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Abstract. Scientific codes which use iterative methods are often diffi-
cult to parallelize well. Such codes usually contain while loops which
iterate until they converge upon the solution. Problems arise since the
number of iterations cannot be determined at compile time, and tests for
termination usually require a global reduction and an associated barrier.
We present a method which allows us avoid performing global barri-
ers and exploit pipelined parallelism when processors can detect non-
convergence from local information.

1 Introduction

Many scientific programs solve problems iteratively; that is, they compute an
approximation to a solution, check if the approximation is sufficiently accurate
(check for convergence), and conditionally perform another iteration.

In most instances, the loops inside the while are parallel, with data only
needing to be communicated from one iteration to the next. However, the conver-
gence test requires a global reduction and barrier, which can impose substantial
performance penalties on some systems.

In a few cases, such as when a natural ordering is used in a relaxation al-
gorithm, the inner loops carry dependencies and cannot be run in parallel. To
exploit parallelism in these loops, a number of researchers [1,4,5,2,7,3] have pro-
posed speculative execution: a wavefront technique is used to execute the program
in parallel, despite the fact that all loops carry dependences. Since this ignores
the termination condition of the while loop, iterations of the while loop are
executed speculatively until each iteration is completely executed and it can be
determined that the loop will continue past that iteration.

For both of these situations, we propose that we recognize and exploit a com-
mon pattern: that the convergence condition depends monotonically on looking
at more and more data: if, from looking at a subset of the data we can determine
that the while loop has not terminated, looking at more data will not change
that decision.

In particular, each processor can check to see it can determine that a while
loop continues just from looking at local data. If so, it can start on the next
iteration without waiting for the global reduction to complete. Figure 1 shows



the advantages conferred by eliminating this dependency. In programs where the
body of the while loop can be executed in parallel, this allows us to avoid the
penalties imposed by a global barrier. In the case where the body of the while
loop contains dependences, this can often allow us to obtain doacross/pipelined
parallelism.

If this idea is to be exploited, it is important that it be provided or supported
by the compiler. Unless the program is written in explicitly parallel form, there
is no way for a user to write a program that computes a reduction on just all
local data, and then goes on to compute a global reduction if needed.
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In this paper, we discuss:

— What is required to recognize such patterns

— What code must be generated to exploit such patterns

— Experimental studies for the benchmarks SOR with Chebyshev acceleration
and tomcatv.



2 Exploiting local information

In checking for convergence, the costs involved are the wait incurred by all pro-
cessors while the result is computed, and that of the communication and syn-
chronization associated with the reduction. To avoid these costs, we would like
to do as much computation as possible on the local processor, and we would like
to determine as quickly as possible the outcome of the convergence check. Specif-
ically, if any processor could determine locally that the computation would not
converge at this iteration, it could continue execution without fear that results
could not be used. In this section, we first describe how to detect opportunities
for this optimization; then we describe how we transform the program to take
advantage of these properties.

2.1 Detecting monotone convergence functions

There are two aspects to detecting when our optimization can be applied. First,
we need to detect the fact that the program has the loop structure that makes
our optimization possible. Second, we need to determine if the function that
checks for convergence has the monotonicity property we require.

Since it is a well-studied problem, we assume that any while loops that exist
implicitly (with if statements and gotos) have already been recognized. Rec-
ognizing the pattern is then straightforward. We look for a pattern in which
there is an outermost while loop, followed by a nest of for loops, and finally
containing a global reduction, with a scalar data dependence to the while loop
test.

The second aspect is detecting that the condition checking while loop termi-
nation can be computed locally with only a portion of the data. In other words,
adding more data from other processors will not change the result of the func-
tion, and the result of the condition will change only once, from false to true.
We wish to detect a number of common cases that can be recognized without
extensive analysis. One condition which meets this criterion is checking if x > v,
where x is the result of a reduction that is non-decreasing as more data is added,
and y is a value that can be computed locally and is identical on all processors.
In iterative codes, this pattern exists when checking to see if the current solution
exceeds the acceptable error. Analogously, < y works when « is the result of a
non-increasing function. A conjunction or disjunction of such conditions is also
acceptable, as is a conjunction with a condition on the maximum number of
iterations to perform (or any other scalar condition that can be computed on
each processor from local data). Since this pattern is common in iterative codes,
recognizing this pattern is sufficient for a number of programs.

Now we must characterize functions which are non-decreasing or non-increas-
ing:

— Sum of non-negative numbers (as from absolute value or square)
— Maximum reductions

Non-increasing:



— Minimum reductions

If 1,2 are results of non-decreasing (non-increasing) functions, the following
are non-decreasing (non-increasing):

— /71, if 1 is known to be positive
— x1 * T, if x; and x5 both positive (negative)
— x1 *y or x1/y, where y is non-negative and invariant in the while loop

As an example, here are three commonly-used non-decreasing norms that fall
into this category:

— ||#||, (infinity norm) : max}; |x;|
— ||z[],, (second norm) ' Yo a?
~ ally (first norm) ; 37 [l

It is feasible to detect these patterns in many real codes. In more compli-
cated codes, a user directive might be useful to inform the compiler that the
optimization is possible.

2.2 Changes to the code

In this section, we describe how the modified program will proceed on each
Processor.

New variables In order to take advantage of partial information about con-
vergence, we need to keep track of several quantities in addition to the original
program variables. These variables fall into two categories: first, those that record
progress on the each processor, and those that record progress across all proces-
sors. One processor is designated as the master processor, which will handle the
global reduction.

Each processor must keep track of how many iterations w of the while loop
it has executed. This is necessary in order to provide the basis for processors to
compare their relative progress through the program.

The master processor handles the remaining variables. First, it must record
information about the global progress. If it is known that iteration w of the
while loop will be executed, then it follows that all iterations w’ < w will also
be executed. Therefore, the designated processor only need to know the number
of Wyqe, the last iteration that is known not to converge. Each local processor
keeps a local copy of this variable, local_w,qz.

The master processor must also combine partial reduction results. For iter-
ation wyqz, some processors may have completed their portion of the compu-
tation, but found that their portion of the reduction was not enough to prove
non-convergence. The master processor accumulates results from each processor
that has completed iteration w,,q., to determine if a combination of individual
contributions can prove non-convergence. In addition, on the last iteration, the
accumulation represents the result of the global reduction once all processors
have finished.



for(n = 1; n<= MAXITS; n++)
local_rnorm = 0.0;
jsw = 1;
for(ipass=1; ipass<=2; ipass++)
lsw = jsw;
for(j = 2; j < jmax; j++)
for(l = local_min+lsw+1;
1<local_max;
1+=2)
resid=...

for(n = 1; n<= MAXITS; n++)
rnorm = 0.0;
jsw = 1;
for(ipass=1; ipass<=2; ipass++)
lsw = jsw;
for(j = 2; j < jmax; j++)

local_rnorm += fabs(resid);
uljl1[1] -= omega*resid/-4;

lsw=3-1sw;
for(l = lsw+l; 1l<jmax; 1+=2) ST S
. jsw = 3-jsw;
resid=... omega= K
rnorm += fabs(resid); // Chick‘;;;mination locall
u[j1[1] -= omega*resid/-4; v =0 v
'sisﬁ=2:%z:f if (! w < local_w_max)
J J8W; send(master_proc, w, local_rnorm)
omega=...;

if (! local_rnorm < EPS)
// Can’t proceed on local
// information

if (rnorm < EPS) return;

receive(master_proc, new_w);
if (new_w == TERMINATE)
return;
else
local_w_max = new_w;

Fig. 2. Pseudo-code for SOR with Chebyshev acceleration, before and after transfor-
mation

Checking non-convergence In this section, we describe how an individual
processor decides whether it can safely proceed to the next iteration without
waiting for the result of the global reduction.

Each processor p can proceed without waiting if local w.,qp > w, + 1; that
is, another processor has already detected non-convergence at iteration w, and
that information was sent to p in a previous iteration.

Otherwise, the processor performs its local portion of the reduction. If it
indicates non-convergence, it sends a pair of values (w, local_reduction) to the
master processor, and continues to the next while iteration.

If the local reduction does not allow p to continue, it sends the values as
above, and waits for a reply from the master processor. The reply will be either
an iteration number, indicating that it is safe to go on, or a message that the
program should terminate. If the response indicates non-convergence, the pro-
cessor p saves the iteration number into local w4, , allowing it to avoid checking
again until w, = local Wyqz-



The master processor operates as follows. Upon receiving a pair of values
(wp, reduction,) from a processor p, it checks the global progress as indicated
by Wimaz- If Wy < Wiae, this message does not help prove more progress through
the program. If reduction, shows that p was not able to prove non-convergence
by itself, p must be waiting for a reply, and w4, is returned; reduction, is
discarded as unnecessary. If w, = w4z, then the reduction, portion is added
into the growing global reduction. If the most recent contribution is enough to
detect non-convergence, then the master processor sets wWpq, to w, + 1, and
sends it to all waiting processors to indicate that they can proceed (including p
if reduction, was not sufficient by itself to prove this fact). Finally, if the master
processor still cannot tell that the loop will continue after w.,q., it adds p to the
list of waiting processors and waits for more data.

If p is the last processor to report, and the master processor finds that the
computation has converged, the master processor sends a message indicating
termination to all processors. The partial reduction now contains the value for
the global reduction.

An improvement to this scheme is to delay performing reduction communi-
cation between the worker processors and the master processor until at least one
processor needs help in proving non-convergence. At that point, the processor in
question sends a request to the master, which instructs all other processors to
begin sending reduction messages. At each iteration, a processor probes to see
if such a message from the master processor has arrived.

Communication between individual processors is not affected by this opti-
mization.

An example of the transformed code appears in Figure 2. The code is adapted
from [8§].

3 Example: SOR

In this section we present an example program that can be parallelized using
our method.

The major program class arises from solving partial differential equation
(PDE) boundary value problems using finite-difference methods [8,6]. For exam-
ple, consider solving a partial differential equation of the following form:

fi(z,y) - 0u?)0x® + falw,y) - Ou®/Oy® + fs(x,y) - Ou/dx +
fa(z,y) - 0u/Oy + f5(x,y) -ulz,y) = fo(z,y) (1)

Given the open region (2 in R? and a function g(z,y), the problem is to find
such a function w that is continuous on the closure of {2, satisfies Equation 1 in
{2, and equals g on the boundary.

Discretizing this problem on the N x N mesh using finite-difference method
leads to the following discrete problem:



g, W1, bja w1+ G g + dy wgi-1 e wgn+ fi =0,
fory=2,N—landl=2,N—-1

Wi = g1, (2)
forj=1lorj=Norl=1lorl=N

As a particular example of PDE boundary value problem we shall consider
solving Laplace’s equation du®/dz? + du®/dy? = 0 on the region 2 = {(z,y) :
0 <z < 1,0 <y < 1} with the Dirichlet boundary conditions defined by
function g(z,y) = sinh(37y) - sinh(37y) x 1073 [6].

// Set the initial guess for u;
for [=1to N do
for j =1to N do
ifj=lorj=Norl=1lorl=N

then
Ujl = g(%v FT]-)
else
uj; =0
endfor
endfor

// Iterate until the convergence criteria is met
for : =1 to MAXITS do
rnorm = 0
// Update values of u;; using red-black ordering

Jsw =1
for ipass =1 to 2 do
lsw = jsw

for j=2to N —-1do
for l=Ilsw+1to N—1by2do

T = Ui o1+ g+ ugi-1 — dugg
rnorm = rnorm + fabs(r; ;)
wj = uj —wxry/ —4

endfor

lsw =3 — lsw

endfor
Jsw =3 — Jsw
// adjust over-relaxation parameter w
w = adjust(w)
endfor
if rnorm < ¢ then return
endfor
error (“Iteration number limit exceeded”)

Fig. 3. Algorithm for solving Dirichlet problem using SOR



After discretization we get a discrete problem of type 2 with the coefficients
a1 = b]'J =c¢jy = de =1le;,; =—4 and fjJ =0.

This problem can be solved iteratively using one of the relaxation meth-
ods. We shall consider solving it using Successive Over-relaxation (SOR) with
Chebyshev acceleration [8]. The algorithm is shown in Figure 3.

At each iteration the new values u;"gl are computed from the old values
u§‘717“§‘+17lvu§;1717 u§‘7z+1 and u§7171. The values u;,; are updated in so called black-
red order, when, first all u;; s.t. j + 1 is even (“black squares of the checker-
board”) are processed, and then all u;; s.t. j + [ is odd (“red squares”) are
processed.

The algorithm stops when the 1-norm of the residual r becomes sufficiently

small: ||7f||; < e.

4 Results

We performed experiments on several example codes to determine the effec-
tiveness of this technique. We collected statistics based on uniprocessor runs to
determine how often the technique may be useful, and we applied the technique
by hand to two programs.

We ran an instrumented version of the SOR sample program on a uniproces-
sor machine to examine its convergence behavior. We assumed a data distribution
that distributes columns of the u array over 16 processors. We modified the global
reduction to perform each of the 16 reductions that would take place on local
processors, then examined how useful the information would be in determining
non-convergence locally.

We found that for the normal ordering, the sample code converged in 1141
iterations of the while loop. For the first 906 iterations, or 79.4%, all 16 pro-
cessors were able to detect that the computation had not yet converged from
purely local information. A majority of processors could determine this for the
first 1026 iterations, or 89.3% of the total iterations.

For the red-black ordering, the sample code converged in 1028 iterations, and
all processors could determine non-convergence locally for the first 902 iterations,
or 87.7%. A majority of the processors could detect non-convergence for 937
iterations, or 91.1%.

So, for the greatest part of the computation, our optimization allows the
program to avoid 90% of the global reductions (and the barriers associated with
them). Furthermore, on the normal ordering, the optimization would allow us to
use doacross-style parallelism for most of the program, where little parallelism
was previously available.

We also examined the benchmark program tomcatv from the SPEC bench-
marks. This program computes the infinity norm over two arrays, and exits when
the norm falls below a value eps. The code does not converge given the test data,
and runs for 100 iterations; thus, running it demonstrates the maximum poten-
tial gain from avoiding the reduction, and does not measure performance for the
portion of computation closer to convergence.



#Processors 1P User space
Optimized|Unoptimized |Optimized |Unoptimized
2 189 181 212 180
4 97 95 130 96
8 53 57 66 49
12 40 55 43 33
16 37 73 36 25

Table 1. Execution times in seconds for tomcatv (size 1025) on the SP2

We implemented a straightforward message-passing version of tomcatv, plus
several latency-tolerating transformations, to produce a baseline version. We
then applied our transformation to that program, and compared the two.

Experiments were performed on a 16-processor IBM SP2, using the MPIF
library for communications. We first examined which processors could determine
non-counvergence in isolation. For a problem size of n=257, using any number of
processors up to 16, all processors can determine convergence in every iteration.
For a problem size of n=513, running on 16 processors, the last processor cannot
detect non-convergence in iterations 36 - 100, and must communicate.

Table 1 shows results of running tomcatv with problem size 1025 under
two different communications libraries on the SP2. Using the IP protocol for
communication, which has a higher latency and overhead, the transformation
improved performance, particularly on larger numbers of processors. Under the
faster user space (US) protocol, however, the transformed code ran slower than
the original. Contrary to our expectations, using looser synchronization to permit
overlap resulted in worse performance than using barriers: when we inserted a
barrier in the transformed code, it removed any opportunity for overlap, but
improved performance. We speculated on the cause of this behavior, but were not
able to conclusively determine the cause. Since the transformation is predicated
on the assumption that removing barriers increases performance, it should not
be used on systems where that assumption does not hold.

We also implemented a message-passing parallel version of SOR. The re-
sults are displayed in Figure 4. The best speedup on 15 processors (including a
server process) was 5.8. The last portion of the computation, where reduction
communication is required, is at least partially sequentialized. To examine the
effect of that portion of the computation, we ran versions of the program that
terminate after 1000 iterations, before any processor has to request assistance
from the server (labeled as 1k on the graph). That version showed speedups to
7.7 on 15 processors. Since the version which computes until convergence comes
reasonably close to the performance of the version which performs no reduc-
tions, improvements in performance are likely to come in areas unrelated to the
reduction and convergence computation.

We also examined some more complicated applications to see what would
be required to apply the transformation. We looked at the serial version of bt,
one of the sample applications from the NAS Parallel Benchmarks. In this code,
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Fig. 4. Speedups for SOR on 16-processor SP2

in the badi subroutine, a vector of five norms is computed, and convergence
is based upon all five meeting the convergence criteria. In addition, the com-
putation of the norms takes place across a number of procedures. In order to
be effective as an automatic transformation on this code, it would probably be
necessary to both recognize more complicated convergence functions, and use in-
terprocedural analysis to determine both possibility and profitability of applying
the optimization; alternatively, users could supply directives to request it.

5 Conclusion

We have presented a method for reducing global reductions and increasing op-
portunities for doacross-style parallelism in certain kinds of iterative programs.
The situation we have described, a monotone convergence test, arises frequently
in real numerical applications. The techniques we have described allow us to
avoid the cost of a barrier synchronization for most of the computation, until
global information is necessary to determine if the computation has converged.

Our technique also allows us to provide efficient doacross/pipelined paral-
lelism when the body of a while loop contains cross-processor dependencies. We
believe the technique we propose is more practical than speculative execution
[1,4,5,2,7,3].



In a language like HPF, the transformation we describe has to be performed
by the compiler; there is no way for the user to express a reduction over local
data and make a decision based on that.

In the experiments we performed, for most of the computation, local data
alone was sufficient to determine that the algorithm had not yet converged. We
also found that the technique can improve performance for both the case with
dependences and without. On systems where removing barriers may decrease
performance, it should not be applied.

In computations with convergence tests, other transformations are possible
(for example, checking for convergence only every ten iterations). While these
transformations may be useful, they can change the results of some computations
and we believe they should not be done without the users involvement and
concurrence.
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