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An important application of multivariate analysis is the estimation of the 

underlying dimensions of an instrument or set of variables. Estimation of dimensions 

is often pursued with the objective of finding the single factor or dimension to which 

each observed variable belongs or by which it is most strongly influenced. This can 

involve estimating the loadings of observed variables on a pre-specified number of 

factors, achieved by common factor analysis (CFA) of the covariance or correlational 

structure of the observed variables. Another method, correlation constraint analysis 

(CCA), operates on the determinants of all 2x2 submatrices of the covariance matrix 

of the variables. CCA software also determines if partialling out the effects of any 

observed variable affects observed correlations, the only exploratory method to 

specifically rule out (or identify) observed variables as being the cause of correlations 

among observed variables. CFA estimates the strengths of associations between 

factors, hypothesized to underlie or cause observed correlations, and the observed 



  

variables; CCA does not estimate factor loadings but can uncover mathematical 

evidence of the causal relationships hypothesized between factors and observed 

variables.  These are philosophically and analytically diverse methods for estimating 

the dimensionality of a set of variables, and each can be useful in understanding the 

simple structure in multivariate data.  This dissertation studied the performances of 

these methods at uncovering the dimensionality of simulated data under conditions of 

varying sample size and model complexity, the presence of a weak factor, and 

correlated vs. independent factors. CCA was sensitive (performed significantly 

worse) when these conditions were present in terms of omitting more factors, and 

omitting and mis-assigning more indicators. CFA was also found to be sensitive to all 

but one condition (whether factors were correlated or not) in terms of omitting  

factors; it was sensitive to all conditions in terms of omitting and mis-assigning 

indicators, and it also found extra factors depending on the number of factors in the 

population, the purity of factors and the presence of a weak factor.  This is the first 

study of CCA in data with these specific features of complexity, which are common 

in multivariate data.  
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Chapter 1: Introduction and overview of multivariate methods for 

uncovering simple structure 

The psychometric characteristics of many instruments, as well as collections 

of variables, used in social science and other types of research are frequently 

established by estimating (or as a function of) the underlying dimensions of a scale, 

instrument, or set of variables. Multivariate analysis is used to estimate the number of 

dimensions, typically with the objective of finding the single factor or dimension to 

which each observed variable belongs or by which it is most strongly influenced. 

When more than one dimension is present, investigators seek simple structure 

(Thurstone, 1935; Yates 1987), in which each observed variable is associated (most 

strongly) with a single underlying or latent variable. This “between-variables” 

multidimensionality (Wang, Wilson, & Adams, 1997) describes instruments or sets of 

variables that are most often studied in real-world situations where a single factor is 

either insufficient to capture the complexity of the data or where the data itself was 

intended to represent multiple dimensions. This dissertation compared and contrasted 

two different methods for estimating the dimensionality (i.e., number of latent 

variables and their constituent indicators) in a collection of variables, under the 

assumption that at least approximately, each observed variable loads on exactly one 

latent variable. 

1.1 Estimating dimensions 

1.1.1 The correct number of dimensions is critical 
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Wang, Wilson, and Adams (1997) described measurement in the testing 

context within which psychometric modeling (Rasch models) are the basis for 

utilizing the dimensionality –specifically, the unidimensionality – of a set of test 

items to make inferences about some construct (the purpose of the test).  Outside of 

testing and item response theory, collections of questions or items are often used to 

assess constructs that are theorized to be multidimensional. Very often, a set of 

responses is obtained and the relationships among the questions eliciting the 

responses are the topic of study.   

If the underlying structure of an instrument is incorrectly determined to be 

unidimensional, unexpected error and bias may result although an instrument itself 

may actually be valid (i.e., contain appropriate items, reflect the underlying construct, 

correspond to benchmarks/criteria, and support inferences about the target 

population) and reliable (providing the same information about individuals over 

repeated administrations).  For example, psychological and neuropsychological 

assessments can be used/useful without any formal appreciation or estimation of their 

underlying dimensionality. 

 However, to modify instruments, or to document their utility in different 

contexts (e.g., clinical trials) or populations (e.g., to support inferences about different 

groups) than were originally intended when the instrument was developed, 

exploration of dimensionality is sometimes pursued –often in an exploratory manner.  

In his description of methods for determining the optimal number of factors to extract 

in exploratory analyses, O’Connor (2000) noted, “under-extraction compresses 

variables into a small factor space, resulting in a loss of important information, a 
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neglect of potentially important factors, a distorted fusing of two or more factors, and 

an increase in error in the loadings.” (p. 396).  In their brief review of the literature 

describing and discussing the effects of over- and under-extraction of factors, Velicer, 

Eaton, and Fava (2000) argued that incorrectly identifying (or estimating) the number 

of factors, or components, will lead to problems with solution variability across 

samples (p. 42) –with scientific implications for factorial and configural invariance 

across samples.  Velicer et al. (2000) agreed with O’Connor (2000) in the conclusion 

that under-extraction is the worse, and more consistently damaging, result of mis-

specification of the true dimensionality of the variable/score set.  Further, Kano 

(2007) noted that “serious bias can be created by analysis with a model containing 

inconsistent variables…” (p. 65), meaning that observed variables must be included 

in factor analysis (and other latent variable models) that are consistent with the model 

itself.  

If instruments are erroneously modeled as unidimensional – whether 

dimensionality is mis-estimated or items that do not fit the dimension of interest are 

included, then the statistical models based on that incorrectly-conceptualized 

instrument will not be useful.  This bias can lead to inconsistent findings, 

inappropriately low power in experiments, and other difficulties in research.  Some 

practical implications arising from incorrect estimates of dimensions are exemplified 

in Figure 1.   
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Proc1

X1 X2 X3 X4

E1 E2 E3 E4  

One factor (process, 
Proc1) is assumed to 
underlie the observed 
correlations between the 
variables X1-X6. The four 
indicators are deemed 
sufficient indicators of the 
single process and 
interventions are 
developed targeting that 
single dimension. 

Proc1

X4 X5 X6X1 X2 X3

E1 E2 E3 E4

Proc2

E5 E6

Two factors (processes, 
Proc1, Proc2) are 
assumed. The four 
indicators that were 
previously deemed 
sufficient indicators are 
now augmented by two 
additional indicators (X5, 
X6) which would not have 
been considered-or 
collected - under the 
assumption of one 
process, and interventions 
are developed targeting 
both dimensions. 

Figure 1. Incorrect dimensionality: impact on future science 
 

 
When a set of variables is incorrectly ‘determined’ to have a single underlying 

(causal) factor, this can limit the scope and direction of future research. In the lower 

panel of Figure 1, two indicators (X3, X4) are causally associated with both of two 

latent factors; in addition two other indicators (X5, X6) that would not be collected or 

sought, because they are only associated with the second latent variable, are shown in 

the lower panel.  This example reflects the situation where the model is theoretically 

–not just statistically – misspecified.  

Consider attention deficit-hyperactivity disorder (ADHD) as being 

represented (without any appeal to clinical reality) in Figure 1. This totally fictitious 

example then explores the impact of mistakenly identifying a single dimension to 
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ADHD. Assuming that hyperactivity is the ‘salient’ observable behaviour, i.e., the 

single factor or dimension that is identified (“Proc 1”), treatments or strategies will 

focus on indicators or symptoms of hyperactivity. Since attention, and/or executive 

control of attention, may be more likely to be responsible for observed classroom (or 

workplace) difficulties encountered by an individual with ADHD (see, e.g., the role 

of encoding in comprehension described by Brown and Craik, 2000), interventions 

addressing only hyperactivity (or a single ‘causal’ mechanism) could be less likely to 

improve classroom outcomes. Since variables in Figure 1 representing attention 

deficit (“Proc 2”) specifically (X5, X6) would not be considered, or collected, if the 

only dimension was hyperactivity (e.g., top panel), the science of understanding 

ADHD, and its treatment(s), could be slowed.  

The impacts of having estimated the incorrect number of dimensions in this 

example would be misdirected interventions, incorrectly limited variable collection 

(which could hamper future efforts to understand the disorder and to develop 

effective interventions), and greater difficulty overall in validating, or ameliorating, 

the effects of ADHD in the indicators (X1-X6). These practical implications of the 

mis-specified model are separate from any statistical implications. 

1.1.2 Methods for estimating the number of dimensions 

Principal components analysis is a method for reducing the dimensionality of 

a set of variables without considering how many dimensions are actually present.  

That is, data reduction (by principal components analysis) takes a set of p variables 

and converts it into a collection of m (m<p) orthogonal variables that are composites 

of the original variables. Changing the dimensionality, or mapping a set of p variables 
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onto a smaller dimensional space, is not the same (neither theoretically nor 

mathematically, Widaman 2007) as determining the dimensionality of the original p 

variables.  

A common method to determine the dimensionality of a set of items (scale, 

instrument) or variables for a given population is exploratory factor analysis (for an 

alternative, see Zhang and Stout, 1999 who describe a novel approach to determine if 

data have only one dimension and describe other methods for assessing 

unidimensionality specifically).  One way that exploratory factor analysis can proceed 

is common factor analysis.  In common factor analysis (CFA), the investigator 

specifies the number of factors believed to (causally) underlie the observed variables, 

and the algorithm produces the factor loadings for observed variables that are most 

compatible with both that number of factors and the correlations among the observed 

variables (Widaman, 2007). 

Algorithms most often used in factor analysis include maximum likelihood 

(ML, e.g., Bartholomew & Knott, 1999) and two-stage least squares (2SLS, Bollen, 

1996) for estimating associations between observed and latent variables (“loadings”). 

Briggs and MacCallum (2003) showed that, in the presence of weak factors, ordinary 

least squares (OLS) performs better than ML due to the fact that ML seeks greater 

precision for estimates involving larger correlations when smaller correlations 

(“weak” factors) are also present. OLS estimation is infrequently utilized in analyses 

involving latent variables, but the Comprehensive Exploratory Factor Analysis 

Package (CEFA, Browne, et al. 2008), used by Briggs and MacCallum to apply OLS 

to their latent variable extraction/estimation problems (and to compare the results 
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with those obtained using ML; SPSS (SPSS Inc., Chicago, Ill.) and Mplus (Muthen & 

Muthen, 2008) also offer an unweighted (ULS, Mplus) or ordinary (OLS, SPSS) least 

squares estimation options, albeit without the possibility of estimating standard errors 

for the estimated loadings. As will be described in Chapter 2, OLS estimation will be 

used in this study. 

Importantly, a great deal of the literature describing exploratory factor 

analysis (FA) is aimed at demonstrating how incorrect results – in terms of factor 

loadings - can be obtained when principal components analysis, rather than common 

factor analysis, is used (e.g., using Kaiser’s “little jiffy”, described in Preacher and 

MacCallum, 2003 and Widaman, 2007). While interpretation of factors, and possibly 

identification of the “correct” number of factors underlying the data set, may proceed 

on the basis of loadings of items/scores on the extracted factors, many exploratory 

factor analyses are carried out by investigators who are actually concerned with 

uncovering, or discovering, the latent structure; interest in loadings in that context is 

only in terms of whether they can clarify the interpretation/interpretability of the 

factor structure.  However, as noted by Silva, et al (2006) and Spirtes, et al. (2000), 

the latent structure is not directly available from exploratory factor analysis methods, 

irrespective of the extraction method. Unidimensional latent structure is suggested by 

the presence of so-called vanishing tetrad differences together with non-vanishing 

correlations when the observed variables are partialled out.  Latent structure is not 

directly supported by reductions in rank of a matrix, the maximization of variance 

explained in a system of variables by a smaller set of factors, or rotation to simple 
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structure. These features of exploratory factor analysis are detailed further in Chapter 

2. 

In short, factor loadings are often used to interpret the factors implied by the 

loadings; rotation facilitates this (although Widaman, 2007, noted that rotation 

“destroys the conditional variance maximization property” that a reduced rank matrix 

can provide, p. 187), but loadings cannot directly support conclusions about latent 

structure, i.e., the causal relationship between the latent factor and the manifest 

variables that, together, represent a measurement model. Although Thurstone (1937; 

1940; 1947) advocated using factor loadings to assist interpretation and selection, or 

identification of the “appropriate” solution, these estimates themselves do not provide 

information about latent structure; they only represent the interrelations of the 

indicators given the current solution. 

Another body of literature is devoted to methods for determining how many 

dimensions there are in the data.  This literature sometimes clearly pertains to 

common factor analysis, sometimes clearly pertains to principal components analysis 

(PCA), and sometimes is not clear to which analytic method a given article/book 

pertains. The use, and utility, of factor analytic methods can be obscured by diverse 

representations across these reference materials. The confusion may be a reason why 

users of these methods tend to rely on the default settings of software (Osborne, 

Costello, & Kellow, 2008). 

 Bartholomew and Knott (1999) suggested that, since statisticians may tend to 

prefer PCA over “factor analysis” (FA, also called common factor analysis), and 

because some software is perhaps less explicit, or less theoretically oriented, than it 
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could be, PCA and FA are often confused.  However, Bartholomew and Knott also 

stated that apart from reducing the dimensionality of data, latent variables are useful 

when the construct of interest cannot be measured, or cannot be measured directly. In 

that context they note that when observed variables (e.g., items or questions) are 

collected together, latent variable methods are used to “…extract what is common to 

them.” (p. 2). They further emphasized this point in the formulation of the axiom of 

conditional independence (pp. 4-5); “A key part of our analysis is directed to 

discovering the smallest q…” that conditional independence will adequately fit.  

Finding the smallest number of latent variables is not the same as finding the latent 

variables and measurement models that fit both the observed and the theoretical 

information best. 

Afifi, Clark, and May (2004) noted that “Ideally, the number of factors 

expected is known in advance” and imply that the purpose of factor analysis is to 

obtain factor loadings that explicate relationships among observed variables (p. 392). 

This purpose – for common factor analysis, or CFA, is contrasted with Harman’s 

(1976) and Widaman’s (2007) characterizations of the two main goals (maximize 

variance explained with composites or minimize differences between model-implied 

and observed correlations), but optimizing the factor loadings is a key component in 

the estimation procedures of all exploratory factor analytic methods. Thus, 

“exploratory” could be exchanged for “loadings-estimating” in characterizing these 

approaches.   

In contrast to Afifi, et al. (2004), Bandalos (contributing to Stevens, 1996) 

stated that “(t)he purpose of exploratory factor analysis is to identify the factor 
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structure, or model for a set of variables. This often involves determining how many 

factors exist, as well as the factor loadings.” (p. 389). Similarly, Pett, Lackey, and 

Sullivan (2003) suggested that the purpose of factor analytic methods is, “… through 

data reduction, to group a smaller set of these <observed> variables into dimensions 

or factors that have common characteristics” (p. 2). This description is more or less 

correct in that exploratory FA usually does reduce the number of observed variables 

to a smaller set of variables that have common characteristics; however, reducing the 

dimensionality of a set of variables is not the same as uncovering the latent structure 

or measurement model underlying the correlations between the indicators.  

 Although PCA approaches are common, and commonly advised for new 

exploratory FA users (or as a first pass to estimate the number of factors, Velicer, et 

al. 2000), using exploratory FA to identify factor structure, estimate loadings, and 

reduce the dimensionality of a data set confounds the two methodological approaches 

to exploratory analyses that Widaman (2007) carefully distinguished: identifying 

common factors or explaining maximum variance with a concise number of principal 

components (or factors). Possibly contributing to the confusion is the reliance on 

loadings, from a definition from the early 1960s, that a factor is a construct which is 

operationally defined by the loadings on it of observed variables (Royce, 1963; 

recapitulated in Kline, 1994, Ch. 1).  Thurstone (1937; 1940; 1947) advocated that 

loadings (after rotation) should be used as the evidence for experimentally testable 

hypotheses about the underlying factors- but he also advocated careful experimental 

design and theoretically informed tests/batteries as the basis of exploratory factor 

analysis.   
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1.1.3 The purpose of factor analysis 

As exploratory FA has become more widely used and more quickly obtained, 

the “purpose of factor analysis”, has devolved from Thurstone’s original ideal: “…to 

know whether …measures are related by some underlying order which will simplify 

our comprehension of the whole set of measures…” (Thurstone, 1940, p. 216).  The 

original perspectives on finding common factors (evidence of one common factor 

<Spearman>) and evidence of experimentally-testable psychological traits 

<Thurstone>, have shifted: as Hoyle and Duvall (2004) noted, “(t)he aim of factor 

analysis is to describe the associations among a potentially large number of observed 

variables, or indicators, using a relatively small number of factors” (p. 301). Today’s 

researcher may be using exploratory FA “…when the researcher does not know how 

many factors are necessary to explain the interrelationships among a set of 

characteristics, indicators, or items” (Pett, et al. 2003, p. 3).  However, exploratory 

FA is not the correct choice if the underlying structure – measurement model- for a 

set of observed variables is desired.  Bollen (1989) noted that within a factor analytic 

framework, all observed variables are assumed to be caused by the latent factor (p. 7), 

representing a measurement model (a latent variable and the indicators it is causally 

related to). In some cases, the latent variable (e.g., socio-economic status) is caused 

by, and does not cause, the indicators to vary; exploratory FA will not distinguish 

these two types of models. 

Velicer, et al. (2000) surveyed the literature, and did an empirical study, 

regarding the use of a variety of techniques for identifying the ‘correct’ number of 

dimensions or factors underlying a data/variable set.  Importantly, they noted that 
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there was (as of 2000) no reliable method for accurately estimating the number of 

factors – although two methods (Horn’s Parallel Analysis, Horn, 1965 and Velicer’s 

Minimum Average Partials, Velicer, 1976) have been repeatedly demonstrated to be 

accurate in the recovery of the correct number of principal components. Velicer et al. 

recommend using either of these methods for principal components analysis, which is 

a fundamentally different method than common factor analysis (CFA, see, e.g.., 

Widaman, 2007), but they further recommend using a principal components analysis 

approach to “guide” the estimation of the number of factors underlying one’s data (p. 

68). 

1.1.4 Estimating dimensionality by correlation constraint analysis 

A far less studied and less well-known method for estimating the 

dimensionality of a set of variables or items is correlation constraint analysis (CCA).  

CCA proceeds in a manner wholly distinct from that of CFA and any other factor-

analytic approach.  CCA is actually the forerunner of modern factor analysis; it was 

the method developed by Spearman (1904; 1927) to support his ‘two factor’ theory 

(where one of the two factors is common to all items, while the second factor is 

unique to each item, in the analysis) of intelligence.  Unlike common factor analysis 

(and any other dimension-estimation or rank-reducing method), CCA (as 

implemented by TETRAD, the CCA software) operates on the determinants of the 

2x2 submatrices of the covariance matrix. Software using CCA also determines if 

partialling out the effects of any observed variable affects the correlations that are 

observed- thus, CCA is the only exploratory method to specifically rule out any 

observed variable as being the cause of correlations among observed variables. This 
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can be contrasted with observing a Heywood case in a CFA solution, suggesting that 

one of the observed variables could be the cause of other observed variables (but 

actually indicating a boundary-value or negative variance): the CCA approach (by 

TETRAD) specifically tests each observed variable by partial correlation to determine 

if removing its influence statistically significantly alters the correlation value before 

the partialling.  

The specific details of how CFA and CCA are achieved, and how they differ, 

are presented in Chapter 2. Overall, as noted by Bollen (1989, p. 4), CFA is useful to 

test whether causal assumptions represented in a hypothesized model are statistically 

consistent with the observed data (covariance or correlation matrices), while CCA is 

useful to uncover evidence of causal relationships.  These are philosophically diverse 

methods for estimating the “true” dimensionality of a set of variables or items.  An 

additional point of divergence is that CFA seeks to estimate the strengths of 

associations between observed and hypothesized latent variables, while CCA seeks to 

estimate the strengths of associations between observed variables –but only insofar as 

to determine if there is sufficiently strong association to conclude, and in the pattern 

consistent with, the existence of common causal factors. Based on these estimations, 

CCA determines whether algebraically invariant relationships between correlations 

hold (Bollen 1990; Bollen & Ting, 1993; Bollen & Ting, 2000; Spirtes, et al. 2000; 

Silva, et al. 2006; see also Drton, et al., 2007). The software utilized within this study 

follows that with estimations of partial correlations – where the effects of each 

observed variable are partialled out of the estimated correlations between every other 

pair of observed variables.   
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Critically, when the algebraically invariant relationships among sets of four 

observed variables hold and the partial correlations do not change when the influence 

of other observed variables is removed, conclusions about the presence of latent 

common causal variables are supported.  When one or neither of these features is 

observed, other conclusions are supported. Thus CCA results are based on the 

estimated correlations, and partial correlations, within the observed variables.  There 

is no estimation that optimizes the discrepancy between model-implied and observed 

covariability. These features of the two methods (CFA, CCA), which were compared 

in this dissertation, are described more fully in Chapter 2. 

1.2 Overview of Dissertation 
 

1.2.1 The research question: Is CCA as good as CFA, or better, at uncovering 

dimensionality? 

One of the motivating issues for this dissertation is that many social science 

applications of factor analysis include higher order factors, and structural models 

connecting latent variables (or, rather, their measurement models, see Bollen, 1989). 

Factor analysis focuses on first order measurement models (and principal components 

analysis), although correlations between factors can be estimated in second stage 

factor analysis (i.e., after the first solution is obtained, the analysis is repeated on the 

factors, to extract factors relating, or  estimate strengths of associations between, 

factors).  By contrast, CCA can be applied to uncover measurement models and 

(subsequently, within the software TETRAD 

(http://www.phil.cmu.edu/projects/tetrad_download)) the presence of structural 
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relations among latent variables. This dissertation research is a first step towards 

introducing CCA to a wider audience, by comparing the consistency and accuracy of 

CCA and CFA in uncovering the dimensionality in a set of variables simulated to 

have mainly simple structure (but with some variability) and as having first-order 

causes. 

Very few researchers are aware of CCA as an alternative (method or 

philosophical position), and the relative performances of CCA and CFA have not yet 

been compared along the dimensions this dissertation proposes.  However, given the 

importance of identifying the correct number of latent variables, or the 

‘dimensionality’ of a group of variables/scores, and the specific strengths and 

limitations that CFA and CCA bring to this problem, this dissertation proposes to 

study and document the performance of CCA at uncovering the latent structure of 

simulated data. CCA will be tested under conditions of varying sample size, model 

complexity, the presence of weak common factors, and correlated vs. independent 

latent variables. This research will determine if the performance of CCA is just as, or 

more, factorially invariant than that of common factor analysis (CFA) under these 

conditions. Factorial invariance represents the generalizability of the test results 

across persons and time (see, e.g., Millsap & Meredith, 2007), as well as supporting 

response process modeling validity evidence (Boorsbom, 2005). Previous studies of 

CCA (Silva, 2005; Silva, et al. 2006; Spirtes, et al. 2000) have not focused on the 

consistency of solutions over multiple iterations, but have instead reported the 

average number of omission (paths incorrectly left out) or commission (paths 

incorrectly put in) errors across 10 (Silva, 2005; Silva, et al. 2006) or 20 (Spirtes, et 
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al. 2000) trials.  Further, these simulations have all employed maximum likelihood 

estimation (ML or MLE), which may be more subject to erroneous results when 

weaker path loadings, relative to stronger ones, are present in the true model (Briggs 

& MacCallum, 2003).   

1.2.2 Organization of the dissertation 

This dissertation is the first study of how CCA compares to CFA by OLS in 

identifying the dimensionality of data varying in terms of specific features of 

complexity often encountered by social scientists, and is also the first study to explore 

accuracy and consistency (invariance), and whether these two characteristics are 

sample size dependent, for CCA. The research will answer the questions of whether 

CCA and CFA perform at similar levels in terms of accuracy and consistency over 

repeated trials, and whether this performance will be affected by features of sample 

size, model complexity, the presence of weak common factors, and correlated vs. 

independent latent variables. Chapter 2 outlines the dimensionality problem more 

explicitly with a literature review, and articulates how common factor and correlation 

constraint analyses differ. The research methods are given in Chapter 3. Results of the 

simulation study will be given in Chapter 4 and discussion, conclusions and 

recommendations for uncovering dimensionality will make up Chapter 5.
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Chapter 2: Background and Rationale for Dissertation 

This chapter describes the problem of estimating dimensionality over the 

history of the factor analysis methodology development (over roughly 100 years). 

This review includes the literature describing how dimensionality is estimated by 

current, widely available software.  Estimation of dimensionality by correlation 

constraint analysis is also described. 

2.1 The problem: uncovering dimensionality vs. consolidating variables  
 

This study targeted situations where the investigator is interested in learning 

the number of latent variables that are responsible for (caused) the observed 

correlations among a set of variables or scores. Estimating the dimensionality of a set 

of variables is not always a search for the underlying causal mechanism; for example, 

Bentler (2007) described the situation where the investigator wishes to estimate the 

reliability of subsets of items in an instrument, and evidence of unidimensionality –to 

support reliability estimation, but not a causal influence – is sought (see also Zhang & 

Stout, 1999). In some cases, this is labeled an “exploratory” research problem, that is, 

no hypothesis drives the analysis, the data do.  The exploratory approach to 

estimating dimensionality is to see how many latent variables or factors the 

correlation or covariance structure supports.  This can (but need not) be contrasted 

with “confirmatory” approaches, where a hypothesis (e.g., “these observed variables 

are caused by two uncorrelated factors”) can be tested. These methods need not be 

contrasted because one can explore the number of dimensions fitting data by 
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comparing the outcomes of confirmatory analyses with plausibly alternative 

structures (e.g., one factor, two orthogonal factors, two correlated factors).  

The approach to estimating dimensionality can proceed in either an 

exploratory or a confirmatory way (as described below).  In situations where a 

concise summary of variables is the goal, and learning or estimating the 

dimensionality is not the goal, principal components analysis (described briefly 

below) is sufficient. 

2.1.1 “Exploratory” vs. “Confirmatory” approaches 

Typically, many latent variable modeling methods are classified as being 

motivated by either an exploratory approach, where the data and its inherent structure 

tend to drive the results and their interpretation, or a confirmatory approach, where a 

theoretically-motivated model is built and its fit to the data is estimated; the extent to 

which the model fits the data supports rejection or retention of the theoretical model. 

This conceptualization suggests that modeling must be classified as either exploratory 

or confirmatory, when in reality – and as implied by Thurstone (1937; 1940; 1947) - 

modeling more typically involves both exploration and confirmation (see, e.g., 

Dilalla, 2000; Hoyle, 2000; Nesselroade, 1994). Some argued that exploratory 

research requires theoretical motivation, and so cannot be “purely exploratory” (e.g., 

Harman, 1976; Spirtes, Glymour & Scheines, 2000), and others pointed out simply 

that most research is difficult to classify as purely exploratory or purely confirmatory 

(Bollen 1989; Dilalla 2000; Hoyle, 2000; Nesselroade, 1994).  

Widaman (2007) articulated the differences between common factor analysis, 

which is an approach to estimating the off-diagonal correlations in the matrix of 
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observed variables, and principal components analysis (PCA), a method for 

explaining as much of the variance (not covariance) among the observed variables as 

possible using fewer, composite, variables. These two goals were also identified by 

Harman (1976, p. 14) as the two distinct objectives of forming a linear combination 

of observed variables.  Widaman (2007) noted that the common factor analysis model 

is “(t)he linear model that relates latent variables to manifest variables…”(pp. 185-6) 

–latent variables should already have been hypothesized by the investigator prior to 

the estimation of the linear model relating these to the indicators.  Thus, the 

“exploration” is limited to discovering what observed variables are related to which 

latent ones, and to estimate the strength of those relations in the form of pathweights.  

Conversely, the PCA approach seeks to condense the information so that the 

maximum amount of variability among the original variables is contained “…in an 

efficient, reduced-rank representation” (p. 187).  In general, these are the two goals 

which current “exploratory factor analyses” are used to achieve, although they are 

essentially contradictory. Again, in common factor analysis and PCA, the 

“exploration” takes the form of estimating the optimal weights with which to combine 

the observed variables in the formation of new composites. In both cases, finding a 

zero weight, or that the contribution of an observed variable to the factor or 

composite is not significantly different from zero, signals a discovery that the 

observed variable is not related to the factor.  Neither approach (common factor 

analysis, PCA) provides evidence of latent (i.e., not observed) variables that underlie 

the observed variables, especially as currently carried out with common software. 

Using factor analytic methods to determine (or rather, estimate) the number of latent 
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factors that a set of observed variables represents will always fail in the sense that no 

model-fitness evidence can be obtained that none of the observed variables is actually 

responsible for the correlations of other observed variables (Heywood cases suggest 

an indicator is a cause, but this will not be reflected in a model fitness statistic). 

Although Velicer, et al. (2000) argue and demonstrate that two methods (minimum 

average partials, MAP (Velicer, 1976) and parallel analysis, PA (Horn, 1965)) are 

accurate for enumerating components (p. 68), components are not factors. 

Components are latent in the sense that they did not necessarily exist before the data 

were collected (since PCA estimates optimal weighting to create components from 

observed variables), rather than in the sense that they are reasonable causes for the 

observed correlations among variables. 

2.1.2 Principal Components Analysis vs. Factor Analysis 

It was clear when the two methods were first introduced that PCA (Spearman, 

1904; Hotelling, 1933) was different from factor analysis (FA, Spearman (1904; 

1927)), and this distinction has been maintained in some textbooks (Lawley & 

Maxwell, 1962; Cudeck, 2000; Stevens, 2002; Afifi, Clark, & May, 2004; Manly, 

2005; and see Cowles, 2001, chapter 11), but confounded (Kline, 1994; Afifi, Clark 

and May, 2004, p. 395) or contradicted (e.g., Reyment & Jöreskog, 1996, p. 4; 

Johnson, & Wichern, 2002, p. 448; Pett, Lackey, & Sullivan, 2003, p.2) in others. It is 

possible that much of the confusion among researchers between PCA and FA arises 

from the variability across references in the description (or nomenclature) for these 

methods. Osborne, Costello and Kellow (2008) noted that software providing 

exploratory factor analysis uses default settings (e.g., using PCA to extract the factors 
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and offering an eigenvalues-greater-than-one stopping rule) that are inconsistent with 

methods and decisions that are known to be “best practices” in this area (p. 87). 

PCA and FA are distinct in terms of purpose, algebra, and interpretability. 

While the most popular conceptualization is that these are the same, they are not (see 

Widaman, 2007 for a recent and thorough differentiation), although these differences 

are typically blurred by confusing (Gorsuch, 1983: chapter 6; Reyment & Jöreskog, 

1996; Kline, 1994) or possibly misleading (Johnson & Wichern, 2002, p. 448; Pett, 

Lackey, & Sullivan, 2003, p.2) representation in reference textbooks; other 

representations might rely on the readers’ appreciation of the mathematical or 

algebraic distinctions shown (e.g., Bartholomew & Knott, 1999: chapter 1; Cureton & 

D’Agostino, 1983; Johnson & Wichern, 2002, chapter 9). In other cases, either the 

differences between the methods for factor analysis and principal components 

analysis are not highlighted, or methods are labeled in potentially confusing ways, 

such as “principal factors” (Gorsuch, 1983), “principal components factor analysis” 

(Manly, 2005, p. 95; Reyment & Jöreskog, 1996), or “orthogonal factors” (Johnson & 

Wichern, 2002: chapter 9). The differences between components (i.e., in the sense of 

Mulaik (1972), how the observed variables together represent an underlying one) and 

principal components (i.e., an extraction method) is also a source of confusion.  

The results of PCA and FA can often be similar (Bartholomew & Knott, 1999; 

Stevens, 2002), PCA is sometimes used as a first pass to identifying the number of 

latent factors, and PCA is characterized and used as a method for extracting factors in 

an exploratory factor analysis (e.g., Velicer, et al. 2000, p. 68; although see Manly, 

2005, p. 95) as the default approach in popular software packages (SPSS, SPSS Inc.). 
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These tendencies in modern uses of PCA in/as EFA are contrasted, but not very 

distinctly (nor very often), with the use of other methods for extracting a pre-specified 

number of factors (Bartholomew and Knott, 1999; Afifi, Clark, & May, 2004; 

Gorsuch, 1983; Harman, 1976).  In what might be called “principal components 

analysis-factor analysis” (PCA-FA), principal components analysis is used to extract 

orthogonal factors, and the correlations between each observed variable and the 

factors (i.e., loadings) are estimated.  

An alternative is principal axis factoring (PAF) which differs from PCA-FA in 

that the diagonal of the correlation matrix is replaced with communalities, rather than 

1s, as estimates of each variable’s variance, and also in that the number of factors can 

not be larger than one fewer than the total number of variables in the problem. In PAF 

the starting point of the extraction occurs after “unique” variance in the observed 

values variables has been removed from the diagonal values in the correlation matrix. 

Thus, PAF is a method for estimating the common components explaining only the 

covariance in a set of variables (see Mulaik, 1978 pp. 174-175).  What is critical in 

PAF is that, while PCA-driven factor extraction follows the variance, that is, the 

components are highly sensitive to the variability in the individual variables being 

analyzed, PAF-driven factor extraction follows the covariance, that is, the 

components are sensitive to the levels of association among variables, and not to the 

variability of any one variable. This can lead to solutions that differ in critical ways 

depending on the extraction method – with PAF always tending towards explaining 

associations while PCA will tend towards explaining the variability in one variable at 

a time (particularly when there are discrepancies in the variabilities of the indicators). 
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In summary, the literature and specifically, reference texts, may be confusing 

to readers in terms of what common factor analysis actually is. Investigators who 

choose their factor analysis method on the basis of software, rather than their ultimate 

research goals, may consolidate their variables into a smaller space (i.e., PCA), or 

may estimate the correlations between observed variables and factors that best 

account for covariance (e.g., PAF), without (knowing whether they are) achieving 

their actual goals. 

2.1.3 Estimating dimensionality using “stopping rules” 

Whether the investigator chooses, or uses, PCA, PAF, or another common 

factor analysis method, the number of factors or dimensions can be chosen on the 

basis of many different “stopping rules”, or algorithms for determining when to stop 

extracting factors (Bandolos & Boehm, in press; Hoyle & Duval, 2004; Velicer, et al. 

2000)). Each of these rules is inconsistent with a search for underlying causal 

structure, in the sense that they are all based on the explained variance, or on the 

similarities of the model-implied correlations to the observed correlations.  That is, 

stopping rules are not based on evidence of the existence of latent causal factors. 

Stopping rules essentially summarize the fit of the data with one of the two purposes 

of the factor analytic enterprise (maximizing variance explained or minimizing 

differences between model-implied and observed correlations).  Stopping rules do not 

provide direct information about the number of causal factors that appropriately 

characterize the measurement models.  It could be argued that only a confirmatory 

analysis could do this (i.e., determining whether a model with more or fewer factors 

fits the data better), but maximum likelihood common factor analysis (Bartholomew 
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& Knott, 2000) solutions that improve in fit up to a certain number of extracted 

factors could also guide “stopping”.  

PCA is characterized as a method for concisely explaining variance, while FA 

is characterized as a method for explaining covariance, among a set of observed 

variables (Cudeck, 2000, p. 275; Kenny, 1979, pp. 121-2).  FA is not geared towards 

concision but rather, explanation (of the covariance by the factors), but as Mulaik 

(1972) cautioned, “Factor analysis is not a method for discovering full-blown 

structural theories about a domain.” p. xii).).  This caveat highlights the inconsistency 

of using a stopping rule and a search for causal structure.  In fact, there appears to be 

a distinct shift in the emphasis of earlier researchers in factor analysis and its methods 

(e.g., Cattell, 1978; Cureton & D’Agostino, 1983; Gorsuch, 1983; Harman, 1976; 

Mulaik, 1972; Thurstone, 1947).  This emphasis on seeking support for theory using 

FA (or PCA) is missing from more current versions (e.g., Johnson and Wichern, 

2002; Pett, Lackey, & Sullivan, 2003; Reyment & Jöreskog, 1996), which do not 

consider the origins or theoretical components that earlier factor analytic developers 

and researchers found to be so crucial to the explanation, use, and interpretability of 

factor analytic methods.  

The issue of the correct number of factors was of concern to earlier 

investigators, but their approaches to this critical problem was more of an appeal to 

theory, and not an appeal to algorithms or fit of the factor solution (the model-implied 

covariance matrix) to the data (the observed covariance matrix).  An example of the 

contrast in perspectives on this method is Johnson and Wichern (2002) statement that 

“Factor analysis can be considered an extension of principal components analysis” (p. 
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478), although Bartholomew and Knott (1999) pointed out that a key difference 

between these is that PCA involves no probabilistic structure (p. 13); neither of these 

presentations suggest a role for theory in the evaluation of a factor analytic solution.  

By stark contrast, Cattell (1978) noted, “…component analysis is no good as a final 

scientific model…” (p. 17), which is more in keeping with Thurstone’s avocation that 

“…exploration with factor analysis required carefully chosen variables and that 

results from using the method were only provisional in suggesting ideas for further 

research.” (paraphrased in Mulaik, 1978 (p. xii)). 

The distinctions between the mathematics involved in PCA and FA are 

outlined by Cattell (1978), Gorsuch (1983) and Harman (1976) and are not explicated 

here.  Neither method addresses the possibility that one of the observed variables is 

actually providing the common influence that both methods can detect. This makes 

PCA inappropriate, and FA less appropriate, approaches when the goal of the analysis 

is to understand, uncover or discover the latent structure present in a collection of 

observed variables (see Silva, et al. 2006).  It should be noted that neither PCA nor 

FA is specific to the situation Wang, Wilson, and Adams (1997) refer to as between-

variables multidimensionality, and what is often referred to as “simple structure”, i.e., 

where each observed variable is associated with, or most influenced by, a single cause 

or factor.  However, because simple structure is often a research goal, and because 

this is the only context in which vanishing tetrads (CCA) can operate, this dissertation 

is focused on estimating dimensionality when only one factor is sought for each 

observed variable. When this is the case, Kenny (1979) calls the observed variables 

“indicators”; other investigators use this label for any observed variable with a(t least 
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one) latent cause.   Because the feature of correlation constraint analysis that was 

pursued in this dissertation is focused on discovering “pure” factors, those where 

indicators have only one cause, observed variables are referred to as indicators.  The 

next section presents the mathematics involved in FA and contrasts them with those 

involved in correlation constraint analysis (CCA). 

2.2 Algebraic Representations of Common Factor and Correlation Constraint 
Analyses   
 

Typical representations of the mathematical underpinnings of common factor 

analysis involve matrix-level manipulations (e.g., Gorsuch, 1983 Chapter 3; Skrondal 

& Rabe-Hesketh, 2004, chapter 3), showing the common factor model, which is 

described in section 2.2.1. The representation of correlation constraint analysis is 

typically given in terms of correlations, and this is presented in section 2.2.2. 

2.2.1 The Common Factor Model 

Yates (1987, pp. 9-15) gave the following derivation for the common factor 

model. The emphasis on the model comes from the fact that all representations of 

factor analysis, from different disciplines and perspectives, share the same starting 

point. 

′ ′ ′= +Z PF UE  

where, with n indicators (n=1,…,j) representing N= 1, …i individuals and m common 

(latent) variables (m =1, …k),  

Z (N x n) = {zij} 

is the matrix of observed standard scores for the N individuals (1, …, i) on the n 

indicators (1, …, j); 



 

 27 
 

F (N x m) = {fik} 

is the unobserved matrix of standard scores for the N individuals (1, …, i) on the m 

(common) latent variables (1, …, k); 

E (N x n) = {eij} 

is the unobserved matrix of orthogonal standard scores for the N individuals (1, …, i) 

on the n latent variables that are unique to the indicators (1, …, j); 

P (n x m) = {pjk} 

is the matrix of loadings (regression coefficients) for the n indicator variables (1, …, 

j) on the m latent common factors (1, …, k); and  

U (n x n) = Diag. {u1, …, un} 

is a diagonal matrix of the loadings (regression coefficients) for the n indicator 

variables, representing the variance in that variable that cannot be accounted for by 

(regression on) any common factor. 

Yates continued (p. 11) by summarizing the common factor model in terms of 

the correlations among the observed variables (in an n x n matrix, R) in terms of what 

must be estimated in the common factor analytic method: 

2′= +R PCP U  

where P is the n x m matrix of loadings of the n observed variables on the m common 

latent variables outlined above, U is the n x n diagonal matrix of loadings of each 

observed variable on its unique latent variable (i.e., variance in the observed indicator 

that is unique to it) and 1
N

′=C FF  is an m x m matrix of correlations among the m 

common factors. The diagonal matrix U2 represents the contributions of each 

indicator’s unique latent variable to the correlations among all the observed variables. 
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 From this derivation, it can be seen that the estimation of P, the n x m matrix 

of loadings of the n observed variables on the m common latent variables, and by 

extension, of U2, the “uniquenesses” of the observed variables, is required for 

common factor analysis. It can also be seen that the dimensionality of the matrices 

must be specified for any solution – that is, the number of m common factors must be 

specified before estimation.  Thus, as noted in Chapter 1, knowing the number of 

factors is crucial in estimating the associations of the indicators with those factors.  

In more common, covariance form, the common factor model (given in Briggs 

& MacCallum, 2003, p. 26) is 

Σ = Λ Λ’+Θ2 

where Σ represents the (population) covariance matrix (corresponding to Yates’ R 

matrix), Λ represents the loadings of observed on latent variables (in the population; 

corresponding to Yates’ P matrix), and Θ2 represents the matrix of uniquenesses 

(corresponding to Yates’ U2 matrix). In ordinary least squares estimation of the Λ and 

Θ2 matrices, the difference between the sample covariance matrix (S) and the 

covariance matrix implied by the common factor model ( Σ̂ ) is minimized according 

to the function 

FOLS(S, Σ̂ )= ½tr[(S - Σ̂ )2] 

(Briggs and MacCallum, 2003, p. 28). The estimation procedure can also be described 

in regression terms, where the variability in an observed variable xi, is predicted by its 

loading (λi1) on the common factor ξ1, with uniqueness δi (Bollen & Ting, 1993 p. 

150): 

1 1i i ix λ ξ δ= + .  
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This representation will help tie CFA to correlation constraint analysis, to be 

described in the following section (2.2.2). 

 An important feature of CFA that is not relevant in CCA is the factor 

loadings, and the role of loadings in the decisions about how many dimensions the 

data have (typically under simple structure). This was outlined in Chapter 1; where it 

was also noted that CCA does not yield estimates of the correlations between the 

latent variable(s) and indicators.  

2.2.2 The correlation constraint model 

 A comparison of CFA and CCA in terms of their algebra is presented in 

Bollen and Ting (1993, pp. 150-153). Given a set of four observed variables (x1, …, 

x4) and a single latent variable ξ1, and assuming that the average disturbance is zero 

(i.e., E(δi)=0 for all four indicators and these disturbance terms are all mutually 

orthogonal (i.e., COV(δi, δj)=0 for any i≠j) and are orthogonal to the latent variable 

(i.e., COV(ξ1, δj)=0 for all i), then the covariances among the observed variables in 

the population ( ijσ ) would be computed as 1 1ij i jσ λ λ φ= , where φ is the variance of 

the latent variable ξ1 (this assumes that the factor loadings were available). If the 

model generating these factor loadings and factor variance is correct, then the 

following equations must hold in the population: 

12 34 13 24 0σ σ σ σ× − × =  

13 42 14 32 0σ σ σ σ× − × =  

14 23 12 43 0σ σ σ σ× − × =  
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Spearman (1904; 1927) discovered these relationships; Kelley (1928) labeled 

these tetrad differences, or tetrads, ghij gh ij gi hjτ σ σ σ σ= − .  When 0ghijτ = , the tetrad is 

called “vanishing” or is said to have vanished, and a vanishing tetrad means there is a 

common cause (of the observed covariances). Tetrads are computed as the 

determinants of all 2x2 covariance (sub)matrices (i.e., there must be at least four 

variables; in variance-covariance matrices larger than 2x2, determinants are computed 

for every set of four variables in the matrix) (Glymour, et al. 1987; Bollen, 1990; 

Bollen & Ting, 1993). A system of four observed variables –if they are associated 

(non-zero correlations)-will imply a set of three tetrad equations. The TETRAD 

software computes these tetrads for every set of four variables within the system 

being studied, to uncover evidence of common causes. TETRAD also computes 

partial correlations, with the influence of each observed variable partialled out, in 

order to determine if nonzero correlations vanish (change to zero) when an observed 

variable’s influence is removed. Only vanishing tetrads with non-vanishing partial 

correlations are evidence of latent common causes. Figure 2 shows four models and 

the tetrad/partial correlation results that support conclusions regarding the structure of 

each model shown. 
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12 34 13 24 0σ σ σ σ× − × =   
 

13 42 14 32 0σ σ σ σ× − × =  
 

14 23 12 43 0σ σ σ σ× − × =  
 
& no partial correlations 
vanish. 

13 42 14 32 0σ σ σ σ× − × ≠  

 
14 23 12 43 0σ σ σ σ× − × ≠  

 
12 34 13 24 0σ σ σ σ× − × ≠  

 
& no partial correlations vanish. 

13 42 14 32 0σ σ σ σ× − × =  
 

12 34 13 24 0σ σ σ σ× − × ≠  

 
14 23 12 43 0σ σ σ σ× − × ≠  

 
& no partial correlations 
vanish. 

12 34 13 24 0σ σ σ σ× − × ≠  

13 42 14 32 0σ σ σ σ× − × ≠  

14 23 12 43 0σ σ σ σ× − × ≠  
 
& partial correlations 
involving X1 vanish. 

 
Adapted from Scheines, et al. 1999; Figures 8 & 10, p. 183 & 185. 

 

 

Figure 2. Tetrads and implied relationships between correlations. Circles: 
Latent causes; squares: observed variables. 

Since no sample values of tetrads can be expected to vanish exactly (i.e., the 

pairs of correlation products will not be exactly equal), Bollen (1990) developed a 

statistical test of whether, given a sample value for a tetrad difference, the difference 

is ‘significantly different from zero’ (a statistical test for determining whether partial 

correlations are statistically significantly different from zero is described in Glymour, 

et al. 1987, Ch. 11). Kenny (1979, pp 117-118) described an earlier test for vanishing 

tetrads involving canonical correlations; however, Bollen’s work on inferences for 

tetrad differences has been integrated into the TETRAD software and extended to 

confirmatory latent variable analysis (Bollen & Ting, 1993). The methods are robust 

and proofs have been published for the TETRAD software (Spirtes, et al. 2000) and 

for the tetrad differences more generally (Drton, et al. 2007). However it must be 

noted that this approach only works if there are at least four indicators, and that the 

TETRAD software has particular algorithmic constraints that may not be aligned with 

an investigator’s goals. The TETRAD program is described in detail in the 

documentation on the website (http://www.phil.cmu.edu/projects/tetrad_download), 

as well as in two books (Glymour, et al. 1987; Spirtes, et al. 2000). 
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When TETRAD finds that a tetrad is not statistically significantly different 

from zero, it concludes that a common cause exists. When TETRAD estimates that a 

tetrad is statistically significantly different from zero, it concludes that no common 

cause exists – but this can also occur when there are two or more common causes, 

since vanishing tetrads were developed specifically to detect single common factors 

(Glymour, et al. 1987). When it cannot uncover sufficient evidence of causality, it 

returns simply a representation of association (i.e., that two variables covary without 

specifying a common cause). TETRAD can be used to uncover measurement model 

families, and evidence of latent causal variables, but it is up to the analyst and content 

expert to build, fit and estimate (and then validate) reasonable models that could be 

based on the uncovered model families (Glymour, et al. 1987; Scheines, et al.1998; 

Silva, 2005; Silva, et al. 2006; Spirtes, et al. 2000). In this sense, CCA involves a 

dependence on theory that CFA (as done currently) might be argued not to exhibit. 

2.2.3 Contrasting CFA and CCA 

Consider panel A in Figure 2, a one-factor model with four indicators. The 

CFA representation of this model contains four equations of the form,  

1 1i i ix λ ξ δ= +  

while the CCA representation of this model contains three equations of the 

form,  

12 34 13 24 0σ σ σ σ× − × =  

13 42 14 32 0σ σ σ σ× − × =  

14 23 12 43 0σ σ σ σ× − × = , 
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together with eight equations of the form: 

12.3

12.4

13.2

13.4

0
0
0
0

ρ
ρ
ρ
ρ

≠
≠
≠
≠

 

14.2

14.3

24.3

23.4

0
0
0
0

ρ
ρ
ρ
ρ

≠
≠
≠
≠

 

 

Comparing these sets of equations, and given the forgoing, it can be seen that 

CFA involves the estimation of correlations between observed and unobserved 

variables, which can be achieved in OLS estimation as a function of having 

articulated the ‘correct’ number of unobserved variables. By contrast, CCA requires 

the estimation of correlations and partial correlations among the observed variables 

only. 

TETRAD searches for evidence of causal structure using algebraic 

relationships, or constraints, that are implied by causal structures. These polynomials 

are termed “invariants” in the mathematical/algebraic literature (Drton, et al. 2007) 

and their existence, as a representation of a common cause, was discovered and 

described by Charles Spearman (Spearman, 1904; 1927); Kelley (1928) described 

pentads which, like tetrads, can identify common causes; while tetrads only identify a 

single common cause, pentads identify two common causes (pentads are described in 

Drton, et al. 2007)).  

Critically, if more than one latent factor causes observed correlations, 

vanishing tetrads cannot detect the second factor. Applying the same logic to 

vanishing pentads (as exists in the TETRAD software) would identify the two latent 

causes, but to date no pentad-based analytic software exists.  Another critical point 
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about the TETRAD software is that, although there are modules that accommodate 

latent variables that share indicators with other factors (“impure” factors), the 

algorithm this dissertation utilized, BuildPureClusters does not accommodate impure 

factors. That is, each indicator can be assigned to only one latent variable, when 

sufficient evidence of the assignment exists. Furthermore, the algorithm by which the 

TETRAD software searches the covariance structure is not fixed; repeating the 

analysis on the same data is not guaranteed to find the exact same structure. Thus, 

CCA by TETRAD is, in many different senses, dependent on the TETRAD 

algorithms. 

The tetrad equations represent causal pathways and importantly, the sample 

space is searched by TETRAD in a wholly unguided manner, that is, by algorithm.  

Thus, it might be considered that TETRAD proceeds from a position of ignorance in 

a similar sense that CFA does: TETRAD uncovers evidence of latent variables by 

algorithmic (not theory-driven) search of the sample space (theory-driven) while 

uncovering dimensionality by CFA relies on estimating correlations (not theory-

driven) between observed (theory-driven) and unobserved variables. Both methods 

begin with information obtained with theoretical considerations, but proceed in data-

driven ways. 

2.3 Previous Simulation Studies Comparing FA and CCA 

Previous simulation studies comparing CCA and exploratory factor analysis 

Silva (2005; Silva, et al. 2006) described a simulation study directly comparing the 

new TETRAD search algorithm (which his 2005 doctoral thesis established, and 

which the 2006 manuscript outlined), BuildPureClusters, against the exploratory 
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factor analysis function of R, factanal. Factanal carries out ML estimation – common 

factor analysis (R Help, search on “factanal”), making the Silva simulations most 

closely representative of the research described in this dissertation.  Silva’s simulation 

involved 10 trials with sample sizes of 200, 1000, and 10,000. The purpose of Silva’s 

simulation work was to uncover both the measurement model and the structural 

model; since only measurement models are considered in this dissertation work (i.e., 

dimensions, and not how the dimensions are related which would be the structural 

models), these are the features of the Silva simulations discussed here.  Table 1 shows 

the three measurement models that drove the simulations considered by Silva.  

Errors were classified as latent omission (number of latent variables not 

identified in solution (i.e., missing according to true model) divided by true number 

of latents); latent commission (number of latent variables identified in solution that 

were never in the true model, divided by true number of latents); misclustered 

indicators (number of indicators that were assigned to the wrong latent divided by the 

number of indicators in the true model); indicator omission (number of observed 

variables not assigned to any latent variable (missing according to true model) 

divided by number of indicators in the true model); and indicator commission 

(number of indicators observed in factors where they were not divided by number of 

indicators that did belong). Identifying “which factor” a set of indicators represented 

was based on the greatest sum of absolute valued-loadings; if all indicators loaded on 

one factor, that factor would be “identified” as the one with the highest sum of 

loadings and all other indicators would be classified as indicator commissions.  
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Table 1. Three measurement models used by Silva (2005) to compare CCA and ML-
CFA. 
 

   

Three 3-
indicator 
latent 
variables. 

 

Three 5-
indicator 
latent 
variables 
with cross-
loadings and 
correlated 
errors.  

 

 

Three 6-
indicator 
latent 
variables 
with single 
causally-
associated 
indicators, 
plus cross-
loadings and 
correlated 
errors. 

 
From each of the three measurement models (combined with three structural 

models that are not described here) shown in Table 1, ten samples were generated at 

each of the three sample sizes (200, 1000, 10,000). In every sample, pathweights were 

not fixed but were randomly generated from particular intervals –that is, every sample 

(irrespective of underlying model) had a randomly specified set of relations between 

indicators and their associated latent variables.  
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However, Silva (2005) also did not count any cases where fewer than four 

indicators loaded on any factor or were otherwise inconsistent with the other 

TETRAD modules or algorithms  (i.e., whether there were omission or commission 

errors for factors or indicators, if they occurred in an improper solution, they were not 

counted).  

Scoring of measurement model discovery performance by TETRAD (version 

IV) and factanal (R) were computed as the average (over ten samples). Tables 3.3 and 

3.4 in Silva (2005, pp. 60-61) reflect the performances as a function of the combined 

measurement and structural modeling. Overall, TETRAD (BuildPureClusters) 

committed the smallest number of errors (on the order of about 5% or smaller, 

particularly for N=1,000 and N=10,000); the performance of CCA was found not to 

vary much across any of these design features. CFA was found to exhibit “very high” 

rates of latent commission (finding too many latent variables, between 2% and 97% 

of the time depending on the structural complexity and sample size). CFA tended to 

omit latent variables (find too few dimensions) on the order of 2% of the time. Of 

interest, a third CFA procedure was included in Silva’s simulation: a “purified” CFA 

result. In this approach, each indicator was only allowed to load on a single latent 

variable (irrespective of the true model).  This might be comparable to a ‘simple 

structure’ approach to uncovering dimensionality; this method led to omission of 

latent variables (too few dimensions) on the order of 10%-60% of the time; and to 

commission (too many dimensions) 3%-20% of the time. 

This dissertation extended Silva’s work by adding the element of consistency 

in the comparison (rather than using an average error rate), and also by examining the 
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effects of strengths of associations, the presence and absence of relatively weak 

factors, and the inclusion of sample sizes that are more consistent with sizes applied 

researchers might utilize. Furthermore, by comparing CCA to CFA using OLS 

estimation, this dissertation involved a CFA method more similar to CCA than 

previous simulations (which all used ML estimation, shown by Briggs and 

MacCallum (2003) to be more error-prone than OLS in estimating weaker path 

loadings when stronger path loadings are present).  

While not a direct comparison of CCA and EFA/CFA, Spirtes, et al. (2000) 

report a simulation study comparing TETRAD (version II) to EQS and LISREL in the 

context where a structural equation model (SEM) has been fit, and further paths are 

sought (Spirtes, et al., 2000, Ch. 11).  In this simulation there were nine different 

‘true’ SEMs simulated, and three incomplete versions (one for each of two of the true 

models and one for seven of the true models) from which TETRAD, EQS and 

LISREL started their respective searches for missing paths. From each of the nine 

true models, 20 samples with N=200 and 20 with N=2000 observations were 

generated. When sample sizes were 200, TETRAD identified the correct (complete) 

model, given the starting model, 52.2% of the time, while EQS and LISREL were 

correct 10.0% and 15.0% of the time, respectively. With N=2000, TETRAD provided 

the correct (complete) model 95% of the time while EQS and LISREL were correct 

13.3% and 18.8% of the time, respectively.  

2.3.1 Including a condition with zero factors 

None of these simulations, and typically EFA simulations in general, included 

a case or condition with zero factors (uncorrelated observed variables). This is an 
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important note, since EFA will extract a single factor, regardless of the extraction 

method. As can be seen in the derivation of the CFA estimation in Section 2.2.1, if 

m=0, no estimation can take place. Thus, even if there is no common factor 

underlying the observed variables, EFA must “find” at least one. By contrast, 

TETRAD can yield a solution with zero factors in two different ways: it can find 

evidence that no latent common causes exist, or it can find insufficient evidence that 

one latent common cause exists. These are three important possible outcomes of an 

analysis on a set of uncorrelated observed variables (one factor, evidence of no 

factors, insufficient evidence of factors). This dissertation sought to examine the two 

estimation approaches in the zero-factor condition, even though the two zero factor 

results from CCA could not be differentiated.   

2.4 A note on establishing dimensionality 
 

Without appeal to ‘minimization’ or concision in the resulting system, Pearl 

(2000), Spirtes, Glymour, and  Scheines (2000) and Bartholomew and Knott (1999) 

articulate that identifying the latent variable that leads to local independence 

(independence of observed variables conditioning on the latent variable that is their 

common cause) leads to the discovery of a dimension or common cause (also called a 

common factor); this situation (conditional independence in a measurement 

model/causal model framework) is known as “d-separation” (Verma & Pearl, 1988)- 

but d-separation (the ‘d’ comes from the direction, or causality, in the model or graph 

under consideration) is specifically articulated for systems of observed variables only. 

Seeking the minimum number of dimensions required to achieve d-separation (as 

defined/described by Pearl, 2000) is neither the same method nor motivation as 
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seeking the smallest observed (empirically supported) number of dimensions or 

common factors.  These may also be contrasted with seeking evidence of latent 

common factors, since there is no impetus to find the smallest number, or 

“meaningful” factors. 

The tetrads that are equal to zero suggest different patterns of association that 

explain the observed correlation matrix. Critically, tetrads will vanish (are zero) when 

the relationships are present without depending on the size of the correlation (Drton, 

et al. 2007). This is a crucial difference between using tetrads (see Spirtes, et al. 

2000) to uncover latent structure and using other methods, such as CFA: the 

estimation in CCA is restricted to sample values of correlations and partial 

correlations. In CFA, the estimation is at the level of the correlations between 

observed and unobserved variables. The number must have been chosen a priori –see 

Section 2.2.1), and the loadings are estimated jointly while in CCA (using TETRAD) 

the estimates proceed four variables at a time. 

However, the sample correlations will vary more when the sample sizes are 

smaller, and TETRAD algorithms appear to be most effective when population 

correlation values are at least 0.30 (Spirtes, et al., 2000).  Small samples (N=100) and 

small correlations (0.25) were included in this study to compare the CCA and CFA 

performance in those conditions. These different types of estimation are highlighted 

here only because they constitute the crux of differences between the two methods, 

and not as an argument that one method is superior to another. Further, the data 

simulated in this study were characterized to challenge the two methods; no effort 

was made to map out the data characteristics for which one method was superior, or 
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to determine at which point(s) either method would no longer be sensitive to any of 

the characteristics. As a first direct comparison of the two methods in realistic data 

contexts, the objective was to compare the error types and rates as described in 

Chapter 3.  

In summary, uncovering the causal structure, or “true dimensionality”, of a set 

of variables, has been a motivating force in the development of factor analytic 

techniques for over 100 years. In 1987, Glymour, et al. developed a set of algorithms, 

and software to implement them (which has been revised and augmented in the 

ensuing 20 years) that automates the identification of vanishing tetrads and non-

vanishing partial correlations, which can be used to uncover evidence of causal 

structure.  This automated search software is not well known to many researchers, nor 

has its performance, relative to OLS estimation, been examined along the dimensions 

outlined in Chapter 1 and explicated in Chapter 3. Since vanishing tetrads imply 

common causes (causes that d-separate other variables), and latent variables (causes) 

are only identified when observed variables are ruled out as being the common cause 

of variability in other observed variables, it was important to determine whether this 

software performs as well as CFA by OLS, or better, because if so, it could bring a 

new perspective to uncovering dimensionality when indicators (mainly) have single 

causes, such as was the case in this study. The next Chapter describes how the 

research was carried out to test and compare the performances of these methods. 
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Chapter 3: Dissertation Methods  

Chapter 1 outlined the research question driving this study: is CCA as good as 

CFA at uncovering dimensionality? It was specified that the context for testing this 

question was the simple structure, or between-variables multidimensionality, case, 

where each observed variable is influenced by only one latent variable, although 

impure factors represents one of the challenges this study put to the methods. This 

chapter outlines the methods by which this question was answered. Specifically, 

whether CCA and CFA performed at similar levels of accuracy (obtain the correct 

number of latent variables, correctly assign observed variables to their corresponding 

latents) and the level at which the analytic solutions were replicated (consistent) over 

repeated trials.  These two performance characteristics (accuracy, consistency) were 

examined in contexts where sample size, model complexity, the presence of weak 

common factors, and correlated vs. independent latent variables were varied, as well 

as in a zero factor condition. 

3.1 Design features 
 

Models representing N=100, N=300, and N=500 observations were simulated 

that varied in the number of factors (0, 1, 4, 6), strengths of associations between 

indicators and factors (high (.80), medium (.60) and low (.40), see note in “scoring”, 

below), saturation of latent variables in the model (pure, share one, and share two 

indicators), the presence or absence of weak common factors (weak=factor loadings 

are 50% of the strength of the other factor loadings (after Briggs & MacCallum, 

2003), and structure (factors independent, factors moderately correlated (0.50 
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“moderately” correlated factors (French & Finch, 2006))).  To focus the simulation, 

all data was generated from multivariate normal distributions, the models were all 

assumed to hold exactly in the population, and all factors had four indicators. Four 

indicators per latent is the minimum for TETRAD and will ensure that all 

measurement models are identifiable (Kline, 2005) but do not yield just-identified 

measurement models in cases where two indicators are shared between two factors. 

Four indicators is a realistic number for some measurement models (particularly for 

shorter scales, or sets of scores) that should be challenging for both of the two 

dimension-estimation methods, particularly when one and two indicators are shared 

by two factors. 

3.2.1 Data Simulation 

A set of R programs (http://incanter.org/src/R/modeler.R; 

http://incanter.org/src/R/modeler.test.R; http://incanter.org/src/R/cfa.joreskog69.R; 

http://incanter.org/src/R/cfa.joreskog69.test.R; D. Liebke, personal communication 

September 2008) were written for model-implied covariance matrices (and their 

analysis) in Jöreskog (1969). This program accepts the user’s latent variable model 

(graph) with specified paths (loadings). From this input, and using the Jöreskog 

(1969) equations and approach, a model-implied covariance matrix is generated, 

which becomes the population covariance matrix for the simulation. The random 

normal variable generator function of R (rnorm) generates the number of standard 

normal variables the user specified as indicators in the graph as input; a Cholesky 

decomposition of the population covariance matrix (according to the user’s model) is 

multiplied by the rxc matrix of rnorm-generated variables (where r represents the 
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sample size and c represents the number of indicators). Graphs (Pearl, 2000) were 

created representing the conditions outlined above, and 50 samples were obtained 

from each of these graphs at each of the three sample sizes (N=100, 300, 500) 

described below. These represented fifty trials for TETRAD and for the common 

factor analysis using CEFA (Browne, Cudeck, Tatenini, & Mels, 2008). Fifty 

replications of each set of conditions were used to derive a performance summary for 

each method at each simulation configuration (outlined below). The result from each 

set of 50 trials was a mean number of errors (see Scoring, below) and the standard 

deviation for this mean.  Fifty trials are more than any other CCA simulation has 

used, and is consistent with other simulation studies (e.g., MacCallum, et al. 2001; 

Preacher & MacCallum (2002)).  Because a sampling distribution, or consistency 

with asymptotic assumptions, was not sought in this study, a larger number of 

replications was not warranted. 

The same data were analyzed by the two methods. 

3.2.2 Sample size 

The three sample sizes (100, 300, 500) were chosen because they represent the 

levels of sampling variability used by Briggs and MacCallum (2003); they also can be 

considered to roughly correspond to ‘small’, ‘medium’ and ‘large’ samples. Silva 

(2005) used samples of size 200, 1,000 and 10,000, but the results for CCA and CFA 

did not vary between 1,000 and 10,000 and 1,000 is not a particularly realistic sample 

size in social science research. MacCallum, et al. (2001) used 60, 100, 200 and 400. 

In the present context, the question of interest is whether a ‘larger’ or a ‘smaller’ 

sample size will affect recovery of dimensions, so strictly speaking, the exact choice 
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of sample sizes is not important.  Sample size did affect performance in Silva’s 

comparison of CFA (by ML) and CCA (p. 60-61), where he had manipulated only 

model complexity (and had not used OLS estimation) and found that CFA performed 

worse at N=200 than N=1,000, but the performance of CCA did not vary with sample 

size. Silva (2005) and Silva, et al. (2006) only reported the average error rate over 10 

replications, and did not include features of accuracy and invariance as is proposed in 

this dissertation. Briggs and MacCallum (2003) found that OLS performed well 

whether the sample size was 100 or 500, but ML performed less well than OLS when 

the sample size was 100. This may be material in the present context since CCA has 

only ever been compared to ML (at whatever sample size); it is unclear if an 

advantage that CCA exhibits over ML at smaller sample sizes (e.g.., 200 in Silva’s 

2005 study) will be lost when CCA is compared to CFA by OLS.  

The choices of data characteristics were made specifically to challenge these 

methods and lead to error rates, rather than success rates, to be compared. 

3.3 Simulation Design 
 

To summarize this simulation design, this was a 4x3x3x3x2x2 factorial design 

(#factors x sample size x strength of association x saturation x weak factors x 

structure).  The number of factors being 0 (observed correlations are a function of 

sampling variation) or 1 did not permit saturation, weak factor, and structural 

conditions; thus, there are 3x3x3x2x2x2 (=216) + 3 (zero factors at 3 sample sizes) + 

9 (1 factor with 3 strengths and 3 sample sizes) = 228 different models were 

simulated.  Graphical representations of most of these features appear in Figure 3 

below. 
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Each model yielded 50 simulated samples for the N=100, N=300 and N=500 

sample size conditions. These simulation factors all constitute functions of 

performance explored within each of the dimension-estimation methods.  

3.3.1 Outcomes of Interest: Within Method 

Accuracy of CFA (OLS estimation) and CCA was estimated based on three 

features: the primary outcome of interest was percent (of the 50 trials in each of the 

three sample size conditions) where the correct number of latent factors was 

identified – this represents the recovery of the correct dimensionality of the model.  

These percentages were averaged across conditions within method. Two additional 

accuracy outcomes are the percent where indicators are correctly identified as 

‘belonging’ to their latent parent, and the percent where both of these features are 

correct.   

3.3.2 What Constituted an Error 

Performance of each method on each of 50 runs at the 228 different model 

configurations was quantified in terms of the percent (of 50 trials) where the correct 

number of latents was recovered, the percent where all indicators were correctly 

attributed to their true latent parent, and the percent where both of these were correct. 

The means and standard deviations for the 50 trials were recorded as the result for 

that condition. Errors were characterized as “commission” if they put an extra in (path 

or latent variable), errors were characterized as “omission” if they left out (path or 

latent variable). 



 

 47 
 

All latents (L1, L2, …, L6) had four indicators (X1, X2, …, X4, X5, …, X16); 

however in the ‘share’ conditions, one or two indicators loaded with equal strength on 

two of the stronger factors, leading to one or two fewer indicators than a multiple of 

four) as described. Of these four indicators, the first one was the 'sentinel' for that 

factor: it had a slightly higher loading in the population, while the other three 

indicators had a slightly lower loading in the population. For example, in the stronger 

loading condition (referred to above as the .8 condition), the sentinel had a population 

loading of .85 while the other indicators had a population loading of .75.  In the 

middling condition (referred to as the .6 condition), the sentinel loaded with .65 and 

the nonsentinels loaded at .55 in the population.  In the weaker loading condition 

(referred to as the ‘.4’ condition) the sentinel loaded with .45 and nonsentinels loaded 

with .35 in the population. In all cases, as articulated above, the single weaker factor, 

if present, had population loadings of ½ the size of the stronger factors. The weak 

factor had four sentinels and nonsentinels defined the same as above, but with values 

50% of those on the non-weak factors. No weak factor was involved in sharing (see 

Figure 3). 

In cases where 2 or more sentinels load on a single factor, if there are other 

indicators (non-sentinels) associated with one of the sentinels, the majority of 

indicators will determine “which” factor it is, the other indicators will be treated as 

errors (of commission).  If 2 or more sentinels load on a single factor and there are no 

non-sentinel indicators, the first sentinel was (arbitrarily) ruled to represent the latent 

factor and the other sentinels were ruled errors of commission.  
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Errors of omission are indicators that are left out of the solution (one error 

point). However, an error of commission can yield two points: if the indicator was 

assigned to the incorrect factor and no other factor, this represents both an error of 

commission (indicator on wrong factor) and an error of omission (indicator missing 

from correct factor).  For example, X1 is the sentinel for L1 and X5 is the sentinel for 

L2.  If X5 appeared on L1 (and on no other factors), it represents a one-point error of 

commission of X5 on L1 plus a one-point error of omission on L2, where X5 

belonged. This is the only type of error of commission within the TETRAD 

procedure.  However, in CFA, indicators could be found to load (defined and 

quantified as [estimated loading/SE]>1.96) on more than one factor.  Thus, while 

errors of commission could only be worth two points in a solution from TETRAD, if 

CEFA assigned X5 to load on both L1 (commission) and L2 (no error), then it would 

only be a one-point error. With this scoring algorithm, TETRAD could incur 1-point 

errors of omission and could only incur 2-point errors of commission, while CFA 

could incur 1- and 2-point errors of commission and the 1-point error of omission that 

both methods could incur. Previous CCA studies have not resulted in dramatic error 

rates, so it was not thought likely that exploring the error types would be worthwhile. 

However, as was seen in the results, the reason why error rates were so low in other 

studies was the disallowed solutions that were improper – in the present study, error 

rates were obtained from every solution, rather from only those that were proper (for 

TETRAD). 
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Figure 3. Depiction of saturation, weak factors and structure for a 4-factor 

model. 
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Error rate scoring is described fully in Appendix 2. A series of one-way 

ANOVAs was used to determine sensitivity to these design features in terms of 

LEGEND: 
A. two factors sharing two indicators. 
B. all factors moderately correlated (.5) 
C. relatively strong factor with sentinel (*) 
(loading .05 greater than a in population) and 
other indicators loading at a in population. 
D. relatively weak factor with sentinel (*) 
loading .05 greater than ½ a in population and 
other indicators loading at ½a in population. 
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differences in the error rates (factor and indicator omission and commission errors) 

within-method and across the design features individually as reflected by effect sizes 

(described below).  No effort was made to correct for multiple comparisons since, 

with large enough samples, it is likely that any effect could have been made 

significant; instead the within-method ANOVA results were treated as characteristics 

of each method, which could then be contrasted across methods. 

Invariance in latent variable results (discovery of dimensionality) was 

operationalized as a within-method outcome as (yes/no) observing 95% of the same 

solution (number of latent variables, whether accurate or not) within each set of 50 

analyses. A within-method failure to replicate accuracy and invariance results across 

all sample size conditions was taken to represent a sensitivity to sample size for 

accuracy and invariance of dimensional discovery by that method. 

3.3.2 Outcomes of Interest: Between Method 

The features were compared across methods, adding an additional factor for 

the overall study design. There were a total of four outcome variables to be extracted 

from each 100-sample ‘trial’ under each method, and invariance were operationalized 

across methods as the proportion of solutions that were the same out of the 11,400 

trials at each combination of simulation features. For each of the four continuous 

outcomes, multi-way factorial ANOVAs were carried out, comparing CFA and CCA 

on all relevant simulation design features (main effects) and their interactions.  The 

ANOVA results were summarized using effect sizes (η2), representing an estimation 

of the relative proportions of variance that each of the simulation features explains 

(Sheskin, 2004). As Sheskin points out (pp. 913-914), there are two methods for 
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computing η2; one estimates the proportion of variability attributable to the factor 

relative to all other factors and their interactions, as well as within-group variability, 

while the other (“partial η2”) estimates the proportion of variability attributable to the 

factor relative to the within groups variability only, collapsing over the contributions 

from other factors and their interactions. 

Table 2 summarizes the research question(s) of interest in terms of comparing 

performance (on the four performance outcomes) by multi-way factorial ANOVAs. 

Table 2. Simulation features/ANOVA results to be estimated (for each 

outcome) based on simulation features. 

Design characteristic 

(values) 

Question of substantive interest 

Main effects 

 
Method (CFA, CCA) (M) 

Is the outcome (accuracy, invariance) significantly 
different depending on method? Collapsing across the 
other main effects, there are 228 observations per 
method in this cell (one outcome per 50 trials in each 
model configuration) 

Sample size (100, 300, 500) 
(N) 

** 

Number of factors (0, 1, 4, 6) 
(F) * 

** 

Strength of relations (.8, .6, 
.4) (L) <see note on 
sentinels> 

** 

Saturation (pure, share 1, 
share 2) (S) 

** 

Weak factors (yes, no) (W) ** 
Structural model 
(independent, correlated 
factors) (I) 

** 

 
Interactions (only interactions involving the method are of interest- no others will be 

tested) 
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M x N  Do differences in method on outcome vary by sample 
size? (72 observations per method in this cell) 

M x F Do differences in method on outcome vary with # of 
factors?   

M x L Do differences in method on outcome vary depending 
on loading strength?  

M x S Do differences in method on outcome vary when 
indicators are pure or load on >1 factor?  

M x W Do differences in method on outcome vary in the 
presence of weak factors?  

M x I Do differences in method on outcome vary when factors 
are independent vs. correlated?  

 
Multiway interactions: never reported (to date) for CCA vs. CFA, but MacCallum, et 
al. (2001) found no significant effects (based on η2). Interpretation could be complex 
and the cell sizes will be small, but these might suggest design features worth 
pursuing in future research (focused on specific interactions, and their effect sizes). 
M x N x F  
M x N x L  
M x N x S  
M x N x W  
M x N x I  
M x N x F x L  
M x N x L x S  
M x N x S x W  
M x N x W x I  
M x N x F x L x S  
M x N x L x S x W  
M x N x S x W x I  
M x N x F x L x S x W  
M x N x F x L x S x I  
M x N x F x L x S x W x I  
* all factors have four indicators. 
** These main effects are only of interest for their potential contributions to 
interactions with method. 

3.4 Estimation Features 

CCA and CFA are very different methods (as articulated in Chapter 2), and 

one way to minimize this difference is to choose the estimation procedure for CFA 

that is more similar to how CCA works. As noted above, choosing CFA by a method 

like OLS, as opposed to ML (which was used in all other comparisons of CCA and 
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standard CFA (Silva, 2005; Silva, et al. 2006) or search (model respecification; 

Spirtes, et al. 2000, chapter 11) simulations), would represent a fairer comparison of 

the performance of CCA and CFA, since the tetrad inequalities (outlined below) “… 

hold regardless of the values of the path coefficients and the variance of the latent 

variable.” (Bollen & Ting, 2000, p. 7). This is not of particular concern for the zero 

and one factor samples, since Briggs and MacCallum (2003) reported similar 

performance by OLS and ML when no weak factor was present, and Akaike 

Information Criterion (AIC, Akaike, 1973; Konishi & Kitagawa, 2008) values can be 

computed using the log likelihood function or model χ2.  

Based on the presentation of estimation in Chapter 2, it can be seen that CFA 

models cannot be estimated with m=0 (although this could be approximated by 

estimating a multivariate normal distribution with a diagonal covariance matrix). To 

maintain a factor analytic focus in the non-TETRAD analyses, confirmatory factor 

analysis fitting a one factor model was carried out by Mplus v. 5.2 (Muthén & 

Muthén, 2008) using maximum likelihood estimation in order to obtain AIC estimates 

for all the zero and one factor simulated data (zero factors, four indicators, N=100, 

300, 500 and one factor, four indicators, N=100, 300, 500 at each of the loading 

strengths (weak, medium and strong)). Standard errors are not available from Mplus 

if unweighted least squares (ULS, their version of OLS) estimation is used and these 

were required for assigning indicators to factors (loading/SE).   

An interesting possibility with confirmatory analysis is that a one factor model 

might fit better (by AIC) than the null model while none of the loadings is significant 

(i.e., all loadings p>0.05). Whenever a factor analysis (confirmatory for 0 and 1 factor 
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data, or common for 4 and 6 factor data) result found a factor, but no loadings 

significantly greater than zero on that factor, that factor was treated as “found” while 

indicators were treated as omitted (four errors of omission for the indicators, for each 

of the 50 trials).   

Ordinary least squares estimation of factor loadings in CFA by CEFA was 

used for two reasons: a) Briggs and MacCallum (2003) found that OLS performed 

better than ML when weak factors were present; and b) Briggs and MacCallum 

(2003) noted that OLS does not differentially weight residuals depending on the 

strength of the correlations in the model, and this is similar to what CCA does, since 

the functions of the 2x2 submatrix determinants are proportional, rather than absolute.  

Although OLS is not strictly an appropriate estimation approach for latent variables 

(Bollen, 1996; Kline, 2005), it is implemented in CEFA (Browne, et al. 2008). CEFA 

v. 3.02 (Browne, et al. 2008) was used, with a SAS v.9.2 (SAS Institute, 2008) macro 

to run the CFA analyses. OLS estimation was used and geomin rotation was 

employed to obtain simple structure (i.e., so that indicators would tend to load on 

only one factor). Geomin, an oblique rotation, is one of those recommended as a “best 

practice” in exploratory factor analysis (Osborne, et al. 2008) and was also recently 

found by Asparouhov and Muthén (in press) to provide the best solutions in their 

large-scale simulation study. Oblique rotations were recommended (by investigators 

from Thurstone (1947) through Jennrich (2007)) as most realistic; when factors are 

orthogonal, the oblique rotation finds the right structure and when factors are oblique 

(as in half the simulations in this study), orthogonal rotation cannot find the right 

structure. 
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Akaike Information Criterion (AIC, Akaike 1973; Konishi & Kitagawa, 2008) 

values were computed for each of the CFA solutions [although the AIC computations 

are based on maximum likelihood and the likelihood is currently typically computed 

using ML estimation, any estimator could be utilized in the likelihood, since the goal 

is to replace Θ with Θ̂ ; the OLS estimator may be less efficient than the ML 

estimator for theta, but our formula for AIC can be computed with either Θ̂ ]. 

Anderson (2007: 60) recommended using a formulation of AIC with a second-order 

correction for bias (AICc, after McQuarrie & Tsai, 1988), but the AICc correction 

(relative to AIC) is a 'small sample' correction, while all the models under 

consideration within each CFA run will have the same sample size and varying 

complexity. The model selector (i.e., AIC) needed to be consistent for all models and 

the sample sizes of 100 were not “very small”, so AIC was to be preferred over AICc.  

Anderson (2007: 160-1) also noted that the Bayesian information criterion (BIC; 

Schwarz 1978) does not assume that the true model is in the set under consideration; 

and that in the face of increasing model complexity, unless the sample size is also 

increasing, "BIC does not guarantee a good parsimonious model..." The choice of 

AIC over BIC was made to promote consistency for model choice within a condition 

where only complexity was varying, since that is how the information criterion was 

utilized. 

Consistent AIC (CAIC, Bozdogan, 1987) was compared to AIC by Anderson, 

Burnham & White (1998) and found to (incorrectly) select smaller models than AIC. 

Because Silva (2005) found that factor analysis tended to lead to larger models than 

TETRAD (BPC) did, CAIC was not chosen for model selection by CFA because it 
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might offset the 'natural' tendency of CFA to over extract (relative to TETRAD). 

Conditional AIC (cAIC, see Wager, Vaida & Kauermann, 2007) is used for mixed 

(effects) models, and so is not appropriate for the current context. Thus, AIC was 

chosen as the criterion for identifying the “best” CFA result.   

For CFA analyses on four and six factor number conditions, the solution with 

the best AIC was deemed “the winner” and that model’s solution (# latent variables, 

which indicators load on which latent variables, and the combination of these) was 

obtained as its performance characteristics.  

In order for CFA results to match CCA results most closely, any pathweight 

that was statistically significantly different from zero was considered to represent that 

indicator “loading” on that factor. CCA algorithms can be adjusted so that the p-value 

for any test (of vanishing tetrads) accommodates the multiple comparisons (all 

possible tetrads, excluding those that are implied –and so not tested, Spirtes, et al. 

2000; p. 271), but CFA pathweight tests are NOT corrected for the simultaneous 

estimation of loadings and their associated standard errors (see, e.g., Mplus 5.2 Users 

Guide, 2008).  All tests of significance (i.e., were tetrad differences significantly 

different from zero in TETRAD and were loadings significantly different from zero in 

CEFA) were done at a testwise α=0.05. 

The CFAs for the 4 and 6 factor samples were run extracting from 1 to the 

correct number+2 of factors (i.e., 1-6 factors for the four factor condition and 1-8 

factors for the six factor condition). This represented a fairer comparison with 

TETRAD, which was observed to return as many (but not more than) two factors 

more than there were in the population. Over 68,000 CFA models were fit; the model 
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χ2, number of parameters and degrees of freedom were obtained from each fit (using a 

combination of SAS and Excel macros). Determination of which indicators were 

assigned by CEFA to which factor, for each of the 50 replications within each 

condition, was taken from the one CEFA-generated result with the best AIC 

(computed as (χ2/n-1) + (2k/( n -1)), where χ2 is model χ2, n is the number of subjects, 

and k is (.5v(v +1))-df, where v is the number of variables and df is degrees of 

freedom). Maruyama (1997, pp. 246-7) noted that there are multiple formulae for 

computing AIC values and while they do not always yield the same value, they do 

agree in terms of ranking models. This formula was selected because it will provide 

the same ranking as the to provide the same ranking as the Expected Cross-Validation 

Index (ECVI, Browne & Cudeck, 1993) that is computed by CEFA for each model.  

This way, the results from Mplus (with AIC values computed with this formula) and 

the results from CEFA could be most directly comparable. 

For the CFA model (based on the same one of the 50 replicates) with the best 

AIC, all loadings were transformed so that (loading/SE>1.96) = 1 and 

(loading/SE<1.96)=0, where 1= indicator loads on the factor and 0= indicator does 

not load on the factor.   

Factor loading values themselves were not used to determine whether 

indicators were or were not assigned to any factor. That is, assignment of indicators to 

factors by CFA was reduced to the same present/absent characterization that 

TETRAD provided. In the study describing the BuildPureClusters algorithm (Silva, 

2005), the sum of absolute values of loadings of those indicators truly associated with 

a given latent variable were used to determine which true latent variable an assigned 
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mix of indicators represented. Apart from this, and the use of these absolute value 

sums to determine which true latent a found factor corresponded to most closely, 

factor loadings were not used by Silva (2005). The standard errors of factor loadings 

were not obtained or used by Silva (2005), nor were model fit (AIC) values.  

CCA in TETRAD uses simple sample-estimated covariance matrices (and 

their associated 2x2 determinants) to compute the tetrads (and determine whether 

they are statistically significantly different from zero, as described in Chapter 2. 

Similarly, the partial correlations test (whether non-zero correlations are statistically 

significantly different from zero when an observed variable is partialled out) is based 

on sample covariances/correlations. The Wishart test for vanishing tetrads (Bollen, 

1990) was used as implemented in TETRAD version IV. 

3.4.2 Data Collection 

All indicators were labeled “X#” and all latents were labeled “L#”. For 

example, the 3rd of four indicators loading on the second of four latent variables was 

X3 on L2.  From each of the fifty trials within each of the 228 conditions, the number 

of latent variables that the method identified (i.e., number of latents returned by 

TETRAD and number of factors in the CFA model with the lowest AIC value) was 

obtained. The patterns of indicators loading together on each factor were summarized 

in order to count the number of errors of omission (a latent variable was not found, or 

a latent variable had fewer than four indicators, or it did not have the correct set of 

four indicators) and commission (an extra latent variable was found or a latent 

variable had more than four indicators, or one indicator was added to a latent variable 

where it did not belong according to the population model).  
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3.5 Summary of Methods 

To populate Table 2, this research proceeded in three steps:  

Step1: A program in R simulated 50 replicates at each of the three sample 

sizes (N=100, 300, 500) for each combination of number of factors, strengths of 

associations, saturations, presence/absence of weak common factors and structure. 

The simulation generation for these 11,400 samples is outlined in Appendix Table 1.  

Step 2: The Java source code for TETRAD IV (Scheines, et al. 1998; 

Scheines, et al. 2005; code provided by Joseph Ramsey at Carnegie Mellon 

University, February 2009) was used to run BuildPureClusters on the 11,400 samples. 

A SAS 9.2 (SAS Institute, 2008) macro was used to run CEFA 3.02 (Browne, et al. 

2008) for CFA by OLS with geomin rotation, extracting 1-6 (four factor condition) or 

1-8 (six factor condition) factors; AIC was computed from the χ2 and its degrees of 

freedom using Excel for each of those CFA output files and the solution with the 

smallest AIC (from the set of 1-6 or 1-8 factors) was retained. Every loading in the 

“winning” model was evaluated relative to its standard error to determine what 

indicators were assigned to what factors (ratios >1.96 were recorded as loading and 

ratios <1.96 were recorded as not loading). Finally, Mplus 5.2 (Muthén & Muthén, 

2008) was used to run 600 confirmatory factor analyses, extracting one factor, on the 

zero and one-factor samples (600 trials). The one-factor CFA produces the fit 

statistics for the null (zero factor) as well as the specified (one-factor) model. Failures 

for these CFA models to converge was interpreted as “insufficient evidence of a 

factor” (i.e., correct detection of zero factors). 
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Step 3. Performance was obtained as the average value (over the 50 trials) for 

each condition (the number of factors identified, indicators correctly associated with 

their respective factors).  Estimates of consistency were obtained as the percent of the 

50 trials where the same number of factors was obtained. 

Once the results were collected from the 50 trials per condition, nonparametric 

ANOVAs were carried out using SPSS (16.0, SPSS Inc. Chicago, Ill). 
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Chapter 4: Results 

Sections 4.1 and 4.3 outline challenges in the computation of the error rates 

from the CCA and CFA results, respectively, that were unforeseen until the results 

emerged. Results of the analyses are presented separately for each method in sections 

4.2 (CCA) and 4.4 (CFA), and their comparisons in section 4.5. Descriptions of CCA 

main effects for the conditions (Figures 4-7) are followed by the main effects 

analyses of variance (Table 3); condition-specific results are presented in Figures 8-

13. CFA results are similarly presented as main effects for the conditions (Figures 14-

17), main effects analyses of variance (Table 4) and condition-specific results 

(Figures 18-25). Tables 5A and 5B and Figure 26 present the results by method.  

4.1 Challenges in Computing and Interpreting CCA Results 

4.1.1 Defining omission errors for indicators 

Estimating the consistency of solutions proved to be a great challenge in this 

study. The solution was to compute omission and commission errors for indicators for 

each factor in the CCA results separately, because the algorithm could have identified 

the factor comprised of items 5-8 (“factor 2”) first, and that comprised of items 1-4 

(“factor 1”) third, fourth, or not at all. It was an insurmountable challenge to automate 

a complete-factor-examination for the CCA results, whereby all factors could be 

considered at once.  Factors were considered one at a time and the CCA results were 

extracted manually. The variety of solutions obtained from TETRAD necessitated 

specification, usually based on an arbitrary-but consistently applied- decision. The 

complete set of error counting rules is included in Appendix 2. 
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4.1.2 Counting omission errors for indicators from “extra” factors  

The CCA results rarely produced extra factors. However, when they did it 

posed a challenge for computing omission errors. As noted in introductory chapters 

(Chapters 1 and 2), BPC can only produce solutions consistent with simple structure: 

BPC can only assign an indicator to a single latent variable. This means that, 

whenever an extra factor was identified by TETRAD, the indicators that were 

assigned in that factor did not appear on any other (earlier-extracted) factor. However, 

it was difficult to reconcile a supernumary factor (commission error for factor) and 

the possibility of a not-commission error for indicator. That is, treating the extra 

factors as if they were not extraneous/supernumary for the sake of computing 

omission and/or commission errors for the indicators was difficult to incorporate into 

the scoring scheme, particularly given that the extra factors in the CFA results could 

be more clearly counted (as commission errors), if they duplicated already-assigned 

indicators.  Further, it was not possible to accurately label indicators omitted from 

extra factors as “omissions”, since the extra factor should not have been found.  It 

was arbitrarily decided that omission error totals for the solutions would include only 

omissions on the correct (or fewer) number of factors; the first 4 or 6 factors were 

used and the omission errors occurring in extra factors were ignored in the TETRAD 

results.  

This was not the case for commission errors for indicators, because this type 

of error implies that it was extra. As outlined in the scoring rules (Appendix 2), 

commission errors for indicators were computed as the number of commission errors 

divided by the number of times that factor was found- whether the factor was less 
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than, equal to, or greater than the correct number of factors in the population giving 

rise to that sample. 

4.1.3 Success of the sentinels for identifying omission errors for 

indicators 

As outlined in Chapter 3, a method for determining which factor a set of 

indicators was representing had to be included so that determinations of whether an 

indicator assignment to a factor was correct, or constituted a commission error, could 

be identified. Similarly, identifying omissions of indicators from factors could only 

be done when the factor itself was known, so that its indicators could be evaluated 

(for whether they had been included or omitted). The method used in this study was 

to treat one (the first) indicator on each factor as a sentinel, so that when that indicator 

was observed, the other indicators that should have loaded with it would be known. 

Then determination of what was (correct) or was not (commission) supposed to load 

with the sentinel could be made, as well as whether what should have been there was 

missing (omission). Sentinels were programmed in the simulation as having 

pathweights 0.10 stronger than the non-sentinel indicators of a factor in the 

population; so the strong loading condition featured sentinels loading at 0.85 and non-

sentinels loading at .75 on their factor in the population. To be consistent over all 

error identification, characterization and counting, the sentinels were used to 

determine what other indicators should/should not have been assigned to the same 

factor. Appendix 2 outlines the rules for assigning errors when more than one (or two 

or three) sentinels were assigned to the same factor. All scoring decisions were made 
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for consistency and interpretability of the error rates –within the CCA results and also 

for use with the CFA results. 

4.1.4 Observing one-indicator factors identified by vanishing tetrads  

The results for some conditions were unexpected in the sense that vanishing 

tetrads, and not-vanishing partial correlations, between some subset of four indicators 

resulted in sufficient evidence for a common, latent cause to be identified: that is, the 

result returned a factor. However, although the evidence was sufficient across the set 

of four indicators to support a factor, only one indicator was assigned to the factor. 

This apparent contradiction was rarely observed in some conditions but in others, 

nearly all of the 50 trials reflected this outcome. The developer of the particular 

algorithm used (BuildPureClusters) specified that such outcomes are possible, and 

while they provide little or no information about the structural model, the 

measurement model-specific information they provide can be used and interpreted (R. 

Silva, personal communication 29 April 2009). When this was observed, omitted 

indicators were scored as omission errors, and the conditions with these outcomes 

simply tended to have higher omission error rates. 

4.1.5 Error rates for indicators increased as factors were ‘found’  

The CCA results were analyzed by factor (i.e., what was observed in the first 

factor found, what was observed in the second factor found, etc.). As might be 

expected given the nature of the algorithm, and the fact that it proceeds sequentially, 

not simultaneously like the CFA estimation, the error rates were not constant across 

factors but increased. Total error rates were computed as the sums (omission, 
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commission) over the entire solution, rather than a per-factor average or other type of 

summary.    

4.2 CCA Results 

4.2.1 Discovering dimensions, missing or mis-assigning indicators: 

CCA 

Given the foregoing, and together with the rules articulated in Appendix 2, the 

results for CCA at uncovering the dimensionality of the data can be discussed. 

Descriptions of results (Figures 4-7) are followed by the main effects ANOVA results 

(Table 3) and condition-specific results are shown in Figures 8-13. 

CCA returned zero factors for every sample generated from uncorrelated 

indicators (100% accurate and 100% consistent). Collapsing across sample sizes and 

loadings, CCA found an average of 0.93 (SD 0.05) factors in samples generated from 

one-factor populations was. Any result that identified a factor was 100% correct at 

assigning all four indicators to that factor (commission errors were not possible); the 

average omission rate for one-factor samples was 0.28 (SD 0.21). That is, on average, 

0.28 indicators were left out of these four-indicator solutions; all results in one-factor 

data either assigned all four indicators or zero.  

Four factor samples yielded an average of 2.86 (SD 1.16) factors found, and 

collapsing over all conditions (apart from number of latents in the population) an 

average of 1.14 (SD 1.16) latent variables were omitted from each solution. The 

average omission error rate for indicators (including four indicator omissions for 

every missed latent), was 1.70 (SD 0.79). In other words, for every result based on 

samples from a four-factor population, an average of 1.1 latent variables, and 1.7 
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indicators were omitted. An average of 0.03 (SD 0.01) extra factors were found and 

0.48 (SD 0.64) indicators were mis-assigned in four factor data.  

Six factor samples yielded an average of 4.07 (SD 1.72) factors found, with an 

average of 1.93 (SD 1.84) latents omitted and 0.06 (SD 0.06) extra factors found. An 

average of 2.4 (SD 1.34) indicators were omitted from six factor solutions and 1.11 

(SD 1.69) indicators were mis-assigned. In the plots that follow, commission of 

latents (finding extra factors) errors are not included since they were so low when 

averaged over conditions; they are included in the one-way (nonparametric) 

ANOVAs shown in Table 3. The plots that follow focus on omitted latents, and 

indicator omissions and commissions. 

The loadings condition represented an important test for TETRAD since 

performance is based on proportional, and not absolute values of the correlations. 

Figure 4 shows the error rates (average number of omitted factors, indicators mis-

assigned (commission errors) and indicators un-assigned (omission errors)) by sample 

size for the three loadings conditions, collapsing over purity, presence of a weak 

factor, and whether factors were correlated or orthogonal.  

The one-factor results appear in the top row of plots. For these samples, 

omission and commission error rates are overlaid around zero, as no commission 

errors were made and the omission errors were low due to the accuracy (average # 

latents omitted, grey dashed line). Unlike the one factor results, the omitted factor fate 

(grey dashed line) for four and six factor tended to be flat or decrease as sample size 

increased, although for six factors with strong loadings, sample size of 500 (largest) 
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seemed to decrease performance/increase factor omission rate slightly. All three types 

of errors seemed to vary with the loadings (columns).   

In general, results for the medium and strong loadings are similar within four 

factor results; omission errors were higher when loadings were strong in six factor 

data as opposed to when loadings were medium sized; commission errors were higher 

and flat when loadings were weak in six factor data, tended to decrease with sample 

size when loadings were medium, and were flat or tending upwards as sample size 

increased when loadings were strong. 

Figure 4. CCA Error rates by sample size and loadings for one, four and six factors.  

 
Comparing the omission and commission error rates for four and six factors 

across each loading level, the patterns seem similar. As expected given the lower 

bound for detectible correlations in TETRAD (given by Spirtes, et al. 2000) of 0.30, 
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higher errors were observed for the weak loadings condition; within four and six 

factor data, the effects of loadings are less pronounced. It is possible that CCA 

performance was more susceptible to experimental conditions when there were more 

factors and stronger loadings; that is, weak factor loadings were only above .3 when 

loadings were strong. Some errors made in the strong-loading condition might be 

most easily attributable to the conditions, whereas at least some of the errors in lower-

loadings conditions must be attributable in part to the threshold of TETRAD’s 

sensitivity.  

Purity of factors (whether two latents shared indicators in the population), 

presence of a weak factor, and independence of factors were only features in the four- 

and six-factor samples. Figure 5 represents the error rates (omitted factors, indicators 

mis-assigned (commission errors) and indicators un-assigned (omission errors)) by 

sample size for the three purity conditions, collapsing over loadings, presence of a 

weak factor, and whether factors were correlated or orthogonal. In Figure 5 it can be 

seen that errors tended to decrease as sample size increased, and this was true for all 

purity conditions; the accuracy (omitted factors, grey dashed line) tended to increase 

with sample size but decrease with decreasing purity. This sensitivity to purity was 

more pronounced in the six-factor results, with the four factor share 0 and share 1 

plots more similar and the share 2 plot reflecting mostly an increase in factor 

omission errors. The effect of purity on indicator omission rates (black solid line) did 

not appear to be marked for four factor data, but for six factor data, the indicator 

omission error rates increase as purity decreased (went from pure (share 0) to two 

latents sharing 1 to sharing 2 indicators). 
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Errors of commission for indicators (solid line) were generally low in the four 

factor condition and were higher in the six factor condition. 

Figure 5. CCA  Error rates by sample size and purity for four and six factors.  

  Figure 6 represents the error rates by sample size for the conditions 

with and without a single weak factor, collapsing over purity, loadings and whether 

factors were correlated or orthogonal. 

Figure 6 suggests that the presence of a weak factor decreased dimensional 

discovery rates (factor omission, grey dashed line, increases), although factor 

discovery improved (omission errors decreased) as sample size increases. The 

omission and commission error rates are closest (in four plots) for six factor data with 

no weak factor, while with one weak factor the commission errors for indicators is 
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very low and omission errors for indicators are fairly high (the highest of all four 

plots).   

Figure 6. CCA Error rates by sample size and presence of weak factor for four and six 
factors.  

 

The effect of a weak factor on indicator omission rates (black line) is similar 

for four and six factor data, namely, this error rate was slightly higher if a weak factor 

was present. Errors of commission for indicators (grey line) increased slightly for 

four factors, while clearly decreasing for six factors, when a weak factor was present. 

The effect of a weak factor might be greater for indicators and their correct 

assignment than for the discovery of latent variables, although in the six factor 

condition, the factor omission error is increased in the presence of a weak factor. 
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Figure 7 represents the error rates by sample size for the conditions when 

factors were orthogonal or correlated at ρ=.5, collapsing over purity, loadings and 

whether there was a weak factor.  

Figure 7. CCA Error rates by sample size and independence for four and six factors. 

 
As was observed with the addition of a weak factor (Figure 6), when factors 

were correlated, the omission of factors (dashed line) and omission of indicators 

(black line) rates were worse than when factors were orthogonal. This effect appears 

most striking for the six factor data (lower right plot). Since recovery of factors was 

worse when factors were correlated, the lower commission error rates (which could 

only be committed if a factor was found) are also lower when factors are correlated. 

 As will be seen in Figures 8-13, the variances of values for the main effects 

were not necessarily equal across groupings, so one-way nonparametric ANOVAs 
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(Kruskal-Wallis) were carried out comparing the three main error rates (factor and 

indicator omission, indicator commission) across the levels of the condition variables. 

These results are given in Table 3.  

Table 3. Main effects for conditions on errors from CCA 
 
 Omission 

errors- 

Factors 

Commission 

errors- 

factors 

Omission  

errors- 

indicators 

Commission 

errors -

indicators 

Sample size 
(100, 300, 500)  

χ2
2= 9.31  

** 
χ2

2=3.53  
p=0.17 

χ2
2=8.08  

* 
χ2

2= 6.71 
* 

Number of factors 
 (0, 1, 4, 6)  

χ2
2= 28.20 

*** 
χ2

2= 0.10 
p=.75 

χ2
2= 45.07 

*** 
χ2

2= 25.79 
***  

Strength of 
relations (.8, .6, .4)  

χ2
2=30.33 

*** 
χ2

2=0.67 
p=.41 

χ2
2= 37.60 

***  
χ2

2= 8.70 
* 

Saturation  
(pure, share 1, 
share 2)  

χ2
2= 30.70  

***  
χ2

2= 1.26 
p=.53 

χ2
2= 12.72 

* 
χ2

2= 10.31 
* 

Weak factor 
 (yes, no)  

χ2
1= 20.64 

*** 
χ2

1= 3.33 
p=0.068 

χ2
1= 5.62 

* 
χ2

1= 1.73 
p=0.19 

Structural model 
(independent, 
correlated factors) 

χ2
1= 22.76 

*** 
 

t(7)=2.96  
*† 

χ2
1= 2.37 

p=0.12 
χ2

1= 39.68 
*** 

* p<0.05; ** p<0.01; *** p<0.0001 † one-sample t-test comparing rate in 
indedpendent factors condition to zero. 

 
The results in Table 3 suggest that all conditions affected CCA’s performance 

at dimensional discovery in terms of omitting factors from the solution when 

collapsing across the other conditions –including number of factors in the population. 

None of the conditions affected the tendency to commit factor errors (find more 

factors than there were in the population) except for the presence of correlated 

factors: none of the commission of factors errors occurred when factors were 

orthogonal in the population. The 0.03 extra factors found, on average from four 

factor and 0.06 extra factors found, on average from six factor samples were all errors 
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made when population factors were correlated at 0.5. These could not be compared 

across the conditions so the values were instead compared by one-sample t-test 

against the reference value zero; significantly more commission errors were 

committed when factors were orthogonal than when factors were correlated, where 

zero commission errors occurred. 

4.2.2 CCA performance by conditions 

Figure 8 presents CCA performance at dimension discovery (factor omission 

errors) for the four and six factor data across loadings and whether factors were 

orthogonal. Within each panel, the performance under the three purity conditions 

(share 0, open diamond; 2 latents share 1, star; 2 latents share 2, filled circle). As 

noted, these conditions were not part of the zero and one factor results. There are six 

observations for each loading in each panel, representing the six (2x3) combinations 

of sample sizes and presence of a weak factor. 

From the slopes of the lines in each plot shown in Figure 8, it can be seen that, 

when factors are pure, factor omission rates decrease (accuracy increases) as loadings 

increase (dashed line); this is true whether factors are orthogonal or correlated. That 

is, the grey solid line slopes downward in each plot. When factors are orthogonal (top 

left plot), accuracy increases with loadings, and performance with pure factors in the 

four factor data is between performances where two latents share one (better) and two 

(worse) indicators. For four factor data when factors are correlated at .5, sharing 0 

and sharing 1 indicator conditions did not dramatically affect performance. However, 

in the six factor data, sharing had a dramatic effect on accuracy and this did not seem 

to matter whether the factors were correlated or orthogonal. In the six factor data, it 
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seems that effects of loadings to decrease factor omission errors are undone if impure 

factors are present. This is more pronounced than in the four factor results. 

Figure 8. CCA dimension discovery by loadings/independence conditions, 
four and six factors 

 
Figure 9 shows the omission error rate (for indicators) across conditions for 

the four and six factor data. The indicator omission rates decrease as loading strength 

increases for both four and six factor data with pure factors, but the relationship to 

loadings tends to be stronger in the six, relative to the four, factor data. When any 

sharing is present (solid lines), omission errors tend to increase as loadings increase 

for six factor data, and not for four factor data. 
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Figure 9. CCA Omitted indicators per solution across loadings/independence 
conditions for four and six factors. 

 
As with Figure 8, there are six observations for each loading in each panel, 

representing the six (2x3) combinations of sample sizes and presence of a weak 

factor. The variability in these six points shrinks as loadings increase, and this trend is 

observed for all purity condition levels. 

Similar to the factor omission error results (Figure 8), omission errors for 

indicators tended to decrease (i.e., CCA performance improved) with strength of 

loading for both four and six factor solutions. Only the six factor results reflect a 

sensitivity to shared indicators in terms of indicator omission error rates.  

The errors of commission for indicators, where the CCA solution placed an 

indicator away from its sentinel or either with or without its sentinel but in the 
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minority on a factor, are shown in Figure 10.  The commission error rates were fairly 

small, reflecting the conservative nature of TETRAD (i.e., the algorithms will omit a 

path when there is evidence of no path as well as when there is insufficient evidence 

for the path; an extra path is less likely by design).  

Figure 10. CCA committed indicators per solution across loadings/independence 
conditions for four and six factors. 

 
When factors were correlated, as reflected in the accuracy plots shown in 

Figure 8, fewer factors were found; thus lower commission error rates for the 

correlated factors conditions (right plots) is expected. Like omission errors, sharing 

one or two indicators did not alter error rates given that the factors were impure (solid 

lines are very close in all conditions).  Unlike the omission errors, however, Figure 10 

shows that only commission errors for six orthogonal factors (lower left plot) 
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decreased with loading strength; commission errors were essentially flat in all other 

contexts. 

Figure 11 presents CCA performance at dimension discovery (factor omission 

errors) for the four and six factor data across loadings and the presence of a weak 

factor.  

Figure 11. CCA dimension discovery by loadings/weak factor conditions, four 
and six factors 

 
Within each panel, the performance under the three purity conditions. As 

noted, these conditions were not part of the zero and one factor results. There are six 

observations for each loading in each panel, representing the six (2x3) combinations 

of sample sizes and whether factors were orthogonal. 
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From the slopes of the lines in each plot shown in Figure 11, it can be seen 

that, when factors are pure, factor omission rates decrease (accuracy increases) as 

loadings increase (dashed line); this is true whether there is or is no weak factor. That 

is, the grey solid line slopes downward in each plot. 

When all factors have the same loading strength (top left plot), accuracy 

increases with loadings, and performance with pure factors in the four factor data is 

between performances where two latents share one (better) and two (worse) 

indicators. For four factor data in the presence of a weak factor, sharing 0 and sharing 

1 indicator conditions did not dramatically affect performance. However, in the six 

factor data, sharing had a dramatic effect on accuracy and this did not seem to matter 

whether there was a weak factor. In the six factor data, it seems that effects of 

loadings to decrease factor omission errors are undone if impure factors are present. 

This is more pronounced than in the four factor results. The effects of the weak factor 

are similar to those of the independence of factors (Figure 8). 

Figure 12 shows the omission error rate (for indicators) across conditions for 

the four and six factor data. The indicator omission rates decrease as loading strength 

increases for both four and six factor data with pure factors, but the relationship to 

loadings tends to be stronger in the six, relative to the four, factor data. When any 

sharing is present (solid lines), omission errors tend to increase as loadings increase 

for six factor data, and not for four factor data. 
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Figure 12. CCA Omitted indicators per solution across loadings/weak factor 
conditions for four and six factors. 

 
As with Figures 8-11, there are six observations for each loading in each 

panel, representing the six (2x3) combinations of sample sizes and whether factors 

were orthogonal.  

Similar to the factor omission error results (Figure 11), omission errors for 

indicators tended to decrease (i.e., CCA performance improved) with strength of 

loading for both four and six factor solutions. Only the six factor results reflect a 

sensitivity to shared indicators in terms of indicator omission error rates. These 

results stratified by presence of a weak factor are similar to those shown in Figure 9 

stratified by independence of factors. 
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The errors of commission for indicators, where the CCA solution placed an 

indicator away from its sentinel or either with or without its sentinel but in the 

minority on a factor, are shown in Figure 13.  The commission error rates were fairly 

small in CCA solutions, reflecting the conservative nature of TETRAD (i.e., the 

algorithms will omit a path when there is evidence of no path as well as when there is 

insufficient evidence for the path; an extra path is less likely by design). Since CCA 

performance at finding factors was lower when weak factors were present, 

commission of indicator errors were also lower (right plots, Figure 13) for four and 

six factor data.  

Like indicator omission errors, sharing one or two indicators did not alter 

commission of indicator error rates in four factor data given that the factors were 

impure (solid lines are very close in all conditions).  Unlike the omission errors 

shown in Figure 12, only commission errors for six orthogonal factors (lower left 

plot) decreased with loading strength; commission errors were essentially flat in all 

other contexts. 

The presence of a weak factor has no apparent impact on the commission of 

indicator error rates in the four factor data (top plots) but the overall accuracy being 

lower in six factor data when a weak factor is present, relative to when there is no 

weak factor, results in a drop in the commission error rates when factors are impure 

(solid lines, lower two plots). 
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Figure 13. CCA committed indicators per solution across loading/weak factor 
conditions for four and six factors. 

 
Overall, these results for the CCA analyses have emphasized accuracy, since 

invariance or consistency, defined as (yes/no) observing 95% of the same solution 

(number of latent variables, whether accurate or not) within each set of 50 analyses, 

was only observed for the zero and one factor results. The commission error rates 

were fairly small, reflecting the conservative nature of TETRAD (i.e., making extra 

factors and paths less likely in CCA solutions), however the effects of the conditions 

was still significant for commission of indicator errors. The omission of factor and 

omission and commission of indicator errors were all significantly impacted by these 

conditions in CCA results. The commission of factor errors was only significantly 
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decreased by correlation among the factors, which might be due to lower levels of 

factors found in that condition (so commission of factors was very unlikely). 

4.3 Challenges in Computing and Interpreting CFA Results 

4.3.1 Identifying loaders when pathweights were not significant 

As described in Chapter 3, the AIC values for models were used to select the 

CEFA solution with the best fitting number of factors, i.e., to determine the number 

of found factors in the factor analytic solutions.  Confirmatory factor analyses, fitting 

a one-factor model, were used to determine whether a zero factor or a one factor 

solution fit the data best. The confirmatory analysis output from Mplus includes a test 

of the null (zero factor) model, streamlining these 600 analyses.  Failures of these 

models to converge (after 2000 iterations) were observed 10%-40% of the time in the 

zero factor samples. When the models did converge, in every case AIC supported a 

one factor model over the zero factor (null) model, but the estimated loadings of the 

indicators were not significantly different from zero – the individual item loadings 

were not significant, but their magnitudes and pattern suggested evidence for a 

common factor. In all but two cases where AIC supported a one-factor model from a 

zero-factor sample, no factor loadings were estimated at all. 

Thus, the common factor analysis results included inferred zero factor 

solutions when the confirmatory factor analysis with all 4 indicators loading on one 

latent variable failed to converge (this only occurred for true zero factor samples); 

supported one-factor solutions when AIC supported a one factor model over the null 

(zero factor) model, but with no factor loadings estimated;  and supported one-factor 

solutions when AIC supported a one factor model over the null model and with factor 
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loadings estimated and, relative to the loading standard errors, loadings were either 

significant (loading/SE≥1.96) – resulting in the indicator being “assigned” to that 

factor, or not significant (loading/SE<1.96) –resulting in the indicator not being 

assigned to that factor. 

4.3.2 Defining and counting omission errors for indicators from “extra” 

factors  

Estimating the consistency of solutions in the CFA programs created 

challenges for the estimation of consistency of solutions from the factor analyses as 

well, because it was important that the results from the two methods were comparable 

in some senses. The error counting rule set provided in Appendix 2 was applied to the 

CFA results. The scoring rules can be summarized as comprising two stages and two 

defaults. Stage 1: look for a sentinel, the variable of the factor in the population that 

signals which population factor has been found. Stage 2: if no sentinel is found, the 

found factor is identified as the one in the population to which the majority of 

assigned indicators belong. Default 1: if the sentinel and majority rules do not lead to 

the identity of the found factor, identify the found factor as that to which the first 

indicator(s) belong; all other indicators (missing or present) are errors, classified as 

appropriate. Default 2: for shared indicators conditions only, if there is no sentinel for 

population factors 2 (x5) or 3 (x9) and x8 (S1) and/or x7 (S2) appear, treat them as if 

they represent factor 2.  

The CFA results produced extra factors more often than the CCA results did, 

with the additional complication that CFA results could have indicators loading twice 

in a solution. As noted elsewhere, while the BuildPureClusters algorithm of 
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TETRAD’s correlation constraint analysis (BPC) can only assign an indicator to a 

single latent variable, this is true of neither confirmatory factor analysis (for the zero 

and 1- factor solutions) nor common factor analysis (for the 4- and 6- factor 

solutions).  

4.3.3 Success of the sentinels for identifying omission errors for 

indicators 

The use of sentinels in identifying factors for the purpose of identifying, 

classifying and counting errors led to different difficulties in the CFA context. While 

sentinels were useful in decisionmaking in TETRAD solutions, since sentinels and 

their non-sentinel co-loaders could appear on >1 factor, this complicated the error 

counting. That is, it was not possible to observe one sentinel loading on two factors in 

CCA but it was possible, and was observed in the CFA results. The CCA errors were 

achieved factor by factor, so that commissions like one indicator loading twice within 

one solution were not specifically counted –they were treated as simple indicator 

commission errors. 

4.3.2 Observing one-indicator and zero-indicator factors  

Because we considered indicators to load on factors in the CFA results only if 

the pathweight divided by its standard error was greater than 1.96 (statistically 

significantly different from zero- with no consideration for adjustments for the 

multitudes of comparisons), it was possible for one and even zero indicators to be 

assigned to a factor that the solution found.  
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4.4 CFA Results 

4.4.1 Discovering dimensions, missing or mis-assigning indicators: 

CFA 

Given the foregoing, and together with the rules articulated in Appendix 2, the 

results for CFA at uncovering the dimensionality of the data can be discussed. 

Descriptions of results (Figures 14-17) are followed by the main effects ANOVA 

results (Table 4) and condition specific results (Figures 18-25).  

As described earlier, confirmatory factor analysis (with maximum likelihood 

estimation) was used to fit a one factor model to the zero and one factor data in order 

to obtain the AIC values that would be used to identify the best fitting factor model in 

the four and six factor data. For the zero and one factor data, the confirmatory 

analyses proceeded in the same manner: one factor, with variance fixed at 1, was 

modeled as the single cause of the four indicators in the sample. The paths of each 

were freed for estimation.  

The confirmatory analysis results found an average of 0.73 (SD 0.09) factors 

in the samples generated from uncorrelated indicators. This average represents the 

fact that 72.67% of trials with zero factor data supported (by AIC) the one-factor 

model over the null model; in the 27.3% of cases where the one-factor model was not 

found to fit better than the null, the model failed to converge, which was interpreted 

as a zero-factor model (i.e., no model) fitting better. Although 72% of the analyses 

reflected a better fit for one factor, only two of 150 trials yielded any indicators with 

paths that were significantly different from zero (path/SE(path) > 1.96). Thus, given 

that 108 of 150 trials found a factor and only a total of five indicator commission 



 

 86 
 

errors were made for the zero factor data, the commission error rate for indicators was 

4.6%. 

When compared to the null model, the one-factor confirmatory factor analysis 

models fit to the one-factor samples never supported the null model (100% accurate 

and 100% consistent). Every result in one-factor data assigned all four indicators and 

paths were always statistically significantly greater than zero, so neither commission 

nor omission errors were observed for one-factor data.  

The four- and six-factor data were analyzed using common factor analysis and 

the number of factors in the model with the best AIC (of all models fit to each sample 

extracting from 1 to correct # +2 factors) was recorded as the “winning” fit.  

Based on these AIC-identified solutions, four-factor samples yielded an 

average of 3.72 (SD .75) factors found, and collapsing over all conditions (apart from 

number of latents in the population), with an average of 0.28 (SD 0.75) latent 

variables omitted from each solution. The average omission error rate for indicators 

(including four indicator omissions for every missed latent), was 1.22 (SD 0.50). In 

other words, for every result based on samples from a four-factor population, an 

average of 0.28 latent variables, and 1.2 indicators were omitted. An average of 0.18 

(SD 0.07) extra factors were found and 4.32 (SD 1.94) indicators were mis-assigned. 

Six factor samples yielded an average of 5.13 (SD 1.55) factors found, with 0.87 (SD 

0.1.55) extra factors found. An average of 1.13 (SD .50) indicators were omitted from 

six factor solutions and 8.08 (SD 3.45) indicators mis-assigned. Unlike for the CCA 

results, commission of latent variable errors were anticipated to be sufficient for 

analysis (e.g., Silva 2005 reported them be the more frequently occurring error for 
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factor analysis in his simulation) so unlike the CCA results, they are included in the 

CFA plots and analyses that follow. (In section 4.5, when the results from the two 

methods are compared, commission of latent variable errors will be considered from 

both methods). 

Figure 14 shows the error rates (average number of omitted factors, indicators 

mis-assigned (commission errors) and indicators un-assigned (omission errors)) by 

sample size for the three loadings conditions, collapsing over purity, presence of a 

weak factor, and whether factors were correlated or orthogonal.  

The one-factor results appear in the top row of plots. For these samples, error 

rates are overlaid at zero, as no errors were made on one factor data. For four factor 

data, commission errors for indicators appears to increase slightly as loadings 

increase while the other error type tended to be flat as sample size and loadings 

increase.  

For six factor data with strong loadings, the commission error rate increased 

linearly with sample size; this trend was not observed in six factor data for other 

loadings. All four types of errors seemed to vary with the loadings in six factor data 

only, with the variation coming from factor omissions (dash-dot line) and indicator 

commission errors.  

The commission of factor error rates are flat for all plots while the omission of 

factor error rates improve over sample size in the weak loading condition, and slightly 

from N=100 to N=300 in the medium loading condition, but otherwise the rate is 

unaffected by loading or sample size. Commission errors for indicators increased as 

the number of factors increased. 
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Figure 14. CFA Error rates by sample size and loadings for one, four and six factors.  

 
Purity of factors (whether two latents shared indicators in the population), 

presence of a weak factor, and independence of factors were only features in the four- 

and six-factor samples. Figure 15 represents the error rates (omitted and extra factors, 

indicators mis-assigned (commission errors) and indicators un-assigned (omission 

errors)) by sample size for the three purity conditions, collapsing over loadings, 

presence of a weak factor, and whether factors were correlated or orthogonal. In 

Figure 15 it can be seen that omission, but not commission errors for factors tended to 

decrease as sample size increased, and this was true for all purity conditions. Omitted 

factor errors did not increase for share 0 to share 1 but did increase when two factors 

shared two indicators and this sensitivity to purity was more pronounced in the six-
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factor results; commission of factor rates appear unaffected by purity. Indicator errors 

of omission (grey solid line) and commission (black solid line) tended to increase 

(slightly for the omissions) as factors became less pure. The increase in indicator 

commission errors was fairly linear and more pronounced for six factor data than for 

four factor data. The factor errors were less dramatically affected by purity in either 

four or six factor data, but the six factor data factor omission rates decrease as sample 

sizes increase, and this pattern is not apparent in the four factor data. 

Figure 15. CFA  Error rates by sample size and purity for four and six factors.  

 Figure 16 represents the error rates by sample size for the conditions 

with and without a single weak factor, collapsing over purity, loadings and whether 

factors were correlated or orthogonal. 
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Figure 16 suggests that the presence of a weak factor may slightly increase 

factor omission errors and slightly decrease factor commission errors, although factor 

discovery improved (omission errors decreased) as sample size increased. 

Commission error rates for indicators are highest for six factor data without a weak 

factor. With one weak factor the commission errors for indicators are not sensitive to 

sample size; increases in commission errors for indicators as sample size increases is 

not apparent in the presence of one weak factor for either four or six factor data..   

Figure 16. CFA Error rates by sample size and presence of weak factor for four and 
six factors.  

 

The effect of a weak factor is not pronounced for error rates in four factor 

data; the factor omission error rate (grey dash-dot line) increases, and appears to 
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become more sensitive to sample size in the presence of a weak factor.  In six factor 

data there is a more pronounced effect of a weak factor on the factor omission rate 

(grey dash-dot line) in terms of its increase in the presence of a weak factor and a 

greater sensitivity to sample size. The effects on indicator error rates is most 

pronounced for six factor data, with a sensitivity to sample size for indicator 

commission errors (black solid line) disappearing in the presence of a weak factor. 

Figure 17 represents the error rates by sample size for the conditions when 

factors were orthogonal or correlated at ρ=.5, collapsing over purity, loadings and 

whether there was a weak factor.  

Figure 17. CFA Error rates by sample size and independence for four and six factors. 
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Figure 17 reflects a reduction in factor omission rates, most clear in the six 

factor data, as well as a reduction in the indicator omission rates for both for and six 

factor data. This impact of correlated factors is the opposite of this condition’s effect 

on the CCA performance. This effect appears most striking for these two rates (factor 

omission, dash-dot grey line and indicator commission, black solid line) in the six 

factor data (lower right plot). 

 As will be seen in Figures 18-25, the variances of values for the main effects 

were not necessarily equal across groupings, so one-way nonparametric ANOVAs 

(Kruskal-Wallis) were carried out comparing the three main error rates (factor and 

indicator omission, indicator commission) across the levels of the condition variables. 

These results are given in Table 4.  

Table 4. Main effects for conditions on errors from CFA 
 
 Omission 

errors- 

factors 

Commission 

errors- 

factors 

Omission 

errors- 

indicators 

Commission 

errors-  

indicators 

Sample size 
(100, 300, 500)  

χ2
2= 18.36  

*** 
χ2

2= 0.39 
p=0.8 

χ2
2=0.36  

p=0.8 
χ2

2=1.42 
p=0.5 

Number of factors 
 (0, 1, 4, 6)  

χ2
2= 15.65 

** 
χ2

2= 10.79 
** 

χ2
2= 35.24 

***  
χ2

2= 90.10 
*** 

Strength of relations 
(.8, .6, .4)  

χ2
2=84.39 

*** 
χ2

2=2.09 
p=0.3 

χ2
2= 0.84 

p=0.66 
χ2

2=5.44 
p=0.066 

Saturation  
(pure, share 1, share 
2)  

χ2
2=5.34  

p=.069  
χ2

2=6.47  
*  

χ2
2= 124.78 

*** 
χ2

2=56.93 
*** 

Weak factor 
 (yes, no)  

χ2
1= 29.35 

*** 
χ2

1= 17.64 
*** 

χ2
1=0.01 

p=0.9 
χ2

1= 0.39 
p=0.53 

Structural model 
(independent, 
correlated factors) 

χ2
1= 4.98 

* 
χ2

1= 0.11 
p=.7 

χ2
1=0.13 

p=0.7 
χ2

1=15.26 
*** 

* p<0.05; ** p<0.01; *** p<0.0001  
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The results in Table 4 suggest that, when collapsing across the other 

conditions –including number of factors in the population all conditions, except for 

saturation, affected CFA’s performance at dimensional discovery in terms of omitting 

factors. Factor commission errors (finding extra factors) were affected by the number 

of factors, saturation, and the presence of a weak factor.  Indicator omission rates 

were affected by the number of factors and the degree to which factors were pure, 

while indicator commission rates were significantly affected by the number of factors, 

independence, and purity of factors.  

4.4.2 CFA performance by conditions 

Figure 18 presents CFA performance at dimension discovery (factor omission 

errors) for the four and six factor data across loadings and whether factors were 

orthogonal. Within each panel, the performance under the three purity conditions 

(share 0, open diamond; 2 latents share 1, star; 2 latents share 2, filled circle).  

As noted, these conditions were not part of the zero and one factor results. 

There are six observations for each loading in each panel, representing the six (2x3) 

combinations of sample sizes and presence of a weak factor. 

From the slopes of the lines in each plot shown in Figure 18, it can be seen 

that factor omission error rates decrease (accuracy increases) as loadings increase 

(dashed line); this is true whether factors are orthogonal or correlated and for all 

purity condition levels. This pattern is much simpler than in the CCA results.  

However, in the six factor data, improvements in factor omissions is shallower (less 

change as loadings increase) for correlated factors than for uncorrelated factors. This 

is more pronounced than in the four factor results. 
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Figure 18. CFA Factor omission errors by independence/loading conditions, 
four and six factors 

 
 

Figure 19 shows the commission error rate for factors across conditions for 

the four and six factor data. The error rates tend to vary little by purity condition 

although variability in factor commissions appears to decrease as purity decreases. 

The effects of correlated factors are not pronounced when factors are pure and when 

two factors share one or two indicators (solid lines) the factor commission errors tend 

to respond to loadings (unlike when factors share no indicators, dashed line).  
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Figure 19. CFA Extra factors found per solution across independence/loading 
conditions for four and six factors. 

 

Figure 20 shows the omission rates for indicators. These errors appear 

unaffected by correlated factors when factors are pure (grey dashed lines) and when 

two factors share one indicator (grey solid line). When two factors share two 

indicators, error rates that tended to increase as loadings increase instead were flat, or 

slightly decreased with increasing loadings. Omitted indicator errors were more 

common when factors were not pure, although when two indicators were shared, 

loadings were positively associated with more omitted indicators when factors were 

orthogonal.  
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Figure 20. CFA Omitted indicators per solution across conditions for four and six 
factors. 

 
 

Factor commission errors for indicators tended to decrease (i.e., CFA 

performance improved) with strength of loading for both four and six factor solutions. 

Only the six factor results reflect a sensitivity to shared indicators in terms of 

indicator omission error rates.  

The errors of commission for indicators, where the CFA solution placed an 

indicator away from its sentinel or either with or without its sentinel but in the 

minority on a factor, are shown in Figure 21.  The commission error rates were far 

greater than for the CCA results. 
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When factors were correlated, fewer factors were found; thus lower 

commission error rates for the correlated factors conditions (right plots) is expected. 

Like omission errors, sharing one or two indicators did not alter error rates given that 

the factors were impure (solid lines are very close in all conditions).  Unlike the 

omission errors, however, only commission errors for six orthogonal factors (lower 

left plot) decreased with loading strength; commission errors were essentially flat in 

all other contexts. 

Figure 21. CFA committed indicators per solution across conditions for four and six 
factors. 

 
Figure 21 shows the commission error rate for indicators across conditions for 

the four and six factor data. The indicator commission rates tended to decrease as 

loading strength increases for both four and six factor data with pure factors when 
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factors are uncorrelated, and the relationship to loadings tends to be stronger in the 

six, relative to the four, factor data. When any sharing is present (solid lines), 

commission errors appear to be affected slightly by strengths of loadings in the 

presence of correlations among factors. Commission errors for indicators are lower 

when factors are correlated for all cases. 

In Figures 22-24, the observations for each loading in each panel represent the 

six (2x3) combinations of sample sizes and whether factors were orthogonal.  

Figure 22 presents CFA performance at dimension discovery (factor omission 

errors) for the four and six factor data across loadings and the presence of a weak 

factor. Within each panel, the performance under the three purity conditions. As 

noted, these conditions were not part of the zero and one factor results. There are six 

observations for each loading in each panel, representing the six (2x3) combinations 

of sample sizes and whether factors were orthogonal. 

When no weak factor is present, there are small differences in the levels of 

factor omission errors depending on whether factors are sharing indicators, and in six 

factor data there is a stronger effect of factor loadings on this error rate. The patterns 

are similar in the presence of a weak factor, suggesting that its presence did not 

dramatically affect CFA performance in terms of factor omission. 
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Figure 22. CFA dimension discovery by loadings/weak factor conditions, four 
and six factors. 

 
 
 In Figure 23, loadings appear to affect factor commission rates only for six 

factor data with pure factors when there is no weak factor (grey dashed line, bottom 

left plot) or when two factors are sharing two indicators when there is a weak factor 

present (black line, bottom right plot).  
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Figure 23. CFA Factor commissions per solution across loadings/weak factor 
conditions for four and six factors. 

 
 In the presence of a weak factor when factors are pure, factor commission 

errors increase with increasing loading for the four factor data only. 

 Figure 24 shows that, whether there was a weak factor or not, factors sharing 

indicators tended to increase the omission of indicators in the CFA solutions. The 

effects of a weak factor were only observed on this type of error when one (grey solid 

line) or two (black solid line) indicators were shared by two factors in the population. 
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Figure 24. CFA Omitted indicators per solution across loadings/weak factor 
conditions for four and six factors. 
 

 
 

The errors of commission for indicators, where the CCA solution placed an 

indicator away from its sentinel or either with or without its sentinel but in the 

minority on a factor, are shown in Figure 25.  Commission of indicator error rates 

were the highest of the four types observed in the CFA results. 

Like indicator omission errors, sharing one or two indicators did not alter 

commission of indicator error rates in four factor data given that the factors were 

impure (solid lines are very close in all conditions).  Indicator commission errors 

were essentially flat across loadings and did not appear affected dramatically by the 
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presence of a weak factor. In the four factor data, sharing increased indicator 

omission errors relative to pure factors, and this was attenuated slightly in the 

presence of a weak factor.  

Figure 25. CCA committed indicators per solution across loading/weak factor 
conditions for four and six factors. 

 
The six factor commission of indicators errors was very similar with and 

without the weak factor, with a slight decrease in errors as loadings increased in the 

presence of a weak factor. 

Like the CCA results, these CFA results are focused on accuracy since with 

the exception of the perfect performance (of confirmatory factor analysis) on the one 

factor data, consistency was very low. The omission of factor errors were 

significantly impacted by all conditions except saturation (purity) of factors, while 
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commission of factor errors were significantly impacted by the number of factors 

(mainly due to an extreme commission error rate for the zero factor data analyzed by 

confirmatory factor analysis), purity of factors, and the presence of a weak factor. For 

indicators, the commission error rates were much higher than the omission errors; the 

effects of the number of factors and the saturation conditions were significant for both 

omission and commission of indicator errors, while correlations of factors impacted 

only the indicator commission error rate. 

4.5 Comparison of Results by Method 

4.5.1 CCA vs. CFA at dimensional discovery 

The results (error rates) for the two methods were compared by a series of 

two-way ANOVAs so that effect sizes could be computed as planned (in Chapter 3). 

The analyses were also carried out via nonparametric methods (data not shown) and 

inferences were not different; parametric analysis results are given for consistency 

with the effect size reporting (since η2 values are not available from nonparametric 

analyses). Significant interactions for method with most of the conditions for at least 

one of the four error rates given in the table render the main effects less interesting, 

but all main effects are presented in Table 5A for completeness. 

The results in Table 5A suggest that, when collapsing across the other 

conditions –including number of factors in the population, CCA made significantly 

fewer errors of commission and CFA made significantly fewer errors of omission 

than the other method, respectively. This is the interpretation of every significant 

main effect in Table 5A and is consistent with the conclusions from earlier 

comparisons of CCA and CFA (Silva, 2005).  
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Table 5A. Statistics for main effects and effect sizes on errors by method for 

conditions  

 Omission errors- 

factors 

Commission 

errors- factors 

Omission errors- 

indicators 

Commission 

errors-  

indicators 

Sample size 
(100, 300, 500) 

F(2, 
450)=18.47 
*** 
 η2=0.076 

F(2, 450)=5.04 
** 
η2=0.022 

F(2, 450)=5.32 
** 
η2=0.023 

F(2, 450)=0.84  
ns 

Number of 
factors 
 (0, 1, 4, 6)  

F(3, 
448)=14.69 
*** 
η2=0.090 

F(3, 
448)=45.46 
*** 
η2=0.233 

F(3,448)=30.29 
*** 
η2=0.169 

F(3, 
448)=54.94  
*** 
η2=0.269 

Strength of 
relations (.8, .6, 
.4)  

F(2,444)=52.92 
*** 
η2=0.192 

F(2, 
450)=39.74 
*** 
η2=0.152 

F(2,444)=13.25 
*** 
η2=0.0256 

F(2, 444)=8.4 
***  
η2 0.038 

Saturation  
(pure, share 1, 
share 2)  

F(2,426)=52.92 
*** 
η2=0.192 

F(2, 426)=2.56 
ns 

F(2,426)=28.75 
*** 
η2=0.119 

F(2, 
426)=24.12 
***  
η2=0.102 

Weak factor 
 (yes, no)  

F(1,428)=26.98 
*** 
η2=0.059 

F(1,428)=41.73 
*** 
η2=0.089 

F(1,428)=3.63 
ns 

F(1,428)=.96 
ns 

Structural 
model 
(independent, 
correlated 
factors) 

F(1,428)=4.25 
** 
η2=0.01 

F(1,428)=2.87  
ns 

F(1,428)=4.53 
* 
η2=0.010 
 

F(1,428)=29.05 
***  
η2=0.064 

* p<0.05; ** p<0.01; *** p<0.0001  
 

The results in Table 5A support conclusions from the method-specific results 

that, when collapsing across the other conditions –including number of factors in the 

population, CCA made significantly fewer errors of commission and CFA made 

significantly fewer errors of omission than the other method, respectively. This is the 

interpretation of every significant main effect in Table 5A and these results are 

consistent with Silva’s (2005) findings.  
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Table 5B. Interaction effects between Method and Conditions for four error 

rates. 

 Omission errors- 

factors 

Commission 

errors- factors 

Omission errors- 

indicators 

Commission 

errors-  indicators 

Method x Sample 
size 
 

ns F(2, 
450)=5.24 ** 
η2=023 

F(2,450)=4.32  
* 
η2=.019 

ns 
 

Method x 
Number of 
factors  

ns F(3, 
448)=45.82 
*** 
η2=.235 

F(3,448)=9.71 
*** 
η2=.061 

F(3, 448) = 
28.93 *** 
η2=0.162 
 

Method x 
Strength of 
loadings 

F(2, 
444)=4.84 ** 
η2=0.021 

F(2, 
450)=5.24 
*** 
 η2=0.146 

F(2,444)=12.92 
*** 
η2=.055 

ns 

Method x 
Saturation  
 

F(2, 
426)=4.84 ** 
η2=0.021 

ns ns F(2,426)=18.73 
*** 
η2 =0.081 

Method x  
Weak factor 
  

ns F(1,428)=41.3
4, *** 
η2=0.088 

ns 
 

ns 
 

Method x 
Structural model  

F(1,428)=26.
98 *** 
 η2=.059 

F(1,428)=4.68
, * 
η2=0.011 

F(2, 426)=5.81 
* 
η2=0.013 

F(1,428)= 
10.347 ** 
η2=0.024 

* p<0.05; ** p≤0.01; *** p<0.0001  
 

Table 5B shows that the correlations-between-factors condition interacted 

with method in terms of all error rates and strength of loading interacts with method 

for all but commission of indicator errors. The effects of these conditions, and their 

interactions with method in terms of their impacts on the error rates, can be generally 

characterized as varying in strength but not direction; the main effect of method in 

every analysis was significant and the error rates were always lower for commissions 

by CCA and higher for omissions by CCA relative to CFA. Thus, the main effects of 

these conditions and their interactions with the method of estimating the dimensions 
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in a data set all lead to the same conclusion: CCA tends to extract fewer, and assign 

fewer indicators while CFA will tend to support more, and assign more indicators, in 

any factor model. Conditions that improved the performance of one method tended to 

worsen the performance of the other, resulting in significant interactions for five of 

the six conditions with the method in terms of commission errors for factors and for 

four conditions in omission errors for indicators. Purity and correlations between 

factors led to significant interactions with method for omission errors for factors and 

commission errors for indicators, the two types of errors most particular to each 

method (commission: CFA, omission: CCA). 

In Figure 26, the factor- (left column) and indicator- (right column) based 

error rates are presented for each method, stratified by each condition separately in 

bar graphs showing the mean value, with error bars representing two standard 

deviations around the mean.  For all rows except the first two (where stratification is 

by the sample size (first row) and  number of latent variables in the population, 

second row), only four and six factor data are represented. Within each plot, the error 

rates are collapsed across the other conditions. 
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Figure 26. Effects of conditions on errors (factors, indicators) by method. 
 

 
 

 
 



 

 108 
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Overall, the plots in Figure 26 reflect the greater tendencies of CCA to make 

omission type errors and of CFA to make commission errors.  The plots also reflect 

the method by condition interactions identified in Table 5B. Sample size tended to 

decrease factor omission by both methods but decreased factor commissions by CCA 

while increasing these in CFA. Increasing sample size tended to decrease the 

indicator omissions by CCA while having little or no impact on CFA indicator errors.  
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The plots stratified by number of latent variables in the population show the 

increase in errors with increasing numbers of latents, although for factor commission 

and both indicator type errors, the methods were significantly different in terms of the 

response to this condition (i.e., there was a significant method by number of latents 

interaction). The plots by loadings show the tendency for errors to decrease as 

loadings increased, although the indicator omission rates by CFA when loadings are 

medium or strong are very similar and method interacted significantly with loadings 

for the factor type errors. A significant interaction between method and purity is 

shown in the commission errors for indicator increasing with decreasing purity in 

CFA results and not varying in CCA results; a similar interaction is observed in the 

omission of factors increasing with impurity in CCA results and tending not to 

change in CFA results.  

The presence of a weak factor interacted with method only in factor 

commission errors, where adding the weak factor decreased factor commissions by 

CFA but did not affect CCA results. All error types interacted significantly with 

method when factors were either orthogonal or correlated, with unchanging or 

decreasing indicator omission errors in CFA results and increasing indicator 

omissions in CCA. The indicator commission errors by CCA changed little when 

factors were correlated relative to uncorrelated, while adding correlations between 

factors reduced CFA indicator commission errors more substantially. Factor omission 

errors by CCA increased while factor commission errors decreased across the factor 

independence condition; the opposite patterns were observed for CFA results, leading 

to these significant method-by-independence interactions. 
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4.6 Summary of Results 

4.6.1 Did CCA and CFA perform comparably and did conditions 

significantly impact either method? 

In Chapter 3 the purpose and plan for the study was laid out in a table (Table 

2). Given the foregoing results, the answers can be filled in. 

Table 6. Answers to questions of substantive interest for study 

Design characteristic Question 

Main effects 

 
Method  

All error rates were significantly different across 
methods: omission type errors were significantly 
greater for CCA and commission type errors 
were significantly greater for CFA. 

Sample size (100, 300, 500)  Errors tended to be lower as sample size 
increased over all; this was a significant 
(expected) trend. Commission errors for 
indicators were not sensitive to sample size. 

Number of factors (0, 1, 4, 6)  The error rates were significantly different across 
the number of factors in the population. This was 
not unexpected since more factors brings more 
opportunities for all types of errors. 

Strength of relations (.8, .6, .4) Errors were significantly different across 
strengths of relations, with lower error rates 
when relations were stronger. (see interaction 
note) 

Saturation (pure, share 1, share 2) Purity of factors was significantly associated 
with greater errors of omission and commission 
for factors only. 

Weak factors (yes, no)  The presence of a weak factor was significantly 
associated with greater errors of omission and 
commission for factors only.  

Structural model (independent, 
correlated factors)  

Correlations (0.50) among factors was 
significantly associated with omission and not 
commission of factor errors (see interaction 
note). 
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Interactions  

 
Method x Sample size 
 

A significant method by sample size interaction 
was observed for commission errors for factors 
and omission errors for indicators. 

Method x Number of factors  This significant interaction was driven in part by 
the increasing number of opportunities for 
making errors as factors increased and the 
different types of errors each method made when 
given the opportunity, and in part by the 
disproportionately high errors on zero factor data 
by confirmatory factor analysis. 

Method x Strength of loadings Strength of loadings is a key feature for CFA 
estimation and is not as important in CCA 
estimation since CCA uses proportionality in 
covariances rather than size. This interaction was 
predicted. 

Method x Saturation  
 

The CCA algorithm is designed to exclude 
indicators (and subsequently, their factors) when 
factors are not pure while CFA utilizes this 
information in its estimation. This interaction 
was predicted. 

Method x Weak factor 
  

Only commission of factor errors exhibited this 
significant interaction, since CFA tended to 
over-extract factors while CCA missed them 
(and any factor with a sub-threshold correlation) 
in the presence of a weak factor.  

Method x Structural model   The presence of correlations among factors 
affected all error types by increasing one type 
and decreasing the other for the two methods. 

 
Table 6 summarizes the results presented in this chapter. Discussion of their 

interpretation, and issues pertaining to the estimation and interpretation of these 

results, as well as next steps for the research on this topic, are provided in Chapter 5. 
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Chapter 5:  Discussion 
 

The discussion of this study focuses on three domains: the results themselves, 

the interpretability of the results and whether the methods are or are not comparable, 

and implications of these results for next-step research. In general, the criteria for 

interpreting the relative performances of these methods were very specific- either to 

the method, to the desired comparisons across such divergent methods, or to the 

situations that the simulation conditions might reflect. The discussion section is 

therefore also a consideration of the limitations of the study. 

5.1 Results, and their interpretation, depend on the method 

5.1.1 Relative performances by the two methods 

Overall, CCA (BuildPureClusters) was perfect (accurate and consistent) in 

estimating the true number of factors in the zero factor case; CFA (confirmatory 

analysis, the proxy for common factor analysis in this study) was inaccurate but very 

consistent in the zero case. CFA was perfect in the one factor data, across sample 

sizes and loading strengths; CCA was affected by loading strengths in the one factor 

data. Overall, CFA committed significantly fewer omission errors, and significantly 

more commission errors, for factors than CCA did; similar significant differences 

were obtained for the omission and commission errors for indicators. Neither method 

attained the invariance criterion of 95% of the 50 trials returning the same model 

beyond the one factor data in both (except the N=100 condition for CCA) and the 

zero factor data in CCA.  Thus, the answer to the main research question of this study 

(to determine if CCA was better than, or equal to, CFA) is that the methods are 
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equally good (or bad) and selecting one method will depend on the investigator’s 

purpose and the implications for errors of omission and commission. 

Under-extraction is generally considered worse, and more consistently 

damaging, result of mis-specification of the true dimensionality of the variable/score 

set, than over extraction (O’Connor, 2000; Velicer, Eaton, & Fava, 2000). However, 

the difficulties of under-extraction these authors describe come mainly from the 

implications for loadings, not for understanding the latent structure of the data, per se, 

although the example shown in Figure 1 (Chapter 1) reflects the potential impact of 

under-extraction on future science.  

On the other hand, the algorithms in TETRAD are designed specifically not to 

conclude that a common cause exists if insufficient evidence for its existence is 

found. Thus, on the surface, TETRAD was designed to under-extract if it is used to 

estimate the dimensionality of a set of variables or scores. Based on the perspectives 

of its developers, it is designed to provide evidence for causal relationships and when 

it does not find this evidence, whether that is due to insufficiency or sufficient 

evidence of no relationship, it returns “no evidence”.  This is an important – critical –

distinction between the omission errors (for factors or indicators) from CFA and 

CCA. The comparability of the methods is considered in the next section. 

Another important feature, which was common to both CCA and CFA, was 

the definitions of errors (commission, omission) used in this study. The intention was 

to simulate data – and make decisions about loadings – that corresponds to what 

practitioners usually do. All solutions were considered, and unlike other modelers 

who have used CCA (via TETRAD), all errors from all solutions were counted. This 
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resulted in a very large number of errors for both methods, unlike error rates in 

previous studies. However, like in other studies, this analysis found that CCA tends to 

make more omission type errors while CFA tends to make more commission type 

errors. The interpretation of non-convergent confirmatory one-factor models as 

supporting a zero-factor solution led to 10%-40% correct CFA results; without this 

interpretation, the CFA results would have been none correct for zero factor samples. 

As described in Chapter 2, CFA (common or confirmatory FA) cannot work if m=0; 

but giving 10-40% correct to CFA in the zero factor condition does not make it 

comparable to CCA, which was 100% correct in this condition, so this choice did not 

affect the conclusions a great deal.   

The results of this study for the other conditions were similarly not necessarily 

dependent on the method of error computation – the errors were defined in a 

consistent manner across the methods and conditions. Importantly, all opportunities 

for error counting were used (unlike Silva, 2005 where “improper” solutions were not 

included in error computations). It is unlikely that different rules for error definition 

would lead to different results, especially given the consistency of these results with 

Silva’s 2005 outcomes, in spite of very different scoring rules in this and the 2005 

study. 

Choosing one method over the other will depend on the investigator’s 

willingness to either over- or under-extract. Although not examined in this study, 

TETRAD can uncover structural relations between latent variables, which CFA 

cannot do (because it assumes a first order model). So, in addition to considering the 

implications of under- or over-extracting of factors and the commission or omission 
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of indicator assignment, investigators should consider their ultimate modeling goals. 

If structural relations are to be modeled (or uncovered) among unidimensional 

measurement models, TETRAD will work well- given the correlations are strong 

enough and the sample sizes are large (300 or larger). 

5.1.2 Dimension estimation performance 

Searching for a minimum number of factors is inconsistent with a search for 

the correct model (as very carefully outlined by Hayduk & Glaser, 2000), and a 

model that fits the data “adequately” is not necessarily the correct model 

(Bartholomew, 2007, p. 13) – CCA as implemented in this study reflects these 

perspectives.  An interesting corollary to this perspective is proposed by Herting and 

Costner (2000), who argue that determining the proper number of factors, while 

originating from “the explanatory hypotheses that motivate the model”, is simply a 

method to “improve the fit between model and data” (p. 93) – CFA as implemented in 

this study reflects these perspectives.  

Estimating the “proper” number of factors using correlation constraint 

analysis is not related to the fit of a model to the data; that is only an appropriate 

characterization for analysis techniques such as common and confirmatory factor 

analysis, or methods based on their outcomes (such as log ratio or fit statistics using 

the model χ2). The results of this study suggest that the two methods are biased 

towards under- (TETRAD) and over- (AIC/ECVI from CEFA) extraction type errors, 

so at a minimum it might be advisable to run both types of analysis to determine a 

likely level of dimensionality for a given set of data. If the CEFA and TETRAD 
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results diverge, investigators should consider confirmatory factor analysis to test 

specific hypotheses about the underlying structure and relationships. 

CCA performance was sensitive to each condition, including the presence of a 

weak factor. As was noted in the Results chapter, TETRAD requires correlations 

among observed variables to be 0.30 (Spirtes, et al. 2000); higher errors were 

observed for the weak loadings condition and with a weak factor having 50% smaller 

loadings than the other factors, the presence of a weak factor would have been 

difficult to detect in both the weak and medium loadings conditions. It is also possible 

that CCA performance was actually more susceptible to experimental conditions 

when there were more factors and stronger loadings. Some errors made in the strong-

loading condition might be most easily attributable to the conditions, whereas at least 

some of the errors in lower-loadings conditions must be attributable in part to the 

threshold of TETRAD’s sensitivity. These divergent attributions cannot be resolved 

with the data or results presented in Chapter 4. However, a future study could be 

devised specifically to test this hypothesis (of error attribution).  

Importantly, any study of TETRAD will require, as these simulations did, four 

indicators per latent variable, unidimensional latent variables, and sufficient 

population correlation coefficients. The performance capabilities of CCA 

(implemented via TETRAD) without these key requirements cannot be determined 

since the software cannot operate without the required features in the data. Any 

simulation study assumes some baseline level of conformity with assumptions; a 

simulation study with vanishing tetrads assumes at least four indicators and with 

BuildPureClusters, it assumes unidimensional factors. 
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The results suggest that correlation constraint analysis is better than 

confirmatory factor analysis at identifying the minimum number of common, 

unidimensional factors when there is no common factor in the population; as 

articulated in Chapter 3, common factor analysis does not work when there are zero 

factors, so it clearly cannot be used to determine whether zero or one is the true 

minimum number of factors. Given the interpretation of a failure of the confirmatory 

one-factor analysis to converge as a correct representation of zero factors under this 

method, the results in Chapter 4 show that data from a zero factor population were 

often (over 60% of the time) fit by a one factor confirmatory solution. By contrast, 

correlation constraint analysis (TETRAD’s BuildPureClusters algorithm) returns a 

“zero factor” solution when there is evidence of no common latent factor, when there 

is evidence of a single common factor that is not latent, when there is evidence that 

indicators have >1 cause, and when there is insufficient evidence of one causal 

common factor. As such, investigators should use it for unidimensional measurement 

models and in conjunction with confirmatory factor analysis in order to determine 

why a zero factor model was returned. 

5.1.3 Success of the sentinels for identifying omission errors for indicators 

As outlined in Chapter 3, counting omission and commission of indicator 

errors required the determination of which factor in the population a set of indicators 

grouped together in a solution was representing. In this study the first indicator on 

each factor in the population was treated as a sentinel, so that when that indicator was 

observed, the other indicators that should have loaded with it would be known and 

errors could be classified. The sentinels were useful in decisionmaking for error 
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classification and counting, and there was no characteristic of the methods that would 

give rise differentially to errors of one sort or the other, given the use of sentinels in 

decisionmaking. In some solutions (as described in Appendix 2) there was no sentinel 

assigned to a factor; in other solutions the factor was only comprised of sentinels. 

Designating sentinels was a useful tool that facilitated the analyses and permitted 

similar information to be used from CCA and CFA solutions for classifying errors – 

but a classify-factor-according-to-majority-indicators rule was also important. 

However, their use suggests that these results might not generalize to cases where all 

items load equally on their common factor; since these results are consistent with 

earlier simulation results and because the true structure is unknown in real data, the 

implications for using sentinels is unclear, and could be quite minimal.  

In his simulation study, Silva (2005; Silva, et al. 2006) used a simple majority 

rule to determine which factor a set of indicators represented for the CCA method 

results, but used a different rule for the factor analysis results: the absolute values of 

the loadings of indicators in a solution (grouped according to respective true latents) 

were summed and whichever true latent the largest absolute value of the sum 

pertained to was designated the latent that those indicators represented; the other 

indicators were classified as commissions and missing (from the true latent) 

indicators were identifiable. Unlike Silva’s 2005 study, this study specifically sought 

the same type of information from solutions from each method, such that any factor 

loading from a CFA solution was retained (=1) if it was statistically significantly 

different from zero (loading/SE(loading)>1.96), otherwise it was excluded from 

consideration. The results could have been different if other choices had been made 
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for error counting – but the conclusions (CCA tends to under-extract and omit 

indicators/CFA tends to over-extract and commit indicators) were probably not 

dependent on these error counting rules since these results were similar to Silva’s 

(2005). 

5.1.4 Zero factor condition 

The study included a zero (uncorrelated) condition, although zero factors are 

impossible for CFA to estimate.  To circumvent this problem, confirmatory analyses, 

fitting a one-factor model, were used to determine whether a one or a zero factor 

solution would be better fit to the zero and the one-factor samples. As described 

earlier, maximum likelihood estimation was used in order to obtain standard errors 

for the pathweights in these solutions. This was deemed acceptable, given the 

demonstration by Briggs and MacCallum (2003) that maximum likelihood is less 

accurate that ordinary or unweighted least squares only when weak factors are present 

(i.e., not for these one-factor models). AIC values for models were used to select the 

solution with the better-fitting number of factors, i.e., to determine the number of 

found factors in these samples – just as AIC was used to determine which CEFA 

model (i.e., number of factors) was the best solution for the 4-6 factor samples.  

The results from the confirmatory analyses are attributed to the common 

factor analysis method, which is reasonable because there was no other way to test 

these data in a model-implied-covariance estimation procedure. Also, all of the not-

CCA (i.e., CEFA + Mplus) solutions involved computation of AIC to determine the 

number of factors in the solution. The estimation of the fit of the model to the data 

was not achieved in the same manner, but the similarities outweigh the differences. 
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The error counting rules were applied to solutions where AIC supported a one factor 

model over the zero factor (null) model, but where the estimated loadings of the 

indicators were not significantly different from zero.  In all but two cases where AIC 

supported a one-factor model from a zero-factor sample, no factor loadings were 

estimated. Thus, the error counting facilitated obtaining results from all solutions. 

5.3 Are CCA and CFA Results Comparable? 

5.3.1 The results ARE comparable 

The introduction (Chapters 1-2) outlined the differences between the 

estimation and philosophical perspectives behind the two methods considered in this 

dissertation. The results are comparable in the sense that an investigator who wishes 

to understand the causal structure of a set of variables should consider all relevant 

tools. These results do not suggest that one or the other of these methods is not 

relevant to the problem of estimating causal structure. On the contrary, the arguments 

leading to the proposal and execution of this work is that an investigator must choose 

the right tool for the job, and knowing that TETRAD (or CCA) is an option is 

important for full consideration of all tools, as well as what the “job” really is.   

Many reasons for considering the results not comparable are articulated in 

Section 5.3.2. These reasons are focused on quantitative, and not qualitative 

comparisons. It is clear from these results (Chapter 4) that, if zero or one are plausible 

numbers of causal latent variables, CFA (or confirmatory factor analysis) are less 

accurate and less consistent than CCA. Whether the comparison of accuracy and 

consistency reaches statistical significance in an inference test is immaterial: one 

method can, and the other method cannot, perform (well) in these contexts, but both 
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methods will ‘try’ to provide some solution. Both methods will appear to work, but 

only CCA can do what it is supposed to do to return zero or one common factor; CFA 

will always return (at least) one common factor. Similarly, if an investigator is 

interested in identifying causal latent variables with simple (pure) structure, common 

factor analysis cannot perform better than CCA, since CCA is specifically searching 

for latent causes (vanishing tetrads) and CFA is specifically estimating the 

correlations between indicators and the pre-specified number of common factors. 

(This particular feature of CCA was not tested in this dissertation.) Thus, the two 

methods are comparable because results from both methods can be productively 

discussed together, and choices made about next steps for analyses on the basis of 

results from both methods when considered together, particularly in terms of factors 

and dimensionality. This is true even though the two methods require different 

features in the data.  

5.3.2 The results are NOT comparable 

As was articulated in Chapter 4, the two methods (CCA, CFA) led to different 

challenges in terms of computing the number of errors committed by each one under 

the diverse experimental conditions this dissertation included. Similarly, these 

methods require features in the data (e.g., m>0 for CFA, at least four indicators and 

simple structure for CCA). The opportunities for indicator-related errors, and 

especially the intepretation(s) of omissions, suggest that comparing the results would 

not be particularly useful. This perspective makes sense in terms of inference testing: 

carrying out an ANOVA, and estimating effect sizes, when errors from such diverse 

methods (and when the errors can mean such different things) is not likely to be the 
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most appropriate approach to considering, or estimating, their differences.  By 

extension, if the elements that were analyzed across methods (i.e., errors) were not 

comparable, then the analysis of those elements will not be interpretable.   

Unlike the results from the indicators, the results from the dimension 

discovery were more comparable. Although the methods estimate the number of 

factors in a solution in very different ways (see Chapters 2 and 3), the number of 

factors “found” by the methods are arguably similar. There remains, however, the 

difference between what an “omission” error represents within each method: as 

defined in this study, an omitted factor in a CFA solution represents a better fit to the 

data without that factor. Within CCA an omitted factor either means evidence that the 

factor does not exist or insufficient evidence of its existence. This suggests that the 

omission errors for factors are also not strictly comparable.   

The commission errors for factors and for indicators are highly comparable in 

the two methods. The difficulty here is only for indicator omission errors: the BPC 

algorithm in TETRAD for CCA cannot assign one indicator to more than one factor, 

effectively limiting its opportunities for commission errors, and this is not the case for 

the CFA results. This suggests a sense of bias, favouring CCA by somewhat 

artificially limiting the number of commission errors for indicators. 

5.4 “Errors” are of different types and entities under the two methods 

5.4.1 Comparison, and comparability, of errors for CFA and CCA 

As noted in section 4.1.2, it was decided that omission error totals for the 

solutions from CCA and CFA would include only omissions on the correct (or fewer) 

number of factors; the first 4 or 6 factors were used and the omission errors occurring 
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in extra factors were ignored throughout. Commission errors for indicators were also 

computed similarly for CCA and CFA results as the number of commission errors 

divided by the number of times that factor was found- whether the factor was less 

than, equal to, or greater than the correct number of factors in the population giving 

rise to that sample.  Other studies involving TETRAD and/or BPC have not included 

results, i.e., counted errors from, factors that were uncovered if those factors had 

fewer than 3 indicators assigned to them. In this study, latent variables were not 

omitted from error counting if they had fewer than 3 indicators (as Silva did, because 

this is an “improper” solution from TETRAD’s perspective), resulting in the potential 

for 2-3 additional omission errors per found factor and the potential for more 

commission errors as well. This is the main reason why these results reflect so much 

higher error rates than have previously been reported (Silva, 2005; Silva, et al. 2006).  

5.5 Recommendations 
 

Herting and Costner (2000) employed a TETRAD analysis to estimate the 

number of factors in a data set and erroneously describe the outcome: TETRAD 

output does not recommend that any variables should be eliminated from a 

measurement model; TETRAD output describes whether there is evidence for a 

single latent cause for an observed variable, and in the BPC algorithm, if there is 

sufficient evidence of a second latent cause, then even if the primary cause is the 

factor of interest, TETRAD will omit that indicator from a ‘pure’ measurement 

model. A similar failure to understand the results from this software was reported by 

Yu, et al. (2007). These two reports exemplify how important a study articulating 



 

 125 
 

what TETRAD can and cannot do, and how it works, is a potentially important 

contribution to the social science literature. Further, the interpretation of missing 

paths in the BPC function of TETRAD is critically dual- indicators could be omitted 

in a solution due to sufficient evidence of no association or due to insufficient 

evidence of an association. An important feature of those studies, as well as this 

dissertation, is that all simulated data with at least four indicators per factor. If there 

are fewer than four indicators per factor, TETRAD returns some information about 

the model, but might not return the correct structure. 

It is important to point out that TETRAD has other functions, including one 

that simply identifies clusters (FindPattern)- which to contrast with BuildPureClusters 

could be nicknamed “BuildMessyClusters”- it does not seek anything like simple 

structure. FindPattern is the TETRAD algorithm that feeds results into 

BuildPureClusters, and is not implemented specifically in TETRAD (although it can 

be isolated using the Java source code). A discussion of the FindPattern algorithm is 

beyond the scope of this work, but an interesting follow up study would be to 

compare the performances, and interpretabilities, of FindPattern and 

BuildPureClusters on data that vary along dimensions similar to those studied in this 

dissertation. Again, the algorithms have completely different purposes and may 

utilize the same vanishing tetrads as evidence for “decisionmaking” (whether to keep 

or eliminate associations between variables), but they have totally different outcomes 

(and FindPattern is the analytic step that feeds results to BPC); and comparing their 

results would be challenging.  The recommendations based on this dissertation work 
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are focused on further exploring the performance of BPC with respect to uncovering 

dimensionality in data. 

5.5.2 Next research steps 

  These results suggest that BPC could be more useful in ruling zero or one 

factors into consideration, since AIC from confirmatory analyses was deemed to 

reflect the correct solution 20-38% of the time for zero factors (i.e., failures to 

converge were treated as “correct”).  Minimum average partials (MAP, Velicer, 1976) 

or parallel analysis (PA, Horn, 1965) could be more useful than CFA (or using AIC) 

for this study – an empirical question that would be an interesting follow-up to this 

dissertation. Comparing MAP and PA to CCA would be a more direct comparison of 

the dimensional recovery performance of the three methods, and information, like 

loadings, would not need to be sacrificed in order to obtain comparable outcomes 

from these methods the way it was for CFA results in the present study. 

Like Velicer (2000) recommended, the results of this dissertation tend to 

support a two-step approach to estimating the dimensionality prior to a CFA or 

confirmatory analysis. Investigators could use BPC to generate the lower bound of 

the number of factors in the solution, as an alternative to using minimum average 

partials (MAP, Velicer, 1976) or parallel analysis (PA, Horn, 1965).  BPC would be 

an interesting alternative to MAP and PA because BPC uses the same covariance 

matrix as will be used in the confirmatory analysis, but computes different 

estimations (while MAP and PA use the same matrix and the same estimations as the 

confirmatory analysis, thus potentially creating more sample-specific or overfit 

results).  The second step would be to perform common factor analysis to estimate 
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loadings from the BPC-identified lower bound to the maximum reasonable number of 

factors (e.g., Bartholomew & Knott, 1999); solution fitnesses can then be compared 

using AIC or other criteria (Anderson, 2008).  

As argued by Velicer (2000) and others, identifying the latent structure that 

underlies a set of observed variables, and the estimation of factor loadings, requires 

both dimension estimation and another algorithm for the loadings. The choice for 

estimation of dimensions should consider whether zero and one factor solutions are 

reasonable, and whether causal structure is the ultimate goal. Another follow-up study 

would be to compare performance of BPC (CCA), MAP and PA at dimension 

estimation when the data are causally generated and when they are not (i.e., if latent 

variables emerge from the indicators, rather than causing them).  

A condition that was not included in this dissertation is a path model, where 

the common cause of observed variables-correlation is another observed variable. 

Since TETRAD (and BPC) are unique in their inclusion of a non-vanishing partial 

correlations test, to rule out observed variables as causes in the model. Also, an aim 

of the TETRAD developers is to support uncovering measurement models in support 

of the development and testing of structural models. For example, the BPC algorithm 

is the step before the TETRAD algorithm MIMBuild, multi-indicator model builder, 

which explores the tetrads and partial correlations, as described in Chapter 2, for 

evidence of structural relations between the measurement models identified by BPC. 

In this context, the sequential nature of the estimation by CCA might provide 

different outcomes as compared to another approach to structural equation modeling 



 

 128 
 

(SEM) such as the exploratory SEM methods recently introduced in MPlus 

(Asparouhov & Muthén, in press). 

Finally, the simulations were designed to challenge the capabilities of the two 

methods (small sample sizes plus weak factors plus correlated factors in some cases); 

an interesting follow-up study would be to document what parameters each method 

requires in order to be 100% accurate and consistent. This particular study would be 

very useful to show, above and beyond the divergent purposes, approaches, and data 

requirements for these methods, where they function best, respectively, in terms of 

sample size, strengths of associations between indicators and factors, number of 

factors, and the other features manipulated in this dissertation. 

5.5 Conclusions 
 

This dissertation was the first study of how CCA, as compared to CFA by 

OLS, performs at identifying the dimensionality of data with simple structural 

features, varying in terms of specific features of complexity often encountered by in 

multivariate data: whether factors are correlated, weaker and stronger factor loadings, 

whether factors share indicators, and when one factor is weaker than the others.  It is 

also the first study to explore accuracy and consistency (invariance), and whether 

these two characteristics are sample size dependent, for these methods. The research 

found that CCA and CFA generally perform at similar levels in terms of accuracy 

(generally high) and consistency (generally low) over repeated trials, and that this 

performance by both methods was affected by sample size, model complexity, the 

presence of weak common factors, and correlated vs. independent latent variables. 

The effects of these conditions tended to be omitting factors and indicators by CCA 
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and a combination of omitting factors and indicators and adding extra factors and 

indicators in CFA. Thus, choosing between these methods will depend on the type of 

error the investigator is most interested in avoiding.  

Although these methods performed relatively similarly, and responded 

similarly to the conditions imposed in the simulated data, they have different 

interpretations and can be used in complementary ways. For example, using CCA to 

estimate (the lower bound for) the number of latent variables in a system uses the 

covariance matrix in a different way than CFA (or other estimation procedures); thus, 

it might be possible to avoid propagating the effects of capitalization on chance if a 

CCA is followed by a confirmatory method. This lower bound will only be 

meaningful if there is sufficient information for the investigator in solutions (from 

CCA) that are unidimensional. This is a question of particular interest that is currently 

being pursued. However, there are many follow up studies that could be pursued, 

given that the data requirements of the methods are met (e.g., unidimensional 

measurement models with four or more indicators for the use of CCA).  
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Appendix 1: Simulation Table 
SIMULATION TABLE. 50 samples in each sample size cell were simulated. One 
summary (outcome) was computed for each set of 50 trials. 
Zero factors       
        
  N=100  N=300  N=500  
        
One factor       
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
        
four factors PURE  no weak factor independent factors 
        
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
        
four factors PURE  no weak factor correlated factors 
        
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
        
four factors PURE  1 weak factor independent factors 
        
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
        
four factors PURE  1 weak factor correlated factors 
        
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
        
four factors 2f share 1 indicator no weak factor independent factors 
        
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
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Simulation Table, Cont. 
        
four factors 2f share 1 indicator no weak factor correlated factors 
        
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
        
four factors 2f share 1 indicator 1 weak factor independent factors 
        
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
        
four factors 2f share 1 indicator 1 weak factor correlated factors 
        
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
        
four factors 2f share 2 indicators no weak factor independent factors 
        
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
        
four factors 2f share 2 indicators no weak factor correlated factors 
        
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
        
four factors 2f share 2 indicators 1 weak factor independent factors 
        
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
        
four factors 2f share 2 indicators 1 weak factor correlated factors 
        
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
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Simulation Table, con’t. 
        
six factors PURE  no weak factor independent factors 
        
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
        
six factors PURE  no weak factor correlated factors 
        
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
        
six factors PURE  1 weak factor independent factors 
        
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
        
six factors PURE  1 weak factor correlated factors 
        
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
        
six factors 2f share 1 indicator no weak factor independent factors 
        
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
        
six factors 2f share 1 indicator no weak factor correlated factors 
        
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
        
six factors 2f share 1 indicator 1 weak factor independent factors 
        
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
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Simulation Table, con’t. 
        
six factors 2f share 1 indicator 1 weak factor correlated factors 
        
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
        
six factors 2f share 2 indicators no weak factor independent factors 
        
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
        
six factors 2f share 2 indicators no weak factor correlated factors 
        
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
        
six factors 2f share 2 indicators 1 weak factor independent factors 
        
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
        
six factors 2f share 2 indicators 1 weak factor correlated factors 
        
  N=100  N=300  N=500  
 load weak       
 load mid       
 load strong      
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Appendix 2: Complete Scoring Rules 
 

A. Identifying best solution - the main outcome of the study 

The CCA (TETRAD) results always returned only one model. CEFA analyses were 

done for the four and six factor data, extracting from 1 – true+2 number of factors. 

The best solution had to be identified. 

 

A1. CEFA analyses were run extracting 1-6 (from 4 factor data) or 1-8 (from 6 factor 

data) factors. Which of these 6 or 8 solutions is the best one? "best" is determined by 

AIC. 

A2. the over 68,000 cefa results will be reduced to 50 from each of the conditions 

involving 4 and 6 factors, which is 10,800 of the 11,400 total simulations. 

A3. the number of factors identified by AIC as the best solution is a data point - for 

each of the 50 trials in each condition, retain number of factors identified. 

 

B. characterizing the best solution - extracting the other raw data needed for this 

study. 

 

B1. In the best solution from CEFA, what indicators loaded on what factors? A data 

file was created for the tetrad results that had variables called "latent1" - 1=latent 

variable 1 was found, 0=latent variable 1 was not found. This isn't the "first factor",  it 

is just whether or not the solution found ONE factor. For four factor data, the files 

had Latent1, latent2, ..., latent6, and 6 latent variables were extracted by tetrad about 
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four times over all the trials. Similarly, for six factor data, 8 factors were extracted by 

tetrad one time; 7 factors were extracted about 40 times overall. 

B1a. Each extracted factor was coded whether it was the factor made of items: 

- 1-4, 5-8, 9-12, or 13-16 for f4.s0 (four factors in true population, no items shared by 

latents) 

- 1-4, 5-8, 9-11, or 12-15 for f4.s1 (four factors in true population, one item (x8) 

shared by 2 latents) 

- 1-4, 5-8, 9-10, or 11-14 for f4.s2 (four factors in true population, two items (x7,x8) 

shared by 2 latents) 

- 1-4, 5-8, 9-12, 13-16, 17-20, 21-24 for f6.s0 (six factors in true population, no items 

shared by latents) 

- 1-4, 5-8, 9-11, 12-15, 16-19, 20-23 for f6.s1 (six factors in true population, one item 

(x8) shared by 2 latents) 

- 1-4, 5-8, 9-10, 11-14, 15-18, 19-22 for f6.s2 (six factors in true population, two 

items (x7, x8) shared by 2latents) 

 

B1b. Each factor had a 'sentinel' - an indicator which, if observed, tells which latent 

variable has been found. The sentinels were always the same: 

- 1, 5, 9, 13 for f4.s0 (the f4.s0 ending reflects four factors in true population, no 

items shared by latents) 

- 1, 5, 9,12 for f4.s1 (four factors in true population, one item (x8) shared by2 latents) 

-1, 5, 9, 11 for f4.s2 (four factors in true population, two items (x7, x8) shared by 2 

latents) 
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- 1, 5, 9, 13, 17, 21 for f6.s0 (six factors in true population, no items shared by 

latents) 

- 1, 5, 9, 12, 16, 20 for f6.s1 (six factors in true population, one item (x8) shared by2 

latents) 

- 1, 5, 9, 11, 15, 19 for f6.s2 (six factors in true population, two items (x7, x8) shared 

by 2 latents) 

B1c. Indicators are said to have loaded on any of the found factors in the winning 

CEFA solution if that indicator's loading/SE(loading)>1.96 [loadings after geomin 

rotation] 

B1.d Indicators can load on >1 factor in CEFA solutions. 

B2. The tetrad results from this step represent, for each of 50 solutions, the file name 

generating the results, and then the indicators, entered as the observed data for the 

variables like "loader1.1", which is that indicator which loaded on factor 1 as 

indicator #1, and "loader 2.3", which is that indicator which loaded on factor 2 as 

indicator #3. The data were entered for tetrad results as string variables, "x1" or 

"x12". Sorting was subsequently found to be 10 times faster if the xs were removed 

and the variables treated as numbers instead. 

B2a. If a factor that should have been found was not found, e.g., factor 3 in either 4 or 

6 factor data or factor 5 in the 6 factor data and not the 4 factor data, then the 

observation for that variable (e.g., loader3.2, loader 5.1) was missing. 

 

C. Summarizing the raw data: counting errors, secondary outcomes.  
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The raw tetrad output (described in B1 and B2 above) was entered manually from the 

tetrad analyses. These files comprised the 450 trials for one set of conditions, e.g., 

f4.s1.w1.i0 (four factors in population (f4), two of the 4 latents share one indicator 

(s1), one of the factors has loadings 50% of the others (a weak factor present, w1) 

and the four factors correlate at .5 (factors not independent, i0).  This is 50 trials at 

each of three loading strengths (weak LW, medium LM, strong LS) for 3 sample sizes 

(N100, N300, N500) per strength. 

C1. The primary outcome of correct # of latent variables found was obtained for each 

of the 50 trials as the sum of the variables "latent1", "latent2", etc, up to latent8 (i.e., 

if too many factors were found, they were still counted). Then four summarizing 

variables were computed. 

C1a. The number of times latent4 or latent6 was found, divided by 50, the number of 

trials gives the number of times <at least the correct number was 

achieved>/<opportunities to find factors>: *dimdisc*. 

C1b. the number of factors in each solution was computed: *found* (how many 

factors were found in each solution) 

C1c. omissions of factors were identified as 1-, 4-,  or 6-found: *fac_om*. 

C1d. the number of extra factors found was identified as 4- or 6-found>0. 

 

The mean and SD of these four variables over 50 trials was recorded in a new file, in 

addition to other variables computed after the results from item C2 below were 

completed. 
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C2. For every one of the 50 trials for the specific combination of conditions, *each 

factor* was assessed separately for errors relating to indicators specifically. To do 

this, the data were sorted using the information from a single factor, e.g., loader1.1, 

loader1.2, ..., loader1.7. Once the data were sorted based on the sentinel for whatever 

was recorded as having loaded on the first factor to be extracted (could have been the 

items of "factor 1", x1-x4 or those for "factor 4", x12-x16), the set of 50 factor 1 

results were printed. Errors were identified, classified, and counted as follows: In the 

tetrad results, the sentinel was the first loader in about 70% of cases. x1 and x13 (and 

x16, x21) were most often the first loader; x5 was usually, but not always first, and x9 

was usually NOT first, but was almost always last whenever it appeared. 

note: omission or commission errors involving a sentinel were not treated any 

differently (counted more or less) then those for non-sentinels - sentinels were only 

used for decisionmaking in terms of counting errors. 

C2a. Omission errors: any time a sentinel was observed without one or more of the 3 

other nonsentinels it was supposed to be with, each 'omitted' non-sentinel is a single 

omission error for that factor. When a majority of loaders on one factor, or a single 

sentinel, was not observed, arbitrary–but consistently applied– decisions were made 

that led to the same number and characterizations of the errors whether one or another 

factor was 'identified. 

C2a. 1) if a sentinel is observed with 3 other indicators that are not part of the 

sentinel's group, those are 3 omissions as well as 3 commissions - each error counts 

twice. 
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C2a. 2) if two sentinels plus two correct indicators are observed on one factor, this is 

counted as two omissions and two commissions. The first sentinel was chosen to 

represent to which factor the two omission and two commission errors were 'charged'. 

C2a. 3) if one sentinel, two or  three correct indicators and a second sentinel were 

observed, it was one omission and one commission error (the factor being identified 

as that constituted by the sentinel and its indicators). 

C2a.4) if there were equal numbers of nonsentinels, e.g., x2, x3, x6, x7, the first 

factor suggested (f1 in this case) was ruled the factor and the other two indicators 

were called commissions. 

C2a.5)  if there were more nonsentinels from one factor than another, majority ruled 

to determine which were commissions/omissions. 

C2a.6) errors could be just omissions, e.g., if one sentinel and one of its nonsentinels  

were put on a factor together, with nothing else, it was two omissions. 

C2a.7) errors could be just commissions, e.g., if >4 indicators were assigned to a 

factor, this could represent a complete factor (1 sentinel +3 non sentinels correctly 

assigned) plus one indicator misassigned. 

C2a. 8) in several solutions a factor had only sentinel indicators (i.e., no non-sentinels 

loading on it), e.g., x1, x5, x9, x12. This was assigned to x1 (factor 1) with 3 

omission and 3 commission errors. 

C2b. Commission errors. Any time an indicator was placed on a factor where its 

sentinel did not appear (e.g., x1, x2, ,x3, x4, x6), OR, if it was placed with its sentinel 

but as the minority (e.g., x1, x2, x3, x5, x6), OR with other of its nonsentinel co-
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loaders but as the minority on a factor (e.g., x2, x3, x4, x6, x7), it was counted as a 

commission error. 

C2c. For shared indicator conditions: 

C2c. 1) whenever x7 (S2 only), or x8 (S1 or S2) or both (S2 only) were observed to 

load together without either x5 or x9, the two sentinels for the factors by which these 

indicators were shared, if they were the majority (or only indicators), they were 

assigned to the factor with sentinel x5. 

C2c.2) for results like x5, x7, x8, x9 - which is ambiguous as to whether it is factor 2 

(x5 sentinel) or factor 3 (x9 sentinel), it was ruled factor 2 and the x9 loading was 

called an omission (x6 is missing from factor 2,  which was x5, x6, x7, x8) AND a 

commission (x9 is not part of factor 2). 

C2c. 3) similarly, for outcomes x10, x6, x7, x8 - there is no sentinel and in S2 

conditions, x7 and x8 are shared by the factor with x6 AND the factor with x10 - so 

this is an ambiguous result. It was assigned to factor 2 (6,7,8) with x10 as the 

omission and commission error. 

 

D. Each factor of the winning solution was evaluated for errors separately. the full 

solution (e.g., all four factors and all their indicators) were not examined 

simultaneously as "a solution" because how to do this consistently using the tetrad 

output was unknown. 

D.1. For each factor, the number of times, of the 50 trials, that the factor was found, 

the per factor omission rate was computed as follows: 
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D.1a. for the factor extracted first, omission errors were added from those times 

where the first-extracted factor was made of items 1-4, those where the first-extracted 

factor was made of items 5-8, those where the first-extracted factor was made of 

items 9-12, those where the first-extracted factor was made of items 13-16, and so on 

for the 6 factor solution. 

D.1.a. 1) in addition to these *recorded* omission errors, there were unrecorded 

omission errors: every time the factor was NOT found, it counted as 4 omission 

errors. 50- number of times a factor was found = number of times factor was not 

found. 

D.1b. the formula for the number of omission errors for the first-extracted factor (F1) 

was: 

{[4 x (50-<number of times F1 was found>)] + (omissions when F1 was x1-

x4+omissions when F1 was x5-x8+omissions when F1 was x9-x12+omissionswhen 

F1 was x13-x16)}/200 

 

There are 200 opportunities for omission errors on a given factor, because every 

factor had 4 indicators and every factor was searched for in 50 trials (4x50=200). 

 

D.2 Commission errors were a similar sum of commissions counted when the 

particular factor was made up of items from each possible factor, like for omissions. 

However, the denominator for commission errors was the total number of times the 

factor was found. That is,  
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D.2a. the formula for the number of commission errors for the first-extracted factor 

(F1) was: 

(commissions when F1 was x1-x4+commissions when F1 was x5-x8+commissions 

when F1 was x9-x12+commissions when F1 was x13-x16)}/total number of times 

F1 was found. 

 

D.3. Each condition, then, yielded 5-8 omission 'scores' (D1), 5-8 commission scores 

(D2), plus the four results describing the number of latent variables found (C1a - 

C1d), two of which had SDs (avg number of factors omitted and average number of 

factors COMmitted). With these summaries (summarizing the 50 trials for each 

condition set), the features the conditions represent (number of latents in the 

population, presence of weak factor, independence, purity, loadings and N) were 

combined into a single file. 
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