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Contact zones between two closely-related species provide unique laboratories for 

studying the processes of speciation.  This is because, within these zones, species barriers 

will be reinforced and speciation will reach completion, or the barriers will break down, 

causing the two species to become one. Which of these two alternatives will occur 

depends on the degree of genetic differentiation and behavioral isolation between the 

species.  If there is significant and non-combinable genetic variation between species, but 

behavioral isolation between the two incipient taxa is incomplete and allows hybrid 

offspring to be produced, these hybrid offspring will have lower fitness relative to 

parental types and selection should act directly to eliminate those offspring and indirectly 

against parents with broad mating preferences or traits.  If however the  genetic 

architecture is similar and behavioral isolation is incomplete, the populations would be 

expected to turn into a hybrid swarm and eventually become one species. Patterns of 

behavioral isolation and genetic variation in several Laupala species pairs suggest that 



   

contact zones between closely related species are marked by conflicting patterns of 

behavioral isolation and genetic differentiation.  Evidence also suggests that the complex 

courtship system of Laupala may allow male choice to play an important role in sexual 

selection and speciation.  Therefore I tested several hypotheses about the genetic 

differentiation, sexual selection, and behavioral isolation in a contact zone between the 

closely-related and morphologically indistinguishable L. tantalus and L. pacifica species 

pair. First, by using the mitochondrial COI gene and AFLPs as genetic markers, I 

demonstrated that there appears to be mitochondrial DNA introgression between 

sympatric, but not allopatric congeners, which suggests contemporary hybridization in 

the contact zone.  Next, I found that males experience post-mating resource-limitation 

and show a significant tendency to invest less into a second mating, however, their 

investment is dependent upon female size.  Finally, I found that there is apparent 

displacement of male choice, decreased variation in spermatophore production, and 

asymmetrical mating isolation within the contact zone.  This evidence all suggests that 

there is increased behavioral isolation in this contact zone, which may be consistent with 

a hypothesis of speciation by reinforcement.  However, this evidence also suggests that 

male costs may result in male choice conflicting with other isolating mechanisms. If so, 

this study may be another putative case of reinforcement, or it may be an entirely novel 

report of conflicting selection pressures within a hybrid zone.  I suggest that further 

studies are needed to measure hybrid fitness as well as to evaluate relative male and 

female mating costs within the complex mating system of this rapidly-diversifying genus. 
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Preface 
 

This dissertation contains a single introduction section and three chapters. Chapters I, II, 

and III are presented in manuscript form, with abstract, introduction, methods, results, 

and discussion, followed by tables and figures. A single bibliography section occurs at 

the end for references cited throughout the dissertation. 
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Introduction 
 

 
Contact zones between closely-related species provide a unique opportunity to study the 

dynamics of speciation in action in a natural setting. Within such contact zones, 

depending upon the degree of genetic and behavioral degree of isolation between species, 

the size of the zone, and the time since first contact, one can make predications about the 

likely outcome of hetersospecific mating and can test hypotheses about processes of 

speciation.  Several outcomes can be predicted based upon these factors.  For example, in 

some contact zones, micro-habitat changes between species with different phenotypic 

adaptations will prevent contact between the species, allowing them to remain distinct. In 

other cases, species might share a similar niche, but enough behavioral differences will 

have accumulated such that no hybridization will occur between them.  However, in 

many other cases, the two species will have not accumulated enough behavioral or 

phenotypic differences to remain completely distinct in the face of frequent physical 

contact; this is when contact zone dynamics become particularly interesting.  

When two incipient species are not yet totally isolated, several outcomes are 

possible.  First, if the species are recently diverged sister taxa, with few accumulated 

genetic or behavioral differences, the two species may interbreed and form a hybrid 

swarm which may eventually become a new species.  Alternatively, if one species has a 

slight selective advantage, then hybridization followed by a selective sweep could 

eventually eliminate one species in favor of the other.  And finally, if few behavioral 

differences have accumulated, but there are significant incompatabilities in the genetic or 

phenotypic architecture of the species, we might expect to find either that the processes 



2 

of reproductive character displacement or reinforcement are at work in order to 

strengthen the behavioral isolation between the species.  

Reinforcement is the process whereby natural selection strengthens prezygotic 

barriers to gene exchange between populations in response to reduced hybrid fitness. This 

is thought to proceed when a population is split, remains so for some amount of time 

while mutations affecting fitness accumulate within each subpopulation, and comes 

together again in a zone of secondary contact.  Those individuals that choose mates from 

within their own subpopulation (mate assortatively) will produce offspring of higher 

fitness than those individuals which engage in hybrid matings.  Over successive 

generations, assortative mating, and thus reproductive isolation, will increase until the 

populations no longer mate freely and may thus be classified as “biological species” 

(Mayr 1963). Reinforcement is fascinating because it provides a role for natural selection 

in generating and maintaining species boundaries. It can explain the evolution of these 

boundaries as a function of both allopatric and sympatric processes by describing how 

speciation is completed in sympatry as a result of incomplete postzygotic isolation in 

allopatry. Reproductive character displacement (RCD), is the pattern which is often a 

signature of reinforcement, or can independently evolve as a result of the strengthening of 

species barriers. First described by Brown and Wilson (1956), RCD is a pattern in which 

mate discrimination characters, such as plumage colors (Saetre et al. 1997), calling songs 

(Littlejohn and Loftus-Hillis 1965), or preference functions (McLain 1985), shift in 

sympatry such that there is no overlap in value of these characters between heterospecific 

populations. This results in reduced mating between these two sympatric populations 

relative to their allopatric counterparts.  RCD may occur between populations that are 



3 

already distinct species as a result of selection against overlap in mating signals (Butlin 

1989).  This would happen when such overlap caused individuals from each species  to 

engage in non-adaptive heterospecific matings that resulted in no insemination, no 

fertilization, or no viable offspring. However, many reported cases have found that RCD 

occurs between taxa that do successfully hybridize (Coyne and Orr 1989; Rundle and 

Schluter 1998; Kiang and Hamrick 1978), thereby implicating reinforcement as the 

underlying process that drives RCD. 

Another important problem with the theory is that all tests of RCD have assumed 

that females are the choosy sex.  First proposed by Darwin (1871), and later developed by 

Bateman (1948) and Trivers (1972), female choice has long been thought to be the 

primary force behind both sexual selection and the evolution of mating systems.  A 

burgeoning number of reports on the importance of male choice would, however, suggest 

otherwise (Reinhold et al. 2002; Kvarnemo and Simmons 1999; Amundsen and Forsgren 

2001; Pilastro et al. 2003; Werner and Lotem 2003; Bonduriansky 2001).  The frequency 

of these reports suggests that male choice may be quite commonplace, and that in species 

with apparent high male mating investment, such as crickets (Kvarnemo and Simmons 

1999) male choice may be just as, if not more, important than female choice in shaping 

the mating system. Many studies have reported that males in numerous insect species 

prefer larger females, since large female body size is usually indicative of egg mass, and 

therefore is a measure of fecundity (Togashi 2007; Honek 1993; Jimenez-Perez and 

Wang 2004). To date, almost all reports of reinforcement and reproductive character 

displacement have tested for shifts in female choice or male characters across a zone of 

contact; few have looked for the opposite patterns—shifts in male choice or female 
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sexual characters. However, the increasing evidence for male choice justifies its 

examination in the context of reinforcement.  

This means that systems in which males provide females with resources during 

mating, such as nest sites, protection, or nuptial gifts, are good candidates for such 

reinforcement studies. This is because they have the potential, through displaced patterns 

of male choice, to have an impact on the evolution of mating systems. Thus, if 

reinforcement has occurred in such a system, it would be manifested by changes 

involving male, rather than female choice and would be a novel mechanism of 

reinforcement.  However, the key to uncovering these relationships is to find a system in 

which details of the natural history and taxonomy are already somewhat defined, and 

tests of mating behavior and male choice are tractable.  Crickets of the genus Laupala 

provide just such a model system. 

 

LAUPALA AS A MODEL SYSTEM 

Laupala is a genus of crickets endemic to single islands of the Hawaiian island chain.  

Laupala is composed of 38 cryptic species (Otte 1994; Shaw 2000b), distinguishable 

only by song rate and morphometric differences in male genitalia. It is an instructive 

system in which to study processes of behavioral isolation because of its long and 

complex courtship system. Courtship in Laupala begins shortly after sunrise when a male 

begins to call from his perch on or near the forest floor.  Once a female has located the 

male, they begin a series of copulations, in which the male circles the female, antennates 

her abdomen, intermittently sings, and finally ends each copulation with the transfer of a 

spermless “microspermatophore” (hereafter “micro”) to the female, which she consumes.  
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The number of microspermatophores passed varies from approximately 6-15, depending 

on the species (Shaw and Khine, 2004). The duration and timing of events during the 

mating sequence also varies between species, and even populations of the same species.  

At the culmination of an 8-10 hour mating sequence, the male passes the female a larger, 

sperm-filled “macrospermatophore” (hereafter “macro”), which she also consumes after 

the sperm has evacuated.  While the costs of reproduction to the female are undoubtedly 

substantial (including egg production and mate searching), the costs to males may be just 

as high or higher, due to sperm production, spermatophore production, and the energy of 

song production. For Laupala females, mating “mistakes” by heterospecific males may 

actually be desirable.  While the nutritional value of micros in Laupala is unknown, 

evidence from other cricket species suggests that females may receive life-span or direct 

nutritional benefits from consuming spermatophores (Hou and Sheng 1999; Simmons et 

al. 1999; Vahed 2007a, and references therein). If Laupala females receive a nutritional 

benefit, we might expect that females would be selected to manipulate all males into 

transferring micros to them.  A high male mating cost coupled with potential female 

benefits could have a major effect on the strength and direction of patterns of 

reproductive isolation. 

Laupala is additionally ideal for a study of contact zone dynamics because 

complicated phylogenetic patterns within the genus suggest that sympatric hybridization 

may have contributed to speciation. As noted above, Laupala was originally classified as 

a genus with 38 species. This phenetic hypothesis was proposed based upon ancestral 

relationships among song rates and male genitalia (Otte 1994).  However, a later mtDNA 

phylogeny (Shaw 1996a) did not agree with this phenotypic classification, particularly in 
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contact zones between sympatric congeners. Conversely, later nuclear DNA (Shaw 2002) 

and AFLP phylogenies (Shaw 2004) conflicted with the mtDNA phylogeny, but 

confirmed the original phenogram. Interestingly, all of the conflicts between cladistic 

hypotheses are in areas of species overlap, which suggests that mtDNA introgression due 

to hybridization between sympatric species may be causing the disagreement. Moreover, 

a close examination of Otte’s phenogram shows that in many geographic locales, 

individuals that might be classified as species A according to song type, are actually 

classified as species B, even though the song appears to differ significantly from the 

species B mean (Otte 1994).  Otte attributes the somewhat arbitrary pattern of these 

groupings to reproductive character displacement in areas of sympatry between A and B 

(Otte 1989).  Such a report suggests that RCD and reinforcement may be prevalent in 

Laupala.   

 However, reinforcement can be difficult to demonstrate because, in addition to 

finding RCD of a mating character in a contact zone relative to an allopatric conspecific, 

several other preconditions must first be met (Howard 1993). Briefly, one must show that 

1) hybridization is possible, 2) selection acts against hybrid individuals, 3) differences in 

this character are detectable by the opposite sex, 4) this character is heritable, and 5) the 

RCD is not the result of ecological, or other selection.  It can be difficult to identify 

populations that meet all of these criteria, however, two species on the island of Oahu, L. 

tantalus and L. pacifica, are ideal for such a study because they satisfy many of these 

conditions. First, they occur in both sympatric and allopatric populations, allowing one to 

set up the proper comparisons for a test of reinforcing selection.  Next, they appear to 

satisfy the first condition, given that there are few to no habitat differences between 
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species, and therefore it is unlikely that hybrids would experience ecological selection. 

They also satisfy the second through fourth conditions because previous work on Laupala 

has found that song characteristics are heritable (Shaw 1996b; Shaw 2000a), and females 

discriminate against non- species specific pulse rates by choosing songs that are closest to 

the species mean (Shaw and Herlihy 2000; Mendelson and Shaw 2002); therefore it is 

likely that hybrids would suffer decreased mating success. Only hybridization and 

reproductive character displacement need to be demonstrated in order to provide 

substantial support for a hypothesis of speciation by reinforcement in this species pair. 

Hybridization appears to be likely given evidence for mtDNA introgression between 

these non-sister taxa in a sympatric population (Shaw 2002; Mendelson and Shaw 2005); 

additionally, evidence from recordings of intermediate singers (Otte 1994) suggests that 

hybridization may be ongoing. However, the extent of hybridization had not been 

confirmed in this species pair, nor has reproductive character displacement been 

confirmed.  

Therefore, the overall objective of this study was to examine the extent of 

behavioral and genetic isolation in the L. tantalus and L. pacifica species pair and assess 

how male choice might be affecting the strength and direction of isolation. My general 

aims were 1) to uncover genetic evidence of  hybridization 2) to demonstrate that males 

experience mating costs and may be choosey, and 3) to show behavioral isolation due to 

reproductive character displacement is present and stronger within in a contact zone 

relative to outside the zone. To demonstrate that hybridization is occurring between 

sympatric congeners, I analyzed patterns of shared genetic variation between and within 

sympatric and allopatric populations of these species. To demonstrate that males in 
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Laupala may be choosey, I examined male remating ability and differential male mating 

investment. To measure behavioral isolation, I compared mating frequencies and 

measured mating characters between allopatric and sympatric congeners. 

In Chapter I, I use mtDNA and AFLP markers to investigate species and 

population boundaries, as well as evaluate the degree of mtDNA introgression both 

within and between species in sympatry and allopatry. I did this by using a 560bp 

sequence of the COI gene as a mtDNA marker and analyzing patterns of nuclear DNA 

variation in 656 polymorphic AFLP bands in sympatric and allopatric populations of L. 

tantalus and L. pacifica.  By estimating relationships using phylogenetic methods, 

measuring genetic variation and population structure, and evaluating the ancestry of 

individuals within each population, I was able to demonstrate that mtDNA variation is 

shared across species boundaries in the contact zone, but not between allopatric 

conspecifics.  I was also able to demonstrate that there is little shared nuclear variation 

between sympatric congeners; however, putative hybrid individuals were identified.  

Both results suggest recent, and perhaps contemporary hybridization is occurring 

between these sympatric congeners.  Previous evidence suggested that hybridization may 

have occurred; however, this is the first time a widespread pattern of mtDNA 

introgression has been revealed. 

In Chapter II, I document the costs of mating to males by measuring decreases in 

spermatophore production over subsequent days of mating, and I measure the mating 

response of males towards larger females. I tested the hypotheses that males will produce 

fewer spermatophores on a second consecutive day of mating, and that they will produce 

more spermatophores for larger females.  I found results which positively supported both 
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of my hypotheses, and in addition found that males appear to modulate their investment 

based upon the relative size of consecutive mating partners.  This is a novel finding not 

only in Laupala, but in insect mating systems in general, as it suggests that males might 

have a threshold that must be reached before mating investment is maximized. 

Finally, in Chapter III, I document the patterns of mate choice and reproductive 

character displacement using no-choice tests from both a male and a female perspective.  

I also quantify population-level differences on several characters that may be candidates 

for sexual selection between L. tantalus and L. pacifica.  I first test the hypotheses that 

sympatric L. pacifica and L. tantalus are incompletely isolated, and allopatric populations 

of L. pacifica are not isolated by comparing inter and intraspecific mating frequencies. I 

then test the hypotheses that there is reproductive character displacement of mating 

characters by comparing mating frequencies and mean values in potentially sexually-

selected characters in sympatric and allopatric congeners.  I found that there is 

significant, but incomplete behavioral isolation among sympatric and allopatric 

congeners that is consistent with a hypothesis of male choice displacement. Additionally, 

I found that there is asymmetrical mating isolation between the sympatric male and 

female congeners.  Moreover, the asymmetry fits the pattern found in the previous study 

which suggests that males prefer large females.  Finally, I found a trend suggesting a shift 

in spermatophore production times between allopatric consepcifics that fits a pattern of 

reproductive character displacement. I suggest that these results are both novel and 

important because not only does this indicate that there is asymmetric species isolation in 

Laupala, possibly driven by a shift in reproductive characters, but additionally, it 

suggests that there is potential for conflict between male and female sexual selection.  If 
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this is the case, this is the first such report of such a conflict between male choice and 

female sexual selection, and has potential to change the way we study speciation in 

organisms with complex mating systems.  
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Chapter I: Contrasting molecular phylogenies provide 
evidence for introgressive hybridization between sympatric 
populations in Laupala 
 
 
 
ABSTRACT 

Contact zones provide an unique opportunity to study mechanisms of speciation, 

such as the processes which shape mate preference and strengthen species barriers 

within the zone. The Hawaiian cricket genus Laupala presents such an opportunity 

in a contact zone between L. pacifica and L. tantalus. Behavioral evidence from this 

species pair suggests that behavioral isolation is stronger within the contact zone 

than between allopatric pairs; however, that isolation is incomplete..  Past studies 

have found disagreement in the patterns presented by mitochondrial, nuclear, and 

phenotypic data. The disagreements are all found in contact zones between one or 

more species, which suggests that there may be mtDNA introgression between these 

hybridizing taxa. However the extent of mtDNA introgression and the degree of 

nuclear gene flow remains unknown.  In this study we sequenced 560bp of the 

mitochondrial cytochrome oxidase subunit I (COI) gene and analyzed 656 

polymorphic AFLP bands for approximately 146 individuals from three sympatric 

and allopatric populations of L. tantalus and L. pacifica.  We investigated the 

patterns in these data using four approaches.  A neighbor-joining and haplotype 

network analysis of mtDNA haplotypes show shared mtDNA variation in sympatric 

congeners, while a neighbor-joining analysis of AFLP phenotypes supports the 

current classification of species. Gene flow estimates using F-statistics showed that 

reproductive barriers existed between the sympatric congeners, and an analysis of 
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molecular variance showed that there is significant genetic divergence between the 

sympatric congeners, but not between the allopatric L. pacifica populations.  Finally, 

a clustering analysis of AFLPs identified multiple individuals of mixed ancestry, 

indicating that hybridization is ongoing or occurred in the recent past.  We discuss 

the phylogenetic results in relation to behavioral data showing incomplete isolation 

between this species pair, and suggest that they provide support for a hypothesis of 

recent or ongoing speciation. 

 

INTRODUCTION 

Contact zones studies have played a major role in the field of evolutionary biology 

because such areas act as natural laboratories of speciation, where one can test species 

concepts and therefore gain insights into the processes of speciation (Hewitt 1988). 

Likewise, research on interspecific hybrids in these zones has helped to uncover the 

mechanisms preventing or allowing interbreeding of species (Hewitt 1988; Mallett 2005; 

VanHerwerden et al. 2006; Croucher et al. 2007) and can help us to answer fundamental 

questions about how reproductive barriers evolve and whether gene flow between species 

affects adaptation. However, in order to answer these questions and understand the 

evolutionary processes acting on species in a contact zone, it is first necessary to 

determine if hybridization is occurring within the zone, and next, whether or not it is 

leading to species divergence, or homogenization of the two species into one.  Which of 

these two results occurs should be dependent upon the degree of divergence that has 

already occurred. In very recently diverged sister taxa, one would expect that insufficient 

genetic incompatibilities have accumulated and therefore hybridization would have low 



13 

costs, or even confer fitness advantages (Pfennig 2007). Hybridization events may occur, 

leading to gene flow and potentially long-lasting consequences on the genetic 

architecture of the species. However, in cases where there is significant behavioral 

isolation between species in a zone of contact, one would expect that speciation occurred 

previous to secondary contact, the two species are reproductively distinct, and no 

phylogenetic evidence of hybridization would be found .  

 As has been recently observed (Counterman and Noor, 2006) many hypotheses of 

hybrid zones and the processes are based on behavioral evidence alone, often lacking 

genetic support for hybridization.  Such genetic demonstartions can be challenging, for 

several reasons.  First, sample sizes of individuals in many studies are small, and if 

hybridization is infrequent, it may be missed.  Second, depending upon what type of 

marker is used, in what portion of the genome it is located, and whether or not it is under 

selection, results can lead to drastically different gene-trees (for recent examples see 

Masta et al., 2002; Crochet et al., 2003; VanHerwerden and Doherty, 2006; Roe and 

Sperling, 2007; Ray et al., 2008), which may fail to confirm species status and lead to 

incorrect conclusions about hybridization (Funk and Omland 2003).  And finally, closely-

related species often share genetic variation for a long period after divergence (Tajima 

1983; Wu 1991; Maddison 1997; Hudson and Coyne, 2002) in part because it may only 

be necessary that a small portion of the genome be differentiated in order for speciation 

to occur (Broughton and Harrison 2003). Demonstrating only that there is little genetic 

divergence between putatively hybridizing sister taxa does not distinguish between the 

causes of shared polymorphism, but only introgression could definitively support a 

hypothesis of hybridization (Funk and Omland 2003).  



14 

The Hawaiian crickets of the genus Laupala constitute an interesting case for such 

a study of hybrid zone dynamics because of their behavioral isolation and complicated 

phylogenetic history. Species of Laupala are all single-island endemics distributed 

throughout the Hawaiian archipelago, and are thought to be derived from a sword-tail 

cricket ancestor from the Western Pacific of the subfamily Trigonidiinae (Otte 1994). 

Laupala has rapidly diversified in the native montane rainforests of the islands, where 

they inhabit leaf-litter of both native and introduced plant species. They are 

phenotypically similar and have been described as a genus composed of 38 cryptic 

species (Otte 1994; Shaw 2000b), differentiated only by song rate and nearly 

indistinguishable morphometric differences in male genitalia. Otte (1994) published the 

first systematic hypothesis of Laupala, a phenogram which he based upon the variation in 

these characters.  He divided Laupala into three major species groups: the kauai group, 

found only on the northwestern island of Kauai; and the cerasina and pacifica groups, 

found on Oahu, the Maui-Nui complex, and Hawaii, and hypothesized to have each 

diversified via independent radiations onto sequential islands of the Hawaiian chain. 

However, a mtDNA phylogeny (Shaw 1996a) did not support Otte’s original hypothesis 

of three major clades, and found instead what appeared to be a pattern of multiple 

invasions by a single species. A further nested analysis of mtDNA haplotypes of Big 

Island species revealed geographically restricted haplotypes that were frequently shared 

between sympatric congeners, but not between allopatric conspecifics (Shaw 1999). 

Conversely, a later nuclear DNA sequence phylogeny (Shaw, 2002) as well as an AFLP 

phylogeny (Mendelson and Shaw, 2005) did support Otte’s original phenogram, but not 
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the mtDNA phylogeny. As a result, the species boundaries and the extent of hybridization 

remain unclear. 

An interesting pattern that has emerged from all of these analyses is that the major 

disagreements between these systematic hypotheses arise in areas of species overlap 

(Shaw 2002). This discrepancy suggests that gene flow between the two major groups has 

occurred subsequent to splitting of these lineages.  Several species pairs in many 

geographically disparate locales show this pattern of putative mtDNA introgression. One 

such pair includes L. tantalus and L. pacifica. These two species are distributed 

throughout the Koolau mountain range on the eastern side of Oahu (Figure 1). L. pacifica 

occurs in many contiguous populations throughout this range, but the tantalus species is 

thought to be confined to a smaller area entirely within the pacifica range (Otte, 1994). 

Although these two species appear to be taxonomically distinct non-sister taxa based 

upon song rate, genitalia, and nuclear DNA, the mtDNA phylogeny shows that pacifica is 

more closely-related to tantalus in a mid-island contact zone relative to \a geographically-

distant allopatric population of. pacifica (Shaw 1996a).  

Behavioral data from laboratory matings give some insight into the evolutionary 

dynamic in this contact zone. Previous experiments have shown that mating is much 

more frequent between the pacifica populations than between the heterospecific pairs (J. 

Jadin, Ch.3); this pattern supports the species division shown in the nuclear and 

phenotypic data. Nevertheless, hybrids can be generated in lab (J. Jadin, unpublished), 

and intermediate singers have been identified in field recordings (Otte, 1994). Altogether 

these data suggest that hybridization is occurring in the contact zone between these 

species. However, the genetic consequences and patterns of hybridization are 



16 

unconfirmed, as the previously reported mtDNA and nuclear phylogenies were created 

using only a very small sample size (typically <4 individuals/species/population), and the 

number and degree of shared mtDNA haplotypes is still unknown. Further, the small 

sample size does not allow clear resolution of relationships in the nuclear DNA..  Many 

recent studies of rapidly diversifying organisms have found that incongruence among 

gene trees is a widespread problem, particularly in insects (e.g. Beltran et al. 2002; 

Downie et al. 2002; Kilman et al. 2000; Buckley et al. 2006; Egger et al. 2007; Belfiore 

et al, 2008). However, in order to understand dynamics of this hybrid zone, this problem 

must be solved and a clearer resolution of the patterns of both mitochondrial and nuclear 

DNA data must be obtained. 

 Theory predicts that gene genealogies should vary between loci in rapidly-

speciating taxa, due to the random nature of lineage sorting (Edwards and Beerli 2000). 

Therefore studies of such species benefit from comparisons of multiple loci. The 

objective of this study was to characterize the mitochondrial COI and nuclear AFLP 

phylogenetic patterns of sympatric and allopatric populations of L. pacifica and L. 

tantalus across a contact zone where behavioral evidence (J. Jadin, Ch.3), song data (Otte 

1994), and previous DNA evidence (Shaw 2002) suggest that hybridization may be 

occurring. I examined the resulting mtDNA and nuclear phylogenies, first, in order to 

determine if previously proposed evolutionary partitions of the L. pacifica and L. tantalus 

species based on phenotypic and nuclear data (Mendelson and Shaw 2005) could be 

supported with the current larger data set. I next assessed whether these data corroborated 

the previous hypothesis that mtDNA genetic variation is shared primarily in sympatry, 

while nuclear variation is partitioned between species. Finally, using AFLPs I 
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investigated the genetic architecture of the populations in order to identify putative hybrid 

individuals. Results from AFLPs suggest that the two L. pacifica populations are nearly 

genetically indistinct, and that L. tantalus is a taxonomically distinct species that shares 

substantial mtDNA variation, but limited nDNA variation, with L. pacifica exclusively in 

a contact zone. These data corroborate evidence of incomplete reproductive isolation 

between these taxa, and provide phylogenetic support for a hypothesis of incomplete and 

possibly ongoing speciation.  

 

METHODS 

Specimen Collection 

A total of 146 wild-caught males, approximately 49/population, were used for genetic 

analysis. Specimens used for this analysis were collected at two sites on the island of 

Oahu (Figure 1).  The sympatric site located at Manoa Cliffs had both L. pacifica and L. 

tantalus individuals.  The collection area was defined by a transect of approximately 100 

meters on either side of the Manoa Cliffs trailhead (21.19.406 N, 157.48.846W, 1408 ft) 

on Mt. Tantalus.  Individuals from L. pacifica were also collected at an allopatric site 

along a trail leading past the Pupukea Boy Scout Camp (~ 21.63010N, 158.02175W, 

1200ft).  This collection site was more than 25 miles north of the sympatric site. The 

entire extent of the L. tantalus range is unknown, but it does not visibly or audibly inhabit 

the forest for at least 1 mile surrounding this population.  

 

Specimens were captured live and returned to the lab where the song rates of the males 

were counted with a stopwatch. They were assigned to the pacifica or tantalus species, 
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depending their song rate; all males sang at the approximate song rate of pacifica 

(0.6pps) or tantalus (2.1pps) (Otte, 1989). Individuals were placed in specimen cups and 

checked every two days for deceased individuals.  These males were immediately frozen 

in individual tubes at -80C.  The genitalia and one leg of each male used in the study was 

removed and saved as a voucher specimen, and the remainder of the male was used for 

DNA preparation. 

 

mtDNA collection and analysis 

DNA was extracted using standard phenol/chloroform protocols with phase-lock gel 

tubes.  Extracted DNA was stored at -20C.  The COI gene, which is commonly used for 

species barcoding was deemed a suitable marker because of the sufficient level of 

variation it contains between even closely-related species (REF). DNA was amplified in a 

standard PCR reaction with COI forward and reverse primers (COIF: 5'-

GGTCAACAAATCATAAAGATATTGG-3'; COIR: 5'-

TAAACTTCAGGGTGACCAAAAAA TCA-3') (Folmer et al., 1994) to obtain an 

approximately 620bp fragment. PCR conditions entailed a 2 min denaturing period at 

95°C followed by 35 cycles of 95°C for 30s, 50°C for 90s, and 72°C for 90s, and ending 

with a final 72C elongation period for 2 min.  After confirmation of single band presence, 

the reaction was prepared for sequencing using EXOSAP (REF). Automated sequencing 

was performed using dye terminator chemistry (ABI, Foster City, CA, USA). Nucleotide 

sequences were automatically aligned, trimmed to 560bp, and then manually edited using 

the program Sequencher v4.8 (Gene Codes Corp, Ann Arbor, MI, USA). 
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AFLP collection and analysis 

Procedures for generating AFLP bands generally followed Vos, et al., (1995). Restriction 

enzymes EcoRI and PstI were used to digest approximately 250ng of genomic DNA 

while the PstI and EcoRI adaptors were concurrently ligated.  A 1:10 dilution of this 

restriction-ligation product was used as a template in a pre-selective PCR amplification. 

The primers for this amplification were the sequence of the restriction enzymes and one 

additional selective nucleotide (EcoRI: 5’GACTGCGTACCAATTC + A; PstI: 5’-

GACTGCGTACATGCAG + A). A 1:40 dilution of this product was used as the template 

for the selective amplification, in which the primers were the same as for the pre-

selective amplification, but with the addition of two extra nucleotides. The following 

primer pair combinations were used: Eaac-Pacg, Eaac-Paaa , Eaac-Paac, Eaac-Pata, 

Eagc-Paac, Eagc-Pacg; the first letter of each primer pair represents the restriction 

enzyme site it adheres to (Eco or Pst), the next letter designates the pre-selective (a) base 

pair, and the last two letters designate the selective base pairs.  PCR conditions for 

selective amplification entailed first a denaturing step at 95° for 1:30, followed by 9 

cycles of 95°C for 0:30, 65°C for 0:30 at -1° per cycle, and 72°C for 1:00. There were 

then 23 additional cycles of 95°C for 0:30, 56°C for 0:30, and 72°C for 1:00. The 

samples were then prepared for genotyping by resuspension in Hi-Di ROX(-500) (ABI, 

Foster City, CA).  Automated fragment analysis was performed using an ABI3730 

sequencer (ABI, Foster City, CA). The data were then visually scored for presence or 

absence of bands (1 or 0) using GeneMapper software v 4.0 (ABI, Foster City, CA). 

Scoring was optimized by setting bin width to 0.5base pairs (Holland et al., 2008) and by 

ignoring all peaks under 100 Relative Florescence Units (RFU). Only bands from 100-
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425bp were scored, as this was the range of lengths that showed the clearest peaks. The 6 

primer pairs reactions resulted in 656 polymorphic bands. A complete technical replicate 

(from digestion–ligation through selective PCR) was performed on any individuals that 

had jagged or low peaks, or showed significantly mixed ancestry post Structure. 

Repeatability was estimated for each marker as one minus the ratio of the number of 

differences between technical replicates to the total number of individuals genotyped (as 

in Bonin et al. 2004; Pompanon, et al. 2005). Putative markers with less than 90% 

repeatability and individuals with less than 90% repeatability were discarded from the 

analysis.  

 

Data Analysis 

For both the mtDNA and AFLP data, neighbor-joining trees were estimated in 

PAUP*4.0b10 (Swofford, 2003). For the AFLP data, Nei-Li restriction site distance 

criteria were used; Nei-Li distance criteria weights the gain of a restriction site more 

heavily than the loss of a restriction site and is therefore most appropriate for AFLP data.  

For the mtDNA data, the neighbor-joining tree was produced using minimum total 

character difference distance criteria. Nodal support was calculated with 1000 bootstrap 

replicates on a neighbor-joining tree created using the same parameters. A maximum 

parsimony (MP) analysis was also performed on the COI sequence data.  For this 

analysis, all characters were unordered and given equal weight.  A heuristic search was 

begun with starting trees obtained by stepwise addition. Ten random sequence addition 

replicates were performed with TBR branch swapping, and one best tree was held at each 

step.  One best tree was found, and nodal support was calculated with 1000 bootstrap 
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replicates using the same search parameters. Haplotype networks based on a statistical 

parsimony algorithm (Templeton et al., 1992) were constructed for the mtDNA data 

using TCS1.21 (Clement et al. 2000). Briefly, TCS calculates haplotypes frequencies and 

uses them to estimate outgroup probabilities for those haplotypes; these probabilities 

should correlate with haplotype age. An absolute distance matrix is then calculated for all 

pairwise comparisons of haplotypes and the probability of parsimony is calculated for 

pairwise differences until the probability exceeds 0.95 (Clement et al. 2000). The most 

likely connections among haplotypes are then made and used to generate the network. 

FST values for the mtDNA and AFLP data were calculated using Arlequin, version 

2000 (Schneider et al., 2000). For the mtDNA data, distances between haplotypes were 

calculated using the Tamura and Nei model, which allows for different transition and 

transversion ratios, and  was set to zero as no heterogeneity of mutation rates among 

sites was expected.  For the AFLP data, distance between genotypes was calculated using 

simple minimum pairwise distance criteria. Estimates for significance levels for FST 

values were determined by performing 10000 permutations.  FST  analyses such as 

Arlequin were not originally designed to be used with dominant markers such as AFLPs, 

however, it is often used for this purpose (Svensson et al. 2004; Irwin et al., 2005) and 

yields results similar to other methods (de Casas et al., 2006). AFLP markers are 

dominant markers; therefore the FST calculated for the AFLP data is based on band 

frequencies rather than allele frequencies and should not be directly compared to FST 

values calculated from codominant markers.  

In order to calculate assignment probabilities of individuals to a number of 

populations (K) ranging from 1 to 5 and estimate admixture between populations, 
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Structure 2.2 (Pritchard et al., 2000; Falush et al. 2007) was used. The program Structure 

uses a Bayesian model-based clustering method in order to infer population structure 

from genotypic data gathered from unlinked markers. The algorithm which Structure uses 

assumes a model in which there are K populations (where K is the number of populations, 

and can be known or unknown), and it defines K by a set of allele frequencies at each 

locus. Individuals in the sample are assigned to single populations with some degree of 

probability, or jointly to two or more populations if their genotypes appear to indicate 

admixture (Pritchard et al. 2000). It is assumed that within populations, the loci are 

unlinked and in Hardy-Weinberg equilibrium.In order to estimate the best model of 

ancestry, I performed 10 iterations each of an admixture and a no admixture model. For 

both models, each run consisted of a 10,000 step burn-in with 10,000 cycles of data 

collection, and for each value of K, the parameter set was run for 10 iterations. The log-

likelihood, L(D), values were averaged across each of the iterations and were used to 

calculate the ad hoc statistic K, which is related to the second order rate change in the 

log probability of the data (Evanno et al., 2005). The K value with the largest K was 

identified as the true number of population clusters according to Evanno et al. (2005). I 

then calculated the Bayes factors for the fit of the data to each model, admixture or no 

admixture, following the methods of Fitzpatrick et al.(2008). After the model and K were 

chosen, I again ran 10 iterations of Structure using the USEPOPINFO model (Pritchard et 

al., 2000). This model assumes that most individuals classified as being from a particular 

population will have pure ancestry from that population, but that a small fraction of them 

may have mixed ancestry.  In this model I assigned individuals to one of two populations 

defined by species. I set the MIGRPRIOR = 0.05, which implies that the prior probability 



23 

that an individual has pure ancestry from a predefined population is 0.95. I set 

GENSBACK = 2, which calculates the ancestry of the individuals up to two generations 

back. This allowed me to determine, with a high probability, whether any of the 

individuals were likely either to be hybrids or to be misclassified. 

 To estimate the partitioning of the AFLP and mtDNA genetic variation between 

and within groups, analysis of molecular variance (AMOVA) was performed using 

Arlequin, version 2000 (Schneider et al. 2000). Genetic differentiation values (ST) 

between pairs of populations were calculated. These values are analogous to traditional F 

statistics: they are designed to estimate nucleotide diversity, rather than allelic diversity 

as F statistics do (Excoffier et al. 1992).  Estimates of significance levels for -statistics 

were determined by performing 10000 permutations.  The three fixation indices are 

defined as follows (Hartl and Clark, 1997): ST measures fixation in the subpopulations 

relative to that of the total population, CT measures fixation in a specified group of the 

subpopulations relative to the total population, and SC measures fixation in the 

subpopulation relative to that within the group in which it is contained. 

 

RESULTS 

A total of 146 individuals from 3 populations comprised of 2 taxonomic species were 

sequenced for 560bp of the mitochondrial COI gene and were analyzed for 656 

polymorphic AFLP bands generated from 6 primer pair combinations.  

Results show that the COI gene is highly conserved, as indicated by the small 

number of variable sites among the sequences, as well as by the number of silent and 

replacement substitutions observed (Table 7). Of the 560bp sequenced only 16 (2.8%) of 
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the sites were polymorphic. 15 of these mutations were transitions, and only one was a 

transversion, and was contained in only one tantalus individual. A total of 15 haplotypes 

were observed, and their relative frequencies are shown in Table 1. Of these 15 

haplotypes, 8 were contained exclusively within the northern allopatric pacifica 

population, and the remaining 7 haplotypes shared between the tantalus and pacifica 

individuals within the sympatric populations. The number of individuals analyzed per 

locality was approximately 48 individuals per population.  In the allopatric pacifica 

population, 34 (69%) of the individuals shared one haplotype, while in the sympatric 

mixed-species population, 86 (88%) individuals, 39 from pacifica, and 49 from tantalus 

shared one haplotype.  

The primer pairs used in the AFLP analysis generated the following number of 

bands per primer pair: ac-cg (90), ac-aa (128), ac-ac (97), ac-ta (199), gc-ac (115), gc-cg 

(125).  This resulted in a total of 656 polymorphic bands between 100-400bp.  Overall, 

the vast majority (84.5%) of bands were polymorphic and shared between all three 

populations. However, 29 bands (4.4%) were polymorphic but exclusively in tantalus and 

27 (4.1%) were polymorphic but contained exclusively in pacifica. Forty-one bands 

(6.2%) were polymorphic but contained only in the sympatric locality, and three bands 

were polymorphic but contained only within the allopatric population.  None of these 

bands were fixed exclusively in any of the populations or species. Figure 6 depicts the 

frequency differences in bands between populations. 

 

Phylogenetic analysis 
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The unrooted haplotype network was used to define geographic structure (Figure 2) and 

showed that the northern allopatric pacifica population formed its own clade that was 

entirely distinct from the southern sympatric pacifica and tantalus populations. The 

haplotype estimated as most ancestral was H7, and the remaining haplotypes within the 

southern sympatric population are connected to it by no more than two steps.  The vast 

majority of the sympatric individuals sampled (84) all shared haplotype H6, which was 

nearly evenly divided between species. Eight haplotypes were found in the allopatric 

pacifica population, and none were more than five mutational steps away from the H6 

sympatric haplotype. The phylogenetic relationships among these 15 haplotypes are 

summarized by a neighbor-joining phylogram (Figure 3). Aside from the outgroup, three 

major clades were identified and clustering of haplotypes clearly corresponded to 

location and matched the results from the haplotype network. There was 53% bootstrap 

support for the seven sympatric L. tantalus and L. pacifica haplotypes forming one major 

branch of the tree, and 91% and 76% bootstrap support for the other two major branches 

that were comprised of the eight allopatric L. pacifica haplotypes.  The MP analysis of 

the COI sequence data resulted in a tree of the same topology as the NJ tree, with similar 

bootstrap support for the same clades, therefore only the results from the NJ tree are 

presented here.  

The AFLP analysis showed a much different pattern in the data, revealing that the 

majority (92%) of the L. tantalus individuals fell into a distinct clade with 100% 

bootstrap support (Figure 4).  However, four individuals (tan 7150, 402, 420, 505) fell 

into a separate clade that appears to be a sister taxon to the major tantalus clade, with 

69% bootstrap support. Its proximity to, but exclusion from, the larger tantalus clade 
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suggests that this is a group of putative hybrid individuals. The remaining pacifica 

individuals clustered onto the other half of the phylogram and were divided into several 

subgroups, all of which contained a mixture of individuals from sympatric and allopatric 

populations. 

 

Genetic diversity 

Analyses of molecular variance (AMOVA) based on haplotype divergence were used to 

estimate variance components and fixation indices. For both the AFLP and mtDNA data 

sets, the populations were grouped by location, such that the sympatric tantalus and 

pacifica comprised one group and the allopatric pacifica population comprised another. 

The AFLP data showed that most of the genetic variation in the data set was due to 

variation within populations (59.5%), but that subdivision between populations within 

locations (28.0%) also contributed significantly to the overall variation (Table 2). The 

least genetic variation (12.6%) was due to subdivision among locations, and was not a 

significant contributor to the overall variation. Pairwise genetic distance data supported 

this pattern: Table 5 shows that all pairwise AFLP genetic distances were significantly 

different from zero, however the distances between tantalus and the sympatric and 

allopatric pacifica populations were similar (pd = 226.28, 221.84, P<0.0001), whereas the 

genetic distances between the pacifica populations (pd = 148.65, P<0.0001) were nearly 

the same as the within population genetic distance (pd = 148.87).  

 The mtDNA showed the converse pattern to the AFLP data (Table 2): when 

grouped by location, the main variance components come from the subdivision among 

populations (22.6%), as well as the subdivision among locations (77.6%) and the 
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subdivision within locations contributed the least to the overall variation (0.21%). The 

pairwise genetic distances between the sympatric congeners was very low (Table 5: 

pd=0.399, NS) and was close to within population genetic distances, whereas the distance 

between the allopatric pacifica population and the sympatric pacifica and tantalus 

populations was significantly higher (Table 5: pd= 8.274, 8.211, P<0.0001). The results 

show that when grouping these three populations based upon nuclear data, the individuals 

within species are each others closest relatives, but that when grouping populations based 

upon mtDNA data, individuals within locations are closest relatives. 

 For the mtDNA, population pairwise FST values were significant for all 

comparisons between the sympatric and allopatric locations, but not between the tantalus 

and pacifica species within the sympatric location (Table 3). The AFLP data showed that 

population pairwise FST values were significant between all populations, but the FST 

values between the pacifica species (Table 3: FST=0.0347, P <0.0001) were notably lower 

than the FST values between the L. tantalus species and either the allopatric (FST=0.3212, 

P <0.0001) or sympatric (FST=0.3113, P <0.0001) pacifica populations. These results 

show that while there is moderate nuclear genetic differentiation between the pacifica 

populations, there is very great differentiation between the tantalus and pacifica species, 

in sympatry and allopatry. Conversely, there is no significant mtDNA differentiation 

between the tantalus and pacifica populations in sympatry (Table 3: FST=0.0177, NS), 

which indicates that there is significant sharing of alleles, a result which could be 

expected if there is hybridization between these populations. 

 

Hybridization 
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The LnK values were averaged over 10 iterations for each of the two models (admixture 

or no admixture with correlated allele frequencies). Calculation of K of each model 

using the LnK output from Structure showed that for each model there was a clear peak at 

K = 2 (Table 4).  The average marginal log likelihoods for the admixture and no 

admixture models at K = 2 fitted using Structure were -47578.5 and -47972.0, 

respectively. Calculations of both Bayes factors showed that an admixture model was 

favored with a factor of 8.0X 10170. Given that Bayes factors greater than 100 can be 

considered “decisive” (Goodman, 1999), I concluded that the admixture model best fitted 

the data.  

These results also mean that the data strongly support the hypothesis that pacifica 

and tantalus are admixed, albeit at a low degree. Averaged over 10 runs, 97% of the 

pacifica individuals and 93% of the tantalus individuals were assigned to one of these 

two population clusters with a very high probability. For the most part, assignments 

correlate well with the a priori designation of individuals to either of the two species. 

However, 13 individuals showed evidence of greater than 20% mixed ancestry, with four 

notable exceptions that had >50% mixed ancestry (Figure 5). One of these four 

individuals from the tantalus population (tan7150) had a roughly equal probability of 

being assigned to either population, which is consistent with the expectation for a first 

generation hybrid. However, all individuals were song-typed previous to analysis, and 

this individual, like all classified as tantalus, sang near the species mean pulse rate of 

2.0pps.  The remaining three tantalus individuals had varying degrees of assignment to 

the tantalus population, ranging from 23-35% averaged over 10 iterations, suggesting 

that they may be backcrossed hybrid individuals. There were several other individuals 
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from the pacifica populations which showed mixed probabilities of assignment. To 

further assess the statistical confidence for all of these possible instances of admixture, I 

performed a second clustering analysis (as in Kronfrost et al., 2008); in this second 

analysis Structure estimated the posterior probability that each individual had pure 

ancestry by using information on the designated population of origin for each individual. 

I set the prior probability of pure ancestry to 0.95. Averaged over ten iterations, results 

from this second analysis showed that the probability that each of the previously-

identified individuals belongs to their assigned populations falls outside of the 95% 

confidence interval. A summary of their ancestry probabilities is shown in Table 6. One 

of these individuals (tan505) appears to be misclassified, one appears to be a backcrossed 

hybrid individual (tan7150), and the other two individuals appear to have immigrant 

ancestry farther back. An additional four individuals from the allopatric L. pacifica 

population and four individuals from the sympatric population showed a high probability 

of assignment to the opposite clade two (or more) generations back (Table 6), and one 

individual (mcp6145) appears to be the result of a hybrid that has been backcrossed with 

a pacifica parent.  

Contamination of DNA samples could also result in such a pattern, however, in 

order determine that contamination did not cause the anomalous banding patterns in these 

individuals, the band totals for all individuals were assessed.  Amplification with six 

primer pairs resulted in, on average, 251 bands per individual. Within tantalus, the mean 

band number was 238, and within pacifica, the mean band number was 257. If DNA from 

one species had contaminated the sample of another, that individual would be expected to 

have significantly more bands than average (because it would contain bands from both 
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species). None of the putative hybrid individuals had a significantly different mean band 

number than their species average, indicating that contamination from that other species 

was unlikely.    

 

DISCUSSION 

Previous studies on the sympatric congeners L. tantalus and L. pacifica have found that 

behavioral isolation is incomplete, and have suggested that mtDNA has introgressed 

between these otherwise taxonomically-distinct species (Shaw 2008; Parsons and Shaw, 

2001). Such findings suggest contemporary or recent hybridization has occurred. By 

comparing phylogenetic patterns at multiple genetic loci and across geographically 

disparate populations, I have been able to reveal a pattern of non-exclusive ancestry in 

nuclear and mitochondrial lineages between sympatric and allopatric populations of these 

species. Analysis of the mitochondrial COI gene sequence shows that the sympatric 

congeners have a high degree of shared variation, having mtDNA that is more similar 

than the mtDNA of allopatric conspecifics. The converse pattern is displayed in nuclear 

AFLP markers, which show significant differentiation in all populations, but have greater 

shared variation between allopatric pacifica populations than either does with tantalus.  

Finally, Structure analysis of AFLP data suggests that several individuals of tantalus 

have significantly mixed ancestry. Overall, the results confirm the pattern first reported 

by Shaw (2002) and suggest that sympatric hybridization allowing widespread 

mitochondrial introgression along with limited nuclear introgression is the most 

parsimonious explanation for the similarity in haplotype arrays, and differences in AFLP 

profiles, between sympatric populations of the tantalus and pacifica species.  
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 mtDNA monophyly in sympatry 

The phylogenetic relationship among the mtDNA data was summarized by a neighbor-

joining tree and a haplotype network, and the genetic variation within and between 

populations was analyzed with AMOVA and F-statistics.  All analyses—phylogenetic, 

AMOVA, and a haplotype network—were concordant, showing that the two allopatric 

populations of pacifica were significantly differentiated and by all appearances, not each 

others closest relatives.  This result is in agreement with previous findings (Shaw, 1996a) 

from this species pair, in which phylogenetic reconstructions of mtDNA data suggested 

that sympatric populations of pacifica and tantalus were sister species, not allopatric 

pacifica populations.   Conversely, all analyses were also concordant in suggesting that 

sympatric pacifica and tantalus were each others closest relatives.  

Several different processes could explain the shared mtDNA variation found in 

sympatric species of Laupala, including incomplete lineage sorting in the mtDNA, an 

ancient hybridization event followed by selection on mtDNA, or infrequent interspecific 

hybridization coupled with strong selection against hybrids allowing. The likelihood of 

any of these three hypotheses is discussed further below.    . 

 

Nuclear genome population structure 

In contrast to the mitochondrial data, AFLP frequencies exhibited significant differences 

across the two species, indicating that nuclear genotypes of pacifica and tantalus do not 

support a hypothesis that they are sister taxa. Rather, phylogenetic analysis done on 

AFLP data using the more distantly related L. kukui as an outgroup indicate that previous 
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phenotypic groupings based on singing behavior and male genital morphology (Otte, 

1989) represent distinct genetic lineages.  First, the neighbor-joining analysis showed that 

46 of the tantalus individuals fell into a single clade which had 100% bootstrap support.  

The remaining 4 individuals that did not group with the larger tantalus clade, instead 

came out as the next most closely-related group. The remainder of the pacifica 

individuals, from both sympatry and allopatry, formed a separate clade that was divided 

up into many mixed-locality groups, with few of them showing greater than 50% 

bootstrap support (Figure 4). The AMOVA revealed that there is more genetic 

differentiation between the sympatric congeners than between allopatric conspecifics 

(Table 3).  The F-statistics also support this finding: the pairwise FST values are 

significant for all pairs, showing that there is significant genetic structuring which defines 

populations (Table 4). However, the FST values between the pacifica populations and 

tantalus are each >0.3, which is typically considered evidence of very great genetic 

differentiation (Wright, 1978), while the low pairwise FST between the pacifica 

populations indicates that while differentiation exists, it is moderate at best.  

Finally, a population structure analysis of the banding patterns showed that the 

differentiation in the AFLPs was indicative of two distinct population clusters. Structure 

estimated that the band frequencies present in the sample could be best grouped into two 

population clusters, one of which contained all of the pacifica individuals and the other 

which contained the tantalus individuals. Averaged over 10 iterations, it showed that 

roughly 97% of the allelic ancestry of pacifica belonged within its putative group, and 

93% of tantalus allelic ancestry came from the tantalus group. This result also strongly 

supports the phenetic grouping of these two species.   
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Interspecific hybridization 

If we accept that current species designations are correct, how do we explain the 

discrepancy between the mitochondrial and nuclear datasets? Both interspecific 

hybridization or incomplete lineage sorting may result in polyphyly (Funk and Omland, 

2003), and distinguishing between these hypotheses is difficult due to the large variance 

in rates associated with lineage sorting and the fact that both processes can produce 

similar phylogenetic patterns (Holder et al., 2001). Although historically cited as 

conclusive evidence for current hybridization (as in: Tegelstrom 1987; Ruedi et al. 1997; 

Goodman et al. 1999) data describing shared sympatric mtDNA variation does not on its 

own distinguish between recent hybridization and introgression versus shared ancestral 

polymorphism and incomplete lineage sorting. This is because these two types of shared 

variation can become blurred under some scenarios. For example, if the mtDNA 

molecules of two species diverged during a period of geographic separation, and a later 

hybridization event coupled with a selective sweep caused fixation of mtDNA variants 

with higher fitness, this would result in the appearance of sister taxa that in fact no longer 

hybridize and have long ago diverged (Shaw 2002). Alternatively, mtDNA similarities 

could persist without current hybridization if speciation is recent, due to the fact that 

phenotypic isolation can evolve before neutral markers become fixed (Coyne and Orr, 

1989). This scenario is unlikely in Laupala because previous research based upon nuclear 

markers has estimated the split between these two taxa to have occurred approximately 

3.7 million years ago (Mendelson and Shaw, 2004). 
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Therefore, I suggest that the data here provide substantial support for the 

hypothesis of hybridization.  Two lines of evidence support this.  First, while shared 

mtDNA variation in sympatry on its own cannot support a hypothesis of current 

hybridization, the analysis of a second divergent marker along with mtDNA lends 

additional support to such a hypothesis. Mitochondrial data coupled with information 

from other loci has often provided convincing evidence of introgression between 

sympatric species (e.g. Dowling, 1993; Gardner, 1996). However, even with the use of 

additional markers, contrasting genetic patterns between nuclear and mitochondrial 

markers can be explained by higher genetic drift of mtDNA rather than current 

hybridization (due to reduced effective size of mtDNA when compared with nDNA) 

(Palumbi & Baker 1994). It is however widely accepted that the addition of mtDNA 

sequence data from geographically disparate conspecifics that do not share this variation 

provides strong support for a hypothesis of secondary contact with introgression (Funk 

and Omland 2003; Mallett 2005). Many recent studies have successfully used this 

approach to show evidence of hybridization after secondary contact, including those on 

damselflies (Hayashi et al. 2005), Heliconius (Beltran et al, 2002), Liolaemus (Morando 

et al. 2004), Anopheles (Besansky et al. 2003), Bufo (Masta et al. 2002), and Drospohila 

(Machado et al. 2002).  Given that phenotypic data (Otte 1994), patterns of behavioral 

isolation (J. Jadin, Ch. 3), and AFLP data all suggest that the populations classified as 

pacifica are a single species, and tantalus is a separate species, these geographically 

disparate, and non-exclusive patterns of variation provide substantial support for a 

hypothesis of hybridization after secondary contact (Morrow 2000; Crochet et al. 2003; 

Ray et al. 2008; as well as those cited above). 
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 A second line of evidence provides additional, albeit weaker, support for a 

hypothesis of current hybridization. This evidence comes from patterns in the data 

revealed by the Structure analysis, which suggest that contemporary, but limited, 

hybridization may be occurring. While most of the individuals in each population showed 

a high degree of ancestry within their populations, there were four tantalus individuals 

that displayed a pattern of significantly mixed ancestry (Figure 5). One of these 

individuals, designated tan7150 (Table 5), had AFLP bands that appeared to be derived 

from an ancestor in the pacifica population.  This pattern would be consistent with that of 

a first generation hybrid.  Similarly, one sympatric pacifica individual (mcp6145) 

appeared to have a hybrid grandparent that had backcrossed with a tantalus individual. 

The remaining individuals showed mixed degrees of ancestry with the opposite clade, 

which could be consistent with predictions for hybrid individuals that had backcrossed 

several generations back.  In addition, while significant clustering of alleles suggested 

that nuclear DNA falls into two population clusters, shared bands accounted for almost 

all of the bands scored. When two species are very closely-related, the expectation is that 

there will be few to no fixed bands (as in Lopez et al., 1999). Because tantalus and 

pacifica are not thought to be sister taxa, more fixed bands between species are expected; 

in two other Laupala species that are estimated to have diverged at a date commensurate 

with that of the lineage split between tantalus and pacifica, nearly one quarter of the 

bands scored were fixed (Mendelson and Shaw 2002).   The fact that there were no fixed 

bands between tantalus and pacifica, but instead an overwhelming majority of shared 

bands, suggests that gene flow may be causing this shared variation.  
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 However, these individual ancestry patterns revealed by Structure should be 

interpreted with caution, for several reasons.  First, the algorithm employed in Structure 

is based upon an assumption that band frequencies reflect alleles that are in linkage 

disequilibrium, selectively neutral, and in Hardy-Weinberg equilibrium.  While it is true 

that AFLPs are considered to be selectively-neutral markers (Vos et al. 1995) because 

they sample broadly across the genome, they are likely to be sampling parts of the 

genome that are under selection, as well as ones that aren’t, and therefore, it is unlikely 

that all bands are selectively neutral. Therefore, while Structure is widely used to analyze 

AFLPs, they violate the assumptions underlying the Structure algorithm.  

AFLP data in general also has inherent difficulties.  AFLPs have become a 

popular marker for genetic analyses because they can be rapidly developed, have a low 

cost, are highly repeatable, and allow one to collect large volumes of data in a relatively 

short amount of time, compared to other DNA marker techniques, such as direct 

sequencing, RAPDs, or microsatellites (Koopman 2003). However, this comes at the cost 

of data that can be difficult to interpret.  Like all genetic techniques, the scoring 

procedures used on AFLPs can be subjective.  While setting inflexible scoring criteria 

will help to eliminate some subjectivity, it cannot be eliminated. Because AFLPs are 

dominant markers, it is not possible to determine if a peak is the result of one or two 

copies of an allele. Likewise, if two restriction sites are spaced equidistant from each 

other on disparate sections of the genome, they will amplify and read as a single band in 

AFLP analysis. Therefore, it can be difficult to distinguish between AFLP bands that are 

identical by descent and those that are identical by state (Vos et al. 1995; Vekemans et al. 

2002), however, to be suitable for phylogenetic analysis, marker fragments must have 
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evolved independently, and be homologous (Swofford et al. 1996). A recent simulation 

study found that fragment homology could be improved by eliminating small fragments 

from the analysis (Althoff et al. 2007).  In order to avoid this problem, only fragements 

above 100bp were scored, however, it is not possible to determine if this was 

conservative enough of an approach. Despite this potential problem, the same study did 

nonetheless conclude that AFLPs are a useful tool for studying relationships among 

populations of a species of recently-diverged taxa like Laupala (Mendelson and Shaw, 

2005).    

 

Implications for speciation 

If we accept that tantalus and pacifica are hybridizing in the contact zone, there are still 

many reasons to think that reproductive isolation between them is quite strong. First, as 

noted, the two species show significantly different structure in their nuclear genomes and 

these differences are just as strong between sympatric heterospecifics (FST=0.3113, p 

<0.0001) as between allopatric heterospecifics (FST=0.3212, p <0.0001). If hybridization 

were causing significant gene flow, we would expect sympatric populations to show 

more genetic similarity than allopatric populations, in both nuclear and mitochondrial 

genomes. Interbreeding is expected to result not in elimination of variation, but in 

randomization of variation (Slatkin 1987). Because we do not find this, we have reason to 

suspect that hybridization is infrequent. Second, the strong association previously found 

between nuclear DNA, male genital morphology, and song rate would not be expected if 

isolating barriers were weak (Shaw 2002). Third, while heterospecific matings do occur 

in the lab, they are both attempted and successfully completed significantly less 
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frequently than conspecific matings between either of the pacifica populations (J. Jadin, 

Ch. 3). However, the results suggesting that hybrid individuals were present in this study 

also suggests that intrinsic postzygotic isolation is not very strong, and thus, premating 

isolation may be leading to, and perhaps strengthening isolation. 

Information on directionality would allow us to make further predictions about 

the patterns of isolation between this species pair. Other studies have found that the 

behavior of males relative to females can determine the direction of the outcome of 

hybridization (as in: Takami et al. 2007, Svensson et al. 2008; Van der Sluijs et al., 2008; 

Stelkens et al., 2008). The companion to the current study found that behavioral isolation 

between tantalus and pacifica is asymmetric, with the male tantalus-female pacifica pairs 

attempting significantly fewer, but completing slightly more matings than the reciprocal 

combination (J. Jadin, Ch. 3).  In this case, one should expect to see a preponderance of 

pacifica alleles introgressed into a tantalus background. However, because tantalus and 

pacifica belong to separate taxonomic divisions within Laupala, are therefore not sister 

taxa, and the split between their groups is quite distant at 3.7 million years ago 

(Mendelson and Shaw, 2005), it is difficult to determine the direction of introgression 

without detailed data from the taxa connecting them.  Also, data on hybrid fertility or 

viability would allow us to assess if hybrids from one cross had higher viability, fertility, 

or mating success than the other.  From this we may be able to predict which species 

would be the recipients of genetic introgression. Hybrid data is not currently available, 

but should be the focus of further studies. 

 

Conclusions  
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Phylogenies of recently and rapidly-diverging species are always difficult to resolve 

because the results of ongoing gene-flow as well as incomplete lineage sorting of 

ancestral polymorphism become entangled. This study is significant because the data 

reported here proffer considerable support for the hypothesis that the high degree of 

mtDNA similarity between sympatric tantalus and pacifica is the result of hybridization 

with mitochondrial introgression. Additionally, this study has identified some putative 

hybrid individuals, which suggests that hybridization is not only recent, but may be 

currently ongoing. It would be predicted that the mtDNA is introgressing from tantalus 

into pacifica, given the divergence in pacifica mtDNA haplotypes between localities; 

however, in order to conclusively determine the directionality of introgression further 

genetic examination of intermediate taxa are needed.  Further, future behavioral studies 

on and estimation of hybrid viability between reciprocally paired species will help 

determine the consequences and direction of hybridization. Overall, these results 

corroborate a previous phylogeny and provide support for a previous finding of 

incomplete behavioral isolation in sympatry. Speciation in this young genus has 

undoubtedly not been a linear process, and stochastic events in allopatry and sympatry 

have likely contributed significantly to its rapid rate of diversification.      
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TABLES 

 
Table 1 Number and frequency of COI haplotype for each population.   Two haplotypes, 

numbers 6 and 7, were shared between species.  No haplotypes were shared between the 

allopatric (P) and sympatric (M) populations. Out of 560 bp, only 16 (2.8%) were 

variable; 15 of these mutations were transitions, and 1 (13S) had both a transition and 

transversion mutation. 

 
haplotype# total Population   
   L. pacificaP  L. pacificaM L. tantalusM 
1 4 4 0 0 
2 6 6 0 0 
3 34 34 0 0 
4 2 0 2 0 
5 3 0 3 0 
6 88 0 39 49 
7 4 0 3 1 
8 1 0 0 1 
9 1 1 0 0 
10 1 1 0 0 
11 1 1 0 0 
12 1 0 0 1 
13 1 0 0 1 
14 1 1 0 0 
15 1 1 0 0 
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Table 2 Analysis of molecular variance (AMOVA) results of three populations of the L. 

pacifica and L. tantalus species based on AFLP markers and mtDNA COI haplotypes. 

These analyses were performed on approximately 48 individuals per population. For the 

AMOVA, the populations were grouped based on location, such that the sympatric 

heterospecifics comprised one group and the allopatric pacifica the other. For the AFLP 

data, Nei-Li restriction site distances were used to compute genetic variation, whereas 

pairwise distances was used in the mtDNA data. 

 

Data  Source of variation df Variance 
components 

% of 
variation -statistics P-value 

mtDNA Among locations 1 1.52 77.59 CT = 0.776 0.3327 

 Among 
populations/locations 1 0.004 0.21 SC = 0.009 0.0616 

 Within populations 146 0.44 22.62 ST = 0.774 <0.0001 

AFLP Among locations 1 15.85 12.55 CT = 0.168 0.6657 

 Among 
populations/locations 1 35.30 27.96 SC = 0.320 <0.0001 

 Within populations 141 76.12 59.49 ST = 0.206 
 <0.0001 
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Table 3.  Population pair-wise FST values for the three populations used in this study. The 

mtDNA values were estimated assuming the Tamura-Nei substitution model and the 

AFLP values were estimated by computing minimum pair-wise distances, both in 

Arlequin. An asterisk * denotes significance (<0.0001).  

 
  mtDNA 

  L. pacificaP L. pacificaM L. tantalusM 

L. pacifica PACP 0.0000 + + 

L. pacifica PACM 0.7043* 0.0000 + 

L. tantalus TANM 0.7257*    0.0177 0.0000 

  AFLP 

  L. pacificaP L. pacificaM L. tantalusM 

L. pacifica PACP 0.0000 + + 

L. pacifica PACM 0.0347*    0.0000 + 

L. tantalus TANM 0.3212* 0.3113* 0.0000 
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Table 4. Averaged estimated log probability (LnP), variance (PD), and K at different 

clusters (K) from L. pacifica and L. tantalus AFLP profiles from 10 iterations of an 

admixed ancestry model with correlated allele frequencies in Structure.  The K has a 

mode at the true K, which is 2.   

 
K LnP PD K 
1 -56425.1 2834.3 -- 
2 -47578.5 4508.82 84.75 
3 -44981.1 5137.91 29.28 
4 -44482.7 5436.61 6.40 
5 -44077.4 5015.9 -- 
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Table 5. Population pairwise uncorrected genetic distances based upon AFLP and 

mtDNA data.  Values along the diagonal are average within population pairwise 

distances. An asterisk (*) denotes a significant value. 

 
   Pairwise distances: mtDNA 
 N # haplotypes L. pacificaP L. pacificaM L. tantalusM 
L. pacificaP 49 8 0.42347  8.27486* 8.21063* 
L. pacificaM 48 4 + 0.44958 0.39904 
L. tantalusM 53 5 + + 0.33817 
   Pairwise distances: AFLP 
 N # genotypes L. pacificaP L. pacificaM L. tantalusM 
L. pacificaP 46 46 138.10338   148.65217* 221.83565*   
L. pacificaM 48 48 + 148.87411 226.27833* 
L. tantalusM 50 50 + + 162.70612  
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Table 6 Structure results of 13 individuals which showed a significant probability (>95%) of being migrants (i.e. hybrid 

ancestry or misclassified). The first analysis used no prior population information and assigned individuals to clusters based 

solely on genotype.  The second analysis used prior population assignments. It was set to investigate ancestry in the opposite 

clade up to two generations back and the assess probability of assignment per generation, as averaged over 10 iterations.  

Species site ID# 

Without prior information: With prior population information: 

P(tant) P (pac)  P(tant) P(pac) 
P 
(immigrant   
parent) 

P (immigrant    
grandparent) 

1 (L. tantalus) M tan7150 0.417 0.583 0 0.0321 0.02 0.9587 
 M tan420 0.313 0.687 0 0 1 0 
 M tan402 0.260 0.740 0 0 1 0 
 M tan505 0.401 0.599 0 0.9807 .006 0.0187 
2 (L. pacifica) M mcp6145 0.180 0.820 0 0.4961 0.5039 0 
 M mcp7025 0.169 0.831 0 0.0146 0.9854 0 
 M mcp7029 0.216 0.784 0 0 1 0 
 M mcp6143 0.314 0.686 0 0 1 0 
 M mcp646 0.292 0.708 0 0 1 0 
 P pup405 0.312 0.688 0 0 1 0 
 P pup544 0.246 0.754 0 0 1 0 
 P pup546 0.352 0.648 0 0 1 0 
 P pup551 0.217 0.783 0 0.0007 0.9993 0 
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Table 7. Variable sites in the 557bp portion of mitochondrial COI gene sequenced.  There were a total of 15 variable sites, 

resulting in a total of 15 unique haplotypes out of 146 individuals.     

 9 42 135 171 213 321 339 363 366 382 390 409 507 546 549 
T6127 …A …A …C …A …C …T …C …C …T …T …G …T …A …C …A 
T505 …A …A …C …A …C …T …C …C …T …T …G …T …A …A …A 
P438 …G …G …C …G …T …T …C …C …T …C …G …T …A …T …A 
P419 …G …A …T …A …C …C …C …C …C …C …G …T …A …T …A 
P412 …G …G …C …G …T …T …C …T …T …T …G …T …A …T …A 
P411 …G …A …T …A …C …C …T …C …T …C …G …T …A …T …A 
P405 …G …A …T …A …C …C …C …C …T …C …G …C …A …T …A 
4pup …G …A …C …G …T …T …C …C …T …T …G …T …A …T …A 
6pup …G …A …T …A …C …C …C …C …T …C …G …T …A …T …A 
34pup …G …G …C …G …T …T …C …C …T …T …G …T …A …T …A 
2mcp626 …A …A …C …A …C …T …C …C …T …T …G …T …C …T …A 
2mcp412 …A …A …C …A …C …T …C …C …T …T …G …T …A …T …T 
86mc …A …A …C …A …C …T …C …C …T …T …G …T …A …T …A 
4mc …A …A …C …A …C …T …C …C …T …T …A …T …A …T …A 
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FIGURE LEGENDS 
 
Figure 1. Map showing sample localities for Laupala species from mid-elevational 

rainforest floors on the island of Oahu. The dashed line represents the approximate 

putative distribution of L. pacifica and the dotted line represents L. tantalus, as proposed 

by Otte (1994).  The square shows the location in the contact zone between L. pacifica 

and L. tantalus that was sampled for this study, and the circle represents the allopatric L. 

pacifica population. 

 
Figure 2. Statistical parsimony haplotype network for COI data set. The haplotype node 

area is proportional to the number of individuals which have that haplotype. Links 

between nodes are all single mutational steps, regardless of length. Pupukea (allopatric) 

L. pacifica haplotypes are shown in black, Manoa Cliffs (sympatric) L. pacifica are 

shown in light gray, and Manoa Cliffs L. tantalus are shown in dark gray.   L. kokei was 

used as an outgroup. 

 
Figure 3. Phylogram (neighbor-joining tree) of 15 unique COI haplotype sequences from 

146 individuals of L. pacifica and L. tantalus.  Haplotypes names are shown preceded by 

an H. The relative size of each node is roughly representative of the number of 

individuals sharing each haplotype.  Numbers in italics on branches indicate bootstrap 

support for each clade, based on 1000 bootstrap replicates; all clades with bootstrap 

values greater than 50 are indicated.  The 8 haplotypes found in the northern allopatric L. 

pacifica population fall into two distinct clades (designated by the dotted line), whereas 

the 7 haplotypes found within the sympatric L. pacifica and L. tantalus populations 

(dashed line) show no distinct grouping within their clades. 
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Figure 4.  Unrooted Neighbor-Joining tree for 656 unique AFLP bands from 144 

individuals of L. pacifica and L. tantalus.  Sample names consist of a three-letter 

abbreviation of sample site (tan = sympatric tantalus; mcp = sympatric pacifica; pup = 

allopatric pacifica), followed by the sample ID#. Branch lengths are reflective of genetic 

distances between genotypes; individuals highlighted in gray are those which Structure 

identified as putative hybrid individuals.   

 

Figure 5. Genetic clustering based on 656 AFLP loci. Each individual is represented by a 

narrow vertical column with the proportion of the two colors indicating the genome 

proportion derived from each of the two populations. Three L. tantalus individuals 

exhibited strong evidence of ancestry belonging to the other clade (*), while one 

individual (+) showed nearly evenly mixed ancestry. 

 

Figure 6. Histogram showing number of bands with frequency differences between 

populations.  Black bars represent differences between allopatric conspecifics (L. 

pacificaM and L. pacificaP), the dark gray bars represent differences between sympatric 

conspecifics (L. pacificaM and L. tantalusM), and pale gray represents differences 

between allopatric heterospecifics (L. pacificaP and L. tantalusM).  Each value on the x-

axis represents a 10 percentage point interval (i.e. 20% includes differences ranging from 

11% to 20%). 
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Chapter II: Good things come in small packages: costly 
spermatophores and differential male mating investment in 
Laupala 
 
 
ABSTRACT 
 
Female reproductive costs are thought to dictate the direction of sexual selection in 

most animal systems.  However, male reproductive costs may play an equally, if not 

more important role in determining the direction of sexual selection.  Mounting 

evidence suggests that they may be especially important in systems with high male 

investment into the mating process, such as some orthopterans. Crickets of the 

genus Laupala, have an elaborate and time-consuming mating process which may be 

as costly to males as females. Males produce numerous spermless spermatophores 

followed by a single sperm-filled spermatophore in the course of an all-day mating 

bout. If this system incurs significant costs for the males, they should show 

preference for particular female traits, such as body size, which indicate high female 

fitness. The aim of this study was, first, to quantify male mating costs by analyzing 

changes in spermatophore production after consecutive matings; and second, to 

determine if males displayed a preference for larger females by comparing timing 

and spermatophore production differences between female partners. Results show 

that males produce fewer spermatophores after multiple matings.  Results also show 

that food-deprived males less frequently complete multiple matings than do food-

supplemented males. Finally, results indicate that there are several correlates which 

predict spermatophore production: mating initiation and the number of 

spermatophores were positively predicted by female weight, and the decrease in 
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spermatophore production over consecutive days is negatively correlated with a 

positive change in weight between consecutive females.  These results suggest that 

males are resource-limited and can gauge the size of their partners, which allows 

them to choose which females will be the recipients of greater mating effort. I argue 

that high male mating costs are present and are therefore important in determining 

how sexual selection may be acting in this genus. 

 
INTRODUCTION 
 
The standard model of sexual selection predicts that males will be indiscriminate and 

females will be choosy.  This model was first proposed by Darwin and was based upon 

his comparison of mating behavior across numerous taxa (Darwin 1871), in which he 

repeatedly observed that mate choice was either decided through male-male competition 

or through female choice for males with the showiest displays. The female choice model 

of sexual selection was later corroborated by Bateman’s (1948) work which showed that 

females were likely to be the choosy sex because of the higher physiological/caloric cost 

of eggs compared to sperm. Trivers (1972) work lent further support to this model by 

showing that as a result of higher gametic costs and lower reproductive potential, females 

would invest more into offspring than would males. Together these papers ushered in an 

era of sexual selection research that focused on quantifying female costs and identifying 

female choices, and as a result, female reproductive costs are relatively well-understood.  

Male reproductive costs, conversely, were overlooked for many years because it was 

thought that male gametes were “cheap,” could be produced in unlimited quantities, and 

therefore males paid few mating costs.  Recent work on sexual conflict and ejaculates, 

however, has shown that the cost of male reproduction in many species approaches or 
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even surpasses the cost of female reproduction (Vahed 2007b; Wagner 2005; Parker and 

Ball 2005; Kondoh 2001). 

Males have been predicted to pay particularly substantial costs for reproduction in 

systems with large ejaculates (Bonduriansky 2001; Vahed 2007a), or in systems with 

male parental investment and arduous or dangerous mating bouts (Bonduriansky 2001).  

Empirical evidence has thus far followed these predictions, showing that there are high 

male mating costs in many taxonomically diverse systems. Examples have been found in 

birds with male parental care (Torres and Velando 2005; Schamel et al. 2004; Amundsen 

2000), in beetles with long mating bouts (Peterson et al. 2005), and in orthopterans, 

which are thought to have costly male gametes (Bateman and Fleming 2005; Gwynne 

1993; Gwynne and Simmons 1990). These costs come in many forms, and are the 

additive effect of many factors, such as direct physiological costs that result in calorie 

loss. Physiological costs are incurred from vocalizations (Ward and Slater 2005; Thomas 

2002; Hoback and Wagner 1997), mating displays (Hansen et al. 2008; Usherwood 2008; 

Sullivan and Kwiatkowski 2007, and references therein), search locomotion (Hack, 1998; 

Forsyth et al. 2005), ejaculate or gift production (Vahed 2006; Wagner 2005; Burpee and 

Sakaluk 1993), and feeding (Sakaluk et al. 2004). Mating also incurs behavioral costs, 

which are factors that affect the life-span of an individual as a direct result of their 

behavior. For example, in some bushcrickets, song attracts parasitic flies that acoustically 

locate the singing male and deposit larvae around him, drastically decreasing his fitness 

(Lehmann and Lehmann 2000). Predation is another behavioral cost of reproduction, 

which not only affects lifespan, but has also been found to affect the direction of sexual 

selection (Svensson et al. 2007).  Finally, there are temporal costs that can act as 
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multipliers of the aforementioned costs. For example, a brief mate search will result in 

less caloric expenditure than would an extended period (Forsyth et al. 2005); or, longer 

copulations with infected individuals may lead to increased exposure to a parasite than 

would briefer or fewer copulations (Bouma et al. 2007; Read 1991).   

 It becomes important to understand not only the costs of mating but also their 

relative effects on an individuals’ fitness if we hope to make predictions about sexual 

selection in any of these systems. This is because one of the consequences of high male 

mating costs is that\male choice  is likely to evolve. Male mate choice has been found in 

numerous systems with potentially high male mating costs, such as in wolf spiders 

(Roberts and Uetz 2005) and cichlids (Werner and Lotem 2003) where mating is 

dangerous, in field crickets where displaying is costly (Hunt et al. 2004) and in numerous 

other orthopterans, where gamete production is thought to be costly (Dewsbury 1982; 

Kvarnemo and Simmons 1999; Bateman and Ferguson 2004; Bateman and Fleming 

2006). In addition, male choice is also predicted in systems with high variance in female 

quality, or a female-biased operational sex ratio (OSR) (Johnstone et al. 1996; 

Bonduriansky 2001).  When variance in female quality is high and/or females are 

abundant relative to males, males should maximize their investment into mating by 

choosing the fittest females (Emlen and Oring, 1977), such as those that display the 

highest quality ornaments (Amundsen et al. 1997; Amundsen and Forsgren 2001), 

provide the most parental care (Bonduriansky 2001), or have the most potential fecundity 

(Parker 1983; Dunn et al. 2001; Bateman and Ferguson 2004). Across most insect taxa, 

large female body size is indicative of high egg carrying capacity and therefore, high 

fecundity (Honek 1993; Kazimirova 1996; Preziosi et al. 1996; Sokolovska et al. 2000).  
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As such, many studies have found that males choose the largest females to be the 

recipient of their greatest mating efforts (Fischer et al. 2000; Danielson-Francois et al. 

2002; Rogers et al. 2006).  Moreover, research has shown that the more resource-

deprived the males are, the more strongly they prefer these large females (Byrne and Rice 

2006). 

 Crickets are particularly useful systems in which to study the costs of male 

reproduction.  This is because male crickets produce a sperm-containing mass known as a 

spermatophore which is presented to to females during courtship.  The spermatophore 

appears to have different functions for different species, perhaps acting as a food source 

for the female (Simmons 1990; Sakaluk 1985; Jia and Sakaluk 2000; Engels and Sauer 

2006; Vahed 1998), a sensory trap (Vahed 2007b; Sakaluk 2000; Sakaluk et al. 2006), or 

as a gift to preoccupy the female while the male copulates with her (Heller et al. 1994; 

Vahed 1998; Will and Sakaluk 1994; Sakaluk 2000; Sakaluk et al. 2006). Much recent 

work also suggests that males use the spermatophore or seminal fluids to manipulate 

female receptivity or fecundity (Cordero et al.1995; Arnqvist and Nilsson, 2000; 

Arnqvist and Andres 2006; Wedell 2005) and therefore the spermatophore is a source of 

sexual conflict between males and females (Vahed 2006). Some of this work suggests 

that larger spermatophores have greater manipulative power, but are also more costly for 

the males, in terms of longevity or remating ability (Simmons 1990, 1995; Hayashi 1993; 

Sakaluk et al. 2004)   

Crickets of the genus Laupala are valuable for a study of male reproductive costs due 

to their large spermatophore output and elaborate mating system.  In the Laupala mating 

system, males produce a series of 6-15 small spermless spermatophores (hereafter 



60 

“micros”) and 1-2 sperm-containing macrospermatophores (hereafter “macros”) per 

copulation. In addition to the large number of micros produced, a single copulation in 

Laupala can last up to 12 hours, resulting in only one insemination. This dual system of 

micros and macros is nearly unique among known cricket species, with only one other 

known example (DeCarvalho and Shaw 2005). The exact function of the micro is 

unknown, but recent evidence shows that it enhances sperm uptake into the females 

spermatheca (T. deCarvalho, in prep), and may also function as a form of assessment of 

female readiness (Shaw and Khine 2004). It superficially appears that this process may be 

quite costly to the males, given the time and number of micros involved.  Previous 

studies in other Orthopteran systems have found that there is a positive correlation 

between spermatophore size and male costs as inferred by length of male refractory 

period (Vahed 2006). Therefore, because of the overall large investment in 

spermatophores in a given mating, Laupala may be an ideal system in which to study the 

consequences of male reproductive costs. 

For the present study, I hypothesized that micro production in Laupala is costly to 

males and will lead to the evolution of male choice.  I tested these hypotheses by 

assessing  remating ability and preferential female investment. Males were divided into 

both high and low-diet treatments.  Males were predicted to have attenuated remating 

abilities, in terms of number of micros produced and delay in production, after 

consecutive mating days. They were also predicted to invest more effort, increased micro 

production, into mating with larger females.  Finally low-diet males were predicted to 

show a greater depression in remating ability relative to high-diet males. Overall results 
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suggest that mating does incur a “cost” for males, who may be able to modulate their 

mating investment based on their partners’ reproductive potential.   

 
METHODS 
 
Animal Collection 
 
The individuals used in this study were lab-reared offspring of crickets captured from two 

sites on the island of Oahu (site MC: sympatric L. pacifica and L. tantalus, site PU: 

allopatric L. pacifica) (MC: 21º 19’35”,-157º 48’45”; PU: 21º  37’14”, -158º 0’45”), one 

site on the island of Hawaii (site DH; sympatric L. kona  and L. hualalai, site MN: 

allopatric L. kona) (DH: 19º 41’53”, -155º 57’13”; MN: 19º 12’56”,-155º 51’38”), and 

one site with allopatric L. paranigra (WR: 19º 27’45”, -155º 14’54”). At all sites, 

Laupala live in the leaf litter on or near forest floors. Wild caught individuals were 

captured in the field using nets and plastic vials, and housed according to population in 

two quart plastic containers while in transport. Upon return to the laboratory, individuals 

from single-species sites were split up into opposite sex pairs of approximately the same 

developmental stage.   Mature males from mixed-species sites were identified to species 

based upon song rate and paired with a mature female captured from the same site.    

Immature males were assigned species status once they reached maturity, and paired with 

a similarly-aged female in the same fashion. If females in mating pairs from mixed-

species sites had not oviposited within two weeks, the male from each pair was removed 

and switched out with one from the other species at that site. Eggs from all pairs were 

collected, and upon hatching, nymphs were transferred to single-family jars.  Upon 

reaching maturity, males and females were separated into individual holding cups, which 

were labeled with family ID#.  Once a male reached maturity, his song rate was checked 
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in order to confirm his species identity as well as that off his siblings. All individuals 

used for the trials were first or second generation lab reared from wild-caught individuals.  

 

Animal Care 

Lab conditions were set at a 12h day/night cycle and 20°C. Mating pairs were housed in a 

250mL plastic sample cup which was moistened with a wet Kimwipe and liberally 

supplied with Flukers Cricket Chow treated with Tegosept, both of which were changed 

weekly. If eggs had not been produced within two weeks, a different female was placed 

with the male. Mated females oviposited into the wet kimwipes, which were collected 

weekly and kept in separate egg cups until nymphs hatched after ~30days.  Nymphs were 

collected and housed in single family glass jars, moistened and fed in same manner as 

described above.  Upon maturing, individuals were removed from the jars and housed 

individually in cups, and 20-25 days post-molt males were identified to species based on 

song rate (Otte 1994) in order to confirm species identity of family.  

 

Feeding treatments 

I hypothesized that food-deprived males would be able to remate less frequently than 

well-fed males. Therefore, high and low diet treatments were applied to the males. Those 

in the high-diet treatment were fed ad libitum throughout their maturation period and 

were given fresh food and water the evening before a trial.  Males in the low-diet 

treatment were transferred to a new cup 10 days previous to their trial and were held in 

that cup with fresh water, but without food, until their trials began.  All females were fed 

and watered ad libitum. 
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Mating System 

All Laupala species mate diurnally, and all species follow the same general courtship 

sequence, however, the timing of mating events vary somewhat between species (J. Jadin, 

Ch.3; Danley et al. 2007).  Generally, males begin calling in the early morning hours, 

post-sunrise.  Once a female has located a male in his perch in the leaf litter on the 

ground or just above it, individuals face each other while antennating each others 

abdomens.  After some period of time, the male will produce a micro.  He will then circle 

the female several times, back up under her, and insert a sperm tube into her urogential 

tract, leaving the spermatophore external to the female.  After successful insertion, the 

male again faces the female, and they remain in this position for approximately 5-20min.  

During this facing period, the male will produce another micro, and as soon as he begins 

to move again, the female will remove the micro attached to her and consume it.  If the 

female removes the micro during the facing period, the male jumps rapidly, chases, and 

frequently even swipes at the female with his front legs (pers.obs.).  This cycle of micro 

production, facing, and transfer gets repeated 6-15 times on average, depending upon the 

species (DeCarvalho and Shaw 2005).  The mating culminates with the production and 

transfer of the sperm-containing macro. The sequence of events is the same for the macro 

as for the micros, however, the facing period before and after transfer are significantly 

longer, presumably to account for the approximately 3X larger mass of the macro as well 

as sperm-transfer time. 

 

Behavioral trials 
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All individuals used in trials were 20-50 days post-final molt. As adults, Laupala live 

approximately 3-4 months, therefore, the 20-50 day old crickets used in these trials were 

thought to be within a reasonable window of fertility. The evening before a trial, the male 

was anesthetized briefly with CO2, weighed, and returned to his cup. Trials were 

performed in a mating dish (plastic Petri dishes, 85mm diameter, 28mm depth) moistened 

with a wet Kimwipe.  A maximum of 14 trials were simultaneously performed. All dishes 

were visually, but not acoustically, isolated from each other with cardboard barriers.  

Trials were started 2 hours post “sunrise” (i.e. “lights on” in the observation room). On 

the morning of a trial, an observer placed a male and a female from the same population 

and species together in a viewing dish.  The observer then sat nearby, quietly noting the 

time of production and transfer of each micro, or the micro consumption time if it was 

not transferred, and the production and transfer times for the macro. After the macro was 

transferred, the observer then quickly separated and anesthetized the pair using CO2, 

removed the macro from the female, and weighed each individual, to the nearest 

milligram, on a microbalance.  The males were returned to their cups, given fresh food 

and water, and allowed to recover for the next day, when he was paired with a second 

female and the same behavioral manipulations and observations were performed.  The 

males were again weighed after the second day of mating and subsequently stored in a -

80C freezer.  All species pairs were observed until macro transfer occurred, or until “light 

out” in the observation room.  If a male did not produce a macro on the first mating day, 

he was not used in a second day of trials. 

 

Statistical Analysis 
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All statistical analyses were performed using JMP software (SAS Institute).  All tests 

were performed with the data combined across all populations, as well as individually 

between populations. This was because while all Laupala species observed in the trials 

have the same general mating patterns, there are significant differences in timing and 

weight between species.  While weight data was normalized across populations for the 

combined analysis, timing or other unknown differences between species may effect their 

ability or propensity to mate; therefore, all data was also analyzed by population. In order 

to determine if there may have been significant differences in behavior among 

populations or among location types (sympatric or allopatric), ANCOVAs were 

performed using population or location type as one of the predictor variables.  When 

measuring change in micro number across populations, the response variables had to be 

normalized across populations because there are different average micro numbers 

produced by each species. To normalize micro number, the average number of micros per 

populationwas calculated, and the change in micro number was divided by this averge, 

and multiplied by 100 in order to measure a percent change (hereafter referred to as 

species-adjusted percent change). 

To test if there was a significant change in spermatophore number or 

spermatophore latency within males between the two days of mating in both high-diet 

and low-diet males, paired t-tests or Wilcoxon signed-rank tests were used. Chi-square 

tests were performed on proportions of high- and low-diet males initiating and 

completing mating on each day in order to determine if diet affected mating.  Only males 

that completed mating on both days were used for these analyses. 
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Next, I wanted to test whether male or female weight or age positively or 

negatively affected micro or macro number and timing on the first day of mating. To 

evaluate this, several one-way ANCOVAs were performed with micro number, mating 

initiation (time of production of first micro), and mating completion (time of production 

of macro) set as the dependent variables, and male-female weight difference, male age, 

female age, male residual weight, or female residual weight set as the independent 

variables. Residual weights were obtained by subtracting the population mean from each 

individual’s true weight.  This transformation was done because male and female weights 

differ significantly between species, and residual weights allowed the analysis to avoid 

conflating species weight differences with micro production differences. Only males that 

mated to completion on day 1 were used for this analysis. In order to determine if these 

independent variables affected micro variance on mating day 2, a final set of ANCOVAs 

was performed using the same variables as above, plus two additional factors; the 

difference in weight between consecutive females (not transformed) as an independent 

factor and the difference in micro number between consecutive days as a dependent 

factor. For these analyses, only males that mated to completion on both days were used. 

Finally, logistic regressions were performed on binary response data in order to 

determine if residual male or female weight or age could predict mating initiation or 

completion. Once again, only males that completed mating on the day under analyses 

were used. Also, all of the above analyses were performed independently on both high-

diet and low-diet males.  

 
RESULTS 
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I staged a total of 303 trials using high-diet virgin males and 117 trials using low-diet 

virgin males.  The data from the trials, including the average timing of mating events, 

weights, and number of spermatophores produced and transferred is shown in Table 1. 

 

Estimating limits on spermatophore production: high-diet 

Overall the combined data showed that 177 of 303 (58%) high-diet pairings successfully 

mated (produced a macrospermatophore), and 248 of 303 (82%) high-diet pairings 

produced at least one microspermatophore on the first day of mating (Table 2).   Of the 

177 successful matings, 142 (80%) produced at least one micro, and 114 (64%) produced 

a macro on day 2 for a second successful mating.  A chi-squared test on the combined 

data showed that there was no significant difference between number of males who 

produced micros or macros on either day..  Likewise, when data for the individual species 

was analyzed, there were no significant differences in the number of micros or macros 

produced on day 1 or day 2 within any species (Table 2).  

Only those males that produced a macro on both days were used for 

spermatophore production difference analysis. There were a total of 114 males that 

produced a macro on both days. Results on the combined data showed that males 

produced significantly fewer micros on the second day of mating, relative to the first day 

(Figure 1: t = -6.93, p<0.001); within species all populations except L. konaA, the 

decrease in spermatophores between day 1 and day 2 was significant (Table 3). There 

were no significant differences in the species-adjusted percent change in micro 

production between the populations, species, or locations.  Additionally, the time of 

production of the first micro was significantly later on the second day of mating (Figure 
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1: Wilcoxon T = 4.01, p<0.0001) for the combined data; within species the delay in 

mating initiation showed a positive trend within each population, but was significant only 

in L. paranigraS, L. pacificaA, and L. konaS (Table 3).  

A contginency analysis showed that there were significant differences among 

populations (n=302, df=6,  2: 20.95, p <0.01) and locations (df=4,  2: 18.18, p <0.01) in 

proportion of individuals that made micros or macros on either mating day. There were 

also significant differences between location types (sympatric or allopatric) (2: 9.13, p 

<0.01), with a lower proportion of individuals at sympatric sites producing micros or 

macros than those at allopatric sites.  There were no significant differences between any 

of these factors on the second day of mating. 

 

Estimating limits on spermatophore production: low-diet 

82 of 117 total pairings (69%) produced at least one micro on the first day of mating.  

While there was a slight trend for fewer low-diet males to produce a micro on day 1, a 

Fisher’s exact test showed that there were no significant differences between the low- and 

high-diet males for the combined data. 48 of 117 low-diet pairings (41%) produced a 

macro on day 1; a Fisher’s exact test on the combined data showed that there was a 

significant difference between low- and high-diet males for day 1 macro production 

(Table 2: Fisher’s p=0.04). Of those 48 successful matings, 37 (77%) produced at least 

one micro and 18 (38%) successfully produced a macro on the second day. A chi-square 

test showed that there were no significant differences between the proportions of low-diet 

and high-diet males that successfully produced at least one micro on the second day of 
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mating, but did find there to be significantly fewer low-diet males than high-diet males 

who produced a macro two days in a row (Table 2:, p=0.04). 

Only those 18 males which produced a macro on both days were used for 

spermatophore production difference analysis, as in the high-diet experiments.  Because 

of the small sample size, this data was not analyzed by species.  Males produced 

significantly fewer spermatophores on the second day of mating, relative to the first day 

(Figure 1: t= -2.65, p=0.016).  Additionally, the time of production of the first 

spermatophore was significantly later on the second day of mating (Figure 1: Wilcoxon 

T=3.94, p<0.0001).   

 

Spermatophore production correlates: high-diet 

Only males which produced a macro on the day under analysis were used for the 

following production correlates analysis. The results showed that when the number of 

micros produced on day 1 was set as the response variable, larger positive female weight 

residuals significantly predicted number of micros produced across the combined data 

(Figure 2a: F1,175 = 54.78, p<0.0001), and predicted how early mating was initiated (F1,175 

= 20.44, p<0.0001); for the population data, all showed positive trends for day 1, but two 

were not significant (Table 4).  On day 2 of mating, the female weight residuals again 

predicted the number of micros produced (Figure 2a: F1,113 = 8.65, p=0.0040), and again 

showed a non-significant trend for predicting the time of mating initiation (data not 

shown); when analyzed by population, all again showed positive trends, but only two 

were significant (Table 4).   An ANCOVA showed that there were significant differences 

on day 1 among the populations (F1,6 =2.89, p<0.01) but not among location types in 
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pattern of response to female weight.  On day 2, there were no significant differences on 

day 2 among populations, but there was a difference among location types in pattern of 

response to female weight, with the sympatric populations responding more strongly 

(producing more micros) than the allopatric populations in response to female weight 

(F1,1 = 4.03, p<0.05).   

Additionally, in the combined data for those males that completed mating on both 

days, positive absolute weight difference between consecutive females negatively 

predicted the decrease in micro number between day 1 and day 2 (Figure 3: F1, 113= 23.17, 

p<0.0001). This means that if a male was paired with a larger female on day 2 than on 

day 1, he decreased the number of micros he produced less than he would have if 

presented with a similarly sized or smaller female; when broken down by individual 

species, such a pattern was only apparent in three populations (Table 5).  An ANCOVA 

on the same data showed that there were no significant differences among the 

populations, but there was a slight significant difference between location types, with the 

sympatric populations having a stronger response to change in female weights than the 

allopatric populations (F1,1 = 4.11, p<0.05).  And finally, a logistic regression of mating 

initiation on residual female weight showed that mating was initiated and completed 

more frequently with larger females on both day 1 (Figure 4a: initiation: 1
2=5.00, 

p=0.0253; completion: 1
2=32.36, p<0.0001) and day 2 (Figure 4b: initiation: 1

2=11.93, 

p=0.0006; completion: 1
2=5.56, p=0.0184). Once again, when broken down by 

population, although most populations showed a trend which mirrored that of the 

combined data, fewer than half were significant (Table 6). 
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Spermatophore production correlates: low-diet 

Only those 18 males that completed mating on both days were used for statistical 

analyses. When the number of micros produced was set as the response variable, female 

weight residuals significantly predicted number of micros produced on day 1 (Figure 2b: 

F1, 17=6.53, p <0.03), but there were no predictors for micro production on day 2.  This 

data was analyzed by individual species but only two populations showed a significant 

pattern on either day (Table 4). 

When all independent variables that might have predicted a decrease in micro 

production were used in an ANCOVA as above, none significantly predicted the drop in 

micro number.  Additionally, a logistic regression did not find that female weight 

residuals could predict mating initiation or completion as it did for the high-diet males. 

However, it should be noted that the failure to find significant results may have been due 

to small sample size and low power even across the combined data. 

 
 
DISCUSSION 
 
Laupala males appear to have a very costly mating system, given the material, energetic, 

and temporal investment that is put into each mating, supporting the hypothesis that 

Laupala males exercise mate choice. To obtain evidence for costs in this system, males 

were mated consecutively and the change in micro number between mating days was 

measured. Additionally, the frequency of mating events of both high-diet and low-diet 

males was compared to understand how resource limitation affects mating costs. Finally, 

to determine if males were choosy, the correlation between female size and 

spermatophore production was assessed. As predicted, Laupala males display attenuated 
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mating abilities in consecutive matings by producing fewer micros on the second day, 

generally regardless of species. Results also show that a significantly lower proportion of 

low-diet than high-diet males are able to produce macros on either day. Results also 

showed that males initiated mating sooner and produced more micros when paired with 

larger females, suggesting they can assess the size of their partners. Finally, results 

showed that males modulate micro production on consecutive days corresponding to the 

size of mating partners, suggesting that males assess partners and adjust mating effort 

from day to day. For all tests, the data within most individual species showed a similar 

trend to the data combined across all species, suggesting that despite average differences 

in timing or weight, the processes of sexual selection are similar across species. 

Altogether, these data suggest that mating is costly to Laupala males, who choose 

partners that allow them to maximize their fertilization success.   

Species differences 

Overall, while all analyses showed that there were some significant differences between 

populations, locations, and location types, overall positive or negative trends were 

consistent regardless of the breakdown.  It has previously been observed (J. Jadin, 

unpublished; K. Shaw, pers.comm) that there are differences in mating propensity in the 

lab between species and populations, but why this occurs is unknown.  The differences 

between sympatric and allopatric locations in the proportion of individuals that produced 

micros or macros on day 1 was interesting.  Allopatric individuals were more likely to 

produce micros and macros on the first mating day than were sympatric individuals.  One 

possible reason for this result is that because allopatric individuals will not make mating 

mistakes, they have broader mating preferences and are more likely to mate with any 
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individual. However, it may also be ther result of the L.hualalai species, which only 

occurs in sympatry, bringing the average for all sympatric individuals down because of 

its low mating propensity. While the former is intriguing and provides support for a 

hypothesis of increased reproductive isolation in sympatry, it is not possible to eliminate 

either hypotheses without further study.  However, we believe that the overall similarities 

among species in general mating patterns justifies the lumping in the analyses. 

Costs 

As predicted, it appears that mating imposes a future “cost” on Laupala males. This cost 

results in males showing a decreased ability to produce micros in consecutive matings, 

and in a significantly lower proportion of mated males completing a second mating. This 

suggests that a mating depletes a male of enough resources that he cannot invest as 

heavily into a second mating. Previous studies on the costs of nuptial gifts have found 

similar results. Gwynne (1990), for example, found that when a male katydid engaged in 

multiple matings, it negatively affected his spermatophore size. Another study found that 

mated male bush crickets produced lower quality spermatophores in subsequent matings 

(Wedell and Ritchie 2004). 

Additionally, if spermatophore production is costly, one would expect to find 

nutritional condition affecting production, resulting in low-diet males having a greater 

refractory period or producing fewer spermatophores than high-diet males. Our results 

show that a significantly smaller proportion of low-diet males produced macros on either 

mating day than did high-diet males, following this prediction.  Previous studies in other 

gift-giving insects have reported similar results.  In the study noted above, Gwynne 

(1990) also found that male katydids on high-quality diets mated more frequently than 
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those on low-quality diets, and the variance in spermatophore size significantly increased 

in males on low-quality diets. Wagner (2005) similarly found that field crickets fed a low 

quality diet took longer to produce a sperm-containing spermatophore than did those on a 

high-quality diet. A notable result from the present study is that the cost of mating may 

come from macro production, rather than production of the numerous micros, as 

originally predicted.  As a result, the predication that food-limited males would be unable 

to produce micros at a level commensurate with that of high-diet males was unsupported; 

it appears that low-diet males are only limited in their macro production ability.  It may 

be that the larger macros are significantly more resource-using than are micros.  Previous 

studies have found that larger nuptial gifts in crickets do result in higher male costs 

(Sakaluk et al, 2004), and that low-diet males compensate for high costs not by 

decreasing spermatophore size, but instead by having a longer refractory period (Wagner 

2005).  Most recently Vahed (2007b) reported that larger ejaculates, but not larger 

spermatophylaxes (or “gifts”) cause a longer refractory period, and therefore it is the 

ejaculate, not the gift, which is costly.  This may explain why low-diet males can produce 

micros but not ejaculate-containing macros. 

 The results here additionally reveal a significant delay in mating initiation on day 

2. These data support the frequently-made assumption that there is a trade-off between 

resources spent on current reproduction and future remating rate (Parker and Ball 2005).  

The data also support the growing body of evidence showing that males experience a 

refractory period after mating, which is correlated with ejaculate size or quality (Hayashi 

1993; Wedell 1994; Sakaluk et al. 2004; Vahed 2007b).  One implication for a delay in 

initiating mating on day 2 is that males may miss the peak receptivity period of females 
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and lose out on a mating.  Previous research in Laupala has shown that males of different 

species have peak mating activity periods (J. Jadin, Ch.3; Danley et al. 2007) and it is 

thought that female receptivity periods may mirror that of males. Results also show that 

Laupala males will mate with sympatric heterospecifics (J. Jadin, Ch.3). If males delay 

courtship initiation on day 2 of mating, they may miss the peak activity period of 

conspecific females and be increasing their probability of engaging in a heterospecific 

mating.   

A delay in remating may also affect the operational sex ratio (OSR), resulting in 

more females that are ready to mate at any given time relative to males.  A female-biased 

OSR would mean that males, the rarer sex, will can be relatively choosy with the females 

they encounter, whereas females may be relatively less choosy.  However, to address 

questions about the OSR it is first necessary to understand the female refractory period. 

The current study does not measure female refactory periods or female costs, however, it 

is likely that in Laupala, as in most animal systems, the females pay significant costs for 

mating. Females in the lab can lay hundreds of eggs over the course of their lifespans, 

which likely require significant resources to produce. We therefore do not suggest that 

the results from this study imply that males necessarily have higher costs than females, 

rather we interpret the results from this study as indicating that Laupala males, like males 

in many other Orthopteran systems, have substantial costs which may approach those of 

the female.  Such an investment into mating should mean that a male would be selected 

to discriminate among mates as much as females do.  

Finally, it should be noted that in addition to the direct physiological costs of 

spermatophore production, previous studies have found that calling and advertisement are 
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energetically draining and may also limit male remating ability, as for example in 

Teleogryllus commodus, where time spent calling is correlated with a reduced lifespan 

(Hunt et al. 2004).  In our testing conditions, males were calling to a female for up to 9 

hours, and in the wild, a single bout may take even longer (pers.obs.).  Males do not sing 

continuously throughout this mating bout, but do sing at regular intervals after a 

spermatophore has been produced but before the female has accepted it.  Males that were 

unable to transfer to females were often observed calling nearly continuously throughout 

the day (pers.obs); therefore, even when males were not able to secure a successful 

mating, considerable energy was spent on the mating effort. The decrease in mating 

effort, in terms of both micro production and remating delay, may also be affected by 

other energetic factors such as song production. 

 

Male choice 

A further implication of this study is that if males are limited in their remating ability, 

they should display preferences for the females that maximize their fitness. Results here 

also show that naïve males produce significantly more micros for larger females. Larger 

females typically contain more eggs and are therefore more fecund (Bonduriansky 2001 

and refs therein; Knox and Scott 2005). While the relationship between female size and 

fecundity has not been tested in Laupala, it is likely that there is a similar relationship to 

other studies. Therefore, if males pay significant costs for mating, they would be selected 

to preferentially invest mating resources into those females with higher fecundity.  

Results here showed that when males are sequentially presented with 

differentially sized females, they appear to modulate their investment in response to 
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female size. When presented with a larger female on day 2 they, on average, produce 

more micros than if they were presented with a smaller or equally-sized female.  Given 

that males produce fewer micros on day 2 on average, this pattern emerges as a smaller 

decrease in micro production for large females than for small females. This suggests that 

males preferentially invest in larger females, and that they have a “memory” of previous 

mating experiences and can adjust accordingly.  Similar results have been found before in 

pacific blue-eyed fish (Wong et al. 2004) and field crickets (Hunt et al. 2004). This may 

be because males which have already secured a mating may be more certain of their 

“attractiveness” to females and therefore are more sensitive to courtship costs (Hunt et al. 

2004). Alternatively, males may have a set point for investment into a female of a given 

size and do their best to reach that set point during any given mating.  Males presented 

with a small female on the day 1 may be less depleted for day 2. Overall, these results 

suggest that males are choosy, and are able to assess the relative size of their partners and 

invest accordingly. These results run contrary to the long-established paradigm of high 

female reproductive costs and female-limited reproductive rates (Bateman 1948; Trivers 

1972), but agree with an increasing number of findings in gift-giving insects, suggesting 

that male costs can no longer be discounted (Sakaluk et al. 1987; Simmons et al. 1992; 

Wagner 2005; Vahed 2007b).  

  

Implications for evolution in Laupala 

Ultimately, if mating is costly for males, one would expect selection to be acting upon 

male mating behavior, as well as female mating behavior.  In a genus such as Laupala, 

which appears to have speciated rapidly (Mendelson and Shaw 2005), and may hybridize 
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in contact zones (J. Jadin, Ch. 3; Shaw 2002), this sort of selection could have profound 

implications.  Female choice is an important factor in mating, in that females prefer 

species-specific song types (Shaw 2000a; Mendelson and Shaw 2002). However, females 

do have some flexibility in song choice, and will mate with heterospecifics (Shaw and 

Lugo 2001; J. Jadin, Ch.3). Given that males are able to modulate mating investment and 

effectively choose larger females, this could have consequences for evolution in Laupala 

contact zone where there are often significant weight differences between species (J. 

Jadin, Ch.3). If males are selected to invest most heavily into the largest females, 

mispairings may occur when there is a conflict between choice for ideal body size and 

choice for any species-specific sexual signals. Recent studies in other organisms (e.g. 

Drosophila: Boake, et al. 1997; frogs: Pfennig 1998; damselflies: Svensson et al. 2007) 

have found that this conflict between mate and species recognition is the result of high-

quality conspecifics resembling heterospecifics. If Laupala males gain fitness benefits by 

mating with large conspecific females, males may choose large sympatric heterospecifics 

if mating signals overlap.  Evidence of this pattern has been found in two Laupala species 

in a contact zone, where male choice for large females appears to conflict with female 

preference for conspecific males (J. Jadin, Ch.3). 

 Results of this study demonstrate that the mating system of Laupala is costly to 

males, resulting in the production of fewer spermatophores and a delayed initiation on 

mating day 2.  Males also mate more frequently and produce more micros with larger 

females.  This is consistent with a hypothesis that male costs in this genus lead to male 

discrimination, as well as with the more general prediction that large male ejaculates and 

or nuptial gifts are costly to males.  Whether or not male costs and male choice in 
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Laupala have any significant effect on the OSR or the direction of evolution remains to 

be determined, and future research on the mating system in this genus should be directed 

towards quantifying female costs, refractory periods, and fecundity.  If, as other results 

from Laupala suggest, male choice has the potential to transcend species boundaries and 

counteract female choice, Laupala could be a novel example of a system in which male 

choice results in selection that runs counter to the female sexual selection.    
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TABLES 

Table 1.  
 Day 1 Day 2 
Species  wt  wt Micro 

time 
# micros Macro 

time 
Micro 
time 

#micros Macro  
time 

hualalai 0.0256  5895 4.2 19957 9546 4.1 22130 
konaA 0.0248  7229 7.2 21300 8288 5.5 20797 
konaS 0.0233  4059 5.3 19939 7146 4.4 20252 
pacificaA 0.0261  1257 7.9 17529 2381 6.3 18199 
pacificaS 0.0248  3757 6.3 17413 3541 4.7 15550 
paranigra 0.0236  6070 6.6 26083 15498 4.6 25789 
tantalus 0.0284  10127 5.9 22855 14051 4.5 25685 
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Table 2. Mating events in high-(H) and low-(L) diet individuals.  2 tests were 

performed and P values are shown in table.  

 

EVENT Day1-High Day2-High p Day1-Low Day2-
Low P 

H vs. L 
day1 (p) 

H vs. L 
day2 (p) 

Prop s initiating 
mating 248/303 (82%) 142/177(80%) NS  82/117(69%) 37/48(77

%) NS NS NS 

   L. hualalaiS 43/57 14/18 NS -- -- -- -- -- 

   L. konaS 47/65 25/33 NS 20/26 8/11 NS NS NS 

   L. konaA 36/39 22/27 NS 22/28 13/16 NS NS NS 

   L.pacificaS 41/46 25/32 NS 5/5 5/5 NS NS NS 

   L. pacificaA 31/33 22/24 NS -- -- -- -- -- 

   L. paranigraS 37/49 22/31 NS 42/58 12/16 NS NS NS 

   L, tantalusS 13/13 12/12 NS -- -- -- -- -- 
Prop s completing 
mating 177/303 (58%) 114/177(64%) NS 48/117(41%) 18/48 NS 0.04 0.04 

   L. hualalaiS 18/57(32%) 8/18(44%) NS -- -- -- -- -- 

   L. konaS 33/65(50%) 21/33(64%) NS 15/26 3/11 NS NS NS 

   L. konaA 27/39(69%) 19/27(70%) NS 16/28 4/16 NS NS NS 

   L.pacificaS 32/46(70%) 21/32(66%) NS 5/5 4/5 NS NS NS 

   L. pacificaA 24/33(73%) 17/24(71%) NS -- -- -- -- -- 

   L. paranigraS 31/49(63%) 17/31(55%) NS 16/58 7/16 NS 0.02 NS 

   L, tantalusS 12/13(92%) 10/12(83%) NS -- -- -- -- -- 
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Table 3. T-tests (#micros) and Wilcoxon signed-rank (time)  tests measuring the decrease 

in micro production between mating days, as well as a delay in mating initiation 

(spermatophore production) time in high-diet males.  For all populations except L. konaA 

the decrease in spermatophores between day 1 and day 2 was significant. The delay in 

mating initiation showed a positive trend within each population, but was significant only 

in L. paranigraS, L. pacificaA, and L. konaS.  

 

High Diet only  # micros time of first micro 
Species n T P T p 
L. hualalaiS 8 -3.02 <0.01 1.79 NS 
L. konaA 19 -1.98 NS 0.77 NS 
L. konaS 21 -4.76 <0.001 2.61 <0.05 
L. pacificaA 17 -2.29 <0.05 4.04 <0.001 
L. pacificaS 22 -3.94 <0.001 1.89 NS 
L. paranigraS 17 -5.47 <0.001 4.59 <0.001 
L. tantalusS 10 -2.53 <0.05 1.65 NS 
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Table 4. A one-way ANOVA showed that there was a significant positive relationship 

between residual female weight and number of micros produced on day 1 of mating for 

high-diet males in four of the seven populations.  For day 2 of mating, the only 

significant relationship between residual female weight and number of micros was in the 

L.konaA and L.pacificaA populations. For low-diet males, only two populations showed a 

positive response to female weight on either day, but it is likely small sample size issues 

may have confounded the analysis. 

 

 High-diet: Day 1 Day 2  Low-diet: Day 1 Day 2  
species n F P n F P n F p n F p 
L.hualalaiS 15 0.34 NS 8 4.58 NS 0 -- -- 0 -- -- 
L.konaA 27 11.31 <0.01 19 6.47 <0.05 17 10.26 <0.01 13 0.73 NS 
L.konaS 32 9.91 <0.01 21 3.29 NS 12 0.65 NS 9 7.49 <0.05 
L.pacificaA 24 0.01 NS 17 29.66 <0.01 0 -- -- 0 -- -- 
L.pacificaS 30 15.06 <0.01 22 3.75 NS 6 1.48 NS 6 0.01 NS 
L.paranigraS 30 25.29 <0.01 17 2.89 NS 17 1.11 NS 13 1.26 NS 
L.tantalusS 11 6.727 <0.05 10 0.98 NS 0 -- -- 0 -- -- 
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Table 5. A one-way ANOVA on the high-diet data showed that weight difference 

between sequential females significantly predicted the change in number of micros a 

male produced in only the L.pacificaA, L.pacificaS, and L.paranigraS populations. In 

these populations, when presented with a larger female on the second day of mating, 

males produce more spermatophores than if presented with a smaller female.  Only data 

for those males which completed mating on both days were used so as not to conflate 

spermatophore response with readiness to mate. Low-diet males were not analyzed due to 

the small sample size. 

 
species n F p 
L.hualalaiS 8 1.491 NS 
L.konaA 19 2.729 NS 
L.konaS 21 3.456 NS 
L.pacificaA 17 11.079 <0.01 
L.pacificaS 22 4.648 <0.05 
L.paranigraS 17 8.351 <0.01 
L.tantalusS 10 0.079 NS 
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Table 6. A logistic regression of female weight on mating initiation (micro produced) 

showed a significant positive effect in the L. pacificaS, L. paranigraS, and  L. pacificaA 

populations only, and a logistic regression of female weight on mating completion 

(macro produced) showed significant positive effects in only the L. paranigraS and  L. 

konaS populations. 

On the second mating day only L. hualalaiS, L. pacificaS, and L. pacificaA showed 

significant positive effects for initiation, none for completion.  Female weight did not 

significantly predict mating initiation or completion on either day for the low diet males 

(data not shown), but in all cases, the lack of positive association may be due to small 

sample sizes. 

 
 
 day 1: initiated completed day 2; initiated completed 
species n 2 p 2 p n 2 p 2 p 
L.hualalaiS 57 1.222 NS 3.238 NS 18 4.133 <0.05 0.508 NS 
L.konaA 39 0.045 NS 0.0120 NS 28 1.121 NS 3.003 NS 
L.konaS 65 1.715 NS 7.048 <0.01 33 0.823 NS 0.439 NS 
L.pacificaA 33 8.835 <0.01 2.601 NS 32 18.346 <0.01 1.638 NS 
L.pacificaS 46 4.095 <0.05 1.040 NS 25 5.719 <0.05 0.898 NS 
L.paranigraS 49 19.249 <0.01 12.519 <0.01 31 1.376 NS 1.853 NS 
L.tantalusS 13 -- -- -- -- 12 -- -- 0.529 NS 
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FIGURE LEGENDS 

Figure 1. T-tests (#micros) and Wilcoxon signed-rank (time)  tests showed a significant 

decrease in micro production between mating days (top), as well as a delay in mating 

initiation (spermatophore production) time (bottom) in both high-diet (A) and low-diet 

(B) males on the combined data.  Error bars represent one standard error. The mean ± 1 

s.e. is shown in the top graphs, the median ± 1 s.e. is shown in the bottom graphs 

 

Figure 2. a) A one-way ANOVA showed that there was a significant positive 

relationship between residual female weight and number of micros produced on day 1 

(left) (F1,300 = 12.66, p=0.0004)  and day (2) of mating for high-diet males (right) (F1,113 = 

5.58, p=0.0199) when data was combined for all species. Overall, it may be that more 

spermatophores were produced for larger females in part as a consequence of initiating 

mating earlier: on both days they showed a non-significant trend to mate earlier with 

larger females.  

b) The same pattern was true on day 1 for low-diet males, who also produced more 

micros when paired with large females (left)(F1,46=7.30, p <0.0096). This can likely be 

explained by the fact that they initiated mating significantly earlier with larger females 

(F1,46=30.06, p<0.0001).  There was no relationship between weight and number of 

micros on day 2 for low-diet males (right), but this may be due to the small sample size.   

 

Figure 3. The X-axis represents the difference in weight (g) of day2–day1 females for 

each male.  The Y-axis represents day2-day1 micro production. A one-way ANOVA on 

the combined data showed that weight difference between sequential females was the 
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only significant predictor of the change in numbers of micros a male produced: when 

presented with a larger female on the second day of mating, males produce more 

spermatophores than if presented with a smaller female (F1, 113= 23.17, p<0.0001).  Only 

data for those males which completed mating on both days were used so as not to 

conflate spermatophore response with readiness to mate. This was significant for the 

high-diet males only; the low-diet sample size likely lacked power.   

 

Figure 4. a) Mating was initiated (micro produced) and completed (macro produced) 

more frequently with larger females on the first mating day [hi-diet males only].  Box 

plot below shows median and the 90th percentile in female weight data as classified by 

whether they were offered 1 micro (mating initiated) (left) or offered a macro (mating 

completed) (right).  A logistic regression of female weight on mating initiation (1
2=5.00, 

p=0.0253) and completion (1
2=32.36, p<0.0001) showed a significant positive effect in 

the combined data.  b) The same pattern appeared for the second mating day for micros 

(1
2=11.93, p=0.0006) and macros (1

2=5.56, p=0.0184) in the combined data.  Female 

weight did not significantly predict mating initiation or completion on either day for the 

low diet males (data not shown), but this may be due to small sample sizes. 
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FIGURES 
 
Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4.  
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Chapter III: Asymmetric behavioral isolation in sympatric 
Laupala populations 
 

ABSTRACT 

The endemic Hawaiian cricket genus Laupala is an instructive model system for 

studying processes of speciation and sexual selection because of its complicated 

genetic history and its elaborate mating system that allows for selection at many 

steps of the mating process. Previous molecular data has shown that L. tantalus and 

L. pacifica on the island of Oahu may be hybridizing in a contact zone, but distinct 

species song rates and the finding of few to no hybrids suggests that the species pair 

remains distinct. However, the degree of behavioral isolation between these species 

both within and outside of the contact zone is still unknown.  In this study, mating 

experiments were conducted to test for reproductive isolation and reproductive 

character displacement between sympatric and allopatric L. tantalus and L. pacifica 

populations. The mating frequencies within and between populations were 

compared in order to determine if the two species were reproductively isolated, and 

if so, if mate choice or mating character displacement were evident.  Male and 

female weight, mean spermatophore number, mating sequence timing, and diel 

calling patterns were all measured in order to identify potential variables involved 

in reproductive isolation. Results first revealed the mean value of several phenotypic 

characters, including average spermatohphore number, weight, peak singing period, 

and spermatophore production time, are significantly different between 

heterospecific populations, and that there is significant behavioral isolation between 

heterospecifics. Results also show that there is a significantly higher degree of 
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isolation between sympatric than between allopatric L. tantalus and L. pacifica 

pairs, suggesting displacement of mate choice or other mating character between 

populations of L. pacifica. Additionally, the isolation is asymmetric, in that males 

from the small L. pacifica species more frequently court the large L. tantalus species 

than do males in the reciprocal pair, and overall, large females are courted more 

frequently, regardless of species. Finally, results show that L. pacifica 

spermatophore number and timing may be undergoing displacement in the contact 

zone relative to the allopatric population. I therefore suggest that both singing 

activity and spermatophore timing patterns contribute to species isolation and result 

in reproductive character displacement of female choice, but male mate selection for 

large females may be counterbalancing species divergence. Altogether, it  appears 

that this species pair represents a novel example of a system in which selection on 

male mate preferences conflicts with selection on female choice. 

 

INTRODUCTION 

Contact zones between two incipient, recently-diverged, or other closely-related species 

are the ideal natural laboratory for setting up studies of reproductive isolation.  Within 

recent contact zones, closely-related species may be currently undergoing speciation, 

allowing one to view the process in action. Often not just one, but multiple, processes are 

at work to either facilitate or undermine further isolation between species pairs, and the 

challenge can be to tease apart multiple competing selection pressures. 

 One topic that has been a popular focus of late is reproductive isolation that leads to 

reproductive character displacement.  Reproductive character displacement (RCD) is a 
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pattern in which a mating character, be it choice, song type, or plumage color, is 

displaced in a zone of contact relative to those individuals of the same species outside of 

the zone.  RCD can be the result of the process of reinforcement, a process of speciation 

where selection against hybrid offspring results in indirect selection on parental species 

mating preferences, causing divergence in preference or characters until speciation is 

complete. However, RCD can emerge even without hybridization, when there is overlap 

in mating signals or mate choice between species.  If the overlapping species engage in 

heterospecific matings, and there is a cost to engaging in matings, then selection should 

act to cause further divergence in mating signals in the species pair. Those individuals 

that have stricter, more differentiated, criteria for mate choice, or more species-specific 

display traits will pay fewer costs due to mismatings, and contribute more and/or fitter 

offspring to subsequent generations. These derived characters should then spread 

throughout the sympatric population, leaving the ancestral characters persisting in the 

allopatric population. The allopatric population may still be able to engage in matings 

with the heterospecifics, but total isolation between sympatric congeneric species should 

result.   In such a case, reproductive character displacement is not a signature of a process 

of speciation such as reinforcement, but rather reflects an evolutionary process of species 

divergence that functions to eliminate wasted reproductive effort (termed reinforcement 

in the “broad-sense” by Servedio and Noor 2003). 

 Many studies of late have tried to specifically address the distinction between 

traditional reinforcement and this “broad-sense” reinforcement, by looking not only for 

reproductive character displacement between populations, but also for sexual selection on 

reproductive characters within populations (Servedio and Noor 2003). As it turns out, 
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there are often multiple types of selection acting in hybridizing populations, and evidence 

suggests that conflicts may exist between the selection pressures leading to species 

divergence and those increasing sexual selection.  This may occur when, for example, 

there is conflict between mate quality and species recognition characters within species 

(Boake et al. 1997), such as when high quality heterospecifics resemble conspecifics 

(Pfennig 1998, 2007), or when the costs of mating mistakes for males and females differ 

significantly enough to result in asymmetric isolation between species (Svensson et al. 

2007).  Such findings suggest that selection leading to reproductive isolation may be 

opposed by other forms of selection (Marshall et al. 2002), and therefore, when looking 

for evidence of reproductive isolation through reproductive character displacement, one 

may also have to evaluate the direction and costs of selection acting on the characters. 

Few studies to date have attempted to do this, and more are needed. 

The Hawaiian cricket genus Laupala is an informative model system for studies 

of mating signal divergence and reproductive character displacement because of its 

complicated evolutionary history and elaborate mating system.  First, the mating 

sequence is relatively long, with matings lasting 5-10 hours, depending on the species. 

Males first attract females with a long-distance calling song, and then mating begins 

when a female and male face each other while the male produces the first of a series of 

spermless “microspermatophores” (hereafter “micro”), circles the female, sings, and ends 

the copulation by transferring the micro to the female, which she eventually consumes 

(Shaw and Khine 2004). A series of 6-15 of these copulations then ensue, and at the 

culmination of the mating bout, the male passes the female a larger, sperm-filled 

“macrospermatophore” (hereafter “macro”), which she also consumes after the sperm 
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have evacuated. This elaborate mating system has significant male (J. Jadin, Ch.2) and 

presumably, female, costs, all of which could be subject to selection. Selection may be 

acting on female or male choice, or male mating characters, at any stage of the courtship 

process. In addition, if the costs for mating with a heterospecific are sufficiently high, 

selection may affect the strength and direction of patterns of reproductive character 

displacement. 

 Laupala is also an instructive system in which to study patterns of reproductive 

isolation because several groups of species occur in sympatric populations, have shared 

mtDNA, yet appear to be distinct species according to nuclear DNA.  First, the 

geographic ranges of most of the 38 species of Laupala partially overlap with one or 

more congeners (Otte 1994) and it has been suggested that divergence in male calling 

song in several zones of overlap conform to a pattern of reproductive character 

displacement (Otte 1989).  Indirect evidence additionally suggests that hybridization and 

introgression is a persistent feature of Laupala (Shaw 1999, 2002; Parsons and Shaw 

2001; Mendelson and Shaw 2005), and viable and fertile hybrids can be formed in the 

laboratory between some species pairs (Shaw 1996b; Mendelson and Shaw 2006) 

although the extent of natural hybridization is unknown. Research has also shown that 

interspecific song and female preference differences have a genetic basis (Shaw 1996b; 

Shaw 2000a), that hybrids have intermediate songs (Shaw 2000a), and that females 

clearly favor conspecific over heterospecific songs in sympatry (Mendelson and Shaw 

2002).    

 The present study was designed to determine if there is significant behavioral 

isolation between sympatric populations of L. tantalus and L.pacifica, as predicted from 
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the degree of genetic divergence between them.  We also test for  reproductive character 

displacement between allopatric L.pacifica populations, and measure characters that 

might be under selection within and between populations. It builds upon previous 

observations in the focal species L. pacifica and L. tantalus, which share similar mid-

elevation, forest understory microhabitats, and occur in both sympatric and allopatric 

communities on the island of Oahu, Hawaii, USA.   In sympatry, the songs of these two 

species are largely distinct (Otte 1994) suggesting distinct breeding populations, an 

inference corroborated by the finding that nuclear genetic data (amplified fragment length 

polymorphism) sort species into distinct lineages, regardless of geographical location.  

Yet, in sympatry, both species share mtDNA haplotypes extensively (J. Jadin, Ch.1), and 

Otte (1994) reports occasional intermediate singers based on field recordings. 

 Given these observations, I predicted that these species would show partial 

prezygotic isolation, making them ideal candidates to test for a pattern of reproductive 

character displacement in sympatric relative to allopatric populations. I collected data on 

numerous components of courtship, including micro and macro production, courting 

initiation, peak singing times, and male and female weights, in order to confirm species 

differences and determine which characters, if any, might be the target of displacement.     

I applied statistical tests to mating frequency data in order to measure the degree of 

isolation between different populations, to test for the presence of male-female 

asymmetric isolation between reciprocal crosses, and to identify if reproductive character 

displacement of choice had evolved in heterospecific matings between sympatric and 

allopatric pairs. Results show that there is displacement of mate preference between 

allopatric conspecifics, isolation is asymmetric between species, and that some 
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reproductive characters may be undergoing displacement. Overall these results suggest 

that there are two distinct, behaviorally-isolated spcies, and that selection for behavioral 

isolation between them may possibly in conflict with sexual selection within species.            

 

METHODS 

Animal collection and maintenance     

All parents of individuals used in these experiments were collected at two sites 

on the island of Oahu. Individuals from two species, L. tantalus and L. pacifica were 

collected at the sympatric site (Mt. Tantalus, hereafter referred to as TANM and PACM, 

respectively), in appx. 20 X 30 meter patches both above and below the road at the 

Manoa Cliffs trailhead (21º 19’35”,-157º 48’45”; 1408 ft)(Figure 1). This area is just 

above an urban center, but is protected and contains a large number of native plant 

species, in addition to introduced weedy species. Laupala were captured in the leaf litter 

on the ground, a mixture of decaying leaves from Palm grass (Poaceae spp.), Hapu’u 

(Cibotium chamissoi), Koa (Acacia koa), and bark from Royal palms (Roystona spp.) 

Individuals from L. pacifica were also collected at an allopatric site (Pupukea, hereafter 

referred to as PACP) along a trail leading past the Pupukea Boy Scout Camp (~21º  

37’14”, -158º 0’45”, 1200ft) (Figure 1). This site experiences little human traffic, the 

vegetation is mostly native, and the crickets were collected in a 10m X 5m area on a 

approximate 35° slope above a desiccated stream bed.  At this site the crickets were 

found both on the ground on the leaf litter, as well as in the decaying bark on the side of 

trees.  Both sites appear to have a constant high humidity and ground temperatures of 

approximately 69°F throughout the year.  Crickets were collected using a combination of 
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insect nets and small plastic vials. They were housed in 2qt plastic containers by 

population and fed ad libitum, until returned to the laboratory. Once in the lab, males 

were identified to species based upon song type and paired with a female that appeared, 

at best guess, to be the same species. Each mating pairs was contained in a 100ml plastic 

sample cup that contained a moist Kimwipe for use as an oviposition substrate. An ample 

supply of Fluker’s cricket chow treated with Tegosept was provided for each pair.  Food 

was changed weekly, and egg-containing tissues were collected bi-weekly and placed in a 

hatching cup, which contained only wet Kimwipes.  If eggs were not oviposited by a 

mating female within two weeks of cohabitation, her male partner was switched out with 

a male from a different species. The lab temperature was maintained at 69F and the light 

cycle was kept at a constant 12:12h cycle.  Both species appear to have similar life-

history characteristics, such as egg development periods, time to sexual maturation, and 

developmental stages.   

 

Nymph generation 

After one month, cups were checked every three days for hatching nymphs. 

Nymphs were then collected and placed in one quart glass jars containing Kimwipes for 

moisture and bent paper toweling to use as a substrate during molting. All jars contained 

single-family mixed-sex crickets and contained no more than twenty individuals per jar.  

Each population used in this experiment produced 20-35 different families, ideally 

insuring sufficient genetic and/or behavioral diversity, if present, among the offspring. 

Nymphs remained in these jars for approximately four months, until they were near final 

molt, at which point they were transferred to individual sample cups.  Species identity of 
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each family was confirmed by checking song rate of at least one mature male per family. 

Each cup was again moistened with a wet Kimwipe which was changed bi-weekly.  

Individuals were fed ad libitum weekly. 

    

Pretrials 

All animals used in trials were recently matured (18-50 days), virgin, and paired 

with conspecifics in order to test for sexual maturity.  Pretrials took place 2-3 days before 

the trial. At least one day of rest was given between the trial and the pretrial in order to 

insure that the male had not begun to exhaust his energy or spermatophore supply. Sexual 

maturity in the male was determined by the production of a single micro.  Females were 

defined as sexually mature if they allowed a male with a micro to begin to back up 

beneath them.  After a successful pretrial, the individuals were separated, the pretrialed 

pair was noted, and they were placed in separate fresh cups, and fed.   

 

Mating Trials 

Standard no-choice asymmetrical (reproductive character displacement) mating 

trial set-ups were used for this experiment, with a goal of 40 trials of each of the six 

possible pairings (Figure 2).  No-choice experiments were deemed appropriate for two 

reasons: first, when mating in the wild, Laupala males are located in small hidden 

perches and are unlikely to be approached by or be able to pair with more than one 

female at a time (J. Jadin, pers. obs); second, given that we wanted to measure behavioral 

isolation, not choice, allowing males to choose between females would not have given us 

an accurate measurement of absolute isolation. Males and females which were pretrialed 
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together were never used together in a trial. Trials began 2 hours after “sunrise” (i.e. 

lights on) when a male and female were placed together in a doubled petri dish with a wet 

kimwipe.  Dishes were shaded from direct overhead light, and visually, but not 

acoustically separated from the neighboring pair.  An observer sat quietly and manually 

entered behavioral events on a laptop computer using behavioral data recording software 

(Cricket Sex Logger, C.Anderson). In this way, up to 14 copulating pairs could be 

observed simultaneously. The observer noted age of cricket (+/- 2 days), and recorded 

time when each micro and the macro were produced and if and when they were passed. 

All species pairs were observed until macro transfer occurred, or until “light out” in the 

observation room. After trials, individuals were anesthetized with CO2 and weighed on a 

microbalance.   

 

 Singing Behavior 

I gathered data on peak song times both in the field, and in the laboratory.  The 

field study was conducted at the Manoa Cliffs (M) field site only. The presence or 

absence of singing males was scored hourly for 18 consecutive hours (4AM-9PM) at 10 

focal positions, each approximately 20m apart along a transect on Manoa Cliffs trail.  

Additionally, the number of males singing was estimated into one of four categories: 0 

(none), 1 (1-3 distinct and countable individuals), 2 (4-7 distinct but uncountable 

individuals), and 3 (7++, countless individuals). The study was performed on April 17, 

2007. Morning twilight occurred at 0548 and evening twilight occurred at 1914h (US 

Naval Observatory data).     
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The laboratory study was conducted on wild-caught individuals one month after 

returning from the field, so as to give the individuals time to acclimate both to the lab 

temperature and humidity conditions as well as the change in light regimen.  For the lab 

study, 15 individuals from each of the three populations were placed in separate 

overturned screen-topped plastic cups (100mL).  Each cup was placed 6” from the next 

on a table in an Acoustic Systems anechoic chamber maintained at 69°F, and the 

placement of the cups was randomized with respect to population origin of individuals.  

The lights followed a standard 12:12 day:night cycle and were off from 1800h to 0600 h. 

Individuals were placed into the experimental position at 1500h and allowed to acclimate 

for one hour before the trial began. The total number of singing males per population was 

noted for five minutes at one hour intervals.  They were observed in this way for 24 

hours.  

 

Terminology Key 

Many comparisons, between multiple populations, at multiple stages of mating, in 

different directions were made in the course of analysis for this study.  In order to 

facilitate easier interpretation of results, the following terminology for mating stages, 

comparisons, and characters will be used as shorthand through the remainder of this 

paper: 

Mating pair combinations:  
the male will be listed first, followed by the female, i.e., PACMPACP refers to the 
mating pair comprised of PACM male and PACP females 

Mating pair: 
Homotypic within species and within population 
Heterotypic within species, but of different populations 
Heterospecific as typically defined, i.e. not of the same species 
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Reciprocal pair the mating pair combinations in which the male-female origins are 
switched relative to each other, i.e TANMPACM is reciprocal to 
PACMTANM 

Mating stage: variable: definition: 
Micro time continuous time of first micro (seconds after start)  
Courted,-ing binary 1 micro was/not produced 
Micro number integral number of micros produced in a mating bout 
Passed, -ing binary any micros were/not passed 
Rate continuous rate of transfer of micros (micro/hour)  
Macro time continuous time of macro (seconds after start) 
Macro 
production 

binary macro was/not produced 

Macro pass binary macro was/not passed, as % of macros produced 
Inseminated binary macro was/not passed to female, as % of total pairs, and 

therefore, represents total number of  matings 
successfully completed  

 

  Statistical Analyses 

 Analyses were categorized and are presented as being within populations, among 

populations of the same species (PACM and PACP), or between species (PAC and TAN). 

For all statistical analyses SAS 9.1 or JMP v7.0.1 (SAS Institute) software was used. 

 

Intrapopulation analyses 

Descriptive statistics for male and female weight (gram), micro time (sec), rate, 

micro number, and macro time (sec) were calculated in order to determine population 

averages for these phenotypic characters. For the diel pattern data, the number of field 

sites with singing males was noted and graphed (# sites vs. hour of day), and the peak 

activity period for each species was noted by eye. For the indoor song data, the number of 

males singing each hour was counted and graphed (# males vs. hour of day), and again, 

the peak activity period was noted. I then calculated intrapopulation frequencies for each 
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stage of the mating, including courting, passing, macro production, macro passing, and 

total inseminated.  

In order to test for a priori hypothesized associations between mating 

characters, one-way ANOVAs and logistic regressions were run. First, initiation time was 

set as the independent variable and micro number as the dependent variable in order to 

test how timing affected the number of micros produced. Then, to test the effect of 

female size on mating effort, individual ANOVAs were run on each female population, 

with female weight and micro number set as the independent and dependent variables, 

respectively. Finally, female size was regressed on courting using logistic regressions. 

In order to directly assess how males modulated spermatophore production in 

response to variability in conspecific female weight, individual one-way ANOVAs were 

run on each male population using the MIXED procedure in SAS.  Female weight was set 

as the independent variable and micro number was set as the response variable. Because 

the response variable was not normally distributed, a randomization test with 5000 

randomizations was performed and the P value was generated from the random 

distribution.  Logistic regressions using female weight, female population, and the 

interaction effect as the independent variables, and courting and macro production as the 

dependent variables were also performed.    

 

Intraspecific analyses 

In order to compare mean differences between conspecific populations, 

differences between the L. pacifica populations in male and female weight, micro 

number, rate, micro time, and macro time were analyzed with a one-way ANOVA using 
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the MIXED procedure in SAS. Levene’s tests of unequal variance were used to compare 

differences in variance between the distributions of all characters (Levene 1960). For all 

characters except male and female weight, only the data from within population matings 

were analyzed in order to avoid the potentially confounding effects of mating isolation. 

For those response variables which were not normally distributed, 5000 randomizations 

of the data were performed. Means between populations were compared using individual 

contrasts and Tukey’s adjustments were applied to the P values.  

To examine the diel activity pattern of the two L. pacifica populations, I 

performed a generalized linear model repeated measures ANOVA on data from the 

indoor song trials using the SAS GLIMMIX procedure (Danley et al. 2007). For this 

analysis, it was necessary for the number of repeated measures (n=24) to be fewer than 

the number of males per species (n=15), otherwise the analysis would fail to converge 

upon a parameter estimate.  As such, the 24h observation period was divided into twelve 

blocks consisting of 2h each, beginning at 0400h.  The total number of singing males 

heard each hour was noted and an average for each block was used as the response 

variable in the repeated measures ANOVA model.  Two contrast statements were used to 

test for population differences in male singing behavior; the first contrast assessed the 

peak period by comparing the number of singers during the apparent peak in activity 

(1200h-1400h) vs. all other 2h blocks; the second of which compared number of singers 

in PACMC and PACPU across this peak singing period (1200h-1400h).  

I tested for sexual isolation and mating asymmetry between PAC populations 

using two different methods.  There has been much controversy in the sexual selection 

literature regarding the appropriate statistics for measuring sexual selection, asymmetry, 
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and isolation: all commonly-used statistics can yield different results and have been 

shown to have differing degrees of reliability (Perez-Figueroa et al. 2005; Sugano and 

Akimoto 2007). For all analyses, the null model was random mating. I first compared 

mating probabilities within and between PACM and PACP pairs using log-likelihood ratio 

2 on a priori planned non-orthogonal contrasts (Hoskin et al. 2005). Randomization tests 

were performed; the data were resampled 1000 times and the p value for the original log-

likelihood ratio 2 statistic was derived from the resampled distribution (Manly 1994).   I 

then calculated indexes of isolation (IPSI coefficients) and asymmetry (IAPSI coefficients) 

using JMATING software version 1.0.8 (Carvajal-Rodriguez and Rolan-Alvarez 2006). 

PSI indices run from 0 to , with values lower than 1 indicating than there are fewer 

matings than expected under random mating (disassortative mating) and values higher 

than 1 indicating more matings than expected (assortative mating)(Rolan-Alvarez and 

Caballero 2000). IPSI indices calculate the deviations from random mating between 

homotypic and heterotypic pairs and estimate isolation between types. IAPSI indices 

calculate the deviations from random mating between two populations in reciprocal 

pairings and estimate asymmetry between types.  JMATING performs 10,000 bootstrap 

replications of the observed values of the mating pairs in order to generate a distribution 

for the estimator.  It then calculates a bootstrap average, standard deviation, and two-

tailed probability of getting a sexual isolation estimate significantly different from zero 

(random mating).  Currently there are no statistical methods developed to compare 

differences between conspecific controls and heterotypic treatments using the IAPSI 

approach (Rolan-Alvarez, pers.comm.), so only the IAPSI coefficients for homotypic or 

reciprocal pairings are presented. 
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Interspecific analysis 

The one-way ANOVA procedure as noted above was also used to compare 

means of the continuous phenotypic variables between PAC and TAN populations. As 

previously, 5000 randomizations of the data were performed and means between 

populations were compared using individual contrasts with Tukey’s adjustments.  

To examine the diel pattern of and species differences in male singing at the 

Manoa Cliffs field site, I used the SAS GLIMMIX procedure to perform an analysis 

similar to the one described above. For this analysis the 18h observation period was 

divided into nine periods consisting of 2h each, beginning at 0400h.  The total number of 

transect sites with singing males present each hour was used as a measure of male 

response; an average for each block was used as the response variable in the repeated 

measures ANOVA model.  Two contrast statements were used to test for species 

differences in male singing behavior at the visible peak of singing activity for each 

species; the first of which compared the two species across the peak singing period for 

PACM (0600h-1100h) and the second compared across the  peak time for TANM (1600h-

1800h).  The indoor trials were again examined exactly as described in the previous 

section, except that contrast statements compared the number of singing individuals of 

PACM and TANM across the PACM (0600h-1200h) and TANM (1600h-1800h) peak 

singing periods.   

Finally, I tested for sexual isolation and mating asymmetry between PAC and 

TAN populations using log-likelihood ratio tests and the IPSI estimator methods as 

described above.  In this case I first compared mating probabilities within PACP, PACM, 
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and TANM pairs using log-likelihood ratio 2 on a priori planned non-orthogonal 

contrasts for differences in mating frequency.  I then calculated the IPSI coefficients and 

IAPSI coefficients between PACP, PACM, and TANM using the JMATING software as 

described above. 

 

RESULTS 

Intrapopulation comparisons 

 All phenotypic variables (female weight, male weight, micro time, rate, micro 

number, macro time) had similar distributions within species and were significantly 

different between species. Descriptive statistics are shown in Figure 3.  

 The diel song pattern data is graphed in Figure 4 (transect data) and Figure 5 

(indoor data).  Each species appeared to have a distinct peak in singing behavior. The 

PACM sang constantly throughout the 18h study period in the field, but shows a peak in 

calling behavior between 0600h and 1200h; in lab they sang between 0600h and 2100h, 

but showed a clear peak in activity at 1300h. The PACP in lab sang from 0600h until 

1700h and also showed a peak around 1200h, however, this population exhibited biphasic 

singing behavior with a smaller peak of singing activity centered around 0800h. The 

TANM population was silent in the early morning hours, and did the majority of its 

singing between 1300h and 1900h, with a distinct peak between 1600h and 1700h. The 

repeated measures ANOVA showed that species and time of day had a significant effect 

on singing behavior [Table 1: F(8,18) =18.78, p<0.0001] in the field. Likewise, in the 

laboratory experiments, the repeated measures ANOVA again confirmed that there was a 
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significant species-specific effect on male calling in response to time of day [Table 2: 

F22,36=7.92, p<0.0001].   

 Analysis of the micro production data revealed that later micro time had a 

significant negative effect on the micro number (Figure 6: F1,165=190.24, P<0.0001) and 

that within each population, males produced more micros for larger females (Figure 7a: 

TANM: R2=0.22, F1,23=6.55, P=0.0168; PACP: R2=0.35, F1,34=18.64, P<0.0001; PACM: 

R2=0.21, F1,38=10.32, P=0.0036).  This finding corroborates results from a previous study 

on male mating effort (J. Jadin, Ch. 2). There was no significant effect of female weight 

on micro time, macro time, macro production, or total inseminated. 

  

Intraspecific comparisons 

 Female and male weights were distributed normally within and between all 

populations, however, micro number, micro time, macro time, and rate data were not.  

Therefore, a randomization test was applied to all data to deal with the non-normal 

distribution. A one-way ANOVA with 5000 randomizations was performed using the 

MIXED procedure; Tukey’s adjusted least squares means contrasts showed there were no 

significant differences in male weight, female weight, micro number, micro time, macro 

time, or rate between the PAC populations (Figure 3). However, a visual examination of 

the data suggested that the variances in some of the characters were not equal between 

the PAC populations.  Levene’s tests for homogeneity of variance were applied to the 

ANOVA results and revealed that both micro time (Figure 3: F1,74=10.20, P=0.0021) and 

micro number (Figure 3: F1,74=5.17, P=0.0258) had significantly lower variances in the 

PACM population. The decreased variance in micro number is likely a side effect of a 
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decreased variance in the micro time (Figure 6), since males that start courting later 

would have less time to produce before dark, assuming a constant rate was maintained.   

 In the laboratory diel pattern song experiments, the peak calling time (Figure 5) did 

not differ between the PACP and PACM populations: contrasts revealed that the period 

from 1200h-1500h was the period of greatest activity for both pacifica populations 

[PACP: t(36) = 6.24, p <0.0001; PACM: t(36) = 12.29, p<0.0001). However, there were 

quantitative differences within the peaks: during the combined pacifica peak period from 

1200h-1500h there were significantly more PACM than PACP population males singing 

[t(36) = 5.04, p<0.0001]. This result may have potentially been the consequence of some 

sort of differing selection pressures within the populations.  For example, it does appear 

that the sympatric population has a much higher population density than the allopatric 

population (J. Jadin, pers. obs.), which could result in selection for males to sing more 

frequently. However, this result may also have been an anomaly, and without repeated 

trials, it is not possible to distinguish between these two explanations. 

 Table 3 shows a summary of the frequency of occurrence of each stage of mating 

for all interspecific pairs. The log-likelihood 2 and the Fisher’s tests (hereafter 

collectively referred to as the “exact tests”) compare differences in frequencies of each 

stage of mating between any two mating pair combinations.  With 9 different mating pair 

combinations, there are a total of 36 possible comparisons, i.e. PACMTANM v. 

PACMPACP, PACMTANM v. PACMPACM, etc. However, most of these comparisons 

would be redundant.  Therefore, I decided to use six comparisons to detect mating 

asymmetry and isolation between the PAC populations. These comparisons (Table 4) 

reveal differences in frequency of completing any stage of mating by using 2 statistics to 
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estimate significant differences between conspecific homotypic control pairs and 

conspecific heterotypic test pairs (i.e. PACMPACM v. PACPPACM) or between any two 

heterotypic test pairs (i.e. PACMPACP v. PACPPACM).  First, the homotypic control 

comparisons showed there were no significant differences in within-population frequency 

for courting, passing, macro production, macro passing, or total inseminated between the 

PACM and PACP populations (Table 4a). The IPSI indices similarly test for frequency 

differences, but they are designed to test for differences in within-population mating 

propensity only, and therefore only compare conspecific homotypic controls to each 

other.  This is important because differences in mating frequencies in heterotypic pairs 

may not be reflective of isolation if each type has different propensities for mating within 

their population. Results from the IPSI indices corroborated the exact test results (Table 5) 

on the homotypic pairs. Finally, the exact tests also showed there were no significant 

differences in frequency of courting, passing, macro production, macro passing, or total 

inseminated when PACM and PACP were mated homotypically as compared to 

heterotypically (Table 4b). Altogether, these results mean that these populations are not 

isolated from each other, and also that both populations show inherently similar mating 

propensities. Any further differences I detected would be the result of asymmetry 

between populations.   

 The reciprocal PACMPACP vs PACPPACM contrasts, which measure male-female 

asymmetry in heterotypic matings, showed that there was some asymmetry between the 

two PAC populations at the level of courting (Table 4d; 2=8.17, p<0.05), however, this 

asymmetry disappeared in further stages. It appears that slightly more courtings occur 

when the male in the pair comes from the PACM population than when he comes from the 
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PACP population. The IAPSI indices did not corroborate the exact test results (Table 6), 

showing that there was no asymmetry based on male population when mating 

heterotypically.  

 

Interspecific comparisons 

 The one-way ANOVA procedure described above was also used to test for 

differences in the basic phenotypic characteristics between all of the species.  Contrasts 

showed that male weight (F2,327 = 137.32; p <0.0001; (t327= -16.53; Tukey’s adj. p 

<0.0001), female weight (F2,327 = 121.08; p<0.0001; t327= -15.55; Tukey’s adj. 

p<0.0001), micro number (F2,327 = 68.20, p<0.0001; t327 = 11.54; randomized p <0.0001), 

micro time (F2,327 = 32.98, p<0.0001; t327= -8.09; randomized p <0.0001), and rate (F2,327 

= 3.87, p = 0.02; t327 = 2.33, randomized p<0.003) were all significantly different between 

the pacifica and tantalus species. In addition, Otte (1994) showed that pulse rates are 

significantly different between these two species: tantalus sings at 2.0 pulses/sec (pps) at 

20ºC while pacifica sings at 0.5pps. Figure 3 graphically summarizes the differences in 

these variables by population. 

 Field measurements of singing behavior revealed further differences between the 

two species.  At Manoa Cliffs, peak singing time was significantly different between the 

two species (Figure 4), with pacifica peaking between 0600h and 1100h  tantalus peaking 

between 1600h and 1700h. The repeated measures ANOVA showed that the species 

differed in their calling behavior [Table 1: F(1,18) = 51.96, p<0.0001], the time of day 

had a significant effect in the singing behavior of both species [Table 1: F(8,18) =4.63, 

p<0.0001], and a species-specific effect on male calling in response to time of day was 
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observed [Table 1: F(8,18) = 18.78, p<0.0001].  The contrast statements revealed that 

there were significantly more pacifica males singing during its period of greatest activity 

from 0600h-1100h [t(18) = 12.06 , p<0.0001], and that  tantalus had more males singing 

at its period of greatest activity from 1600h-1800h [t(18) = -4.76, p<0.0001], as expected.  

In the laboratory experiments, the peaks in calling time again differed between the 

species (Figure 5).  The repeated measures ANOVA confirmed that the species differed 

in their calling behavior [Table 2: F(2,36) = 8.08, p<0.0001], the time of day had a 

significant effect in the singing behavior of both species [Table 2: F(11,36) =16.75, 

p<0.0001], and a species-specific effect on male calling in response to time of day was 

observed [Table 2; F(22,36) = 7.92, p<0.0001].  The contrast statements revealed that 

there were significantly more pacifica males singing at the its period of greatest activity 

from 1200h-1500h [t(36) = 7.56 , p<0.0001], and that tantalus had more males singing at 

its period of greatest activity from 1600h-1800h [t(36) = -7.40, p<0.0001]. 

 As reported above, males produced a larger number of micros for larger females, 

within populations. Micro production data could however not be compared across male 

species because such a comparison would be confounded by isolation between species; a 

preference, or lack thereof towards females of a particular size might reflect a preference 

for conspecifics rather than a body size preference. However, within females, a logistic 

regression of female weight, female population, and the interaction term on courting 

showed that larger females were courted significantly more often, regardless of the 

species origin of the male she was paired with (Figure 7b; Wald 2
1=20.52, P=<0.0001). 

There was no significant effect of female weight on micro time, macro time, macro 

production, or total inseminated.  
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 A summary of the frequency of occurrence of each stage of mating for all 

heterospecific pairs is shown is Table 3. The exact tests in Table 4(a) compared the 

mating propensities within vs. between species.  All contrasts between conspecific pairs 

showed that there were no significant differences within populations in mating 

frequencies at any stage of mating between TANM and either of the PAC populations.  

This means that any further differences in mating frequencies are the result of behavioral 

incompatibilities between the populations, rather than an artifact of different mating rates 

between populations. 

  The data from six heterospecific homotypic vs heterotypic controls were used to 

assess mating asymmetry and isolation between heterospecifics, and these are shown in 

Table 4(b-d).  The exact tests showed that TANM males (Table 4b; vs. PACP: n=65, 

2=14.61, p<0.0001; vs PACM n=65, 2=31.77, p<0.0001) courted heterospecific females 

significantly less frequently than they did conspecific females. Both PACM and PACP 

males however showed only a non-significant trend to court TANM females less 

frequently than conspecifics (Table 4b). At the stage of macro production, heterospecific 

pairings culminated in macros less frequently than did any conspecific pairings (Table 3; 

Table 4b). The total number mated, in all cases, showed the same frequency pattern as 

did the total number of macros produced; only in the PACMTANM pair was the 

proportion of macros passed significantly lower than any other combination.  This pair is 

particularly interesting because courting and passing of micros occurs at a frequency 

indistinguishable from that of conspecific pairs (Figure 8), while macro production and 

passing occur at a frequency indistinguishable from other heterospecific pairs.  
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 When testing for evidence of reproductive character displacement between the 

species by contrasting sympatric and allopatric heterospecific pairings (TANMPACP vs 

TANMPACM, PACPTANM vs PACMTANM) the analysis showed that TANM males 

courted significantly fewer sympatric PACM females than the allopatric PACP females 

(Table 4c; n=80, 2=6.24, P<0.05). This isolation was only apparent at the stage of 

courting. Both PAC populations courted TANM females with equal frequencies (see 

Table 4c for full summary). The IPSI isolation indices in Table 5 also showed that at the 

stage of courting, there was significant isolation between TANM and PACM (Table 5: IPSI 

=0.245, p<0.01) sympatric populations, but not between the TANM and PACP allopatric 

populations.  At all further stages of mating, there was significant isolation between 

TANM and both PAC populations (Table 5). 

 Finally, male-female heterospecific mating asymmetry was measured using the 

exact tests shown in Table 4d; these indicated that of the two reciprocal heterospecific 

crosses only the PACMTANM pair showed any significant behavioral asymmetry, with 

the PACM TANM pair courting more frequently than the reciprocal TANMPACM pair 

(Table 4d: n=80, 2=27.65, p<0.0001). The IAPSI asymmetry indices corroborated these 

results, also showing that the PACMTANM reciprocal comparison had marginally 

significant asymmetry (Table 6: n=80, IAPSI=1.27, p=0.052) at the stage of courting; no 

asymmetry was detected in any of the reciprocal comparisons at any of the other stages of 

mating.  

  

DISCUSSION 
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L. tantalus and L. pacifica coexist in sympatric populations, show evidence of mtDNA 

introgression, and yet still appear to maintain overall species integrity. In the laboratory, I 

paired conspecific and heterospecific individuals from three sympatric and allopatric 

populations and I compared mating frequency of all pair combinations in order to test for 

isolation and reproductive character displacement between these populations. In order to 

assess what factors might be contributing to behavioral isolation between these species, I 

estimated peak male calling times in lab and in the field, as well as average weights, 

average number of micros, timing of micro and macro production, and the rate of micro 

production in both species. Finally, I estimated the relationship between courting, micro 

production, and female weight within each population. Overall, I detected significant 

isolation between heterospecifics, an increase in spermatophore production for large 

females, and significant and asymmetric isolation between differentially-sized species 

pairs, all of which suggest a potential for conflicting selection pressures between species. 

I also found significantly different mating frequencies between sympatric and allopatric 

heterospecific pairs, as well as significant variation in micro number and timing of 

mating initiation between the pacifica populations, which shows that there is character 

displacement of mate characters and mate preferences within pacifica.  These results 

overall demonstrate not only that these are two distinct behaviorally-isolated species, but 

also that this isolation is anymmetric and may be a novel example of a system in which 

male and female preferences are conflicting in such a way as to undermine diversifying 

selection. 

 

Species differences 
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I found that there were no interspecific differences in mating propensity, but there was 

significant isolation between the tantalus and pacifica species. Males from each species 

courted conspecifics significantly more frequently than heterospecifics, demonstrating 

that there is behavioral isolation between the two species. Both species also differ 

significantly in all measured phenotypic characteristics. L. tantalus has higher weight, 

produces fewer micros, has a later peak calling time, and starts micro and macro 

production later than either of the pacifica populations. These results were not surprising 

given that previous studies suggested that these are three populations of two distinct 

species (Shaw 2002; Parsons and Shaw 2001; Mendelson and Shaw 2005). However, this 

is the first time that patterns of behavioral isolation have been demonstrated.   

 It may be that these interspecific differences are integral to behavioral isolation 

between sympatric congeners.  Body size, as discussed below, may be a barrier to mating 

between differentially-sized species (Nagata et al. 2007; Vigueira et al. 2008; Richmond 

and Jockusch, 2007), mating initiation and macro production may be timed for successful 

copulation (Brevault and Quilici 2000; Sakai and Ishida 2001), or diel differences in 

song production may be matched to the receptivity period of conspecific females 

(French and Cade 1987; Loher and Orsak 1985; Jacot et al. 2008). Likewise, if 

females are most responsive to micros during certain hours of the day, the difference in 

time of mating initiation could act as an isolating mechanism between the species 

(Danley et al. 2007). Additional results from this study, discussed below, suggest this 

hypothesis may be correct. However, to support this hypothesis, data on peak female 

receptivity is needed. An attempt was made at gathering such data, but it was 
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unsuccessful, and modifications of experimental design will be needed for future 

investigation.  

  

Reproductive Character Displacement  

A comparison of the courting frequency of the allopatric pacifica-tantalus pairs to the 

sympatric  pacifica-tantalus pairs revealed significantly fewer courtship attempts 

between the sympatric tantalus male-pacifica female pair than the allopatric pair, or 

either of the reciprocal pacifica male- tantalus female pairs (Table 3) . The hallmark of 

reproductive character displacement is greater discrimination against sympatric 

heterospecifics than allopatric heterospecifics. This results when individuals residing in 

sympatry mate with heterospecific individuals. If the matings incur a cost, either through 

a loss of energy, material resources, or hybrids that have decreased fitness, then theory 

predicts that selection indirectly causes divergence in mating characters or mate choice in 

the parental populations (Dobzhansky 1932; Howard 1993).  The allopatric individuals  

not subjected to such selection will display ancestral mate preferences or characters. The 

results presented here are consistent with displacement of mate choice between the 

conspecific populations.  

  While “choice” is not traditionally considered a reproductive character in most 

studies of reproductive character displacement, it is a behavior (character) involved in 

reproduction, and several past studies have considered it as such (Gabor and Ryan, 2001; 

Gray and Cade, 2000; Gerhardt, 1994); we will also consider it a reproductive character 

here. Therefore there are two potential explanations for the displacement of choice that 

are worth considering.  One hypothesis is that selection is acting on the preference 
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parameters of males.  A previous study found that males produced significantly fewer 

micros on the second consecutive day of mating, and therefore it was hypothesized that 

mating in general, and micro production in particular, results in significant mating costs 

for Laupala males (J. Jadin, Ch.2). Assuming that heterospecific matings incur at least 

some fitness costs, one should therefore find reproductive character displacement 

affecting male choice. For example, since mating frequency displacement was significant 

only at initiation, the results make it appear that tantalus males are choosey. L. tantalus 

males could be choosing to court sympatric PACM females less frequently than PACP 

females due to displacement in female reproductive characters between sympatric and 

allopatric females. In the present study, no such character was identified, however, 

cuticular hydrocarbons are known to play an important role in mate identification and 

speciation in insects (Carde 1977; Coyne 1994; Ginzel 2003; Dietmann 2003), and have 

been found to be diverging in species of Laupala (Mullen et al. 2007). If female cuticular 

hydrocarbons in pacifica are ancestrally similar to those of L. tantalus, but have shifted 

away from the ancestral state in sympatry due to drift or selection, tantalus males may be 

discriminating against sympatric pacifica females. However, until a female character is 

identified and further testing is performed, this hypothesis cannot be confirmed.   

 An alternative explanation for decreased mating attempts between the sympatric 

heterospecifics is that selection is causing displacement of pacifica female choice. 

Displacement in female choice, rather than male choice, would be consistent with results 

from other previous studies reporting selection causing reproductive character 

displacement (Saetre et al. 1997; Coyne and Orr 1989, 1997; Noor 1995, 1997; Higgie et 

al. 2000; Nosil et al. 2003; Pfennig and Simovich 2002; Hoskin et al. 2005). Sexual 
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selection theory predicts that females have more to lose from an unsuccessful mating, 

resulting in selection on females to assortatively mate, thereby leaving choosy females 

and relatively indiscriminate males (Bateman 1948; Trivers 1972). Displacement of 

female choice is as likely as displacement of male choice in Laupala, and in fact, it could 

be mutual. Although micro production is apparently costly to males (J. Jadin, Ch.2), the 

costs of spermatophores may be insignificant relative to the costs of eggs. As such, the 

decrease in courting attempts between sympatric congeners may be the result of female 

discrimination against interested tantalus males.   

 The asymmetric courting frequency between reciprocal pairs of the pacifica 

populations provides further support for a hypothesis of displacement of female choice. 

The PACMPACP pair has a slightly, but significantly, higher courting frequency than the 

PACPPACM pair.  If allopatric pacifica males have ancestral character states (Howard 

1993), they may be similar to the heterospecific males. Selection for assortative mating in 

sympatric pacifica females would result in discrimination against allopatric pacifica 

males with ancestral mate characters. This would cause a pattern of increased 

discrimination against conspecific allopatric males similar to the pattern revealed here. 

 The differing variance in micro number and micro time between the pacifica 

populations is particularly interesting because this may be a male character that is 

undergoing displacement (Figure 3).  There was decreased variance in both time and 

number of micros in the sympatric population, which is indicative of divergence as a 

result of selection against overlapping traits in sympatry.  There is a strong positive 

relationship between earlier micro production and the number produced, so it is likely 

that decreased variance in micro number in sympatry is the result of decreased variance 
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in initiation time. Females of both species have peak receptivity periods, which the males 

may be attempting to match. Such a result has been found in other systems (French and 

Cade 1987; Loher and Orsak 1985; Jacot et al. 2008).  It is difficult to distinguish 

whether such a shift is a result of selection directly on the male character or on female 

choice without data on the female receptivity period; however, this pattern provides most 

support for a hypothesis of female choice. This is because there is clear displacement of 

mate choice between the two pacifica populations, but a trait that may be important for 

mate choice decisions, is not yet significantly different. The decrease in variance in micro 

number alone suggests that this trait is in the process of catching up with the shift in 

choice (Lande and Arnold 1983; Grant and Grant 1989), and therefore, selection acting 

on female choice parameters and resulting in a subsequent shift in male characters.   

 

Mating Investment and Asymmetry 

Finally, results of this study showed that there appears to be asymmetrical isolation 

between sympatric species. As noted above, when the mating frequency of male-female 

pairs of tantalus and pacifica were compared, results showed that PACM males courted 

TANM female more frequently than did the reciprocal pairing. In insects, larger females 

are frequently found to be more fecund (Honek 1993; Kazimirova 1996; Preziosi et al. 

1996; Sokolovska et al, 2000), have more eggs,  and are therefore more preferred as 

mates (Fischer et al. 2000; Danielson-Francois et al. 2002; Rogers et al. 2006), because 

their partners will have higher fitness (Bateman 1948). As noted above, Laupala males 

behave in a similar fashion, producing more micros for larger females and courting large 

females more frequently (J. Jadin, Ch.2). Those results were replicated in the current 
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study, however, results here also show that the tantalus species is overall significantly 

larger than the pacifica species. The asymmetric courting pattern might therefore be due 

to male preference for large females that transcends species boundaries.  

 This is particularly interesting because it suggests a possible conflict between 

species recognition and mate quality selection:  if males always prefer large females then 

interspecific gene flow from the smaller pacifica males-large tantalus females matings 

may counteract divergent selection.  The likelihood of such a preference depends on the 

relative costs of courting for each sex. If males that had a strong preference for large 

females had significantly greater fitness than those with a weaker preference, and 

encounters with heterospecific females are either infrequent, or hybridization results in 

greater than zero fitness, then selection may not penalize males with strong female size 

preferences. We might instead expect that divergence would continue if female mistakes 

were costlier than those for males, or that a hybrid swarm would result if the male 

benefits of mating with a large heterospecific female outweighed any female costs.     

 It is important to consider that while asymmetry is primarily found at the stage of 

courting, there also appears to be a marginal degree of asymmetry at the final stage of 

passing (Table 4b). During the superficial stages of early courtship, all heterospecific 

pairs have a similar degree of isolation, while conspecific pairs do interbreed (Table 3; 

Figure 8)—excepting the PACMTANM pair, which courts at a similar frequency to 

conspecific pairs. At the stage of macro production occurs, this variation disappears 

(Figure 8). One hypothesis to explain this is that PACM males are courting the large 

TANM females in order to maximize fitness (Bateman 1948), but they desist once at the 

critical stage of gamete transfer. This may be because micros are relatively cheap to 



123 

produce, while macros may be more energetically costly (J. Jadin, Ch.2). Males may be 

hedging bets on a successful mating, but produce macros only when the female signals 

interest.  During the Laupala courtship sequence, males appear to assess females:  if a 

male passes a micro to a female and she rapidly removes it, he jumps and hits her with 

his legs (pers.obs.).  Therefore, females that reject micros might trigger males to forgo 

macro production, resulting in a decrease in frequency of macro versus micro production.  

  This explanation may account for the drop in macro production, but still does not 

fully account for the asymmetry in passing success in the PACMTANM pair.  To explain 

this pattern, I cautiously propose that in Laupala, selection on individuals to assortatively 

mate may affect each species and each sex differently, and it may depend upon the 

relative costs of failure for each stage of the mating.  If allopatric pacifica retain 

characters that are similar to those of tantalus males and selection acts differentially on 

each stage of the mating process depending upon the relative cost of each stage, then we 

might predict that small sympatric pacifica males will vigorously court large tantalus 

females. However, selection acting on the critical stage of gamete transfer will result in 

tantalus females discriminating against sympatric pacifica males more strongly than 

allopatric males, who  maintain ancestral mate characters (such as timing of micro 

production). Such a prediction corresponds with the pattern revealed by the PACMTANM 

pair.  Strong male preference for large females may outweigh diversifying selection in the 

early stages of mating, resulting in pacifica males courting tantalus females. Females 

may not be decreasing their fitness substantially by accepting micros if acceptance does 

not cause a decrease in fertilization success. Microspermatophores may even be nutritious 

and provide direct benefits to females and/or their offspring (e.g. Simmons et al. 1999). 
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However, if heterospecific fertilization result in lower reproductive success, selection 

should act on females before gametes are transferred. Because the mating system of 

Laupala is complicated and allows selection to act at many stages, competing selection 

pressures can become entwined.  The hypotheses put forth here begin to disentangle some 

of these processes, but should be taken as a guide for future studies rather than a 

definitive explanation. 

 

Conclusions  

 The results described here show that heterospecific matings can occur in the contact 

zone between the closely-related tantalus and pacifica species, but there is a clear 

difference in choice relative to areas outside the zone. Additionally, there is a clear 

decrease in variance in the number and initiation of micro production within, relative to 

outside, the zone. This pattern is consistent with a pattern of reproductive character 

displacement. It is likely that diversifying selection is acting on female choice in the 

pacifica species, causing displacement in male reproductive characters, but without 

further tests for displacement of female characters, it is difficult to rule out that the 

selection may instead be acting on male choice. Additionally, the pattern of mating 

frequency is asymmetric between species pairs, and may be the result of an innate male 

preference for larger females that transcends species boundaries.   

 These results overall suggest that mutual, and perhaps conflicting forms of 

selection are acting on pacifica and tantalus in their zone of contact: while females may 

ultimately be deciding whether or not a heterospecific mating will go to completion, 

males may also be choosing to mate with large females across species boundaries, 
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resulting in selection that conflicts with female choice.  However, much more work is 

needed to clarify the results from this study.  The Laupala mating system is elaborate and 

allows for selection at many stages, each of which may result in different costs being 

imposed upon the individual engaging in each stage. First,it will be necessary to 

thoroughly quantify of the relative costs of mating for each sex.  Second, a female size-

controlled preference study is needed in order to categorically conclude that male body 

size preference also applies to heterospecific matings. And finally, in order to understand 

how speciation is being hindered or enhanced, it is neceassry to quantify hybrid fitness. 

Such further studies will provide us with a better understanding of how reproductive 

costs in an unusual mating system can affect the direction and degree of evolution. 
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TABLES 

Table 1. A repeated measures analysis of variance that examines the effect of species, 

time of day, and the interaction of species and time of day on the number of sites with 

singing males of L. tantalus and L. pacifica at Manoa Cliffs on outdoor data. The p 

values were obtained from 1000 randomizations 

 
 Df    
effect Numerator Denominator F p 
Species 1 18 51.96 <0.0001 
Time of day 8 18 4.63 0.007 
Species*time of 
day 

8 18 18.78 <0.0001 

 
Contrast estimates, L. pacifica vs. L. tantalus 
 period Estimate Standard error df T p 
6am-11am 9.5 0.788 18 12.06 <0.0001 
4pm-6pm -6.5 1.364 18 -4.76 <0.0001 
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Table 2. A repeated measures analysis of variance that examines the effect of species, 

time of day, and the interaction of species and time of day on the number of sites with 

singing males of L. tantalus and L. pacifica at Manoa Cliffs, and L. pacifica at Pupukea, 

indoor data.  The p values were obtained from 1000 randomizations of the data.  Contrast 

estimates both compared number of singers singing at each designated peak time as well 

as periods throughout the day of highest activity. 

  df    
effect  numerator denominator F p 
Species  2 36 8.08 <0.0001 
Time of day  11 36 16.75 <0.0001 
Species*time of day  22 36 7.92 <0.0001 
Contrast estimates 

 period Contrast species Estimate Standard 
error df T p 

12pm-3pm # singers PAC vs. TANM 6.5 0.860 36 7.56 <0.0001 
4pm-6pm  PAC vs. TANM -9.5 1.216 36 -7.40 <0.0001 
12pm-3pm  PACP vs PACM 5.0 0.993 36 5.04 <0.0001 
4pm-6pm peak period TANM 9.5 1.0372 36 9.16 <0.0001 
12pm-3pm  PACP 9.6 1.5384 36 6.24 <0.0001 
12pm-3pm  PACM 18.9 1.5384 36 12.29 <0.0001 
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Table 3. Male and female population and species, sample size (n), number and proportion of males producing 1 micros, 

means ± sd of micros produced (out of those that completed mating), number and proportion of males successfully passing 1 

micros, number and proportion of all males that produced macros, number and proportion of those macros successfully 

transferred, and percent out of total sample that successfully mated (i.e. produced and transferred macro). Out of those males 

that completed a mating, they produced a similar number (n) of micros for any female, no matter what the population of origin 

of the female.  

 
Type Male Pop Fem Pop n 1micros 

(% n) 
mean 
±s.d. 

1 passed 
(% of micro) 

1 passed 
(% n) 

macros 
(% n) 

passed 
(% of macro) 

total mated 
(% n) 

Inter TANM PACM 40 16 
40% 5.1 ±1.10 14 

87.5% 35.0% 10 
25.0% 

10 
100% 25.0% 

Inter TANM PACP 40 27 
67.5% 4.4 ±1.61 20 

74.1% 50.0% 13 
32.5% 

13 
100% 32.5% 

Inter PACM TANM 40 37 
92.5% 7.8 ±3.36 33 

89.2% 82.5% 14 
35% 

9 
64.3% 22.5% 

Inter PACP TANM 37 28 
75.7% 7.7 ±2.11 22 

78.6% 59.5% 10 
27.0% 

10 
100% 27.0% 

Intra PACM PACP 40 40 
100% 8.5 ±1.58 37 

92.5% 92.5% 29 
72.5% 

28 
96.6% 70.0% 

Intra PACP PACM 35 30 
85.7% 9.3 ±1.33 27 

90.0% 77.1% 24 
68.6% 

24 
100% 68.6% 

Control TANM TANM 25 25 
100% 4.8 ±1.20 24 

96.0% 96.0% 17 
68.0% 

17 
100% 68.0% 

Control PACM PACM 40 40 
100% 8.2 ±1.94 36 

90.0% 36.0% 31 
77.5% 

29 
93.5% 72.5% 

Control PACP PACP 36 34 
94.4% 8.2 ±3.21 30 

88.2% 83.3% 23 
63.9% 

21 
91.3% 58.3% 

.
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Table 4. Summary of results for L. tantalus / L. pacifica mating frequency by comparison 

of frequencies of cross-population matings.  The two population crosses being compared, 

the sample size, the likelihood ratio 2 values from randomized 2 tests are shown below.  

The “passed mics” and “passed macs” proportions used were “%of mic” and “%of mac” 

values from Table 1. All of the pass data contained at least one cell in the comparison that 

contained a count <5. Because of this, a 2 test was not appropriate and a Fisher’s exact 

test was used instead; therefore, only a p value is displayed. A sequential Bonferroni 

correction for 6, 3, 3, or 2 relevant comparisons was applied to all of the p values within 

categories (asymmetry control, interspecies control, reciprocal comparisons, or 

interspecies comparisons) obtained with the Fisher’s exact test. A * denotes significance 

at the <0.05 level, ** denotes significance at the < 0.001 level. 

male X fem male X fem N Courted  
(2) 

Passed 
Micros  
(p) 

Macros 
Produced 
(2) 

Passed  
Macros 
(p) 

Mated 
(2) 

a) Interpopulation controls       
PACP  X  PACP PACM  X  PACM 80 3.05 1 1.710 1 1.693 
PACM  X  PACM TANM  X  TANM 65 0 0.641 0.709 0.533 0.150 
TANM X  TANM PACP  X  PACP 80 2.16 0.384 0.111 0.499 0.592 

b) Heterotypic controls       
PACM  X  PACM PACM  X  TANM 80 4.20 1 15.99** 0.02* 21.00** 
PACM  X  PACM PACM  X  PACP 80 0 0.72 0.48 1 0.06 
TANM  X  TANM TANM  X  PACP 65 14.61** 0.06 7.93* 1 7.93* 
TANM  X  TANM TANM  X  PACM 65 31.77** 0.55 10.90* 0.21 11.91** 
PACP  X  PACP PACP  X  TANM 73 5.39 0.33 10.25** 1 7.453* 
PACP  X  PACP PACP  X  PACM 71 1.56 1 0.17 0.23 0.80 

c) Interspecific pairings       
TANM  X  PACP TANM  X  PACM 80 6.24* 0.446 0.36 1 0.55 
PACP  X  TANM PACM  X  TANM 77 4.46 0.306 0.47 0.053 0.21 

d) Reciprocal pairings       
PACP  X  TANM TANM  X  PACP 77 0.10 0.758 0.276 1 0.276 
TANM  X  PACM PACM  X  TANM 80 27.65** 1 0.815 0.495 0.069 
PACM  X  PACP PACP  X  PACM 75 8.17* 1 0.139 1 0.018 
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Table 5. Between population IPSI estimates of sexual isolation at each step of a mating.  
IPSI and one standard deviation given.  The first column of variables compares the 
proportion of males, out of the total sample, that produced at least one micro.  The second 
column represents the proportion of those which made micros and subsequently passed, 
whereas the third column represents the proportion of the total sample which passed a 
micro. The same explanation applies to the macro calculation in the next two columns.  
The final column shows the total proportion of males that successfully mated (i.e. 
produced and transferred a macro).  Because JMating requires equal sample sizes, all 
proportions were estimated as a percentage of the lowest common sample size, which for 
total n=25, for total producing micros=16, and total producing macros=10. An * denotes 
significance at <0.01, and ** denotes significance at <0.001.  
 

IPSI 
%micros 
made %micro pass %macros 

made %macro pass %total mated 

TANMPACP 0.155 ±0.07 0.094± 0.14 0.427± 0.13** -0.024± 0.17 0.369±  0.14* 

TANMPACM 0.245 ±0.11* 0.026± 0.14 0.382± 0.14** 0.097± 0.18 0.498± 0.13** 

PACPPACM 0.0213 ±0.10 0.027± 0.14 -0.003± 0.12 -0.035± 0.17 -0.031± 0.12 
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Table 6. The Indexes of asymmetry (IAPSI) coefficients are shown below. IAPSI 

coefficients are calculated using ratios from PSI pairwise coefficients. 1000 bootstrap 

replicates were performed on the data to generate the coefficient and the p value. The 

lowest common sample size, of 25 individuals for the TANM X TANM cross was used for 

all analyses; all other populations were adjusted for sample sizes of 25. The † denotes 

marginal significance (p = 0.0516) when a sample size of 25, the minimum common 

sample size, was used.   

 

male X fem male X fem N 
Micros 
IAPSI 
±S.D. 

Passed 
micros  
IAPSI ±S.D. 

Macros 
IAPSI 
±S.D. 

Passed 
macros  
IAPSI ±S.D. 

Total 
mated 
IAPSI 
±S.D. 

Interspecific controls       

PACP  X  PACP PACM X PACM 80 1.00±0.03 1.00± 0.07 1.01± 0.06 1.00± 0.12 0.99±0.05 

PACM X PACM TANM X TANM 65 1.00±0.07 1.00± 0.07 1.023±0.16 1.00± 0.10 1.04±0.18 

TANM X TANM PACP X  PACP 80 0.99±0.05 1.00± 0.07 0.99±0.14 1.01± 0.12 0.96±0.13 

Reciprocal pairings       

PACP  X TANM TANM  X  PACP 77 0.99±0.07 1.01± 0.12 0.95± 0.29 1.00± 0.09 0.29±0.69 

TANM  X PACM PACM X TANM 80 1.27±0.27† 1.00± 0.07 1.25± 0.50 0.95± 0.15 0.48±0.89 

PACM X PACP PACP X  PACM 75 1.00±0.04 1.01± 0.10 1.00± 0.05 1.00± 0.10 0.04±0.89 
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FIGURE LEGENDS 

 

Figure 1. Populations (island of Oahu) used in this study. The circle indicates the sample 

site for the allopatric L. pacifica population (PACP) and the square is sample site for the 

sympatric L. pacifica/ L. tantalus population (PACM and TANM). The dashed line 

indicated approximate distribution of L. pacifica, and the dotted line represents the 

approximate L. tantalus distribution as described by Otte (1994). 

 

Figure 2. a) Classical scheme for testing reproductive character displacement.  Green 

matings are controls, green/red matings are experimental.  The null hypothesis is that all 

species come from a common ancestor. If reinforcing selection is at work in the contact 

zone, then within the test species (in this case L. pacifica), the sympatric individuals will 

have the derived characteristics as a result of secondary contact with L. tantalus. The 

assumption is that the sympatric female and the heterospecific male will mate less 

frequently than the allopatric female and heterospecific male because of selection for 

discrimination in sympatry. 

b) In this study these comparisons will also be tested from the male choice perspective, 

i.e. female heterospecifics (L. tantalus) will be mated to sympatric PACM and allopatric 

PACP L. pacifica males. Because previous research in Laupala has found that male 

mating is costly, an a priori hypothesis in this study was that male choice might be 

playing a role in reinforcement. Therefore, trials in both directions may help determine 

which sex is experiencing reproductive character displacement. 
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Figure 3. Population phenotype differences. The box plots show the median, the 5th and 

95th percentiles, and the minima and maxima.  The mean ±1 S.D. is shown below each 

box; the sample size for each population is shown below the x-axis. All characters except 

male and female weight were analyzed based upon within population matings only so 

that the results would not be confounded by mating isolation effects. All variables were 

then compared across populations using one-way ANOVA randomization tests. All 

models had significant F values (in text above).  Tukey-adjusted least squares means 

contrasts were performed between the pacifica and tantalus species; the t-value for that 

contrast is given in the upper left corner of each graph.  For all variables, TANM was 

significantly different from each pacifica population, but neither PACM nor PACP was 

significantly different from the other. However, both mating initiation (Levene’s 

F1,74=10.20, P=0.0021) and number of micros (Levene’s F1,74=5.18, P=0.0258) showed 

significantly different variance between the PAC populations. 

 

Figure 4.  Diel pattern of male calling behavior of sympatric PACM (dotted line) and 

TANM (solid line) at Manoa Cliffs trailhead, Oahu. The graph depicts number of sites 

with singing males plotted against time. 

 

Figure 5. Diel pattern of male calling behavior of sympatric PACM (dotted line) and 

TANM (solid line) and allopatric PACP (dashed line). The graph depicts number of 

singing males plotted against time. 
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Figure 6. Relationship between micro time and number of micros produced for TANM 

(triangles), PACM (filled circles) and PACP (open circles). Only matings that resulted in 

the production of a macro were used for the analysis. The solid line represents the simple 

linear regression of micro number on time of mating initiation. Regressions were 

significant within each population as well, however, because there is a significant 

difference in initiation time between the species, an ANOVA was used instead to 

evaluate the overall pattern among populations. It showed that males that started mating 

earlier produced significantly more micros (F1,165=190.24, P<0.0001). 

 

Figure 7. a) Relationship between conspecific female weight and number of micros 

produced for TANM (triangles and solid line), PACM (circles and dotted line) and PACP 

(squares and dashed line). The solid line represents the simple linear regression of micro 

number on female weight. Males of all populations produced significantly more micros 

for large females within populations (ANOVA TANM: R2=0.22, F1,23=6.55, p=0.0168; 

PACP: R2=0.35, F1,34=18.64, p<0.0001; PACM: R2=0.21, F1,38=10.32, p=0.0036).  

b) Box plot diagram depicting relationship between female weight and courting, paired 

by female population of origin.  Because nearly 100% of homotypic pairings resulted in 

courtship, those pairs were removed from the analysis, and the graph below represents 

only results from heterotypic pairings. Overall, a logistic regression showed that female 

weight predicted whether or not she would be courted Wald 2
1=20.52, P=<0.0001). 

 

Figure 8. Comparison of mating stages between all combinations of species pairs.  The 

x-axis shows stage of the mating sequence as percentage of total paired, not percentage of 
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total, the y-axis represents frequency as percentage of time each stage of the mating 

sequence was successful.  On the left side of the graph, 5 of the 6 lines in the top group 

are conspecific mating pairs.  However, the thick dashed line represents the 

heterospecific PACM male-TANM female pair.  This pair initiates mating (produces a 

micro) and passes micros at the same frequency as do conspecific pairs.  However, once 

the stage of gamete transfer (macro production and transfer) is reached, it drops down to, 

and in fact below, heterospecific levels.  
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