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Chapter 1: A brief history of superfluidity and superconductivity

Temperature is a measurement of the average kinetic energy in any physical

system. Progress in science and technology has made access to extreme ranges of

temperature possible: hot plasma fusion experiments with temperatures reaching

10’s of millions degrees [8] down to ultracold atoms experiments, which reach 500×

10−12 K [9]. This thesis addresses questions related to the behavior of materials at

low temperatures. Whether the behavior of a physical system is decided by classical

or quantum mechanics is determined by the ratio between the de-Broglie wavelength

λd and the inter-particle separation lp. The work of de-Broglie established matter

wave duality and showed that associated with each particle is a wavelength which

is inversely proportional to its momentum. As a particle confined to a potential

cools down, the de-Broglie wavelength increases, while the inter-particle separation

decreases. When the two become comparable λd ' lp, and quantum effects begin

to dominate. This dominance of quantum effects at low temperatures give rise to

several interesting phenomenon like superconductitvity and superfludity in some

materials.

At the start of the 20th century there were rapid advances in the study of low

temperature physics. One of the pioneers in this field was Kammerlingh Onnes,
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who was the first to liquefy helium in 1908 [10]. Three years later, he found that

the resistance of a mercury wire immersed in liquid helium drops to zero [11], a

phenomena which he coined superconductivity. He also found that at a particular

temperature a superconductor in the shape of a loop can sustain current for a very

long time, these states were called persistent current states [12]. Interestingly, even

though Onnes was the first to liquefy helium, and later used liquid helium as a

medium to investigate conductivity of metals, he never investigated the transport

properties of liquid helium in detail. It was left to Kapitsa [13], Allen and Mis-

ener [14] who liquefied helium and discovered superfluidity. They found that the

kinematic visciocity of a flow of helium had dropped by three orders of magntiude

after crossing the lambda point.

Meanwhile, in parallel to experimental studies, theoretical efforts were ongoing

to understand superconductivity and superfluidity. Ginzburg and Landau first came

up with a phenomenological model to study superconductivity without addressing

the underlying microscopic theory. Using Landau’s theory of second-order phase

transitions, Ginzburg and Landau argued that the free energy of a superconductor

near the superconducting transition can be expressed in terms of a complex order

parameter field ψ, which is nonzero below a phase transition into a superconducting

state, and is related to the density of the superconducting component. This work

failed to give a direct interpretation of this parameter, i.e. relate this wavefunction to

physical variables. A microscopic theory of superconductivity was first provided by

Bardeen, Cooper and Schreiffer (BCS) [15]. They proposed that electrons near Fermi

surfaces can become weakly attractive despite the existence of a strongly repulsive
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Coulomb force between them, this pair may then condense and form Cooper pairs.

Cooper showed that an arbitrarily small attraction between electrons in a metal can

cause a paired state of electrons to have a lower energy than the Fermi energy, which

implies that the pair is bound. In conventional superconductors, this attraction is

mediated by electron-phonon interaction.

A similar macroscopic approach of studying superfluidity was taken by Gross

and Pitaevskii (GP equation), who described the ground state of a quantum system

of identical bosons using the Hartree-Fock approximation (mean field theory). This

assumed that the different particles would be interacting via contact interaction.

One of the issues with this approach was that it assumed zero temperature, and so

dissipation had to be added phenomenologically. Also, strong interactions as seen

in superfluid helium make modeling experimental results harder.

The development of low temperature techniques ran concurrently with another

series of developments, where the foundations of quantum mechanics were being laid.

Sub-atomic particles like the neutron, proton and electron were found, and it was

discovered that they had intrinsic angular momentum called spin. The spins were

either integers or half-integers. Particles with half-integer spins were called fermions

and particles with integer spins were called bosons. Two fermions cannot occupy

the same state, so at low temperatures all quantum states up to the Fermi energy

are filled. On the other hand, when cooled down to sufficiently low temperatures,

bosons occupy the ground state of the system. This state of bosons occupying the

lowest energy level is called Bose-Einstein condensation, which was first predicted

in 1925.

3



Even though physical systems like superconductors and superfluids exhibited

quantum degenerate behavior, only a small fraction of the constituent particles

occupied the lowest ground state, a picture of the condensate consistent with the

original description of Bose and Einstein. This depletion of the ground state was a

result of strong interactions, which also made the system very difficult to model. The

search for a dilute condensate had one constraint, a lower density required ultracold

temperatures to reach a phase space density of over unity. These temperatures were

made possible by a combination of laser cooling and RF evaporation techniques.

BEC in dilute ultracold alkali gases were first demonstrated in 1995 [16, 17]. Since

the realization of BECs, they have become a testbed for condensed matter theory.

The efforts to make a dilute condensate began by cooling of spin polarized

hydrogen, and then was extended to dilute alkali gases (dilute means that the s-

wave scattering length is much less than the inter-particle spacing). A condensate

for dilute alkali gases was obtained before spin polarized hydrogen because of the

following conducive properties:

• A hydrogen atoms has a scattering length of 1.1 a0 (Bohr radius), while scattering

length of sodium and rubidium is 52 a0 and 102 a0 respectively. The large scattering

lengths for alkali gases makes evaporative cooling more efficient.

• The resonance lines of alkali atoms are readily accessible with diode and dye laser

technology, compared with hydrogen which needed deep ultra-voilet light source.

The laser interaction provides sensitive spatial and temporal evolution of the atomic

cloud.

• These interactions can be varied in a controlled manner through the choice of spin
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state, density, atomic and isotopic species, and the application of external fields.

The formation of the Bose-Einstein condensate was confirmed by looking at

the momentum distribution of the trapped atomic cloud. The momentum distri-

bution can be obtained by turning off the traps and imaging the atoms in time of

flight. The sudden narrowing of the momentum distribution is an indication of the

macroscopic occupation of the ground energy state. Another change which occurs

is the appearance of anisotropy in the atomic density distribution for some trapping

configurations. Above the critical temperature for the condensate formation, atomic

density distribution is isotropic as the kinetic energy is greater than the potential

energy. Below the critical temperature, the kinetic energy is less than the potential

energy, and the atomic density distribution tracks the anisotropy of the confining

potential. Some have argued that a collection of BCS pairs is a form of Bose-Einstein

condensate (BEC), this is strictly true only in the limit of strong interaction.

It should also be emphasized that being a superfluid does not mean the sys-

tem is a condensate. Even though superfluidity and Bose-Einstein condensates are

closely related, there remain subtle differences between the two phenomena. For

example, in a uniform two dimensional system, a condensate cannot exist, though

a superfluid state can exists at low enough temperatures. This transition is the

Berezinskii-Kosterlitz-Thouless (BKT) transition, when thermal excitations break

the vortex anti-vortex pairs formed at lower temperature [18]. It was only later that

the existence of a condensate in 2d systems was shown for non-uniform potentials

like a laser trap [19].
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1.1 Overview of Fundamental concepts

1.1.1 Order parameter

The microscopic theory of large many body systems usually does not exist. A

phenomenological approach is subsequently taken to study these systems by com-

bining the important physical parameters into a field variable, often called the order

parameter. Two common examples are the displacement field of ions from their

mean position in a crystal and the local magnetization in a magnet. At a given

point in the magnet, the sum total of all the fields from the local electrons decide

the local magnetization. Taking into account all the local electrons is intractable,

so an effective magnetization M(x) is attached to a small region. The order param-

eter can be a vector, and all the physical variables can be mapped into it. For a

system in equilibrium, the order parameter is uniform. When subjected to an exter-

nal perturbation, the uniformity of the order parameter is broken and the internal

dynamics of the system cause gradients in the order parameter. The gradient of the

order parameter is an indication of the kinetic energy present in the system as the

velocity is directly proportional to the gradient of the system.

This approach has been used to study both superfluids and superconductors,

using the Gross-Pitaevskii equations for superfluids and Ginzburg-Landau equations

for superconductors, as mentioned previously. The GL equations assume that the

transition to superconductivity is a second order phase transition. After writing the

free energy of the superconductor near the critical temperature, a minimization of
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the free energy yields the GL equations. The Gross-Pitaevskii equations is obtained

using Hartree-Fock and the pseudo-potential approximations. The Hartee-Fock ap-

proximation means that the many body wavefunction can be written as the product

of single particle wavefunctions. The pseudo-potential means interaction arise due

to contact interactions.The square of the amplitude of the order parameter gives the

density of the quantum degenerate particles.

1.1.2 Healing length

The healing length is the characteristic length scale over which a macroscopic

wave function returns to its background value after being subjected to a density

perturbation. This definition holds true for both superfluids and superconductors.

For a condensate, the healing length ξ is given by:

ξ =

√
1

8πnas
, (1.1)

where n is the number density and as is the s-wave scattering length. This length

scale is obtained by comparing the kinetic energy to the interaction energy for a

condensate.

1.1.3 Quantized Persistent currents

A counter-intuitive feature of superfluids is the presence of metastable persis-

tent mass current states. Typically, a closed loop system is deployed to study these

states since the other alternative is to set up a large 1d system, which is experi-

mentally unfeasible. The most common of all closed loop geometries possible is the
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toroidal trap, since the azimuthal symmetry allows the superfluid dynamics to be

cast into a 1d problem. In this thesis, we will concentrate on toroidal traps. Since

the superfluid can be assigned a macroscopic wave function (or an order parameter),

the laws of quantum mechanics have to be satisfied. The wavefunction at a given

location is single valued, so the phase drop in one complete rotation around the

circumference in the absence of a weak link (density perturbation) can only be in

integral multiples of 2π. This integer is called the winding number or the circulation

state of the superfluid. This means that a superfluid in a toroidal geometry can only

exist in states that have discrete angular momentum, irrespective of the velocity of

a mechanical stirrer moving through the fluid. This is unlike a classical fluid, which

can exist in a continuum of angular momentum states and will move with the same

velocity as an external stirrer provided it is given enough time to reach equilibrium.

The angular momentum spacing ∆ω between different circulation states is decided

by the mean radius of the toroidal trap:

∆ω = ∆nΩ0 = ∆n
h̄

mR2
(1.2)

where 2πh̄ is Planck’s constant, m is the mass of a superfluid particle and R is the

mean radius of the toroidal trap.

In the presence of a density perturbation in the toroidal trap, the phase drop

across the density perturbation has to taken into account. The phase drop across a

density perturbation for a given current is called the current-phase relationship, and

is helpful is characterizing the transport properties through the density perturbation.

A density perturbation is commonly referred to as a tunnel junction if the length
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scale if less than the healing length, and a weal link if the length scale of the density

perturbation is much more than the healing length. The current phase relationship

for a tunnel junction follows a sinusoidal relationship, while the relation is linear

for a weak link. When the length of the density perturbation is between the tunnel

junction and the weak link regime, the current phase relation can be modeled using

a sum of a linear and a sinusoidal term [20].

1.1.4 Modeling superfluid flow

A useful concept to visualize the flow of a system described with a quantum

mechanical wavefunction is the probability current, which is the flow of probability

per unit time. The analogue of probability current in classical hydrodynamics is the

mass current. If the wavefunction (ψ) is expressed as the product of a real amplitude

R and a complex phase S (ψ = R exp(iSt)), the probability current will become,

∂ψ

∂t
=
|R|2∇S
m

(1.3)

where m is the mass of a particle and t is the time. This transformation is known

as the Madelung transformation [21]. This implies that any current is proportional

to spatial derivative of the phase. In other words, a gradient of phase is necessary

to sustain a probability current for a velocity field to exist. This means that the

superfluid flow is irrotational like an ideal fluid. So a superfluid follows Euler’s

equation of an ideal non-viscous fluid, unlike a normal fluid with viscosity which

follow the Navier-Stokes law. A simply connected superfluid can sustain angular

momentum only by admitting line defects (vortices). The superfluid cannot sustain
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solid body rotation, but a fluid with viscosity can.

1.1.5 Critical velocity and phase slips

A crucial difference between classical fluids and superfluids is the absence

of viscosity in superfluids under ideal circumstances. An external object moving

through a classical fluid will experience a drag force irrespective of the relative

velocity between the external perturbation and the background fluid. On the other

hand, an external object moving through a superfluid will experience no dissipation

until the relative velocity between the superfluid and the stirring object exceeds

a critical value, which is called the critical velocity. Once this critical velocity is

exceeded, excitations are created in the superfluid. This creation of excitations can

only occur if this event is allowed energetically. Landau used this argument and

a Galilean transformation of energy and momentum of the superfluid to derive an

expression for the critical velocity. If we assume that the energy and momentum of

the superfluid in one frame is Es and Ps respectively, then they are related to the

energy and momentum in a second frame E
′
s and P

′
s by the following relations (we

assume a relative velocity of V between the two frames and the mass of the particle

to be m):

P
′

s = Ps −mV (1.4)

E
′

s =
(Ps −mV )2

2m
(1.5)

Now let us assume that the first frame is the laboratory frame and the second
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frame is the frame co-moving with the fluid, so the relative velocity is given by −V .

We also assume that the ground state energy of the superfluid in the laboratory

frame is Es = P 2
s /2m and a excitation with energy ε0 has been created in the

system. In the laboratory frame, the energy of the superfluid and the excitation is

E0 + ε0. In the second frame co-moving with the fluid, this will appear as:

E
′

s =
(Ps +mv)2

2m
+ ε0 = Es + ε0 + Psv +

1

2
mV 2 (1.6)

The above equations shows that the creation of an excitation will increase

the energy of the superfluid by ε0 in the laboratory frame and by ε0 + Psv in the

fluid frame. If the net change in energy is negative, then there will be a creation of

excitations in the superfluid. Mathematically, it can be written as:

ε0 + Psv < 0 (1.7)

So an excitation has the most probability of being created in a region where the

ratio of energy dispersion and the momentum magnitude is a minimum. This is the

Landau’s definition of the critical velocity:

vc = min

(
ε0
Ps

)
(1.8)

The Landau criterion makes no assumption on the underlying mechanism

which causes the excitation. The critical velocity for creating excitations in uni-

form systems is the Bogoluibov sound speed. The presence of a trapping geometry

or non-uniformity brings down the critical speed for creating excitations. Feynman

considered the case when the leading mechanism for energy dissipation in the super-

fluid system is the creation of vortex anti-vortex pairs. He considered the case when
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a superfluid moving at constant velocity v through a channel of constant width d

into a reservoir with a much larger width. There is a sharp edge where the channel

and the reservoir meet. As the superfluid flows in the reservoir which has a much

larger cross-sectional area, the velocity vector of a part of the superfluid may change

direction. This momentum change is most likely to occur at the sharp edge. When

this happens, vortices are shed to stabilize the flow. Thus the sharp edge serves

as a nucleation point for vortices. Far away from the edges, these vortices decay

into phonons and the energy is dissipated. By comparing the kinetic energy of fluid

moving through the channel to the to the kinetic energy of the flow field of the

vortices and anti-vortices, the critical velocity vc will be:

vc =
h̄

md
ln

(
d

ξ

)
, (1.9)

where 2πh̄ is the Planck’s constant, m is the mass of one superfluid particle and ξ

is the healing length of the condensate.

Another common geometry where the critical velocity can be estimated is

when an obstacle is moved through a superfluid. In ref [22], the authors studied the

effects of placing a hard disc in a superfluid with a constant relative velocity between

the bulk superfluid and the disc. By assuming that the disc is impenetrable, the

quantum pressure term can be neglected and the velocity at the surface of the disc

is twice the velocity of the bulk superfluid. For this geometry, the authors found

a critical velocity of
√

2
11
cs = 0.42 cs, where cs is the sound speed in the bulk.

This work also performed numerical solutions of the GP equations, and found good

agreements between the critical velocity and the theoretical estimate.
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After the creation of atomic Bose-Einstein condensates [16,17], a new platform

to study superfluidity became available. Soon after, efforts were made to measure

the critical speed of creating excitations in the condensate [23]. The experiment

involved scanning an obstacle through an elongated, simply-connected condensate.

This geometry along with tight vertical confinement ensured that the vortex dynam-

ics was effectively 2d. The obstacle was created using a blue-detuned laser beam, as

a blue detuned laser beam repelled the atoms in the condensate. The obstacle was

moved through the condensate by using an acousto-optic deflector. The obstacle

was moved through different amplitude and frequency through the condensate, the

velocity of the obstacle was a product of the amplitude and frequency. The heating

of the condensate was investigated by looking at the thermal fraction of the cloud.

The heating in the condensate was observed only after the obstacle velocity crossed

a threshold, allowing one to make comparisons to the previous numerical study [22].

The formula presented in [22] overestimated the critical velocity found in the ex-

perimental paper, which could be explained by the fact that the laser beam is not

an impenetrable surface. The use of a Feynman type argument gives an answer

which is two times less than the experimental value. This tells that the energetics

alone cannot lead to creation of excitations, this creation has to be supported by

the dynamics as well. It also tells us that the critical velocity is an excellent tool to

investigate what the relevant excitation is for a given geometry that is responsible

for dissipation. This work [23] also repeated the critical velocity measurements in an

atomic gas which was at a slightly higher temperature than the transition tempera-

ture for condensation. In this thermal cloud, the critical velocity at which significant
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heating was observed was more than the sound speed. This showed that changing

the temperature modifies the critical velocity, but no detailed characterization as a

function of temperature was made.

Another experiment on critical velocity in oblate condensates studied the de-

pendance of critical velocity on the ratio of laser beam diameter to the healing

length and the intensity of laser beam relative to the chemical potential [24]. The

healing length was varied by changing the atom number or the trapping frequencies.

The authors investigated the effect of a soft boundary on the critical velocity by

varying the intensity of the laser beam from much lower than the chemical potential

to much higher than the chemical potential. They found that the critical velocity

first decreases as the laser beam is ramped to the height of the chemical potential

as expected, and then it increases. This can be explained by the fact that as the

laser beam becomes more like a hard boundary, the density near the laser beam

approaches the hard cylinder value, and the critical velocity velocity increase again.

The same group also measured how an increase in temperature increases the rate

of decay of vortices [25–27]. The study of critical velocity has also been made in

toroidal geometries as well, something that this thesis is interested in. The first mea-

surement of the critical velocity in a toroidal trap beyond which decay of persistent

current states was observed in [28].

The idea that quantum degeneracy begins to break down if an experimental

parameter exceeds a critical value is not restricted to the critical velocity of an

obstacle in elongated and toroidal condensates. The critical velocity has been mea-

sured in other systems as well: the critical velocity in a BEC-BCS crossover was
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measured by passing a moving lattice through a condensate [29]. Similar to the

existence of a critical velocity in superfluid, critical magnetic fields exist for type II

superconductors , which allow the formation of magnetic vortices in the bulk of the

superconductor. This is in contrast to type I superconductors, which expel the mag-

netic lines through the bulk. Type II superconductors have two critical magnetic

field, 1st critical field beyond which they allow magnetic vortices to enter the bulk

of the superconductor and the second one in which the superconductivity ceases to

exist.

1.1.6 Phase Slips

We have seen earlier that the complex order parameter can be defined by

an amplitude and a phase. When the order parameter of a superfluid approaches

zero, the phase of the order parameter may show a sudden jump in multiples of 2π.

These phase jumps are accompanied by either an excitation leaving or entering the

system. The phase slip events are incoherent and provide a mechanism for superfluid

and superconductors to dissipate energy even below their transition temperature

in response to an external perturbation. For a superfluid, the external stimulus

could be rotation or relative motion, while it could be magnetic fields in type II

superconductors. These phase slips events are driven by thermal fluctuations at

temperatures close to the critical temperature and by quantum fluctuations in the

limit of low temperatures [30].
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1.1.7 Hysteresis, energy landscape and particle interactions

A physical system is said to exhibit hysteresis when the response of the system

is dependent on the history of the system. In other words, the response of the system

to an external perturbation does not follow a strict one to one correspondence. This

happens when for a given set of physical parameters, there exists multiple energy

minima for the system. A common example is a ferromagnet. If we begin with

a ferromagnet present in a zero magnetic field, the ferromagnet has an arbitrary

magnetization direction, as all the spins inside the ferromagnet are oriented in a

random direction without an external bias field. When the ferromagnet is placed in

a strong magnetic field, the magnetization of the ferromagnet changes and tracks the

external field. When the external magnetic field is removed, the magnetization of

the ferromagnet does not change back to its original state, but continues to point in

the same direction as the external field. Thus at zero field, the magnetization of the

ferromagnet has multiple solutions, and the response depends on the history of the

material. An abstract way to look at this is by defining the energy landscape, which

is a mapping of all possible configuration of a system and the energy associated

with them. For a ferromagnet, by changing the magnetization, different parts of the

energy landscape are accessed with the magnetization as the control parameter.

We have seen earlier that superfluids in toroidal traps can sustain persistent

current states. When we introduce a relative velocity between the superfluid and

the toroidal trap (in case of superfluid helium physically moving the trap, or for a

condensate moving a laser beam through it), the superfluid will at first be stationary
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Figure 1.1: The energy landscape for a toroidal superfluid. In (a), the rest state

` = 0 is the global energy minimum. In (b), the first circulation state ` = 1 is the

global energy minimum as an external rotating perturbation has been introduced in

the system.
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for velocity below vc. At high enough relative velocity, the superfluid makes a

transition to a persistent current state, and remains in this persistent current state

even after the relative velocity between the trap and the superfluid is set to zero.

Thus at the state of zero relative velocity, the superfluid can be in a state of rest or

in a persistent current, depending upon the history of the system. Also, if one wants

to return the superfluid to rest in the lab frame, the trap has to be rotated opposite

to the circulation state. Hence we can view superfluidity as a hysteretic response to

rotation. When viewed in terms of the energy landscape, the controlling parameter

is the rotation speed and the circulation states of the superfluid are the minima of

the system. When there is no circulation, the rest state is the lowest energy state,

while imposing an external rotation can make the persistent current state lower in

energy compared to the rest state (fig. 1.1).

By looking at figure 1.1, we see that the hysteresis is enabled by existence of

energy barriers between the multiple local minima present in the energy landscape.

A persistent current in the lab with no external rotation needs to be supplied with

some energy so it can overcome the energy barrier and decay to the ground state,

which is the rest state. Let us conduct a through experiment: we assume that all the

particles in the superfluid are in the persistent current state ` = 1, and there is just

enough energy for one particle to overcome the energy barrier and move to the rest

state ` = 0. When this happens, the energy of the particle making the transition

decreases, but the system pays a penalty in that the interaction energy decreases

with the loss of a particle. If the interactions between the superfluid particles are

strong enough, the loss of one particle from the ` = 1 ends up increasing the total
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energy of the system. In the absence of inter-particle interactions, a transport of

one particle from state ` = 1 to ` = 0 lowers down the energy of the system, and is

favored. This shows the key role played by inter particle interactions in stabilizing

a persistent current state. In the work by [31], imperfections of the toroidal confine-

ment were considered. A superfluid can move through these imperfections without

any dissipation as the superfluid can screen out the impurities by a spatial change

of the wavefunction, unlike an ordinary fluid. However, in ref [31], it is shown that if

the inter particle interaction strength is less than the strength of the imperfections,

no hysteresis and superfluid behavior is possible.

Hysteresis loops are also present in other physical systems. Hysteresis loops

have been found during numerical investigations of Bloch waves for a condensate

trapped in an optical lattice [32]. This work found that at high enough atomic

densities, the lowest Bloch band showing the energy as function of lattice quasi-

momentum becomes triple valued near the Brillouin boundary, giving rise to a “swal-

low loop” or hysteresis. Similar multi valued solutions were also found in two level

non-linear Landau-Zener tunneling when the interaction strength was more than

the coupling strength [33]. Hysteresis has also been observed experimentally. In

superconductors, the current phase relation of an RF-SQUID was observed, which

was found to be multi-valued [34]. The first demonstration of hysteresis in ultracold

gases in a toroidal trap was given by by [35].
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1.2 Relevance of this work

1.2.1 Previous work done

The sodium ring lab has been studying the superfluidity of Bose-Einstein con-

densates in toroidal traps for the past decade. Several advances in the understanding

of toroidal superfluids had been made before I joined the lab:

• The first demonstration of a persistent current state in an all optical toroidal trap

and the use of a tunable weak link to control the current at the single quantum level

was presented in [36]. The use of an all optical toroidal trap eliminated previous

limitations in hybrid magnetic and optical traps [37,38], making lifetimes up to 40 s

possible. This optical trap was created by superimposing red-detuned Gauss beam

and a Laguerre-Gauss (LG1
0) beam at 1064 nm. This potential also made the atomic

distribution around the ring more uniform, with a atomic density distribution vari-

ation corresponding to a tenth of the chemical potential around the ring. There was

a development of a new imaging technique called the partial transfer absorption

imaging (PTAI), which gave more accurate information of density variation around

the ring, as only a fraction of the atoms were transferred to a state resonant with

the imaging light. Prior to this method, the high optical density of the condensate

made it impossible to determined the density inhomogeneity around the ring. The

critical velocity for creating excitations in the system was found to be 0.6 times the

local sound speed.
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• Observation of phase slips between persistent quantized circulation states was

shown in [39]. A phase slip can be defined as a discontinuous phase jump in the

condensate wave function. The phase slips were induced by a rotating a weak link

around the ring. This density perturbation was created by moving a blue detuned

elliptic laser beam around the ring using a 2-axis acousto-optic deflector (AOD).

The same AOD was used to imprint circulation states on the superfluid. This ex-

periment was the atomic analog of the RF-superconducting quantum interference

device (SQUID). The work also estimated the critical angular velocity for a circu-

lation state change for a given weak link strength.

• First demonstration of hysteresis in an ultracold atomic gas system was made

in [35]. In this work, the critical velocity for a transition from the circulation state

0 to 1 and then the transition state from 1 to 0 was measured respectively. The

difference between these two circulation states normalized to the quantum of cir-

culation gives the experimental size of the hysteresis loop. A theoretical estimate

of the hysteresis loop was made by using the sound speed as the critical velocity.

There was significant discrepancy between the experimental and theoretical values.

This was attributed to the finite temperature effects, but the experiment lacked the

ability to go down to lower temperatures, so the effect between hysteresis loop size

and temperature could not be explored.
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1.2.2 Results of this thesis

From the previous results, there remained unanswered questions on superfluid

dynamics in toroidal traps. This thesis attempts to answer some of those questions.

In this thesis, using both experimental and theoretical tools, we investigate multiple

phenomenon related to BECs. The various experiments which have been explained

in the individual chapters in this thesis are introduced below:

• Determining the current phase relationship of the weak link: The weak

link in quantum degenerate systems allows coherent flow through them, unlike classi-

cal systems. This holds true for both superfluids and superconductors. The quantum

transport properties through a weak link can be described by a single function called

the current phase relation, i.e. the change in the phase of the wave-function across

the weak link for a given current. This function is the analog of current-voltage

relationship through a classic resistor. In the work mentioned previously [39], the

current phase relation of the weak link in the superfluid was assumed to be sum of a

linear and a sinusoidal term. While the experimental data gave good agreement with

the theoretical model, there was no way to determine the current phase relationship

directly. This problem was solved by using the target trap. Usually, the weak link is

turned off before imaging in time of flight when the superfluid circulation state is to

be determined. For determining the current phase relationship, the weak link is kept

when the atoms are released in time of flight and then imaged. The displacement

of the fringes at the weak link location is recorded, and by comparing to the spatial
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spacing between two fringes (which corresponds to a phase jump of 2π), the current

phase relation is obtained. This technique is very general, and can be extended to

study of tunnel junction and excitations in the toroidal superfluid.

We also investigate the dynamics of the formation of spirals after release from

the target trap. On the experimental side, the interference pattern after release

from the target trap is imaged to multiple times of flight. On the theoretical side,

the interferometer is characterized by placing a single particle in the interferometer,

which exists in the superposition state of the toroidal and the disc state. This single

particle picture can explain the formation of spirals. Also, the effect of mean field

effects on the expansion dynamics is interrogated, and we found that mean field en-

ergies drive the expansion faster compared to the non-interacting case. More details

can be found in chapter 3 and refs. [2, 3].

• Energy landscape of an atomtronic SQUID: The excitation spectrum and

the energy landscape of any system provide important information on the dynamics

of the system when subjected to an external force. We probed the system using a

harmonically driven weak link (density perturbation), both in position and intensity.

The periodic movement of the weak link through the superfluid launches phonon

wavepackets in the superfluid, which also display a periodic wavepacket. Collisions

between shock waves were also observed. More details can be found in chapter 5

and refs. [4].

• Development of metrological tools: Any experiment on persistent current
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states depends on the correct characterization of the persistent current state. The

persistent current state can be measured by the presence of a hole in the atomic

density distribution in the time of flight measurement, while the size of the hole indi-

cating the charge of the circulation. This method posed multiple problems. First, at

higher angular velocities of the weak link, external vortices would enter the annulus,

making it impossible to determine if the off-axis vortex entered from outside or if it

the product of the decay of a highly charged vortex. The second problem was that

every time the ring dimensions changed, the hole size calibrations had to be per-

formed again. The third problem was that the hole size gave no information on the

chirality of the superflow. To make the circulation state determination faster and

unambiguous, we added a disc shaped potential concentric with the toroidal trap.

The combined trap is called the “target trap”.The interference between the disc and

the toroidal condensate creates concentric circles when the toroidal superfluid is at

rest and spirals when there is a persistent current in the toroidal superfluid. The

number of spiral arms in the interference pattern yield the persistent current state

and their chirality determines the direction of the persistent current state. This

method does away with the need of calibrations every time the trap geometry is

changed.

Even through the above technique works extremely well, the method still

requires releasing the atomic cloud in time of flight. If a particular applications

requires continuous measurements of the persistent current state of a sample, the

desired measurement is impossible as all the atoms are lost in the time of flight mea-

surement. To solve this problem, we developed a minimally destructive, Doppler
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measurement of the superfluid flow in-situ. The Doppler effect, the shift in the

frequency of sound due to motion, is present in both classical gases and quan-

tum superfluids. This detection is performed by by imprinting phonon modes on

the condensate. A persistent current will drag the phonon modes along with it.

The circulation state can be determined by the precession of the density maximum

around the ring. More details can be found in chapter 5 and refs. [40].

• Effect of thermal fluctuations on superfluid decay and critical veloc-

ity: This experiment looked at the role of thermal fluctuations on the decay of

quantized persistent currents and critical velocity for creating excitations. A recent

paper [41] investigated the decay of persistent currents using two computational

approaches: Gross-Pitaevskii (GP) and Truncated-Wigner approximation (TWA)

simulations. GP simulations are done at absolute zero, while TWA simulations take

thermal fluctuations into account. It was found that GP simulations predicted a

deterministic decay of the superfluid current on a time scale of milliseconds, while

TWA simulations found that the decay of the supercurrent was stochastic. More

details can be found in chapter 6 and refs. [6].

• BECs as a test bed for cosmology: Given the length and time scale of cos-

mological events, it is impossible to replicate these conditions in the lab. To negate

this, ongoing research has focused on making analogies between cosmology and lab-

oratory systems like superfluids [42,43]. Unlike superfluid helium, BEC superfluids

can be held in all optical traps which makes it easier to subject the BEC superfluid
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to dynamic potentials. Using a digital micromirror device, we can change the mean

radius of the toroidal confinement, forcing the superfluid to follow the optical po-

tential. Since the natural speed of information transfer in a condensate is the speed

of sound, an expansion of the optical potential at a speed faster than the speed of

sound allows us to make connections to the early expansion of the universe. More

details can be found in chapter 7 and refs. [44].
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Chapter 2: Experimental details

The basics of laser cooling and trapping can be found in a textbook like [45],

while details specific to our experimental setup can be found in an earlier thesis from

our group [1]. In the six years since, multiple upgrades and procedural changes

have happened in the lab for enhanced performance and stability. This chapter

summarizes those upgrades and changes, and focuses on the experimental steps

during data acquisition.

2.1 Experimental setup

Any experiment involving a condensate begins by cooling down an atomic

beam. This atomic beam is generated from an oven. The cooled atomic beam is

then trapped in a magneto-optical trap, transferred to a magnetic trap and then

evaporatively cooled to get a condensate. The condensates made in our lab typi-

cally consists of about a million atoms. The heart of any Bose-Einstein condensate

experiment are the vacuum chambers, magnetic coils and the laser systems:

• Vacuum system: Our vacuum chamber consists of two parts separated by a gate

valve. On one side of the gate valve is the oven, with a typical pressure of 2× 10−7

torr. On the other side of the gate valve is the main chamber, where the BEC is
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created. On the oven side, sodium ampoules are heated to a temperature of 220◦C,

which is more than the melting point of sodium (96◦C). A fraction of sodium atoms

in the vapor state is extracted using a nozzle, which is kept at 330◦C. The nozzle

is kept hotter than the oven to prevent the possibility of lumps of sodium blocking

the nozzle. The extracted sodium atomic beam points towards the main chamber.

To lessen the workload on the ion pump pumping the oven side, a cold cup is used.

This cold cup provides a surface for the for the sodium atoms to stick which could

not make their way to the main chamber. The sodium atoms which stick to the

cold cup no longer contribute to the vapor pressure on the oven side. The cold cup

is cooled using Peltier coolers. The external surface of the Peltier coolers is cooled

using water cooling, unlike the previous generation of the experiment which used

air cooling.

On the other side of the gate valve is the main chamber, which has ultra

high vacuum (UHV). This is the part of the vacuum where the sodium atoms are

trapped, and evaporatively cooled to make a condensate. The condensate resides in

the center of a glass cell. The pressure reading in the main chamber using a gauge

controller is 8× 10−12 torr, which gives a vacuum limited lifetime of ≈ 25 s.

• Magnetic coils: The magnetic coils have remained unchanged during my time

here. We use multiple magnetic coils during our experiment. The Zeeman slower

coils help in slowing down the atomic beam coming from the oven by canceling the

shift in atomic resonances due to Doppler effect. The quadrupole field coils provide

the quadrupole field necessary for magneto-optical trapping, and later for magnetic

trapping using much larger currents. Our experiment also needs a reverse Zeeman
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slower magnetic coil, to cancel the residual field of the Zeeman slower at the center

of the glass cell. The last set of magnetic coils needed is the time orbiting potential

(TOP) trap, which is necessary for evaporative cooling (see section 2.2).

• Lasers: The laser used for cooling and trapping the atomic beam is a TA-SHG

pro model from Toptica. This is a high power frequency doubled, tunable diode

laser system, and provides us 1.2 W of power at 589 nm. The laser system is very

easy to use, and needs a minimal warmup time of 5 minutes. This is a substan-

tive improvement over the previous experimental configurations, which used two

Coherent 699 ring dye lasers for generating the cooling and repump light, which at

their peak performance would yield a combined total of only 0.8 W and were very

cumbersome to align. The experiment also uses two other lasers: a 1064 nm laser

and a 532 nm, both from IPG photonics. The 1064 nm laser is used for making a

red-detuned sheet trap for vertical confinement (see section 2.2). The 532 nm laser

is used for making a blue-detuned sheet, providing toroidal trapping potential and

a laser beam to imprint circulation state on the atoms (see section 2.2).

2.2 Experimental steps

Here I briefly summarize the experimental steps currently used in our sequence:

• Loading the magento-optical trap (MOT): In this step, an atomic beam

shutter between the source and the experimental chamber is opened up which allows

a beam of hot sodium vapor aimed at the main vacuum chamber to come through

a nozzle. A Zeeman slower and a reverse Zeeman slower is turned on, along with
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a circularly polarized beam consisting of a beam of power of 40 mW red-detuned

390 MHz away from the D2 cycling transition of sodium. This D2 cycling transition

is the transition between the ground state |F = 2〉 and the excited state
∣∣F ′

= 3
〉
.

Mixed with this slower beam is another laser beam with repumping light tuned to the

F=1 to the F
′
=2 transition and has around 20% the power of the slower beam (an

energy level diagram of sodium atoms is shown in figure 2.1). The laser beams and

the spatially varying magnetic quadrupole field necessary for a magneto-optical trap

(MOT) is turned on simultaneously with the slower laser beams and coils. A typical

MOT loading time in our experiment is 1.25 s, which can be increased or decreased

depending on the number of atoms needed to run a particular experiment. We use

a dark-SPOT MOT [46] configuration to increase the number of trapped atoms.

The MOT repumper beam used in tandem with the MOT trapping beams is in the

shape of a donut. Most of the sodium atoms are stored in the F=1 hyperfine state,

which does not interact with the trapping beams.

• Spin Polarization: After trapping the atoms in a magneto-optical trap, we have

to prepare to transfer the trapped atoms to a magnetic trap. For this purpose, the

atomic beam shutter is closed down, and both the Zeeman slower and the reverse

Zeeman slower magnetic coils are shut off. These steps are completed in 20 ms,

during which time the power in the MOT beams is cut down by half, this stage is

called the MOT handoff stage. Subsequently, the MOT repump beam is shut off by

closing the repumper AOM and a shutter. With no MOT repumper light to pump

atoms from the F=1 hyperfine state to the F
′
=2 hyperfine state, we can transfer

the atoms trapped in the MOT to the F=1 hyperfine state. In the F=1 manifold,
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Figure 2.1: This figure is taken from [1]. This figure shows the sodium D2

transition hyperfine structure. The 3S1/2 manifold makes the ground state and the

3P3/2 level makes the excited state manifold. The laser cooling and trapping is

performed on the F = 2 to the F
′
= 3 cycling transition. An external magnetic field

bias breaks the degeneracy of the hyperfine levels. The sodium atoms are transferred

to the |F = 1,mF = −1| state for magnetic trapping, which has been indicated by

an orange dot.
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the F=1, mF = −1 state is magnetically trappable as it is a low field seeking state.

While the F=2, mF = 1 and F=2, mF = 2 states are low field seeking states too,

they are not used for magnetic trapping. There are two reasons for this: first we

get a spin mixture in the trapped system and any non-stretched state like the F=2,

mF = 1 has a poor lifetime in a magnetic trap. This poor lifetime is a result of

spin changing collisions, which may render an atoms in a spin state that is not

magnetically trappable.

• Transfer to magnetic trap: Next, the current in the quadrupole magnetic field

coils is ramped from 4.9 A to 82.5 A (the magnetic gradient is 1.2 G/(A-cm)), creat-

ing a deep magnetic trap for transferring the atoms from the MOT to this magnetic

coils. In the next stage, we compress the quadrupole trap by ramping the current

from 82.5 A to 250 A. This compressed quadrupole trap has a higher temperature

but more importantly, a higher number density of atoms. This increased density

will become important during the evaporation process, where elastic collisions at a

fast rate are needed for the atoms to thermalize and cool down as radio frequency

(RF) radiation induces forced evaporation.

• Quadrupole RF evaporation: The atoms in a magnetic trap are typically at a

temperature of hundreds of µK. The phase space density under these conditions is

still many orders of magnitude away from Bose-Einstein condensation. The atomic

cloud can be cooled down further by using radio frequency (RF) induced evapora-

tion. Evaporative cooling works on the following principle: in a given potential, the

atoms having most kinetic energy can climb higher up the potential walls. If the

potential depth is decreased, the most energetic atoms are lost, the remaining atoms
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redistribute the energy by elastic collisions and the temperature of the remaining

trapped atoms comes down. In our experiment, we lower down the walls of the

trapping magnetic potential by sweeping the frequency of an applied RF field from

80 MHz to 10 MHz in 2.8 s using an Agilent 33250A function generator, with the

amplitude kept constant at 632.5 mV. As the RF frequency is being swept, any atom

that becomes resonant with the incident RF field undergoes a spin flip and is lost

from the trap. As the RF frequency is being swept from higher frequency to lower

frequency, the most energetic atoms lying at higher regions of the energy potential

are lost first, which mimics evaporation. We apply RF radiation provided by an RF

antenna which is powered by a 10 W RF amplifier.

• TOP trap: As we are cooling down the atoms, they loose kinetic energy. This

implies that atoms have a greater probability of being found lower in the energy

potential where they are trapped. One of the features of of working with atoms

trapped in a magnetic quadrupole field is the presence of a zero field in the center

of the field distribution. As the depth of the magnetic field is turned down lower

and lower to facilitate evaporation, the cooler atoms will have a greater probability

of making their way to the lowest part of the energy potential, which is in a zero

field configuration. Near the zero field, the atoms may experience random spin flips,

which may send them into an anti-trapped state. This is detrimental to making

large condensates, as the zero field in the magnetic trap allows the cooler atoms to

escape continually. This loss can be prevented either by having a blue-detuned beam

or by introducing a magnetic field bias. We did not choose the laser beam approach

as aligning the laser beam to the magnetic field zero is not only difficult, but we also
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have to contend with the fact that a blue detuned beam heats the cloud and that

the position of the magnetic field may change during the day due to thermal cycling

in the coils. We move the zero in the magnetic field by introducing two magnetic

fields with an oscillation frequency of 20 kHz and 90 degrees out of phase with each

other. These magnetic fields are created using two SRS frequency generators, whose

signals are amplified using RF amplifier. As the magnetic fields are out of phase

with each other, the resultant magnetic field keeps rotating at a speed faster than

the trapping frequency of the atoms, which means the atoms are continually trying

to track the ever changing field zero, but never reach it. This ensures trapping of

even the cooler atoms in the magnetic trap. This setup is called the time-orbiting

potential (TOP) trap. The TOP trap is turned on after the evaporation in the

quadrupole trap is complete.

• Death circle evaporation: In this step, the strength of the magnetic field

creating the TOP trap is instantaneously reduced, which means that the atoms

with higher kinetic energy residing far way from the trap minimum are lost, which

reduces the average kinetic energy in the trap leading to lower temperatures after

thermalization.

• TOP trap RF evaporation: In this step, a forced evaporation of the atoms

trapped in the TOP trap is carried out using RF radiation. The mechanism of this

evaporation as the evaporation in the quadrupole trap. In this step, the RF knife

edge from 13.6 MHz to 9.6 MHz. We are able to reach to temperatures down to

500 nK in the TOP trap, which is very close to the critical temperatures needed for

condensation.
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• Transfer to red-detuned dipole trap and set the z bias: The next step in

our experimental sequence is to transfer the atoms from the TOP trap to an optical

dipole trap. An optical dipole trap relies on the polarizability of atoms induced

by electric fields to confine atoms. The red-detuned trap used in our experiment is

produced using laser light at 1064 nm. The output light from a fiber is collimated

using a lens, the resultant Gaussian beam is made incident on a cylindrical lens

which elongates the Gaussian beam along a line into a “sheet”. This elongated

beam is focused on to the atoms using a spherical lens. This setup is discussed

in more detail in section 2.4.2. An optical dipole trap has multiple advantages.

First, it can trap atoms independent of the magnetic substate of the atoms. Also,

unlike a MOT which operates very close to resonance, the dipole trap is close to

500 nm detuned from the optical transition, which cuts down the scattering rate.

We perform another stage of evaporation in the dipole trap by lowering the optical

power. The power is ramped exponentially from its initial to final value in 3 s.

This brings the cloud to a temperature of 100 nK. At this temperature, the thermal

component constitutes a very small portion of the atomic cloud. A bias field of

1 G is kept on during evaporation, which is used to define the quantization axis

of the atoms. Defining the quantization axis of the condensate is important for

maintaining purity of the condensate and estimating the cross-sectional area of the

atoms for imaging purposes. A figure of the experimental sequence showing various

stages of evaporation has been shown in appendix A.

Our red-detuned dipole trap has several limitations. The first limitation comes

from the shape of the trap. The red-detuned trap has an elongated shape to max-
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imize the capture of atoms from the magnetic trap. For a given laser power, the

trapping volume of an elongated laser beam is more than the volume of a focused

Gaussian beam. This additional volume makes evaporative cooling sub-optimal,

and the lowest temperature we can reach is 100 nK. The second limitation of our

red-detuned dipole trap comes from etaloning in the glass cell. The main vacuum

chamber is made from a glass cell. As the laser beam for making the dipole trap

propagates, some of the laser light is back-reflected from the internal surface of the

glass chamber. The back reflected light may interfere with the incoming laser light

and make standing waves. The presence of such standing waves can easily be seen

by presence of density striations in the atomic density distribution. These density

modulations are unwanted. We minimize the affect of these modulations by ensuring

that the red-detuned dipole trap enters the glass chamber at Brewster’s angle.

• Turn on the crossed dipole trap: The atoms trapped in the red-detuned trap

are in oblong shape with the maximal spatial extent of around 150 microns. We

need this spatial dimension to ensure effective transfer of atoms from the TOP trap

to the dipole trap. However, the ultimate goal is to trap atoms in a ring with a mean

radius of 22 microns to study superfluidity. To make sure that this transfer occurs

with maximum efficiency, we turn on a crossed red-detuned beam with similar beam

diameter to the ring trap we have ultimately in mind. This results in atoms being

confined in their entirety to a diameter of 50 microns.

• Transfer to blue-detuned vertical trapping dipole trap: To overcome the

problems in the red-detuned sheet like interference fringes due to etaloning and to

go to lower temperatures when needed, we have an additional optional step. We can
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choose to transfer the atoms to a blue-detuned dipole trap where a blue-detuned

dipole beam is passed through a pi-phase plate. Destructive interference leaves a

notch in the beam, where atoms can reside. Since such a dipole trap can only

provide vertical confinement, the crossed dipole beam is turned on along with the

blue-detuned dipole beam at first. A key difference between a blue-detuned trap

and a red-detuned trap is that the temperature of atoms in a blue-detuned trap

will decrease if the intensity of the laser beam is increased, unlike a red-detuned

trap. We have seen that for our experiment, the temperature of a blue-detuned trap

decreases from 40(12) nK to 30(10) nK as the vertical trapping is changed from

518(4) Hz to 974(7) Hz. On the other hand, the temperature of a red-detuned trap

increases from 85(20) nK to 195(30) nK as the vertical trapping is changed from

520(10) Hz to 985(4) Hz [6].

• Transfer to toroidal trap: Once the crossed dipole beam is turned on, the

trapped atoms are disc shaped. The toroidal potential is turned on to full power

using a linear ramp, followed by turning off the crossed dipole trap. The power

used for the toroidal trapping potential is typically 1.5 times the spillover point.

The spillover point is defined as the minimum power needed to transfer the entire

condensate in the crossed dipole trap to the toroidal condensate.

• Experiments and imaging: To collect data after experiments, we use absorption

imaging [47]. The atoms in the optical trap are in the |F = 1,mF = −1〉 state. We

use microwave radiation to transfer a fraction of the atoms to the |F = 2,mF = −2〉

state, where they are imaged using a probe light. This variant of absorption imaging,

where we only image a small fraction of the atoms in called the partial transfer
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absorption imaging (PTAI) [1, 48]. We use PTAI to get an accurate description of

the azimuthal density profile of the toroidal potential. Imaging all the atoms in the

toroidal potential results in a high optical density. At these high optical densities,

the density variations cannot be detected with high fidelity [1].

2.3 Electronics development

This section describes the various electronics projects executed by me for a

more safe and reliable operation of the experiment.

2.3.1 Vacuum and Temperature Interlock

The vacuum chamber used in our laboratory was divided into two parts by a

gate valve, one part was the oven side and the other part was the main chamber side.

The oven side had the sodium source, and the main chamber side was where the

BEC is made. The development of a vacuum interlock to separate the main vacuum

chamber from the oven side was needed to prevent the contamination of the vacuum

in the main chamber, should a leak occur on the oven side. This development was

necessitated by an unfortunate incident in our laboratory, where a power outage

and subsequent power restoration left a turbo pump disabled, poisoning the vacuum

chamber with oil from the roughing pump. A interlock that would shut down the

gate valve in the case of a vacuum breach and then open up only after human

intervention was needed. I designed an interlock to implement this safety feature

(A schematic to implement this interlock is shown in figure 2.2. A detailed set of
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instructions on operating this interlock is provided in appendix A.).

This device was installed on the experiment after testing, and proved to be very

helpful. In over 4 years of operation, we had several occasions when the interlock

was called into play. In one event, the TEC (thermo-electric cooler) performance

degraded, bringing the temperature of the cold cup to -3 C, this meant that occa-

sionally a chunk of sodium would settle on the ion pump on the oven side, shorting

the electrodes and rendering the pumping speed to zero. This would cause the

pressure in the oven side to rise by 5 orders of magnitude, so the vacuum interlock

would shut down the gate valve. After baking the ion pump on the oven side, the

deposited sodium on the ion pump would release and the pressure would come down

to normal, but the gate valve would remain off till the clock button was hit.

A modification of the above circuit was made to monitor and interlock the

temperature of the magnetic coils making the Zeeman slower of our experiment.

Our Zeeman slower coil was only air cooled. If the duty cycle of the experiment was

too fast, the slower would heat up and increase the pressure in the experimental

chamber. To prevent this from happening, we wanted to turn off the slower coils

should the temperature reach 50 C. We used a temperature switch as a signal to

the flip flop and made a temperature interlock. The sensor used to generate a signal

whether the temperature was above a threshold was generated by a thermo-couple

switch with the part number LOVE TCS4011.
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Figure 2.2: The schematic in this figure shows the implementation of a vacuum

interlock. All the circuit components are digital, using components from the 7400

transistor-transistor logic (TTL) series. According to the naming convention: 7404

is a hex inverting gate, 7408 is a 2 input AND gate, 7432 is a 2 input OR gate and

7474 is a D flip-flop. The symbols VSS and PE denote a voltage of +5V and ground

respectively. Any symbol beginning with R and LED shows a resistor and a light

emitting diode respectively. The symbol DB9 shows the cable carrying info from

the vacuum gauge controller to the vacuum interlock. Toggle switches are denoted

by X3 and X4, X3 is the switch for disabling the interlock, while X4 is the switch

for manually enabling the interlock again. The output of the AND gate V3/1 goes

to the relay controlling the gate valve.
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Figure 2.3: The schematic in this figure shows the implementation of a digital

buffer. All the circuit components are digital. The input BNC signals U$5 and

U$6 are shown to the left, while the output signals U$1 and U$2 are to the right.

The optocouplers are depicted by the part number HPCL 7720. These optocouplers

couple the input side to the output side optically, cutting down on the electrical

noise and cross-talk between various channels. The part number 74AC125N shows

a one input digital buffer, where the output tracks the input. The symbols VDD and

VSS denote the +5V power supply to the input and the output side. The symbols

GND and GND1 denote the ground connection to the input and the output side.

The power supply to the input and the output side are kept separate to prevent

noise coupling.
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2.3.2 Digital Buffer

Efficient control of any experiment requires computer controlled switching on

the scale of microseconds. These digital TTL signals are generated by a pulse blaster,

a PCB board which creates multiple TTL signals. A breakout board is then used

to send these signals to different BNCs for instrument control. There is a possi-

bility of cross talk between various digital channels which may degrade the reliable

performance of the experiment. A buffer box was build to prevent this electronic

cross-talk from happening. A schematic circuit is shown in figure 2.3, which uses a

combination of optocouplers (HPCL 7720) and digital buffers (74HC125). An op-

tocoupler transfers signals by light, which prevents spurious voltages from affecting

the system. A digital buffer on the other hand tracks the input if the control signal

is held to high. Each signal line coming from the pulseblaster passes through a

separate optoisolator, and two signals share one digital buffer. We saw no evidence

of cross talk between two channels.

2.4 Optics Setup Development

2.4.1 Optical setup for ring potential

The main focus of thesis is to study superfluidity of a BEC trapped in a toroidal

geometry. To get reliable experimental data, the toroidal potential needs to be stable

and as smooth as possible in the azimuthal direction, so that irregularities in the

potential do not dominate the physics that we want to study. We have gone through
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several schemes to continually improve the quality of the toroidal confinement. Here

are some of the techniques explored:

• Diffraction grating and Vortex phase plates: The first method of trapping

sodium condensate in a toroidal confinement used a red-detuned laser beam. The

toroidal red-detuned beam was first made by passing a Gaussian beam at 1064 nm

through a diffraction grating. The second generation of the optical setup used

an alternative method by passing the beam through a vortex phase plate. The

vortex phase plate had a phase singularity, which converted a Gaussian beam to

an Laguerre-Gauss LG beam. The phase singularity was generated by varying the

thickness of a deposited polymer on a glass substrate, so different parts of the

beam underwent different phase shifts when they were transmitted through the glass

surface. Destructive interference created a hole at the center of the beam, which

then propagated forward as a LG beam. The RPC photonics wave plate we use

had multiple regions, each containing a phase singularity of varying charge. Each

unique phase singularity could generate a beam with a different angular momentum

beam (and a different hole size). This technique was abandoned as the azimuthal

symmetry of red-detuned beams was sub-optimal.

• Chrome deposited on glass: The next step was to explore the symmetry of the

potential created using a blue detuned trap. This was implemented by imaging a

Gaussian beam transmitted through a glass surface that had a ring shaped chrome

deposit. A beam transmitted through this amplitude mask has a hole in it the shape

of a ring as the chrome surface is reflecting. This beam was imaged on the plane of

the atoms. The atoms are repulsed by the blue-detuned light and they accumulate
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in the dark regions, which is in the shape of a toroid. We have found that the

potentials using a blue-detuned beam were smoother as compared to a red-detuned

beam. This was because the atoms accumulated in the dark-regions, and thus are

unaffected by the aberrations picked by a laser beam during propagation. Another

advantage of this method was that new traps with various radii were created more

easily, depending on the number on patterns created on a glass substrate. The

disadvantage of this method was that focusing and the alignment of the toroidal

trap with other traps is required every time a new geometry is chosen. This was

very costly time wise, given that a replacement of the mask and alignment of the

mask with other dipole traps could take hours. This also meant that we lacked the

capability to dynamically change our potential. The blue-detuned light was at a

wavelength of 532 nm.

• Digital micro-mirror devices (DMDs): The next advance in creating toroidal

traps came with the arrival of digital micromirror devices (DMD) to make toroidal

traps. This device is comprised of an array of microscopic mirrors, with one micro-

scopic mirror corresponding to the pixel of an image to be displayed. The toroidal

pattern is created after reflecting from the surface of a DMD. The mirrors can be

turned by an angle of 4 degrees, which results in the light at the projection plane

to be turned on or off. Since the device is digital, grayscale images are produced

by half-toning. We have used both, devices DLP3000 and DLP7000 on our experi-

mental setup, with the latter having more memory and faster upload rate of images,

typically on the order of 500 µs. This allows us to dynamically change the trap

potentials to explore new physics, or program the image on the camera to make the
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optical density distribution around the toroidal trap more uniform. We continued to

used blue-detuned light for this iteration since it produces more uniform potentials.

We have placed a DMD both in the imaging and the Fourier plane. We have used

the DMD placed in the Fourier plane to create aberrations free potentials in our sys-

tem. One caveat is that a DMD consumes more power than the methods described

earlier, as most of the power is wasted in scattering (where the mirrors have been

turned off) and diffraction into unwanted diffraction orders. For our experiment,

only 10% of the light introduced in the DMD arm made its way to the plane of the

atoms. The blue-detuned light was at a wavelength of 532 nm.

2.4.2 Red detuned dipole trap for vertical trapping

The red detuned optical dipole trap discussed in section 2.2 is used for storing

the atoms after evaporation in a magnetic trap. The beam used for generating this

potential is in shape of a sheet, generated by a cylindrical lens. The optical setup for

shaping the red-detuned beam into a light sheet is shown in figure 2.4. The optical

parts needed for making a light sheet include:

• SM1Z: This is a 2 axis translation stage from Thorlabs, on which an optical fiber

is mounted. It is compatible with a 30mm cage Z-Axis. These two axis along with

the base give us translational control of all the three directions. The optical fiber it-

self is from NKT Photonics with the part number LMA-PM-15FC / APC-PM-SMA

905. The fiber and the mounting stage are shown as ‘A1’ in figure 2.4.

• LMH-10X-1064: This is a high power MicroSpot focusing objective from Thor-
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Figure 2.4: Setup for shaping a red-detuned Gaussian beam into a light sheet. The

optical parts shown as A1,A2,A3 and A4 are a translation stage, focusing objective,

half wave-plate and a cylindrical lens respectively. Their part numbers have been

listed in section 2.4.2 .

labs, tuned to work at a wavelentgh of 1064 nm. The objective has a numerical

aperture of 0.25, working distance of 15 mm and a magnification factor of 10. This

objective collimates the beam coming out of the fiber. This objective is shown as

‘A2’ in figure 2.4.

• WPH05M-1053: This is a zero order half wave plate from Thorlabs, which is

1/2
′′

in diameter. This is used to cleanup the polarization of the laser beam coming

out of the optical fiber. This waveplate is shown as ‘A3’ in figure 2.4.

• CLCC-25.4-20.3-1064: This is a cylindrical plano-concave lens from CVI Op-

tics. This lens has a focal length of -40 mm, diameter of 25 mm and a radius of

curvature of 20.3 mm. This lens converts a Gaussian beam into an elongated beam

(light sheet). This is shown as ‘A4’ in figure 2.4.
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The light sheet is then steered by mirrors and then focused on to the atoms

using a spherical lens of focal length 200 mm. All the optical parts listed above are

mounted on a one axis translation stage. The entire assembly is placed in black

cardboad box for safety. The red-detuned beam is intensity locked using scattered

light.

2.4.3 Blue detuned potentials for vertical trapping

• Optical setup: As mentioned earlier, we use a blue-detuned dipole trap

for vertical confinement (alternative called the blue-detuned sheet) when smoother

potentials and lower temperatures are needed. When a red-detuned dipole trap is

used for vertical confinement (alternative called the red-detuned sheet), atoms are

transferred from the TOP trap to the red-detuned sheet. Atoms are cooled down

further by evaporative cooling till the thermal fraction is negligible, the optical power

of the red detuned is decreased in an exponential ramp. The condensate produced

is transferred to a toroidal trap after turning on a crossed-dipole trap.

An evaporation sequence in a blue-detuned sheet differs from an evaporation

sequence in a red-detuned sheet. We cannot perform an evaporation sequence and

hold on to the resulting condensate in a blue-detuned sheet, as there is no radial

confinement. To address this issue, a red-detuned crossed beam is also turned on

during an evaporation sequence in a blue-detuned sheet. A condensate is produced

by cutting down the power of the blue-detuned sheet and the crossed-dipole trap

during an exponential ramp, which results in evaporative cooling. The condensate
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can then be transferred to a toroidal trap. Note that we always perform the evap-

oration sequence when the atoms are present in a simply connected trap. We have

observed that performing evaporation in a often results in spontaneous circulation

states, which is undesirable.

The blue detuned sheet is generated by an IPG photonics fiber laser at 532 nm.

The output light from a fiber is collimated and a cylindrical lens creates an elongated

sheet beam. A schematic of the optical setup used to generate a blue detuned sheet

trap is shown in figure 2.5. The part number of the optical components needed for

the setup have also been indicated in figure 2.5.

• Blue-detuned sheet alignment procedure: The blue-detuned sheet has

to be aligned to the red-detuned sheet for optimal transfer of atoms between the

two atoms. As a first step, the pi phase plate is removed, and the collimating lens is

adjusted till a sharp image of the sheet is formed on an auxiliary imaging camera.

Then, the pi phase plate is but back in. The position of the red-detuned sheet is

recorded on the horizontal imaging camera. The blue detuned potential sequence is

run, and the position of atoms is recorded (see figures 2.6 anf 2.7 to know what a

good alignment looks like). For alignment purposes, the atoms are released in time

of flight by turning all other beams but the blue-detuned beam. There is no radial

confinement, so the atoms expand radially. This allows us to measure the position

of atoms in the blue-detuned trap with accuracy. If the blue-detuned trap is offset

in position from the red-detuned trap, it can be moved in the right direction by

adjusting the knobs of a steering mirror.
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Figure 2.5: Optical parts labeled in the figure are: A1 is fiber mount with transla-

tional adjustments in both the x and the y axis (Thorlabs part number C110TME-

A), A2 is a cage mounted polarizing beam splitter cube (Thorlabs part number

CM1-PBS251), A3 is cylindrical lens of focal length 40 mm, A4 is an iris for align-

ment purposes, A5 and A6 are mirrors, A7 is an achromat of focal length 300 mm

used to measure the power in the beam (Thorlabs part number AC508-300-A1),

A8 is a pi phase plate, A9 is an achromat of focal length 200 mm and A10 is a

photodiode to intensity lock the beam (Thorlabs part number PDA36A)
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Figure 2.6: The above image is a false color absorption image of the atoms when

they are are being transferred from the TOP trap to the blue-detuned sheet. This

image shows a situation when the relative position of the TOP trap and the blue-

detuned trap is adjusted for maximum transfer efficiency. The picture follows a

false color scheme, dark blue and dark red represent regions of regions of lowest and

highest atomic density respectively. In the picture above: three separate atomic

clouds labeled as A,B and C can be seen. The atomic cloud on the left, shown as

‘A’, is a group of atoms that were transmitted through the blue-detuend sheet after

being released from the TOP trap. The atomic cloud on the center, shown as ‘B’, is

a group of atoms that were captured by the blue-detuend sheet after being released

from the TOP trap. The atomic cloud on the right, shown as ‘C’, is a group of

atoms that were reflected by the blue-detuend sheet after being released from the

TOP trap. The gravitational field acts from the right to the left. This image was

taken using horizontal imaging system.
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Figure 2.7: The above image is a false color absorption image of the atoms when

they are are being transferred from the TOP trap to the blue-detuned sheet. This

image shows a situation when the relative position of the TOP trap and the blue-

detuned trap is adjusted for minimum transfer efficiency. The picture follows a

false color scheme, dark blue and dark red represent regions of regions of lowest

and highest atomic density respectively. In the picture above: two separate atomic

clouds labeled as A and B can be seen. The atomic cloud on the left, shown as

‘A’, is a group of atoms that were transmitted through the blue-detuend sheet after

being released from the TOP trap. The atomic cloud on the right, shown as ‘B’, is

a group of atoms that were reflected by the blue-detuend sheet after being released

from the TOP trap. No atoms were trapped in the sheet trap, and hence cannot be

seen in the time of flight images. The gravitational field acts from the right to the

left. This image was taken using horizontal imaging system.
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2.4.4 Imprinting a circulation state

In the previous subsection, we described the methods to obtain a toroidal

condensate. We use this trapped condensate to study superfluidity. One of the

important questions in superfluidity is the decay of persistent currents. The study

of persistent current decay requires us to have the ability to imprint circulation

states deterministically on the toroidal condensate. The earlier generations of the

experiment used a Raman transfer process between a LG1
0 and a Gaussian beam to

transfer the toroidal condensate from one circulation state to another [49]. However,

all the experiment in this thesis use a focused, blue-detuned laser beam to imprint

a circulation state. This laser beam is moved around the toroidal potential using a

two-axis acousto-optic deflector (AOD). This AOD is used to move the laser beam

around the toroidal potential typically at an azimuthal frequency of 1 Hz and at

a radial frequency of 8 kHz. The azimuthal frequency is chosen to transfer all the

atoms from the ground state to the 1st circulation state. The radial frequency

is chosen to create a time averaged potential, which can mimic the motion of a

mechanical object dragging the superfluid across the cross-section of the toroidal

potential.
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Chapter 3: Interferometric Measurement of the Current-Phase Re-

lationship of a Superfluid Weak Link

In this chapter, we study how the circulation state of the persistent current

can be determined interferometrically and show a measurement of the current phase

relationship for a weak link inserted in a toroidal condensate. This chapter also looks

at the how these interference patterns evolve in time. The content of this chapter is

based on these published works [3, 50].

1) “Interferometric Measurement of the Current-Phase Relationship of a Su-

perfluid Weak Link”, S Eckel, F Jendrzejewski, A Kumar, CJ Lobb and GK Camp-

bell, Physical Review X, 4, 031052

2) “Self-heterodyne detection of the in situ phase of an atomic superconducting

quantum interference device”, R Mathew, A Kumar, S Eckel, F Jendrzejewski, GK

Campbell, M Edwards, and E Tiesinga, Physical Review A, 92, 033602
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3.1 Overview

A common approach in experimental physics is to vary a physical quantity

and record the response of the experimental sample under investigation, allowing

the construction of a functional response of the sample. For example, when studying

electronics, two commonly used components are resistors and diodes. The current

flowing through these components can be recorded as a function of the applied

voltage difference. The behavior of these components are in sharp contrast. The

current flowing through a resistor is linearly proportional to the voltage applied for

metallic conductors, with the constant of proportionality known as the conductivity

of the resistor. For a diode, the current flowing through it as a function of the

voltage applied is an exponential. Since the current in these components occurs due

to movement of the electrons, the current-voltage relation presents information on

the transport of electron through these components.

3.1.1 Tunneling in quantum degenerate systems

The current transport in superconductors differs from normal metals as it is

Cooper pairs that participate in the transport, and not individual electrons. While

it was initially thought that the Cooper pairs cannot be transported through normal

metal, Josephson calculated that when two superconductors are connected with a

region with a weak link, there can be flow of supercurrent through the weak link by

quantum tunneling [51]. This weak link could be a normal metal, a superconductor

with lower cross-sectional area or even an insulator. He predicted that the current
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flowing across the weak link would depend on the phase difference of the wavefunc-

tion of the two superconductors. He predicted that for a weak link narrower than

the healing length, the current flowing would be a sinusoidal function of the phase

difference. The current phase relation thus plays a similar role to the current voltage

relationship in electronic components like resistors and diodes. The time evolution

of the phase difference depends on the voltage difference across the weak link.

Soon after the experimental proof of Josephson tunneling, researchers started

using these junctions for making sensitive magnetometers. In these magnetometers,

a superconductor in the shape of a ring was constructed with either one or two weak

links. The device with one weak link in the superconducting loop was called the

radio frequency superconducting quantum interferometric device (rf-SQUID) [34].

As the magnetic field incident on the rf-SQUID is changed, the current changed to

conserve the fluxoid conservation [34]. As the current reaches its maximum value

(critical current), there is a phase slip and a magnetic flux quantum enters the loop.

This can be used to characterize the magnetic field very accurately. It was also

found that the current phase of the depleted region separating two superconductors

is not always sinusoidal: when the depletion region is much greater than the healing

length, the current phase relation is linear. The region of linear current phase

relation is also known as the phase slip regime. It was also found that for certain

value of the critical current, the current phase could be multiple valued, or the

system would be hysteretic. Later, loops with two depleted regions were also used

for better sensitivity.

Once the tunneling of superconducting Cooper pairs across weak links was
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demonstrated, efforts were also made to observe these effects in other macroscopic

quantum degenerate objets like superfluids. The first demonstration of oscillating

mass currents across a weak link separating two reservoirs of superfluid 3He was

made in [52]. In a superfluid, the chemical potential difference across the weak link

acts as the voltage difference. The first demonstration of a continuous transition

of the current phase relationship from linear to sinusoidal was shown in superfluid

helium [53].

3.1.2 Phase coherence of BECs

The realization of dilute alkali BECs gave physicists access to one more macro-

scopic quantum degenerate system. Soon efforts began to see Josehpson effects in

BECs, where two BECs would be separated by a repulsive laser beam, which creates

the depleted superfluid density region. Some of the first theoretical work looking at

these effect in BECs [54] predicted that a BEC Josephson like junction will not only

exhibit the a.c. and d.c. analogues of Josephson junction, but also exhibit effects

like macroscopic self-trapping due to interaction between the condensate atoms. The

presence of a.c. and d.c. Josephson effects in a BEC was shown in [55]. The exis-

tence of self trapping in a single Josephson junction was shown in [56]. Predictions

were also made about the current phase relation of a BEC flowing through a weak

link [57].

This thesis focuses on the study of a weak link in a toroidal condensate, which

is analogous to the case of a rf-SQUID. Previous experimental data in our lab
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[58] has shown good agreement to theoretical models by assuming that the current

phase relation for our system is the sum of a linear and a sinusoidal term. As

an example, this model is able to explain how the persistent current state of the

toroidal superfluid changes as a function of the drive frequency of the weak link [58].

However, the current phase relationship for a superfluid BEC flowing through a weak

link in a toroidal trap could not be measured directly in this work [58]. The current-

phase relationship for superconductors and superfluids has been measured before.

We implement an interferometric technique to determine the current phase relation

of our weak link directly. In addition, we also implement a technique which allows a

one-shot determination of the circulation state, without extensive calibrations every

time we changed the geometry of the ring trap. To do that, we add a phase reference

to the toroidal trapping geometry, which is formed by a disc of atoms. There is no

connection between the atoms in the ring and the disc. As the atoms cannot tunnel

through the barrier between the disc and the ring traps, their phases are independent

of each other. This chapter explains the experimental and analytical procedure used

to extract the current phase relation.

3.2 Experimental setup

For this experiment, the atoms were trapped in a combination of toroidal and

a disc trap. This combined potential is called the “target” trap. This trapping

potential was created by using two crossed laser beams: one of the laser beams

was a red-detuned sheet shaped laser beam and the other beam was a blue-detuned
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intensity masked which had been masked with a toroidal potential. The mask was

made from chrome deposited on glass substrate. The blue-detuned weak link was

generated using a Gaussian shaped repulsive potential with a 1/e2 full width of

6 µm. This beam was scanned radially around the mean radius of the toroid at a

high frequency of 8 kHz, so the atoms felt a time averaged potential across the cross

section of the ring. This scan rate was much faster then the timescale associated

with the chemical potential of the BEC, which was ≈ 3 kHz. The same Gaussian

beam was also used to imprint a circulation state by moving the beam around the

ring. The ring potential had a mean radius of 22.4(4) µm with a radial Thomas-

Fermi width ≈ 6 µm. The total number of atoms in the combined target potential

was 8 × 105, with about a quarter of them in the disc trap. The radial trapping

frequency of the toroidal trap was ≈ 390 Hz, the vertical trapping frequency is ≈

500 Hz. To prepare the toroidal condensate in a well defined persistent current

state with a fidelity of 0.95, the beam generating the weak link was ramped to an

intensity of U = 1.2µ0 in 300 ms, kept constant for 400 ms, and them ramped down

to zero in another 300 ms. The stirring was done at a constant rate of ±0.95 Hz,

which was slightly more than the quantum of circulation in the ring. These values

were found empirically. To investigate the current phase relation, the weak link was

added again and moved at different speeds. In this stage, the weak link was raised

to a strength U less than the chemical potential. The laser beam making the weak

link was raised to its final strength in 300 ms, kept constant for another 700 ms. At

this point, all the traps were turned off and the atomic density distribution imaged

in time of flight. We imaged the plane of the radial confinement using absorption
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imaging.

3.3 Analysis of the Interferogram

3.3.1 Extracting the winding number

All the time of flight images end up in the destruction of the atomic cloud, so

we get one data point per experimental run. Over the course of the day, we often

take over thousand spiral images a day. Analyzing these interferometric patterns by

the hand is tedious and prone to human errors, so an image processing algorithm was

needed to automate this process. Further, to determine the current phase relation of

the weak link, the exact shift of the spirals in the radial direction cannot be assigned

by the eye. Another algorithm had to be developed to automate the current phase

extraction as well. This algorithm has been explained in detail in the paper [50],

here we list the important steps:

1) An optical density distribution image of the atoms in time of flight is extracted

from the three images acquired for absorption imaging. A phase component analysis

(PCA) is used to mitigate the effect of background fluctuations on the image quality,

and the atom number is extracted using the knowledge of the cross sectional area

of the atoms.

2) A low pass filter with a Gaussian half width of 1/e2 width of 2 pixels is applied

to the image. This smooths out all the fluctuations on the length scale of a single

pixel. Since the resolution of the imaging system is ≈ 5 pixels, this smoothing out

does not smear out the recorded signal.
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3) Next, a high pass filter with Gaussian half width of 1/e2 width of 8 pixels is

applied to the image. This filtering removes the fluctuations which occur in the

background on much larger scales.

4) The resultant filtered figure is then converted from a Cartesian coordinate system

(x-y) to a polar coordinate system (r − θ) with the radius and the azimuthal angle

as the coordinates. We now have a discrete set of radii and azimuthal positions for

which we have a filtered atomic density distribution data.

5) For each azimuthal position, we take a Fourier transform of the atomic density

distribution with respect to the radial position. This yields the spatial frequency

spectrum for a given azimuthal position. This procedure is repeated for each az-

imuthal position, and the average of the spatial frequency spectrum with respect

to the azimuthal position is found. The spatial frequency with the maximum value

corresponds to the average spacing between two interference fringes.

6) Next, the magnitude and the phase of the maximum spatial frequency is found

as a function of the azimuthal angle. The change in this phase ∆φ as we complete a

revolution around the ring (cover a distance of 2π azimuthally) is determined. This

phase is equal to 2πm, where m is the circulation state of the superfluid.

3.3.2 Extracting the current phase relation

The interference between a persistent current state and a phase reference disc

yields only azimuthal fringes when the weak link is turned off during time of flight.
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When the weak link is turned on during time of flight, both azimuthal and radial

fringes appear. To characterize the drop in phase across the weak link, we repeat

steps 1 to 5 as before and then these additional steps are performed:

7) The two most dominant dark fringes closest to position of the weak link are

identified. The maximum spatial frequency is recorded, and then the phase of these

fringes is determined. This phase gives important information on the position of the

relative minima of the fringes. The fringe tracing is done by using these minima. To

prevent large scale of fluctuations in the extracted phase because of the weak link,

this fringe tracing is stopped ± 5◦ away from the position of the weak link.

8) Once the radial coordinates r(θ) of these fringes are extracted, we fit the radial

positions to the weak link using the function r(θ) = c1θ
2 + c2θ + c1 + cdΘ, where

Θ is the Heaviside function and cd is the strength of the Heaviside function. Since

the 1d azimuthal velocity in the bulk of the condensate is effectively constant, we

expect the phase to have a linear profile along the bulk, the Heaviside function takes

the phase drop across the weak link into account and the quadratic term takes the

curvature of the spirals into account. This curvature may arise due to non-uniform

1d density around the ring or an incorrect center used for coordinate transformation.

9) Each fringe spacing, |Fm|, is equivalent to a phase difference of 2π, so the lateral

displacement of the fringes cd divided by the fringes spacing gives the phase jump

α because of the weak link, where α = 2πcd/|Fm|. The fringe spacing is determined

from the predominant Fourier component.
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3.4 Theoretical model

We use local density approximation (LDA) for our analysis, which assumes

that the density of a condensate is uniform locally. This assumption holds true

when the length scale over which the density changes is greater than the healing

length of the condensate. When LDA holds, the density distribution for stationary

superfluids in the presence of an external potential is given by a Thomas-Fermi type

of solution:

gn3d = µ− V (r, θ, z), (3.1)

where n3d is the three dimensional atomic density, V (r, θ, z) is the confining po-

tential, µ is the chemical potential and g is the interaction strength between two

superfluid atoms assuming only s-wave collisions [1]. By integrating along the radial

and the vertical degrees of freedom, we obtain a general relation:

µ = b
√
n1d(θ) + V (θ), (3.2)

where n1d(θ) is the number density along the azimuthal direction, V (θ) is the az-

imuthal potential and b is a numeric constant. The numeric constant b is determined

by the trapping frequencies, the mean radius of the ring, and the interaction param-

eter g. In the presence of superfluid flow, the above equation has to be modified to

take the kinetic energy of the flow into account. The modified chemical potential

becomes:

µ =
1

2
mv(θ)2 + b

√
n1d(θ) + V (θ) (3.3)

The above equation 3.3 is analogous to the Bernoulli equations for classical
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Figure 3.1: Figure taken from [2]. Example of a possible phase/density profile

around the ring. The phase profile has been evaluated in a frame co-rotating with

the weak link. The green curve shows the density and the blue curve shows the

phase. As we are in the rotating frame, the phase accumulated around the ring by

the velocity (as measured in this frame) must be equal to 2π(Ω/Ω0) − 2π`, where

` is the circulation state. The additional phase drop due to the weak link γ is also

shown in the figure.

fluids, which states that the sum of pressure, kinetic and potential energy of a

fluid remains constant. In contrast, the above equation is valid for superfluids

only when the quantum pressure term can be neglected and the chemical potential

remains constant throughout the ring. This relationship can be used to solve for

the velocity and density at all points around the ring. To obtain the azimuthal

distribution of density and velocity, we transform ourselves in the frame of the

weak link. The advantage of this Galilean transformation is that the azimuthal

density distribution becomes time independent, as the perturbing potential is now

stationary. The current flowing through the weak link is given by Iwl = n1d(θ)vr(θ),

where vr(θ) is the azimuthal velocity in the frame rotating with the weak link.

The current through the cross-section of the toroidal potential is a constant by the
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continuity relation. If the weak link is rotating with a weak link Ω, then the velocity

in the rotating frame is related to the lab frame by the Galilean transformation

v(θ) = vr(θ) + ΩR, R is the mean radius of the ring. Since the velocity of the

superfluid is proportional to the gradient of the phase, the phase φ around around

the ring as a function of angle is given by:

φ(θ) =
m

h̄

∫ θ

−π
(v(θ

′
))Rdθ

′
=
m

h̄

∫ θ

−π
(vr(θ

′
) + ΩR)Rdθ

′
(3.4)

The contribution to the total phase from the second term (m/h̄)
∫

ΩR2dθ is

the Sagnac (Peirels) phase. As shown in the figure 3.5, if we suppose the phase

starts at 0 when θ = −π it must equal 2πΩ/Ω0 − 2π` when θ = π to ensure that

the full wavefunction is single valued.

3.5 Non-quantization of the angular momentum

While the circulation state of a toroidal superfluid is always quantized, the

angular momentum associated with the flow is only quantized in the absence of a

weak link. To prove this, we consider the special case when the superfluid is in the

` = 0 circulation state and that the kinetic energy of the superfluid is small, which

is true in the Thomas-Fermi approximation. This means that the azimuthal density

distribution is independent of the flow velocity and is only dependent on potential

around the ring. The angular momentum due to the superfluid flow around the ring

is given by:

L =

∮
mRn1d(θ)v(θ)Rdθ (3.5)
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To compute the velocity distribution, the current through the weak link is calculated

first using the constraint that the total phase drop around the ring will be zero for

a ` = 0 circulation state:

m

h̄

∫ π

−π

(
Iwl
n(θ)

+ ΩR

)
Rdθ = 0 (3.6)

Since the current through the weak link will be a constant, the current will depend

on the azimuthal average of the density distribution around the ring:

Iwl = − ΩR

〈1/n1d〉
, with 〈1/n1d〉 =

∫ π

−π
[1/n(θ)]

(
dθ

2π

)
(3.7)

This means that the velocity in the lab frame will be v(θ) = Iwl/n(θ) + ΩR

L = mR

∮ [
− ΩR

〈1/n1d〉
+ n1dRΩ

]
(3.8)

L = mR3Ω

∮ [
− 1

〈1/n1d〉
+ n1d

]
(3.9)

Since 〈n1d〉 6= 1/(1/ 〈n1d〉), the angular momentum around the ring is non-zero, even

though the superfluid is in the circulation state ` = 0 with a net phase drop of 0

radians around the ring.

3.6 Experimental results

For finding the persistent current state, the atoms are released in time of flight.

As the trap is turned off, the potential energy is released into kinetic energy and both

the ring and the disc condensates expand radially. When the two clouds meet, they

interfere. Assuming that the wavefunction of the toroidal condensate and the disc

condensate are represented by the ψr and ψd respectively. An interference pattern
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between these wavefunction will yield the pattern proportional to (ψ∗r + ψ∗d)(ψr +

ψd) = ψ∗rψr + ψ∗rψd + ψ∗dψr + ψ∗dψd. The last term, which is the self interference

term of the disc condensate does not produce any interference. The interference

term between the ring and the disc Prd = ψ∗rψd + ψ∗dψr produce interference fringes

when they expand such that they can overlap. The first term results when the ring

condensate interferes with itself Pr = ψ∗rψr. This happens when the ring expands

such that the width of the ring approaches the value of the radius of the ring. Then

the opposite sides of the ring can interfere. Since the formation of Pr occurs at later

times (shown later in the chapter), they are below the detection threshold of our

imaging system.

We first consider the case when there is no persistent current flow in the

ring and both the condensates are at rest before being released. We observe that

the interference fringes in this case are concentric circles. As the condensates are

released from the trap, they pick up an additional phase due to their motion, which

is predominantly in the radial direction. We assume that the phase of the disc is ξbd

before the expansion and it picks up an additional phase of ξad during the expansion.

Similarly, the the phase of the ring condensate is ξbr before the expansion and it picks

up an additional phase of ξar during the expansion. An interference fringe is formed

at those radial locations where the phase difference between the two condensate is

a integral multiple of 2π, i.e. ξad + ξbd − ξar − ξbr = 2kπ, where k is an integer. Since

there is no azimuthal variation in phase of both the disc and ring, the radial distance

atoms from separate points of the ring have to travel to reach a site of constructive

interference is also the same. Hence the interference pattern consists of concentric
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Figure 3.2: Figure taken from [2]. (a) In-situ image of the ring and disc BECs.

The dimensions can be estimated using the scale bar shown in the figure. (b) Ex-

ample interferogram after 15 ms time-of-flight (left) when there is no current in the

ring. Traces of the azimuthal interference fringes extracted from an image process-

ing algorithm have been drawn as a guide to the eye (right). (c) Interferograms

for various winding numbers, where the arrow indicates the direction of flow. (d)

Traces of the interference fringes to guide the eye and count the number of spiral

arms. The extracted winding number is also shown.

circles. The spacing between any two fringes corresponds to a phase difference of

2π.

We next consider the case when there is a persistent current state in the

toroidal condensate. In this case, the phase φ varies linearly around the ring as

a function of the azimuthal position θ. The relation is given by φ = `θ, where `

is the circulation state of the superfluid. We assume that the azimuthal variation

of the condensate 1d number density and velocity are minimal. The persistent
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current causes a uniform phase gradient across the ring trap in the absence of a

weak link. Since there is linear variation in the phase around a ring as a function of

the azimuthal angle, the radial distance for a given fringe also changes approximately

linearly as function of the azimuthal angle. This variation yields a spiral (Fig. 3.2).

This gives us the capability to find the chirality and the persistent current state in

one shot.

The interference patterns are changed significantly when a density perturba-

tion (weak link) is kept on when releasing the atoms in time of flight. For these

experiments, the weak link has a strength less then the chemical potential. In this

case, the atoms on either side of the weak link expand azimuthally towards each

other and interfere, causing additional set of interference patterns to appear (see

figure 3.3). We will use the following nomenclature from now on: if we track an

interference fringe and the density minimum associated with the fringes moves az-

imuthally, we call it an azimuthal fringe. If the minimum moves radially, the fringe

is called a radial fringe. If a given radial fringe is traced through the weak link, the

lateral displacement of the fringe with respect to the fringe spacing can be used to

find the phase drop across the weak link. We assume that the phase picked up by

the flow of the current around the ring is given by α, and that the mass current

flowing through the bulk condensate is Ibulk = (n1dh̄∇φ)/m = (n1dh̄α)/(m2πR).

Here Ibulk is the mass current through the bulk condensate, n1d is the 1d number

density, m is the mass of one superfluid atom, R is the mean radius of the toroidal

potential and ∇φ is the gradient of phase of the wavefunction. The mass current

of a superfluid in its first persistent current (I0 = n1dΩ0R), where Ω0 = h̄/(mR2) is
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Figure 3.3: Figure taken from [2]. (a) Schematic of the atoms in the trap

with a weak link applied. The coordinate system used throughout is shown; θ = 0

corresponds to the x̂ axis. (b) A close up of the weak link region. When the weak

link is rotated at Ω, atoms flow through the weak link as shown by the stream lines.

Larger velocities along the stream lines correspond to darker lines. (c) The resulting

density n(θ), velocity v(θ), and phase φ(θ) as a function of angle, with the phase

drop γ across the weak link shown. (d) Method of extracting the the phase from an

interferogram (left). First, we trace the interference fringes around the ring (center)

and then fit the discontinuity across the region where the barrier was (right).
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the angular velocity of the first circulation state. The current flowing in the bulk

when normalized by the mass current of a superfluid in its first persistent current

(I0 = n1dΩ0R) state is given by Ibulk/I0 = α/(2π). We measure Ibulk as a function of

the rotation rate, Ω, of the weak link for multiple strengths of the weak link. Mea-

surements for four such weak link strengths are shown in figure 3.4. We see that

at two weak link strengths, there is a change in the circulation state (or a phase

slip) and Ibulk/I0 as a function of rotation rate of the weak link is multiple valued,

which ceases to be the case as the weak link strength is increased. The gray lines

shown in 3.4 correspond to the solid body rotation limit, in which the weak link has

a strength greater than the chemical potential. In this limit, the superfluid cannot

penetrate the weak link and is dragged along with the same speed as the weak link.

We see from the above plots that even when the superfluid is in a persistent

current state of ` = 0, when the weak link is rotated there is still a mass flow. As

the the weak link is rotated around the ring, the number of atoms that flow through

the weak link depends on the density difference in the weak link and the bulk of the

superfluid. As the phase drop around the ring must still be zero (the superfluid is

in the persistent current state ` = 0), there must be some current in the weak link

which cancels the effect of fluid flow through the weak link. Once the bulk mass

current has been determined, we can find the current through the weak link in the

frame of the weak link to be Iwl = n1dRΩ − Ibulk, while the phase drop across the

weak link γ will be γ = −2πIbulk/I0 = −α. Using these relations together, we can

find the current phase relation of the weak link, as shown in figure 3.5. We find

that the current phase relation for our weak link is linear, as our weak link is about
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Figure 3.4: Figure taken from [2]. Plot of the normalized current around the bulk

of the ring, Ibulk/I0 = α/2π, vs. the rotation rate Ω of the weak link for four different

weak link potential strengths U : (a) 0.45 µ0, (b) 0.6 µ0, (c) 0.7 µ0, (d) 0.8 µ0. The

solid lines are the prediction of local density approximation (LDA) model. The

dashed, vertical lines show the predicted transitions between the different winding

number branches. The thin, gray, diagonal lines represent the limit of the solid body

rotation, when all the atoms in the condensate move around the bulk of the ring

with the weak link, i.e., Ibulk = n1dRΩ.
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Figure 3.5: Figure taken from [2]. (a) Derivative of the initial bulk current

dIbulk/dΩ vs. U , normalized to the expected value in the limit where U/µ0 ≥ 1, n1dR.

The solid line shows the prediction of the LDA model. (b)–(d) Extracted current-

phase relationships from the data in Fig. 3.4, for three different weak link potential

strengths U : (b) 0.45 µ0, (c) 0.6 µ0, (d) 0.7 µ0. γ is the phase across the weak link

and IWL is the current through it, normalized to I0 = n1dRΩ0 ≈ 5 × 105 atoms/s.

The solid curves represent the prediction of our theoretical model. The dashed

lines merely guide the eye by connecting the multiple branches of the current-phase

relationship.

72



an order of magnitude greater than the healing length. Hence we are far away from

the Josephson junction regime where the healing length is of the same order of the

weak link and the current phase relation is sinusoidal.

3.7 Tracking the time evolution of spirals

The previous sections explain how a ‘target trap’ interferometer allows a single

shot determination of the persistent current state, and the current phase relationship

of a weak link. However, limitations of the experiment prevent us from answering

the following questions:

• A typical ‘target trap’ interferometer uses 8 × 105 atoms. What is the minimum

number of atoms needed to make an interferometer? In an actual experiment, we

observe that we cannot make a multiply connected trap for low atom numbers.

• What happens to the interference patterns at long time of flight? In the actual

experiment, the atomic cloud begins to fall outside the field of view of the imaging

system after 30 ms time of flight.

• What is the role of interatomic interactions in the interferogram? We do not

have the capability to turn off the interatomic interactions for sodium atoms in our

experiment, which arise predominantly from s-wave collisions.

To answer these questions, our theoretical collaborators applied both numerical

and analytical asymptotic expansion techniques to the problem of a single atom

placed in an interferometer. While the details of their work can be found in ref. [3],

we summarize the important results from their work:
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1) They placed a single atom in the ‘target trap’ interferometer. The wavefunction

of a single atom was a coherent superposition of the wavefunction of the toroidal and

the disc potential. The expansion of the condensate was first followed numerically

by solving the Schrodinger equation. The confining potential was turned off, so it

was easier to solve the time propagation in the momentum space, where the kinetic

energy appears as a phase factor. The wavefunction in the r − θ space was Fourier

transformed to the momentum space, the phase factor for the kinetic energy is

applied and the wavefunction was Fourier transformed back to the r− θ space. The

numerical simulations showed the emergence of spirals as soon as the toroidal and

the disc wavefunctions overlapped.

2) They found using analytical estimates that the toroidal wavefunction as a function

of time was given by:

χS(r, θ, t) =
[
e−(r−R)2/[2σ2

S(t)]ϕS(θ) (3.10)

+ e−(r+R)2/[2σ2
S(t)]ϕS(θ + π)

]
/(N2(t)

√
r) ,

where R was the initial mean radius of the toroid, ϕS(θ) was the in-situ toroidal

wavefunciton, N2 was a normalization constant, σS was the initial mean width of the

toroid and σS(t) was the width of the toroidal wavefunction as a function of time.

The width as a function of time was given by σ2
S(t) = σ2

S + ih̄t/m. At small times of

flight, the first term of equation 3.10 was the dominant term, while at later times of

flight, both the term were contributing. The first term by itself lead to spirals in the

time of flight, while the second term lead to rings in the interference pattern. The

rings emerged in the time of flight when the width of the toroidal condensate became

74



comparable to its radius. While the rings were seen in numerical simulations, they

could not be seen in actual experimental data.

The analytical results also showed that the spacing between any two fringes

δ showed a linear dependance on the time of flight t, i.e. δ = 2πh̄t/mR. We

took experimental data at multiple times of flight to verify this prediction. This

set of data was taken without any circulation state state imprinted on the toroidal

condensate. The spacing between radial fringes at any given time of flight was

extracted using the techniques described previously. The experimental results, along

with the values from the numerical simulations and analytical estimates have been

plotted in figure 3.6.

3) Previous work has shown that an interacting BEC will expand faster than a non-

interacting cloud [59, 60]. We found this to be true even for our system. While the

analytical estimates were derived for the case of a single atoms placed in the ‘target

trap’ interferometer, the numerical simulations were performed using GP simula-

tions. These simulations calculated the initial wavefunction using the Thomas-Fermi

approximation. In this approximation, the kinetic energy of the atoms is much less

than the interaction energy and is neglected.
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Figure 3.6: Figure taken from [3]. The radial spacing between azimuthal fringes

is shown as function of time. The experimental data is for a condensate with no

circulation state and weak link present before releasing the atoms in time of flight.

The experimental, GPE and single-particle fringe spacings are shown by red dots

with one-standard deviation statistical error bars, blue markers and a black line,

respectively. The value of R has a uncertainty, which arises from the fit function.

This uncertainty is shown by the shaded region around the blackline.
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Chapter 4: Resonant wavepackets and shock waves in an atomtronic

SQUID

In this chapter, we study the excitation spectrum of a toroidal Bose-Einstein

condensate superfluid with a weak link. We measure the excitation spectrum by in-

troducing a density perturbation (alternatively called a weak link) in the confining

potential, and driving the weak link harmonically in either intensity or spatial posi-

tion. The resonance frequency is determined by looking at the atomic loss spectrum

at various drive frequencies. This work has been previously described in the published

work [4].

“Resonant wavepackets and shock waves in an atomtronic SQUID”, Yi-Hsieh Wang,

A Kumar, F Jendrzejewski, Ryan M Wilson, S Eckel, GK Campbell, and CW Clark,

New J. Phys. 17, 125012.

I contributed to the experimental data acquisition and the analysis.
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4.1 Overview

In the previous chapter, we looked at the current phase relationship of a weak

link in a toroidal BEC superfluid. A single weak link in the toroidal confinement is

the equivalent of a radio frequency superconducting quantum interferometric device

(RF-SQUID) in superconductors. The RF-SQUID is used as a magnetic field sensor.

The analog of a superfluid with a weak link is a rotation sensor. Experimental

signatures of these systems include quantized persistent currents [49], phase slips

[61], hysteresis [62] and a well defined current phase relationship [50]. Devices

with two density depleted weak links are also widely used, and are known as direct

current superconducting quantum interferometric device (dc-SQUID) Analogs of the

dc-SQUID have also been shown to exist in toroidal superfluids [55,63]. Experiments

have shown both the ac and the dc Josephson junction effect in superfluids, and the

presence of resistive flow above a critical mass current.

An important quantity in the study of superfluids is the existence of a crit-

ical velocity, beyond which dissipation sets in. Experiments with two weak links

have found that the critical velocity is equal to the sound speed [63], which is in

agreement with the zero temperature Gross-Pitaevskii theory. On the other hand,

experiments with one weak link find a critical velocity which is a fraction of the

sound speed [62]. Other variables like temperature may also affect the critical ve-

locity, since an increase in temperature increases the thermal fraction which leads

to more dissipation. This points out that the mechanism of creating excitations

in each system can be different, and a knowledge of the excitations spectrum of a
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system is required for a thorough understanding of the dynamics of a given system.

This knowledge may be instrumental in the design of new atomtronic devices. For

example, a phonon interferometer was shown recently [64], along with a means of

detecting the circulation state of a superfluid in-situ without releasing it in time of

flight [40].

We can probe the excitation spectrum of a toroidal superfluid by harmonically

driving a density depleted weak link. This weak link has a similar geometry to

previous studies of our lab [50, 62, 65]. The harmonic drive of the weak link can

be induced either by changing the intensity of the laser beam or by changing the

azimuthal position of the laser beam. As the spatial profile or the position of the

weak link changes as a function of time, a mass current is induced. These displaced

atoms are launched as phonon waves in the bulk of the superfluid away from the

weak link. An intrinsic frequency of interest is the orbital angular frequency of the

phonon. The orbital frequency of the phonon is the number of revolutions a phonon

makes around the ring in a unit time. The phonon speed and the geometry of the

ring trap (i.e. the circumference) determine the orbital frequency. The phonon speed

depends upon the chemical potential, which depends upon physical variables like the

vertical and radial trapping frequency and the atom number. When the frequency

of the harmonic drive of the weak link matches any of the resonance frequencies

of the system, the coupling of energy between the superfluid and the weak link

is increased. As atoms gain more and more energy during a long enough drive,

they may eventually escape the toroidal trap. We expect more atom losses at the

resonant frequencies. For our experiment, the intensity of the beam providing the
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radial confinement is factor of ≈ 2 more than the spillover point, i.e. the threshold

at which the radial trapping beam is just strong enough to capture all the available

atoms. The exact location of the resonance can be obtained by a fit to the atom

number remaining in the trap after modulation as a function of the modulation

frequency. The loss of atoms from the trap points to heating in the system, which

arises from the deposited kinetic energy being dissipated. The dissipation arises due

to the interplay between the anisotropy of the trap and the nonlinear interaction of

the BEC. It has been shown that mode coupling plays a major role in the system

dynamics [66–69]. The energy transfer due to mode coupling and mean-field effects

work in different ways. The anisotropy of the trap spreads the response over two

main frequencies, which are the radial and the vertical trapping frequency. On the

other hand, the mean field interaction of the BEC couples all modes of interaction

to one another.

As shown in figures 4.6 and 4.7, we identified multiple resonant frequencies

while studying the one weak link system, using both intensity and spatial modu-

lations. We find that some of these resonances occur at integral multiples of the

orbital frequency while some of the resonances occur at half-integral multiples of the

orbital frequency. At these frequencies, the weak link periodically adds energy to a

phonon wavepacket during each oscillation cycle. We will now see the mechanism

of how these resonances arise in a one weak link system.
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4.2 A simple model of resonant wavepacket generation by an oscil-

lating weak link

The phonon wavepackets can be describes as a superposition of low lying

Bogoluibov excitations (see [4] and section 4.4 for details). Since any phonon

wavepacket consists of a linear superposition of multiple Bogoluibov modes, these

modes can travel away from their source of origin without any dispersion. This

holds true only for low strengths of the density perturbation. As the perturbation

strength increases, the linear approximation breaks down and nonlinear effects are

seen [70]. Some of these features include dark solitions, vortices and vortex rings.

These nonlinear excitations can travel at a speed less than the sound speed. Nonlin-

ear interactions may also lead to excitations that travel at a speed greater than the

speed of sound. These excitations are known as shock waves. Since a ring conden-

sate is a periodic system with respect to the azimuthal coordinates with no ends,

the phonon wavepackets created travel around the system. The orbital period, T ,

of a single wavepacket establishes a characteristic frequency, ν = 1/T = c/(2πR),

where c is the speed of sound in the bulk condensate and R is the mean radius of the

toroidal trap. We launch phonon wavepackets in the ring by two means, by either

changing the intensity of the weak link or by changing the azimuthal position. The

excitations spectra for these drives is measured as a function of the drive frequency.

The mechanism of the resonance depends on the type of drive, we will now look at

intuitive pictures of how these resonances arise.
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Figure 4.1: Figure taken from [4]. Trajectories of wavepackets in a ring when the

strength of the weak link is modulated. The grey shaded areas represent the density

depleted region, which changes as a function of time, t. The strength of the weak

link oscillates with a frequency of νq = qν: (a) q = 1/2; (b) q = 3/2; (c) q = 1; (d)

q = 2. Here, ν is the orbital frequency of the phonons. The solid and dashed lines

indicate the ring azimuthal coordinates, φ, of the centers of the wavepackets. The

blue lines show the standing-wave-like density modulation created by the phonon

wavepackets as they travel around the ring and overlap.

82



0 1 2

?

0

2:
(a)  q = 1/2

0 1 2
0

2:
(c)  q = 1

t /T
0 1 2

?

0

2:

(b)  q = 3/2

t /T
0 1 2

0

2:

(d)  q = 2

Figure 4.2: Figure taken from [4]. Trajectories of wavepackets in a ring when

the position of the weak link is modulated harmonically. The frequency of the

modulation is given by νq = qν, where (a) q = 1/2; (b) q = 3/2; (c) q = 1; (d)

q = 2. Here, ν is the orbital frequency of the phonons. The grey shaded areas

represents the density depleted region of the weak link, whose azimuthal position

changes as a function of time, t. The solid and dashed lines indicate the azimuthal

coordinate, φ, of the centers of the wavepackets. The blue lines show the standing-

wave-like density modulation created by the phonon wavepackets as they travel

around the ring and overlap.
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We first consider the case when the weak link is modulated in intensity around

a mean positive value. The azimuthal position of the weak link is left unchanged.

A schematic of the above situation is shown in figure 4.1, where the grey shaded

region represents the density depleted region of the superfluid ring due to the weak

link. The area encompassed by the grey region expands and contracts harmonically,

which shows that the intensity of the laser beam making the weak link is changing as

a function of time. As the perturbation strength increases, the superfluid density at

the weak link decreases and the displaced superfluid atoms are launched as phonons.

These phonons then travel away from the weak link into the bulk of the condensate.

The phonons are launched symmetrically, and subsequently travel around the ring

in opposite directions. The phonons after an orbital time period T will complete one

revolution around the ring and arrive back at the weak link. If the phonons arrive

back at the position of the weak link after completing a revolution just as the rate

of change of the strength of the weak link reaches a maxima, the newly launched

phonon wavepacket coincides with the incoming phonon wavepacket. This implies

that when the harmonic drive frequency νq is an integral multiple of the orbital

frequency, there will be a resonance. This means that νq = qν, where q is an integer

and ν is the orbital angular frequency of the phonon. The orbital angular frequency

of the phonon can be evaluated by the following relation: ν = 2πR/cs, where R is

the mean radius of the radial trap and cs is the sound speed. On the other hand,

when the intensity of the laser beam generating the weak link is decreasing as a

phonon wavepacket approaches the weak link having completed a revolution around

the ring, atoms will be removed from the wavepacket and the phonon wavepacket
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will loose energy. This is the case when q is half an integer. Some of these cases

have been shown in figure 4.1 : where panels (a) and (b) show nonresonant cases

with q = 1/2 and 3/2, and panels (c) and (d) show the resonant case with q = 1

and 2.

The second method that we use to probe the excitation spectrum of the ring

superfluid is to drive the weak link harmonically in the azimuthal coordinate. In

this situation, the intensity and hence the shape of the weak link remains constant,

but the azimuthal position is varied in time. As the weak link moves, it pushes

the atoms in front of it, launching them into a phonon wavepacket when the weak

link is moving at its fastest speed. In this case, a phonon is launched into only one

direction, depending upon the direction of motion of the weak link. The wavepacket

then travels around the ring. If the drive frequency is an integral multiple of the

orbital frequency, the newly launched phonon and the incoming phonon completing

a revolution are traveling in opposite directions. These wavepackets negate the effect

of one another, and no buildup of energy can take place. On the other hand, if the

drive frequency of the weak link is a half integral multiple of the orbital frequency,

the phonon wavepacket after completing one revolution around the ring will get a

fresh momentum kick from the weak link and will continue to move around the ring.

This situation has been shown in figure 4.2. Panels (a-d) correspond to q = 1/2, 1,

3/2, and 2, respectively. The corresponding standing waves are shown on the right

of each panel.

As pointed out earlier, a modulation in the strength of the weak link launches

symmetric phonon waves, which then move around the ring in clockwise and anti-
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clockwise direction. As these traveling phonon wavepackets overlap, they create a

region with higher density at the position of the overlap and a lower density region

away from the overlap position. This variation of density is similar to a standing

wave. To visualize these regions, there are dashed and solid blue lines on the right

side of panels (a)-(d) in the figure 4.1. When q takes integral values, the standing

wave pattern density pattern propagates like a cosine function cos(qφ) sin(2πνqt),

while the standing wave takes a sine pattern sin(qφ) sin(2πνqt) when q takes half

integer values. When q takes half integer values, the possible standing wave config-

urations resembles the Schrodinger equation solution of a particle in a box. Hence

the sine wave solutions are referred to as ‘box modes’. These ‘box modes’ have

zero value at the boundaries. On the other hand, when q takes integer values, the

standing density waves resemble the wavefunction of a particle on a ring. Hence

these modes with a cosine like solutions are referred to as ‘ring modes’. Thus we see

that a harmonic drive using intensity modulation is resonant with the ‘ring modes’

and non-resonant with the ‘box modes’. For position-modulation excitation, the

box modes are resonant and the ring modes are nonresonant.

We would like to point out that all the above arguments about the ‘box mode’

have assumed that a phonon wavepacket is completely reflected after being kicked by

the weak link, as its position is modulated harmonically. However, this assumption

breaks down when the intensity of the perturbation is so low that most of the

phonon wavepacket is transmitted. The speed of sound in the weak link region

decides whether the phonon wavepacket will be reflected or transmitted. If the

intensity of the laser beam making the weak link is high, the density in the weak
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link region will be low and so will the local sound speed. In this case, there will

be mismatch between the atom density (and hence the local sound speed) in the

bulk and the weak link, which leads to reflection of the wavepacket. An analog

situation exists in optics, where the reflection coefficient R at the interface between

two media is R = (n1−n2)2/(n1 +n2)2 , where n1 and n2 are the index of refractive

index of the two media. When the intensity of the weak link is low, the reflectivity

is very low and most of the phonon wavepacket makes it way through. Thus a

position modulated drive with a weak link of low intensity will begin to resemble

the drive of a ‘ring mode’ where the phonon wavepacket gains in energy only when

it is transmitted. Thus, one should expect a change in the resonance condition

for a position-modulated barrier: as the strength of the weak link is increased, the

resonance shifts from integer to half-integer values of q.

4.3 Experimental Parameters

The toroidal confinement of the condensate BEC is formed in a crossed optical

dipole trap with the same procedures as in Ref. [50]. The vertical confinement

is created by a red detuned laser beam and the radial confinement is created by

imaging an intensity mask on the plane of the atoms [71]. The sodium condensate

is created in the |F = 1,mF = −1〉 state. The intensity mask consists of a ring

trap and a disc trap concentric with the ring trap. These two potentials together

are called the “target” trap [50]. The ring shaped condensate has a mean radius of

22(1) µm and a Thomas-Fermi full-width of ≈ 8 µm. The disc-shaped condensate,
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which is left unperturbed during the experiment, serves as a reference to check atom

number stability. This prevents atom losses due to technical noise being incorrectly

identified as a resonance. The radial trapping frequency of the ring condensate

is ωρ/2π = 400(20) Hz, while the trapping frequency of the red-detuned beam

providing vertical confinement is ωz/2π = 542(13) Hz. The average number of

atoms in the target trap is ≈ 7 × 105, with ≈ 80% of atoms in the toroid and the

remaining ≈ 20% in the central disc. The atom number fluctuations from one cycle

of the experiment to another fluctuates around its mean by up to 10% (2σ). We

measure the atomic density using in-situ partial transfer absorption imaging [48].

We create the weak link potential by using a focused, blue-detuned Gaussian

beam. The 1/e2 full-width of the Gaussian is ≈ 5 µm. The weak link is created using

a blue-detuned beam at 532 nm, which create a repulsive potential, depleting the

condensate density locally where the beam is incident. An acousto-optic deflector

(AOD) controls the position of the beam. By changing the power applied to the

AOD, we can control the intensity of the beam. To create a radially-elongated weak

link, the AOD scans the beam rapidly in the radial direction at 2 kHz. The resulting

time-averaged potential is a wide, flat potential barrier with an effective width of

≈ 15 µm. This creates an effective paddle which can push the superfluid around

the ring.

For the experiments here, we manipulate the weak link in a variety of different

ways. For the experiments described in Sec.4.5 (and shown in figure 4.1), the weak

link is first applied adiabatically to the BEC, so as to not generate excitations. The

weak link beam’s intensity is ramped on linearly over 300 ms. During this linear
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ramp, the azimuthal position of the weak link is fixed. After the intensity reaches

its final value, the weak link position is oscillated in the azimuthal direction, or

its intensity is modulated as a function of time. For the experiments described in

Sec. 4.6 (and shown in figure 4.2), the weak link beam is turned on suddenly while

it remains in a fixed azimuthal position. The fastest response time of the AOD is

around 100 µs, which is a result of the servo that controls the intensity of the weak

link beam.

4.4 Bogoliubov - de Gennes description of elementary excitations of

a BEC

In parallel to experiments to determine the resonant frequencies of the toroidal

superfluid, one can also make numerical estimates of the resonance frequencies us-

ing a mean-field based approach [72, 73]. While the calculations specific to our

experiment have been described in detail in [4], a summary is provided here for

completeness. The condensate density can be determined by using the order pa-

rameter Ψ0 = 〈Ψ̂〉, where 〈〉 denotes the spatial average. Here Ψ̂ is a quantum field

operator:

Ψ̂ = Ψ0 + δΨ̂, (4.1)

where Ψ̂0 is the quantum field operator for the condensate atoms and δΨ̂ is the field

operator for the non-condensate atoms. In linear response theory, the field operator
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of the non-condensate atoms can be used to determine the elementary excitations

of the system. The time evolution of the condensate wave function is obtained by

using a time-dependent Gross-Pitaevskii equation (TDGPE),

ih̄
∂

∂t
Ψ0(r, t) =

[
− h̄2

2M
∇2 + V (r) + g |Ψ0(r)|2

]
Ψ0(r), (4.2)

where V (r) is the trapping potential, M is the mass of one sodium atom, and

g = 4πh̄2a/M is a measure of the interaction strength between the two atoms. The

magnitude of g depends on the s-wave scattering length between two sodium atoms,

a = 2.5 nm. The time dependent ground state solution of the GPE in a stationary

potential is given by

Ψ0(r, t) =
√
n(r)e−iµt/h̄ (4.3)

where n(r) is the density of condensed atoms, and µ is the chemical potential.

The linear theory holds only when the non-condensed atoms are a small fraction

of the total number of atoms. The non-condensed field operators then satisfy the

equations:

ih̄
∂

∂t
δΨ̂(r, t) =

[
− h̄2

2M
∇2 + V (r) + 2gn(r)− µ

]
δΨ̂(r, t) + gΨ2

0δΨ̂
†. (4.4)

We solve this equation in a Bogoliubov-de Gennes framework [72, 73], and expand

δΨ̂ in terms of the creation and annihilation operators ai and a†i ,

δΨ̂ =
∑
i

(
uie
−iωitai + v∗i e

iωita†i

)
, (4.5)

where ωi are the resonance frequencies and ui, vi are the Bogoliubov amplitudes

of the ith excitation. These amplitudes satisfy the Bogoliubov-de Gennes (BdG)
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equations: [
h̄ωi +

h̄2

2M
∇2 − V (r)− 2gn(r) + µ

]
ui(r) = gn(r)vi(r)[

−h̄ωi +
h̄2

2M
∇2 − V (r)− 2gn(r) + µ

]
vi(r) = gn(r)ui(r). (4.6)

The spectrum of the elementary excitations for the condensate can be obtained by

numerically diagonalizing eqs. (4.6). A simple solution to the above equations exist

when the external potential is turned off and the condensate has uniform density.

In this case, the Bogoluibov amplitudes are given by [73], uk(r) = uke
ik·r and

vk(r) = vke
ik·r, where k is the wave vector. These are plane wave solutions and

hence represent a continuous spectrum of elementary excitations. The energy of

excitations is given by:

h̄ωk =
√
ε2k + 2εkgn, (4.7)

where εk = h̄2k2/2M is the kinetic energy of a free quantum particle of mass M .

For small k, the frequencies ωk are linear in k, i.e. ωk ≈ k
√
gn/M . A small

magnitude of the wavevector implies large wavelengths. The energy of excitation at

low wavenumbers is given by ω = ck, displaying linear dispersion. These excitations

may be viewed as phonons. The ratio of the excitation energy and the wavenumber

yields the sound speed, c =
√
gn/M .

In an actual experiment, a condensate is confined to a potential. Coming back

to our experiment, the superfluid is trapped in a toroidal potential, which has the

form

V (r) =
1

2
Mω2

zz
2 + VG

(
1− e−2(ρ−R)2/w2

ρ

)
, (4.8)
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Figure 4.3: Taken from [4]. The BdG spectrum for the elementary excitations

of a ring condensate. The blue (red) curves correspond to the excitation modes

that are even (odd) in the axial (z) direction. The lowest branch represents the

excitations in the azimuthal direction, the frequency of which is linear at small m

(denoted by the black line). The slope determines the orbital frequency of sound

ν = 37.9(2) Hz.

The weak link is not included in the calculations for the Bogoluibov spectrum. In

equation 4.8, the first term accounts for the harmonic confinement in the vertical

direction (trapping frequency of νz = 542 Hz) and the second term accounts for the

trapping in the radial direction around a mean radius ofR = 22.4 µm and a 1/e2 half-

width, wρ = 5.5 µm. The depth of the radial trapping potential is VG = 266nK× k,

where k is the Boltzmann constant. These parameters have been chosen as they

best match the experimental data. The ground state of the condensate is symmetric

about the z direction, which reflects the symmetry of the trapping potential. The

ground state wavefunction has a azimuthal dependance which scales as∼ eimφ, where

φ = arctan(y/x) is the conventional azimuthal angle of a two-dimensional coordinate
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system and m is an integer, denoting the mode number. The lowest energy solution

scales as ωm ∼ m
√
gn̄/MR2, where n̄ is the mean condensate density and R is

the mean radius of the ring [74]. These solutions show that there exists a family

of discrete phonon-like modes that propagate azimuthally with the characteristic

speed of sound of the ring condensate,

c =
√
gn̄/M. (4.9)

Fig. 4.3 shows the calculated the energy spectrum of elementary excitations

by solving the BdG equations. The linear dependence at small m is clear. Using the

experimental parameters of Sec. 4.3, a linear fit at small values of the mode number

m provides a phonon orbital frequency of ν = 37.9(2) Hz.

4.5 Driving and Probing the Excitations

According to the BdG calculations shown in the previous section, the orbital

frequency of phonons for the experimental parameters of our system is 37.9 Hz.

We performed experiments to confirm these calculations. As mentioned earlier,

the drive can take two forms. The harmonic drive results from a modulation of

intensity of the weak link, which takes the form Vb(t) = V0 + Va sin(2πvqt). Here

V0/µ = 0.54(5) is the mean strength of the weak link as a fraction of the chemical

potential, Va = 0.95V0 is the modulation amplitude as a fraction of the mean value

of the weak link, and νq = qν is the frequency at which the weak link strength is

modulated. The uncertainty in the weak link strength comes the the uncertainty in

the chemical potential. The intensity of the laser beam is locked to the desired value
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using a servo loop. During the experiment, the weak link is turned on in 300 ms.

The chemical potential of the atoms in the ring sets an intrinsic natural timescale

on which the system responds to an external perturbation. The turn on time of the

weak link should be much larger than this intrinsic timescale to ensure adiabaticity,

creating as few excitations as possible. To measure the time evolution of the density

in the ring, the drive frequency is set to both integer and half integer values of the

orbital angular frequency. The variable used to characterize the density evolution

is the 1d number density around the ring as a function of the azimuthal angle.

The 1d number density at a given time is normalized with the 1d number density

when the weak link was absent. We use both numerical and experimental methods

to study this time evolution. In numerical simulations, the 1d number density is

obtained by integrating the density along the vertical and the radial directions. In

the experimental data, 1d number density is obtained by integrating the density

along the radial direction, and the absorption images integrate the optical density

along the vertical direction. Figure 4.4 shows the time evolution: panel a-d show

the numerical time evolution for q = 1/2, 3/2, 1, 2 respectively, while panel e shows

the experimental time evolution for q = 1. The experimental data is for a time

t ≈ 15.5T to t ≈ 19T , since the standing wave patterns observed during resonance

takes some time to form in a real experimental setup. As mentioned earlier, in the

case of q = 1 and q = 2, the ‘ring modes’ are on resonance. The experimental

data (Fig. 4.4e) shows the resonant q = 1 mode, which is consistent with the GPE

simulation (Fig. 4.4c). In all of the images, red shows regions of higher relative

density compared to a unperturbed trap, while the blue shows regions of lower
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Figure 4.4: Figure taken from [4]. Time evolution of phonon wavepackets gen-

erated through amplitude modulation of the barrier (see Fig. 4.1). The normalized

1D density (colorbar) shows wavepackets, or localized regions of high density, mov-

ing around the ring (azimuthal coordinate φ) with time t. The density also shows

the barrier oscillating at φ = 0 with frequency νq = qν. Modes with q = 1/2 (a)

and q = 3/2 (b) are nonresonant; modes with q = 1 (c and e) and q = 2 (d) are

resonant. This corresponds to the ‘ring’ modes.

relative density.

The second method to drive the toroidal superfluid is to change the position

of the weak link in a harmonic way, such that the azimuthal position of the weak

link is given by φb(t) = φ0 + φa sin(2πνqt), where φ0 = 0 is the average position of

the maximum height of the barrier, φa is the amplitude of modulation, and νq = qν

is the drive frequency. We keep the amplitude of the harmonic modulation such

that the maximum velocity reached during oscillation is independent of the drive
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Figure 4.5: Figure taken from [4]. Time evolution of phonon wavepackets

generated though position modulation of the barrier (see Fig. 4.2). The normalized

1D density (colorbar) shows wavepackets, or localized regions of high density, moving

around the ring (azimuthal coordinate φ) with time t. The density also shows the

barrier oscillating about φ = 0 with frequency νq = qν. Modes with q = 1/2 (a

and e) and q = 3/2 (b) are resonant; modes with q = 1 (c) and q = 2 (d) are

nonresonant. This corresponds to the ‘box’ modes.
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frequency. We keep this maximum angular velocity to be 2πνqφa = 80 rad/s. The

time evolution of the numerical simulations and the experimental data is shown

in 4.5. Panels a-d are results of the numerical simulation, which show the time

evolution with the parameter q = 1/2, 3/2, 1 respectively. Panel (e) in the figure

shows the time evolution for the case q = 1/2. The intensity of the weak link is

kept fixed at V0/µ = 0.65(7), where µ is the chemical potential. As explained in the

previous section, the energy of the phonon wavepacket is amplified when the drive

frequency is half integer multiple of the orbital frequency. In this case, the direction

of the motion of the weak link launching a new phonon and a phonon completing a

revolution around the ring are the same.

In figures 4.5 and 4.5, we looked for the appearance of resonances due to the

harmonic driving by looking at the appearance of standing waves in the 1d density

profile. Next, we looked for another signature of resonances, i.e. the loss of atoms

from the trap. When the drive frequency matches the resonance, the weak link adds

kinetic energy to the atoms and they may leave the trap once they gain enough

energy. While the time evolution data presented above was for time scales on the

order of 20 T , the loss spectra was taken by keeping the modulation (in frequency

and position) on for much longer, on the order of 2 s, which corresponds to ≈ 50 T .

We count the number of atoms remaining in the ring trap and compared them to the

atoms in the ring trap before the modulation begins. This procedure is repeated for

a range of frequency, enabling us to obtain an atomic loss spectra. We also monitor

the number of atoms in the disk trap to make sure the loss features are not due

to technical noise. The atom loss spectra for the weak link strength modulation is
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Figure 4.6: Figure taken from [4]. Atomic loss spectra for an intensity modulated

weak link. The numerical simulations are on the left and the experimental values are

on the right. These results are for a weak link with a mean strength of V0/µ = 0.30(2)

(blue triangles) and V0/µ = 0.50(4) (red circles). The y axis is the is the fraction of

atoms NR/N that remain in the trap after 2 s of excitation. The vertical black (red)

lines correspond to the resonant frequencies of the box (ring) modes. The dashed

lines are a guide to the eye.
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Figure 4.7: Figure taken from [4]. Atomic loss spectra for a position modulated

weak link. The numerical simulations are on the left and the experimental values

are on the right. These results are for weak link heights of V0/µ = 0.15(1) (green

diamonds), V0/µ = 0.30(2) (blue triangles), and V0/µ = 0.60(4) (red circles), withνd

being the drive frequency. The y axis is the is the fraction of atoms NR/N that

remain in the trap after 2 s of excitation. The vertical black (red) lines correspond

to the resonant frequencies of the box (ring) modes. The dashed lines are a guide

to the eye.
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shown in figure 4.6.

The modulation of the weak link strength was done at two different mean weak

link strengths, V0/µ = 0.30(2) and 0.50(4), even though the oscillation strength is

kept constant at Va = 0.25V0 (Here, as before, the uncertainty applies only to the

experiment.). We confirm that both the experimental and numerical atomic loss

spectra show resonance peaks at drive frequencies corresponding to q = 1 and q = 2.

The location of the peaks in the experiment indicates ν ≈ 41 Hz, slightly larger than

that predicted by theory. This small discrepancy may be due to uncertainty in atom

number, trapping frequencies, or other experimental parameters. In contrast, the

position modulation atomic loss spectra (shown in figure 4.7) was taken by taking

the data at a weak link strengths of V0/µ = 0.15(1), 0.3(2), 0.6(4). As V0 is increased,

both the experiment and the simulation show initial peaks at q = 1 and q = 2 that

shift to q = 1/2 and q = 3/2. This corresponds to a transition from the ring modes

being resonant to the box modes being resonant.

4.6 Generation of supersonic shock waves

While we have used standing phonon waves and atomic loss spectra to mea-

sure the sound speed for our system, other groups have used different experimental

techniques to measure the sound speed. One of these techniques involves turning

on a laser beam in the middle of a cigar shaped condensate [75]. In this paper, a re-

pulsive potential is switched off in under 1 ms, which is timescale shorter than that

associated with the chemical potential.The sound speed was then measured from
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Figure 4.8: Figure taken from [4]. The above figure shows the azimuthal 1d

density normalized to the background density for a supersonic flow in a BEC. To

create the shock wave, the weak link is turned on non-adiabatically with a 100 µs

ramp. The normalized density is shown vs. time. The numerical solution is on the

left and the experimental measurement is on the right.

the propagation of the density wave in the body of the condensate. The measured

speed of the density wave launched showed good agreement with the Bogoluibov

theory. We repeated the same experiment in attempt to measure the sound speed

in our system, and found that a rapidly turned on laser beam launches two counter-

propagating density waves with an orbital frequency of ν ≈ 50 Hz, which is about

25% greater than the orbital frequency of sound. This was a clear signature of su-

personic flow in our system, which caused shock waves in the superfluid. Due to

the periodic nature of the toroidal geometry, we could also observe the collisions

between two shock waves.

The formation of supersonic flow [70,76–81] and shock waves is a widely stud-
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ied phenomenon in a condensate, both experimentally and numerically. A recent

experiment reports the experimental observation of analogue Hawking radiation for

a supersonic flow in a BEC [82]. The presence of shock waves in BECs was pre-

dicted by [83–85], while they were shown to exist experimentally in [86, 87]. The

results in the papers above show that as a laser beam is turned on rapidly, density

waves are launched. The density profile of the atoms participating in the density

wave can be modeled as a Gaussian. The work by [85] showed that when a laser

impulse is used a to launch a density wave, the maxima of the density wave will

move faster than the minima of the density wave. This causes the density profile to

become asymmetric and become tilted towards the direction of propagation. This

steepening of the density profile gives rise to a shock wave. These shock waves are

dispersive, and may break up into excitations like solitons and vortex rings.

The experimental parameters were used for a TDGPE calculation, the results

of which are presented in the left panel of figure 4.8. The simulations show that

the leading density waves traveling at supersonic speeds, while secondary density

waves traveling at the sound speed. The simulations also show that the shock waves

maintain much of their shape after collision, which is not the case in the experiment.

The simulations also show some density waves moving at a speed lower than the

sound speed, which may be gray solitons. We do not see this in the experimental

data either.
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4.7 Summary

We have investigated the excitations of a ring-shaped condensate with a pertur-

bation modulated in both position and amplitude. This perturbation, in the form

of a weak link, generates phonon wavepackets that travel around the ring at the

speed of sound. These wavepackets have an orbital angular frequency ν = c/(2πR).

We find that these wavepackets are resonant with an amplitude-modulated pertur-

bation if the perturbation’s frequency is an integer multiple of orbital frequency of

the phonon, ν. For position modulation, the wavepackets are in resonance if the

frequency of the perturbation is a half-integer multiple of ν. The difference in these

cases corresponds to the symmetry of the drive: an amplitude modulation creates

two oppositely moving wavepackets at the same time, whereas position modulation

creates two oppositely moving wavepackets at points in its motion that are out of

phase by π. By looking at atom loss as a function of drive frequency, we verify these

resonance conditions.

This work has implications for other atomtronic devices. For example, one

should be able to induce a Shapiro resonance [88, 89] in ultracold atoms by driving

a weak link perturbation in a way similar to that done here. In addition, phonon

modes can be excited and controlled for future applications, such as phonon inter-

ferometry [64] and the detection of circulation states of a ring [40]. In the strongly

reflecting regime, phonon wavepackets undergo similar time evolution as particles in

a shaken box [90, 91], and thus could be useful for future studies of quantum chaos

and Fermi acceleration [92,93].
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Chapter 5: Minimally destructive, Doppler measurement of a quan-

tized, superfluid flow

In this chapter, we study how the circulation state of the persistent current

can be determined without releasing the toroidal condensate in time of flight. We

use the Doppler effect, the shift in the frequency of sound due to motion, for this

measurement. We imprint phonons modes on the condensate. A persistent current

shifts the frequency of the phonon modes due to the Doppler effect. This frequency

shift will cause a standing-wave phonon mode to be ‘dragged’ along with the persistent

current. The content of this chapter is based on the following published work [5].

1) “Minimally destructive, Doppler measurement of a quantized flow in a ring-

shaped Bose-Einstein condensate”, A Kumar, N Anderson, W D Phillips, S Eckel,

G K Campbell, and S Stringari, New Journal of Physics, 18, 025001 (2016).

I contributed to the experimental data acquisition and analysis.
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5.1 Overview

Ring-shaped Bose-Einstein condensates (BECs) use topology to exploit one of

the key features of a BEC: superfluidity. In particular, the topology supports super-

fluid persistent currents [94]. As a result, a ring-shaped condensate forms the basis

of several so-called ‘atomtronic’ devices: simple circuits that resemble counterparts

in electronics [49,61,62,65,95]. The addition of one or more rotating perturbations or

weak links into the ring can form devices that are similar to the rf-superconducting

quantum interference device (SQUID) [49,61,62] and dc SQUID [65,95]. Operation

of these devices typically requires measuring the persistent current. Here, we present

a technique for measuring the persistent current of a ring that uses the Doppler effect

and, unlike other methods, is done in-situ and can be minimally destructive.

Superfluids can be described using a macroscopic wavefunction (or order pa-

rameter) ψ =
√
neiφ, where n is the density of atoms and φ is phase of the wave-

function. In this picture, the flow velocity is given by v = (h̄/m)∇φ, where m is the

mass of the atoms and h̄ is the reduced Planck’s constant. Because the wavefunction

must be single valued, the integral
∮
∇φ · dl must equal 2π`, where ` is an integer

called the winding number. This quantization of the winding number forces flows

around a ring of radius R to be quantized with an angular velocity Ω0 = h̄/mR2.

Thus, the angular flow velocity must satisfy Ω = `Ω0.

In addition to supporting bulk persistent flows, the BEC also serves as a

medium in which sound can travel. Because of the trap’s boundary conditions, only

certain wavelengths of sound are permitted. These phonon, or Bogoluibov, modes
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are the lowest energy collective excitations of the condensate [96, 97]. In this work,

we excite a standing wave mode with wavelength λ = 2πR, as shown in Fig. 5.1(a-b).

Such a standing wave is an equal superposition of clockwise and counterclockwise

traveling waves with the same wavelength. In the presence of a background flow,

the Doppler effect shifts the relative frequencies of the two traveling waves. This

shift causes the standing wave to precess, as shown in Fig. 5.1(c). Here, we use this

precession to detect the background flow velocity of the superfluid. This method

is analogous to earlier techniques, where the precession of a quadrupole oscillation

was used to measure [98, 99] the sign and charge of a quantized vortex in a simply

connected, harmonic trap, as suggested in Refs. [100,101].

In a ring-shaped condensate, two other methods have been used to measure the

background flow velocity by determine the winding number `. Both are inherently

destructive because they require that the BEC be released from the trap. First,

sufficient expansion of the condensate can yield a hole at the center of the cloud

whose size is quantized according to ` [102–105]. Second, experiments releasing both

a ring and a reference condensate produce spiral interference patterns that indicate

` [50, 106].

Our method of detecting rotation by the Doppler effect is sufficiently precise

to distinguish adjacent values of `. However, it is minimally disruptive: it requires

only exciting a sound wave and imaging the resulting density modulation. By imag-

ing the density modulation using a minimally destructive imaging method (such

as dark-field dispersion imaging [107], phase contrast imaging [108], diffraction-

contrast imaging [109], partial transfer absorption imaging [48], or Faraday imag-
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Figure 5.1: Taken from [5]. (a) Image of the ring condensate in-situ without

an applied perturbation. (b) A sinusoidal perturbation excites a standing-wave

superposition of counterpropogating phonon modes. The white line intersects the

ring at the maximum and minimum of the perturbation. The left image shows the

density; the average density is subtracted from the right image. These images show

the resulting density modulation, 100 µs after the perturbation has been removed.

(c) Full density (top) and average-subtracted-density (bottom) images taken 9.1 ms

after removal of the perturbation. The density modulation rotates relative to the

initial perturbation in the presence of superfluid flow. The winding numbers are

shown below the images.
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ing [110]) one can create a winding number measurement that is also minimally

destructive. Such measurements could allow easier implementation of experiments

where rings are stirred by weak links more than once, such as hysteresis experiments.

By measuring the winding number in a minimally destructive way, the quantum

state of the ring can be known after each stage of stirring. One can use multiple

minimally-destructive winding number measurements to increase the sensitivity of a

rotation sensor based on the atomtronic rf-SQUID. Our system [62] has a sensitivity

of ≈ 0.1 Hz for a measurement done once every ≈ 30 s, which includes creating the

condensate, stirring, and measuring the winding number. This leads to an effective

sensitivity to rotation of ∼ 5 Hz/
√

Hz. By repeating stirring and winding number

measurement on a single condensate using a minimally-destructive technique (which

yields the same information as a destructive measurement), the sensitivity improves

by
√
Nmeas, where Nmeas ≈ 10 is an achievable number of minimally-destructive

measurements.

Finally, it is possible to use this technique to detect rotations of the inertial

frame of the condensate itself, using the Sagnac effect1. Ref. [64] measured the noise

level associated with such an excitation-based rotation sensor, finding a sensitivity

in their system of roughly 1 (rad/s)/
√

Hz. However, their experiment was not

configured to produce rotation, so the effect was not measured experimentally. Here,

we demonstrate the feasibility of this idea, by detecting the quantized rotation of

1 We note that unlike the ring-shaped condensate considered here, not every mode in a simply

connected condensate is sensitive to both a rotating frame and to vorticity. In particular, the

dipole oscillation mode is sensitive to a rotating frame but not sensitive to vorticity [100].
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the superfluid in the ring itself.

5.2 Theory

To understand the Doppler effect and its effect on phonons in the ring, let us

first consider a standing-wave phonon mode in the absence of a persistent current.

To simplify the calculation, let us consider the equivalent problem of a 1D gas of

length 2πR, where R is the radius of the ring, and let us impose periodic boundary

conditions. A standing wave mode can be generated by a perturbation of the form

V = V0 cos(qθ), where q is a positive integer, V0 is the amplitude of the pertur-

bation, and θ is the azimuthal angle. This perturbation generates a modulation

in the density of the form n1D(θ) = neq + δn cos(qθ), where neq is the equilibrium

density without the perturbation and δn is the amplitude of the density modula-

tion. Upon sudden removal of the perturbation, the density n1D(θ) is projected onto

the spectrum of phonon modes. The initial density modulation is then described

by the superposition of two counterpropogating modes cos(ω(q±)t − q±θ). Here,

q+ indicates a mode traveling counterclockwise and q− indicates a mode traveling

clockwise. In the absence of a persistent current the two modes have equal fre-

quency: ω(q±) = ω0. Consequently, the density modulation will oscillate in time,

δn(t) ∝ cos(ω0t) cos(qθ), without exhibiting precession.

The presence of the current will remove the degeneracy between the two modes

through the Doppler effect. The frequency of the two modes, in the presence of a
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superflow of velocity v = `Ω0R, will be given by

ω(q±) = ω0 ±
q

R
v . (5.1)

The density modulation is then proportional to

cos[q+θ − ω(q+)t] + cos[q−θ + ω(q−)t]

= cos
[
q
(
θ − v

R
t
)]

cos(ω0t) (5.2)

and hence evolves in space. The azimuthal location φm of an anti-node of this

density standing wave precesses around the ring as

dφm
dt

=
`h̄

mR2
. (5.3)

Measurement of φm(t) would consequently provide a direct measurement of `. We

note that dφm/dt does not depend on ω0; therefore, the speed of sound and the

details of the phonon dispersion curve are not relevant in predicting the precession.

While the above arguments may seem to apply only to a ring, they can easily

be generalized to any quasi-one-dimensional geometry. In such a case, the shifts in

the phonon frequencies will still be given by Eq. 5.1, but with a v that may or may

not be quantized. For an infinite one-dimensional channel, for example, the flow

is not quantized. However, two equal but oppositely directed phonon wavepackets

(similar to those generated in Ref. [4]) traveling in the channel will move with

different velocities in the presence of a background flow. The use of a ring allows

for a straightforward means of detecting the frequency shift: precession of a phonon

standing-wave mode.
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Figure 5.2: Taken from [5]. (a) Schematic of the setup used to trap the atoms and

create the double ring potential and sinudoidal perturbation. A DMD is illuminated

with blue-detuned light and is imaged onto the atoms using a telescope (solid lines) ,

which ensures that incoming collimated beams remain collimated after they emerge

from the telescope (dashed lines). (b) The halftoned patterns ‖ written to the DMD

for the bare ring potential (left) and the perturbed ring potential (right). (c) After

convolution with the point-spread function of the imaging system, the potentials

formed are smooth, and show a clear sinusoidal perturbation (right).

5.3 Experimental details

We create a 23Na condensate in a crossed-optical dipole trap, as shown in

Fig. 5.2a. A blue-detuned double sheet beam, formed by focusing a TEM01 mode

tightly along the vertical direction, provides vertical confinement. Confinement in

the horizontal plane is generated using another blue detuned beam that is shaped

using a Texas Instruments LightCrafter 3000 digital micromirror device (DMD) 2.

2The identification of commercial products is for information only and does not imply recom-

mendation or endorsement by the National Institute of Standards and Technology.
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We position the DMD in our imaging system to directly image the surface of the

DMD onto the atoms. (This method is similar to the photomask method used in

Ref. [71], with the DMD replacing the photomask.)

The DMD generates a double ring trap. These experiments use only the inner

ring, which is shown in Fig. 5.1(a). In general, our condensates contain ≈ 7 × 105

atoms, with approximately 5 × 105 in the outer ring and 2 × 105 in the inner ring.

The outer ring, with mean radius 31(1) µm 3, can be used as a phase reference to

measure the winding number of the inner ring [111]. The inner ring has a chemical

potential of µ/h = 3.1(6) kHz. The vertical trapping frequency is 1020(30) Hz and

the radial trapping frequency in the inner ring is 310(10) Hz.

In order to generate a persistent current in our ring, we apply a rotating

potential generated by a blue-detuned beam steered by an acoustic-optic deflector

(AOD). A previous paper [62] describes this stirring technique. We verify that

this produces the desired ` state 95% of the time by performing a fully-destructive

interference measurement [50]. The phase winding in the inner ring can be measured

by interfering the inner ring with the outer ring condensate, which serves as a phase

reference. Fig. 5.2(d) shows a typical interference pattern, which indicates ` = −1.

(We note that the chirality of these spirals for a given sign of the winding number

is opposite of those in Ref. [50], because the reference condensate is on the outside

rather than the inside of the ring.)

In addition to generating the static trap, the DMD can also produce perturba-

3Unless stated otherwise, uncertainties represent the 1σ combination of statistical and system-

atic errors.
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tions to the potential. However, because any individual mirror is binary (either on or

off), potentials that require intermediate values require a form of grayscale control.

We achieve such control by using Jarvis halftoning [112]. Because the point-spread

function of our imaging system (in the plane of the atoms, ≈ 6 µm 1/e2 full-width)

is much larger than the DMD pixel size (in the plane of the atoms, ≈ 0.5 µm),

the potential at any given location is the convolution of the binary values of all

the nearby pixels with the point spread function. For example, Fig. 5.2(b) shows

a halftoned pattern written to the DMD for generating a sinusoidal perturbation

of the form V0 sin(θ) 4. Convolution with the point-spread function generates the

desired sinusoidal potential, as shown in Fig. 5.2(c).

We empirically find that a perturbation of V0 ≈ 0.4µ applied for 2 ms is

sufficient to excite the first phonon mode without perturbing the flow state of the

ring. The speed with which our perturbation can be turned on and off is limited by

the refresh rate of our DMD to 250 µs. To image the resulting density modulation

in-situ, we use partial transfer absorption imaging (PTAI) [48], which is a type of

minimally-destructive imaging [113]. In general, we transfer approximately 5% of

the atoms into the imaging state. Despite the method being minimally destructive,

none of the experiments contained in this work use repeated imaging on the same

condensate.
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Figure 5.3: Taken from [5]. Plot of the normalized 1D density of the ring

n1D(t, θ)/n0,1D(θ) (see text) vs. angle, for different times after the perturbation.

The solid blue lines show the experimental data and the red dashed lines show the

fit to the data. Each trace represents one shot of the experiment. For these data,

there is no persistent current present (` = 0).
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5.4 Results

To detect rotation accurately in the ring, the behavior of the phonon mode in

the absence of a persistent current must first be understood. To this end, we apply

our perturbation to the inner ring and observe the resulting oscillation in the phonon

mode, without a persistent current (` = 0). Shown in Fig. 5.3 is the normalized 1D

density n1D(t, θ)/n0,1D(θ), where n1D(t, θ) is the 1D density measured a time t after

the perturbation was applied and n0,1D(θ) is the 1D density separately measured

with no perturbation applied. The density n1D is determined via
∫
n2D(t, r, θ) rdr,

where the 2D density n2D(t, r, θ) is determined from imaging followed by interpolated

conversion into polar coordinates. The Bogoliubov mode oscillates with time in the

ring, but is also damped (as discussed below). At θ ≈ ±90◦, maxima and minima

appear immediately after the perturbation. At these angles, clear oscillations are

seen as a function of time. At the nodal points θ ≈ 0◦, 180◦, oscillations are expected

to be absent in a perfectly uniform ring.

We fit the data to the function ae−t/τ sin(ωt + φ1) sin(θ + φ2) + c, where a,

τ , ω, φ1,2, and c are fit parameters. The average best fit value of the oscillation

frequency is 79.3(3) Hz. We can estimate the frequency of this fundamental phonon

mode as ω0 = cs/R, where cs is the speed of sound. Using the speed of sound for

a narrow channel cs =
√
µ/2m = 5.3(5) mm/s [74] yields ω0/2π = 74(7) Hz, in

good agreement with the average best fit value. The average best fit value of the

decay constant is τ = 25.6(1) ms, so that by 100 ms, the oscillation amplitude is

4The halftoning is more evident if one zooms in on Fig. 2b.
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Figure 5.4: Taken from [5]. Plot of the normalized 1D density as a function of

azimuthal angle and hold time after the perturbation. The three panels correspond

to having different persistent currents in the ring: (a) ` = −1, (b) ` = 0, and (c)

` = 1. For each time and winding number, there is one experimental shot (i.e., there

is no averaging). The green lines show the expected precession of the antinodes of

the standing wave, according to Eq. 5.3.
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diminished well below the noise.

The decay of oscillation could be caused by a number of effects, including Lan-

dau damping and Beliaev damping, i.e., four-wave mixing. We expect Landau damp-

ing to thermalize our excitations by scattering from other, thermal, phonons [114].

In this case, we expect that the quality factor Q = ωτ will be independent of the

mode number q [64]. By contrast, damping via four-wave mixing, called Beliaev

damping, will result in a strong dependence of Q on mode number [64,115]. Landau

damping should also depend on the temperature, while Belieav damping should de-

pend on the density, but we have not explored these dependencies 5. Nevertheless,

we observe a Q for the q = ±1 mode superposition of 12.8(6). We also investigated

the decay of the q = ±2 mode, which has a Q of 13.8(4), agreeing within the uncer-

tainties with the Q for the decay of the ±1. Therefore, Landau damping appears to

be favored over Beliaev damping as the dominant damping mechanism.

Having studied the relevant features of the phonon mode without a persistent

current, we can now use Eq. 5.3 to predict the precession of the anti-nodes and nodes

in the presence of a persistent current. The antinode initially at θ = −90◦ reaches

maximum density at approximately 10, 24, and 35 ms; the antinode initially at

θ = 90◦ reaches maximum density at approximately 5, 17, and 29 ms (see Fig. 5.4) 6.

At these times, the location of these antinodes is determined by Eq. 5.3. Shown in

5Furthermore, it is not clear if the phonon spectrum in one-dimension will fulfill momentum

conservation in a four-wave mixing process.
6The maximum contrast of the standing wave does not occur at time t = 0 because of the

details of how the perturbation is applied.
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Figure 5.5: Taken from [5]. Histogram of the number of occurrences of measured

precession angles of one of the antinodes of the standing wave at t = 35.1 ms. The

red curve is a fit of three, independent Gaussians. These Gaussians correspond to

three different winding numbers: ` = −1, ` = 0, and ` = 1 (left to right).

Fig. 5.4(a), (b), and (c) are the cases where the winding number in the ring prior to

the perturbation was ` = +1, 0, and −1, respectively. Given the radius of the ring,

we expect that these peaks should move at rate of `h̄/mR2t = [`×1.25(7) deg/ms]t.

This rate is shown by the green lines in Fig. 5.4, and follows the peaks well.

To detect a flow velocity with sufficient precision to distinguish between ad-

jacent winding numbers using a single image, one needs to balance the observation

time with the signal to noise ratio. While the angular deflection grows linearly

with time, the amplitude of the oscillation, and thus its signal to noise, decreases

roughly exponentially with time. Empirically, we find that time t = 35 ms is the

best compromise; here, the difference in deflection for ∆` = 1 is expected to be

≈ 45◦. To test our ability to determine a given winding number with a single image,
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we fit the maximum of the density profile for 614 individual repetitions initialized

with winding numbers ` = 0, −1 or 1. We bin the results to form a histogram,

shown in Fig. 5.5. The histogram shows three clear peaks, which we fit to Gaus-

sians. Each corresponds to one of the three winding numbers. Each has a slightly

different width because of the compression or expansion of the phonon wave in the

azimuthally varying density profile of the ring.

We can use the Gaussian fits to predict the confidence with which we can

assign a winding number. Given the strong overlap of adjacent Gaussians, we have

a confidence of ≈ 90% of identifying a ` = −1, and a confidence of ≈ 95% of

identifying an ` = 1 state. These confidences can be made better by attempting

to make the ring more uniform to keep the form of the oscillation well defined.

This might improve the fitting algorithm and decrease the noise. In addition, if the

condensate were colder, the damping of the phonon mode should be reduced. This

would allow for longer interrogation times and therefore more angular displacement

between adjacent ` states.

For this this method of measuring winding number to be minimally destruc-

tive, one must use a minimally destructive imaging method [113]. Previous experi-

ments [116] show that such imaging methods do not perturb the flow state of BECs.

In addition, the perturbation one applies to the condensate must also be minimally

disruptive. The observed fast decay helps to ensure this. Perhaps most important,

the application of the perturbation must not change the winding number. To verify

this, we measured the winding number that results from stirring at multiple dif-

ferent rotation rates using our destructive interference technique. (This produced
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data similar to those in Ref. [61].) We then repeated this experiment, but after

stirring, applied our sinusoidal perturbation, allowed 100 ms for the ring to settle,

and measured the winding number again. The data show no significant change in

the winding number as a result of the application of the perturbation.

One might ask if going to higher modes, particularly q = ±2, would yield

better sensitivity to rotation. The frequency of the oscillation increases as q, and

because the quality factors of the modes are the same, the time at which one achieves

a given signal-to-noise ratio scales as t ∼ q−1. Because the precession angle scales as

∼ t, these two factors cancel. However, one might be able to better determine the

angular position of the maxima because the width of the oscillation peaks decreases

as q−1. Further work is needed to verify these scalings.

5.5 Conclusion

We have demonstrated a minimally destructive in-situ method of measuring

winding number in a ring-shaped Bose-Einstein condensate. This technique can

be used as an excitation-based Sagnac interferometer [64] †. Because of its non-

destructive behavior, this method can be applied to a variety of ring experiments,

and may possibly be used to increase the sensitivity of atomtronic rotation sensors,

by being able to repeat the measurement of winding number many times on a single

condensate.
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Chapter 6: Temperature induced decay

In this chapter, we study how temperature affects the lifetime of a quantized,

persistent current state in a toroidal Bose-Einstein condensate. When the temper-

ature is increased, we find a decrease in the persistent current lifetime. Compar-

ing our measured decay rates to simple models of thermal activation and quantum

tunneling, we do not find agreement. We also measured the size of the hysteresis

loops in our superfluid ring as a function of temperature, enabling us to extract the

critical velocity. The measured critical velocity is found to depend strongly on tem-

perature, approaching the zero-temperature mean-field solution as the temperature

is decreased. This indicates that an appropriate definition of critical velocity must

incorporate the role of thermal fluctuations, something not explicitly contained in

traditional theories. The content of this chapter is based on the following published

work [6].

1) “Temperature-induced decay of persistent currents in a superfluid ultracold

gas”, A. Kumar, S. Eckel, F. Jendrzejewski, and G. K. Campbell, Physical Review

A, 95, 021602(R) (2017).

I contributed to the experimental data acquisition and analysis.
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We study how temperature affects the lifetime of a quantized, persistent cur-

rent state in a toroidal Bose-Einstein condensate (BEC). When the temperature is

increased, we find a decrease in the persistent current lifetime. Comparing our mea-

sured decay rates to simple models of thermal activation and quantum tunneling,

we do not find agreement. We also measured the size of hysteresis loops size in

our superfluid ring as a function of temperature, enabling us to extract the critical

velocity. The measured critical velocity is found to depend strongly on tempera-

ture, approaching the zero temperature mean-field solution as the temperature is

decreased. This indicates that an appropriate definition of critical velocity must

incorporate the role of thermal fluctuations, something not explicitly contained in

traditional theories.

6.1 Overview

Persistent currents invoke immense interest due to their long lifetimes, and

they exist in a number of diverse systems, such as superconductors [12, 117], liquid

helium [118,119], dilute ultracold gases [49,94,120] and polariton condensates [121].

Superconductors in a multiply connected geometry exhibit quantization of magnetic

flux, [122] while the persistent current states in a superfluid are quantized in units

of h̄, the reduced Planck constant. To create transitions between quantized per-

sistent current states, the critical velocity of a superfluid (or critical current of a

superconductor) must be exceeded. In ultra-cold gases, the critical velocity is typi-

cally computed at zero-temperature, whereas experiments are obviously performed
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at non-zero temperature. In this work, we experimentally investigate the role of

temperature in the decay of persistent currents in ultracold-atomic, superfluid rings

(Fig. 1a).

In the context of the free energy of the system, different persistent current

states of the system (denoted by an integer ` called the winding number) can be de-

scribed by local energy minima, separated by energy barriers (here, we concentrate

on ` = 0 and ` = 1 shown in Fig.1(b)) [31, 35]. The metastable behavior emerges

from the energy barrier, Eb, between two persistent current states. For supercon-

ducting rings, the decay dynamics have been understood by the Caldeira-Leggett

model [123]: the decay occurs either via quantum tunneling through the energy

barrier or thermal activation over the top of the barrier. When first investigated

in superconductors [30, 124–126], the decay rate from the metastable state Γ was

fit to an escape temperature Tesc by the relation Γ = Ωa exp(Eb/kBTesc), where kB

is the Boltzmann constant. In the context of the WKB approximation in quantum

mechanics or the Arrhenius equation in thermodynamics, Ωa represents the “at-

tempt frequency”: i.e. how often the system attempts to overcome the barrier. The

exp(Eb/kBTesc) represents the probability of surmounting the barrier on any given

attempt. The probability and thus the escape temperature in quantum tunneling is

independent of temperature, while for thermal activation, the escape temperature

tracks the real temperature (Fig 6.1(c)). For our superfluid ring, the energy barrier

Eb is much greater than all other energy scales in the problem, hence the lifetime

of the persistent current is much greater than the experimental time-scale. How-

ever, the height of the energy barrier and the relative depth of the two wells can be
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changed by the addition of a density perturbation [35]. The density perturbation

may induce a persistent current decay even if its strength is less than the chemical

potential [28,35].

In this thesis, we measure the decay constant of a persistent current for vari-

ous perturbation strengths and temperatures. We also measure the size of hysteresis

loops which allows us to extract the critical velocity, showing a clear effect of tem-

perature on the critical velocity in a superfluid.

The preferred theoretical tool for modeling atomic condensates is the Gross-

Pitaevskii (GP) equation, which is a zero-temperature, mean-field theory. Recent

experiments exploring the effect of rotating perturbations on the critical velocity

of toroidal superfluids have found both agreement [63] and significant discrepan-

cies [28, 35] between experimental results and GP calculations. Several non-zero

temperature extensions to GP theory have been developed, including ZNG [127]

and c-field [128] [of which the Truncated Wigner approximation (TWA) is a special

type]. To explore the role of temperature in phase slips in superfluid rings, Ref. [41]

studied condensates confined to a periodic channel using TWA simulations. In ad-

dition, recent theoretical [129–135] and experimental [136] works explored a similar

problem of dissipative vortex dynamics in a simply-connected trap.

Our experiment consists of a 23Na Bose-Einstein condensate (BEC) in a target-

shaped optical dipole trap [2] [Fig. 6.1(a)]. The inner disc BEC has a measured

Thomas-Fermi (TF) radius of 7.9(1) µm. The outer toroid has a Thomas-Fermi

full-width of 5.4(1) µm and a mean radius of 22.4(6) µm. To create the target po-

tential, we image the pattern programmed on a digital micromirror device (DMD)
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Figure 6.1: Taken from [6]. Target shaped condensate, energy landscape and

effectice escape temperature (color online). a) In situ image of trapped atoms,

with 5% of the total atoms imaged [7]. Experiments are performed on the ring-

shaped BEC and the resulting winding number ` is read out by interfering the ring

condensate with the disc-shaped BEC in time of flight. The disc-shaped BEC acts

as a phase reference. (b) Energy landscape showing the stationary state, ` = 0, and

the persistent current state, ` = 1, as minima in the potential. The energy barrier

Eb needs to be overcome for a persistent current to decay from ` = 1 to ` = 0.

The decay can be induced either via thermal activation (TA), or quantum tunneling

(QT). (c) Crossover from quantum tunneling to the thermally activated regime. The

escape temperatre Tesc (see text) first remains constant (horizontal blue line) and

the becomes equal to the physical temperature T (slanted gray line). A dotted line

acts a guide to the eye depicting Tesc = T .
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Figure 6.2: Taken from [6]. (color online). (a) Average measured winding

number 〈`〉 vs. t, the duration for which a stationary perturbation is applied. The

four data sets correspond to different strengths of the stationary perturbation Ub:

0.50(5)µ (circles), 0.53(5)µ (squares), 0.56(6)µ (inverted triangles) and 0.59(6)µ

(triangles). Here, µ is the unperturbed chemical potential. The temperature of the

superfluid was 85(20) nK. The solid curves show exponential fits. (b) The average

measured winding number 〈`〉 vs. Ub for fixed t: 0.5 s (circles), 2.5 s (squares)

and 4.5 s (inverted triangles). The solid curves show a sigmoidal fit of the form

〈`〉 = [exp((Ub/µ− ζ)/α) + 1]−1. The temperature of the superfluid was 40(12) nK.
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onto the atoms while illuminating it with blue-detuned light. This allows us to

create arbitrary potentials for the atoms. Vertical confinement is created either

using a red-detuned TEM00 or a blue-detuned TEM01 beam. The potential gener-

ated by the combination of the red-detuned TEM00 beam and ring beam is deeper

than that of blue-detuned TEM01 and ring beam; thus the temperature is gener-

ally higher in the red-detuned sheet potential. We use this feature to realize four

different trapping configurations with temperatures T of 30(10) nK, 40(12) nK,

85(20) nK and 195(30) nK but all with roughly the same chemical potential of

µ/h̄ = 2π× (2.7(2) kHz). (See supplemental material for details about temperature

and trapping configurations.) Finally, a density perturbation is created by another

blue-detuned Gaussian beam with a 1/e2 width of 6 µm and can be rotated or held

stationary at an arbitrary angle in the plane of the trap [58].

To probe the lifetime of the persistent current, we first initialize the ring-

shaped BEC into the ` = 1 state with a fidelty of 0.96(2) (see Supplemental ma-

terial). A stationary perturbation with a strength Ub < µ is then applied for a

variable time t ranging from 0.2 s to 4.6 s. To compensate for the 25(2) s lifetime of

the condensate, we insert a variable length delay between the initialization step and

application of the perturbation to keep the total time constant (Without this nor-

malization, a 25(2) s lifetime would cause an atom loss of ≈ 20 % in 4.7 s, changing

the chemical potential by ≈ 10 %). At the end of the experiment, the circulation

state is measured by releasing the atoms and looking at the resulting interference

pattern between the ring and disc BECs [?,35]. For each temperature, four different

perturbation strengths are selected. The perturbation strengths are chosen such
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that the lifetime of the persistent current state is varied over the entire range of t.

The measurement is repeated 16-18 times for each combination of Ub, T and t. The

average of the measured circulation states 〈`〉 gives the probability of the circulation

state surviving for a given set of experimental parameters.

Figure 6.2(a) shows 〈`〉 vs. t for T = 85(20) nK and four different Ub. We

fit the data to an exponential exp(−Γt). GP theory predicts either a fast decay

(< 10 ms) or no decay, depending on the precise value of Ub/µ [41]. By contrast, we

see from Fig. 6.2(a) that Γ changes smoothly from 4.1(6) × 10−2 s−1 to 6.2(8) s−1

as Ub is changed from 0.50(4)µ to 0.59(5)µ. Thus we are able to tune the decay

rate by over two orders of magnitude by changing the magnitude of perturbation by

≈ 0.1µ, in qualitative agreement with TWA simulation results [41]. This confirms

that the decay of a persistent current is a probabilistic process, in contrast to the

instananeous, deterministic transitions seen in GPE simuations [41].

To explore whether a longer hold time shifts or broadens the transition between

persistent current states, we measured the average persistent current as a function

of Ub while keeping t constant. Figure 6.2(b) shows this measurement for three

different t: 0.5 s, 2.5 s and 4.5 s. We fit this data to a sigmoidal function of the

form 〈`〉 = [exp((Ub/µ− ζ)/α) + 1]−1 to extract estimates of the width α and center

ζ of the transition 1. We see that changing the perturbation strength by ≈ 0.2µ

decreases 〈`〉 from one to zero. The width α is essentially unchanged as we change t

from 0.5 s to 4.5 s, though the center of the sigmoid ζ shifts by ≈ 0.1Ub/µ. We also

1the extracted center and FWHM of the transition are independent of the form of the sigmoidal

funcation chosen
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Figure 6.3: Taken from [6]. (color online). Measured decay rate of the persis-

tent current Γ as a function of perturbation strength Ub for four different temper-

atures: 30(10) nK (circles), 40(12) nK (squares), 85(20) nK (inverted circles) and

195(30) nK (triangles). The solid lines are fits of the form Γ = Ωa exp(Eb/kBTesc),

where Eb is the energy barrier, kB is the Boltzmnann constant, and Tesc and Ωa

are fit parameters. The inset shows the extracted Tesc as a function of measured

physical temperature: 30(10) nK (triangle), 40(12) nK (square), 85(20) nK (circle)

and 195(30) nK (inverted triangle). The solid line shows Tesc = T .

took similar measurements at a temperature of 85(20) nK (not shown). The width

α remains essentially independent of t even at higher temperatures. For a hold time

t = 0.5 s, we found a center ζ = 0.50(4)Ub/µ at T = 85(20) nK; by contrast, we

obtain ζ = 0.64(4)Ub/µ for a T = 40(12) nK. This indicates that an increase in

temperature makes a phase slip more probable even with smaller Ub.

To understand if the decay of the persistent current is thermally activated or

quantum mechanical in nature, we first must understand the nature of the energy
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barrier, Eb, that separates the two states. To estimate the size of Eb, we consider

excitations that connect the ` = 1 to the ` = 0 state. In the context of a one-

dimensional ring, a persistent current decay corresponds to having either thermal

or quantum fluctuations reduce the local density, producing a soliton that subse-

quently causes a phase slip [137]. For rings with non-negligible radial extent, TWA

simulations suggest that a vortex passing through the annulus of the ring (through

the perturbation region) causes the transition [41]. Because of the narrow width of

our ring, we expect that a solitonic-vortex is the lowest energy excitation that can

connect two persistent current states [138–143]. An analytical form for the energy

of a solitonic vortex is given by [139,140]:

εsv(Ub/µ) ≈ πn2D
h̄2

m
ln(

R⊥
ξ

) +
1

2
mNc

(
h̄

2mR

)2

(6.1)

where Nc is the total number of condensate atoms in the ring, ξ is the healing

length, R⊥ is the Thomas-Fermi width of the perturbation region and n2D is the

maximum 2D density in the region of the perturbation. The first term is the energy

of a solitonic-vortex while the second term is the kinetic energy of the remaining

π phase winding around the ring. We note that Nc, R⊥, ξ and n2D all depend

implicitly on T and Ub. Finally,

Eb(Ub, T ) = εsv − ε`=1 = εsv −
1

2
mNc

(
h̄

mR

)2

, (6.2)

where ε`=1 is the energy of the first persistent current state. We have verified the

accuracy of these expressions using GP calculations similar to those in Refs. [139,

140,144,145] to within 10 % for our parameters.
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Fig. 6.3 shows the clear temperature dependence of the measured decay rate

Γ of the persistent current. To quantify this dependence, we fit the data to the form

Γ = Ωa exp(Eb/kTesc) for each temperature (shown as the solid lines in Fig. 6.3).

We note that while the attempt frequency Ωa is dependent on temperature (chang-

ing by five orders of magnitude from 40(12) nK to 195(30) nK), Tesc is not (see

inset of Fig. 6.3). In fact, Tesc is roughly constant at ≈ 3µK, while the BEC tem-

perature varies from 30(10) nK to 195(30) nK. Thus, simple thermal activation

does not explain the probability of a transition, since Tesc 6= T . The constancy of

Tesc hints that a temperature-independent phenomenon like macroscopic quantum

tunneling may play a role, as it does in superconducting systems [146]. We can

estimate the decay rate due to quantum tunneling by drawing an analogy with an

rf-superconducting quantum interference device. In this device, the quantum tunnel-

ing rate can be estimated by the WKB approximation, Γ ≈ (ωp/2π) exp(−Eb/h̄ωp),

where ωp is the frequency of the first photon mode in the superconducting sys-

tem [30]. Here, by analogy, ωp is the frequency of the first azimuthal phonon mode,

which is ≈ 2π × 30 Hz. For our system, Eb/h̄ωp > 103, so the quantum tunneling

should be negligible. Thus, the observed decay cannot cannot be described by either

simple thermal activation or quantum mechanical tunneling [146]. It may be that

more complicated models of energy dissipation may be required.

Finally, because there are parallels between a vortex moving through the an-

nulus of the ring and a vortex leaving a simply connected BEC, we investigated

models that predict the dissipative dynamics of these vortices [133,135]. Such mod-

els predict lifetimes that scale algebraically with Eb and T . As can be seen from
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Figure 6.4: Taken from [6]. Hysteresis loop for a perturbation strength of

0.64(4)Ub/µ for 40(12) nK (a), 85(20) nK (b), and 195(30) nK (c).(d) Size of the

hysteresis loop, (Ω+ − Ω−)/Ω0 (see text), vs. barrier strength for three different

temperatures: 40(12) nK, diamonds, 85(12) nK (squares), and 195(12) nK (trian-

gles). The zero temperature, GPE predicted, area of the hysteresis loop is shown

as a purple band, which incorporates the uncertainty in speed of sound. The left

y axis of the inset shows the hystersis loop size shown in (a)-(c) as a function of

temperature for a perturbation strength of 0.64(4)Ub/µ. The right y axis of the

inset shows the corresponding extracted critical velocity (mm/s).
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Fig. 6.3 our data scales exponentially with Eb. Thus, these models fail to explain

the experimental data.

The measurements of the decay constants described above shows the strong

effect of temperature on the persistent current state. As discussed above, this tem-

perature dependence is wholly captured in the variation of the constant Ωa with T ,

as Tesc is constant. This causes an apparent change in the critical velocity of a mov-

ing barrier (for a given application time), with higher temperatures having lower

critical velocities. Such a change in critical velocity affects hysteresis loops [35]. For

initial circulation state ` = 0(1), we experimentally determine Ω+(Ω−), the angular

velocity of the perturbation at which 〈`〉 = 0.5. The hysteresis loop size is given by

Ω+ − Ω−, normalized to Ω0, where Ω0 = h̄/mR2, m is the mass of an atom, R is

the mean radius of the torus. We measure the hysteresis loop for four perturbation

strengths and three different temperatures: 40(10) nK, 85(20) nK and 195(30) nK

as shown in Fig. 6.4 , with the zero-temperature GP prediction based on the speed

of sound shown for references [35, 147]. We see from Fig. 6.4 that the discrepancy

between experimental data and theoretical predictions decreases as the temperature

is lowered. Using the density distribution of atoms around the ring, we extract the

critical velocity from the hysteresis loop size [35]. For example, at Ub/µ = 0.64(4),

a temperature change of 40(12) nK to 195(30) nK corresponds to a change in the

critical velocity of 0.26(6) cs to 0.03(2) cs. Here, cs is the speed of sound in the

bulk. While the measured critical velocity approached the zero-temperature, speed

of sound, we see that at non-zero temperature thermal fluctuations must be taken

into account in any measurement or calculation of the critical velocity.
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In conclusion, we have measured the effect of temperature on transitions be-

tween persistent current states in a ring condensate in the presence of a local pertur-

bation. The results of this work indicate that as thermal fluctuations become more

pronounced, it becomes easier for the superfluid to overcome the energy barrier and

the persistent current state to decay. If we assume that the decay is thermally

driven and is thus described by an Arrhenius-type equation, we find a significant

discrepancy between the measured temperature and the effective temperature gov-

erning the decay. Other possible mechanisms like macroscopic quantum tunneling

should be greatly suppressed. Despite the disagreement, we find a clear temperature

dependence of the critical velocity of the superfluid by measuring hysteresis loops.

This work will provide a benchmark for finite temperature calculations on the decay

of topological excitation in toroidal superfluids.

This supplemental material contains three sections. The first section explains

the experimental procedure for initializing the persistent current state and the sub-

sequent measurement. The second section explains the procedure for extracting

temperature. The third section presents the method we use to calibrate perturbation

strength and the effect of finite temperature on the calibration of the perturbation

strength.

6.2 Experimental procedure

After creating a BEC in the target shaped trap, the experiment involves two

stages, first a preparation stage followed by a measurement stage [see Fig. 6.5]. In
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the preparation stage, a stationary perturbation is adiabatically raised in the ring for

a total time, Tsp = 1 s to destroy any spontaneous circulation states. Subsequently,

a circulation state is imprinted on the atoms by moving the perturbation around

the ring for a total time, Tint = 1 s. In the preparation stage, both perturbations

have a strength of ≈ 1.1µ, where µ is the unperturbed chemical potential. The

density perturbation is raised to this strength in 300 ms, kept constant for 400 ms

and then lowered down to zero in 300 ms. The reliability of the experimental

data depends both on our ability to imprint circulation states deterministically

and to eliminate spontaneous circulation states. The confidence level of having

no spontaneous circulation before imprinting the circulation state is 0.99(1). The

confidence level of imprinting a circulation state with one unit of circulation before

the measurement stage is 0.96(2).

To measure the decay constant, we again apply a stationary perturbation

whose strength is variable, but always less than the chemical potential. The pertur-

bation is applied for a variable time t, during which it is raised to a desired strength

in 70 ms, kept constant and then lowered down in 70 ms.

To measure the hysteresis loop size, we initialize the atoms in the ring in either

a circulation state of ` = 0 or ` = 1. A rotating perturbation with a strength less

than the chemical potential µ is then applied with a variable rotation rate to trace

out the hysteresis loop [35]. The rotating perturbation is on for a total of 2 s, during

which it is raised to the desired strength in 300 ms, kept constant, and then lowered

in 300 ms.
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Figure 6.5: Taken from [6]. The experimental sequence for measuring current

decay. A stationary perturbation with height Ub/µ ≈ 1.1, where µ is the chemical

potential is turned on during Tsp to destroy any spontaneous circulation. A rotating

perturbation with the same height imprints the ` = 1 circulation state during Tint.

A stationary perturbation with strength less than the chemical potential (shown

here as 0.5Ub/µ) probes the circulation state for t. An intermediate step Texp − t is

introduced to ensure that the total experimental time Texp remains constant.
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Figure 6.6: Taken from [6]. Measured temperature vs. power in the red-detuned

(1064 nm) vertical trapping beam. The errorbars show the statistical uncertainty.

6.3 Measuring the temperature

The persistent current lifetime was measured at four different temperatures.

The higher temperatures of 85(20) nK and 195(30) nK are achieved using the red-

detuned vertical trap while the lower temperatures of 30(10) nK and 40(12) nK are

obtained using the blue-detuned vertical trap. Typically, the temperature of the

BEC is extracted by releasing the atoms from the trap and measuring the density

distribution in time of flight (ToF). The 1D integrated density is then fitted to a

bimodal distribution: the sum of a Gaussian and a Thomas-Fermi profile. The

Gaussian part describes the thermal part while the Thomas-Fermi profile describes

the condensate part. Fitting the evolution of the width of the Gaussian as a function

of time yields the temperature [148].

To understand the final temperature, we need to understand the evaporation

profile and the final trap configuration. During the evaporative cooling stage, the
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laser cooled atoms are transferred to a red-detuned optical dipole trap with a depth

of the order of 10 µK. We then do an exponential forced evaporation ramp by low-

ering the laser power to obtain a degenerate quantum gas. The temperature of this

gas is set by the final depth of the optical dipole trap. We reach a temperature

of 85(20) nK and 195(30) nK for powers of 140 mW and 350 mW of red-detuned

IR light respectively. A separate TEM00 red-detuned crossed dipole trap is then

turned on 2, after which the condensate is transferred to the target trap. The atoms

now reside in a potential which is the convolution of an attractive potential of the

red-detuned sheet trap and a repulsive blue-detuned target trap. The trap depth

and hence the temperature is set by the red-detuned trap, since the potential due

to red-detuned TEM00 beams are typically deeper than their blue-detuned counter-

parts [149]. To extract the temperature, we release the atoms in the target trap in

time of flight and then image the cloud in the horizontal direction. We extract a

temperature by fitting the atom density to a bimodal distribution. This measure-

ment was repeated at various optical powers. The temperature of 195(30) nK at

350 mW of trap power can be measured directly. The temperature of 85(20) nK at

140 mW is obtained by extrapolation of the fit shown in Fig. 6.6. This extrapolation

is necessary as the bimodal fit becomes less reliable at lower temperature, as the

thermal fraction decreases.

2The transverse dimensions of atoms in the red-detuned vertical trapping beam is on the order

of 100 µm, while the target trap is only ≈50 µm in diameter. To ensure efficient transfer to the

target trap, a Gaussian beam of 1/e2 width of ≈ 50 µm is turned on in tandem with the vertical

confinement beams (effective mode matching)
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Figure 6.7: Taken from [6]. Measured temperature vs mask beam power. Mea-

surements are for a vertical trapping frequency of 520 Hz (circles) and 970 Hz

(triangles) as a function of power in the radial trapping beam incident on the DMD.

The experiment was carried out with the lowest radial trapping power of 14.6 mW.

A modified procedure is used when the blue detuned vertical trap is used.

The blue-detuned vertical trap is a TEM01 beam. Atoms initially reside in the

combination of red-detuned vertical trap and the crossed dipole trap. The atoms are

then adiabatically transferred from the red-detuned vertical trap to the blue-detuned

vertical trap (while horizontal confinement is maintained by the crossed dipole trap).

We then perform a forced evaporation ramp by lowering the trapping power of the

crossed dipole trap. Finally, the atoms are transferred to the target potential and

the crossed dipole beam is turned off. We let the condensate equilibriate for 1 s.

The temperature in the blue-detuned trap is set by both the depth of the target

trap potential and the power of the blue-detuned vertical trap. The method used to

extract temperature from the red-detuned trap does not work with the blue-detuned
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trap due to the lower temperature. To circumvent this problem, we blow away the

atoms in the ring and let the atoms in the disc expand in time of flight, imaging

vertically. This is done for two primary reasons. First, the central disc is hard-walled

and we expect the atoms in the disc to have a lower critical temperature 3. A lower

critical temperature results in a higher fraction of thermal atoms, making it easier to

extract a temperature. Second, an analytical expression for an expanding toroidal

trap does not exist 4. To make our measurements more accurate, we not only took

data in the experimental configuration (with a target trap power of 14.6 mW), but

also at higher powers using the same atom number and vertical trapping frequency

of the blue-detuned trap. A fit of the temperatures measured at higher power can

be linearly extrapolated to verify the measured temperature at the experimental

configuration. The measured temperatures for the blue-detuned trap are shown in

Fig. 6.7. We reach a temperature of 40(12) nK and 30(10) nK for vertical trap

frequencies of 520 Hz and 970 Hz respectively.

6.4 The effect of temperature on perturbation strength calibration

Calibration of the perturbation strength is done in-situ and follows the same

procedure as [35]. Briefly, the optical density of atoms at the position of the

perturbation is measured as a function of perturbation strength. Due to optical

aberrations in the imaging system, the behavior of the optical density vs. Ub changes

3A simple assumption of uniform density for the hard walled disc puts the critical temperature

to be on the order of 100 nK below the critical temperature of atoms in the ring
4we assume that the temperature of atoms in the disc and the ring are equal
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Figure 6.8: Taken from [6]. (a) Computed condensate fraction as a function of

temperature. The points show the results of our ZNG calculations for a vertical

trapping frequency of 512 Hz (see text). A fit of the form Nc/N = 1− (T/Tc)
α with

α = 2.22(9) is also shown. (b) Computed chemical potential as a function of temper-

ature. The red line shows a fit of the form µ(T )/µ(T = 0) = 1− (T/Tc)
β with β =

2.72(4). For reference, the dash-dot line shows µ(T )/µ(T = 0) = [1 − (T/Tc)
α]1/2,

expected from the Thomas-Fermi approximation. The difference between these two

curves yields the first order correction to the barrier calibration as a function of

temperature.
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between Ub/µ < 1 and Ub/µ > 1. In particular, this function exhibits an “elbow” at

Ub/µ = 1. The location of the elbow where the optical density levels outs enables

us to determine the chemical potential of the un-perturbed toroid.

During imaging, we are unable to distinguish thermal atoms from the conden-

sate atoms. It is possible that as we change the temperature, the resulting change

in the thermal fraction may impact the measurement of the perturbation strength.

Here, we investigate the systematic error introduced due to the barrier calibrations

done at different temperatures. We performed ZNG [127] calculations to deter-

mine the effect of finite temperature on our measurements. In the ZNG model, the

effective potential experienced by the condensate is:

Uc = V3d + 2gn3dt. (6.3)

Here V3d is the toroidal potential, n3dt is the number density of the thermal cloud,

g = 4πh̄2as/m is the interaction strength coefficient and as is the s-wave scattering

length. This enables us to calculate the total number of atoms in the condensate Nc

and the density of condensate atoms n3dc by using the Thomas-Fermi approximation.

The effective potential felt by the thermal atoms is given by:

Ut = V3d + 2gn3dt + 2gn3dc. (6.4)

This potential Ut is used to determine the thermal atom distribution n3dt,

n3dt = 1/Λ3
dBLi3/2(exp((µ− Ut)/kBT )). (6.5)

which can be summed up to yield the total number of thermal atoms Nt. Here Li3/2

is the polylogarithmic function of order 3/2. These equations are solved under the
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constraint that the total atom number N0 is the sum of condensate atom number

Nc and thermal atom number Nt, and remains constant. For a given temperature,

this procedure of calculating the number of thermal atoms Nt and condensate atoms

Nc is carried iteratively until the solution converges. The lowest temperature where

the condensate atom number drops to zero is the critical temperature Tc.

Figure 6.8(a) shows the calculated condensate fraction as a function of tem-

perature for a vertical trapping frequency ωz of 518(4) Hz and radial trapping fre-

quency of 258(12) Hz. The solid line shows a fit of the form Nc/N = 1 − (T/Tc)
α

with α = 2.22(9). The extrapolated fit yields a critical temperature of 370 nK.

Figure 6.8(b) shows the calculated chemical potential as a function of temperature.

A fit of the form µ(T )/µ(T = 0) = 1 − (T/Tc)
β with β = 2.72(4) is shown as

a solid line. For reference, the dash-dot line shows the expected Thomas-Fermi

chemical potential µ(T )/µ(T = 0) = [1 − (T/Tc)
α]1/2. (For a ring, N ∝ µ2 in the

Thomas-Fermi approximation.) The shift between these two curves arises from the

additional mean-field interaction between the thermal gas and the condensate. For

a vertical trapping frequency of 512 Hz, the highest temperature that we operate at

is 85(20) nK, which should be compared to the critical temperature of 370 nK (see

Fig. 6.8). The fractional change in chemical potential due to the thermal compo-

nent is 3.5 × 10−2. This leads to a 3 % systematic shift in the barrier calibration.

At the higher temperature of 195(30) nK with ωz = 985 Hz and ωr = 258(12) Hz,

the systematic shift is around 8 %(owing to the higher transition temperature of

470 nK), but this is small compared to the statistical error.

143



6.5 Table of Experimental parameters and fit

Case T (nK) Tc (nK) ωz/2π (Hz) N/105 µ/h (kHz) Tesc (nK) Ωa (s−1)

I 30(10) 470(30) 974(7) 4.46(26) 2.91(12) 3.9(6)×103 5(2)× 10−1

II 40(12) 370(40) 518(4) 6.71(39) 2.93(11) 9.2(8)×103 4.8(9)× 100

III 85(20) 370(40) 520(10) 6.48(46) 2.68(11) 5.9(8)×103 1.9(4)× 103

IV 195(30) 470(30) 985(4) 4.22(26) 2.66(08) 3.2(4)×103 1.2(2)× 105

Table 6.1: The temperature (T ), critical temperature Tc, vertical trapping fre-

quency ωz, number of atoms N , chemical potential (µ) and fit parameters escape

temperature Tesc and a for different trapping configurations. The radial trapping

frequency ωr remains essentially constant across all the configurations at 258(12) Hz.

Errorbars in N and µ exclude systematic effects which we estimate to be up to a

20% common shift.
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Chapter 7: A rapidly expanding Bose-Einstein condensate: an ex-

panding universe in the lab

In this chapter, we study the dynamics of a toroidal Bose-Einstein condensate

when the mean radius of the toroidal confinement is changed supersonically. We

deploy both experimental and numerical methods for this study. We focus on the

similarities between a rapidly expanding toroidal condensate and cosmological ex-

pansion. We observe red-shifting of long-wavelength excitations (phonons in case of

a BEC). We observe that the energy deposited in the condensate during the radial

expansion is dissipated by creation of topological excitations like solitons and vor-

tices. The decay of these excitations leads to production of azimuthal phonons, and

stochastic persistent currents. The content of this chapter is based on the following

work [44].

1) “A supersonically expanding Bose-Einstein condensate: an expanding uni-

verse in the lab”, S. Eckel, A. Kumar, T. Jacobson, I.B. Spielman, G.K. Campbell,

arXiv:1710.05800 (2017).

This work has been reproduced in appendix B. I contributed to the experimental

data acquisition.
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Chapter 8: Conclusions and Future Experiments

In this thesis, we have shown the versatility of a ring-shaped ultracold super-

fluid as an experimental test bed. The experimental data obtained during the course

of this thesis has made possible several insights into the behavior of an ultracold

superfluid gas. The main outcomes of this thesis are:

1) Development of new metrological tools for measuring the circulation state of a

ring-shaped superfluid. The circulation state in time of flight is measured interfer-

ometrically in time of flight, and using the Doppler effect in-situ.

2) Measuring the current phase relationship of a superfluid weak link.

3) Measuring the excitation spectrum of a ring-shaped superfluid.

4) We showed the explicit dependence of the critical velocity of a superfluid on the

temperature. By varying the temperature of the superfluid, we showed both agree-

ment and disagreement with predictions of the GP equations at zero temperature.

5) We showed that ultracold atoms can be used to mimic some aspects of cosmolog-

ical expansion like red-shifting and the creation of spontaneous topological defects.

Despite the work done in this thesis, some aspects of the physics remain un-

explored or unanswered. In the last two years, considerable work has been done on
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the construction of a new generation of sodium rings experiment. Important im-

provements has been incorporated to improve the resolution of the imaging system

by a factor of over four. With the improved resolution, we will be in a position

to address interesting questions. For example, we can make make weak links at

much smaller length scales, which will enable us to study the effects of tunneling

effects in a superfluid ring. A better resolution will also help in a tighter radial con-

finement. It would be very interesting to repeat the expanding rings experiments

with a tighter confinement. We saw that the radial oscillations of the condensate

around its final mean position created topological defects. It would be interesting

to observe the number of topological defects as a function of the radial trapping

frequency. The structure factor measurements could also be repeated again, given

that we have a better detection threshold. That will make comparison to theory

over a broader range of data possible. We could also use the DMDs to excite both

radial and azimuthal modes simultaneously, which will give rise to the excitation

spectrum of a heavy phonon, which exhibits the dispersion relation of a massive

relativistic particle.
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Appendix A: Electronics development

A.1 Vacuum interlock operation

The operation of the interlock is as follows: the decision whether the vacuum

state of the experiment lies above or below the safety threshold is decided by a

signal from a vacuum gauge controller, Agilent XGS-600. The output from the XGS

is connected to a 5 V signal using a 300 Ohm resistor. When the vacuum state is

acceptable, the output from the controller is 0. A vacuum pressure reading above

the safety threshold will give a output of 1. The safety threshold can be programmed

in a Agilent XGS-600, which we set to be 1× 10−10 torr for the main chamber and

5 × 10−7 torr for the oven side. As a zero signal is more susceptible to noise, we

pass the signal through a NOT gate, so a logical high corresponds to an acceptable

vacuum state. We use a flip-flop as a memory element for storing the vacuum state.

The interlock is always in a dis-engaged state when it is first powered on, so

the output of the flip flop is zero initially. This desired output is implemented by

sending a digital low signal to the ‘clear’ port of the D flip-flop [150], when the

vacuum interlock first powers up. This is done by using a 22 µF capacitor (shown

as C3 in figure 2.2). This capacitor is connected to the ‘clear’ port of the D flip-flop

on one side and ground on the other side. The ‘clear’ port is connected a +5 V
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supply using a 2 kΩ resistor. When the interlock is first powered up, the +5 V

supply can discharge to ground using the 22 µF capacitor. As long as the capacitor

is charging, the ‘clear’ remains at zero level, and raises to a logical level one when

the capacitor is fully charged. This means that the output of the flip flop Q = 0

(shown as port 5 of the block 7474N in figure 2.2). This the output of the AND gate

shown as V3/1 is also 0, and the gate valve will remain closed. Since the flip-flop

is a memory element, the flip-flop will remain in that state. This implies that in

the case of a power outage, the gate valve will be off when the power comes back,

The gate valve will only open when the clock state is reset, which can only be done

with human intervention. The RC constant of the circuit connected to the ‘clear’

port is τ =66 ms. This implies that after a time of around 5τ , the capacitor is fully

charged and the ‘clear’ port of the flip flop is at logical high state.

If the vacuum system is good and below the safety threshold, and the ‘clear’

port is at logical high state, we turn the global activate switch on. This means that

the data input to the flip flop is 1, since it is a result of an AND operation between

the global activate and the NOT of the pressure gauge controller. The clock signal

will see a downward slope. The output of the flip-flop will still be zero, since the

flip-flop needs a positive edge trigger to make a change in the transition. Now we

hit the clock button. This switch is a press button, which is on only when it is

pressed. When the button is first pressed, the flip flop sees a positive clock pulse,

which enables it to change its output state. This means that the output Q changes

from 0 to 1, so the output U also changes to 1. The output U is obtained after an

AND operation with the output of the flip flop and AND operation with the global
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enable and the vacuum controller, as an additional precaution should the go into

an indeterminate state. The output U controls a solid state relay, which controls an

external power supply providing power to the gate valve, which opens up.

In the case the pressure in the main chamber exceeds the safety threshold and

goes above the safety limits, the input from the vacuum gauge controller will go to

logical high, which means that the value of the data point to the flip flop is now a

logical low. While this happens, the clock of the flip flop sees a positive transition,

since the clock is derived from an OR gate between the clock switch and the data

signal. This means that the output of the flip-flop will go to zero, shutting off the

gate valve. If the pressure comes back to safety values, the data signal will again

become 1, but the clock signal will see a downward slope and hence no change in the

output will happen. Only when a person comes up, and presses the clock button

does the flip flop clock get a positive slope signal and the gate valve will open again.

A.2 Evaporation sequence

This section lists the various steps of evaporative cooling needed to make a

condensate. The steps have been listed in a table A.1 , and the waveform has

been shown in figure A.1. The current in the quadrupole magnetic coils is given in

amperes (A), producing a field of 1.2 G/(A-cm). The power in the red-detuned sheet

is given in mW. The power going to the TOP trap coils is controlled with an analog

signal, where the maximum and the minimum power is obtained with 5 V and 0 V

respectively. The frequency of RF radiations used for radiation is given in MHz.
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Figure A.1: The figure above shows the waveforms during a typical evaporation

sequence to produce a BEC in a red-detuned sheet. The first panel shows the current

flowing in the quadrupole coils producing a field of 1.2 G/(A-cm). The second panel

shows the voltage of the analog switch controlling the power to the amplifier for the

TOP trap coils. The third panel shows the power in the red-detuned sheet. The

last panel shows the frequency of the RF field responsible for evaporative cooling in

MHz. The red-lines separate marks the end of a step in the sequence, which have

been detailed in the table A.1 .
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In the table, LR and ER denote linear ramp and exponential ramp respectively.

Step no. Step description Time Quad. current TOP trap Red-sheet power RF freq.

1 Quadrupole on 0.1 s 82.5 A 0 V 0 mW 80 MHz

2 Compress Quadrupole 0.5 s LR(82.5.250) A 0 V 0 mW 80 MHz

3 Quadrupole RF evap. 2.8 s 250 A 0 V 0 mW ER(80,10) MHz

4 TOP trap on 0.1 s 250 A 5 V 0 mW 80 MHz

5 Death Circle Evap. 1.5 s 250 A LR(5,2.65) V 0 mW 80 MHz

6 TOP trap Evap. 8 s 250 A 2.65 V 0 mW ER(80,10) MHz

7 relax TOP trap 1.5 s LR(250,112.5) A LR(2.65,1.3) V 0 mW 80 MHz

8 Transfer to red-sheet 0.5 s LR(112.5,0) A 1.3 V 0 mW 80 MHz

9 Set bias 0.02 s 0 A LR(1.3,0) V LR(0,700) mW 80 MHz

10 Red-sheet evap. 3 s 0 A 0 V ER(700,140) mW 80 MHz

Table A.1: caption.
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Appendix B: A rapidly expanding Bose-Einstein condensate: an ex-

panding universe in the lab

This appendix is a copy of the following work [44].

1) “A supersonically expanding Bose-Einstein condensate: an expanding uni-

verse in the lab”, S. Eckel, A. Kumar, T. Jacobson, I.B. Spielman, G.K. Campbell,

arXiv:1710.05800 (2017).
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A rapidly expanding Bose-Einstein condensate: an expanding universe in the lab1

S. Eckel,1 A. Kumar,1 T. Jacobson,2 I.B. Spielman,1 and G.K. Campbell12

1Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA3
2Department of Physics, University of Maryland, College Park, Maryland 20742, USA4

We study the dynamics of a supersonically expanding ring-shaped Bose-Einstein condensate both experi-
mentally and theoretically. The expansion redshifts long-wavelength excitations, as in an expanding universe.
After expansion, energy in the radial mode leads to the production of bulk topological excitations – solitons and
vortices – driving the production of a large number of azimuthal phonons and, at late times, causing stochastic
persistent currents. These complex nonlinear dynamics, fueled by the energy stored coherently in one mode, are
reminiscent of a type of “preheating” that may have taken place at the end of inflation.

Cosmological expansion is central to our understanding of5

the universe. Here, we experimentally create a system where6

fields expand in a similar way as in the universe: an expand-7

ing, ring-shaped atomic Bose-Einstein condensate (BEC). Our8

laboratory test bed demonstrates three effects associated with9

the expanding universe. First, we conclusively demonstrate10

a redshifting of phonons analogous to the redshifting of pho-11

tons, which provided the first evidence for an expanding uni-12

verse [1]. Second, we observe hints of “Hubble friction” that13

damps the redshifted fields [2]. Third, we observe a process14

in which energy is rapidly transferred from a homogeneous15

radial mode into azimuthal modes by a nonlinear, turbulent16

cascade, reminiscent of that seen in some models of preheat-17

ing at the end of cosmological inflation [3–9]. Experiments18

such as these can thus emulate both linear and nonlinear field19

theoretic aspects of cosmology.20

A zero-temperature BEC is a vacuum for phonons [10], just21

as an empty universe is a vacuum for quantum fields, like pho-22

tons. In this analogy, the speed of light is replaced by the23

speed of sound, c, in the BEC. Evoking general relativity, the24

equation for long-wavelength phonons (in the hydrodynamic25

limit [11]) takes on a covariant form with a curved spacetime26

metric [12–14]. Previous studies with ultra-cold atoms illu-27

minated different aspects of this phonon metric. For exam-28

ple, an interface between regions of sub-sonic and super-sonic29

fluid flow forms a “sonic event horizon” that exhibits effects30

such as Hawking radiation [12, 14–22]. By changing the in-31

teraction strength or density, one can simulate cosmological32

phenomena such as pair production [23–29], Sakharov oscil-33

lations [30], or the dynamical Casimir effect [31], the latter34

two having been recently observed experimentally [32, 33].35

Beyond cold atoms, experimental studies have realized ana-36

log event horizons in other settings, for example in optical37

systems [34–36] and in classical fluids [37–39]. (For a recent38

review, see Ref. [40].)39

The expansion of our BEC-universe is forced by dynami-40

cally increasing the radius of our nearly-flat bottomed ring-41

shaped potential (see Appendix A) [41, 42]. Figure 1 shows42

our BEC during a texp = 23.1 ms inflation. The radial velocity43

of the trapping potential (defined as the rate of change of the44

mean radius, R) is directly controlled, and can be made com-45

parable to the speed of sound. For the expansion shown in46

Fig. 1, the maximum velocity is vp = dR/dt ≈ 1.3c, implying47

that points separated by an angle & π/4 recede faster than c.48

The condensates used in this work are well-described by mean49

field theory; thus, we compare our measurements to numerical50

simulations using the stochastic-projected Gross-Pitaevskii51

equation (SPGPE, see Appendix B), which accurately cap-52

tures BEC dynamics with thermal fluctuations [43, 44]. Im-53

ages from this simulation are in excellent agreement with the54

corresponding experimental images.55
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FIG. 1. Measured (top) and simulated (bottom) supersonic expansion of the ring with scale factor a = R f /Ri = 4.1(3), where R f =

46.4(1.4) µm (Ri = 11.3(4) µm) is the final (initial) radius [45]. An initial distance d transforms into a larger distance d′. The time elapsed in
the figure is approximately 15 ms.
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FIG. 2. Redshift of long-wave excitations. (a) Atomic density difference δn at various times for both experiment and simulation for a mode
number m = 2 and scale factor a = 4.1. Density scale of images after expansion are multiplied by 10. (b) Phonon amplitude vs. time for
various a and m. The grey bands indicate the time during which the BEC is inflated; their intensity denotes the expansion velocity relative
to that expansion’s maximum. Vertical dashed lines in the m = 2, a = 4.1 panel indicate the times shown in (a). (c) Ratio of initial to final
frequency vs. scale factor a. Red circles indicate m = 1 modes; cyan squares, m = 2. Solid, black curve is the a9/7 expectation, and colored
curves (with mode numbers matching points) are the result of full Bogoliubov calculation.

Phonon redshift – To study the red shifting of phonons,56

we first imprint a standing wave phonon excitation on the57

background BEC. During expansion, these effectively one-58

dimensional azimuthal phonons are redshifted, i.e., their59

wavelength grows as shown in Fig. 2a for both experiment60

and theory. These images show the oscillation of a standing-61

wave phonon, constructed by perturbing the condensate with a62

potential of the form sin(mθ), where m is the integer azimuthal63

mode number of the phonon. The (approximate) axisymmetry64

implies that m is conserved, in analogy with conservation of65

the comoving wavevector in cosmology. The phonon wave-66

length is therefore stretched by a factor a = R f /Ri, the ratio of67

the geometrical radii of the expanding ring. This is related to68

the usual redshift parameter z through a = z + 1.69

Figure 2b shows the measured phonon amplitude δn vs.70

time for various a and m and clearly shows a shift in the fre-71

quency. (In this paper, we measure frequency and time in the72

laboratory frame, as opposed to using the comoving proper73

time as defined by the effective metric, Eq. C7.) To measure74

the frequency shift, we fit the oscillation before and after ex-75

pansion to extract ωm,i/ωm, f , shown in Fig. 2c. At any given76

time, the phonon oscillation frequency is ω(t) = cθ(t)m/R(t),77

where cθ(t) is the azimuthal speed of sound at time t. As the78

ring expands, both the atomic density and cθ decrease. For the79

combination of harmonic confinement in the vertical direc-80

tion and roughly quartic confinement in the radial direction,81

we find cθ ∝ R−2/7. The solid, black curve shows the result-82

ing ωm,i/ωm, f = a9/7 scaling; a full Bogoliubov calculation,83

with the azimuthally averaged potential, is shown as the solid,84

colored curves.85

We understand the phonon’s behavior during the expansion86

epoch in terms of a 1D equation for the phonon amplitude χm,87

∂2χm

∂t2 +

[
2γm(t) +

Ṙ
R

]
∂χm

∂t
+ [ω(t)]2χm = 0 , (1)

where δn = (~/U0)∂χm/∂t, U0 = 4π~2as/M, as is the s-wave88

scattering length, and M is the mass of an atom. (See Ap-89

pendix C for the derivation.) There are two contributions to90

the damping of the amplitude. The first damping term, γm,91

is phenomenological, but independently measured [46]. The92

second, Ṙ/R, is analogous to the “Hubble friction” in cosmol-93

ogy, which damps fields with frequencies ω . ȧ/a. In the94

present case, the Hubble friction has the largest impact when95

for supersonic expansion, i.e., when ω . Ṙ/R or mcθ . Ṙ.96

For our expansions, we expect that the Hubble friction will97

play a role, particularly for the a = 4.1,m = 1 expansion98

where Ṙ/R & 1.5ω. At maximum velocity, Ṙ/R ≈ 3γm for99

m = 2 and Ṙ/R & 20γm for m = 1, but this occurs only during100

the short expansion epoch. The Hubble friction term changes101

the phase and amplitude of the phonon oscillation after ex-102

pansion. However, because the observed density difference δn103

is proportional to ∂χm/∂t (see Appendix C), the predominant104

difference in observed amplitude before and after expansion105

results from the change in ω. To search for the Hubble fric-106

tion term, we fit all the data simultaneously to Eq. 1, taking107

Ṙ/R → γHṘ/R, where γH is a tunable parameter. While the108

best-fit value γH = 0.55(21) indicates the presence of Hubble109

friction, the deviation from unity suggests that other effects110

like azimuthal asymmetry and non-zero annular thickness also111

affect the phonon amplitude [45]. For GPE simulations of the112

expansion of an azimuthally symmetric, thin annulus ring with113

a potential of a similar functional form, Eq. 1 is an accurate114

description of the phonon evolution (see Appendix C).115

Radial dynamics – The preceding 1D discussion (based on116
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FIG. 3. Mean radius of the ring vs. time for select expansions.
Black solid curves show the radius of the potential, red circles show
experimental data and orange curves show simulation results. The
vertical lines for a = 1.9(1) correspond to times shown in Fig. 4.

Eq. 1), rested on the assumption that the background BEC117

contained no transverse dynamics. Perhaps the first indica-118

tion of additional dynamics is visible in evolution of the ring-119

BEC’s radius, shown by the red symbols in Fig. 3. As indi-120

cated by the oscillations around the trap’s mean radius (black121

curves), the BEC is excited after the potential has reached its122

final value. The amplitude of the oscillation can be estimated123

based on a simple harmonic oscillator model (orange curves),124

where the oscillator is the first radial phonon mode and forces125

applied are due to the expansion of the confining potential.126

These oscillations decay rapidly, typically within a few os-127

cillation periods for all scale factors and expansion velocities128

studied. If the trap were perfectly harmonic, this center-of-129

mass oscillation should be long-lived. In reality, our trap is130

more flat-bottomed, is anharmonic, and is not axially sym-131

metric.132

To understand this rapid decay, we show the atomic den-133

sity and phase of a simulated Bose-Einstein condensate with-134

out an imprinted phonon during the first few oscillations af-135

ter expansion in Fig. 4a and b, respectively. At t = 10 ms,136

the condensate reaches the far end of the potential and be-137

gins to turn around. At t = 11.5 ms, the condensate phase is138

approximately flat radially, with the exception of a discon-139

tinuity of ≈ π in the center of the annulus. This standing140

wave has nodes in the atomic density with corresponding π141

phase jumps, effectively imprinting a dark soliton onto the142

BEC [47, 48]. This process is analogous to the creation of143

solitons upon Bragg reflection in an optical lattice [49] or re-144

flection of a condensate off of a tunnel barrier [50]. (Unfor-145

tunately, due to imaging limitations, we are unable to resolve146

solitons or other similarly-sized structures in the experiment.)147

The number of solitons Ns created from the decay of the ra-148

dial mode can be estimated by comparing the energy per par-149

ticles contained the radial excitation to the energy of a soliton150

per particle (εs ≈ 4~c/3RT , where RT is the annular width151

of the ring). The amplitude of the radial excitation χr, while152

calculable analytically, is a complicated function that depends153

exponentially on the adiabaticity of the expansion relative to154

the frequency of the radial mode ωr. Assuming a box-like po-155

tential in the radial direction implies ωr ≈ πc/RT . The adia-156

batic condition then implies that, in our system, Ṙ must nearly157

be supersonic, i.e., vp & 0.8c [51].158

Turbulence and reheating- Dark solitons are unstable in159

condensates of more than one dimension. They suffer from160

a “snake instability” causing the soliton to first undulate and161

then fragment into vortex dipoles [52–54]. As shown by our162

numerics in Fig. 4a, the undulation is underway by 12.5 ms163

and the fragmentation into vortices is mostly complete by164

14 ms. Theoretical estimates for a single soliton in a harmon-165

ically confined BEC suggest that the snake instability will re-166

sult in Nvd,1 ≈ 2πR/8ξ vortex pairs, where ξ =
√
~2/2Mµ is167

the local healing length within the bulk of the condensate and168

µ is the chemical potential [55]. For the present case, this cor-169

responds to Nvd,1 ≈ 50 vortex pairs. At t = 13 ms in Fig. 4b,170

the single soliton has decayed into ≈ 6 pairs over an angle171

≈ 45◦ near the top of the ring. This corresponds to roughly 48172

vortex pairs around the full ring. These vortex pairs then form173

a highly turbulent state.174

We experimentally observed the fingerprints of this process175

through the structure factor S (kθ), a measure of the spatially176

structured density fluctuations (i.e., azimuthal phonons) with177

wavevector kθ = m/R. For both experiment and theory we178

extracted S (kθ) by first evaluating the one-dimensional den-179

sity n1D(θ) around the ring to obtain the density fluctuations180

δn1D(θ) = n1D(θ) − 〈n1D(θ)〉, where 〈· · · 〉 denotes the average181

over many realizations. The structure factor is182

S (kθ) =

〈∣∣∣∣∣
∫

δn1D(θ)e−ikθRθR dθ
∣∣∣∣∣
2〉
. (2)

Theoretical structure factors are shown in the top row of183

Fig. 4c; experimental structure factors are shown in the bot-184

tom row Fig. 4c. The colors in Fig. 4c identify the times at185

which the structure factors were evaluated. The density ob-186

tained from experiment has limited spatial resolution, is im-187

pacted by imaging aberrations, and has additional noise from188

the partial transfer absorption imaging process [56]. For these189

reasons, we first corrected for imaging aberrations (see Ap-190

pendix A) and identified the detection threshold (shown by the191

horizontal, dashed lines). We used the numerical simulations192

(which include the same aberrations) to verify the correspon-193

dence between the corrected value of S (kθ) based on simu-194

lated imaging to the value of S (kθ) calculated from the sim-195

ulated atomic density. These agree for values of S (kθ) above196

the detection threshold.197

As shown by the S (kθ) snapshots, the structure factor starts198

at our detection threshold [57]. After expansion and during199

the soliton’s initial formation (t = 12 ms), S (kθ) maintains200
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FIG. 4. Dynamics in the radial direction and generation of azimuthal excitations for a scale factor of a = 1.9(1). (a–b) A single realization
of the simulated BEC wavefunction’s phase (a) and magnitude |ψ|2 (b) vs. time. (Left inset) Cross section along ŷ of the phase and density
at t = 11.5 ms. (Right inset) Zoomed section of the phase profile at t = 13 ms with the location of vortices highlighted. (c) Azimuthal static
structure factor. The color indicates the time, and matches the the vertical lines in Fig. 3 and the rectangles in (a) and (b). The horizontal lines
indicate the imaging detection threshold (see text).

this value of unity, indicating that this state does not differ201

significantly between realizations. When the soliton begins to202

break apart at t = 13 ms, a small peak, still below our de-203

tection threshold, appears in the simulations near k ≈ 1 µm−1
204

(not shown). This corresponds roughly to the wavenumber of205

the snake instability, k ≈ 2π/8ξ ≈ 1.3 µm−1. As the turbulent206

state develops, this peak grows and shifts to lower k, becom-207

ing detectable at 18.5 ms and becoming larger at 22.5 ms. The208

shift to lower kθ is expected because of the inverse cascade that209

occurs in two-dimensional turbulence [58].210

Stochastic persistent currents – While most of the vortex211

dipoles recombine and produce lower energy phonons, some212

of the vortex dipoles manage to break apart and become free213

vortices. If one of the free vortices slides into the center of214

the ring and one leaves the outside of the ring, then the over-215

all phase of the ring slips by 2π and the winding number `,216

quantifying the persistent current state of the ring, changes by217

one [59]. Indeed, we observe stochastic persistent currents in218

the ring after expansion in both the experiment and simulation.219

Figure 5a shows the resulting distributions of winding num-220

bers for various speeds of expansion for a = 1.4 (R f = 35 µm221

and Ri = 25 µm).222

Evidence for this process can be found by studying the223

width of the winding number distributions for expansions with224

different a and texp. The number of vortex dipoles produced225

from Ns solitons would be Nvd ≈ Ns(2πR f /8ξ). The mea-226

sured distribution widths collapse reasonably well when plot-227

ted versus N1/4
vd , as shown in Fig. 5b. The 1/4 may result from228

some combination of the stochastic nature of dipole dissoci-229

ation and recombination, the interaction-driven dynamics of230

dipoles and free vortices in a turbulent fluid, and the random231

phase-slip process.232

One may question whether the appearance of the wind-233

ing number might involve another cosmological phenomenon:234

the presence of sonic horizons. If we assume the speed of235

sound sets a limit on the speed at which information can236

travel through the condensate, the rapid supersonic expansion237

should create regions of condensate that are causally discon-238

nected. The typical horizon distance established during the239

expansion would be given by,240

Rhor = 2
∫ τ

0
c(t)dt . 2c0texp (3)

where c0 is the initial speed of sound [60]. This leads to241
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FIG. 5. (a) Measured winding number distributions for a = 1.4(1)
(histograms) with Gaussian fits (black curves) for the experiment
(top) and simulations (bottom). The gray, vertical line and bar shows,
for comparison, the speed of sound and its uncertainty. The red Gaus-
sians show the expected distribution from the horizon model (see
text). (b) Width of the winding number distribution σ vs. the num-
ber of vortex dipoles predicted by the soliton model, Nvd. The red
circles denote a = 1.31(9) [Ri = 16.7(8) µm, R f = 22(1) µm], yellow
squares a = 1.9(1) [Ri = 16.7(8) µm, R f = 31(2) µm], green trian-
gles, a = 2.3(2) [Ri = 16.7(8) µm, R f = 39(2) µm] and blue inverted
triangles, a = 1.4(1) [Ri = 25(1) µm, R f = 35(2) µm]. The purple
diamonds also show a = 1.4(1), but with a ring that is twice as wide.
Solid line shows σ = N1/4

vd .

NR & 2πR f /Rhor ≈ πR f /c0texp disconnected regions. If these242

regions’ phases evolve at different rates and become suffi-243

ciently randomized, then when the regions recombine, they244

can form a topological excitation in the form of a persistent245

current [61, 62]. The probability for a given persistent current246

is then given by the geodesic rule [62–64]. The red Gaussians247

in Fig. 5a show the expected distributions resulting from this248

horizon model, which disagree with the experiment. More-249

over, simple estimates for the phase fluctuations present in our250

condensate are a factor of 25 too low to sufficiently randomize251

the phase during expansion. Future studies using condensates252

of lower density could see this effect, as the phase fluctuations253

will be larger.254

Discussion and Outlook – In this work, we explored the255

physics of a rapidly expanding Bose-Einstein condensate. We256

observed the redshifting of phonons during this rapid expan-257

sion, which has clear analogs in cosmological physics. Af-258

ter expansion stops, the condensate reheats through the cre-259

ation and subsequent destruction of dark solitons, producing260

a highly turbulent state. This process leads to the creation261

of global topological defects (i.e., persistent currents), which262

at first might be thought to arise due to the presence of cos-263

mological horizons, but actually result from the vortices pro-264

duced when the solitons break apart.265

While we see evidence for Hubble friction in our system,266

future studies should be able to more precisely measure its in-267

fluence during the expansion of the phonon modes. In partic-268

ular, by varying Ṙ/R, one could more easily distinguish be-269

tween the Hubble friction and other damping effects. One270

could also contract the ring rather than expand it. Because271

the Hubble friction is not dissipative and is reversible, such272

a contraction should cause amplification of the phonon mode273

amplitude.274

The process of expansion, which presumably cools the az-275

imuthal degrees of freedom of the condensate, followed by276

the increase in azimuthal excitations (Fig. 4c-d) as the radial277

mode decays, is reminiscent of the reheating process in the278

early universe. At the end of inflation in the universe, the279

energy contained in the homogeneous mode of the quantum280

field that drove inflation, the inflaton, decayed into inhomo-281

geneous excitations. It is not known how this occurred. In282

the simplest model, the inflaton oscillated around the mini-283

mum of its potential, decaying into lower energy particles [3],284

whereby the radial mode couples directly to lower energy az-285

imuthal phonon modes. However, the decay of the radial286

mode through this process is expected to be much slower287

(≈ 1 s−1, using a calculation similar to that found in Ref. [65])288

compared to the observed decay of the radial mode through289

soliton and vortex excitations (≈ 100 s−1). Future studies290

using a ring with stronger radial confinement should sup-291

press the non-linear excitations and enhance the direct cou-292

pling. Other models are non-perturbative and include self-293

interactions in the inflaton field that can lead to turbulent cas-294

cading [4–9], much like the turbulence we observe here.295

Perhaps surprisingly, the long-wavelength azimuthal296

phonon mode is redshifted in simple way (Fig. 2), despite297

the complex dynamics occurring in the underlying BEC state.298

This survival has a direct analogy in inflationary cosmology.299

During inflation, vacuum fluctuations were redshifted to large300

length scales and amplified. The subsequent preheating and301

thermalization processes took place on shorter length scales,302

yet the resulting thermal state was modulated by the long-303

wavelength amplified vacuum fluctuations. This process gave304

rise to the large-scale structure we observe today in the uni-305

verse.306

In addition to the possibilities described above, we antici-307

pate that with new developments, other interesting cosmologi-308

cal phenomena might be realized with expanding condensates.309

First, with improved imaging that captures the initial (quan-310

tum and/or thermal) fluctuations, one could observe effects311

related to the scaling of the vacuum. In particular, one could312

observe cosmological particle production [23–29]. Second, a313

ring with stronger radial confinement will suppress transverse314

excitations, revealing the physics arising from the recombi-315

nation of causally-disconnected regions. Given these possi-316

bilities, we believe an expanding ring BEC could provide an317

interesting laboratory test bed for cosmological physics.318
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Appendix A: Experimental Details328

Our experimental setup consists of a BEC of 23Na atoms329

in an optical dipole trap (ODT). Our BECs are created using330

standard laser cooling techniques, followed by evaporation in331

first magnetic then optical dipole traps. In this experiment,332

we work with BECs with between 1 × 105 and 4 × 105 atoms.333

For measurement, we use partial transfer absorption imaging334

(PTAI) [56].335

The final stage of evaporation begins when thermal atoms336

are loaded into a combination of the vertical trap and dim-337

ple trap. Vertical confinement is created using a blue-detuned338

(532 nm), TEM01 beam, tightly focused to create two paral-339

lel sheets of light with a dark region in between. The dimple340

trap is a red-detuned (1064 nm) Gaussian beam with 1/e2 di-341

ameter ≈ 50 µm that provides the initial confinement in the342

horizontal plane. Forced dipole evaporation occurs by lower-343

ing the intensity of both the blue-detuned vertical confinement344

beam and the red-detuned Gaussian beam until the condensate345

reaches a condensate fraction > 95 %. We estimate the initial346

temperature to be of the order of 50 nK by extrapolation of347

the evaporation process [66]. The final vertical trapping fre-348

quency is 650(4) Hz. The atoms are then adiabatically trans-349

ferred to the initial trap for the experiment.350

To create the initial ring (or target) trap, we use a direct351

intensity masking technique [67] to create the blue-detuned352

(532 nm) trap in any shape. This approach images the face353

of a digital micromirror device (DMD) that is illuminated by354

a blue-detuned Gaussian beam and imaged onto the atoms.355

The pattern written onto the DMD is then transferred onto356

the potential experienced by the atoms. Using this technique,357

we can form fully-dynamic potentials in the shape of rings358

(with radii between 10 µm and 45 µm) and target shaped traps359

(for measuring the persistent current state of the ring). The360

1/e2 radius of the Gaussian beam that illuminates the DMD is361

130(10) µm in the plane of the atoms.362

Nominally, the pattern written on the DMD is given by363

VDMD(r) = Θ([R(t)−RT /2]−ρ)+Θ(ρ− [R(t)+RT /2]), (A1)

where Θ is the Heaviside step function, RT is the ring’s364

width, and ρ is the radial coordinate. For rings thinner than365

RT < 10 µm, we apply corrections by changing RT with angle366

θ to make the measured n1D(θ) density of the condensate more367

uniform.368

To expand the ring, we apply a time-dependent potential369

using our DMD. To minimize spurious effects related to jerk,370

we used a smoothly varying function of the form371

R(t) =



Ri t ≤ 0

Ri + 1
2 (R f − Ri)(1 + erf

{
1
β

(
t

texp
− 1

2

)}
0 < t ≤ texp

R f t > texp

,

(A2)
where erf is the error function and β is a parameter that min-372

imizes the jerk at t = 0 and t = texp. For the data reported373

in this paper, β = 0.175, which implies that at t = 0 and texp374

the radius suddenly jumps by ≈ 3 × 10−5(R f − Ri). The DMD375

is pre-programmed with individual frames with ring radii cal-376

culated using Eq. A2. We typically use ≈ 30 frames spaced377

≈ 300 µs to encode the expansion of the ring. Given our typ-378

ical chemical potentials of ≈ 1 kHz, this update rate is faster379

than all other timescales in the system. Moreover, we checked380

that our results are independent of the number of frames used.381

During the expansion, we increase the intensity of the trap-382

ping light to maintain constant intensity locally near the ring383

(compensating for the Gaussian profile of the beam illuminat-384

ing the DMD). We tune the increase in the trapping light to385

keep the frequency of the first radial Bogoliubov mode con-386

stant with radius.387

To imprint a phonon of mode number m, we instanta-388

neously change this pattern to389

VDMD(r, θ) = Θ

([
R(t) − Rt

2

]
− ρ

)
+ Θ

(
ρ −

[
R(t) +

Rt

2

])

+
λ

2
Θ

(
ρ −

[
R(t) − Rt

2

])
Θ

([
R(t) +

Rt

2

]
− ρ

)

× [1 + sin(mθ)] . (A3)

Here λ = 0.6 is a parameter that describes the size of the390

perturbation relative to overall potential depth. One cannot391

generate the necessary values between 0 and 1 to produce the392

potential described by Eq. A3 with a binary DMD device. To393

get the necessary grayscale to create the potential, the DMD394

is demagnified in order to make its pixel size (≈ 0.5 µm in the395

plane of the atoms) be much smaller than the aberrated point396

spread function (≈ 4 µm 1/e2 full-width) of our imaging sys-397

tem. We then use halftoning to create the necessary grayscale398

effect. Ref. [68] contains more details about this imprinting399

process.400

To measure the normalized phonon amplitude after imprint-401

ing, we first measure the 2D density in situ with (n2D(ρ, θ)) and402

without (n2D,0(ρ, θ)) the phonon imprinted. We then integrate403

over the radial dimension to obtain the 1D density around the404

ring, e.g., n1D(θ) =
∫

n2D(ρ, θ)dρ. To obtain the normalized405

1D density, we compute n1D(θ)/n1D,0(θ). Finally, the data are406

fit to am sin(m(θ + θ0) at each time to extract the normalized407

amplitude of the phonon am(t). The offset angle θ0 is set by408

the imprinting process. Finally, we turn am(t) into real phonon409

amplitude δn(t) by multiplying by the total number of atoms410

and dividing by the estimated Thomas-Fermi volume of the411

condensate VT F . Here, we have made two implicit assump-412

tions. First, we have assumed that the phonon’s amplitude is413

independent of ρ and z, which is valid when the thickness of414

the annulus is small compared to its radius. (See Appendix C415

for details.) Second, we have assumed that the Thomas-Fermi416

volume scales in the experiment according to how it would in417
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a potential that is quartic in ρ and harmonic in z. With the418

same assumptions on the potential, the predicted frequency419

shift scales as a9/7, which agrees rather well with the experi-420

ment (Fig. 2c). We also note that an incorrect estimate of the421

original Thomas-Fermi volume would lead to a common scal-422

ing of the phonon amplitude at all later times (before and after423

expansion), which would not lead to any change in either the424

fitted frequency shift or Hubble friction.425

Calibration of the aberrations in our imaging system is nec-426

essary in order to accurately measure the correlation function427

S (k). Conveniently, PTAI allows us to accurately calibrate428

our imaging system’s sensitivity to density structures with429

wavevector k. When the transfer fraction f is low ( f � 1),430

quantum shot noise is added and dwarfs the thermal and quan-431

tum fluctuations inherent to the condensate. This additional432

noise is white over all k, thus allowing for accurate calibration.433

To calibrate, we measure n1D(θ) as described above and then434

construct S (k) as described in the main text. To compensate435

for the our imaging system’s degraded performance at larger436

kθ, we minimize the functional ( S (k)
C(k) − 1

f )2 using the tunable437

parameters k1, p1, k2 and k3 contained within the correction438

function:439

C(k) =
1√

1 + |k/k1|p1

1√
1 + |k/k2|p2

. (A4)

The experimentally determined parameters are k1 =440

0.34(2) µm−1, p1 = 3.4(2), k2 = 1.50(4) µm−1 and p2 = 15(6).441

To measure the persistent current state, we form a trap with442

a ring and a concentric, central disc (i.e., a target symbol) and443

use the interference between the two in time-of-flight to deter-444

mine the winding number [69, 70]. To produce acceptable in-445

terference fringes for readout, the disc must also be expanded.446

This is done adiabatically over 25 ms with 40 frames.447

Expansion of the ring produces a host of excitations, in-448

cluding phonons, vortices in the ring, and persistent currents.449

To accurately measure the persistent current with the least450

amount of interference from other excitations, we let the ring451

equilibrate for about 5 s. During this period, the intensity of452

light is ramped to ≈ 60 % of its value at the end of expansion453

to force evaporation of high energy excitations.454

Appendix B: Stochastic-Projected Gross-Pitaevskii Calculations455

To explore the behavior of our system numerically, we456

conducted simulations of the stochastic projected Gross-457

Pitaevskii equation [43, 44]. This numerical framework ex-458

tends the ordinary Gross-Pitaevskii equation to non-zero tem-459

perature, adding on fluctuations to the BEC ground state.460

While described in detail in the aforementioned references,461

we will briefly describe the technique here. In this formal-462

ism, the wavefunction of the BEC with fluctuations evolves in463

a “coherent” region – defined as the region of Hilbert space464

spanned by the state vectors that impact the dynamics of the465

BEC coherently. The BEC wavefunction in this C-region466

evolves as467

(S )dψ = dψH + dψG + (S )dψM (B1)

where (S ) denotes Stratonovich integration and468

dψH = P
{
− i
~
Lψdt

}
(B2)

dψG = P
{

G(r)
kBT

(µ − L)ψdt + dWG(r, t)
}

(B3)

Here, L = Hsp + U0|ψ|2 is the driver of Hamiltonian evolu-469

tion and Hsp = p2/2M + V is the single particle Hamiltonian.470

The equation for dψG represents growth of population in the471

C-region from particles colliding in the incoherent (I) region.472

Here, G(r) is a coefficient that sets the strength of both terms473

in Eq. B3, where the first term is the damping term and the sec-474

ond is the growth term where dWG describes a random noise475

seeded according to 〈dW∗G(r′, t′)dWG(r, t)〉 = 2G(r)δ(r′−r)dt.476

For this work, we neglect terms where there is an exchange of477

energy and momentum between the C and I region without478

exchange of particles [43]. Finally, the projector operator P479

continually projects the wavefunction into the C region.480

From an implementation perspective, this involves taking a481

Gross-Pitaevksii equation solver and adding a noise term, and482

appropriately calculating the damping factor G(r), which is483

assumed to be constant. Our calculations are done in a Carte-484

sian coordinate system. We apply the projection operator in485

momentum space, with a cutoff kc ≈ π/δx, where δx is the486

spacing between points in the grid.487

To accurately capture the potential, we simulate the imag-488

ing process that is used to make the potential. We reproduce489

the image that is patterned on the DMD and simulate imaging490

using Fourier imaging techniques. The aperture function of491

the imaging system that relays the image from the DMD to492

the atoms is crucial in order to accurately replicate the poten-493

tial at the atoms. In the experiment, the same imaging system494

that is used for making potentials is also used for imaging495

of the atoms. By measuring density-density correlations in a496

simple-connected thermal gas with noise dominated by quan-497

tum shot noise (by using f � 1), we can extract the even498

(symmetric under parity reversal) aberrations [71]. To extract499

the odd aberrations, we use a less precise means. A second500

DMD in the Fourier plane of the imaging system can be used501

to measure the geometric spot diagram, yielding another, in-502

dependent means of obtaining the aperture function. The two503

methods are in agreement. We use the even aberrations from504

the correlations and the odd aberrations for the spot diagram505

technique to construct the aperture function.506

The resulting potential is complicated and not easily ex-507

pressible in an anlytic form. However, when azimuthally av-508

eraged, the potential has the form V = 1
2 Mω2

r (ρ − R(t))2 +509

λ(̃ρ − R(t))4, with ωr ≈ 2π × 100 Hz and λ/h ≈ 0.8 Hz µm−4.510

Because most (≈ 90 %) of the confinement comes from the511

quartic term, it is generally acceptable to neglect the quadratic512

term for the purposes of calculating static properties like the513

initial and final µ and c.514

We combine the aperture function with the Gaussian beam.515

We assume the beam is perfectly Gaussian and is centered on516

the DMD. Because the beam portion of the potential tends517

toward zero as r → ∞, we establish a low energy potential518

floor at large radius. This cutoff is determined by the min-519

imum value of the imaged and aberrated potential between520
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R + 3
2 Rt < ρ < R + 1.1 × 3

2 Rt. This presents spurious effects521

like the appearance of additional BEC components out at large522

radius.523

Given that some atoms are lost during the expansion, we524

must also include absorbing boundary conditions in the simu-525

lation. We do this by including a potential526

Va =

{
0 ρ < Rc

−iVae−wa/(ρ−Rc) ρ > Rc
, (B4)

where Rc is a radial cutoff at which the potential turns on, Va527

is the amplitude of the potential, and wa is a parameter that528

controls the width. The function is a non-analytic, contin-529

uously differentiable function that minimizes the reflections530

from the absorbing boundary. We chose wa ≈ 25 µm and531

Va/h ≈ 1 kHz. This generally results in the best absorption532

and the least reflection.533

With all of these components, we first find the equilibrium534

state by evolving the SPGPE (without Va) for approximately535

50 ms to 100 ms and a growth and decay term that are 100536

times that of the value specified by the temperature (this al-537

lows for faster equilibration times). Second, we expand the538

ring according to that the same profile as seen in the exper-539

iment. Approximately halfway through the experiment, we540

turn on Va to ensure that the decay of the atom number is541

appropriately captured. After evolving for a total of approx-542

imately 35 ms (20 ms additional after the end of the expan-543

sion), we turn off the stochastic growth term in the SPGPE544

and turn on significant damping to determine whether or not545

a winding number is present in the condensate. We do this546

approximately 25 independent times to gather statistics.547

We then use the same data analysis tools used on the ex-548

perimental data to extract the winding number distributions,549

structure factor as a function of time, and radius of the ring550

as a function of time. The structure factor, as was done in the551

experiment, is measured relative to the mean density around552

the ring. As a result, the structure factor is determined solely553

by the differences in density between a given simulation and554

the mean of all the simulations.555

Appendix C: Evolution of azimuthal phonons556

In this appendix, we derive the wave equation satisfied by557

the phonon field, and explain the origin of the redshifting and558

Hubble friction. We start by noting that the Gross-Pitaevskii559

equation, written in terms of the density n and phase φ defined560

through ψ =
√

n(r, t)eiφ(r,t), can be expressed as an ideal fluid561

with an equation for continuity,562

− ∂n
∂t

=
~

m
∇ · (n∇φ), (C1)

and an equation analogous to the Euler equation,563

− ~∂φ
∂t

= − ~2

2m
√

n
∇2 √n +

~2

2m
(∇φ)2 + V + U0n, (C2)

where V is the potential for the atoms, U0 = 4π~2as/M is564

the interaction constant, M is the mass of an atom, and as is565

the s-wave scattering length. In this treatment, we neglect the566

quantum pressure term (the first term on the right hand side of567

Eq. C2). By linearizing the equations about the background568

solution n0 and φ0, i.e., n = n0 + n1 and φ = φ0 + φ1, one569

obtains the coupled differential equations570

∂n1

∂t
= − ~

m
∇ · [n0∇φ1 + n1∇φ0

]
(C3)

−~∂φ1

∂t
=
~2

m
∇φ0 · ∇φ1 + U0n1. (C4)

(In the main text, we use δn = n1.) Solving the second equa-571

tion for n1 and inserting into the first yields a wave equation572

for φ1, which, expressed in covariant form, is573

1√−g
∂µ(
√−ggµν∂νφ1) = 0, (C5)

where gµν is the inverse metric, g is the metric’s determinant,574

and φ1 is the phonon’s velocity potential field. The metric, in575

its most general form, is given by the line element576

ds2 = gµνdxµdxν

= c0

[
−c2

0 dt2 + (dx − v0 dt) · (dx − v0 dt)
]
. (C6)

Here, v0 = (~/m)∇φ0 is the velocity field of the background577

condensate, and c0 =
√

U0n0/M is the speed of sound.578

In the expanding ring experiment, the potential is (approxi-579

mately) axisymmetric, and is translated radially as a function580

of time. In terms of cylindrical coordinates (ρ, θ, z), the ve-581

locity v0 thus has only ρ and z components, with its dominant582

component being radial. The central radius of the ring is given583

by a function ρ = R(t) so, assuming the velocity is purely ra-584

dial, the line element [Eq. C6] takes the form585

ds2 = c0[−c2
0 dt2 + (R + ρ̃)2dθ2 + dρ̃2 + dz2] (C7)

where ρ̃ = ρ − R(t) is a co-moving radial coordinate. The586

tensor density that directly enters the wave equation [Eq. C5]587

is then, in (t, θ, ρ̃, z) coordinates,588

f µν :=
√−ggµν = (R + ρ̃) diag[−1, c2

0/(R + ρ̃)2, c2
0, c

2
0]. (C8)

The speed c0 is determined by the background condensate589

density, which to a first approximation follows the instanta-590

neous ground state Thomas-Fermi distribution at all times dur-591

ing the expansion,592

n0 =
µ − V(ρ̃, z)

U0
(C9)

This density extends out to the contour in the ρ̃-z plane where593

the numerator vanishes. The chemical potential µ drops as594

the ring expands, so that the total number of atoms remains595

constant.596

In the experiment, we first apply a perturbation to a sta-597

tionary condensate to excite an eigenmode of the wave equa-598

tion. An eigenmode analysis based on the methods of599

Ref. [72] will be detailed in a forthcoming paper; the es-600

sential details are presented here. Assuming azimuthal sym-601

metry, the eigenmodes for a thin ring have the form φ1 =602
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χklmηklm(ρ̃, z; R)ei(ωt−mθ), where ηklm(ρ̃, z; R) is a function that603

describes the radial (k) and vertical excitations (l) of the Bo-604

goliubov mode when the ring has radius R, and χklm is its605

amplitude. We denote the corresponding eigenfrequencies as606

ωklm.607

While the system may begin with only a k = l = 0 eigen-608

mode excited, the expansion of the ring can produce transi-609

tions into other modes. The solution at all times takes the610

general form φ1(t, ρ̃, θ, z) =
∑

klm χklm(t)ηklm(ρ̃, z)e−imθ, with all611

χklm(t = 0) = 0 except for k, l = 0 and our excited mode of612

interest m. Azimuthal symmetry precludes coupling between613

modes with different values of m. Furthermore, in the thin614

ring limit, the coupling between different k modes tends to-615

wards zero. We therefore focus here exclusively on modes616

that are excited only in the azimuthal direction. (The radial617

excitation which occurs when the ring expansion stops and is618

not relevant to the redshift is discussed in the main text.)619

When m � ω100/(cθ/R) and for a thin ring, η00m(ρ̃, z; R)620

is constant. (Henceforth, we will drop the k and l subscripts621

when they are both equal to zero.) In this limit, the equation622

for modes with k, l = 0 involves just t and θ derivatives, We623

can thus reduce the wave equation for these azimuthal phonon624

modes to a 1+1 dimensional wave equation, with an effective625

sound speed cθ. As in Ref. [72], c2
θ is given by an average over626

the cross section of the ring. For a thin ring this takes the form627

c2
θ =

1
AM

∫ [
µ − V(ρ̃, z)

]
dρ̃dz, (C10)

where the integral is over the cross section of the Thomas-628

Fermi wavefunction of area A. For V = 1
2 Mω2

z z2 + λρ̃4 this629

yields630

c2
θ =

4
7

c2, (C11)

where c2 = µ/M is the peak local sound speed. By normaliz-631

ing the Thomas-Fermi solution to the number of atoms N one632

finds that µ ∝ R−4/7, and therefore cθ ∝ c ∝ R−2/7.633

The wave equation satisfied by our modes of interest, i.e.,634

φ1 = χm(t)eimθ, is determined by the effective inverse metric635

density obtained from Eq. C8 by dropping the ρ̃ and z compo-636

nents and replacing c by cθ. In the thin ring limit this gives637

f ab
2 = diag[−R, c2

θ/R] (C12)

The resulting mode equation is638

χ̈m +
Ṙ
R
χ̇m + ω2

m χm = 0, (C13)

where ωm := mcθ/R. This is the equation of a damped har-639

monic oscillator, with time-dependent frequency and damp-640

ing rate. We note that this particular equation does not result641

from the wave equation for any 1+1 dimensional metric, since642

there exists no metric g2ab for which f ab
2 =

√−ggab. The rea-643

son is that the determinant of Eq. C12 is −c2
θ , whereas the de-644

terminant of
√−ggab is equal to −1 for any two-dimensional645

metric.646
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FIG. 6. Phonon evolution in the thin ring limit. Blue circles show
2D GPE simulation data, red (green) curve is the solution to Eq. C13
with (without) the Ṙ/R “Hubble friction” term included. The gray
band indicates the time during which the BEC is inflated; its intensity
denotes the expansion velocity relative to the maximum.

As the ring expands, the azimuthal wavenumber m is con-647

served, so the physical wavelength redshifts as R−1, in anal-648

ogy with the cosmological redshift. Unlike in cosmology,649

the sound speed is also changing, so the frequency ωm red-650

shifts as R−9/7. In the cosmological setting, the damping term651

in Eq. C13 is called the “Hubble friction” term, and would652

be multiplied by 3 in three spatial dimensions. The Hubble653

damping is not actually dissipative; in fact, Eq. C13 can be ob-654

tained from the Lagrangian L = 1
2 Rχ̇2

m − 1
2 (m2c2

θ/R)χ2
m, which655

has the adiabatic invariant Rωmχ
2
m. To obtain Eq. 1 in the text,656

we add the phenomenological damping γm observed in the ex-657

periment.658

In the experiment, we measure the density variation n1, not659

the phonon velocity potential φ1. The relation between these660

quantities is given by Eq. C4. Since ∇φ1 is azimuthal and ∇φ0661

is radial, ∇φ0 · ∇φ1 = 0, so we have662

n1 = − ~
U0

φ̇1 = − ~
U0

χ̇meimθ . (C14)

Hence, in the experiment, we measure the time derivative of663

the phonon amplitude.664

We can verify that a phonon excitation does indeed obey665

Eq.C13 in a thin ring, by simulating a BEC in this regime.666

Figure 6 shows such a 2D simulation of BEC in a radially667

quartic potential, expanding from 10 to 40 µm in ≈ 15 ms668

with 2 × 105 atoms. There is no damping in this simulation;669

therefore, the γm(t) in Eq. 1 is identically zero. We choose670

the strength of the potential to make the initial Thomas-Fermi671

width be 2 µm. As can be seen from the figure, Eq. C13 accu-672

rately reproduces the behavior of the redshifted phonon, but673

only when the Hubble friction term is included. Unlike the674

experiment, the adiabatic limit is satisfied (∂ωm/∂t � ω2
m)675

and the final amplitude is accurately predicted using the adia-676
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FIG. 7. Goodness of fit χ2/ν, where ν is the number of degrees of
freedom, versus quality factors for the m = 1, 2 modes for various
values of γH .

batic invariant Rωmχ
2
m. While this simulation shows the thin677

ring limit, we generally find that as we relax this constraint678

and increase the width of the annulus, the best-fit Hubble fric-679

tion becomes less than unity, as might be expected from the680

experimental result.681

For the experiment, we attempt to tease out the Hubble fric-682

tion by fitting it along with the other parameters of Eq. 1.683

These parameters are the initial amplitudes, frequencies, and684

phases for each of the four expansions, the quality factor for685

the two m modes, Qm = ωm/2γm, the scaling of the frequency686

with radius [expected to be 9/7 ≈ 1.2875, the best fit value687

is 1.19(2)]. This fit therefore contains 15 parameters and 160688

degrees of freedom. Fig. 7 shows the results of the reduced-689

χ2 fit; it shows the value of χ2 vs. both Qm=1 and Qm=2 in690

the vicinity of their best fit values for three values of γH , in-691

cluding the best fit value. There are several interesting fea-692

tures. First, the reduced-χ2 > 1, most likely because we do693

not have a good estimate of the statistical uncertainties (each694

point represents only four realizations of the experiment) and695

our model does not properly account for all the relevant effects696

(for example, the azimuthal asymmetry and non-zero annular697

thickness may play a non-negligible role in determining the698

phonon dynamics). Second, γH = 1 produces a better fit than699

γH = 0, but both are improved slightly by taking γH = 0.55.700

Third, the smallness of the change in the minimum of χ2 with701

γH indicates our uncertainty it γH . (Part of this insensitiv-702

ity comes our choice, at the time of the experiment, to have703

n1 ∝ φ̇ ≈ 0 during the fastest part of the expansion, thereby in-704

advertently minimizing the effect of the Hubble friction [73].)705

Taken together, the evidence is consistent with γH = 1 but is706

not conclusive.707
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[23] C. Raman, M. Köhl, R. Onofrio, D. S. Durfee, C. E. Kuklewicz, Z. Hadzibabic,
and W. Ketterle. Evidence for a critical velocity in a bose-einstein condensed
gas. Phys. Rev. Lett., 83:2502–2505, Sep 1999.
(Cited on page 13.)

[24] Woo Jin Kwon, Geol Moon, Sang Won Seo, and Y. Shin. Critical velocity for
vortex shedding in a bose-einstein condensate. Phys. Rev. A, 91:053615, May
2015.
(Cited on page 14.)

[25] Woo Jin Kwon, Geol Moon, Jae-yoon Choi, Sang Won Seo, and Yong-il Shin.
Relaxation of superfluid turbulence in highly oblate bose-einstein condensates.
Phys. Rev. A, 90:063627, Dec 2014.
(Cited on page 14.)

[26] Geol Moon, Woo Jin Kwon, Hyunjik Lee, and Yong-il Shin. Thermal friction
on quantum vortices in a bose-einstein condensate. Phys. Rev. A, 92:051601,
Nov 2015.
(Cited on page 14.)

[27] Joon Hyun Kim, Woo Jin Kwon, and Y. Shin. Role of thermal friction in
relaxation of turbulent bose-einstein condensates. Phys. Rev. A, 94:033612,

168



Sep 2016.
(Cited on page 14.)

[28] A. Ramanathan, K. C. Wright, S. R. Muniz, M. Zelan, W. T. Hill, C. J. Lobb,
K. Helmerson, W. D. Phillips, and G. K. Campbell. Superflow in a toroidal
bose-einstein condensate: An atom circuit with a tunable weak link. Phys.
Rev. Lett., 106:130401, Mar 2011.
(Cited on pages 14 and 124.)

[29] D. E. Miller, J. K. Chin, C. A. Stan, Y. Liu, W. Setiawan, C. Sanner, and
W. Ketterle. Critical velocity for superfluid flow across the bec-bcs crossover.
Phys. Rev. Lett., 99:070402, Aug 2007.
(Cited on page 15.)

[30] J. Clarke, A. N. Cleland, M. H. Devoret, D. Esteve, and J. Martinis. Quantum
mechanics of a macroscopic variable - The phase difference of a Josephson
junction. Science, 239:992–997, February 1988.
(Cited on pages 15, 123, and 131.)

[31] Erich J. Mueller. Superfluidity and mean-field energy loops: Hysteretic be-
havior in bose-einstein condensates. Phys. Rev. A, 66:063603, Dec 2002.
(Cited on pages 19 and 123.)

[32] Dmitri Diakonov, L. M. Jensen, C. J. Pethick, and H. Smith. Loop structure of
the lowest bloch band for a bose-einstein condensate. Phys. Rev. A, 66:013604,
Jul 2002.
(Cited on page 19.)

[33] Biao Wu and Qian Niu. Nonlinear landau-zener tunneling. Phys. Rev. A,
61:023402, Jan 2000.
(Cited on page 19.)

[34] A H Silver and J E Zimmerman. Quantum States and Transitions in Weakly
Connected Superconducting Rings. Phys. Rev., 157(2):317–341, May 1967.
(Cited on pages 19 and 55.)

[35] S. Eckel, J. G. Lee, F. Jendrzejewski, N. Murray, C. W. Clark, C. J. Lobb,
W. D. Phillips, M. Edwards, and G. K. Campbell. Hysteresis in a quantized
superfluid ‘atomtronic’ circuit. Nature, 506:200–203, February 2014.
(Cited on pages 19, 21, 123, 124, 127, 133, 135, and 140.)

[36] A. Ramanathan, K. C. Wright, S. R. Muniz, M. Zelan, W. T. Hill, C. J. Lobb,
K. Helmerson, W. D. Phillips, and G. K. Campbell. Superflow in a toroidal
bose-einstein condensate: An atom circuit with a tunable weak link. Phys.
Rev. Lett., 106:130401, Mar 2011.
(Cited on page 20.)

169



[37] M. F. Andersen, C. Ryu, Pierre Cladé, Vasant Natarajan, A. Vaziri,
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S. Nascimbène, J. Dalibard, and J. Beugnon. Quench-induced supercurrents
in an annular bose gas. Phys. Rev. Lett., 113:135302, Sep 2014.
(Cited on page 106.)

[107] M. R. Andrews, M.-O. Mewes, N. J. van Druten, D. S. Durfee, D. M. Kurn,
and W. Ketterle. Direct, Nondestructive Observation of a Bose Condensate.
Science, 273(5271):84, 1996.
(Cited on page 106.)

[108] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfree, D. M. Kurn,
and W. Ketterle. Observation of Interference Between Two Bose Condensates.
Science, 275(5300):637, January 1997.
(Cited on page 106.)

176



[109] L. Turner, K. Domen, and R. Scholten. Diffraction-contrast imaging of cold
atoms. Phys. Rev. A, 72(3):031403, 2005.
(Cited on page 106.)

[110] Miroslav Gajdacz, Poul L Pedersen, Troels Mø rch, Andrew J Hilliard, Jan
Arlt, and Jacob F Sherson. Non-destructive Faraday imaging of dynamically
controlled ultracold atoms. Rev. Sci. Instrum., 84(8):083105, 2013.
(Cited on page 108.)

[111] R. Mathew, A. Kumar, S. Eckel, F. Jendrzejewski, G. K. Campbell, Mark
Edwards, and E. Tiesinga. Self-heterodyne detection of the in situ phase
of an atomic superconducting quantum interference device. Phys. Rev. A,
92(3):033602, 2015.
(Cited on page 112.)

[112] J.F. Jarvis, C.N. Judice, and W.H. Ninke. A survey of techniques for the
display of continuous tone pictures on bilevel displays. Comput. Graph. Image
Process., 5(1):13, March 1976.
(Cited on page 113.)

[113] J. Hope and J. Close. Limit to Minimally Destructive Optical Detection of
Atoms. Phys. Rev. Lett., 93(18):180402, 2004.
(Cited on pages 113 and 119.)

[114] P. O. Fedichev, G. V. Shlyapnikov, and J. T. M. Walraven. Damping of Low-
Energy Excitations of a Trapped Bose-Einstein Condensate at Finite Temper-
atures. Phys. Rev. Lett., 80(11):2269, 1998.
(Cited on page 117.)

[115] N. Katz, J. Steinhauer, R. Ozeri, and N. Davidson. Beliaev Damping of
Quasiparticles in a Bose-Einstein Condensate. Phys. Rev. Lett., 89(22):220401,
2002.
(Cited on page 117.)

[116] D. V. Freilich, D. M. Bianchi, A. M. Kaufman, T. K. Langin, and D. S. Hall.
Real-Time Dynamics of Single Vortex Lines and Vortex Dipoles in a Bose-
Einstein Condensate. Science, 329(5996):1182, 2010.
(Cited on page 119.)

[117] J. File and R. G. Mills. Observation of persistent current in a superconducting
solenoid. Phys. Rev. Lett., 10:93–96, Feb 1963.
(Cited on page 122.)

[118] J. B. Mehl and W. Zimmermann. Flow of superfluid helium in a porous
medium. Phys. Rev., 167:214–229, Mar 1968.
(Cited on page 122.)

177



[119] I. Rudnick, H. Kojima, W. Veith, and R. S. Kagiwada. Observation of
superfluid-helium persistent current by doppler-shifted splitting of fourth-
sound resonance. Phys. Rev. Lett., 23:1220–1223, Nov 1969.
(Cited on page 122.)

[120] Scott Beattie, Stuart Moulder, Richard J. Fletcher, and Zoran Hadzibabic.
Persistent currents in spinor condensates. Phys. Rev. Lett., 110:025301, Jan
2013.
(Cited on page 122.)

[121] D. Sanvitto, F. M. Marchetti, M. H. Szymańska, G. Tosi, M. Baudisch,
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