. The goal of CNN is to learn a hi-

erarchy of feature representations. Response maps in each layer are convolved with

a number of filters and further down-sampled by pooling operations. These pooling

operations aggregate values in a smaller region by downsampling functions includ-

ing max, min, and average sampling. The learning in CNN is based on Stochastic
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Gradient Descent (SGD), which includes two main operations: Forward and Back-

Propagation. Please refer to [49] for details.

We used a seven layer CNN (including the input layer and two perception

layers for regression output). The first convolution layer has 32 filters of size 5× 5,

the second convolution layer has 32 filters of size 5 × 5, and the third convolution

layer has 64 filters of size 5 × 5, respectively. The first perception layer has 64

regression outputs and the final perception layer has 6 regression outputs. Our

system considers 6 grasping type classes.

7.3.1.2 Grasping Type Recognition

A number of grasping taxonomies have been proposed in several areas of re-

search, including robotics, developmental medicine, and biomechanics, each focusing

on different aspects of action. In a recent survey [47] reported 45 grasp types in the

literature, of which only 33 were found valid. In this work, we use a categorization

into six grasping types. First we distinguish, according to the most commonly used

classification (based on functionality) into power and precision grasps [48]. Power

grasping is used when the object needs to be held firmly in order to apply force,

such as “grasping a knife to cut”; precision grasping is used in order to do fine grain

actions that require accuracy, such as “pinch a needle”. We then further distinguish

among the power grasps, whether they are spherical, or otherwise (usually cylin-

drical), and we distinguish the latter according to the grasping diameter, into large

diameter and small diameter ones. Similarly, we distinguish the precision grasps
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into large and small diameter ones. Additionally, we also consider a Rest position

(no grasping performed). Table 7.1 illustrates our grasp categories. We denote the

list of these six grasps as G in the remainder of the chapter.

Grasping

Types
Small Diameter Large Diameter Spherical & Rest

Power

Precision

Table 7.1: The list of the grasping types.

The input to the grasping type recognition module is a gray-scale image patch

around the target hand performing the grasping. We resize each patch to 32 × 32

pixels, and subtract the global mean obtained from the training data.

For each testing video with M frames, we pass the target hand patches (left

hand and right hand, if present) frame by frame, and we obtain an output of size

6×M . We sum it up along the temporal dimension and then normalize the output.

We use the classification for both hands to obtain (GraspType1) for the left hand,

and (GraspType2) for the right hand. For the video of M frames the grasping type

recognition system outputs two belief distributions of size 6 × 1: PGraspType1 and

PGraspType2.
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7.3.1.3 Object Recognition and Corpus Guided Action Prediction

The input to the object recognition module is an RGB image patch around

the target object. We resize each patch to 32 × 32 × 3 pixels, and we subtract the

global mean obtained from the training data.

Similar to the grasping type recognition module, we also used a seven layer

CNN. The network structure is the same as before, except that the final perception

layer has 48 regression outputs. Our system considers 48 object classes, and we

denote this candidate object list as O in the rest of the chapter. Table 7.2 lists the

object classes.

apple, blender, bowl, bread, brocolli, brush, butter, carrot,

chicken, chocolate, corn, creamcheese, croutons, cucumber,

cup, doughnut, egg, fish, flour, fork, hen, jelly, knife, lemon,

lettuce, meat, milk, mustard, oil, onion, pan, peanutbutter,

pepper, pitcher, plate, pot, salmon, salt, spatula, spoon,

spreader, steak, sugar, tomato, tongs, turkey, whisk, yogurt.

Table 7.2: The list of the objects considered in our system.

For each testing video with M frames, we pass the target object patches frame

by frame, and get an output of size 48 × M . We sum it up along the temporal

dimension and then normalize the output. We classify two objects in the image:

(Object1) and (Object2). At the end of classification, the object recognition system

outputs two belief distributions of size 48× 1: PObject1 and PObject2.

We also need the ‘Action’ that was performed. Due to the large variations
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in the video, the visual recognition of actions is difficult. Our system bypasses this

problem by using a trained language model. The model predicts the most likely verb

(Action) associated with the objects (Object1, Object2). In order to do prediction,

we need a set of candidate actions V . Here, we consider the top 10 most common

actions in cooking scenarios. They are (Cut, Pour, Transfer, Spread, Grip, Stir,

Sprinkle, Chop, Peel, Mix). The same technique, used here, was used before on a

larger set of candidate actions [25].

We compute from the Gigaword corpus [76] the probability of a verb occurring,

given the detected nouns, P (Action|Object1, Object2). We do this by computing

the log-likelihood ratio [102] of trigrams (Object1, Action, Object2), computed from

the sentence in the English Gigaword corpus [76]. This is done by extracting only the

words in the corpus that are defined in O and V (including their synonyms). This

way we obtain a reduced corpus sequence from which we obtain our target trigrams.

The log-likelihood ratios computed for all possible trigrams are then normalized to

obtain P (Action|Object1, Object2). For each testing video, we can compute a belief

distribution over the candidate action set V of size 10× 1 as :

PAction =
∑

Object1∈O

∑
Object2∈O

P (Action|Object1, Object2)

× PObject1 × PObject2. (7.1)

7.3.2 From Recognitions to Action Trees

The output of our visual system are belief distributions of the object categories,

grasping types, and actions. However, they are not sufficient for executing actions.

The robot also needs to understand the hierarchical and recursive structure of the
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action. We argue that grammar trees, similar to those used in linguistics analysis,

are a good representation capturing the structure of actions. Therefore we integrate

our visual system with a manipulation action grammar based parsing module [30].

Since the output of our visual system is probabilistic, we extend the grammar to a

probabilistic one and apply the Viterbi probabilistic parser to select the parse tree

with the highest likelihood among the possible candidates.

7.3.2.1 Manipulation Action Grammar

We made two extensions from the original manipulation grammar [30]: (i)

Since grasping is conceptually different from other actions, and our system employs

a CNN based recognition module to extract the model grasping type, we assign

an additional nonterminal symbol G to represent the grasp. (ii) To accommodate

the probabilistic output from the processing of unconstrained videos, we extend the

manipulation action grammar into a probabilistic one.

The design of this grammar is motivated by three observations: (i) Hands are

the main driving force in manipulation actions, so a specialized nonterminal symbol

H is used for their representation; (ii) an action (A) or a grasping (G) can be

applied to an object (O) directly or to a hand phrase (HP ), which in turn contains

an object (O), as encoded in Rule (1), which builds up an action phrase (AP );

(iii) an action phrase (AP ) can be combined either with the hand (H) or a hand

phrase, as encoded in rule (2), which recursively builds up the hand phrase. The

rules discussed in Table 7.3 form the syntactic rules of the grammar.
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To make the grammar probabilistic, we first treat each sub-rule in rules (1) and

(2) equally, and assign equal probability to each sub-rule. With regard to the hand

H in rule (3), we only consider a robot with two effectors (arms), and assign equal

probability to ‘LeftHand’ and ‘RightHand’. For the terminal rules (4-8), we assign

the normalized belief distributions (PObject1, PObject2, PGraspType1, PGraspType2,PAction)

obtained from the visual processes to each candidate object, grasping type and

action.

AP → G1 O1 | G2 O2 | A O2 | A HP 0.25 (1)

HP → H AP | HP AP 0.5 (2)

H → ‘LeftHand′ | ‘RightHand′ 0.5 (3)

G1 → ‘GraspType1′ PGraspType1 (4)

G2 → ‘GraspType2′ PGraspType2 (5)

O1 → ‘Object1′ PObject1 (6)

O2 → ‘Object2′ PObject2 (7)

A → ‘Action′ PAction (8)

Table 7.3: A Probabilistic Extension of Manipulation Action Context-Free Gram-

mar.

7.3.2.2 Parsing and tree generation

We use a bottom-up variation of the probabilistic context-free grammar parser

that uses dynamic programming (best-known as Viterbi parser [164]) to find the

most likely parse for an input visual sentence. The Viterbi parser parses the visual

sentence by filling in the most likely constituent table, and the parser uses the

grammar introduced in Table 7.3. For each testing video, our system outputs the

most likely parse tree of the specific manipulation action. By reversely parsing the
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tree structure, the robot could derive an action plan for execution. Figure 7.3 shows

sample output trees, and Table 7.4 shows the final control commands generated by

reverse parsing.

7.4 Experiments

The theoretical framework we have presented suggests two hypotheses that

deserve empirical tests: (a) the CNN based object recognition module and the

grasping type recognition module can robustly recognize input frame patches from

unconstrained videos into correct class labels; (b) the integrated system using the

Viterbi parser with the probabilistic extension of the manipulation action grammar

can generate a sequence of execution commands robustly.

To test the two hypotheses empirically, we need to define a set of performance

variables and how they relate to our predicted results. The first hypothesis relates

to visual recognition, and we can empirically test it by measuring the precision and

recall metrics by comparing the detected object and grasping type labels with the

ground truth ones. The second hypothesis relates to execution command generation,

and we can also empirically test it by comparing the generated command predicates

with the ground truth ones on testing videos. To validate our system, we conducted

experiments on an extended version of a publicly available unconstrained cooking

video dataset (YouCook) [53].
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7.4.1 Dataset and experimental settings

Cooking is an activity, requiring a variety of manipulation actions, that future

service robots most likely need to learn. We conducted our experiments on a publicly

available cooking video dataset collected from the WWW and fully labeled, called

the Youtube cooking dataset (YouCook) [53]. The data was prepared from 88 open-

source Youtube cooking videos with unconstrained third-person view. Frame-by-

frame object annotations are provided for 49 out of the 88 videos. These features

make it a good empirical testing bed for our hypotheses.

We conducted our experiments using the following protocols: (1) 12 video

clips, which contain one typical kitchen action each, are reserved for testing; (2)

all other video frames are used for training; (3) we randomly reserve 10% of the

training data as validation set for training the CNNs.

For training the grasping type, we extended the dataset by annotating image

patches containing hands in the training videos. The image patches were converted

to gray-scale and then resized to 32×32 pixels. The training set contains 1525 image

patches and was labeled with the six grasping types. We used a GPU based CNN

implementation [54] to train the neural network, following the structures described.

For training the object recognition CNN, we first extracted annotated image

patches from the labeled training videos, and then resized them to 32 × 32 × 3.

We used the same GPU based CNN implementation to train the neural network,

following the structures described above.

For localizing hands on the testing data, we first applied the hand detector
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from [2] and picked the top two hand patch proposals (left hand and right hand,

if present). For objects, we trained general object detectors from labeled train-

ing data using techniques from [165]. Furthermore we associated candidate object

patches with the left or right hand, respectively depending on which had the smaller

Euclidean distance.

7.4.2 Grasping Type and Object Recognition

On the reserved 10% validation data, the grasping type recognition module

achieved an average precision of 77% and an average recall of 76%. On the reserved

10% validation data, the object recognition module achieved an average precision

of 93%, and an average recall of 93%. Figure 7.2 shows the confusion matrices for

grasping type and object recognition, respectively. From the figure we can see the

robustness of the recognition.

Figure 7.2: Confusion matrices. Left: grasping type; Right: object.

The performance of the object and grasping type recognition modules is also

reflected in the commands that our system generated from the testing videos. We
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observed an overall recognition accuracy of 79% on objects, of 91% on grasping types

and of 83% on predicted actions (see Table 7.4). It is worth mentioning that in the

generated commands the performance in the recognition of object drops, because

some of the objects in the testing sequences do not have training data, such as

“Tofu”. The performance in the classification of grasping type goes up, because we

sum up the grasping types belief distributions over the frames, which helps to smooth

out wrong labels. The performance metrics reported here empirically support our

hypothesis (a).

7.4.3 Visual Sentence Parsing and Commands Generation for Robots

Following the probabilistic action grammar from Table 7.3, we built upon

the implementation of the Viterbi parser from the Natural Language Processing

Kit [166] to generate the single most likely parse tree from the probabilistic visual

sentence input. Figure 7.3 shows the sample visual processing outputs and final

parse trees obtained using our integrated system. Table 7.4 lists the commands

generated by our system on the reserved 12 testing videos, shown together with the

ground truth commands (LH:LeftHand; RH: RightHand; PoS: Power-Small; PoL:

Power-Large; PoP: Power-Spherical; PrS: Precision-Small; PrL: Precision-Large).

The overall percentage of correct commands is 68%. Note, that we considered

a command predicate wrong, if any of the object, grasping type or action was

recognized incorrectly. The performance metrics reported here, empirically support

our hypothesis (b).
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Figure 7.3: Upper row: input unconstrained video frames; Lower left: color coded

(see lengend at the bottom) visual recognition output frame by frame along timeline;

Lower right: the most likely parse tree generated for each clip.
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Snapshot Ground Truth Commands Learned Commands

Grasp PoS(LH, Knife)

Grasp PrS(RH, Tofu)

Action Cut(Knife, Tofu)

Grasp PoS(LH, Knife)

Grasp PrS(RH, Bowl)

Action Cut(Knife, Bowl)
Grasp PoS(LH, Blender)

Grasp PrL(RH, Bowl)

Action Blend(Blender, Bowl)

Grasp PoS(LH, Bowl)

Grasp PoL(RH, Bowl)

Action Pour(Bowl, Bowl)
Grasp PoS(LH, Tongs)

Action Grip(Tongs, Chicken)

Grasp PoS(LH, Chicken)

Action Cut(Chicken, Chicken)
Grasp PoS(LH, Brush)

Grasp PrS(RH, Corn)

Action Spread(Brush, Corn)

Grasp PoS(LH, Brush)

Grasp PrS(RH, Corn)

Action Spread(Brush, Corn)
Grasp PoS(LH, Tongs)

Action Grip(Tongs, Steak)

Grasp PoS(LH, Tongs)

Action Grip(Tongs, Steak)
Grasp PoS(LH, Spreader)

Grasp PrL(RH, Bread)

Action Spread(Spreader, Bread)

Grasp PoS(LH, Spreader)

Grasp PrL(RH, Bowl)

Action Spread(Spreader, Bowl)
Grasp PoL(LH, Mustard)

Grasp PrS(RH, Bread)

Action Spread(Mustard, Bread)

Grasp PoL(LH, Mustard)

Grasp PrS(RH, Bread)

Action Spread(Mustard, Bread)
Grasp PoS(LH, Spatula)

Grasp PrS(RH, Bowl)

Action Stir(Spatula, Bowl)

Grasp PoS(LH, Spatula)

Grasp PrS(RH, Bowl)

Action Stir(Spatula, Bowl)
Grasp PoL(LH, Pepper)

Grasp PoL(RH, Pepper)

Action Sprinkle(Pepper, Bowl)

Grasp PoL(LH, Pepper)

Grasp PoL(RH, Pepper)

Action Sprinkle(Pepper, Pepper)
Grasp PoS(LH, Knife)

Grasp PrS(RH, Lemon)

Action Cut(Knife, Lemon)

Grasp PoS(LH, Knife)

Grasp PrS(RH, Lemon)

Action Cut(Knife, Lemon)
Grasp PoS(LH, Knife)

Grasp PrS(RH, Broccoli)

Action Cut(Knife, Broccoli)

Grasp PoS(LH, Knife)

Grasp PoL(RH, Broccoli)

Action Cut(Knife, Broccoli)
Grasp PoS(LH, Whisk)

Grasp PrL(RH, Bowl)

Action Stir(Whisk, Bowl)

Grasp PoS(LH, Whisk)

Grasp PrL(RH, Bowl)

Action Stir(Whisk, Bowl)

Overall

Recognition

Accuracy

Object: 79%

Grasping type: 91%

Action: 83%

Overall percentage of

correct commands: 68%

Table 7.4: Incorrect entities learned are marked in red.
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7.4.4 Discussion

The performance metrics reported in the experiment section empirically sup-

port our hypotheses that: (1) our system is able to robustly extract visual sentences

with high accuracy; (2) our system can learn atomic action commands with few

errors compared to the ground-truth commands. We believe this preliminary inte-

grated system raises hope towards a fully intelligent robot for manipulation tasks

that can automatically enrich its own knowledge resource by “watching” recordings

from the World Wide Web.
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Chapter 8: Concluding Remarks and Future Work

8.1 Concluding Remarks

In Chapter. 2, the experiments produced three results: (i) we achieved in av-

erage 59% accuracy using the CNN based method for grasp type recognition from

unconstrained image patches; (ii) we achieved in average 65% prediction accuracy

in inferring human intention using the grasp type only; (iii) using the grasp type

temporal evolution, we achieved 78% recall and 80% precision in fine grain ma-

nipulation action segmentation tasks. Overall, the empirical results support our

hypotheses (a-c) respectively. Recognizing grasp type and its use in inference for

human action intention and fine level segmentation of human manipulation actions,

are novel problems in computer vision. We have proposed a CNN based learning

framework to address these problems with decent success. We hope our contribu-

tions can help advance the field of static scene understanding and human action

fine level analysis, and we hope that they can be useful to other researchers in other

applications. Additionally, we augmented a currently available hand data set and a

cooking data set with grasp type labels, and provided human action intention labels

for a subset of them, for future research.

Chapter. 3 has shown a principled approach of integrating large scale lan-
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guage corpora for the purpose of action recognition in videos involving hand-tools.

We validated our approach in both supervised and unsupervised scenarios and out-

performed the current state-of-the-art STIP+BoW features significantly. These re-

sults demonstrate the strength of using language which encodes the intrinsic rela-

tionships between tools and actions, leveraging it to aid in the action recognition

task. In this chapter, we also have introduced a computationally feasible framework

that integrates visual perception together with semantic grounding obtained from

a large textual corpus for the purpose of generating a descriptive sentence of an

image. Experimental results show that our approach produces sentences that are

both relevant and readable.

A system for detecting action consequences and classifying videos of manipu-

lation action according to action consequences has been proposed in Chapter. 4. A

dataset has been provided, which includes both data that we collected and eligible

manipulation action video sequences from other publicly available datasets. Experi-

mental results were performed that validate our method, and at the same time point

out several weaknesses for future improvement.

In Chapter. 5, we presented a cognitive system for understanding human ma-

nipulation actions. The system integrates vision modules that ground semanti-

cally meaningful events in perceptual input with a reasoning module based on a

context-free grammar and associated parsing algorithms, which dynamically build

the sequence of structural representations. Experimental results showed that the

cognitive system can extract the key events from the raw input and can interpret

the observations by generating a sequence of tree structures.
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In Chapter.6 we presented a formal computational framework for modeling

manipulation actions based on a Combinatory Categorial Grammar. An empirical

study on a large manipulation action dataset validates that 1) with the introduced

formalism, a learning system can be devised to deduce the semantic meaning of

manipulation actions in λ-schema; 2) with the learned schema and several common

sense Axioms, our system is able to reason beyond just observation and deduce

“hidden” action consequences, yielding a decent performance improvement.

In Chapter. 7 we presented an approach to learn manipulation action plans

from unconstrained videos for cognitive robots. Two convolutional neural network

based recognition modules (for grasping type and objects respectively), as well as a

language model for action prediction, compose the lower level of the approach. The

probabilistic manipulation action grammar based Viterbi parsing module is at the

higher level, and its goal is to generate atomic commands in predicate form. We

conducted experiments on a cooking dataset which consists of unconstrained demon-

stration videos. From the performance on this challenging dataset, we can conclude

that our system is able to recognize and generate action commands robustly.

8.2 Future Work

Our experiments in Chapter. 2 indicate that there is still significant space

for improving the recognition of grasp type and inference of human intention. We

believe that advances in understanding high-level cognitive structure underlying

human intention can help improve the performance. With the development of deep
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learning systems and more data, we can also expect a robust grasp type recognition

system beyond the seven categories used. Moreover, we believe that progress in

natural language processing, such as mining the relationship between grasp type and

actions, can advance high-level reasoning about human action intention to improve

computer vision methods.

Our approach presented in Chapter. 3 goes beyond action recognition and can

be extended to other vision problems faced in robotics with a more careful treatment

of language [167]. Progress in the areas of object recognition, image segmentation

and general scene understanding have been slow as these problems require semantic

grounding. Language, when exploited properly, provides for this. For e.g. using

shallow-parsing or Named-Entity Recognition to improve PL predictions and subse-

quently Fd; or performing a dependency parse to reduce the need to use synonyms

to extract the tool and related verb from a sentence more accurately. An important

limitation of our current approach is that we need to know in advance the action

labels and tools of the video. We are currently working on approaches to discover,

using attributes of the potential tool and action features obtained from the video,

a prediction of the tool and action labels directly from language. The potential

world-knowledge embedded in language, along with its complexities, was clearly

demonstrated with Watson in Jeopardy! which set a milestone in AI. We believe it

will do the same for vision and robotics in the near future.

There are instances where our strategy presented in Chapter. 3 fails to pre-

dict the appropriate verbs or nouns (see Fig. 3.18). This is due to the fact that

object/scene detections can be wrong and noise from the corpus itself remains a
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problem. Compared to human gold standards, therefore, much work still remains

in terms of detecting these objects and scenes with high precision. Currently, at

most two object classes are used to generate simple sentences which was shown in

the results to have penalized the relevance score of our approach. This can be ad-

dressed by designing more complex HMMs to handle larger numbers of object and

verb classes. Another interesting direction of future work would be to detect salient

objects, learned from training image+corpus or eye-movement data, and to verify

if these objects aid in improving the descriptive sentences we generate. Another

potential application of representing images using T ∗ is that we can easily sort and

retrieve images that are similar in terms of their semantic content. This would en-

able us to retrieve, for example, more relevant images given a verbal search query

such as {ride,sit,fly}, returning images where these verbs are found in T ∗. Some

results of retrieved images based on their verbal components are shown in Fig. 8.1:

many images with dissimilar visual content are correctly classified based on their

semantic meaning.

In Chapter. 4, to avoid the influence from the manipulating hands, especially

occlusions caused by hands, a hand detection and segmentation algorithm can be

applied. Then we can design a hallucination process to complete the contour of

the occluded object under manipulation. Preliminary results are shown in Fig. 8.2.

However, resolving the ambiguity between occlusion and deformation from visual

analysis is a difficult task that requires further attention.

In Chapter. 5, since the grammar does not assume constraints such as the

number of operators, it can be further adapted to process scenarios with multiple
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Figure 8.1: Images retrieved from 3 verbal search terms: ride,sit,fly.

Figure 8.2: A hallucination process of contour completion (paint stone sequence in

MAC 1.0). Left: original segments; Middle: contour hallucination with second order

polynomials fitting (green lines); Right: final hallucinated contour.
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agents doing complicated manipulation actions once the perception tools have been

developed. Moreover, we also plan to investigate operations that enable the system

to reason during observation. After the system observes a significant number of

manipulation actions, it can build a database of all sequences of trees [168]. By

querying this database, we expect the system to predict things such as which object

will be manipulated next or which action will follow. Also, the action trees could

be learned not only from observation but also from language resources, such as

dictionaries, recipes, manuals etc. This link to computational linguistics constitutes

an interesting avenue for future research.

In Chapter. 6, due to the limitation of current testing scenarios, we conducted

experiments only considering a relatively small set of seed lexicon rules and logical

expressions. Nevertheless, we want to mention that the presented CCG framework

can also be extended to learn the formal logic representation of more complex manip-

ulation action semantics. For example, the temporal order of manipulation actions

can be modeled by considering a seed rule such as AP\AP : λf.λg.before(f(·), g(·)),

where before(·, ·) is a temporal predicate. For actions we consider seed main type

(AP\NP )/NP . For more general manipulation scenarios, based on whether the

action is transitive or intransitive, the main types of action can be extended to

include AP\NP . Moreover, the logical expressions can also be extended to in-

clude universal quantification ∀ and existential quantification ∃. Thus, manipula-

tion action such as “knife cut every tomato” can be parsed into a representation

as ∀x.tomato(x) ∧ cut(knife, x) → divided(x) (the parse is given in the following

chart). Here, the concept “every” has a main type of NP\NP and semantic mean-
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ing of ∀x.f(x). The same framework can also extended to have other combinatory

rules such as composition and type-raising [154].

Knife Cut every Tomato

N N

NP (AP\NP)/NP NP\NP NP
knife λx .λy .cut(x , y) ∀x .f (x ) tomato
knife → divided(y) ∀x .f (x ) tomato

>

NP
∀x .tomato(x )

>

AP\NP
∀y .λx .tomato(y) ∧ cut(x , y)→ divided(y)

<

AP
∀y .tomato(y) ∧ cut(knife, y)→ divided(y)

8.3 Final Remarks

The presented framework enables an intelligent agent to predict and reason ac-

tion goals from observation, and thus has many potential applications such as human

intention prediction, robot action policy planning and human robot collaboration.

We believe that our formalism of manipulation actions bridges computational lin-

guistics, vision and robotics, and opens further research in Artificial Intelligence

and Robotics. As the robotics industry is moving towards robots that function

safely, effectively and autonomously to perform tasks in real-world unstructured en-

vironments, they will need to be able to understand the meaning of manipulation

actions and acquire human-like common-sense reasoning capabilities (please refer

to [169, 170] for pilot studies of scene understanding with common-sense reasoning

178



and knowledge).

Some parts of this thesis have been integrated into a pilot robotic system

running on a Baxter research humanoid to visually learn manipulation actions (such

as making a drink) from observing human doing it1. These direct applications

of the techniques presented in this thesis could potentially 1) reduce the costly

reprogramming time to teach industrial or domestic robots new tasks, 2) increase

the level of flexibility and adaptivity for current robotic systems, and 3) enrich

robots’ procedural knowledge through a continuous learning process.

1A live recording of the system could be found at http://www.umiacs.umd.edu/~yzyang/

WaitWhatDemo
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