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“Fluid polyamorphism” is the existence of two alternative amorphous structures 

in a single-component fluid. It is found in very different materials, such as silicon, 

phosphorus, cerium, and hydrogen, usually at extreme conditions. In particular, this 

phenomenon is hypothesized in metastable supercooled water, inaccessible for direct 

bulk-water experiments because it is predicted to be below the empirical limit of 

homogeneous ice nucleation. I present a generic phenomenological approach to 

describe polyamorphism in a single-component fluid, applicable regardless of the 

microscopic origin of the phenomenon. To specify this approach, I consider a fluid with 

“chemical reaction” equilibrium between two competing interconvertible states or 

structures. This approach for the physics of liquid-liquid separation in a single-

component fluid is based on a discrete nature of two distinct structures. The approach 

qualitatively describes the global phase diagram of a fluid, with both vapor-liquid and 

liquid-liquid equilibria, as well as peculiar properties of polyamorphic fluids. 
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Chapter 1: Introduction 

1.1 Fluid Polyamorphism 

An interesting phenomenon that can be found in a variety of substances is 

known as fluid polyamorphism. Similar to solid polymorphism, this phenomena 

involves the ability of a substance to exist in different structures. However, fluid 

polyamorphism maintains the same symmetry of polyamorphic states while 

polymorphism means a change in the symmetry. The idea of polyamorphism has been 

described since the late 20th century [1]. Polyamorphism is usually described within the 

liquid region as two distinct phases with disordered structures [2]. Amorphous phases 

could be different fluids, specifically liquids or supercritical fluids, or glasses. The 

amorphous structures do not necessarily need to be stable; polyamorphism could exist 

in the stable and metastable regions of substances [3]. Additionally, amorphous phases 

may or may not be equilibrium structures. Amorphous structures in liquids are 

distinguished typically by low versus high density and also a distinct difference in bulk 

thermodynamic properties [4, 5]. The existence of alternative local structures in fluids 

may or may not result in phase separation. Should the amorphous structures phase 

separate, there exists a fluid-fluid phase transition in the particular substance in addition 

to the common vapor-liquid phase transition. 

 A lot of experimental and computational (from computer simulations) evidence 

has pointed to the existence of polyamorphism in many different liquids including: 

hydrogen, silicon, cerium, phosphorus, triphenyl phosphite, water, and some other 

molecular substances [6-35]. This phenomena is often accompanied by polymorphic 
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solid state transitions. The microscopic driving forces for polyamorphism in different 

substances may be fundamentally different. 

For example, the driving force for polyamorphism in cerium is thought to be a 

consequence of the delocalization of Fermi orbital electrons as well as the interactions 

between Fermi orbitals themselves [6]. Cerium has a rich phase diagram with 

polymorphism as well as the simulated liquid-liquid transition. Recent studies have 

shown evidence of a liquid-liquid transition in cerium at high temperature and high 

pressure that is believed to terminate at a critical point [6]. The study of cerium 

combined X-ray diffraction studies with ab initio simulations. Figure 1 below shows 

the predicted phase diagram of Cerium, with solid polymorphism appearing to 

influence the liquid polyamorphism at higher temperatures and pressures. 

 

Figure 1. Reproduced from [6]. Phase diagram of cerium overlaid with 

experimental data. Green triangles indicate experimentally observed liquids. The 

liquid-liquid transition line is denoted by the gray points and lines determined by ab 

initio simulations. Greek symbols indicate various solid polymorphs. 
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The driving force for polyamorphism in phosphorus is a transition between a 

polymeric liquid and a monomeric liquid [7-9]. Recent experimental studies have 

produced evidence showing that a known liquid state of phosphorus can be transitioned 

to a polymeric, viscous liquid. This transition is pressure-induced and reversible, 

meaning that the transition back to the known form of liquid phosphorus happens by 

simply changing the pressure [7-9].  

 Phosphorus’ polyamorphism is similar to a transition from non-metallic hydrogen 

to metallic hydrogen [10]. The transition takes place at extremely high pressures—

between 120 GPa and 140 GPa at temperatures between 500-2000 K [11]. Evidence 

from high pressure Raman spectroscopy studies has also reported a transition at 

pressures higher 325 GPa at 300 K [12]. Molecular hydrogen makes a transition from 

an insulating non-conductive phase to a metallic, dense and conductive phase [13]. 

Morales et al. [14] have found evidence of hydrogen’s polyamorphism in quantum 

simulations. The critical point predicted from the simulations was at 2000 K and 120 

GPa [14]. This transition is an association and dissociation reaction in which the 

hydrogen would transform from atomic hydrogen to molecular hydrogen [13]. An 

important feature of the liquid-liquid phase transition is the existence of a maximum of 

the thermodynamic response functions that will all converge on the critical isochore. 

Li et al. [15] present evidence of the existence of the Widom line for supercritical 

hydrogen. This liquid-liquid transition appears in the supercritical region of the 

hydrogen phase diagram with respect to the vapor-liquid transition at extremely high 

pressures and temperatures. Figure 2 shows the hydrogen phase diagram along with the 

fluid-fluid transition line. 



 

 

4 

 

 

Figure 2. Potential phase diagram for hydrogen showing the solid polymorphs, the 

melting line, and the potential liquid-liquid phase transition line in supercritical 

hydrogen. 

 

Triphenyl phosphite’s liquid-liquid transition is thought to occur near the 

temperature of the stability limit of the liquid [2,16]. This transformation is to a very 

viscous state, called the glacial phase. Bulk experimental studies of triphenyl phosphite 

have determined that quenching of the fluid will result in a transformation to a very 

viscous amorphous state [2]. The glacial phase has its own glass transition temperature 

separate from the glass transition temperature of the original liquid triphenyl phosphite 

phase, further determining its stability as a new amorphous phase [2,16].  

Silicon’s tetrahedral structure is thought to be a major factor in its polyamorphism 

[17-27]. Silicon, as well as other network-forming liquids, like water, has a tendency 

to form local structures with tetrahedral molecular geometry. This means that the 

average coordination number of these open local structures is around four. This ability 
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of silicon and other network-forming liquids to form tetrahedral open structures is 

thought to be the main driving force of liquid-liquid transitions between phases with 

different coordination numbers [18]. The predicted phase diagram of silicon from MD 

simulations is shown in figure 3. The MD simulations by the authors in [18] has 

predicted that liquid-liquid critical point in silicon will be in the negative pressure 

region—a doubly metastable region. A doubly metastable state means that this silicon 

is both supercooled and superstretched, being metastable with respect to both solid and 

vapor.  

 

Figure 3. Adapted from [18]. Proposed phase diagram of silicon depicting the 

vapor-liquid transition line (G-L), the liquid-crystal melting line (L-Xt), the vapor-

crystal transition line (G-Xt), the vapor-liquid spinodal, and the proposed liquid-liquid 

transition line (L-L). Density and compressibility extrema lines are shown in blue and 

red, respectively. The liquid-liquid transition line terminates at a critical point proposed 

by [26] with the value Tc~1120 K, Pc~ -0.60 GPa. 

 

Silica, SiO2, is another liquid, similar to water, that is predicted to exhibit 

polyamorphism. The authors in Refs. [28-32] report results of molecular dynamics 

simulations that show an amorphous-amorphous transition in silica at high pressures. 

However, silica has currently no known critical point in the available simulations. 

Lascaris et al. [32] search for the critical point using two separate models of silica at 

8000 K 

3 GPa 

0 GPa 

2000 K 

-4 GPa 

CP 
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lower temperatures than most simulations for silica. They found that there is no liquid-

liquid critical point in any of the models and simulations that currently have found a 

transition in silica. They were unable to find an exact critical point, but found that there 

is behavior that appears to be close to the critical behavior at 4000 K and 5 GPa [32]. 

Carbon is a material with well-known polymorphs in graphite and diamond. 

However, carbon also has been found to exhibit liquid polyamorphism. Glosli and Ree 

[33] present simulation results that show a liquid-liquid phase transition in liquid 

carbon. Carbon’s liquid-liquid transition takes place in thermodynamically stable 

fluids; this is different from liquids like silicon, where the liquid-liquid transition is in 

a metastable region of the phase diagram. Glosli and Ree find that carbon has a liquid-

liquid critical point at 8801 K and 10.56 GPa [33]. The main difference between the 

distinct two liquid carbon states is hypothesized to be a change in the hybridization of 

carbon orbitals [33]. Yttria-Alumina melts may also have liquid polyamorphism. Refs. 

[34-35] report conflicting experimental evidence of a liquid-liquid phase transition in 

yttria-alumina. Ref. [34] determines that there is a liquid-liquid phase transition based 

on X-ray diffraction experiments. However, authors of ref [35] believe that there is no 

evidence for a structural transition in yttria-alumina melts based on their experiments 

on the time of crystallization. 

One very important point to note from all of the different liquids exhibiting 

polyamorphism is that much of the polyamorphism happens at extreme conditions. 

Many of these fluids can be either supercritical fluids, supercooled liquids, or stretched 

liquids (when a liquid is taken to negative pressures). Also, fluid polyamorphism is 

difficult to observe experimentally due to the extreme conditions. As a result, much of 
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polyamorphism is observed through simulations. However, simulation results may also 

be ambiguous and difficult to interpret because of finite size effects and long 

equilibration times [82].  

A final intriguing aspect of the phenomenon of polyamorphism is the connection 

between dynamics and thermodynamics [37]. Polyamorphic liquids often exhibit a 

transition from a strong liquid to a fragile liquid [36-40]. Strong liquids are structurally 

sound and the structure of the liquids often stays constant over ranges of temperature. 

Strong liquids will change to fragile liquids through a change in the density. Fragile 

liquids are of a lower density with a structure that is not as stable as strong liquids and 

may change easily with temperature [36]. This transition is a dynamic change in the 

viscosity of the liquid. Typically strong liquids exhibit Arrhenius behavior over 

temperature, while fragile liquids exhibit very non-Arrhenius behavior [40]. Figure 4 

shows the behavior of a potentially polyamorphic liquid, water, in a fragile to strong 

transition. 

 

Figure 4. Reproduced from [38]. Viscosity of liquids as a function of inverse 

temperature. The viscosity of strong liquids increases linearly while that of fragile 

liquids increases non-linearly. Water exhibits a fragile to strong transition, at Ts, before 

it reaches the glass transition temperature Tg. T1/2 is where log(η(T)) =½ log(η(T)). 
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1.2 Water as a Polyamorphic Fluid 

 Water is a liquid of particular interest due to its wide variety of uses in industrial 

applications. Water specifically is one of the most abundant substances on Earth [42]. 

Since the 1980s, a large number of experiments have been done on cold, supercooled, 

and glassy water, attempting to understand more about some of the anomalous 

properties in water [41]. Additionally, the polyamorphism hypothesized in water is 

thought to be similar to a variety of tetrahedral network forming liquids [3]. Several 

anomalies that are present in water are also present in other tetrahedral network forming 

liquids. The presence and interaction of these anomalies are thought to be a product of 

a liquid-liquid phase transition. For example water exhibits a density maximum at 4 

degrees Celsius [48]. In some models to describe water, the density anomaly 

necessarily means that there will be a liquid-liquid phase transition [109]. Additionally, 

heat capacity and compressibility, the thermodynamic response functions, increase 

upon supercooling and reach apparent maximums in the metastable region [48]. The 

thermal conductivity also reaches a minimum at the same time the heat capacity reaches 

a maximum [44]. A variety of research has been done on the behavior of the density 

and the response functions—some of which is shown in Refs [43-50,64]. The apparent 

anomalies in the thermodynamic response functions has created a large area of research 

in supercooled water.  

The researchers in this field have looked to identify the cause of these anomalies in 

supercooled water. A popular theory is the idea of a liquid-liquid phase transition—

fluid polyamorphism—in deeply supercooled water that is just below the reach of bulk 

experiments, due to the homogeneous ice nucleation that happens at 232 K [48]. Figure 
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5 shows a possible phase diagram for water, proposed by Poole et al. [49]. The brown 

curve denotes the coexistence which is terminated by a critical point, proposed by 

Holten and Anisimov [65]. 

 

Figure 5. Proposed phase diagram for water adapted from [49]. TH denotes the line 

of homogeneous ice nucleation. TM denotes the melting line, splitting stable water from 

supercooled water. The brown line is the proposed coexistence line between HDL and 

LDL. It is terminated by a possible critical point proposed by [65].  

 

There are four scenarios that are proposed to explain the anomalous behavior of 

water. The first scenario is the existence of a liquid-liquid transition in water that 

terminates at a critical point [48]. The second scenario is the “critical point free” 

scenario. It hypothesizes the existence of a liquid-liquid transition, except the critical 

point is exactly at or below the limit of stability, making the transition first order in the 

entire stable and metastable region [48]. The third scenario is the “singularity-free 

scenario,” where the critical point is exactly at 0 K and no physical liquid-liquid 
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transition exists [48,52]. The fourth scenario (“retracing spinodal scenario”) depicts the 

possibility that the liquid-vapor spinodal (the limit of stability of the liquid state with 

respect to vapor) actually retraces and reenters the phase diagram at positive pressures. 

This reentrance is what causes the anomalies in water [48,53]. The “retracing spinodal” 

scenario was criticized in the literature because it suggests that the spinodal would cross 

the metastable vapor-liquid transition, which in turn would require the existence of an 

additional vapor-liquid critical point below the melting temperature [Debenedetti].  

In this thesis I have shown how the first three scenarios can be explained by the 

same thermodynamic model. The most probable and most studied scenario is scenario 

one—a liquid-liquid transition that terminates at a critical point in the positive pressure 

region. There is a rich history of the study of water’s polyamorphism, gaining 

popularity in the 20th century. Recently, there has been a variety of computational 

studies in models of water to study water’s possible polyamorphism in Refs [57-

61,63,65-85,116-118]. There are several popular atomistic models of water studied by 

simulations such as ST2, TIP4P/2005, mW, etc. None of these models perfectly 

describe all properties of water. In 1992, Poole, Sciortino, Essman, and Stanley found 

a liquid-liquid transition in the ST2 model of water. These authors found a first order 

phase transition, with a critical temperature around 235 K and a critical pressure at 200 

MPa [67]. Many other simulations have predicted a positive critical point in water, but 

a few have predicted that the critical point will lie in negative pressures [48]. 

Additionally, some models do predict a liquid-liquid transition in supercooled water, 

while other models do not predict a transition at all. 
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Holten et al. [66] examined the ST2 model for phase behavior through utilizing a 

two state model equation of state. They showed thermodynamic behavior that 

supported the information previously published by Poole et al. [49,67]. Figure 6 shows  

the information on the liquid-liquid phase transition, as well as the extrema lines for 

density, heat capacity and compressibility determined by Poole et al. [67]. 

 

Figure 6. (a) Adapted from [67]. Simulations of the ST2 model of water depicting 

a liquid-liquid transition with a liquid-liquid critical point. Shown with extrema lines 

of density (black, Δmax/Δmin), compressibility (blue, Λmax/Λmin), and heat capacity 

(green, Γmax/Γmin) along with the vapor-liquid spinodal (red dots). (b) Adapted from 

[72]. Simulations of the TIP4P/2005 model of water depicting a liquid-liquid transition 

with a liquid-liquid critical point. Shown with extrema lines of density (red triangles/ 

line), compressibility (blue squares/line), and heat capacity (green crosses/line) along 

with the vapor-liquid spinodal (red dotted line). 

 

The model using the two structure equation of state (TSEOS) was able to describe 

a liquid-liquid phase transition and the fraction of each state as computed in the 

simulations. Additionally, the model with the two structure equation of state (TSEOS) 

shows the increase and divergence of thermodynamic response functions that are 

indicative of a phase transition [66]. Equation of state by Holten et al. [127] was used 
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as the international guideline for supercooled water issued by the International 

Association for the Properties of Water and Steam in 2015.  

The TIP4P/2005 model was originally created and described by Abascal and Vega 

[51]. Singh et al. [69] examined the TIP4P/2005 model of water for phase behavior 

using a two-structure equation of state. They discovered that the TIP4P/2005 model of 

water does exhibit a liquid-liquid phase transition in the supercooled region. By fitting 

the two-structure equation of state to previous simulation results, as well as completing 

some new simulation results, Singh et al. was able to adequately mimic the anomalous 

properties of water exhibited by the TIP4P/2005 model [69]. This model of water does 

exhibit a liquid-liquid transition in supercooled water, as well as the maximum of 

density and increasing response functions [69]. Figure 5b shows the phase diagram and 

extrema lines of the response functions in the TIP4P/2005 model of water [72]. 

However, liquid-liquid separation are not demonstrated by all atomistic models of 

water. Holten et al. [68] examined the mW model of water for phase behavior utilizing 

a two-structure equation of state. This model of water did not exhibit a phase transition, 

meaning that the nonideality of the mixture of two states was not strong enough to 

induce phase separation [68]. The mW model and the two-structure equation of state 

are able to predict anomalous properties of supercooled water, such as the maximum 

of density and increase of heat capacity and compressibility upon supercooling [68]. 

The mW model does not, however, predict a liquid-liquid transition, meaning that the 

nonideality is enough to overcome the ideal Gibbs energy of mixing [68].  

Because of the line of homogeneous ice nucleation, there is no direct way to observe 

a metastable liquid-liquid transition in water. As seen above, there are a variety of 
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models of water that may or may not predict a liquid-liquid transition. However, within 

the liquid-liquid transition itself, there is a question of where a critical point would be, 

if there would be a critical point at all. Fuentevilla and Anisimov [55] use a scaled 

parametric equation of state to predict the location of the critical point and found that 

based on their equation of state, the critical point would be lower than in most 

simulations. The position of the critical point is still a major question in the study of 

water’s polyamorphism, due to the large range of possible critical points.  

Mishima has most elegantly predicted a possible liquid-liquid critical point [48]. 

Mishima studied the melting of high pressure ice within the region of stability of 

hexagonal ice. He ensured that he did not miss the liquid phase when changing 

temperature and pressure in his system by using water emulsions in oil [48]. The most 

important finding from this work was the discovery of a kink in the melting lines of ice 

IV and V— two of the many polymorphs of water. This kink was based on a 20% basis 

between a high density liquid water and a low density liquid water. Mishima 

determined that this kink happened on the melting lines of ices IV and V, but this kink 

did not exist along the melting line of ice III [48]. If Mishima’s analysis is correct, and 

is believed to be correct, this would pin the critical point down to the region between 

the melting lines of ice IV and ice III. The critical point would be between 0.02 and 

0.07 GPa (critical pressure) and between 223 and 230 K, confirming the positive 

pressure critical point scenario [48]. However, there are some doubts that Mishima was 

actually observing water and not the transition to the stable hexagonal ice [48]. These 

doubts do not allow for ruling out a negative pressure critical point for water’s 

polyamorphism. 
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Holten et al. [85] utilized currently available experimental data to optimize the 

possible location of a liquid-liquid critical point. Experimental data up to 400 MPa was 

considered and they found that the location of the critical point proved to be extremely 

uncertain. There is a wide range of temperature and pressures possible for the location 

of the liquid-liquid critical point in the supercooled region of water [85]. Figure 7 shows 

the optimization of the critical point using both an asymptotic model and an extended 

model. The models use different sets of experimental data to determine the optimal 

critical point area, with the extended model using the data up to 400 MPa pressure [85]. 

 

Figure 7. Reproduced from [85]. (a) The asymptotic model using a smaller range of 

pressure data. (b) The extended model using experimental data up to 400 MPa. 

 

A result of the debate about where a possible liquid-liquid critical point in water 

would be is a large interest in research on the topic. An increase in research has led to 

a variety of computational methods to be created and used, including a large number 

of simulations. Additionally, experimental data in low temperature water has also 

increased in number due to the interest in this particular anomaly of water. Many of 

these groups involved in the research has taken a large variety of approaches to 
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modeling water’s polyamorphism. The scope of polyamorphism crosses so many 

different substances that it is useful to look to model the phenomenon with a generic 

approach such that many different systems could be described well.  

 

1.3 Two State Thermodynamics 

 

The idea that single component fluids could be described by a model using two 

alternative states goes back to the 19th century. The idea of two states competing in a 

single component fluid was first introduced by Whiting [86]. Later, Rontgen [87] also 

discussed two states, specifically in cold liquid water. The assumption was that 

supercooled liquid water could exist as water particles and ice particles. However this 

assumption is now proved incorrect. Water can be described as a mixture of two 

different locally favored structures—a high density (water like) structure, and a low 

density (ice like) structure. The ideas of Whiting and Rontgen essentially explain a two 

structure mixture of a low energy/low entropy state and a high energy/high entropy 

state. Tanaka [54] described a model using the idea of two states with respect to density 

order and bond ordering to model liquid water. Mishima and Stanley [62] also 

discussed generally that water could exist along two different characteristic length 

scales. The models simplify the complexity of water to just a mixture of the two 

separate structures.  

Recently, there have been other approaches to modeling polyamorphic systems 

using other two state model approaches. Refs [88-96,111-114,119] all discuss 

theoretical models of two states of water and whether or not these two states could be 

stable or unmix. Tanaka [48] has determined that low entropy locally favored structures 
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can form within a sea of higher entropy normal liquid structures. Two states can be 

modeled phenomenologically by a bimodal distribution of local molecular structures 

or configurations and defines cold or supercooled water as a “mixture” of these two 

specific states. A specific fraction of both of these states can be controlled by changing 

pressure and temperature. Bertrand and Anisimov [56] used a two state concept to 

describe a lattice-gas, a focus that typically describes vapor-liquid transitions, and a 

lattice liquid, a formulation similar to a lattice gas that will exhibit an entropy driven 

phase separation. Anisimov and colleagues [48] described an ideal entropy of mixing 

between two structures in competition with a nonideal part of the Gibbs energy of 

mixing.  

This formulation has three major outcomes. First, if the solution of two states 

is ideal, the liquid will remain homogeneous for all temperatures and pressures. The 

existence and mixing of two states is not an assumption that the liquid will phase 

separate [48]. However, the competition between the two states could be the cause of 

the density maxima and other anomalies in the thermodynamic response functions [48]. 

A nonideal mixture of two states could result in a positive excess Gibbs energy. If the 

positive excess Gibbs energy is large enough, it could overcome the entropy of mixing 

and cause phase separation into two liquid phases. Otherwise, if the excess Gibbs 

energy is not enough to overcome the entropy of mixing, the solution will be nonideal 

but will not separate [48]. Excess Gibbs energy could be associated with either the 

enthalpy of mixing or the excess entropy. The separation would be energy driven if the 

excess Gibbs energy comes from the enthalpy of mixing. The separation will be entropy 

driven if the excess Gibbs energy comes from the excess entropy [48].  
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These local structures are most likely different coordinations of hydrogen 

bonds. The high density structure would be similar to a tetrahedral formation with water 

relatively closely packed. The low density structure would be an open structure where 

the water has a lower coordination number. Henceforth in this paper the high density 

structure of water will be known as HDL and the low density structure will be known 

as LDL. The interaction of these locally formed configurations and hydrogen bonding 

networks gives rise to a pseudobinary behavior in water. The researchers in Refs. [97-

108,110] performed experiments attempting to determine that there are two distinct 

local structures that can be found in supercooled water.  

Small angle x-ray scattering has been employed to observe supercooled water. 

Recent experiments [48] observed inhomogeneities in the density of the liquid that 

increased upon more cooling. This experiment was interpreted to corroborate the two 

state claim, with support from a statistical mechanics perspective [48]. X-ray 

absorption spectroscopy has found evidence of two local structures in water as well. 

The structures are either very tetrahedral or very disordered. There are two absorption 

peaks that are interpreted as either a distorted hydrogen bond—corresponding to the 

disordered water—or as a strong hydrogen bond—corresponding to the tetrahedral 

formation [48]. The most convincing evidence for two local structures of water comes 

from x-ray emission spectroscopy. These studies have revealed that there are two sharp 

peaks in water that may interconvert but do not broaden with increasing temperature 

[48]. The two peaks can be attributed to both the HDL and LDL.  

Evidence of two structures has been found by Taschin et al. [97]. Taschin et al. 

claim that through an investigation of vibrational dynamics and the process of 
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relaxation in supercooled water they are able to observe evidence of two coexisting 

structural configurations. The structures found in this study are thought to be the local 

structures associated with HDL and LDL. Figure 8 shows the vibrational data at 

different temperatures discovered by Taschin et al. [97].  

 

Figure 8. Reproduced from [97]. The imaginary part of the Fourier transform 

of the time resolved optical Kerr effect data is plotted versus the frequency of light for 

a variety of temperatures. The red line/open circles are the raw data. The three curves 

(blue, magenta, orange) are the de-convoluted waves. Orange and magenta lines 

correspond to the two structures interpreted by [97]. Blue curve is the background data 

found. 
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There is a clear development of two separate frequency peaks from the time 

resolved optical Kerr effect experiments of Taschin et al. As the temperature is lowered, 

a high frequency peak begins to grow and becomes more pronounced compared to a 

shorter frequency peak in the data, clearly corresponding to two separate time scales. 

Taschin et al. [97] interpreted this data as evidence for two different structures in water. 

Recently, Sellberg and coworkers [98] claim to have probed the structure of water 

below the temperature of homogeneous ice nucleation. This group used X-ray probing 

on the order of femtoseconds to determine that there are two distinct local structures of 

supercooled liquid water below the ice nucleation temperature, but before freezing [98]. 

In addition to bulk experiments of dynamics, the study of molecular dynamics 

simulations has also found evidence of two structures of water. Figure 9 shows the two 

length scale distribution found in the TIP4P/2005 model for water. The combination of 

information from both experiments and simulations support the idea of two distinct 

local structures in cold and supercooled water. 
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 Figure 9. Reproduced from [48]. (a) Local structure index (LSI) analysis of 1 

bar pressure in the TIP4P/2005 model showing two length scales and their frequency 

at different temperatures. (b) LSI analysis of 1000 bar pressure in the TIP4P/2005 

model showing two length scales and their frequency at different temperatures. (c) LSI 

analysis of 1500 bar pressure in the TIP4P/2005 model showing two length scales and 

their frequency at different temperatures. (d) Fraction of molecules in each distribution 

as a function of temperature, shown for the three different pressures. 

 

1.4 Approaches to Modeling Polyamorphism 

 

Scientists have taken different approaches when modeling polyamorphism, 

while trying to correctly create the patterns of the anomalies found in supercooled 

liquid water. Some of these approaches are easily reconcilable and can be physically 

explained to be similar to other approaches. However, most of these approaches are 

specific for water or the fluid in question. For scientific simplicity, it is useful to 

determine a generic approach to polyamorphism that could work for a variety of 

different fluids and still capture the anomalies present in different fluids. Approaches 
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of special interest include the double well potential approach, the hydrogen bond 

strength approach, and multiple lattice gas approaches.  

The double well potential approach to modeling a fluid’s polyamorphism is 

based on a ramp two scale potential and a Lennard-Jones potential. In this approach, a 

second minimum is added to the well potential that allows for the creation of a second 

critical point, corresponding to a liquid-liquid transition. A generic soft core double 

well potential indicates two characteristic length scales for the system being modeled. 

The two length scales correspond to a hard repulsion sphere and a soft repulsion area. 

The two length scales also allow the system to exhibit two critical points, corresponding 

to a vapor-liquid critical point and a liquid-liquid critical point, respectively. Specific 

potentials have been studied to model fluid behavior in refs [120-123]. 

The most popular form of potential used for the study of liquid polyamorphism 

is the Jagla-like potential, a potential characterized by a hard core repulsion scale, 

followed by a soft (with a linear ramp) repulsive potential and a ramp of attraction at 

longer distances. A typical Lennard-Jones potential does not exhibit both a vapor-liquid 

and liquid-liquid transition in a fluid, whereas the Jagla potential is the simplest model 

that exhibits both transitions. The model creates a liquid-liquid transition in simulations 

[120]. Figure 10 shows a typical Jagla potential with an attractive ramp used by 

Buldyrev et al. [120]. This potential is spherically symmetric and is able to qualitatively 

reproduce some anomalies in waterlike fluids, and most importantly, demonstrates a 

liquid-liquid transition in simulations [120]. 
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Figure 10. A standard two-scale Jagla potential of energy v(r)/εo, 

nondimensionalized by energy εo versus the distance r scaled by a repulsion distance 

ro. Reproduced with permission from Ricci and Debenedetti [134, to be published] 

 

Buldyrev et al. [120] have reviewed the work of double well interatomic pair 

potentials and their relevance to polyamorphism. Specifically, the authors discuss the 

benefits of using a Jagla potential to model polyamorphism. They discussed that Jagla 

potentials are very good at modeling both a vapor-liquid critical point and a liquid-

liquid critical point [120]. The Jagla potential can also model the specific anomalies 

that are present in supercooled water and other similar fluids. One problem with the 

Jagla model in terms of practicality is the slope of the liquid-liquid transition line [120]. 

The liquid-liquid transition line in the Jagla potential has a positive slope, as opposed 

to most simulations that model polyamorphic fluids, which suggest that the liquid-

liquid transition line has a negative slope [120]. Other than this single drawback, the 

Jagla potential models the hypothesized polyamorphism and anomalies of supercooled 

water very well.  
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In the hydrogen bond strength approach, a specific energy in the form of a 

Hamiltonian is attributed to the thermodynamics of water, with an added energy to 

simulate the nonideality in the fluid. This energy form allows for the anomalies shown 

in water to be similar to those observed experimentally [129]. Stokely et al. [129] have 

used this approach to model water to allow for every possible scenario of critical point. 

They defined the strength of hydrogen bonds as an energy difference between different 

types of hydrogen bonds as one parameter. Their second parameter is the cooperativity 

of hydrogen bonds, defined as whether hydrogen bonds form independently of other 

molecules (limit as cooperativity reaches zero) or the hydrogen bonds form because of 

and due to the other molecules and hydrogen bonds (limit as cooperativity becomes 

large) [129]. This formulation of parameters is able to mimic the anomalies of water as 

well as create all four possible scenarios of the position of the liquid-liquid critical point 

in water. Figure 11 shows the relationship between the two parameters that Stokely et 

al. [129] defined. The figure also describes which scenario each combination of 

parameters will create. 
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Figure 11. Reproduced from [129]. A plot of hydrogen bond cooperativity 

versus the hydrogen bond covalent strength. Orange denotes the critical pressure of the 

liquid-liquid transition is larger than zero. Yellow denotes that the critical pressure is 

less than zero. White denotes that the critical pressure is below the vapor-liquid 

spinodal. The red line at cooperativity equals zero is the ideal solution case. 

 

Ciach and colleagues [130] utilized a statistical mechanics approach to 

determine the possible behavior of supercooled water. They use a lattice gas approach 

with cells of ordered water, disordered water, and empty cells. The purpose of this 

study was to create a model that would predict the properties of water including 

anomalies. Specifically in the study, “water is treated as a mixture of two components, 

whose chemical potentials are not independent” [130]. The model was found to predict 

the properties of water well on a qualitative level in the mean-field approximation. The 

shapes and response functions that Ciach and colleagues determined from their model 

is in good agreement with the shape of previous theoretical and experimental results 

[130]. 
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Poole et al. [131] took an approach similar to both Stokely et al. and Ciach et 

al. in describing the properties of water. Using the van der Waals equation of state, this 

group defined a Helmholtz free energy that accounted for contributions from the 

original van der Waals interactions and also an added Helmholtz energy of hydrogen 

bonds, which takes into account the fraction of molecules that will create the strong 

hydrogen bonds associated with water’s tetrahedral local structure [131]. Poole et al. 

used this model to calculate the phase diagram and coexistence of water. They were 

able to investigate the positive pressure critical point scenario and the reentrance of the 

spinodal scenario. The model qualitatively matched the patterns of water’s behavior 

and anomalies [131].  

 

1.5 Goals and Motivation 

 

Modeling polyamorphism has had a rich history in research. From sophisticated 

interatomic potentials to discrete lattice gas models, polyamorphism is often described 

specifically to the system. It is useful for the research of liquid polyamorphism to 

develop a simple approach to model a variety of systems. The question arises: what is 

fundamentally common in all, physically very different fluid systems exhibiting 

polyamorphism?  In this paper, I present a generic phenomenological approach to 

describe fluid polyamorphism in a single-component substance, which is applicable 

regardless of the difference in microscopic nature of the phenomenon. To specify this 

approach and calculate thermodynamic properties, I consider a fluid with “chemical 

reaction” equilibrium between two competing interconvertible molecular structures. 
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The idea to consider two interconvertible states to describe liquid polyamorphism is 

not new. However, in all previous studies, the liquid-liquid transition was considered 

as being independent of the vapor-liquid transition in the same substance. In other 

words, one of the alternative states (which is responsible for vapor-liquid transition) 

was described simply empirically. In the novel approach, I propose a simple equation 

of state which generically describes both liquid-gas and liquid-liquid transitions in the 

same single-component fluid. This approach for the physics of liquid-liquid separation 

in a single-component fluid is a discrete approach driven by the existence of two 

distinct interconvertible structures. The approach qualitatively describes the global 

phase diagram of a fluid, with both vapor-liquid and liquid-liquid equilibria, as well as 

the peculiar properties of polyamorphic fluids. 
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Chapter 2: Methodology 

2.1 General Formulation of Polyamorphism 

A generic thermodynamic description of fluid polyamorphism can be 

formulated in the framework of Landau theory of phase transitions, in which the 

concept of the order parameter plays the key role [132]. The Gibbs energy (per 

molecule) G of a single-component fluid can be generally presented in the form 

                        0, , ,G p T G p T kTf h     , (1) 

where p is the pressure, T is the temperature, k is Boltzmann’s constant,   is the “order 

parameter” (an additional scalar variable that characterizes an alternative amorphous 

structure),  ,h h T p  is a thermodynamic field conjugate to the order parameter 

(known as the “ordering field”),  f  is a function which specific form depends on the 

microscopic nature of the order parameter.  One must note that Eq. (1) is applicable to 

different phenomena and systems with different physical nature of the order parameter 

and, correspondingly, of the ordering field. However, while, for example, in the 

application to magnetization, h is the magnetic field that is an independent variable, in 

polyamorphic fluids the ordering field is a function of pressure and temperature. I also 

note that the ordinary gas-liquid transition is originally described by the part of the 

Gibbs energy independent of ,  0 ,G p T .  

 The equilibrium value of the order parameter is found by minimizing the Gibbs 

energy as  
,

/ 0
p T

G    . This minimization results in the equilibrium condition

   
,

, /
p T

h p T f    and thus makes the equilibrium value of the order parameter,
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e  , to be a function of p and T. A particular form of  e ,p T  depends on the 

nature of the order parameter. Generally, one can expect that  e ,p T varies between 

zero (alternative amorphous structure is absent) and unity (fully developed alternative 

amorphous structure). 

 

2.2 Polyamorphism driven by “chemical reaction” equilibrium  

 

To enable the general formulation of fluid polyamorphism be used for 

calculations of thermodynamic properties, I need to specify the nature of the order 

parameter and, consequently, the explicit form of the function  f  .  One attractive 

possibility is chemical-reaction equilibrium between two alternative 

thermodynamically interconvertible states, A and B. I do not specify the atomistic 

structure or these states. They can be two different structures of the same molecule 

(isomers), dissociates and associates, or two alternative supramolecular structures, such 

as different forms of a hydrogen-bond network. For example, cyclohexane exhibits two 

different configurations of molecules—either cis (boat) configuration or trans (chair) 

configuration. Different forms of a hydrogen-bond network are simplified to two 

representative forms of networks—one low density form and one high density form.  

The chemical reaction is a general reaction between two structures A and B 

which will be controlled by a chemical reaction equilibrium constant. This chemical 

reaction is not necessarily a reaction in the usual sense of the word, but is a generalized 

chemical reaction. The chemical reaction could be a change between two structures of 

the same molecule, or it could be supramolecular, between two local structures, like 
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two different hydrogen bond networks. Configuration A has high density and high 

energy, and configuration B has low density and low entropy. State A is favored at 

higher temperatures while state B is favored at lower temperatures. The two states 

follow the chemical reaction 

  A B . 

It is important to note that this chemical reaction is reversible. For the cases of this 

research, the reaction is assumed to always be in equilibrium. Let the fraction of state 

B be equal to x, also known as the reaction coordinate. This means that the reaction is 

assumed to be so fast that it is in equilibrium at all of the timescales I am working with. 

The Gibbs energy for this system follows the two state model as 

    A B mix1G x G xG G     (2) 

Where where GA and GB are the Gibbs energies of state A and state B respectively, and 

Gmix is a general version of the Gibbs energy of mixing. By taking a simple single 

parameter of nonideality I obtain 

           A B1 ln 1 ln 1 1G G x G x kTx x kT x x x x          (3) 

where k is the Boltzmann constant, T is the temperature, x is the fraction of state B, and 

ω is the nonideality. If the nonideality is dependent on temperature, the mixing is purely 

energy driven (“regular mixing”). If the nonideality is dependent on pressure, the 

mixing is purely entropy driven (“athermal mixing”). For this specific case, I will take 

the nonideality ω to be simply a constant, determined through the critical temperature 

of the liquid-liquid transition ( 2 2cT k ). Since only state A will be formally 

described by an equation of state, the Gibbs energy can be simplified to 
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         A BA ln 1 ln 1 1G G G x kTx x kT x x x x         (4) 

where GBA is the difference in Gibbs energies from state A and B in the form 

BA B AG G G  . 

 Now I constrain the equation using the condition for chemical reaction 

equilibrium between states A and B, the minimization of the Gibbs energy with respect 

to the reaction coordinate, x, of  

  
 

,

/
0

p T

G kT

x

 
 

 
 (5) 

Which will allow me to calculate the equilibrium value of  ,ex x T p  through this 

constraint. The full derivative of Eq. (4) through Eq. (5) simplifies to 

   BA ln 1 2 0
1

G x
x

kT x kT


   


. (6) 

This equation allows us to take the two state equation of state, which is normally for a 

binary fluid, and simplify it to a simple component fluid with a chemical reaction 

equilibrium between two states. GBA can further be specified by introducing the 

equation 

    BAln ,
G

K T p
kT

   (7) 

Where K is the reaction equilibrium constant. Equations (6) and (7) can be simplified 

to 

   c22
ln ln 1 2

1

Tx
K x

x T
  


. (8) 

In zero field, i.e. along the line  ln , 0K p T  ,  there is only one solution of 

Eq. (8), namely, if / 2kT  1/ 2x  . However, if / 2kT  , this equation has two 
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stable solutions, 1/ 2x   and 1 1/ 2x  . This corresponds to the coexistence, along 

the line  ln , 0K T P  , of two fluid phases, one is enriched with B and another one 

enriched with A. Hence the line  ln , 0K T P   is the fluid-fluid phase transition line. 

The temperature 

                                                           c2
2

T
k


  (9) 

is the critical temperature for the polyamorphic fluid-fluid transition. The critical 

pressure 
c2p , is found from the condition  c2 2ln , 0cK T T p p   . The temperature 

of the fluid-fluid coexistence as a faction of the fraction of state B is found as 

                                                             
 

 
cxc

2 2 1ˆ
ln 1

x
T

x x





, (10)    

where 
cxc cxc c2
ˆ /T T T . At the critical point

c 1/ 2x x  . Above the critical temperature, 

the line  ln , 0K p T  (along which 1/ 2x  , a continuation of the line of phase 

transitions) is known as the Widom line. 

 Equation (10) is equivalent to temperature dependence of the spontaneous (in 

zero field) order parameter obtained in the mean-field approximation for the 

Ising/lattice gas model. Indeed, introducing 2 1M x   and taking in account that

 
1 1

arctanh ln
2 1

M
M

M





, I obtain the famous Ising-model result: 

                                                               
cxc

tanh
ˆ

M
M

T
 . (11)     

Expansion of Eq. (11) in powers of M in the vicinity of the critical point gives in the 

lowest approximation  
1/2

c2 c22 1 /M x T T T     
 

. 
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 An equation of state for the system with chemical reaction equilibrium between 

state A and state B is written as 

   
1

,

T

G
V p T

kT p

 
  

 
 (12) 

Where G is the equation given in Eq. (5). By applying this equation to our Gibbs energy 

equation I obtain the volume per molecule as 

       A BA BA, ln 1 ln 1 1
x

V p T V xV G kT x x x x x x
p p kT

   
            

(13) 

Where volume is determined through the equation of state of state A by  A A ,V V p T

. The additional volume term, in the form of xVBA, is a function of pressure and 

temperature and is specified by 

  
 BA

BA

ln KG
xV x xkT

p p


  

 
 (14) 

It can be easily shown that  

       BA ln 1 ln 1 1 0
x

G kT x x x x x x
p p kT

   
          

. (15) 

The following derivation allows me to find an effective density of the system. Due to 

the chemical reaction constraint, the density of the overall system is shifted due to the 

increase of state B (lower density) at low temperatures. The effective density can be 

found from the above derivation through the equation 

  
       LG

l 1ˆˆ ,
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, , 5.18 ln / ,

p T
V p T V p T K P x p T T

  
  

 (16) 
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Which accounts for the density change from the normal lattice gas equation, and the 

chemical reaction constraint I have put on the system.  

 For this case, I will only specify state A with an equation of state, and state B 

will not be completely specified. State B will be specified through lnK, which is 

specified as a function of pressure and temperature. A generic version of lnK is  

  


      
2

ln ...
p p

K ap b c dT e
T T T

 (17) 

Where any number of higher order terms could be used in the specification. All of the 

constants shown have the following physical meanings between two states: λ is the 

enthalpy change, a is the expansivity change, b is the volume change, c is the entropy 

change, d is the heat capacity change, and e is the compressibility change. A specific 

form of lnK used for this thesis is 

   
ˆˆ ˆln ,

ˆ ˆ

bp
K T p c

T T

 
   
 

 (18) 

Which denotes a straight line on the P-T phase diagram and is a simple case to analyze. 

 

2.3 Connection to the general formulation of fluid polyamorphism 

 

           One can notice that Eq. (4) becomes equivalent to Eq. (1) in the general 

formulation of fluid polyamorphism if GA is identified with G0, GBA with –h, mixG with

 kTf  , and the reaction coordinate x with the order parameter . The chemical 

reaction equilibrium between A and B makes the mixture of A and B 

thermodynamically equivalent to a single-component fluid. Indeed, the equilibrium 
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value of the reaction coordinate  e ,x x T p , the fraction of molecules involved in state 

B, is obtained from the condition of chemical reaction equilibrium  

                                                          
 

,

/
0

p T

G kT

x

 
 

 
, (19) 

resulting in the explicit relation between the order parameter and the ordering field: 

                                BAln , , ln 1 2
1

x
h kT K p T G p T kT x

x
     


, (20)    

where   ln ,K T P  is the reaction equilibrium constant. In a binary mixture without 

chemical equilibrium, because AG and BG are independent, the difference between the 

Gibbs energies, BAG , depends on an arbitrary constant.  The chemical-equilibrium 

condition Eq. (19) eliminates this uncertainty, thus making BAG well defined. 

An important practical question arises: under which conditions will the system 

described by Eq. (4) behave as a binary fluid mixture or a single-component fluid? The 

answer depends on the separation of time scales: a system with two inter-convertible 

fluid structures can be thermodynamically treated as a single-component fluid if the 

time of observation is longer than the characteristic time of “reaction” (fast conversion). 

In the opposite limit (slow conversion) the system thermodynamically behaves as a 

two-component mixture.  In this case, constraining imposed by Eq. (19) does not apply 

and the concentration of species becomes an independent variable. Therefore, in order 

to apply the “chemical-reaction” approach for the description of fluid polyamorphism 

I must assume a conversion fast enough to satisfy the equilibrium condition Eq. (19) 

within the observation time scale. 
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2.4 Specifying state A: the lattice gas equation of state 

 

 For this thesis, state A will be described by the lattice gas equation of state in 

the mean field approximation. The lattice gas model, introduced by Frenkel in 1932 

[133], is a lattice where cells can either be filled or empty. This model is particularly 

important in the field of physics of condensed matter because the lattice model applies 

to a variety of different systems and phenomena. This model can effectively bridge a 

gap between the physics of solid states and fluids. A schematic of this model can be 

seen in figure 12.  

   

  Figure 12. Two-Dimensional representation of the lattice gas. 

In the lattice gas equation of state, the density can only be between 0 and 1, due to the 

density being made dimensionless with respect to the number of cells occupied. This 

density then is a fraction between 0 and 1 of cells occupied. Further, while exact 

analytical solutions of the three-dimensional lattice gas models are not available, 

numerical approximations give good accuracy. The mean field approximation is one of 

these numerical solutions to the three-dimensional lattice gas model. The mean field 

approximation denotes all of the multi-body interactions in the system to a single 
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parameter, ε. This approximation is similar to the van der Waals fluid by the interaction 

constant a, while the role of the van der Waals constant b, the molecular volume 

constant, in the lattice gas is played by the dimensionless density. The lattice gas 

equation of state in the mean field approximation is 

      2ln 1p kT       (21) 

where p is the pressure (in units of energy), ε is a constant determined by the critical 

temperature of the vapor-liquid transition ( 1 2CT k ), k is the Boltzmann constant, T 

is the temperature, and ρ is the density (dimensionless). The chemical potential of the 

lattice gas is  

  ln 2
1

kT


  


  


 (22) 

Where μ is the chemical potential, and all other variables are the same as for the 

pressure equation. Additionally the density of the Helmholtz energy 

( / )a A N P      will be useful when looking to analyze the phase behavior of 

the lattice gas model. The density of the Helmholtz energy is written as 

       ln 1 ln 1 1a p kT kT                (23) 

Where a is the Helmholtz energy. This function can be made symmetric by subtracting 

the linear dependence with respect to the density. This allows for the condition of fluid 

phase equilibria (the binodal) to be symmetric as well, as opposed to the asymmetric 

nature of the van der Waals fluid. The binodal can be calculated through the condition 

  eq ln 2 0
1

kT


  


   


. (24) 
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Therefore, the spinodal (limit of absolute mechanical stability) can be calculated 

through the condition 

  
 

2 0
1

T

kT


  

 
   

  
. (25) 

The critical point parameters in the lattice gas model are c1 1/ 2  , c1 / 2T k , and 

 c1 c1 c1ln 1/ 2 1/ 2 0.193p kT kT      . The lattice gas equation of state was made 

dimensionless with respect to the vapor-liquid critical point and takes the form 

  
 

 
2

2
ˆ ln 1 2 ˆˆ 5.18 ln 1 2

1 1
ln

2 2

T
p T

 
 

 
     
 


 (26) 

Where pressure and temperature are reduced with the equations 
c1 c1

ˆ ˆ/ ,  T T T p p   and 

Tc1 is the critical temperature of the vapor-liquid transition, and pc1 is the critical 

pressure of the vapor-liquid transition. With these conditions, the vapor-liquid spinodal 

is 

   sp
ˆ 4 1T     (27) 

And the vapor-liquid coexistence is  

  
cxc

1
ln

1 2 1

ˆ 2 1T











. (28) 

Phase behavior in the temperature-density diagram and the pressure-density diagram 

are shown in figures 13 and 14 below. These figures also show the properties of the 

lattice gas model as discussed in this section.  
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Figure 13. Selected isotherms and liquid-vapor coexistence of the lattice-gas model. 

Sold blue is binodal. Dashed red is spinodal. Red dot is the liquid-vapor critical point. 

 

Figure 14. Selected isobars and liquid-vapor coexistence of the lattice-gas model. Solid 

blue is binodal. Dashed red is spinodal. Red dot is the liquid-vapor critical point. 
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Chapter 3: Global phase diagram of a polyamorphic fluid and 

thermodynamic properties 

3.1 Calculation of the phase diagram and isothermal compressibility 

 For the state A I adopt the lattice-gas model, thus the Gibbs energy of the state 

A AG  , the function given by Eq. (24). Also, I use the temperature/pressure scale 

reduced to the critical parameters of state A, so that c2 c1
ˆ /T T T   and c2 c1

ˆ /p p p  . 

The 

                                                  C22
ln ln 1 2

1

nTx
K x

x T
  


, (29)          

where 2 1/C Cn T T . Since I consider the possibility of a liquid-liquid transition, I 

assume 

1n  . 

The effective density is calculated as  

                          
       LG

l 1ˆˆ ,
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, , 5.18 ln / ,

p T
V p T V p T K P x p T T

  
  

.(30)       

 Finally, the equation of state for the lattice gas with “chemical reaction” takes 

the same form as Eq. (4), but with the density calculated from Eq. (30). This density is 

a function of p and T, constrained by the equilibrium between the alternative states A 

and B. Note that BA LGV V  at large volumes and very low temperatures, thus the 

saturation pressure curve as a function of temperature, as well as the gas branch of the 

gas-liquid spinodal, is not affected by the liquid-liquid transition. 

 The next step is to adopt a particular shape for the function  ln ,K T p . A 

simple function which accounts for a temperature-independent heat of reaction,  
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2 2BA / ln

pp

G kT K
H kT kT

T T


    
    

   
, (31) 

and a pressure-independent volume change of reaction,  

                                       BA
BA

ln

T T

G K
V kT

p p

    
    

    
, (32)   

is the following: 

                                       
 

ˆ1ˆ ˆ ˆln ,
ˆ ˆ

bp
K T p ap c

T T

 

    
  , (33)   

where / 0H kT    . A specific form of lnK used for this thesis is 

   
ˆˆ ˆln ,

ˆ ˆ

bp
K T p c

T T

 
   
 

 (34) 

Which denotes a straight line on the P-T phase diagram and is a simple case to analyze. 

The equations derived previously are solved numerically with a Python code developed 

by M. Duška (Appendix A). Numerical solutions were obtained through the bisection 

method and Brent’s method. Brent’s method utilized either an inverse quadratic 

extrapolation term or a hyperbolic extrapolation term.  

 The phase diagram of a polyamorphic fluid for this specific form of lnK is 

shown in figures 15 and 16. The Widom line is an extension of the lnK=0 line into the 

single phase region and is the line where the fraction of both species A and B is equal 

to 50%.  
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 Figure 15. Phase diagram of a polyamorphic fluid. Blue curves are the vapor-

liquid and liquid-liquid coexistences, terminating at the critical points (red dots) CP 1 

and CP 2, respectively. Red dashed lines are the vapor-liquid spinodal branches. Blue 

dashed line is the Widom line of the liquid-liquid coexistence.  

 

Figure 16. Temperature density diagram of a polyamorphic fluid. CP 1 and CP 2 

designate the critical point of the vapor-liquid and liquid-liquid transitions, 

respectively. Multicolor curves show isobars including those located in the unstable 

region. 

CP 1 

CP 2 



 

 

42 

 

  

 An important anomaly of all polyamorphic fluids is the increase of the 

isothermal compressibility in the proximity of the liquid-liquid transition. Figure 17a 

shows isobars of the compressibility as a function of temperature, with each 

temperature color coded. Figure 17b also shows the phase diagram of this system with 

each temperature shown, also color coded. The compressibility clearly behaves as 

expected, diverging at each critical point at the critical pressure isobar, exhibiting a 

maximum at the liquid-liquid transition line and then a gradual increase above the 

critical pressure, and exhibiting a local maximum at the Widom line and diverging at 

the vapor-liquid spinodal for below the critical pressure.  

  

 

Figure 17. Compressibility of three isobars (less than critical, critical, greater than 

critical) are the blue, red and green curves respectively. Vapor-liquid and liquid-liquid 

critical points are labeled and Temperatures at the coexistence of vapor-liquid and 

liquid-liquid are labeled. 
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3.2 Tuning the nonideality of two states 

 

 In this section, I demonstrate how the tuning of the nonideality parameter ω 

changes the location of the liquid-liquid critical point from 0 K (ideal mixing) to the 

intersection with the absolute stability limit of the stretched liquid with respect to vapor. 

It is shown that the intersection of the liquid-liquid phase transition line with the 

absolute stability limit produces a specific form of the phase diagram not considered 

before.  

 The simple linear case for lnK was analyzed by changing two important 

parameters—the reaction energy change between two states (λ), and the critical 

temperature of the liquid-liquid transition ( c2 2T k ). The other parameters, b and c, 

were kept constant at the adopted values 0.05 and -2.0, respectively. Eighteen total 

cases were considered as summarized in Table A.1. Cases are divided into three groups 

(A, B, and C) corresponding to three different energy changes between two states 

( 0.1, 0.5, and 1)      and six values for c2 2T k .  

 

 In particular, it is interesting to follow the evolution of extrema of 

thermodynamic properties. The three lines of extrema that are of interest for this thesis 

are density, compressibility and heat capacity. The temperatures of 

maximum/minimum density can be calculated through 

  0
pT

 
 

 
 (35) 
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Where the maximum value is solved numerically for a variety of isobars. The 

isothermal compressibility lines of maxima and minima along isobars are calculated by 

calculating the values of compressibility through 

  0T

pT

 
 

 
 (36) 

Where (1 )( )T TV V p      is the isothermal compressibility, and V is the volume per 

molecule, taken to be the inverse of the density ( 1V  ). Finally, the heat capacity 

maxima and minima along isotherms must be calculated through the thermodynamic 

Maxwell relation 

  
2

2
0

p

pT

C V

p T

   
     

   
. (37) 

 The cases analyze the effect that the distance between the liquid-liquid critical 

point and the vapor-liquid spinodal has on the pattern of the extrema lines. The first 

three cases of importance are cases A1, B1, and C1. These specific cases correspond to 

the ideal solution mixing of two states. A liquid-liquid phase transition does not exist. 

Figures 18, 19, and 20 depict the three ideal solution cases for three different values of 

λ.  The main effect of the increase of energy change of reaction is shifting the pattern 

of the extrema lines and the Widom line to higher pressures and higher temperatures.  
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Figure 18. Case A1 phase diagram and lines of extrema. Blue curves are the vapor-

liquid and liquid-liquid coexistences, terminating at the red dots CP 1 and CP 2 

respectively. Red dashed lines are the vapor-liquid spinodal. Blue dashed line is the 

Widom line of the liquid-liquid coexistence. Red solid curve is the line of maximum 

and minimum compressibility. Black solid curve is the maximum and minimum density 

line. Green solid curve is the maximum and minimum heat capacity.  
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Figure 19. Case B1 phase diagram and lines of extrema. Blue curves are the vapor-

liquid and liquid-liquid coexistences, terminating at the red dots CP 1 and CP 2 

respectively. Red dashed lines are the vapor-liquid spinodal. Blue dashed line is the 

Widom line of the liquid-liquid coexistence. Red solid curve is the line of maximum 

and minimum compressibility. Black solid curve is the maximum and minimum density 

line. Green solid curve is the maximum and minimum heat capacity. 
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Figure 20. Case C1 phase diagram and lines of extrema. Blue curves are the vapor-

liquid and liquid-liquid coexistences, terminating at the red dots CP 1 and CP 2 

respectively. Red dashed lines are the vapor-liquid spinodal. Blue dashed line is the 

Widom line of the liquid-liquid coexistence. Red solid curve is the line of maximum 

and minimum compressibility. Black solid curve is the maximum and minimum density 

line. Green solid curve is the maximum and minimum heat capacity. 

 

 The second set of parameters, cases A2, B2, and C2, corresponds to the position 

of the critical point expected in some models of supercooled water. A higher energy 

change of reaction corresponds to a higher temperature of the second critical point and 

the Widom line. These cases are the first of the cases where the analysis of this equation 

of state is important. The critical point in each of these cases is closer to the vapor-

liquid spinodal, and the patterns of extrema lines are slightly condensed. Figures 21, 

22, and 23 show the three cases with the liquid-liquid critical point at Pc2=1. 
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Figure 21. Case A2 phase diagram and lines of extrema. Blue curves are the vapor-

liquid and liquid-liquid coexistences, terminating at the red dots CP 1 and CP 2 

respectively. Red dashed lines are the vapor-liquid spinodal. Blue dashed line is the 

Widom line of the liquid-liquid coexistence. Red solid curve is the line of maximum 

and minimum compressibility. Black solid curve is the maximum and minimum density 

line. Green solid curve is the maximum and minimum heat capacity. 
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Figure 22. Case B2 phase diagram and lines of extrema. Blue curves are the vapor-

liquid and liquid-liquid coexistences, terminating at the red dots CP 1 and CP 2 

respectively. Red dashed lines are the vapor-liquid spinodal. Blue dashed line is the 

Widom line of the liquid-liquid coexistence. Red solid curve is the line of maximum 

and minimum compressibility. Black solid curve is the maximum and minimum density 

line. Green solid curve is the maximum and minimum heat capacity. 

 

 

 One may notice that the pattern of the extrema lines are remarkably similar to 

those obtained from MD simulations from ST2 and TIP4P/2005 presented in figure 6. 

Furthermore, like in the results of the simulation studies, the vapor-liquid spinodal does 

not significantly affect the behavior of the extrema lines.  
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Figure 23. Case C2 phase diagram and lines of extrema. Blue curves are the vapor-

liquid and liquid-liquid coexistences, terminating at the red dots CP 1 and CP 2 

respectively. Red dashed lines are the vapor-liquid spinodal. Blue dashed line is the 

Widom line of the liquid-liquid coexistence. Red solid curve is the line of maximum 

and minimum compressibility. Black solid curve is the maximum and minimum density 

line. Green solid curve is the maximum and minimum heat capacity. 

 

 The third set of cases are cases A3, B3, and C3. These cases are where the 

liquid-liquid critical point is located at exactly where the vapor-liquid coexistence is 

for the first critical point. Again, each critical point is closer to the vapor-liquid 

spinodal, but still the patterns of the extrema lines are similar to cases A2, B2, and C2. 

Figures 24, 25, and 26 show the cases described.  
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Figure 24. Case A3 phase diagram and lines of extrema. Blue curves are the vapor-

liquid and liquid-liquid coexistences, terminating at the red dots CP 1 and CP 2 

respectively. Red dashed lines are the vapor-liquid spinodal. Blue dashed line is the 

Widom line of the liquid-liquid coexistence. Red solid curve is the line of maximum 

and minimum compressibility. Black solid curve is the maximum and minimum density 

line. Green solid curve is the maximum and minimum heat capacity. 
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Figure 25. Case B3 phase diagram and lines of extrema. Blue curves are the vapor-

liquid and liquid-liquid coexistences, terminating at the red dots CP 1 and CP 2 

respectively. Red dashed lines are the vapor-liquid spinodal. Blue dashed line is the 

Widom line of the liquid-liquid coexistence. Red solid curve is the line of maximum 

and minimum compressibility. Black solid curve is the maximum and minimum density 

line. Green solid curve is the maximum and minimum heat capacity. 
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Figure 26. Case C3 phase diagram and lines of extrema. Blue curves are the vapor-

liquid and liquid-liquid coexistences, terminating at the red dots CP 1 and CP 2 

respectively. Red dashed lines are the vapor-liquid spinodal. Blue dashed line is the 

Widom line of the liquid-liquid coexistence. Red solid curve is the line of maximum 

and minimum compressibility. Black solid curve is the maximum and minimum density 

line. Green solid curve is the maximum and minimum heat capacity. 

 

 Cases A4, B4, and C4 show the cases where the critical point of the liquid-

liquid transition is located at a pressure below zero. In these cases, the critical point is 

located in the doubly metastable region—where the water is metastable with respect to 

both vapor and solid. A particular feature to notice in these plots is the beginning of the 

collapse of the extrema lines onto the liquid-liquid transition line. Particularly, the line 

of maximum density is quickly collapsing onto the liquid-liquid transition line. Figures 

27, 28, and 29 show these cases below.  
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Figure 27. Case A4 phase diagram and lines of extrema. Blue curves are the vapor-

liquid and liquid-liquid coexistences, terminating at the red dots CP 1 and CP 2 

respectively. Red dashed lines are the vapor-liquid spinodal. Blue dashed line is the 

Widom line of the liquid-liquid coexistence. Red solid curve is the line of maximum 

and minimum compressibility. Black solid curve is the maximum and minimum density 

line. Green solid curve is the maximum and minimum heat capacity. 
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Figure 28. Case B4 phase diagram and lines of extrema. Blue curves are the vapor-

liquid and liquid-liquid coexistences, terminating at the red dots CP 1 and CP 2 

respectively. Red dashed lines are the vapor-liquid spinodal. Blue dashed line is the 

Widom line of the liquid-liquid coexistence. Red solid curve is the line of maximum 

and minimum compressibility. Black solid curve is the maximum and minimum density 

line. Green solid curve is the maximum and minimum heat capacity. 
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Figure 29. Case C4 phase diagram and lines of extrema. Blue curves are the vapor-

liquid and liquid-liquid coexistences, terminating at the red dots CP 1 and CP 2 

respectively. Red dashed lines are the vapor-liquid spinodal. Blue dashed line is the 

Widom line of the liquid-liquid coexistence. Red solid curve is the line of maximum 

and minimum compressibility. Black solid curve is the maximum and minimum density 

line. Green solid curve is the maximum and minimum heat capacity. 

 

 The next cases considered were cases A5, B5, and C5. These cases show where 

the liquid-liquid critical point intersects the vapor-liquid spinodal. This is the most 

interesting case because the liquid-liquid transition is terminated at exactly the limit of 

stability for the entire liquid phase. Again, the lines of extrema are collapsing onto the 

liquid-liquid transition line and without zooming in, it appears that the density maxima 

has completely disappeared. Figures 30, 31 and 32 depict these cases below. 
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Figure 30. Case A5 phase diagram and lines of extrema. Blue curves are the vapor-

liquid and liquid-liquid coexistences, terminating at the red dots CP 1 and CP 2 

respectively. Red dashed lines are the vapor-liquid spinodal. Blue dashed line is the 

Widom line of the liquid-liquid coexistence. Red solid curve is the line of maximum 

and minimum compressibility. Black solid curve is the maximum and minimum density 

line. Green solid curve is the maximum and minimum heat capacity. 
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Figure 31. Case B5 phase diagram and lines of extrema. Blue curves are the vapor-

liquid and liquid-liquid coexistences, terminating at the red dots CP 1 and CP 2 

respectively. Red dashed lines are the vapor-liquid spinodal. Blue dashed line is the 

Widom line of the liquid-liquid coexistence. Red solid curve is the line of maximum 

and minimum compressibility. Black solid curve is the maximum and minimum density 

line. Green solid curve is the maximum and minimum heat capacity. 
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Figure 32. Case C5 phase diagram and lines of extrema. Blue curves are the vapor-

liquid and liquid-liquid coexistences, terminating at the red dots CP 1 and CP 2 

respectively. Red dashed lines are the vapor-liquid spinodal. Blue dashed line is the 

Widom line of the liquid-liquid coexistence. Red solid curve is the line of maximum 

and minimum compressibility. Black solid curve is the maximum and minimum density 

line. Green solid curve is the maximum and minimum heat capacity. 

 

 The final cases considered were cases A6, B6, and C6. These cases are for a 

liquid-liquid critical point below the limit of absolute stability, or in other words 

correspond to a transition where there is a line of critical points at the transition line for 

all temperatures. The figures here show a collapse of nearly all extrema lines onto the 

liquid-liquid transition line. These lines do not match what the simulations have 

predicted for water models (figure 6). This result can confirm that the critical-point-

free scenario of a liquid-liquid transition line that has no terminating critical point can 

be excluded because in this case, the density extrema line almost disappears, while 
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being very pronounced for supercooled water. Figures 33, 34, and 35 show these final 

cases.  

 

Figure 33. Case A6 phase diagram and lines of extrema. Blue curves are the vapor-

liquid and liquid-liquid coexistences, terminating at the red dots CP 1 and CP 2 

respectively. Red dashed lines are the vapor-liquid spinodal. Blue dashed line is the 

Widom line of the liquid-liquid coexistence. Red solid curve is the line of maximum 

and minimum compressibility. Black solid curve is the maximum and minimum density 

line. Green solid curve is the maximum and minimum heat capacity. 
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Figure 34. Case B6 phase diagram and lines of extrema. Blue curves are the vapor-

liquid and liquid-liquid coexistences, terminating at the red dots CP 1 and CP 2 

respectively. Red dashed lines are the vapor-liquid spinodal. Blue dashed line is the 

Widom line of the liquid-liquid coexistence. Red solid curve is the line of maximum 

and minimum compressibility. Black solid curve is the maximum and minimum density 

line. Green solid curve is the maximum and minimum heat capacity. 
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Figure 35. Case C6 phase diagram and lines of extrema. Blue curves are the vapor-

liquid and liquid-liquid coexistences, terminating at the red dots CP 1 and CP 2 

respectively. Red dashed lines are the vapor-liquid spinodal. Blue dashed line is the 

Widom line of the liquid-liquid coexistence. Red solid curve is the line of maximum 

and minimum compressibility. Black solid curve is the maximum and minimum density 

line. Green solid curve is the maximum and minimum heat capacity. 

 

 

 The further analysis of the case where the liquid-liquid critical point touches 

the absolute stability limit of liquid state has found a novel thermodynamic feature that 

becomes present in temperature-density and pressure-density diagrams. The liquid-

liquid coexistence exhibits a bird’s beak at the critical point. This is because the critical 

point touches the spinodal exactly and forces the slope of the liquid-liquid coexistence 

to be exactly the same as the spinodal at the critical point. Figures 36 and 37 illustrate 

this interesting phenomenon.   
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Figure 36. Phase diagram showing temperatures of isobars with respect to density. 

Specifically for the case where the CP 2 is directly touching the vapor-liquid spinodal. 

Multicolored lines are isobars. Blue solid curve is the vapor-liquid coexistence. Blue 

dotted curve is the vapor-liquid spinodal. Red solid curve is the liquid-liquid 

coexistence, clearly showing a bird’s beak type of phenomenon. CP 1 and CP 2 are 

labeled in black. 



 

 

64 

 

 

Figure 37. Phase diagram showing pressures of isotherms with respect to density. 

Specifically for the case where the CP 2 is directly touching the vapor-liquid spinodal. 

Multicolored lines are isobars. Blue solid curve is the vapor-liquid coexistence. Blue 

dotted curve is the vapor-liquid spinodal. Red solid curve is the liquid-liquid 

coexistence, clearly showing a bird’s beak type of phenomenon. CP 1 and CP 2 are 

labeled in black. 
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Chapter 4: Discussion 
 

 

The “chemical reaction” approach to fluid polyamorphism discussed in this 

thesis uses equilibrium thermodynamics to phenomenologically describe a phase 

transition. This approach can be analogously written in terms of phase transition theory, 

using the order parameter, ϕ. The “chemical reaction” approach is mathematically 

identical to the phase transition theory approach if the following identifications are 

made: A 0 BA mix, , ( ), and .G G G h G kTf x       The condition of chemical 

reaction equilibrium described above thus results in the explicit relationship between 

the order parameter of the chemical reaction approach and the ordering field of the 

chemical reaction approach: 

                 BAln , , ln 1 2
1

x
h kT K p T G p T kT x

x
     


 (38) 

 This result shows the explicit relationship between the chemical reaction 

approach and the phase transition theory approach, allowing me to describe 

polyamorphism as a generalized “chemical reaction.” These approaches are 

theoretically identical if used in this way. In this formulation of phase transition theory, 

the general idea of the order parameter and the ordering field is the overall approach, 

while the “chemical reaction” approach described in this thesis is the specific case of 

the phase transition theory. Specifically, the theory of phase transitions can essentially 

be used to describe all kinds of phase transitions, specifically in polyamorphism. The 

“chemical reaction” approach is unavoidable to describe polyamorphism in a fluid 

which exhibits a reaction between two species, such as in phosphorus, sulfur, or 

hydrogen.  
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However, in all other cases, there must be a way to distinguish between the 

“chemical reaction” approach and the phase transition theory approach. This must lie 

in the kinetics of the process, because the thermodynamics of both approaches are 

similar if not identical. Experiments that detect the vibrational bond differences as well 

as different dynamic properties of alternative structures in a single component fluid 

will be able to distinguish the “chemical reaction” approach to modeling 

polyamorphism as opposed to the approach based on a two scale intermolecular 

potential. Particularly some of the single component liquids may necessarily require a 

distinction of states on the molecular level in order to distinguish two distinct states. 

 A second important question to answer is the interplay of kinetics and 

thermodynamics. The use of a “chemical reaction” approach necessarily brings up the 

question of reaction kinetics. Specifically, depending on the reaction kinetics, the fluid 

may behave as a binary fluid, if the reaction is slow, or as a single component fluid, if 

the reaction is fast and reaches equilibrium quickly. Whether the fluid must be modeled 

as a binary mixture or as a single component fluid depends on the separation of time 

scales: a system with two inter-convertible fluid structures can be thermodynamically 

treated as a single-component fluid if the time of observation is longer than the 

characteristic time of “reaction” (fast conversion). In the opposite limit (slow 

conversion) the system thermodynamically behaves as a two-component mixture. 

Therefore, in order to apply the “chemical-reaction” approach for the description of 

fluid polyamorphism I must assume a conversion fast enough to satisfy the equilibrium 

condition within the observation time scale. 
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 An additional kinetic concern when using the “chemical reaction” approach is 

the activation energy barrier that arises in all chemical reactions. There are again two 

important limits that must be considered in order to use the “chemical reaction” 

approach in the modeling of fluid polyamorphism. In the high activation barrier limit, 

the amount of energy required to change between two states may be so high that the 

fluid will not react quickly and therefore must be modeled as a binary fluid. In the low 

activation barrier limit, the amount of energy required to change between two states 

will be low enough such that the two alternative structures will have no problem 

converting between the two energy states and the reaction will reach equilibrium more 

easily. In order to apply the “chemical reaction” approach here, I must necessarily be 

in the low activation energy barrier limit.  

 Also, an important question that the “chemical reaction” approach answers is 

the number fraction of molecules that are present in one state versus another state when 

modeling fluid polyamorphism. Some molecular dynamics simulations have been able 

to define an equilibrium fraction of high density molecules versus low density 

molecules, but is this a true fraction of molecules present in one state? Could the phase 

transition approach model the fraction of molecules in each state with the order 

parameter and the ordering field? Is the chemical reaction approach necessary for the 

distinguishing of two distinct species in a polyamorphic fluid? 

 Finally, I have determined a relationship between the energy change between 

of reaction two states and the temperature of the liquid-liquid critical point. This 

analysis matches what Stokley et al. [26] previously developed for supercooled water 

specifically, without referring to a “chemical reaction.” Stokley et al.’s language used 
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a strength of hydrogen bonds that is analogous to the energy change between two states 

and a strength of hydrogen bond cooperativity as a measure of how non-ideal the 

system is that is analogous to the position of the liquid-liquid critical point temperature. 

Figure 38a shows Stokley’s figure with the hydrogen bond network language and using 

the van der Waals equation of state. Figure 38b also shows the work from this Thesis 

that uses the two structure equation of state described in previous sections. 

 

 

 

Figure 38. (a) Reproduced from [129]. A plot of hydrogen bond cooperativity versus 

the hydrogen bond covalent strength. Orange denotes the critical pressure of the liquid-

liquid transition is larger than zero. Yellow denotes that the critical pressure is less than 

zero. White denotes that the critical pressure is below the vapor-liquid spinodal. The 

red line at cooperativity equals zero is the ideal solution case. (b) Plot comparing λ, the 

energy change between two states, with the position of the second critical point 

temperature, a measure of the amount of nonideality in the system. At line Tc2=0, the 

system is completely ideal. The positions of the critical pressures are shown in different 

colors and with labels. 
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As stated earlier, the existence of a liquid-liquid separation, in addition to the 

common gas-liquid transition, in a single-component fluid does not necessarily require 

the existence of distinct interconvertible molecules or molecular structures. 

Simulations of molecular models with soft-repulsion intermolecular potentials, such as 

Jagla model [121, 134, to be published], support this possibility. Moreover, Landau 

theory of phase transitions can phenomenologically describe this scenario without any 

reference to interconversion between alternative molecular states.  

Let the Gibbs energy of a fluid be described by Eq. (1) with the ordering field 

 ,h p T in a linearized form as h P T     . The common gas-liquid transition is 

originated from  0 ,G p T . The origin of a possible liquid-liquid transition and the 

nature of the order parameter depends on a particular form of the function  f  . If I 

adopt a continuous free-energy model for this function, e.g. in the form of the van der 

Waals Helmholtz energy per unit volume, 

                                                2ln
1

f a


  


 


, (39) 

(where the interaction parameter a is defined by the second energy scale, while the 

second distance scale b is incorporated into a and as /a a b and b   the 

equilibrium value of the order parameter  e ,p T    is obtained from 

                                         ln 2
1 1

f kT
h kT P T


   

  


      
  

. (40) 

Note that in this scenario the order parameter is not an equilibrium fraction of 

molecules involved in state B because there is no entropy of mixing of two distinct 

states in the function  f  . Instead, the order parameter presumably originates from 
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two scales in a soft repulsion intermolecular potential, being associated with the excess 

volume ex 0V V V    and the excess entropy ex 0S S S     , where 

0 0 /V G p    and 0 0 /S G T   . The order parameter is zero for a fluid (that is 

described by a one-scale intermolecular potential) and changing from zero to unity as 

a function of p and T for a fluid with a two-scale potential [134, to be published]. 

Elucidation of the physical nature of the order parameter described by a two scale 

potential would be a promising project for future studies.  

Also note that in the van der Waalstype, continuous scenario of liquid-liquid 

separation the function  f   is not symmetric with respect to the order parameter. In 

particular, the critical value of the order parameter c 1/ 3   and the critical temperature 

c 8 / 27T a k . 

A principal feature of the “chemical reaction” approach is the ability of the 

model to determine a distinct equilibrium fraction of molecules involved in the low 

density structure of the liquid. Figure 39 shows the equilibrium fraction of molecules 

determined by the two structure equation of state described in this thesis, and compares 

this with the equilibrium fraction of molecules determined by the ST2 model for water 

[66]. The “chemical reaction” approach qualitatively describes the fraction of 

molecules in the low density structure similar to what ST2 has calculated. 
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Figure 39. (a) Fraction of state B (low density structure) calculated as a function of 

temperature along isobars (multicolored lines). Red dot is the liquid-liquid critical 

point. Black curve is the line of liquid-liquid coexistence. (b) Reproduced from [66]. 

Fraction of state B (low density structure) calculated as a function of temperature 

along isobars (multicolored lines). Black curve is the line of liquid-liquid coexistence. 
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Chapter 5: Conclusion 

 This Thesis has explored the idea of two structure thermodynamics, from the 

history of its use, to a new general formulation of a two structure equation of state. By 

writing an equation of state in terms of Landau phase transition theory, I am able to 

write a complete general phase transition equation that will work for any microscopic 

driving force of polyamorphism. I explore the “chemical reaction” approach of 

modeling polyamorphism, which is a specific case of the general phase transition 

theory approach. These two approaches can be reconciled and are identical if certain 

conditions are met.  

The “chemical reaction” approach is necessary for substances where 

polyamorphism is driven by a real chemical reaction (i.e. polymerization in 

phosphorus, sulfur or hydrogen) or for some generalized “chemical reaction” where 

two distinct species in a single component fluid can be determined. For the case of 

supercooled water, there is evidence of two distinct structures of hydrogen bonds that 

can be determined as two distinct states that can be modeled separately within the two 

structure equation of state. 

 The “chemical reaction” approach model qualitatively described the anomalous 

properties of polyamorphic fluids, including the patterns of extrema lines of density, 

compressibility and heat capacity. The nonideality of mixing of the two alternative 

states (that controls the proximity of the liquid-liquid critical point to the liquid-vapor 

spinodal) is the major factor in determining the shape of the lines of extrema for density, 

heat capacity and compressibility emanating from the critical point. Additionally, the 

model is flexible and allows for the investigation of three different scenarios of 



 

 

73 

 

polyamorphism. A signature of this model is its ability to describe the order 

parameter—the existence of the equilibrium fraction of molecules involved in the 

alternative states in the polyamorphic fluid.  

 The proximity of the critical point to the limit of absolute stability of the liquid 

phase is the most important factor in determining the shape of the anomalous density 

extrema lines. In fact, the density anomaly shrinks and finally disappears at critical 

points located at negative pressure and directly at or below the limit of absolute stability 

of the liquid phase. This disappearance of the density anomaly allows me to exclude 

the possibility of the liquid-liquid critical point in water being located in highly 

negative pressures or below the limit of stability. This is because the density anomaly 

is a signature feature of polyamorphic fluids and most simulations and experiments 

confirm the existence of the density anomaly, even in some specific atomistic models 

that do not exhibit a liquid-liquid phase transition. Therefore, the density anomaly must 

be present in order for the critical point to be located at a certain temperature and 

pressure. 

 A novel thermodynamic anomaly has been found in the phase diagram of 

polyamorphic fluids. In the scenario where the critical point is located exactly at the 

limit of absolute stability, the coexistence is required to reach the critical point from 

each branch with the same tangent. This results in a bird’s beak type of anomaly in this 

region of the phase diagram. 

 This work can lead to a variety of future work in the study of polyamorphism. 

In the future, a more realistic equation of state, such as SAFT, for the vapor-liquid 

transition (state A in the “chemical reaction” approach) could be used to more 
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accurately describe a polyamorphic fluid. Polyamorphic fluids often exhibit their 

transitions at extreme conditions, and modeling these fluids at extreme conditions 

would be useful. Particularly for the cases of hydrogen and silicon, the modeling of 

these fluids at extreme conditions could have interesting practical uses. Hydrogen and 

silicon are both technologically important materials and the knowledge of unusual 

phase behavior would allow for more novel uses of these fluids. Finally, interesting 

future work would be the investigation of effects that competing interconvertible states 

would have on the dynamics of polyamorphic fluids, including the fragile-to-strong 

transition and the dispersion of sound. These experiments would be able to elucidate 

the connection between thermodynamics and kinetics. 
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Appendix A 
 

 Calculations for the phase diagrams and lines of extrema were difficult due to 

the extreme nonlinearity in the equations used for solving. Early iterations of the 

solutions were solved in Matlab, using numerical solvers built in to the program. After 

it became clear that the programs in Matlab were not powerful enough to effectively 

numerically solve the nonlinear equations, due to a large amount of instability. The 

next iterations of the calculations were completed in Python, but I had very little 

experience in Python so the calculations were taking a long time. Luckily, with the help 

of Dr. Michal Duška, who is very skilled in Python, helped me by writing a very 

powerful code in Python that allowed me to calculate all important information through 

numerical solvers. Specifically, the code used Brent’s method and the bisection 

method, two rootfinding methods. These methods were useful because the root was 

found within a range of values specified, ensuring that the correct value was calculated. 

Brent’s method used two different types of extrapolation, either inverse quadratic or 

hyperbolic, depending on the stability of the solution. Dr. Michal Duška’s code allowed 

me to avoid the instabilities and accurately solve the nonlinear equations.  
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Appendix B 
 

 

Table 1. Case numbers and values used for the specific form of lnK presented 

Case Number Λ TC2 TC2 Values 

A1 0.1 0 0.0001 

A2 0.1 TC2(PC2=1)  0.025 

A3 0.1 TC2(PC2=P(VL coex)) 0.05 

A4 0.1 TC2(PC2<0) 0.13 

A5 0.1 TC2(PC2=P(spinodal)) 0.202 

A6 0,1 TC2(PC2<P(spinodal)) 0.225 

B1 0.5 0 0.0001 

B2 0.5 TC2(PC2=1)  0.225 

B3 0.5 TC2(PC2=P(VL coex)) 0.248 

B4 0.5 TC2(PC2<0) 0.31 

B5 0.5 TC2(PC2=P(spinodal)) 0.3525 

B6 0.5 TC2(PC2<P(spinodal)) 0.38 

C1 1.0 0 0.0001 

C2 1.0 TC2(PC2=1)  0.475 

C3 1.0 TC2(PC2=P(VL coex)) 0.498 

C4 1.0 TC2(PC2<0) 0.525 

C5 1.0 TC2(PC2=P(spinodal)) 0.549 

C6 1.0 TC2(PC2<P(spinodal)) 0.58 
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