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Abstract

In this paper we solve a finite—horizon partially observed risk—sensitive stochastic
optimal control problem for discrete-time nonlinear systems, and obtain small noise
and small risk limits. The small noise limit is interpreted as a deterministic partially
observed dynamic game, and new insights into the optimal solution of such game
problems are obtained. Both the risk—sensitive stochastic control problem and the
deterministic dynamic game problem are solved using information states, dynamic
programming, and associated separated policies. A certainty equivalence principle
is also discussed. Our results have implications for the nonlinear robust stabilization
problem. The small risk limit is a standard partially observed risk-neutral stochastic
optimal control problem.

Key words: Nonlinear partially observed stochastic systems, risk—sensitive opti-
mal control, dynamical games, nonlinear filtering, large deviations, output feedback
robust control.

1 Introduction

Recent interest in risk—sensitive stochastic control problems is due in part to con-
nections with H. or robust control problems and dynamic games. The solution of a
risk—sensitive problem leads to a conservative optimal policy, corresponding to the con-
troller’s aversion to risk.
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For linear/quadratic risk-sensitive problems with full state information, Jacobson [15]
established the connection with dynamic games. The analogous nonlinear problem was
studied recently, and a dynamic game is obtained as a small noise limit (James [16],
Fleming-McEneaney [10], Whittle [23], Campi-James [5]). A risk-neutral stochastic con-
trol problem obtains as a small risk limit (James [16], Campi-James [5]).

Whittle [22] solved the discrete-time linear/quadratic risk-sensitive stochastic control
problem with incomplete state information, and characterized the solution in terms of a
certainty equivalence principle. The analogous continuous-time problem was solved by
Bensoussan-van Schuppen [4], where the problem was converted to an equivalent one
with full state information. A conversion technique has also been used to solve partially
observed linear/quadratic H,, and dynamic game problems (Basar-Bernhard [3], Doyle et
al [6], Limebeer et al [20], Rhee-Speyer [21], and others). The nonlinear continuous-time
partially observed risk—sensitive stochastic control problem was considered by Whittle
[25], and an approximate solution was stated using a certainty equivalence principle when
the noise is small; these results are not rigorous, but are very insightfull.

In this paper we consider the finite-horizon partially observed risk—sensitive stochas-
tic control problem for discrete-time nonlinear systems. The solution to this problem
together with large deviation limits lead to new insights into the optimal solution of
partially observed dynamic game problems and related robust control problems.

The risk—sensitive stochastic control problem is solved by defining an information state
and an associated value function, and applying dynamic programming (§2). The dynamic
programming equation is a nonlinear infinite-dimensional recursion. Our approach is
motivated by the method used by Bensoussan-van Schuppen [4], and the well-known
separation method for risk-neutral problems. The resulting optimal controller is expressed
in terms of a separated policy through the information state.

In §3 we obtain the small noise limit of both the information state and the value
function. Logarithmic transformations are employed in each case. The information state
limit is similar to large deviations limit results for nonlinear filters (Hijab [13], [14], Baras
et al [1], James—Baras [18], James [17]), where the limit filter can be used as an observer
for the limit deterministic system. The limit of the value function also satisfies a nonlinear
infinite-dimensional recursion, which in §4 is interpreted as the dynamic programming
equation for a deterministic partially observed dynamic game. As a by-product, we obtain
an information state and value function for this game, and a verification theorem. The
optimal output feedback controller is given by a separated policy through the information
state. The information state, which depends on the output path, is a function of the
state variable, and evolves forward in time. The value function is a function of the
information state, evolves backwards in time, and determines the optimal control policy.
The structure of the controller we obtain is similar to that arising in the solution of the
linear/quadratic problem, which involves a pair of Riccati equations, one corresponding
to estimation, and one to control (Rhee-Speyer [21]). We identify a certain saddle point
condition under which the certainty equivalence policy proposed by Whittle [22], [25]
and Basar-Bernhard [3] is optimal, using our verification theorem. This policy involves
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the forward dynamic programming recursion for the information state, and a backward
recursion for the value function for the corresponding dynamic game problem with full
state information. This latter value function is (like the information state) a function of
the state variable, and consequently easier to compute.

The treatment of the robust nonlinear output feedback control problem using stochas-
tic control formulations leads naturally to the “correct”feedback structure of an “ob-
server’and “controller”. Our approach leads directly to this structure through limiting
processes which involve large deviation principles. The method clearly establishes the sep-
aration of the feedback policy and provides a framework for evaluating practical recipes.
This correspondence and application to the discrete-time, nonlinear, robust, output feed-
back stabilization problem will be described in detail in a different publication [2].

Finally, the small risk limit is evaluated in §5, and shown to be a standard risk—neutral
partially observed stochastic control problem. The notion of information state and the use
of dynamic programming is well known for risk—neutral problems (e.g. Kumar—Varaiya

[19], Elliott—Moore [9]).

2 The Risk—Sensitive Control Problem

2.1 Dynamics

On a probability space (2, F, P*) we consider a risk—sensitive stochastic control problem
for the discrete—time system

Ty = b(xf, uk) + Wi,
(2.1)

ylEc-i-l = h(wi) + 1)27
on the finite time interval £ = 0,1,2,... M. The process z° represents the state of the
system, and is not directly measured. The process y° is measured, and is called the
observation process. This observation process can be used to select the control actions

ug. We will write zf,; for the sequence zf,---,zf, etc. G, and )Y, denote the complete
filirations generated by (z§ x, ¥5 ) and yg , respectively.

We assume:
(i) z§ has density p(z) = (2r)"/2exp(—1|z|?).
(ii) {wg} is an R™-valued iid noise sequence with density ¢°(w) = (2re)~% exp(—= |w|?).
(iii) 5 = 0.

(iv) {vg} is a real-valued iid noise sequence with density ¢°(v) = (27¢)
independent of zf§ and {wf}.



(v) be C'(R™ x R™,R") is bounded and uniformly continuous.

(vi) The controls u; take values in U C R™, assumed compact, and are ), measurable.
We write Uy, for the set of such control processes defined on the interval k, ..., 1

(vii) h € C(R") is bounded and uniformly continuous.

The probability measure P* can be defined in terms of an equivalent reference measure
Pt using the discrete analog of Girsanov’s Theorem [9]. Under PT, {y5} is iid with density
#°, independent of {25}, and z° satisfies the first equation in (2.1). For v € Uy a1,

dPu € € €
ngk = Zp = ML 0 (efp,90),
where A
Vi(a,y) 2 exp (=1 [5I(2) ~ h(z)y])
2.2 Cost

The cost function is defined for admissible u € Uy pr—1 by

(2.2 pete) = B fop (X 1(af, )+ 0t |

=0

and the partially observed risk—sensitive stochastic control problem is to find u™ € Uy ar—,
such that
JPE(w') = inf  J*(u).

u€Uy, nr—1

Here, we assume:

viil) L € C(R™ x R™) is non—negative, bounded and uniformly continuous.
g y

(ix) ® € C(R") is non-negative, bounded, and uniformly continuous.

Remark 2.1 The assumptions (i) through (ix) are stronger than necessary. For example,
boundedness assumption for b can be replace by a linear growth condition. In addition,
a “diffusion”coefficient can be inserted into equation (2.1). Other choices for the initial
density p are possible; see Remark 4.1.

The parameters x> 0 and € > 0 are measures of risk sensitivity and noise variance.
In view of our assumptions, the cost function is finite for all g > 0, ¢ > 0.

In terms of the reference measure, the cost can be expressed as

M-1
(2.3) J4e(u) = Ef [234 exp £ (Z L5, ) +<I><win)]-

=0



2.3 Information State

We consider the space L*°(R") and its dual L>**(R™), which includes L*(R"). We will
denote the natural bilinear pairing between L*(R"™) and L**(R") by (7, v} for 7 €
L**(R"™), v € L*°(R"). In particular, for ¢ € L*(R") and v € L*(R") we have

(o,v) = /na(w)u(x)d:v.

We now define an information state process o}, € L**(R") by

en 1) = B [ateenp (£ 32 Lot 2211

for all test functions n in L*(R™), for k = 1,..., M and o§° = p € L'(R™). We introduce
the bounded linear operator £ : L*°(R") — L*(R") defined by

(25) Sy & [ 95— e W) deexp(EL(E W)W ().

e
The bounded linear operator £#°* : L®*(R") — L>*(R") adjoint to ¥*° is defined by
(B )y = (r, %)

for all 7 € L**(R"), n € L=(R").

The following theorem establishes that o} is in L*(R") and its evolution is governed
by the operator ©#<* and for o € L*(R"), n € L*°(R"), we have

26) Do (s) = [ 9= b6 w) exp(EL(E )W )o(€) de.

€
Theorem 2.2 The information state o},° satisfies the recursion

o = (g ol
(2.7)

£
ay”© = p.

Further, o € L}(R") since p € LY(R™) and ¥#°* maps L1(R") into L}(R").



Proor. We follow Elliott—Moore [9]. ;From (2.4), we have
(o5 m)

= Et [n(b(x;_l, Up—1) +wi_y)exp EL(x5_;,up—1) ¥ (25, ¥5)
exp £ Y120 Iaf, w) Z5 | 4]
— gt [ fm n(b(§_y, up-1) + w) exp LL(x§_y, up—1 )V (25, ¥5)
cexp £ 823 L(wg, w) 25y 1p°(w) duw | V|
= (0515 Jran(b(, wp1) + w)exp £L(-, up—1) U5 (-, yp)¥e(w) dw)
= (0351, BP° (up—1,y)n)

= (I (w1, yE)or "y, M)
This holds for all  in L>°(R™); hence (2.7).
The fact that X#°* maps L'(R") into L'(R™) follows easily from (2.6) and the prop-
erties of ¥°, U° and L. a

Remark 2.3 When L = 0, the recursion (2.7) reduces to the Duncan-Mortensen—Zakai
equation for the unnormalized conditional density [19].

The operator £#° actually maps Cp(R™) into C3(R™). Then we can define a process
I/;:’E S Cb(Rn) by

vty = IM(wkor, yg) vi©
(2.8)

vai = explo.
It is straightforward to establish the adjoint relationships

(E#*0, v) = (o, B"v),
(2.9)

(00" v) = (o, vih)

for all o € LY(R™), v € Cy(R™), and all k.

2.4 Alternate Representation of the Cost
Following [4], we define for u € Uy pr—y

(2.10) K*(u) = E (0%, exp LY,

1€

a cost function associated with the new “state”process o).
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Theorem 2.4 We have for all v € Uppr—1

(2.11) JH(u) = K"*(u).
ProOOF. By (2.4),
Kre(u) = Ef [Bf [exp £0 (a5 ) exp £ (S5 Laf, ) Z5; | Y]]
= B! [exp £ (S5" L(af, w) + ®(x5,)) Z5/]
= J**(u)

using (2.3). ]

We now define an alternate but equivalent stochastic control problem with complete
state information. Under the measure P*, consider the state process o}° governed by
(2.7) and the cost K*°(u) given by (2.10). The new problem is to find w* € Upar_y
minimizing /#°,

Let Uy, denote the set of control processes defined on the interval k,...,[ which are
adapted to o(0%°, k < j <1). Such policies are called separated [19].

2.5 Dynamic Programming

The alternate stochastic control problem can be solved using dynamic programming.
Consider now the state o on the interval k,..., M with initial condition o° = o €
LYR™):

obt = S (u,y) ol k41 <1< A,
(2.12)

ot =o.
The corresponding value function for this control problem is defined for o € L'(R™) by

(2.13) S*(o,k) = inf EM[(of, v) |0t = o].

u€UE pr—1

Note that this function is expressed in terms of the adjoint process v}, given by (2.8).

Theorem 2.5 (Dynamic programming equation.) The value function S*¢ satisfies the
TECUTSION

S0, k) = infuer BY [S45(50"(u, yf )0, k + 1)]
(2.14)

Ste(o, M) = (o, exp £0).



PRrROOF. The proof is similar to Elliott—-Moore [9], Theorem 4.5.
1,

S”YE(U’ k) = inquuk,k infveuk—{-l,M—l ET [(Ul;cm’ Eﬂys(ukv yi+1)l/;:f1> ‘ Op = O]

= infueuk,k infvEUkH,M—l Ef [ET REME*(UM y16c+1)0-;c£167 V£f1> |yk+1] la;:)s = U]

o}

Il

= infueuk,k Ef infveuk+l,M—1 Ef [<Eu’€*(uka ylec+1)0-15155 Vg—fl) 1 yk+l] | U;ct)a

o [ e e e )
= lnquuk,k E! lnfvGUk+1,M-1 Ef [<0k+1> Vk+1> |Uk+1 =3¢ E*(ukv ?/Z+1)UH

= infueu, , BY [S4(29 " (uk, yg, )0, b+ 1)]

The interchange of minimization and conditional expectation is justified because of the
lattice property of the set of controls [7], Chapter 16. O

Theorem 2.6 (Verification.) Suppose that u* € Uy, is a policy such that, for each
k=0,....,M—1, uf = w;(c,°), where (o) achieves the minimum in (2.14). Then
u™ € Up,m—1 and is an optimal policy for the partially observed risk—sensitive stochastic

control problem (§2.2).

PRrOOF. We follow the proof of Elliott-Moore [9], Theorem 4.7. Define
(o, ki) = B (o, uf) | ot = o],

We claim that )
(2.15) St(o,k) = S*(o, k;u™)

for each £ = 0,1,..., M.

For k = M, (2.15) is clearly satisfied. Assume now that (2.15) holds for k+1,..., M.
Then

Sk (o, k;ur) = Ef [ET [(E“ve*(uz, Yer1)0k > Vi (Whp1.01-1)) lyk+1} | ot = a]
— ET [SH»E(E#@*(UZ,yi_}_l)U’ k' + 1; U/z—{-l,M—l)]
— gt [SM,E(EM,E*(UZ7:UZ+1)U, k+ 1)]

= SHe(o, k).
from (2.14). This proves (2.15).
;From (2.15), setting k = 0 and o = p € L'(R") we obtain

S (p, 05u") = 5*%(p,0) < 5"°(p,05u)
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for any u € Uppr—1. Comparing (2.10) and the definitions of $#, $*¢ above this implies
K" (u") < K™ (u)

for all u € Uy pr—1. Using Theorem 2.4, we complete the proof. O

Remark 2.7 The significance of Theorem 2.6 is that it establishes the optimal policy
of the risk—sensitive stochastic control problem as a separated policy through the process
o}, defined in §2.3, which serves as an “information state”[19].

3 Small Noise Limit

In order to obtain a limit variational problem as & — 0, we must first obtain limit results
for the information state (and its dual).

3.1 Information State
Fory € G2 {y € R? : v >0, 75 > 0} define
D' £ {peCR" : p(z) < —mle* +7},

D 2 {peC(R") : p(x) < —miof* + 7, for some 7 € G},
and write

Cy(R™) 2 {q€ C(R") : |q(z)] £ C, for some C > 0}.

We equip these spaces with the topology of uniform convergence on compact subsets. In
the sequel, B(z,a) C RP denotes the open ball centered at € R? of radius « > 0.

e

The “sup pairing”
(3.1) (p,q) = sup {p(z) +q(x)},
zeER"

is defined for p € D, ¢ € C,(R™), and arises naturally in view of the Varadhan-Laplace
lemma (see the Appendix):

(3.2) lim = log(e??, e£) = (p, q)

e—0 Y]
(uniformly on compact subsets of D7 x Cy(R"), for each v € G).
Define operators A** : D — D, and A* : C,(R™) — Cy(R") by

A (u,y)p(2) & supgera {L(&u) — 312 — b(&, w)|? — L [LA()® — h(&)y] + p(e)},
(3.3)

A#(u,9)q(€) £ sup,epa {—F 12 = HE WP +q(2)} + L(E,u) — L [HAEOP — h(€)y] .
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With respect to the “sup pairing”(-, -), these operators satisfy:

(3.4) (A**p, ¢) = (p, A"q).

Also, A**(u,y) : D7 — D is continuous for each v € G in fact, the map (u,y,p) —
A**(u,y)p, U x R x DY — D is continuous.

The next theorem is a logarithmic limit result for the information state and its dual,
stated in terms of operators (i.e. semigroups).

Theorem 3.1 We have

lima_,oilog Eu,e*(u,y)e‘?l’ = A**(u,y)p,
(3.5)
1im5_,0§10g2”75(u,y)6‘5q = A(u,y)q

in D uniformly on compact subsets of U x R x D” for each v € G, respectively in Cy{R")
uniformly on compact subsets of U x R x C,(R™).

PROOF. From (2.6), we have
= log YHe*(y,y)e?(z) = £ log Jrnexpt (—21—”|z — b(&,u)|* — o log(27¢)

—L[HR(OP ~ h(€)y] + L(E,u) + p(6)) de
Therefore,

lim,_q £ log S * (u, ) ee?(z)

= supgepn { L(6,u) — 12— b(& u)2 — L [LA(O — h(€)y] + p(&)}

= A**(u,y)p(2)

uniformly in a = (z,u,y,p) € A, by Lemma 6.1; where A = B(0,R) x U x B(0,R) x K,
and K C D" is compact. This proves the first part of (3.5). The second part is proven
similarly. O

3.2 Risk-Sensitive Value Function

The next theorem evaluates the small noise limit of the risk—sensitive value function S**.
It involves two large deviations type limits, one corresponding to estimation and one to
control.
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Theorem 3.2 The function WH(p, k) defined for p € D by
A . € &
(3.6) We(p,k) 2 lim = log S"<(e%7, k)
£— H

exists (i.e. the sequence converges uniformly on compact subsets of D (v € ()), is
continuous on DV (y € G), and satisfies the recursion

We(p,k) = infuey supyer {W*(A%* (u,y)p, b +1) — 551/}
(3.7)
W¥(p, M) = (p, ®).

PROOF. The result is clearly true for & = M because of the second of (2.14), (3.2),
and the continuity of p — (p, ®) on each D.

Assume the conclusions hold for k+1,..., M. Select v € G and K C D compact. In
what follows C' > 0, etc, will denote a universal constant. ;From Theorem 2.5 and (3.6),
we need to compute

lime_o & log §(e%7, k) = lim,_o <loginfueu B [$%5(Sme(u, y,,)et?, k + 1)
(3.8)
= lime_¢infycy < log Ef [S"’E(E“’E*(u, yiﬂ)e%’/’, k+ 1)] .

The last equality is due to the monotonicity of the logarithm function.

Direct calculation verifies the estimate
Z log S4 (SR (u, y)et?, k+1) < C(1+ |y])
w
forallu e U,y e R, p€ K, ¢ < ¢ for some ¢’ > 0, and the inclusion

£ log E“’E*(u, y)ef” e pvh
I

foralluc U,y € R,pe K, e < ¢, for some 7(|y|) € G. The fact that y(|y|) depends on
|y| complicates matters a little. If we select R > 0 and consider those y for which |y| < R,
then there exists ygr € G such that

£ log ¥ * (u, y)e%p € DR
u
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forallu e U, ly| < R, p € K, for all € > 0 sufficiently small. Considering the right hand
side of (3.8) we have

Ve (p, ks u)

!l

2 log Bt [Se(Se(u, yf )7, b + 1)]

= 2log fp ¢°(y) S (%" (u, y)e?, k + 1) dy
(3.9) = £log {flyicr S ("= (u, y)e¥?, k + 1) dy
t Syor $@)S (0 (u,y)e? |+ 1) dy }

AN [
= £log{A+ B}.
Now using the bounds above we can write
¢ € [ 12 & :
—logB < —1lo —C(+|y|) — 5 — —log(27e) | dy,
o B < Clog |y|2ReXp€( (1 +1yl) = 551yl o og(2m )) y
and using a standard estimate for gaussian integrals we obtain
SlogB < Cp — CyR?

(3.10)
< -

as € — 0, uniformly in v € U, p € K, where C’' > 0 if R > 0 is chosen sufficiently large.
By the induction hypothesis W#(p, k 4+ 1) exists and
WH(p,k+1) = lin(l)E log S”’E(ejf”, k+1)
E—r ”

uniformly on D"®. We also have from Theorem 3.1 that

A (u,y)p = 1iH3£10g SH (u,y)e <
E—r M

uniformly on U x B(0, R) x K, and
A**(u,y)p € D"

for all (u,y,p) € U x B(0,R) x K.

Consider the function W#*(A**(u,y)p, k+1) — —2-1;|y|2. Due to the induction hypothesis
and the properties of A*°, it is continuous in p, y, «, and bounded in y; all properties
uniformly in (u,p) € U x K. Therefore we can choose R large enough so that both (3.10)
is satisfied and

argmax{W*(A""(u, y)p, k + 1) — 5. |y[*} C B0, R).
Y€

12



We keep R fixed from now on.

Combining the above limits for §#° and ¥£*¢ we have that

lim._o £ log {S“’E(E“’“(u, y)ec? k+1) exp £ (—i|y|2 -3 10g(27r£)>}
(3.11)
= WHA*(u,y)p, k+ 1) — 3 ly|?

uniformlyinu € U, p € K, y € B(0, R).

We can now proceed with the further computation of (3.9). Indeed, we follow the
proof of Lemma 6.1 with

9 (et o Dexp Lol - - logtzne)
replacing exp(F /), and
WH(A* (u,y)p, k +1) — 5 ly[?
replacing F,, and ¢ = (u,p) € A=U x K. Then

(3.12) hm—logA sup{W“ A (u,y)p, k+ 1) — 2“ Y }

e—0 ,u yER

uniformly in U x K. It is crucial that R is chosen as above so that the uniform bound
required by condition (iii) of Lemma 6.1 is satisfied. Consequently

lime_o V#¢(p, k;u) = lim._ = =log (A + B)
= lim._o £log A (1 + B/A)
— lim.—o < log A
= supyeR{W” (A (u,y)p, b+ 1) — 5]yl }

uniformly on U x K, since lim._o £ log(1 + B/A) = 0 from (3.10), and (3.12).

To complete the proof, we use the continuity of the map (p,u) — V*&(p, k;u), DT x
U — R to obtain

lim._, ilog S“’E(ef”, k) = limeoinf,ev V*°(p, k;u)
= infuep limeo V< (p, k; u)
(3.13)
= 1nfu€Usupy€R{W“ A (u,y)p, k+ 1) — 1 }JI }
= W*(p, k)

13



uniformly on K. The last equality holds by the definition (3.6).

The sequence converges uniformly on K, and as a result W#(p, k) is continuous on
D". This completes the proof. a

Remark 3.3 In §4, equation (3.7) will be interpreted as the optimal cost function (upper
value) for a dynamic game problem.

Remark 3.4 Note that there are two large deviation type limits involved in the result
of Theorem 3.2. The first is expressed in the use of (3.5) in (3.11) and corresponds to
“state estimation”or “observers”. The second is embodied in (3.6) and corresponds to the
relationship of the stochastic risk—sensitive optimal control problem to the deterministic

game that (3.7), (3.13) imply.

4 A Dynamic Game Problem

4.1 Dynamics

We consider a two—player deterministic partially observed dynamic game for the discrete-
time system
Thyr = b(mk, up) + wy,
(4.1)
Yerr = h(zg) + vr,
on the finite time interval £ = 0,1,2,... M, where

(i) #(0) = ¢ is the unknown initial condition, and y(0) = 0.

(ii) Player 1 selects the U-valued control uy, which is required to be a non-anticipating
functional of the observation path y. We write Uy, for the set of such controls defined
on the interval k,...,[, and note that u € Uy, if and only if for each j € [k, (] there
exists a function u; : RU™*1" — [J such that u; = @;(ype1,;).

(iii) Player 2 selects the R™ x R-valued disturbance (wy, vy), which is a square summable
open loop sequence. We let ly([k,[], R?) denote the set of square summable RP-
valued sequences defined on the interval k,... [ (p =n,1,n + 1).

4.2 Cost

The payoff function for the game is defined for admissible u € Uy -1 and (w,v) €
ZQ([OaM - 1]>Rn+1) by

M-1 M1
(4.2J*(u,w,v) = sup {a(%) + 2 Llz,w) + O(zm) — 1 D %(lwliQ + |y 2)},

zoER™ I=0 I=

where o € D.

14



Remark 4.1 This formulation treats zo as part of the uncertainty (to be chosen by
nature). A priori knowledge of z is incorporated in the cost function o € D. Our
theory also applies to the case @ = 0, which corresponds to no a priori information,
and note lim,_,o €log p = 0, where p is the initial density for the risk-—sensitive stochastic
control problem. One can alternatively select @ € D and define the initial density by
p(x) = c. exp(—a(z)/e), where ¢, is a normalizing constant.

The (upper) game is defined as follows. Let

Ju(u) - Sup Jﬂ(u,w,v),
(w,v)elz([0,M—1),Rr+1)

and the (upper) partially observed dynamic game problem is to find u* € Uy ar—; such that
J*w") = inf  J*(u).

u€lo, pmr—1
The cost function J#(u) can be rewritten in the form

JH(u) = Sup e, (jo.m),R7) SUPyery (11,M)R) {a(%) + Yig ! Ll w) + ®(xnr)
(4.3)

—L S5 L (|wig — b, w)]? + lyeer — (=)}

This cost function is finite for all y > 0.

4.3 Information State

Motivated by the use of an information state, and associated separation policies, in solving
the risk-sensitive stochastic control problem, given a control policy « € Uy a1 and an
observation path y € £([0, M],R), we define an “information state”p) € D and its
“dual”qi € Cyp(R™) for the game problem by the recursions

Pi = A (ur-1,¥e)Piy
(4.4)

po = @,

(IIL:_1 = Aﬂ(uk—byk)qg
(4.5)

o = @,

where A* and A** are as defined in (3.3). Note that, in the “sup pairing”notation of (3.1),
(4.6) (k@) = (Phoss 4hn)
for all &, and
(4.7) of ~ el ot~ ol

in probability as ¢ — 0.

15



Remark 4.2 The asymptotic formulae (4.7) are similar to the large deviation limit for
nonlinear filtering ([13], {14], [18], [17]). In addition, if L = 0 the recursions (4.4) reduce
to the equations for Mortensen’s method of minimum energy estimation.

4.4 Alternate Representation of the Cost

Define for v € Up pr-1
4.8 K*(u) = sup {p“,@—i |y I}a
(+8) )= iRy Wi ) = 2 e

a cost function associated with the new “state”process pf.

Theorem 4.3 We have for all u € Uy pr—y

(4.9) JHu) = K*(u).
PROOF. Iterating (4.4), we see that
Pu(2) = SUPuery (o, R7) {a(%) + Y85 Dl w) — 2205 S — blay,w)?

Sl HUICHI R IR BEETVEES 3
Substitution of this equality into (4.8) yields (4.9). O

We now define an alternate deterministic dynamic game problem with complete state
information. Consider the state sequence p) with dynamics (4.4) and the cost K#(u):
find w* € Ug py_, minimizing K*. Here, U}, denotes the set of separated control policies,
through the information state pj, defined on the interval k,...,/, i.e. those which are
non-anticipating functionals of (p, k < j <1). Note that U, C Uj,.

4.5 Dynamic Programming

Consider now the state p* on the interval k,..., M with initial condition p} = p € D:

pi= M*(wen,y)plly, k41 <1< M,
(4.10)

n

Pr = P
The (upper) value function is defined for p € D by

M-1

(4.11) WH(p, k) = inf sup {(pz, qy) — L Z lyip1]* - Ph = p}.

2
u€lp pr1 y€L2 ([k+1,M],R) # =
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Theorem 4.4 The value function W*(p, k) defined by (4.11) is the unique solution of
the dynamic programming equation (3.7).

ProoF. From (4.11), (4.4), (4.5), and (4.6), we have

W*(p, k)
= infy, e, Infoersys 1 SUPy, .1 eR SUPyee, ((k+2,M],R)

{(pk’ A# (Uk,yk+1)qz+1(vk+l,M—l)) - 2LM Z?i;il |yl+1|2 — —le+1|2 ) ,N — p}
= infy, ey, , SUPy, . eR 0 ueth s ar SUPyety ([k+2,M],R)

{<A“*(Uk,yk+1)PZ> q;:+1(vk+1,M—1)) - Zz k+1 Yo |* = ilyk“P Pk = p}

= infukeuk,k Supyk.,.leR {W#(Au*(uka yk+1)p, k+ 1) - ;—#ka‘*'ll?}

which is the same as (3.7). Here, the interchange of the minimization over vjy1 -1 and
maximization over yi4q 1s justified because these terms are not coupled in the expression
being optimized. O

Remark 4.5 We conclude from Theorems 3.2 and 4.4 that the small noise limit of the
partially observed stochastic risk—sensitive problem is a partially observed deterministic
dynamic game problem.

Theorem 4.6 (Verification.) Suppose that u* € U \_y is a policy such that, for each
k=0,...,M—1, u; = uj(py), where uj(p) achieves the minimum in (3.7). Then
u* € Uom—1 and is an optimal policy for the partially observed dynamic game problem

(884.1, 4.2).

PROOF. Define
M-—1
Wip, ku) = sup {p,q - v }
( ) yely ([k+1,M],R) k> ) 2# Z l2 +1|

We claim that
(4.12) WH(p, k) = W¥(p, k;u”)

for each £ =0,1,..., M.
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For k = M, (4.12) is true. Assume now that (4.12) holds for £ +1,....M. Then
W(p, ks

= SUPy,,,eR SUPyery([k+2,M],R)
{(A”*(“27yk+1)pz> ‘115+1(“Z+1,M—1)) - ﬁ Sty el - §lp|yk+1 12 pf = p}
= sup,,.,, er {WH(A* (Ul ya )Pl b+ Lulys o) = vk ® : 0k = p)
= su WH(AF*(u; Pk +1) — L ype)?
Py, ,1eR ko Ye41)P5 2p 1 Yk41

= W*(p, k),

which proves (4.12).
Next, from (4.12) and setting £k = 0 and p = « we obtain

W (e, 0;u") = W#(a,0) < WH(a,0;u)
for all u € Up pr—1, which implies
K*(u*) < K*(u)

for all u € Uy ar—1. This together with Theorem 4.3 completes the proof. O

4.6 Certainty Equivalence Principle

Remark 4.7 Theorem 4.6 is the “appropriate”separation theorem for the partially ob-
served dynamic game described in §8§4.1, 4.2, in that it establishes that the optimal feed-
back policy is a separated one [19] through the information state pj which carries all
the information from the observations yo relevant for control. It is important to note
that the solution of this partially observed dynamic game problem involves two infinite-
dimensional recursions. One is (4.4), which describes the dynamics of the information
state, evolves forward in time, and is a dynamic programming equation in view of (3.3).
This equation plays the role of an “observer”in the resulting controller, and is determined
by the control problem at hand, and not prescribed a priori. The information state pf(z)
is a function of the state variable 2 € R™. The other recursion is (3.7), which describes the
computation of the feedback control as a function of the information state, evolves back-
ward in time, and is a dynamic programming equation. The value function W*(p, k) is a
function of the information state variable p, which takes values in the infinite—dimensional
space D. An important aspect of our work is to point out this essential difficulty of the
nonlinear robust control problem. This is not surprising given that this difficulty is well
known in stochastic control. For practical applications, one can try to find suboptimal
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finite-dimensional schemes that provide performance close to the one predicted by the op-
timal results obtained here. We are also pursuing the development of numerical schemes
that can compute the required recursions (4.4) and (3.7), as well as the incorporation of
such schemes into CAD control systems design software based on optimization.

We now relate the above analysis to certainty equivalence principles suggested by
Whittle [22], [24], [25] for the risk—sensitive problem, and by Basar-Bernhard [3] for the
game problem.

Consider a completely observed dynamic game problem with dynamics

(413) Tpe1 = b(:l?k, uk) + wy
and payoff function

M-1 M=1
(4.14) Lz, w) + ¢(zm) —

=0 =0

where the initial state 24 is known, player 1 selects u € UG yr—y to minimize J#, and player
2 selects w € £3([0, M —~ 1), R™) to maximize J#. Here, Uf, is the set of U-valued controls
which are non-anticipating functionals of the state x defined on the interval k,..., 1.

Define the upper value (see, e.g. [8]) for this dynamic game by

f/i‘(x) = infueu;,M_l SUP ety ([k,M—1],R") {E?ikjl L(zy,w) + ©(2ar)
(4.15)

—= EM w oy = 1}
This function satisfies the dynamic programming equation
J@) = infuer supyern { Ffia (b, u) + w) + L, u) = 5 jwf}

Fulz) = (),

and if o5(z) € U achieves the minimum in (4.16), then u} = () is an optimal feedback
policy for this completely observed game.

(4.16)

Whittle [22], [24], [25] solves the partially observed risk-sensitive stochastic control
problem by using the solution to the completely observed game (4.16), and the modified
filter or “observer”(4.4). He refers to fI as the future stress, and to pi as the past stress,
and defines the minimum stress estimate . of z; by

(4.17) Ty € argmax {pk(:c )+ fi (:1:} = i,

zeR»

where & is a set-valued variable. For linear systems with quadratic cost, the certainty
equivalence principle asserts that if J#(u,w,v) is negative definite in (w,v) (and positive
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definite in u), then u} = v;(Z;) is an optimal control for the partially observed risk-
sensitive problem [22]. For nonlinear systems, Whittle’s assertion is that this recipe gives
a policy which is approximately optimal for the risk—sensitive stochastic control problem

[25].

Remark 4.8 The variable &) is set—valued and is closely related to the finite-time ob-
server results of James ([17], equation (3.8)), and our earlier observer design methodology
[1], [18]. Indeed our construction brings out another essential difficulty of the nonlinear
problem, which has to do with multivalued (or set-valued) variables for state estimation
and control. We will have more to say about this issue in a forthcoming paper.

We now state a certainty equivalence principle for the partially observed deterministic
game problem described in §§4.1, 4.2 (c.f. Basar-Bernhard [3], Chapters 5 & 6).

Theorem 4.9 (Certainty equivalence.) Let ff(z) be the upper value for the full state
information game (4.13), (4.14). If for all k =0,...,M and p € D we have

then the policy u* € Uy, defined by
(419) uz = ’l_);(.’fk)

is an optimal policy for the partially observed game problem (8§84.1, 4.2).

PRroOOF. Let

z3(p) € argmin (p(€) + fL(6)) -

¢eRn

Then the minimum stress estimate and the candidate policy defined by (4.19) can be
written as

(4.20) Ty = zi(py) and up = vp(2i(p}).
Therefore uj is a separated policy. To check the optimality of u}, we apply the verification

Theorem 4.6. We must show that for each k, v} S vi(23(p)) achieves the minimum in
(3.7). To prove this, using the hypothesis (4.18) at time k + 1, we have

W (p, k)
= infucu supyer {W*(A**(u,y)p, k +1) — L |y[*}
= infuev sup,er { (A**(w,9)p, fl1) — & 1ul*}
= infueu SUP eR SUP,cRn SUP¢cRn
{P(€) + L& w) = 511z = 0w = 1 [SIAE) = ()] = LIy + fria (=)}
= infuey supgenn (p(€) + L(&,w) + sup,epa {— 12 — b&, w) + Ly (2)}) -
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On the other hand, (4.18) at time k implies

We(p, k) = supeern (p(€) + JL(6))
(4.22)

= supgern infucy (P(€) + L(&,4) + sup,epa {— k2 — b€, u) > + iy (2)}) -

*

Thus W¥(p, k) is a saddle value for a static game, with saddle point ¢ = 2}(p), u =
v5(2%(p)). Therefore vj(z%(p)) achieves the minimum in (3.7). 0

Remark 4.10 As described in Remark 4.7 above, the partially observed dynamic game
(and the related robust control problem [2]) involve two infinite-dimensional recursions.
The significance of the “certainty equivalence”theorem is that if valid, the recursion (3.7)
involving the value W*(p, k), p € D can be replaced by a simpler recursion (4.15) involving
the upper value ff(z), + € R". This has obvious computational implications.

Remark 4.11 A crucial contribution here is that we have identified precisely the condi-
tion that one needs to establish the certainty equivalence principle suggested in [22], [25],
(3]. The condition is (4.18), i.e., the saddle point condition in (4.21), (4.22). One may
ask to what extent this condition can be obviated. Or alternatively, can we show under
certain assumptions that (4.18) is satisfied? The proof of Theorem 4.9 can be used as
a basis for answering this question. In [22], [25], [3], it is apparently assumed that the
full state game problem has a value (equivalent to the existence of a saddle point for this
game), and other assumptions are made. The full state game problem has a value ff(z) if
the upper value f; (z) coincides with the lower value f¥(z), in which case f£ () is defined
to equal this common number. The lower value is defined by

Fe(@) = supuer, qear—1 R nfuc {Z VL@, w) + O(ear)
(4.23)

1 ZM 1 1|w1|2 _ :x},
and solves the dynamic programming equation

[o(@) = sup,cpn infuer {fk+1 (b(z,u) + w) + L(z,u) — 5= [w| }

Fu(z) = 0(a).

In continuous-time, the Isaacs condition [7], [3] implies the equivalence of the two values.

(4.24)

Remark 4.12 Since the partially observed game is the limit of the partially observed
risk—sensitive problem, the policy (4.19) is an approximate optimal policy for the partially
observed risk-sensitive problem for small € > 0 (c.f. Whittle [25]).
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5 Small Risk Limit

In this section we show that a risk—neutral stochastic control problem is obtained if in the
risk—sensitive stochastic control problem the risk-sensitivity parameter p tends to zero.

5.1 Information State

Define the bounded linear operator £* : L'(R™) — L'(R") by

(5.1) U, y)o () 2 [ 65— b(E u)WE(E )o(€) de.
Theorem 5.1 We have
(5.2) lim ¥***(u,y)o = £°*(u,y)o,

p—0

uniformly on bounded subsets of U x R x L*(R™).

ProOOF. This result follows simply from the definitions (2.6}, (5.1). O
Next, we define a process of € L'(R™) by the recursion
of = B (we-1,95) 0fy
(5.3)
ay = p.

Remark 5.2 The process o} is an unnormalized conditional density of a§ given Y, and
equation (5.3) is known as the Zakai equation [9], [19].

5.2 A Risk—Neutral Control Problem

We again consider the discrete-time stochastic system (2.1), and formulate a partially
observed risk-neutral stochastic control problem with cost

(5.4) J(u) = B L(af,w) + B(a5,)

=0

defined for u € Uy pr—1, where Up pr—1, etc, are as defined in §2. This cost function is finite
for all € > 0.

We quote the following result from [9], [19], which establishes that the optimal policy
is separated through the information state of satisfying (5.3).
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Theorem 5.3 The unnormalized conditional density of is an information state for the
risk-neutral problem, and the value function defined for o € L'(R™) by

M-1
(5.5) We(o,k) = inf E! [Z (of, L(-,u)) + (o34, @) | of = a]
uEl/l,:,M_l =k

satisfies the dynamic programming equation

We(o,k) = infucu B [(o, L(-,u)) + W(E (v, y41)0, k + 1)]
(5.6)
We(o, M) = (o, ®).

Ifu™ € U5 pr_y is a policy such that, for each k =0,...,M —1, u} = 6}(0f), where @}(o)
achieves the mintmum in (5.6), then u* € Uy pr—1 and is an optimal policy for the partially
observed risk-neutral problem.

Remark 5.4 The function W¢(o, k) depends continuously on o € L'(R").

5.3 Risk—Sensitive Value Function

The next theorem evaluates the small risk limit of the risk—sensitive stochastic control
problem. Note that normalization of the information state is required.

Theorem 5.5 We have

€ Ste(a k) We(o,k)
>0 ST T )

uniformly on bounded subsets of L'(R™).

ProoOF. 1. We claim that

(5.8) S (o,k) = (0, 1) + EW(0, k) + o)

as p — 0 uniformly on bounded subsets of L'(R™).

For k =M,
§44(0,M) = (o, ¢?)

= (o, 1) + 5(07 q)> + o(p)

= (o, 1) + EW*(0, M) + o()
as g — 0, uniformly on bounded subsets of L!(R™).
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Assume now that (5.8) is true for k+1,..., M. Then
Vie(o,kyu) 2 BT [Sm5(S0(u, g5, )0,k + 1)]
= Jr &7 (y)S" (X *(u, y)o, k + 1) dy
= Jre Jr °(y — h(€)) exp LL(E, u) S** (rgimre ol k + 1)o(€) dE dy
= Jre Jr 0°(y — RO+ LL(E,u) + o)}
{1+ AW (gredes k4 1) + o(p) o (€) dE dy
= (o, 1) + £ {(o, L(-,u))
+ Jrn R 67 (y — B(E)W* (el ke + 1)or(€) dé dy } + o(p)

= (o, 1)+ 2 {(0, L(-, ) + fr *(0)W(5"(w,y)or b + 1) dy} + ol )

as ¢ — 0 uniformly on bounded subsets of U x L'(R™). Thus, using the continuity of
(o,u) — VEe(a, k;u),

Ste(o, k) = infuep V*<(o, k;u)
— (0, 1) + Einfucr ({0, () + fp @)W (S5 (s p)or. b + 1) dy) + ofn)
= (0, 1) + £W(0, k) + o(p),

uniformly on bounded subsets of L'(R™), proving (5.8).
2. To complete the proof, note that (5.8) implies

Ste(a, k) pWe(o, k)
S S R/ IR s B St
(o, 1) T ey W
and hence Se( Welo k
Elog (07 ) — (0-5 ) 0(1)
U (o, 1) (o, 1)
as g — 0, uniformly on bounded subsets of L*(R"). 0

Remark 5.6 We conclude from Theorems 5.3 and 5.5 that the small risk limit of the
partially observed stochastic risk—sensitive problem is a partially observed stochastic risk—
neutral problem.
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6 Appendix

The following theorem is a version of the Varadhan-Laplace lemma [11]. Below g denotes a
metric on C(R™) corresponding to uniform convergence on compact subsets, and B(z, a)
denotes the open ball centered at z of radius a.

Lemma 6.1 Let A be a compact space, F¢, F, € C(R™), and assume

(i)
limsup o(F;, F,) = 0.

e—0 a€A

(ii) The function F, is uniformly continuous on each set B(0, R), R > 0, uniformly in
a €A

(11i) There exist v, > 0, 72 > 0 such that
Fi(z), Fo(z) < —mlz]* + 72

forallz e R™, a € A, ¢ > 0.

Then
(6.1) lim sup |¢ log neF‘f(x)/edﬂv— sup Fy(z)] = 0.

¢=04e4 R zeRn

PROOF. Write F? = sup,cpm Fe(z), Fu = sup,epm Fo(z). Our assumptions ensure
that

limsup Fy = F,.
e—0 44

For 6 > 0 define )
By = {a € R™ : Fi(z) > Ff — §}.

Then the uniform coercivity hypothesis (ii7) ensures there exists R > 0 such that By® C
B(0, R).
By hypothesis (i) on B(0, R) and using the uniform convergence on B(0, R), given
0 > 0 there exists r > 0 such that
|z — 2’| <r implies |F:(z)— Fi(2')| <6

for all z,2’ € B(0, R), a € A, and ¢ > 0 sufficiently small.

Let z¢ € argmax F?. Then |z — 25| < r implies |F(z) — F°| < & for all a € A, and
€ > 0 sufficiently small. Hence
B(ag,r) C Bs”
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for all @ € A, and € > 0 sufficiently small. Then
05 2 fpmexp (Fi(a)/e) do
> fpee exp (Fo(2)/2) da

> Cpr™exp (E{”—‘S) .

Thus -
elogal > clogCpr™ 4+ F2 — 6

(6.2) )

> F,—36

for all € > 0 sufficiently small and all a € A.
Next, for R > 0 write

of = Jicrexp (F7(z)/¢) dr + [, >rexp (Fi(x)/e) da
= A+ B,

and note that
elogat = elog A + O(B/A).

Now
B < fisrexp (_LIM) de

< Cprexp (Q_Czi)
< Crexp(—C'/[€)
where Cr,Cy,Cy > 0, and C' > 0 if R is chosen sufficiently large. Also
elog A < elog Ji,<rexp (F;/a) dx
< elogC,R™ + F¢

where R is chosen large enough to ensure argmax,cpm Fe(2) C B(0, R) for all « € A and
all sufficiently small €. Thus

(6.3) eloga® < F, + 36.
for all € > 0 sufficiently small and all a € A.
Combining (6.2) and (6.3) we obtain

sup [eloga® — F,| < 36
a€A
for all € > 0 sufficiently small. This proves the Lemma. O
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