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Accurate turning movement counts in interchanges and intersections are priceless 

information in traffic management and traffic signal design. The time-varying nature 

of traffic conditions can be captured with the massive deployment of traffic sensors, no 

longer a viable option considering the limited budget of transportation authorities. The 

present study proposes a framework to employ the available traffic data to estimate the 

turning movement counts in freeway interchanges and arterial intersections. The 

proposed framework for interchange turning movement count estimation illustrates that 

obtaining acceptable estimates of off-ramp hourly traffic volume is possible using only 

two days of data collection on each interchange. Next, this study investigates the 

intersection turning movement count estimation. The study explores this estimation 

from three aspects using the turning movement count data in Austin, TX. First is the 



  

model structure, for which four different machine learning models are examined. The 

results indicated that the multi-layer perceptron trained on all intersections and fine-

tuned over each target intersection yields the best results. Second, since the traffic 

volume of each leg of an intersection is not always available, a two-step framework is 

proposed to estimate the approach volumes in the first step and then input them into 

the turning movement estimation model in the second step. The third aspect is the 

sensitivity analysis of turning movement and approach traffic counts ground-truth data 

sizes on the accuracy of the proposed two-step framework. These analyses indicated 

that collecting only five days of turning movement counts and deploying continuous 

traffic count sensors on a quarter of intersection approaches generate acceptable results 

with a median absolute error of approximately eight vehicles per 15 minutes. The 

application of the proposed framework in the prediction of turning movement counts 

reveals that accurate counts can be generated up to 30 minutes in advance. Additionally, 

the framework's application in traffic signal design illustrates that a single intersection's 

annual user delay cost can be reduced from 8 to 2.5 million dollars. 
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Chapter 1: Introduction 

 

 

 

1.1 Motivation 

The primary motivation of the present study is to propose a framework that can be used 

to predict the turning movement counts at intersections in real-time and modify the 

traffic signal timing per the expected demand. Modifying traffic signal timing in 

response to changes in turning movement counts can remarkably reduce the user delay 

due to reducing traffic congestion and lost time (Foy et al., 1992). 

The purpose of a significant proportion of urban travel is participation in spatially 

separated activities (Ory and Mokhtarian, 2005). The space-time distribution of 

activities induces traffic congestion on the transportation network, resulting in 

extensive loss of time and resources for the users (Downs, 1962). According to the 

latest mobility report, adverse effects of traffic congestion are not reduced and are 

becoming worse year by year (Schrank et al., 2019). Table 1 illustrates the growing 

congestion problem in the US urban areas during the past decades. For instance, each 

US auto commuter spent 54 hours in 2017 in traffic congestion delays compared to 20 

hours in 1982. Also, the total congestion cost has increased by more than tenfold during 

the same period - from 15 to 179 billion in 2017 US dollars. To elaborate on the trend 
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of increase in the nation’s cost, Figure 1 illustrates the constant increase in monetary 

and time losses of traffic congestion during the 35 years from 1982 to 2017. As shown 

in this figure, the total congestion cost is projected to exceed 200 billion dollars by 

2020 and reach 250 billion dollars by 2025.  

The traditional solution for the traffic congestion is expanding the road network 

infrastructure; however, scarcity of land, limited budget, environmental concerns, 

neighborhood residents’ objections, etc., are increasingly restricting this solution 

(Ferguson, 2018). Traffic congestion is mainly experienced during rush hours in urban 

areas, a well-known phenomenon in transportation literature called the bottleneck  

Table 1. Major findings of the 2019 Urban Mobility Report (Schrank et al., 2019) 

 1982 2000 2012 2017 5-Yr 

Change 

In
d
iv

id
u
al

 C
o
n
g
es

ti
o
n

 

Yearly delay per auto commuter 

(hours) 

20 38 47 54 +15% 

Travel Time Index 1.10 1.19 1.22 1.23 1 Point 

Wasted fuel per auto commuter 

(gallons) 

5 16 20 21 +5% 

Congestion cost per auto 

commuter (2017 $) 

$610 $920 $970 $1,080 +11% 

N
at

io
n
al

 C
o
n
g
es

ti
o
n

 

Travel delay (billion hours) 1.8 5.3 7.7 8.8 +14% 

Wasted fuel (billion gallons) 0.8 2.5 3.2 3.3 +3% 

Truck congestion cost (billions of 

2017 $) 

$1.8 $7.0 $14.5 $19.5 +35% 

Congestion cost (billions of 2017 

$) 

$15 $75 $150 $179 +19% 
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Figure 1. Total national cost and delay of congestion in the US 

effect (Xiao et al., 2013). Bottlenecks emerge in the presence of merging or diverging, 

lane drops, etc. (Chen et al., 2004). Thus, intersections are usually a bottleneck in the 

road network as they are a point where different approaches converge and diverge 

(Katriniok et al., 2017). However, this is not limited to arterials and intersections. In a 

freeway system, the same issue arises at the location of interchanges. Reducing the 

congestion on intersections and interchanges requires information on turning 

movements and through movement traffic volumes. This information is essential for 

designing and improving intersections and interchanges and optimally setting traffic 

signal timings (Nihan and Davis, 1989).  

Turning movement counts in a road network are critical for analyzing high-level traffic 

conditions such as origin-destination (OD) patterns. Besides, this data can provide vital 

information for micro traffic operations. For instance, turning movements can be 
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feedback to the traffic controller to dynamically set the traffic signal timings or change 

the traffic signal phasing in real-time. 

Since traditional traffic data collection methods are cost- and/or labor-intensive, 

available data for this purpose is limited both temporally and spatially. In fact, due to 

the budget constraints of the transportation agencies, the turning movement count at 

intersections is not available for most, and for those with a data collection record, the 

duration of data collection is at best once or twice a year to set the signal timing until 

the following data collection. Therefore, relying on such sparsely collected data to 

predict the turning movement traffic counts, which is a complicated behavior, cannot 

provide enough accuracy levels (Hu and Liou, 2012). However, the recent growth in 

the amount of available heterogeneous traffic information besides the advanced 

modeling methods has provided transportation planners the opportunity to estimate the 

turning movement counts with accurate-enough precision (Mahmoud et al., 2021). 

Therefore, considering the described obstacles in continuous data collections, 

especially for turning movement counts, investigating the methods that can be used to 

predict this traffic behavior is of particular importance to the transportation authorities. 

1.2 Scope of the dissertation  

This study aims to estimate the turning movement traffic counts at junctions of the road 

network. The underlying theory behind this research is that traffic volumes can be 

estimated using the recently adopted data sources such as probe vehicle data, which are 

used to estimate traffic speed. Many studies in the literature have shown a high degree 

of correlation between traffic speed and traffic volumes. Additionally, temporal 
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features significantly impact the magnitude of turning movement counts as the travel 

patterns change with changes in months, days, and time of the day.  

In the first step of this study, an artificial neural network model is trained using volume 

count data, speed data, and road characteristics for several interchanges on the US 

national highway system (NHS) in California. This step is designed as the proof of 

concept of estimation feasibility of the turning movements based on temporal and 

spatial correlations between traffic volumes and the applicability of emerging large-

scale datasets. The model confirms the estimation feasibility of turning movement 

proportions. The results of the models illustrate that turning movement proportions can 

be predicted by having data of a set of locations or a short time duration. Besides, the 

results demonstrate the impacts of issues in the input data, such as missing data or faulty 

detectors installed on the road. 

Further, building upon the findings of the first step, the estimation of turning movement 

counts at intersections is explored. This investigation aims to estimate and predict each 

allowed movement's counts of intersections during a specific time interval. In this 

investigation, several issues are addressed, ranging from the model structure for 

estimation of turning movement counts, the required input data for model development, 

and the duration of turning movement data collection. Addressing these issues makes 

the study applicable to real-world problems and of interest to the transportation 

agencies.  

Finally, using the investigation findings mentioned above, the proposed framework is 

used in one of its applications to design the traffic signal timing of an intersection as 
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an example and compute the costs and benefits of such an application. The cost-benefit 

analysis presented in the final step provides a clear understanding of the benefits of the 

study’s proposed framework. 

1.3 Contributions 

This study aims to address several gaps in the turning movement estimation 

literature. The contributions of this research are as follows: 

1) Estimate interchange turning movement counts using the traffic conditions 

at the main section, therefore solely relying on sensors on the main section of the 

highway or freeway. 

2) Illustrate the developed model's capability to capture the temporal variations 

on the same ramp used in model training. 

3) Comparison between the actual intersection turning movement proportions 

and a commercialized probe vehicle dataset turning movement proportions 

4) Illustrate the performance of three well-established machine learning models 

in intersection turning movement count estimation 

5) Developing an estimation framework for intersection turning movement 

counts using incomplete input features 

6) Create a baseline for turning movement count data collection duration and 

the resulting turning movement count estimation model accuracy 
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7) Application of the proposed framework in real-time modification of traffic 

signal timing in response to the predicted turning movement counts 

8) Provide a cost-benefit analysis employing the proposed framework and 

required data collection. 

1.4 Dissertation structure 

The rest of the dissertation is organized as follows: 

Chapter 2 summarizes the turning movement estimation literature and elaborates on the 

strengths and shortcomings of the existing methodologies to illustrate the gaps in this 

field.  

Chapter 3 describes the machine learning models used in this study, along with the 

performance measures for evaluations and comparisons of these models.  

Chapter 4 investigates the estimation of off-ramp hourly traffic volumes to illustrate 

the capabilities of machine learning models in providing accurate estimates of traffic 

volumes using the traffic conditions of the freeway's main section. This chapter begins 

with introducing the data sources used for the investigations, followed by presenting 

the considered traffic sensor deployment scenarios, training and testing configurations 

of the models, and finally, the results of applying the trained models in estimating off-

ramp traffic volumes. 

Chapter 5 introduces the data sources used to investigate intersections’ turning 

movement estimation. Additionally, a detailed comparison of the ground-truth turning 

movement counts and proportions are compared against the turning movement 
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proportions obtained from a commercialized probe vehicle dataset. This chapter 

concludes with figures and tables illustrating the distribution of key attributes in the 

dataset to clear the path for further analysis.  

Chapter 6 designs several experiments in training and testing the intersection turning 

movement count estimation to evaluate different machine learning model structures, 

input features for the model, and duration of turning movement count data collection.  

Chapter 7 applies the findings of the previous chapter in predicting the turning 

movement counts in advance in different time horizons as the first application of the 

proposed framework. Further, the prediction results are used to design the traffic signal 

timing in one of the study intersections to illustrate another application of the 

framework introduced in this study. Finally, based on the traffic signal timings obtained 

using the predictions of turning movement counts, the user delay costs in terms of time 

and money are computed and compared against the costs of developing the proposed 

prediction model. 

Chapter 8 summarizes the findings, draws conclusions from the study's experiments, 

and makes suggestions for the real-world application of the proposed framework. The 

chapter concludes by describing the study's limitations and recommendations for future 

studies.  
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Chapter 2: Literature Review 

 

 

 

2.1 Overview 

The matrix of OD flows at intersections, also named turning movement (TM) counts, 

is an essential input in urban traffic networks' design, planning, management, and 

operations (Chen et al., 2012). There are applications, adaptive traffic signal controls, 

for example, in which turning movement counts are needed in real-time to maximize 

the performance of the control algorithm (Lan and Davis, 1999). The conventional 

methods of directly acquiring the turning movement counts are expensive and time-

consuming (Shoup et al., 2013). The infeasibility of direct turning movement count 

collection led researchers to develop indirect approaches (Ghods and Fu, 2014). 

Indirect methods tend to estimate turning movement counts from readily available 

traffic volume data.  

The application of turning movement counts is not limited to intersection signal control. 

Turning movement counts can be a rich data source in origin-destination demand 

estimation. By far, the most common resource of data for OD demand estimation is 

individual link volumes. However, several studies have shown that incorporating 

turning movement counts into the models improves the estimation quality (Hurdle et 

al., 1983; Alibabai and Mahmassani, 2008). 
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The studies on turning movement estimation started in the late 70s (Michalopoulos et 

al., 1978; Van Zuylen, 1979) and early 80s (Hauer et al., 1980; Mountain and Westwell, 

1983). With the advances in rich data sources and powerful machine learning 

algorithms, the interest in estimating turning movement counts is growing fast, 

considering the huge benefits of the product in traffic operations and management. 

The proposed framework in this study requires the extraction of ground truth data of 

turning vehicles at intersections from the installed cameras on those intersections for 

the turning movement estimation model. In line with the steps of the framework, the 

literature review is divided into multiple subsections. In what follows, a brief overview 

of the volume estimation literature and a comprehensive review of turning movement 

estimation methodologies are provided, describing each method's strengths and 

shortcomings.  

2.2 Deep learning models for traffic flow estimation 

Traffic flow in links of a road network has temporal dynamics and a unique spatial 

dependency (Li et al., 2017). Recurring incidents such as peak hour travel behavior and 

demand or non-recurring incidents such as accidents and road maintenance can 

drastically change the traffic flow characteristics. Additionally, in a transportation 

network, adjacent links in terms of Euclidean distance are not necessarily correlated 

and vice versa, such as in the case of segments along a freeway.  

As an essential topic of traffic flow, turning movement proportions also illustrate such 

dynamics and dependencies. For instance, a change in traffic flow volume between an 
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OD pair can alter the turning movement proportions at intersections belonging to the 

competing paths connecting that OD pair. Therefore the data-driven approaches for 

modeling traffic characteristics should be able to capture such complex relations to 

generate accurate and reliable estimates (Cheng et al., 2018).  

Recently, deep learning models are attracting the attention of researchers for modeling 

problems such as traffic flow in the road network primarily due to improved processing 

power, efficient algorithms, and their capability in capturing dependencies between 

instances in the dataset. Wu and Tan (2016) and Ma et al. (2017) modeled link traffic 

flow and link speed, respectively, in a road segment as a 2D image. They use a 

convolutional neural network (CNN) with spatial and temporal correlation though the 

spatial relationship exists in Euclidean space.  

Li et al. (2017) propose modeling the traffic flow as a diffusion process on a directed 

graph with a diffusion convolution recurrent neural network (DCRNN). Their proposed 

model captures spatial dependency through bidirectional random walks on the graph 

and temporal dynamics using the encoder-decoder architecture.  

In another study, DeepTransport, a deep learning model, is proposed to learn spatial-

temporal dependencies for modeling traffic conditions (Cheng et al., 2018). For each 

road segment, they collect upstream and downstream neighborhood roads to explicitly 

model the spatial dependency, followed by applying convolution operation to these 

neighborhoods. Through real-world data experiments, they illustrate the superiority of 

their model relative to baseline models. These models are Auto-Regressive Integrated 

Moving Average (ARIMA) with Kalman filtering, Vector Auto-Regression (VAR), 



 

12 

 

Support Vector Regression (SVR), Feedforward Neural Network (FNN), and 

Recurrent Neural Network with fully connected Long Short-Term Memory (LSTM) 

hidden units (FC-LSTM). However, their convolution operators are not confined to the 

real structure of the traffic network. 

Cui et al. (2019) present a traffic graph convolutional LSTM (TGC-LSTM) to model 

the traffic network based on the network links’ interactions. A simple free-flow 

reachability matrix is used to find the influencing links for a particular link, and it is 

illustrated that their model is also capable of determining the most influential links in 

the network. Although GCN models can replicate the relation between link traffic flow, 

the graph is generally fixed, and constructing the graph requires expertise. Guo et al. 

(2020) present a method to optimally learn the graph from the observed traffic data 

called Optimized Graph Convolution Recurrent Neural Network (OGCRNN) for traffic 

prediction. Their introduced model reveals the latent relationship among road segments 

from the traffic data in the training phase.  

2.3 Turning Movement Estimation 

Estimating turning movements has been of interest due to its applications in OD 

demand estimation, adaptive traffic signal controls, advanced traffic management 

systems, regional traffic assignment, etc. The vast expanse of the use of turning 

movement information has led researchers from the 70s to propose more accurate 

methods for turning movement proportions or counts estimation.  
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One of the pioneering studies on turning movement count estimation is the research of 

Jeffreys and Norman (Jeffreys and Norman, 1970). This study proposes three 

approaches to estimate intersection turning movement proportions: linear programming 

method, straightforward algebraic means, and graphical approach (Hu and Liou, 2012). 

While turning movement is a naturally underdetermined problem, researchers have 

proposed strategies to solve the problem by making assumptions (Bell, 1984).  

Reviewing the studies on turning movement estimation reveals that most studies can 

be classified into two categories of non-recursive and recursive approaches. Typically, 

these studies tend to minimize the difference between observed and estimated counts 

(minimize prediction error) or maximize the probability of calculating the observed 

counts.  

In the category of non-recursive approaches, several studies investigated the least-

squares-based methods to estimate turning proportions using traffic counts (Hurdle et 

al., 1983; Nihan and Davis, 1989; Kessaci et al., 1990; Bell, 1991a). In non-recursive 

approaches, the primary assumption is that turning movement counts remain constant 

over a time interval, which is split into shorter periods. This assumption reshapes the 

underdetermined problem into an overdetermined one (Jiao et al., 2005).  

In the category of recursive methods, the parameters of turning movement estimation 

are calibrated in a step-by-step process. The most well-known methods in recursive 

models have been recursive least square and Kalman filtering for decades (Okutani, 

1987; Ashok and Ben-Akiva, 2000; Ashok and Ben-Akiva, 2002). Cremer and Keller 

(1987) and (Nihan and Davis, 1987) consider traffic flow in a road segment as a 
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dynamic process dependent on time-variable parameters of entering traffic flow. In this 

regard, they take a dynamic approach to estimating OD flows in traffic networks and 

develop time-dependent models. Their proposed models are ordinary least squares 

estimators involving cross-correlation matrices, constrained optimization method, 

simple recursive estimation formula, estimation by Kalman filtering (Cremer and 

Keller; 1987), Recursive Least Squares (RLS), and discounted RLS (Nihan and Davis, 

1987). Although their dynamic models have superior performance relative to static 

models, they have the assumption that the time of traversing the intersection is 

negligible relative to the chosen time interval or is equal to a fixed number of time 

intervals. Additionally, these models may result in turning movement proportions that 

violate equality or inequality conditions.  

Bell (1991b) proposes two methods to relax the restrictive assumptions of the previous 

studies by considering junction travel time distribution that may take more than a single 

time interval. The first method assumes geometrically distributed travel time, while the 

second one does not assume any travel time distribution. In this study, a constrained, 

recursive least-squares estimation algorithm is used, and it is shown that this approach 

produces better turning movement estimates. With the existence of a complete set of 

detectors at an intersection, these studies can provide unbiased turning movement 

proportions estimates. These studies have shortcomings when such a dense installation 

of count sensors is not feasible or if a single detector at an intersection is malfunctioning 

(Lan and Davis, 1999). Besides, it has been shown that these studies cannot produce 
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reliable estimates if there is a significant distance between the entering and existing 

count sensors (Davis, 1993).  

Taking into account the possibility of malfunctioning of the count sensors, Davis and 

Lan (1995) developed a framework to assess the feasibility of solving the turning 

movements when only a partial set of link counts are available. Although this scheme 

can be solved offline, the configuration of detectors should satisfy an identifiability 

condition. Lan and Davis (1997) describe the advantages of Markovian compartment 

models in characterizing the traffic flow. In a subsequent paper, Lan and Davis (1999) 

propose real-time algorithms based on nonlinear least square (NLS) and quasi-

maximum likelihood (QML) approaches to recursively estimate the turning movement 

proportions at an intersection when a partial set of detector counts are accessible. They 

implemented their method on simulated and real data in which the actual data comes 

from videotaping two closely located intersections near downtown Minneapolis from 

4:15 to 5:45 pm. They found that while the NLS estimator has a lower bias, the QML 

estimator is superior to the NLS estimator in terms of total mean square error because 

of the lower variance in QML estimates. Chang and Tao (1998) propose a time-

dependent turning movement estimation model to compute the time-varying turning 

fractions at signalized intersections. Enhanced estimation accuracy is achieved by 

incorporating the signal setting and pre-estimated OD flow from a longer time interval 

as an additional constraint. The incorporation of pre-estimated OD flow is based on 

more stable dynamic flow patterns with an increase in the time interval. 
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Considering the significant effects of outliers of detected flows on deteriorating the 

performance of the least square-based models, Jia et al. (2005) designed a least absolute 

deviation model and a genetic algorithm to solve the problem. It is shown that their 

approach outperforms the least square and Kalman filtering methods in accuracy and 

efficiency. Although this model is adequate for real-time turning flow estimation, like 

other parameter optimization methods, it falls short in predicting turning movements 

(Jiao et al., 2014).  

In another study, instead of solely using the approaching volumes to an intersection, 

the information of turning movement proportions is used to estimate dynamic origin-

destination demand (Alibabai and Mahmassani, 2008). This approach is applied to the 

US-29 in Maryland; however, due to inaccessibility to ground-truth turning movement 

counts, they simulated the network with a predetermined OD demand. It is shown that 

this approach has performance superiority over the models that do not explicitly 

consider the turning movement information.  

The rapid development of intelligent transportation systems (ITS) has made sensor 

technologies more accurate and less costly. Considering the benefits of ITS in 

improving the network operations, such as traffic signal timing, ramp metering, and 

various other applications, numerous urban regions have installed sensors on their 

roads to obtain information about the network conditions. Hu and Liou (2012) use the 

data of vehicle detectors and video sensors to estimate the time-dependent turning 

proportions at intersections. They develop a nonlinear least-squares model based on 

minimizing the difference between the observed and estimated traffic flow and turning 



 

17 

 

movement proportions. The model is evaluated on two simplified networks using 

DYNASMART-P for traffic simulation. They consider two distinct scenarios of the 

installation of turning movement detector sensors. The first scenario, full deployment, 

is installing sensors on a few selected intersections counting vehicles at all possible 

turning movements in each of these intersections. The other one, partial 

implementation, is the installation of sensors on several intersections and recording a 

subset of possible turning movements at each intersection. Interestingly, they found 

that partial deployment of turning movement detection sensors results in more accurate 

model performance than full deployment strategy, which signifies the importance of 

strategically deploying sensors in the network, also called the network sensor location 

problem (Gentili and Mirchandani, 2011).  

Several studies proposed frameworks to detect and count the number of turning 

movements at a specific time in an intersection with varying levels of success (Xu et 

al., 2013; Santiago-Chaparro et al., 2016; Gholami et al., 2016; Shatnawi and Khliefat, 

2018). These frameworks use a vast number of detectors on approaches that limit their 

applicability in a network consisting of numerous intersections. 

In a study in 2014, Jiao et al. proposed a Bayesian combined model to predict the 

entering and exiting flows at an intersection and later a backpropagation neural network 

model and a Kalman filtering model to predict the dynamic turning movement 

proportions. For the entering and exiting flow estimation, they adopt a weighted 

average between volumes predicted by the nonlinear regression, moving average, and 

autoregressive methods. In the neural network model, they consider the counts at the 
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entering approaches as the input layer. The framework was applied to an intersection 

in Beijing, China, and achieved mean absolute prediction errors in order of 30 percent 

(Jiao et al., 2014). The movement of the vehicles in this study is assumed to be 

completed in a single time interval, which can be restrictive where there is congestion 

in the intersection, which is highly likely in the urban intersections at peak hours. 

Additionally, while the long-term prediction of turning movements is crucial for traffic 

congestion mitigation, the model can only predict the turning movement proportions in 

the short term. 

Chen et al. (2012) used the path flow estimator (PFE) technique originally developed 

to estimate the path flows to derive turning movements in addition to complete link 

flows. This procedure assumes available traffic volume counts on selected roads and 

turning movements and flows between some origin-destination pairs. There core 

component of PFE is a logit-type model in the route choice with independent Gumble 

distributed errors in travel time perception. A column generation technique is employed 

to solve the problem and extract turning movement counts. The results of applying the 

proposed framework on two separate networks indicated that the maximum errors in 

turning movement estimates could be in excess of %1,000 in some cases.  

Ghanim and Shabaan (2018) developed a 3-layer neural network model to estimate the 

hourly turning movement counts based on all inbound and outbound approach volumes 

of an intersection. The data of peak hour turning movement counts at 847 intersections 

in Palm Beach County, Florida, between 2010 and 2014 were obtained for model 

training and testing. The results indicate an R-squared of 0.87 for the left turn, 0.99 for 
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the through, and 0.90 for the right turn movements in the testing set. Although the 

results sound promising, the assumption of available approach volumes for each 

intersection, especially for all inbound and outbound streets, limits this study's real-

world application.  

Li et al. (2020) presented a partial least square (PLS) based method for short-term 

prediction of traffic states, including traffic speed, traffic volume, and travel time 

prediction. The PLS method is a generalization of multiple linear regression, which is 

robust to collinearity and specifically used in cases where the number of independent 

variables is more than the number of observations. This technique first reduces the 

number of attributes to a set of uncorrelated variables and performs least squares 

regression on these components instead of the original dataset. Therefore, it reduces 

the problem dimension and computational efforts. The authors of this study applied the 

PLS method to the turning movement estimation problem of a single intersection 

covering a span of 23 days. The attributes comprise the number of trajectories, the 

average number of stops, and the average speed, for each movement. The predictors 

comprise the mentioned features from the past four hours for all approaches. The study 

results illustrated an average mean absolute error of 6 vehicles per 15 minutes and an 

average mean absolute percentage error of 15 percent. Besides, a comparison between 

the PLS-based method and other prediction models, including ARIMA, KNN, and 

SVR, illustrated this modeling approach's superiority.  

In a more recent study, Mahmoud et al. (2021) predicted the cycle-level turning 

movement counts at intersections using eXtreme Gradient Boosting (XGBoost), Long 
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Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) models. The turning 

movement counts included the through and left-turn movements five cycles ahead. This 

research collected one month of turning movement counts from 16 intersections 

equipped with GRIDSMART sensors along two main corridors in Florida. The 

attributes used for model development include the turning movement counts in the 

upstream and downstream intersections, green time for each approach in the target 

intersection and upstream and downstream intersections, and the traffic signal cycle 

length in these intersections. The mentioned attributes are compiled from up to 8 cycles 

before the current cycle to form the input data for training the models. The results of 

training and testing the models indicated that the XGBoost and GRU models 

outperformed the LSTM model. Besides, for the best models, the mean absolute error 

on the testing data for the through movement is almost equal to 5 and for the left-turn 

movement is almost equal to 1. However, there is no mention of the proportion of the 

absolute error relative to the traffic counts in each cycle. In terms of prediction in the 

time horizon, the mean absolute error for through movements increases from 5 to 6 in 

predicted cycles of 1 to 5 ahead of the current cycle. The limiting assumption in this 

study is the assumption of availability of turning movement counts in the upstream and 

downstream intersections of the target intersection, which significantly reduces the 

applicability of the framework in real-world situations. 

In the realm of predicting traffic volumes, there are a vast number of studies that 

explore time series models in extracting traffic patterns (Hamed et al., 1995; Wild, 

1997; Lingras et al., 2000; Boto‐Giralda et al., 2010). These studies assume that 
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permanent traffic detectors are installed; therefore, with access to the traffic 

characteristics in the previous time windows, applying time series models are feasible. 

However, considering the costs of installing turning movement count detectors, such 

approaches are impractical in real-world situations. 

According to the above description of the previous studies, none of the earlier studies, 

to the extent of the author’s knowledge, approaches the turning movement behavior 

from a high-level perspective. In most earlier studies, the turning movement estimation 

is tackled using the basic models that cannot capture the complex relations between the 

traffic flow counts of each allowable movement with other traffic flow characteristics. 

Besides, the effects of introducing emerging data of floating vehicles such as probe 

vehicle data to the modeling framework are not explored yet. Additionally, the studies 

that have employed more sophisticated modeling frameworks input attributes such as 

the turning movement counts of previous time intervals of the target intersection or the 

current turning movement counts and traffic flow in the adjacent intersections, severely 

limiting these methodologies' applicability to real-world scenarios. Another gap in the 

literature is the absence of a cost-benefit analysis based on the input data and the output 

accuracy of the turning movement count estimates or predictions. From an operator's 

point of view, the cost-benefit analysis enables decision-making since a huge 

investment for installing vehicular sensors might not add much value in terms of 

increasing the model accuracy and reducing the user delay cost and traffic congestion.  
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This chapter presented a review of traffic volume estimation, turning movement 

estimation, and prediction studies. In each section of this chapter, the limitations of the 

previous studies were also presented.  

In the first step of this study, we explore the estimation of hourly traffic flow of an 

exiting freeway main section through an off-ramp. This exploration acts as the building 

foundation of the much more complex intersection turning movement counts 

estimation and prediction. 

  



 

23 

 

Chapter 3: Methodology 

 

 

 

3.1 Overview 

This study aims to estimate turning movement at junctions using data-driven 

approaches and advanced machine learning models. While the study's main 

contribution is introducing frameworks to address this problem, it is essential to present 

the underlying ideas behind the models used in the proposed framework. Therefore, 

this section elaborates on the machine learning models used throughout the study. In 

addition, this section introduces performance measures used for evaluating the results 

in the following chapters.  

3.2 Multi-Layer Perceptron Model 

Advancements in intelligent transportation systems have enabled the deployment of 

sensors on a large scale with appropriate accuracy and reduced cost for transportation 

agencies. The sensors installed on the road network generate extensive traffic data with 

a high time resolution (Zhao et al., 2017). While collecting travel behavior data, these 

sensors benefit transportation planners to improve the operation of transportation 

systems to reduce congestion and increase mobility. The emerging extensive traffic 

data facilities promote the usage of more advanced models to attain more accurate 
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traffic estimations and predictions. Neural Network (NN) models are capable of dealing 

with highly complex datasets with nonlinear relationships (Karlaftis and Vlahogianni, 

2011). The advantages of NN models have encouraged transportation researchers to 

apply these models in traffic behavior and traffic propagation studies and have 

generated promising results (Park and Rilett, 1999; Vlahogianni et al., 2004; Huang et 

al., 2014; Ma et al., 2015; Sekula et al., 2018; Zahedian et al., 2020; Nohekhan et al., 

2021). 

Multi-Layer Perceptron (MLP) models, as a class of feedforward artificial neural 

networks (ANN), have great potential in data analysis and forecasting because of using 

distributed and hierarchical feature representation (Huang et al., 2014). MLP models 

are potent in working with massive multi-dimensional data and offer generalization and 

appropriate prediction abilities (Haykin, 1994; Hagan et al., 1997). 

An MLP is an interconnected group of neurons, each of which can perform a simple 

process. When working as a group, these neurons are potent in exhibiting complex 

behaviors. Nodes are connected elements of MLP. Typically, an MLP has three general 

layer types: input, hidden, and output layers. The fully connected structure of MLPs 

used in this study allows for capturing the complicated relationship between variables 

influencing the turning movement behavior. The output of each neuron is dependent 

on the outputs of the neurons connected to it in the previous layer based on the forward 

propagation rule in Equation (1). 

𝑎𝑖
(𝑙)

= 𝑓(𝑤𝑖
(𝑙)

𝑎(𝑙−1) + 𝑏𝑖
(𝑙)

)       (1) 
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where  

𝑎𝑖
(𝑙)

 is the output of neuron i in layer l; 

𝑤𝑖
(𝑙)

 is the weight vector associated with neuron i in layer l; 

𝑏𝑖
(𝑙)

 is the bias vector between neuron i in the layer l and all neurons of the layer l-1; 

𝑎(𝑙−1) is the output vector of all the neurons in layer l-1; and 

f is the activation function used to account for the nonlinear relationships between the 

neurons. 

In this study, several MLP models are trained with four hidden layers, normalized data, 

batch normalization, L2 regularization, and random dropout layers for hourly turning 

movement proportions estimation. Normalizing the input data reduces the scale 

difference between variables, thus stabilizing the model (Bishop, 1995). Among 

different input data normalization approaches, this study employs the data 

standardization method using Equation (2). 

𝑥𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑
(𝑖)

=
𝑥(𝑖)−𝑚𝑒𝑎𝑛(𝑥(𝑖))

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑥(𝑖))

=
𝑥(𝑖)−

1

𝑚
∑ 𝑥(𝑖)𝑚

𝑖=1

√ 1

𝑚
[𝑥(𝑖)−

1

𝑚
∑ 𝑥(𝑖)𝑚

𝑖=1 ]
2
   (2) 

where 𝑥(𝑖) and 𝑥𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑
(𝑖)

 are the initial and standardized vectors of attribute i among 

all observations, and m is the number of observations.  

Batch normalization is a method similar to data normalization while extending the idea 

to the inputs of all hidden layers (Ioffe and Szegedy, 2015). This method normalizes 

the outputs of neurons at each layer using Equation (3). 
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𝑧̃[𝑙](𝑖) = 𝛾[𝑙](𝑖)𝑧𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
[𝑙](𝑖)

+ 𝛽[𝑙](𝑖)       (3) 

where 𝑧𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
[𝑙](𝑖)

 is the normalized output of neuron i in layer l computed using 

Equation (2), 𝛾[𝑙](𝑖) and 𝛽[𝑙](𝑖) are learnable distribution and  𝑧̃[𝑙](𝑖) is the normalized 

input to layer l+1. 

Regularization is a method for penalizing excess estimated weights by incorporating 

them into the loss function, thereby reducing overfitting (Ng, 2004). The term which 

will be added to the loss function is shown in Equation (4). 

𝛿 =
𝜆 

2𝑚
∑ ‖𝑤[𝑙]‖

𝐹

2𝐿
𝑙=1 =

𝜆 

2𝑚
∑ ∑ ∑ (𝑤𝑖𝑗

[𝑙]
)

2
𝑛[𝑙]

𝑗=1
𝑛[𝑙−1]

𝑖=1
𝐿
𝑙=1      (4) 

where 𝜆 is the regularization parameter determined by the modeler, and the rest of the 

parameters are defined earlier. 

The dropout layers improve the generalization (reduce overfitting) of the model by 

randomly omitting a fraction of the hidden units in hidden layers (Dahl et al., 2013). 

The Rectified Linear Unit (ReLU) function is the considered activation function of the 

hidden layers (except for the last hidden layer) because of its several times faster 

training than other prevalent functions (Krizhevsky et al., 2012). The formulation of 

the ReLU function is presented in Equation (5). 

𝑓(𝑥) = max(0, 𝑥)         (5) 

The activation function considered for the last layer is the sigmoid function, as shown 

in Equation (6). 

𝑓(𝑥) =
1

1+𝑒−𝑥          (6) 
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The loss function of the MLP models used in this study is the average of the squared 

errors between observed and estimated turning movement proportions plus the 

regularization term, Equation (4), according to the formulation in Equation (7).  

𝐿𝑜𝑠𝑠 =
1

𝑛
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑛
𝑖=1 +

𝜆 

2𝑚
∑ ∑ ∑ (𝑤𝑖𝑗

[𝑙]
)

2
𝑛[𝑙]

𝑗=1
𝑛[𝑙−1]

𝑖=1
𝐿
𝑙=1     (7) 

In equation 7, 

n is the number of observations; 

𝑦̂𝑖 is the estimated turning movement proportion/count for observation i; 

𝑦𝑖 is the observed turning movement proportion/count for observation i; 

The general structure of the MLP models used in this study is presented in Figure 2. 

This figure shows the MLP with four hidden and three dropout layers.  

 

Figure 2. The general structure of the study’s MLP models 

3.3 Random Forest 

The Random Forest (RF) is an ensemble supervised machine learning method. This 

model can be used for both classification and regression (Han et al., 2011). When used 

for regression, which is the case in this study, RF uses regression trees.  
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Regression trees aim to extract patter from data by dividing observations into branches 

based on their input values. The ultimate goal of branching the data is to minimize the 

sum of square error (SSE) in each branch. Therefore, the regression tree chooses the 

variable that splits the data with minimum SSE at each level. 

RF model iteratively selects random sets of variables and samples with replacement 

from the training dataset and uses them to build a forest of regression trees. RF runs 

the record’s input features through all the regression trees and gets the associated values 

to make estimations for a new record. The final estimation for this new record is the 

average of the values calculated from all decision trees. 

While the idea behind RF is intuitive and simple, this model has proven to provide 

robust results in many applications. Using multiple regression trees trained on different 

input features and sample sets makes RF not have the overfitting problem associated 

with a single regression tree. 

3.4 XGBoost Model 

XGBoost is the short name for "Extreme Gradient Boosting," an efficient and scalable 

implementation of gradient boosting framework (Friedman et al., 2000). XGBoost is a 

cutting-edge application of gradient boosting machines and has proven to push the 

limits of computing power for boosted trees algorithms. It was developed to improve 

model performance and computational speed. Boosting is an ensemble technique in 

which new models are added to adjust the errors made by existing models. The new 

models are created that predict the residuals of prior models and then added together to 
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make the final prediction. The objective function of the XGBoost algorithm comprises 

a loss function over the training set and a regularization term penalizing more complex 

trees to reduce the overfitting: 

𝑂𝑏𝑗 = ∑ 𝐿(𝑦𝑖, 𝑦̂𝑖)

𝑖

+ ∑ Ω(𝑓𝑘)

𝑘

 (8) 

Where 𝐿(𝑦𝑖, 𝑦̂𝑖) can be any convex differentiable loss function and Ω(𝑓𝑘). The 

complexity term is defined as: 

Ω(𝑓𝑘) = 𝛾𝑇 +
1

2
𝜆𝑤2 (9) 

where 𝑇 is the number of leaves of the tree 𝑓𝑘 and 𝑤 is the leaf weights. After taking 

the Taylor expansion and removing the constant terms, the objective function for 

iteration m is as follows: 

𝑂𝑏𝑗𝑚 = ∑ [𝐺𝑗𝑤𝑗 +
1

2
(𝐻𝑗 + 𝜆)𝑤𝑗

2]

𝑇

𝑗=1

+ 𝛾𝑇 (10) 

where 𝐺𝑗 and 𝐻𝑗 are defined in (11): 

𝐺𝑗 = ∑
𝑑𝐿(𝑦𝑖, 𝑦̂𝑖

(𝑚−1)
)

𝑑𝑦̂𝑖
(𝑚−1)

𝑖∈𝐼𝑗

, 𝐻𝑗 = ∑
𝑑2𝐿(𝑦𝑖 , 𝑦̂𝑖

(𝑚−1)
)

𝑑(𝑦̂𝑖
(𝑚−1)

)
2

𝑖∈𝐼𝑗

 (11) 

𝐼𝑗 is the set of training instances in leaf 𝑗. 

The best leaf weight 𝑤𝑗 given the current tree structure will be: 



 

30 

 

𝑤𝑗 = −
𝐺𝑗

𝐻𝑗 + 𝜆
 (12) 

3.5 Performance Measures 

Performance measures enable explaining the results and conclusions. Here, several 

performance measures are introduced as follows: 

Mean Squared Error (MSE): 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑛
𝑖=1                   (13) 

Mean Absolute Error (MAE): 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦̂𝑖 − 𝑦𝑖|

𝑛
𝑖=1                   (14) 

Mean Absolute Percentage Error (MAPE): 

𝑀𝐴𝑃𝐸 = (
1

𝑛
∑ |

𝑦̂𝑖−𝑦𝑖

𝑦𝑖
|𝑛

𝑖=1 ) ∗ 100                 (15) 

Coefficient of determination (R2): 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

                  (16) 

where 𝑦̅ is the average of turning movement proportions/counts of all observations, and 

other parameters are introduced earlier. 

In the next chapter, the dataset used for training and testing the models are introduced, 

followed by presenting the results of evaluating the performance of the models.  
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Chapter 4: Freeway off-ramp traffic flow estimation 

 

 

 

4.1 Overview 

The previous chapter introduced the machine learning model structures used in this 

study. In this chapter, one of the model structures is applied to estimate the freeway 

turning movement count estimation as proof of concept for the more complex 

intersection turning movement count estimation problem. 

The number of vehicles exiting a freeway through off-ramps is an essential piece of 

information as it can be used to estimate regional OD demand from a high-level 

perspective. Freeways and highways serve a significant proportion of traffic, which 

appropriately represent the regional and countywide traffic patterns, especially in the 

US, because of its extensive freeway and highway networks. Additionally, observation 

of traffic flow patterns is more straightforward in freeways and highways because of 

these infrastructures' uninterrupted traffic flow nature and the number of installed 

sensors on these types of roads (Nohekhan et al., 2021). For this chapter of the study, 

which is mainly a proof of concept, the turning movement of vehicles at interchanges 

is considered.  
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Nevertheless, the exiting flow from a highway shares various similar characteristics 

with turning movements at intersections, thus not constraining the application of the 

proposed methodology. However, the fundamental difference is that in the case of 

interchanges, the flow that continues moving on the main section of the highway is 

uninterrupted. The following section describes the data of the interchanges considered 

as the model's input.  

4.2 Input data description 

In this study, the model input, called ground truth data, comes from three primary 

sources: turning movement counts, speed profile, and road characteristics described in 

the following subsections. 

4.2.1 Turning movement counts 

The current chapter uses data collected from the Caltrans Performance Measurement 

System (PeMS) to obtain the turning movement counts. The freeway network of the 

state of California comprises more than 41,000 directional miles, where more than 

18,000 traffic count stations are installed on this network (PeMS, 2019). Traffic 

conditions are collected every 30 seconds from almost 45,000 individual detectors 

deployed on the state network (Tian and Pan, 2015). Then, the collected data are 

aggregated into 5-minutes intervals and uploaded to the website. Figure 3 shows the 

location of count stations on the network system in California. Each one of the black 

dots represents a count station, and it is evident that most of the stations are installed in 

the urban areas of Los Angeles and San Francisco. For training and testing the model,  
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Figure 3. Location of count stations in the road network of California 
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150 interchanges are selected in the network. Although the number of installed count 

stations is extensive, they do not accurately record counts. Thus, a sanity check should 

be performed before feeding the counts to the model. The conservation of flow law is 

applied to compute the errors in recordings, thus completing the sanity check of the 

data. 

Consider an interchange shown in Figure 4. In this figure, based on the conservation of 

flow, the sum of ramp and downstream flow must equal the upstream flow. However, 

due to errors in detection and recording, there will be an error term (ε) as provided in 

Equation (17). 

𝑉𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 = 𝑉𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 + 𝑉𝑅𝑎𝑚𝑝 + 𝜖                (17) 

The smaller the error, the higher the probability of more accurate detections. In this 

study, the maximum allowable error is assumed to be |𝜖| ≤ 0.05𝑉𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 and 

observations with higher errors are eliminated from the dataset. Thus, after selecting 

150 interchanges, a sanity check is performed for each interchange using the entire 

2019 hourly volume counts of the PeMS database.  

Once the input data is filtered to exclude detections with a higher error rate, the turning 

movement proportion is computed based on the aggregated hourly volumes using 

Equation 18. 

𝑡𝑢𝑟𝑛𝑖𝑛𝑔 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =
𝑉𝑅𝑎𝑚𝑝

𝑉𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚
                          (18) 
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Figure 4. Schematic interchange illustration 

4.2.2 Speed profiles 

The changes in the speed of a segment are an appropriate indicator of the traffic 

conditions, and many agencies are utilizing this data to monitor and operate their traffic 

network. As traffic volumes enter a road at an intersection, they can considerably 

change the segment's speed. Thus, the information on speed profiles and how they vary 

with time can significantly benefit the estimation of the traffic volumes and traffic 

conditions at road segments. Here, speeds at different sections of an interchange are 

considered to reflect the traffic flow patterns on the highway and the road segments 

connected to the highway through this interchange. Figure 5 illustrates the approaches 

and speeds that are the subject of interest. In this interchange, Ramp-1 is the ramp that 

is under consideration. The speeds that will be considered in the model are as follows: 

- SRT-D: downstream speed of the exiting vehicles making a right turn. 

- SLT-U: upstream speed of the exiting vehicles making a left turn. 

- SLT-D: downstream speed of the exiting vehicles making a left turn. 

- SRT-U: upstream speed of the exiting vehicles making a right turn. 
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These speeds, computed based on GPS data, are obtained from the Regional Integrated 

Transportation Information System (RITIS, 2020) in an hourly aggregation. Besides  

 

Figure 5. Schematic illustration of the considered speed profiles 

average speed, free-flow speed (FFS) is obtained for each of the above approaches. By 

definition, FFS is the speed at which vehicles can traverse through the road in the 

absence of any restriction on their movement. The closer the speed in a road segment 

is to the FFS, the lower the congestion is and vice versa. Thus, this information can be 

leveraged as a reference for the traffic conditions in each segment. 

4.2.2 Other attributes 

In addition to volumes and speed characteristics, several other attributes are considered 

as input. These attributes are presented here: 
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• Average annual daily traffic (AADT): an essential feature of a road segment 

reflecting the average road usage in an entire year. This measure is easily 

accessible information that is calculated every year for different sections of the 

road network. This study uses the count sensors’ records to compute this 

measure. 

• Functional Road Class of the two roads in an interchange which can be one of 

the following categories: 

o Highways and major intersections 

o Major artery 

o Major road 

o Neighborhood streets 

• Number of lanes for the upstream, downstream, ramp, left-turn downstream, 

left-turn upstream, right turn upstream, and right turn downstream. 

• District and county of each interchange 

• Month, day of the week, and time of the day 

• Route number 

• After combining the introduced data sources, the interchanges with less than 

one-month worth of data in an entire year (1×30×24=720) are omitted from the 

dataset. This additional filtering is done because those sparse observations for 

a single interchange bias the dataset, resulting in unreliable turning movement 

proportion estimates. After cleaning the data, 79 interchanges with a total of 

236,552 record rows are obtained. The distribution of these remaining 
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interchanges is shown in Figure 6, where each black dot represents a remaining 

interchange. To illustrate how the data is distributed temporally, Figure 7 

illustrates the number of observations for each month, week, day, and hour.  

 

Figure 6. Location of the 79 considered interchanges 
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(a) (b) 

  

(c) (d) 

Figure 7. Distribution of the total observations for (a) each month of the year, (b) each 

week of the year, (c) each day of the week, and (d) each hour of the day. 

According to these radar charts, the observations are relatively uniformly distributed 

except for the hour of the day. The distribution of the number of observations for each 

interchange is illustrated in Figure 8. This figure shows a considerable amount of 

variability. Additionally, figure 9 shows the cumulative distribution of the turning 
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movement proportions. According to this figure, turning movement proportions range 

from 0 to 0.7; however, more than 80 percent of the observations have a turning 

movement proportion of less than 0.2 and more than 0.05. The input data distributions 

presented in Figures 7, 8, and 9 mandate multiple random draws of the data for training  

 

Figure 8. Distribution of observations for interchanges 

 

Figure 9. Cumulative distribution of turning movement proportions 
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and testing to draw conclusions from the results. In the next section, different scenarios 

for choosing the training data are presented, along with the results of testing the models 

on validation sets. 

4.3 NN model results 

In reality, there are a limited number of available sensors compared to the vast road 

network, which leaves transportation agencies with the problem of deploying detectors 

on the transportation network. There are two main strategies for installing traffic count 

sensors for transportation agencies. In the first strategy, to reduce the cost of relocating 

sensors, detectors are permanently mounted on several interchanges and continuously 

collect data in those interchanges. This strategy enables having access to the data of a 

long time duration of traffic conditions and travel behavior, although for a limited 

number of locations. In the second strategy, to uniformly collect data of all 

interchanges, sensors are temporarily (e.g., one week) installed on interchanges and 

relocated to other sites. This strategy enables obtaining data for a large number of 

locations; however, each site over a short period. The turning movement proportions 

estimation model can be trained and tested to consider these strategies. Therefore, in 

this study, a corresponding model is trained and tested for each data collection strategy 

to estimate each interchange's hourly turning movement proportions. The considered 

strategies and their final model structures are presented in the following subsections. 
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4.3.1 Permanent detector installation on a few interchanges 

In installing sensors permanently, the model is trained on the data of the interchanges 

that have detectors collecting data continuously. Given the data of these interchanges, 

the proportions of turning movements at other interchanges are estimated to evaluate 

the model's accuracy. As presented previously (refer to Figures 7, 8, and 9), multiple 

draws of the input data are required to achieve reliable results. In this method, the 

training set for each random draw is obtained by dividing the data into two sets of 

training and testing, according to interchange IDs; thus, resulting in two distinct groups 

of interchanges. For each random draw, 70 interchanges are selected (almost equivalent 

to 90 percent of the total interchanges in the data) for model training, and the rest is 

utilized for testing the model. After experimenting with different NN models, the best 

model structure is chosen according to Figure 10. The results of training and validating 

the model for 25 training and validation sets drawn randomly from the whole dataset 

with 253 input variables are shown in Table 2. According to the results of this table, 

the average error percentage of the model over the validation set is 50% and has 

relatively high variations, thus illustrating that the model is somewhat unstable. This 

finding is further repeated based on the R2, which has a negative minimum showing on 

some validation sets. This means that the model performs worse than the reported 

average turning movement proportions for these sets. Comparing each measure 

between the test and training sets reflects somewhat overfitting. Since the model 

structure is designed to avoid overfitting (i.e., batch normalization and L2 

regularization, and drop-out layers), this should be attributed to the fact that the 
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Figure 10. Structure of the NN model for the permanent detector installation 

Table 2. Summary statistics of the results of the permanent detector installation model 

 
Mean Standard 

Deviation 

Median Minimum Maximum 

Training MSE 0.0006 0.0000 0.0006 0.0006 0.0006 

Validation MSE 0.0027 0.0017 0.0021 0.0008 0.0073 

Training MAPE 28.38 2.43 29.34 22.24 30.94 

Validation MAPE 51.45 19.48 50.09 25.22 96.98 

Training R2 0.803 0.043 0.815 0.687 0.848 

Validation R2 0.202 0.250 0.233 -0.344 0.575 

Training Set Size 213,119 2,922 214,372 206,950 217,392 

Runtime (sec.) 1,018 17 1,013 985 1,065 

 

provided data is insufficient to extract the determining factors in turning movement 

prediction. Figure 11 demonstrates the Box and Whisker plots of MAPE and R2 

measures on the validation sets. This figure confirms the variability of the model 

performance on different validation sets, thus the relative instability of the model. 
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4.3.2 Temporary detector installation on all interchanges 

In this strategy, for each interchange, one and only one week is selected from the whole 

dataset and is added to the training dataset. Randomly selecting a week for each 

interchange in the real world is equivalent to temporarily installing sensors for a single 

week on each interchange. The best model structure for this method, obtained from 

experiments, is presented in Figure 12. The summary of the model results of training 

and testing the temporary detector installation on all interchanges is demonstrated in 

Table 3. This model is trained with 25 different random training validation sets with 

347 input variables. According to the results in this table, this model is relatively stable; 

however, it does not have an acceptable estimation performance.  

 

Figure 11. Box and Whisker plots of MAPE and R2 over the validation sets for the 

permanent detector installation model 
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Figure 12. Structures of the NN model for the temporary detector installation method 

Table 3. Summary statistics of the results of the temporary detector installation model 

 
Mean Standard 

Deviation 

Median Minimum Maximum 

Training MSE 0.0003 0.0001 0.0003 0.0002 0.0005 

Validation MSE 0.0019 0.0004 0.0018 0.0014 0.0034 

Training MAPE 18.34 3.99 16.75 13.01 26.90 

Validation MAPE 49.12 4.14 49.92 40.44 58.09 

Training R2 0.943 0.021 0.948 0.866 0.969 

Validation R2 0.450 0.115 0.488 0.000 0.578 

Training Set Size 3253 212 3253 2770 3697 

Runtime (sec.) 2758 1152 2457 1227 4643 

 

Box and Whiskers plot of MAPE and R2 shown in Figure 13 also provide additional 

proof for the relative stability of the model. Exploring the reasons for the poor 

performance of this model illustrates that the number of observations in the training set 

is too few. The number of observations shows that for each interchange, on average, 
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only 1.7 days' worth of data is included in the training set instead of the ideal seven 

days of data. 

One may argue that the few numbers of observations for each interchange in different 

weeks are not representative of the real-world situation. In the real world, the number 

of missing records of each interchange should be minimal when a transportation agency 

temporarily installs sensors. Therefore, we introduce another to reflect the real-world 

installation of detectors based on the number of observations in a week. This method 

is similar to the previous method except in choosing the records incorporated into the 

training set. Here, the week with the maximum number of observations is incorporated 

into the training set for each interchange. 

 

Figure 13. Box and Whisker plots of MAPE and R2 over the validation sets for the 

temporary detector installation model 

The results of training and testing the same model using this strategy are provided in 

Table 4. There are 347 input variables in this model. The model is trained 25 times to 

account for different initial values given to the model. Based on the results in this table, 
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this model has an appropriate performance. The slight variations in the performance 

measures of this model are due to the initial values given to the model.  

Table 4. Summary statistics the results of the temporary detector installation model 

with maximum observations in a week for each interchange in the training set 

 
Mean Standard Deviation Median Minimum Maximum 

Training 

MSE 

0.0002 0.0000 0.0002 0.0002 0.0004 

Validation 

MSE 

0.0006 0.0001 0.0006 0.0005 0.0008 

Training 

MAPE 

12.55 1.25 12.20 11.19 16.91 

Validation 

MAPE 

29.80 2.32 29.13 26.48 34.56 

Training 

R2 

0.965 0.010 0.966 0.933 0.979 

Validation 

R2 

0.829 0.022 0.838 0.778 0.853 

Training 

Set Size 

7308 0 7308 7308 7308 

Runtime 

(sec.) 

2924 1233 2683 1264 5194 
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4.3 Summary of findings 

Chapter 4 presented the results of training models to estimate turning movement 

proportions at interchanges based on various methods of selecting training datasets and 

testing corresponding to real-world data collection strategies. The results provide 

evidence for the possibility of estimating and predicting turning movement proportions 

at different times and locations using the information on road traffic conditions. The 

approach taken in this study enables relatively accurate estimation of turning movement 

proportions with the temporary installation of vehicle detectors on those interchanges. 

The number of observations that allowed accurate estimation is surprisingly low, which 

shows the applicability of this method to real-world problems. Thus, this procedure 

requires a small reliable ground truth data on turning movements of interchanges that 

are subject to study over a short period. On the other hand, the permanent installation 

of the detectors' method did not produce acceptable results, which means the spatial 

relations between the turning movement at different interchanges are not established.   
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Chapter 5: Data 

 

 

 

5.1 Overview 

This study proposes a model framework to estimate and predict the 15-minute turning 

movement traffic volumes using the traffic flow conditions and road characteristics 

attributes. This chapter presents the data used for training and testing the models. In the 

first step, the study area is introduced to give an overview of the location of the 

intersections. Further, the data sources for traffic speed and probe vehicle movements 

are described, followed by comparing actual turning movement proportions and the 

probe vehicle dataset proportions. Finally, the turning movement dataset is summarized 

using distribution figures. 

5.2 Study Area 

Exploring turning movement traffic volume estimation and prediction requires 

complex and comprehensive data collection efforts that not all jurisdictions can 

undergo. Therefore, one of the earliest obstacles this study faces is finding a reliable 

and comprehensive dataset containing the traffic volumes performing each allowable 

turning movement at several intersections. In addition to including a considerable 

duration of data collection with a relatively high resolution of the time unit, the desired 
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ground truth data set should be located where there are access to traffic speed and 

vehicle probe data movements. One of the very few datasets satisfying the mentioned 

criteria is the turning movement count repository of the city of Austin in Texas. The 

data in this repository is collected through the deployed GRIDSMART1 optical traffic 

detectors in the selected intersections of Austin. The GRIDSMART sensor is a single-

camera system that counts the turning movement traffic volumes using object detection 

and tracking algorithms based on user-determined regions of interest in the video 

stream, an example of which is shown in Figure 14. 

 

Figure 14. Typical GRISMART sensor view 

 

 

1 https://gridsmart.com/ 
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The location of the sensors installed in the network is illustrated in Figure 15.  

 

Figure 15. Location of GRIDSMART sensors in Austin, TX 

It should be noted that some of these sensors were temporarily installed therefore 

collecting data for a specific time period. The collected data from the GRIDSMART 



 

52 

 

sensors are continuously uploaded to the City of Austin open data portal1 and are 

publicly accessible. Each record row represents the vehicular counts of a specific 

movement at an intersection in this dataset. The first records in this repository date back 

to mid-2017. However, the selected date for the analysis in this study is the years 2019 

and 2020 since high-resolution speed data is accessible to the author for these years. 

Besides, for 2020, the INRIX vehicle probe data movements are accessible to the 

author, which is explored in the current study. The downside of 2020 is the existence 

of irregular traffic flow characteristics due to the Covid-19 pandemic. The intersections 

with active sensors during 2019 are illustrated in Figure 16 and 2020 in Figure 17. 

5.3 Extraction of speed profiles 

The findings of the off-ramp traffic volume estimation model in this study and previous 

studies have shown the importance of traffic speed on traffic volumes. Although the 

relations between intersection turning movement counts and traffic speed is much more 

complicated and somewhat unresolved compared with the case of highway and freeway 

traffic, the incorporation of the traffic speed attributes into the dataset can benefit the 

models. Thus, the extraction of traffic speed variables is necessary for the turning 

movement count estimation framework. In the first step of traffic speed extraction, the   

 

 

1 https://data.austintexas.gov/ 
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Figure 16. Location of 2019 GRIDSMART sensors in Austin, TX 

INRIX XD and TMC segments are manually determined for each of the eight segments 

of a four-legged intersection and six segments of a T-intersection from the massive 

data downloader tool of the RITIS dashboard1. The advantage of obtaining both XD 

and TMC segments is that in the case of a missing traffic speed value in the XD-based  

 

 

1 https://pda.ritis.org/suite/download/ 
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Figure 17. Location of 2020 GRIDSMART sensors in Austin, TX 

dataset, the same attribute can be extracted from the TMC-based dataset. The features 

that are extracted for each mentioned segment are as follows: 

• Current speed: The current estimated harmonic mean speed for the roadway 

segment in miles per hour. 

• Average speed: The historical average speed for the roadway segment for that 

hour of the day and day of the week in miles per hour. 

• Reference speed: The calculated "free flow" mean speed for the roadway 

segment in miles per hour. This attribute is calculated based upon the 66th-

percentile point of the observed speeds in that segment for all time periods, 
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which establishes a reliable proxy for traffic speed at free-flow conditions for 

that segment. 

In the next section, the dataset is summarized and described using different figures to 

provide a broad overview of the dataset and make the reader more familiar with the 

data distribution in various locations and times. 

5.5 Data descriptive analysis 

Different data sources used in the intersection turning movement counts estimation 

were introduced in the previous sections of the current chapter. This section provides a 

data description to illustrate the distribution of the observations at different times, 

different turning movements, etc.  

The dataset is constructed as a large table. Each row represents the number of vehicular 

traffic performing a given specific turning movement during a particular time interval 

in a determined approach at a given intersection. The duration of each record in the 

dataset is 15 minutes. The observations selected for model development are from 7 AM 

to 6 PM. This selection is because these hours typically include the peak traffic 

volumes; therefore, they are the most important from the perspective of traffic operators 

and planners. Besides, the dataset’s source is from vision-based sensors; thus, the 

darkness of the environment can negatively affect the detection accuracy, and it is 

better to avoid using night observations for the present study. With the described 

configuration of data selection, the total number of observations for a given four-legged 

intersection with three allowed movement types at each approach, assuming no missing 
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observations, will be 365*12*4*12=210,240 for 2019 and 366*12*4*12=210,816 for 

2020. 

The first set of figures, Figure 18, represents the distribution of records in 2019 and 

2020 based on the month of the year, day of the week, and hour of the day. As it can 

be seen, according to this figure, the number of record rows in each bin is relatively 

uniformly distributed except for the number of records in each month. For instance, in 

the distribution of the number of observations per month in 2020, the months of May 

to August have distinctly lower records indicating a higher number of missing 

observations in the database in these months. Additionally, the number of records in 

each hour illustrates that the start and end hours of the considered durations have lower 

records in the data, which substantiates that optical traffic detectors can have 

difficulties detecting vehicles with reduced environment light.  

In the next set of figures, Figure 19, traffic counts, turning movement proportions, 

upstream speed, and the downstream speed for each movement type (i.e., left-turn, 

right-turn, and through movements) are illustrated as mentioned earlier over 15-minute 

time intervals. The upstream segment for each specific movement is the entering 

segment to the intersection, while the downstream segment is the exit segment. The 

following takeaways can be deduced from Figure 19: 

• The intersections with deployed GRIDSMART sensors are generally low-

volume intersections with a through movement count that rarely exceeds 960 

vehicles per hour, even during peak demand intervals. 
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Figure 18. Distribution of the number of observations in month of the year, day of the 

week, and hour of the day 
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Figure 19. Histogram of (a) Traffic counts (veh./15 min) (b) Turning movement 

proportions (15 min) (c) Upstream speed (mph) (d) Downstream speed (mph) for all 

study intersections 
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• The right- and left-turn movement proportions are typically less than the 

through movement proportion. 

• The speed distribution for each movement's upstream and downstream legs is 

relatively normally distributed. Most of the observations range from 10 to 40 

miles per hour, a reasonable traffic speed for urban arterials. However, the 

speed variations in the upstream segment are higher than in the downstream, 

which can be attributed to the impacts of the traffic signal and the arrival time 

of vehicles relative to the signal configuration. 

A summary statistics of the number of observations for each intersection in the 2019 

and 2020 datasets are presented separately in Table 5. Note that the maximum possible 

number of observations is based on counting the number of allowable movements in 

the selected intersections considering that intersections can be four-legged, T-

intersection, or have one-way approaches. The total possible movements in 2019 

intersections is 156, and in the 2020 dataset is 168. The maximum number of 

observations for each specific movement is the multiplication of the number of days in 

each year (2019, 365 days; 2020, 366 days) by 12 hours (6 AM to 7 PM) by four 

quarters in each hour. The mean percentage of observations in Table 5 illustrates that 

the missing record rows in the data are more than 40 percent of the total possible data, 

which indicates a need for improvement in the GRIDSMART sensors' placement in the 

intersection, detection and tracking algorithms, maintenance, etc. 
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Table 5. Summary statistics of the observations 

Year 2019 2020 

Intersections 15 15 

Mean no. of observations 101,716 102,453 

Median no. of observations 96,154 109,895 

Min. no. of observations 18,915 15,399 

Max. no. of observations 194,218 188,831 

Total no. of observations 1,525,744 1,536,801 

Max. possible no. of 

observations 

156*17,520=2,733,120 168*17,568=2,951,424 

Mean percentage of observatios %55.82 %52.07 

 

5.6 INRIX probe vehicle turning movements 

The data of probe vehicle movements can be an appropriate indicator of the general 

traffic patterns replacing the need for traffic detector deployments to some degree. 

However, the extracted travel patterns can be biased due to the nature of probe vehicle 

data since the vehicle probe data employed in this study are provided mainly by 

commercial vehicles. Commercial vehicles might avoid left-turn movements or have 

other specific movement patterns that differ from most road users. Therefore, a 

thorough analysis of the turning movement patterns between the actual traffic and the 
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probe vehicles is necessary. Besides, since the probe vehicle movements are high-

priced data rarely available to transportation authorities, MPOs, and researchers, its 

investigation in turning movement estimation applications is an interesting topic 

overlooked in the literature. 

This study comprehensively fills the gap described by comparing the ground truth and 

probe vehicle turning movements. The source of probe vehicle data used in the present 

study is INRIX, a well-known transportation data provider. This data is for the year 

2020 and aggregated over 15-minute time intervals. 

A comparison between the turning movement proportions of the actual traffic and the 

probe vehicle data for each specific movement is illustrated in Figure 20. The 

proportions are computed using Equation 19.  

𝑡𝑢𝑟𝑛𝑖𝑛𝑔 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑚𝑜𝑣𝑒𝑚𝑛𝑡 i =
𝑉𝑖

𝑉𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ
             (19) 

where 𝑉𝑖 is the traffic volume of movement “i,” and 𝑉𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ is the total traffic volume 

in the corresponding approach. 

As can be seen in Figure 20, there are significant differences between the turning 

movement proportions of the ground-truth and INRIX probe vehicle datasets. The 

concentration of observations in the probe vehicle turning movement data is in the 

proportions equal to zero or one, indicating that the number of probe vehicles in each 

quarter of an hour is too small to capture the actual turning movement proportions. 

One solution for this problem is to explore the turning movement proportions with 

higher levels of aggregation in time. Figures 21 and 22 illustrate the comparison of  
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Figure 20. Comparison between turning movement proportions of the actual traffic vs. 

probe vehicle datasets in each quarter of an hour 

turning movement proportions every 30 minutes as well as every 60 minutes. 

According to these figures, although some error reduction levels are achieved, the 

differences are still very high. Since another possible cause for this issue can be the 

lack of INRIX probe vehicles at some time intervals and in some locations, the 

distributions of turning movement proportion differences are plotted for each level of 

probe vehicle volume in the upstream approach in Figure 23. As it is evident in this 

figure, there are extreme differences between the actual turning movement proportions 

and INRIX turning movement proportions. For instance, even in the highest volume of  
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Figure 21. Comparison between turning movement proportions of the actual traffic vs. 

probe vehicle datasets in each half of an hour 

upstream probe vehicles, differences in turning movement can be as high as 0.5. 

Besides, the probe vehicle volumes of more than 20 vehicles per 15 minutes are only 

observed in 0.26 percent of the entire dataset. Therefore, the turning movement 

proportions of the INRIX probe vehicle are not a suitable representative of the actual 

turning movement counts. 

This chapter described different data pieces that built up the turning movement 

estimation investigation database. From each dataset in 2019 and 2020, 15 intersections 

with the GRIDSMART optical sensors are selected. The temporal distribution of the 
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Figure 22. Comparison between turning movement proportions of the actual traffic vs. 

probe vehicle datasets in each hour 

observations illustrated a relatively uniform number of observations at each hour and 

day of the week and to lesser degrees in the month of the year. The distribution of traffic 

volume for each turning movement illustrated that the intersections were located in low 

to mid traffic volume areas. Comparing the INRIX probe vehicle data and the 

GRIDSMART data as the ground truth revealed significant differences between the 

two datasets. In the next chapter, the turning movement count estimation framework is 

presented along with experiments to investigate the prediction accuracy resulting from 

each configuration. 
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Figure 23. Differences between turning movement proportions of the actual traffic vs. 

INRIX probe vehicle dataset in each quarter of an hour based on upstream probe 

vehicle volume 
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Chapter 6: Intersection Turning Movement Count Estimation  

 

 

 

6.1 Overview 

This chapter presents the results of the experiments with the turning movement count 

estimation and prediction models. In the first part, the results of testing different model 

structures are evaluated. This part is followed by an investigation of the input variables 

in the model, data collection durations, and the prediction performance of the proposed 

framework. 

6.2 Model structure investigation 

The estimation and prediction of turning movement counts require a model capable of 

capturing the complex relations between different variables and the vehicular volume 

of each specific turning movement. Therefore, in this study, three advanced machine 

learning algorithms are applied to the dataset to estimate the turning movement counts 

in a given time interval. These machine learning algorithms are Random Forest, 

XGBoost, and Multi-Layer Perceptron. Since a description of each of these models is 

presented in earlier chapters, in this section, the details of selecting the training, 

validation, and test sets are described, along with a comparison of performance 

measures for the models. The dataset used for developing the models is the 2019 
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intersection turning movement counts data. Since each turning movement is composed 

of two legs of the intersection (one is entering the intersection and one is exiting the 

intersection), the characteristics of both of these legs are incorporated as input variables 

into the model. The following example clearly illustrates the definition of upstream and 

downstream for each movement. In Figure 23, the specific movement of the Eastbound-

Left Turn is illustrated. As it can be seen, the upstream segment for this movement is 

the eastbound entering leg to the intersection, and the downstream is the northbound 

exiting leg from the intersection. A similar definition can be introduced for the set of 

upstream and downstream segments of each of the 12 possible turning movements of a 

four-leg intersection. 

 

Figure 24. Illustration of upstream and downstream for a specific turning movement 
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With the description of the upstream and downstream segments for each movement, 

the input variables for the model can be the following: 

• Traffic speed and average traffic speed of the upstream and downstream 

segments 

• Approach volume of the upstream and downstream segments 

• Annual average daily traffic (AADT) of the upstream and downstream 

segments   

• Number of lanes of the upstream and downstream segments 

• Exclusive lane configuration 

• Movement type (Through, Left Turn, or Right Turn) 

• Movement direction (NB, SB, EB, or WB) 

• Time of the day 

• Day of the week (Monday, Tuesday, …, Sunday) 

It is assumed that one week of data is acquired for model training for each intersection. 

A model is trained using its own training set data for each intersection. The test set is 

drawn randomly without replacement 25 times to account for the randomness in the 

data collection start date. The validation set used to determine the best hyperparameters 

for each model is chosen to be the next week of the training set. The test set, which is 

the base for comparing the models, is the entire observations for the target intersection 

minus the training and validation sets. The described procedure is performed for each 

one of the models yielding 3 (model structures) * (15 intersections) * 25 (test sets) = 

1,125 models. Since machine learning models benefit from a larger training set size 
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and a fine-tuning for the MLP model can be performed to tailor the model for each 

target intersection, an MLP model with fine-tuning is explored in addition to the RF, 

XGBoost, and MLP models. This model, called MLP-FT, combines the training sets 

of all 15 intersections in training a single model. Later, all of the model layers are fixed, 

except the last layer, which is trained on the training set of each specific intersection. 

The procedure for determining the training, validation, and testing sets is the same as 

in other models. Therefore in total, we end up with 1,500 models for estimating turning 

movement counts in every 15 minutes. The performance measures of R2, MAPE, and 

MAE are computed for each model structure to compare the performance of each model 

structure in turning movement count estimation. The distribution of R2 for the four 

model structures is presented in Figure 25. As it is shown in this figure, the median of 

R2 for the MLP-FT model is the highest and for the XGBoost and MLP-FT are almost  

 

Figure 25. Distribution of TM count estimation R2 for different model structures 
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equal. However, the variations in the R2 for the XGBoost and MLP-FT models are less 

than that of the MLP model. The Random Forest model has the lowest R2 with the 

highest variations presenting a poor performance relative to other model structures. The 

average absolute percentage of errors in the turning movement count estimates are 

presented in Figure 26 for the four models. This figure illustrates that the MLP-FT 

outperforms other model structures significantly. The median MAPE for the MLP-FT 

is almost equal to %5, with variations in the range of 4 to 10 percent. A comparison 

between the MLP and XGBoost illustrates that the median MAPE for the MLP model 

is lower; however, the variations of MAPE for this model are much more than that of 

the XGBoost model.  

The RF model in the MAPE measure, similar to the R2, is shown to be the least accurate 

model for turning movement estimation applications. A different picture of the  

 

Figure 26. Distribution of TM count estimation MAPE for different model structures 
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performance of each model is obtained by computing the errors in terms of the 

difference between the actual and estimated number of vehicles in each specific turning 

movement and each time interval. The MAE is the measure that demonstrates that 

picture. The distribution of the MAE for each model is presented in Figure 27. 

According to this figure, the MLP-FT is superior to other models, with a median MAE 

of less than three vehicles every 15 minutes. In comparison between the XGBoost and 

MLP models, it is clear that although the XGBoost model has a higher median MAE 

and higher variations in the MAE measure, it is inferior to the MLP model based on 

this measure. Similar to the previous measures, the Random Forest model has the 

highest error, with a median of above seven vehicles per 15 minutes. 

The summary statistics of the performance measures are provided in Table 6. The key 

takeaway of the model comparisons is that the MLP-FT model is the best structure for 

 

Figure 27. Distribution of TM count estimation MAE for different model structures 
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estimating the turning movement counts. This finding illustrates the benefits of training 

the MLP model with a larger dataset and fine-tuning the trained model to each 

intersection.  

An important point that needs to be emphasized here is that the approach traffic volume 

input is helping the models significantly. However, the approach traffic volumes might 

not be an input readily available in all jurisdictions requiring huge investments for 

collecting. Therefore, a more plausible assumption and closer to real-world conditions  

Table 6. Summary statistics of different model structures’ performance 

Measure Model RF XGBoost MLP MLP-FT 

R2 

Mean 0.84 0.93 0.92 0.96 

Min 0.76 0.91 0.89 0.92 

Median 0.83 0.93 0.93 0.96 

Max 0.90 0.97 0.96 0.99 

MAPE (%) 

Mean 17.90 13.96 12.72 6.12 

Min 13.39 7.49 6.25 4.20 

Median 17.79 14.43 11.01 5.48 

Max 25.92 20.31 22.74 9.30 

MAE 

(veh/15min) 

Mean 8.16 4.90 3.71 2.18 

Min 5.21 2.75 2.32 1.03 

Median 7.55 4.26 3.56 1.96 

Max 11.59 7.71 5.67 3.42 
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is assuming that the traffic volume on some but not all of the approaches are available 

and exploring methods to take advantage of the traffic volumes in these approaches. 

The following section explores the effects of training the turning movement count 

estimation models without the approach traffic volume inputs to make the modeling 

framework realistic. More importantly, a framework is presented to utilize the available 

approach traffic volumes to improve the model performance. 

6.3 Approach traffic volume input 

Different models were trained on the data in the previous section, assuming that the 

upstream and downstream traffic volumes are available as inputs. The traffic volumes 

on these segments can be obtained through the installation of continuous count traffic 

sensors on these segments, as illustrated in Figure 28 as an example where loop  

 

Figure 28. Example configurations of loop detectors to collect approach traffic counts 
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detectors are installed on all entering and exiting segments of the target intersection. 

Another possible method is summing up the traffic volume of segments entering the 

target segment. However, due to these sensors' installation and maintenance costs, the 

traffic count sensors' configuration rarely allows for the extraction of upstream and 

downstream traffic volume counts. 

In this study, we propose a modeling framework in which, as the first step utilizing the 

available traffic volume counts, a volume estimation model is trained to generate 

estimates of traffic volumes at each intersection approach. 

In the second step, the inputs of the volume estimation model are combined with the 

approach traffic counts and fed to the turning movement estimation model. One of the 

advantages of the proposed framework is that the data of traffic counts with any given 

level of availability are used to improve the model performance. Another advantage is 

that, unlike previous studies, which use a complete set of inputs for training the turning 

movement estimation model, the proposed framework can generate estimates for the 

missing attributes making it applicable to real-world turning movement count 

estimation. 

The flowchart of the proposed framework is presented in Figure 29, where on the left 

side is the volume estimation module, and on the right side is the turning movement 

count estimation module. The segment-level attributes and temporal features are used 

to train a volume estimation model for all of the approaches of the study intersections. 

Further, the model generates traffic volume estimates for the approaches of each 

intersection. These generated traffic counts are replaced with the actual volumes  
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Figure 29. Proposed framework for TM count estimation with incomplete approach 

traffic volumes 

wherever the ground-truth data exists and is accessible. The obtained traffic counts are 

used in addition to movement-specific and temporal features to train the turning 

movement count estimation model, the output of which is the estimation of traffic 

counts for each specific movement during 15 minutes. 

Since different numbers of traffic count sensors might exist in a given road network, a 

sensitivity analysis is performed to investigate the impacts of varying approach traffic 

count availability levels. These levels of data availability are summarized in Table 7, 

wherein in the final row, a “Base” scenario is added, which is the turning movement 
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estimation model without any approach traffic volumes to illustrate the improvements 

of the turning movement count estimates with this input feature. 

Table 7. Summary of the traffic volume ground-truth data availability scenarios 

Scenario 

name 

percent of segments with continuous 

traffic count sensors 
volume estimation model ground truth 

0/8 0 

one week of 

turning 

movement 

count ground-

truth 

+ 

traffic volume of 

segments with 

continuous traffic 

count sensors 

1/8 12.5 

2/8 25.0 

3/8 37.5 

4/8 50.0 

5/8 62.5 

6/8 75.0 

7/8 87.5 

8/8 100 

Base No volume estimation module 

 

Each percentage of intersection segments with traffic count sensors training sets are 25 

times randomly drawn, similar to the previous section's experiments. Based on the 

model structure analysis results, the MLP-FT model structure was selected for this 

experiment since it showed the highest performance. The three following figures 

present the distribution of performance measures for the turning movement count 

estimates using the proposed framework. In Figure 30, the distribution of R2 for each 
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introduced scenario is illustrated. As it can be seen, the addition of the volume 

estimation module improves the turning movement estimation model performance 

significantly. Besides, for this study's target intersections, incorporating ground-truth 

volumes after a certain point is not improving the performance by a large margin. 

Therefore, for this study, the reasonable proportion of segments in which traffic count 

sensor installation is beneficial is up to 25 or 37.5 percent of the entire segments. Note 

that the "8/8" scenario is similar to the MLP-FT model in the previous section. 

 

Figure 30. Distribution of TM count estimation R2 for volume data availability scenarios 

The distribution of MAPE for the introduced scenarios is presented in Figure 31. The 

conclusions that can be drawn from the distribution of MAPE are similar to those from 

the R2 distribution. However, in this case, the optimum proportion of segments with 

traffic volume sensors is around 37.5 percent, where the median MAPE is 

approximately 15 percent. 
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Figure 31. Distribution of TM count estimation MAPE for volume data avaialibility 

scenarios 

Figure 32 presents the distribution of MAE for the turning movement count estimation 

using the proposed framework. The takeaway of the MAE distribution is that the 

median MAE is continuously reducing with around nine vehicles per 15 minutes for 

the scenario without any installed continuous traffic count sensors down to almost 

equal to 2 for the installation of continuous count sensors on all segments. According 

to this figure, the optimum proportion of intersection approaches with continuous count 

sensors is around 50 percent. The summary statistics of model performance measures 

are presented in Table 8. 
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Figure 32. Distribution of TM count estimation MAE for different volume data 

availability scenarios 

The conclusion from the results of this section is that the incorporation of approach 

volume counts or their estimates from a volume estimation module into the turning 

movement estimation model has significant advantages for the model performance. 

Even at low penetration rates of continuous traffic count sensors, the turning movement 

counts can be more accurate with the volume estimation module. Additionally, it can 

be deduced that the installation of continuous traffic count sensors has a diminishing 

marginal benefit to the model, and this benefit does not significantly increase after a 

certain point. As mentioned for the models trained so far, the assumption is that one 

week of turning movement count data is available. In the next section, a sensitivity 

analysis on the size of turning movement count ground-truth is performed. 
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Table 8. Summary statistics of traffic volume availability scenarios’ model performance 

Measure Scenario Base 0/8 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8 

R2 

Mean 0.66 0.80 0.86 0.92 0.91 0.93 0.94 0.94 0.95 0.96 

Min 0.57 0.71 0.76 0.86 0.87 0.88 0.90 0.91 0.91 0.92 

Median 0.66 0.81 0.85 0.92 0.91 0.94 0.94 0.94 0.94 0.97 

Max 0.75 0.88 0.97 0.97 0.97 0.98 0.97 0.98 0.98 0.99 

MAPE 

(%) 

Mean 41.66 30.74 23.79 16.53 13.41 13.22 10.34 10.23 7.91 6.12 

Min 28.17 19.81 14.74 10.02 9.00 6.46 6.14 7.01 4.74 4.20 

Median 41.82 30.52 23.16 16.68 13.49 14.30 10.05 10.07 8.04 5.48 

Max 52.86 40.58 33.90 21.49 18.57 17.72 14.67 13.05 10.37 9.30 

MAE  

(veh / 

15min) 

Mean 10.74 9.09 6.79 6.02 6.10 4.22 3.67 3.28 2.49 2.18 

Min 7.50 6.82 4.84 4.02 3.83 2.70 2.46 1.85 1.39 1.03 

Median 10.58 9.43 6.73 6.17 6.11 4.28 3.76 3.11 2.35 1.96 

Max 13.87 11.28 8.58 7.49 7.73 6.04 5.04 4.73 3.84 3.42 

6.4 Turning movement ground-truth data size 

Although the turning movement count estimation models trained in the previous 

sections use one week of ground-truth data for each specific turning movement, the 

data collection costs can be very high, especially for the turning movement traffic 

count. Therefore, a sensitivity analysis is beneficial to investigate the model 
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performance given different sizes of the ground-truth data enabling transportation 

authorities to do a cost-benefit analysis depending on their budget level and desired 

accuracy. Undoubtedly, the decision-makers of the system would rather avoid data 

collection expenditures in case there is a limited gain in the turning movement 

estimation accuracy beyond a certain level of data collection. The results of training 

the MLP-FT model on different levels of ground-truth data are presented here. It is 

assumed that 25 percent of the segments have traffic volume sensors installed and 

provide traffic count data. The distribution of R2 for the different number of days of 

data availability of turning movement counts is presented in Figure 33.   

 

Figure 33. Distribution of TM count estimation R2 based on ground-truth data 

availability scenarios 

Expectedly, the accuracy of the model estimates decreases with a reduction in ground-

truth data collection. However, the reduction in accuracy is much more when the data 

collection duration is less than three or four days in a year. The distribution of MAPE 
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for each turning movement count data collection duration is presented in Figure 34. As 

can be seen, the duration of data collection has a considerable impact on the model 

accuracy, and with four days of data collection, the errors can reach as high as 90 

percent. Therefore, according to the MAPE measure and for the intersections of the 

present study, a minimum of five data collection days are required to produce 

meaningful estimates. In Figure 35, the distribution of MAE for the same experiment 

is presented. Based on this Figure, no clear point can be selected as the minimum data 

collection duration. The summary statistics of the performance measures for these 

models are presented in Table 9. 

 

Figure 34. Distribution of TM count estimation MAPE based on ground-truth data 

availability scenarios 

The takeaway of this experiment is that the model accuracy is highly affected by the 

turning movement count data collection duration. Therefore, depending on the desired 
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accuracy for each specific application and considering the costs, the duration of data 

collection should be determined. 

 

Figure 35. Distribution of TM count estimation MAE based on ground-truth data 

availability scenarios 

According to the experiments in this chapter, it can be concluded that: 

1. MLP-FT model is superior to Random Forest, XGBoost, and MLP without fine-

tuning in turning movement count estimation. 

2. The incorporation of approach traffic volume counts into the model 

significantly improves the model accuracy. In the absence of complete traffic 

count data for the approaches, a volume estimation model is beneficial in 

estimating the traffic volumes for segments without a traffic sensor or missing 

data points. 
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3. The increase in turning movement count data collection duration is reflected in 

the model accuracy to a great extent. The investment in collecting this data can 

pay back in the applications of the developed model. 

Table 9. Summary statistics of ground-truth data availability scenarios’ model 

performance 

Measure Scenario 1 2 3 4 5 6 7 

R2 

Mean 0.67 0.74 0.78 0.82 0.85 0.89 0.92 

Min 0.39 0.51 0.62 0.70 0.79 0.82 0.86 

Median 0.75 0.80 0.81 0.85 0.88 0.90 0.92 

Max 0.88 0.89 0.90 0.91 0.92 0.94 0.97 

MAPE (%) 

Mean 68.62 54.94 51.71 46.47 27.50 21.64 16.53 

Min 26.97 23.74 17.72 15.07 12.00 11.00 10.02 

Median 56.88 43.93 36.70 33.54 26.00 23.12 16.68 

Max 144.12 117.22 121.70 92.69 45.00 29.61 21.49 

MAE  

(veh / 15min) 

Mean 17.21 15.79 13.56 11.84 9.39 7.22 6.02 

Min 9.94 8.56 7.77 7.05 5.45 4.47 4.02 

Median 16.31 13.30 11.92 11.03 8.66 7.49 6.17 

Max 22.88 25.24 21.03 17.45 13.51 10.56 7.49 
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Building upon the findings of the current chapter, multiple applications can be put 

forward from the proposed framework. In the next chapter, two of the applications are 

illustrated with examples to provide a clear view of the framework's real-world uses. 
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Chapter 7: Application of the Proposed Framework 

 

 

 

7.1 Overview 

In the previous chapter, through the design and implementation of different 

experiments, the model performance is investigated under different conditions of 

model structure, approach traffic volume inputs, and turning movement data collection 

duration. The findings of the previous chapter indicate that the MLP-FT model is the 

superior model structure using the framework presented in Figure 29, which is 

essentially a traffic volume estimation model, the outputs of which are fed as inputs to 

the turning movement estimation model. Therefore, it is time to apply the proposed 

framework to solving real-world problems. This chapter explores the implementation 

of the proposed framework in two applications. First, the framework is employed to 

predict the turning movement traffic counts in various time horizons, and second is 

using the predictions to design traffic signal cycles according to the predicted traffic 

counts. In the following sections, these applications are investigated in detail. 

7.2 Prediction of Turning Movement Traffic Counts 

There are numerous benefits to predicting the turning movement counts at intersections 

ahead of time ranging from real-time designing and modification of traffic signal 
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timing and scheme to traffic operation and congestion mitigation measures in advance. 

Therefore, one of the advantages of a robust and accurate turning movement estimation 

framework is the ability to make predictions. Although there are various advanced 

time-series methods in the literature, the implication in the real-world application of 

these approaches is that turning movement count detectors are permanently installed at 

the intersection. Taking into account the costs of deployment and maintenance of such 

systems, the present study explores the prediction of turning movement counts with 

short-time data collection using the proposed turning movement estimation framework. 

In the previous chapter, each data point includes various attributes such as traffic speed, 

time of the day, etc., along with the traffic counts of that specific turning movement 

during 15 minutes. For the prediction purpose, the same attributes at, say t=ta, are fed 

to the model to predict the turning movement counts at t=ta+h, where “h” is the time 

horizon. Since, for this approach, the model requires data at times ta and ta+h, the 

number of observations that can be used for model development reduces. The 

prediction horizons considered here are 15, 30, 45, and 60 minutes ahead. Therefore, 

given the current attributes such as speed, the model generates turning movement count 

predictions for the next 15, 30, 45, and 60 minutes. Table 10 illustrates the definitions 

of prediction models more clearly. 

The prediction model structure is MLP-FT assuming approach traffic sensors on 25 

percent of the intersection segments and seven days of turning movement traffic count 

data collection for each intersection. The data collection days and the segments with 

continuous traffic count sensors are drawn randomly 25 times for each intersection. In 
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applying the proposed framework for prediction purposes, the approach traffic volume 

estimation model generates traffic volumes for segments without traffic counts, 

followed by a turning movement count prediction model. Figure 36 illustrates the 

distribution of turning movement count prediction models R2 for different time 

horizons. In this figure, the plot for the prediction horizon equal to zero stands for the 

model used to estimate the turning movement (h=0). According to this figure, while 

the prediction of turning movement counts in the next 15-minutes interval and for some 

applications up to the next 30 minutes are acceptable, predictions farther than that have 

a very low R2. 

Table 10. Configuration of prediction models in time 

Prediction horizon Model type Input features Output 

h=0 
TM count 

estimation 

Average 

between t=a-

15 to t=a 

TM counts during t=a-15 to 

t=a 

h=15 

TM count 

prediction 

TM counts during t=a to 

t=a+15 

h=30 
TM counts during t=a+15 to 

t=a+30 

h=45 
TM counts during t=a+30 to 

t=a+45 

h=60 
TM counts during t=a+45 to 

t=a+60 
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Figure 36. Distribution of TM count prediction models R2 

The comparison of MAPE for turning movement count predictions for different 

horizons is presented in Figure 37. According to this figure, the model is capable of 

producing turning movement count predictions for 30 minutes from the current time 

with a median MAPE of less than 25 percent. Besides, the model's accuracy in the 15 

minutes prediction is comparable with the estimation at the present time. 

The distribution of MAE for these models is presented in Figure 38, which illustrates 

that predictions for the 15-minutes time interval starting from the next 45 minutes have 

a median of fewer than nine vehicles in every 15 minutes. The summary statistics of 

the prediction models’ performance measures are illustrated in Table 11. 
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Figure 37. Distribution of TM count prediction models MAPE 

 

 

Figure 38. Distribution of TM count prediction models MAE 
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Table 11. Summary statistics of the prediction models performance measures 

Measure Prediction horizon h=0 h=15 h=30 h=45 h=60 

R2 

Mean 0.92 0.89 0.81 0.70 0.60 

Min 0.86 0.83 0.70 0.54 0.42 

Median 0.92 0.90 0.80 0.71 0.61 

Max 0.97 0.96 0.90 0.86 0.81 

MAPE (%) 

Mean 16.53 20.48 25.76 37.31 56.70 

Min 10.02 14.54 20.13 25.65 37.33 

Median 16.68 21.00 24.00 36.59 55.00 

Max 21.49 26.00 34.36 49.25 81.00 

MAE  

(veh / 15min) 

Mean 6.02 6.32 7.38 8.17 11.07 

Min 4.02 4.18 5.51 5.64 7.81 

Median 6.17 6.46 7.30 8.77 10.42 

Max 7.49 8.11 9.53 10.84 14.57 

 

According to the above figures illustrating the prediction performance of the proposed 

framework, it can be concluded that the model can be used to predict turning movement 

counts for the next 15 minutes, given the current traffic conditions. Additionally, the 

15-minute time interval 30 minutes ahead of the current time is somewhat acceptable. 



 

92 

 

Evaluation of the model performance in prediction during the peak and off-peak hours 

can provide more insight into the applicability of the proposed framework. Therefore, 

a more disaggregate illustration of model performance in 15 minutes predictions is 

presented here in Figures 39-41. The considered time intervals are AM-Peak (7 AM-9 

AM), Off-Peak (9 AM-3 PM), and PM-Peak (3 PM-6 PM). According to these figures, 

the model’s predictions are more accurate during peak periods for the R2 and MAPE. 

On the contrary, the MAE is lower during off-peak times due to lower traffic volumes 

during those times. 

 

 

Figure 39. Distribution of R2 in 15 minutes predictions of TM counts at different times of 

the day 
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Figure 40. Distribution of MAPE in 15 minutes predictions of TM counts at different 

times of the day 

 

Figure 41. Distribution of MAE in 15 minutes predictions of TM counts at different times 

of the day 
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7.3 Traffic signal design 

The proposed framework in the present study can generate turning movement count 

predictions that can be used to design and modify the signal timing in target 

intersections. The traffic signal plans and timings can be fine-tuned in advance 

depending on the predicted turning movement counts in this application. This 

application is illustrated in one of the study intersections and compared with a situation 

in which a pre-timed traffic signal is designed without using a prediction model. 

The study intersection is located at the junction of North Lamar Boulevard and East 

Rundberg Lane, Austin, TX. The schematic lane configuration of the intersection is 

presented in Figure 42. According to this figure, all left-turn movements have exclusive 

lanes, but the right-turns have shared lanes except for the west-bound direction. 

 

Figure 42. Schematic configuration of the study intersection 
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In the absence of the proposed framework, a one-day data collection is usually 

performed to design the traffic signal timing. A more accurate signal timing design 

might be achieved if the data collection duration is increased. The analysis of this 

section assumes that there are different scenarios of data collection durations ranging 

from one day to seven days. Corresponding to each of the collected data, a pre-timed 

signal timing can be designed. Additionally, each scenario's collected turning 

movement count data can be used to develop prediction models and design traffic signal 

timings according to the turning movement counts at each 15-minutes. According to 

the described configuration, there are 14 scenarios in total, as summarized in Table 12. 

Based on the signal timings designed in each scenario, the annual user delay in terms 

of time and monetary values for the target intersection can be computed and compared. 

The signal timing design for the first scenario, which is one day of turning movement 

data collection and a pre-timed signal design for the entire year, is described here. The 

data collection day is selected randomly. The timing of the signal is performed 

according to the HCM (2010) and Roess et al. (2004). The considered phase diagram 

for this intersection is presented in Figure 43, which illustrates a four-phase traffic 

signal timing. 
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Table 12. Summary of signal timing scenarios 

Scenario TM count data collection 

duration  

Signal timing 

1 1 Pre-timed 

2 1 Desinged based on TM count predictions 

3 2 Pre-timed 

4 2 Desinged based on TM count predictions 

5 3 Pre-timed 

6 3 Desinged based on TM count predictions 

7 4 Pre-timed 

8 4 Desinged based on TM count predictions 

9 5 Pre-timed 

10 5 Desinged based on TM count predictions 

11 6 Pre-timed 

12 6 Desinged based on TM count predictions 

13 7 Pre-timed 

14 7 Desinged based on TM count predictions 
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Figure 43. Phase diagrams of the selected intersection 

The following parameters are assumed in designing the signal timing according to 

Roess et al. (2004): 

𝑡 = 𝑑𝑟𝑖𝑣𝑒𝑟 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 =  1.0 𝑠 

𝑆85 = 85𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 = 35 + 5 = 40𝑚𝑝ℎ 

𝑎 = 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 = 10.0
𝑓𝑡2

𝑠
 

𝐺 = 𝑔𝑟𝑎𝑑𝑒 𝑜𝑓 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ = 0.0 % 

𝑊 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝑠 𝑆𝑇𝑂𝑃 𝑙𝑖𝑛𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑎𝑟 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒   

          𝑓𝑎𝑟𝑡ℎ𝑒𝑠𝑡 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑛𝑔 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑙𝑎𝑛𝑒 = 100 𝑓𝑒𝑒𝑡 

𝐿 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 20 𝑓𝑒𝑒𝑡 

𝑆15 = 15𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 = 35 − 5 = 30𝑚𝑝ℎ 

𝑙1 = 𝑠𝑡𝑎𝑟𝑡 − 𝑢𝑝 𝑙𝑜𝑠𝑡 𝑡𝑖𝑚𝑒 = 2.0 𝑠/𝑝ℎ𝑎𝑠𝑒 

𝑒 = 𝑚𝑜𝑡𝑜𝑟𝑖𝑠𝑡 𝑢𝑠𝑒 𝑜𝑓 𝑦𝑒𝑙𝑙𝑜𝑤 𝑎𝑛𝑑 𝑎𝑙𝑙 − 𝑟𝑒𝑑 = 2.0 𝑠/𝑝ℎ𝑎𝑠𝑒 

We determine the lost time per cycle in the first step, assuming a four-phase signal 

timing. The length of the yellow or change interval is calculated as: 
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𝑦 = 𝑡 +
1.47𝑆85

2𝑎 + (64.4 ∗ 0.01𝐺)
= 1 +

1.47 ∗ 40

2 ∗ 10 + (64.4 ∗ 0.01 ∗ 0)
≅ 3.9 𝑠 

 (20) 

The length of the all-red, considering no pedestrian activity in the intersection, is 

calculated as: 

𝑦 =
𝑊 + 𝐿

1.47𝑆15
=

100 + 20

1.47 ∗ 30
≅ 2.7 𝑠 

 (21) 

Therefore, the total lost time per cycle is computed as: 

𝐿 = 4(𝑙1 + 𝑙2) = 4(3.9 + 2.7) ≅ 26.4 𝑠  (22) 

In the next step, we determine the critical-lane volumes and their summation, which 

are summarized in Table 13. 

Using the numbers in Table 12, we can compute the cycle length as follows: 

𝐶𝑦𝑐𝑙𝑒 𝐿𝑒𝑛𝑔𝑡ℎ =
𝐿

1 − (
𝑉𝑐

3600
2 ∗ 𝑣

𝑐⁄
)

=
26.4

1 − (
1234.3

3600
2 ∗ 0.9

)
≅ 110.88𝑠 

 (23) 

Therefore, the cycle length is assumed to be 115 seconds, and the green split will be: 

𝑔1 = (𝐶 − 𝐿) (
𝑉1

𝑉𝑐
) = (115 − 26.4) (

172.2

1234.3
) = 12.4 𝑠 

 (24) 

𝑔2 = (𝐶 − 𝐿) (
𝑉2

𝑉𝑐
) = (115 − 26.4) (

610.5

1234.3
) = 43.8 𝑠 

(25) 

𝑔3 = (𝐶 − 𝐿) (
𝑉3

𝑉𝑐
) = (115 − 26.4) (

201.6

1234.3
) = 14.5 𝑠 

(26) 
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𝑔4 = (𝐶 − 𝐿) (
𝑉4

𝑉𝑐
) = (115 − 26.4) (

250.0

1234.3
) = 17.9 𝑠 

(27) 

Table 13. Computation of through vehicle equivalent volumes for signal timing 

Movement Critical Lane Volume (tvu/h/ln) 

NB-LT 

SB-LT 

172.2 

NB-TH 

NB-RT 

SB-TH 

SB-RT 

610.5 

EB-LT 

WB-LT 

201.6 

EB-TH 

EB-RT 

WB-TH 

WB-RT 

250.0 

Total critical lane volumes 

(VC) 

172.2+610.5+201.6+250.0=1234.3 
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The above computations led to a pre-timed signal timing that can be used for the entire 

year. This signal timing does not require any modeling framework to predict the turning 

movement counts; however, it will not reflect the changes in traffic volumes and 

demand into signal timing. Corresponding to each without prediction model scenario, 

25 different randomly drawn days for data collection are selected to account for the 

randomness in the data collection, for each of which a set of traffic signal timings are 

obtained. For the scenarios with prediction model, first using the available ground truth, 

a prediction model is trained. The turning movement count predictions generated by 

the model are used to design a signal timing for every 15 minutes. Same as the scenarios 

without a prediction model, the data collection days are selected 25 times randomly for 

these scenarios to account for the randomness. Therefore, in total, there are 7*25=135 

turning movement prediction models. The user delay is computed using a simulation 

framework in the next step.  

The computation of user delay is approached from a high-level perspective since a 

microscopic analysis, while hugely increasing the complexity and computation times, 

does not add much to the findings since there are significant uncertainties and 

randomness in the nature of the problem, such as vehicle arrival distribution, traffic 

conditions, pedestrian activity, changes in predictions due to signal timings, etc. In the 

simulation adopted in the present study, the maximum number of vehicles that can pass 

the intersection for each approach is computed as the critical volume of each lane 

group. Further, any demand for each specific movement higher than the critical volume 

should wait in the queue for the next cycle or cycles until they can pass the intersection. 
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It is assumed that the vehicle arrivals are uniformly distributed in each 15-minutes. A 

stationary observer can approximate the delay as follows: 

𝐷𝑡
𝑖 = 𝑑1,𝑡

𝑖 + 𝑑2,𝑡
𝑖 =

1

2
(𝑞𝑡−1

𝑖 + 𝑞𝑡
𝑖)(15) +

1

2
(𝑉𝑡

𝑖) (
𝐶𝑡 − 𝑔𝑡

𝑖

60
) 

 (28) 

and, 

𝑞𝑡
𝑖 = max (𝑞𝑡−1

𝑖 + (𝑉𝑡
𝑖 − 𝑉𝑡

𝑖,𝑐), 0)  (29) 

where: 

𝐷𝑡
𝑖, is the total delay experienced by vehicles of lane group i, at time interval t; 

𝑑1,𝑡
𝑖 , is the delay experienced by vehicles of lane group i, at time interval t due to queue; 

𝑑2,𝑡
𝑖 , is the delay experienced by vehicles of lane group i, at time interval t due to arrival 

time relative to signal state; 

𝑞𝑡
𝑖, is the queue length in number of vehicles for lane group i, at the end of time interval 

t; 

𝑉𝑡
𝑖 is the traffic volume of lane group i, at time interval t; 

𝑉𝑡
𝑖,𝑐

, is the critical traffic volume of lane group i, at time interval t, which is used for 

signal timing; 

𝐶𝑡, is the cycle length (in seconds) at time interval t, and 

𝑔𝑡
𝑖 is the green time (in seconds) of lane group i, at time interval t. 

The user delays in hours per year for each scenario are computed based on different 

data collection days, using the above-described method for each lane group and each 
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time interval. The distribution of the user delay is presented in Figure 44. As it can be 

seen, the increase in the duration of data collection does not significantly reduce the 

user delay without a prediction model. Besides, even with a few days of data collection 

combined with the proposed turning movement count prediction framework, the user 

delay is reduced to less than half of the scenarios without prediction models. The cost 

of user delay is computed based on an average value of time for the users, which is 

found to be equal to 19 dollars per hour in recent studies (Goldszmidt et al., 2020). The 

multiplication of the value of time and the annual user delay yields the user delay cost 

in a year, as presented in Figure 45. As it can be seen, the median user delay cost of 

more than 8 million dollars can be reduced to around 3 million dollars resulting in about 

60 percent time and cost savings. 

 

Figure 44. Distribution of annual user delay for the target intersection 
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Figure 45. Distribution of annual user delay cost for the target intersection 

It should be noted that the computations in this section assume that no feedback is given 

to the prediction model based on the queue length and traffic speed. In a real-world 

implementation, this feedback can improve the signal timing and reduce user delays in 

excess of the presented numbers. Therefore, the actual user delay reductions can be 

much more since signal failures comprise the balk part of the user delay. In the next 

section, a brief cost-benefit analysis is presented to compare the data collection costs 

against the time and money savings of using the proposed framework for turning 

movement count prediction and design of traffic signal phasing and timing based on 

the predicted demand. 

7.4 Cost-Benefit Analysis 

To perform a cost-benefit analysis, the cost of one day of turning movement count data 

collection is extracted from the FHWA guidance for roadway safety data to support the 
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highway safety improvement program (Lefler et al., 2011). In this report, based on the 

costs given by 12 data collection vendors, a cost of 720 dollars per intersection (2010 

US dollars) is obtained. Assuming around 2 percent of the national inflation rate leads 

us to a rough estimation of approximately 1,000 dollars per intersection each day. Due 

to the post-pandemic situations, one may assume that the costs have increased, 

especially labor costs, in which case still the data collection cost per day should be less 

than 3,000 dollars. Considering that we used the data of 15 intersections for the present 

study with at most seven days of data collection leads us to 15*7*3,000=315,000 

dollars for the data collection. According to another FHWA report (Mimbela and Klein, 

2007), the purchase costs of inductive loops for collecting traffic count data are 

between 500 and  800 dollars (1999 US dollars). Another study (Sobie, 2016) states 

that the ten-year costs of a loop detector purchase, installation, and maintenance are 

around 20,000 dollars, translating into 2,000 dollars each year. Compared with the 

turning movement count data collection costs, these numbers are not significant, and 

considering the inflation can be around 3,000 dollars. If the data for all 15 intersections 

are collected, the total costs will be 315,000+15*3,000=360,000 dollars per year. 

Although this number is significant for transportation agencies, particularly smaller 

jurisdictions, comparing it with the savings in user delay costs makes this investment 

rational. The amount of 5 million dollars of savings per year for one intersection is a 

considerable number that justifies the costs in data collection. Assuming that the other 

intersections' savings are approximately equal to the mentioned intersection's savings, 

the total savings add up to around 45 million dollars per year. This saving illustrates 
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itself to the users in reduced travel times, higher travel time reliability, less traffic 

congestion, etc. 

The study findings are summarized in the next chapter, and the study's conclusions are 

presented. Finally, suggestions for improving the present research in future works are 

described. 
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Chapter 8: Conclusions and Future Work 

 

 

 

8.1 Research Summary and Contributions 

This study presented data-driven approaches to estimate and predict turning movement 

counts at junctions of roads. Turning movement counts are essential data needed for 

various intersection analyses. However, it is costly to collect this data directly. The 

traditional approach for obtaining this data is counting vehicles manually for a short 

time at intersections. This limited data is then used for all the required analyses. With 

the recent advancements in technology and video processing tools, manual data 

collection can be replaced with optical vehicle detectors. However, the downside of 

these sensors is that their deployment on a large scale is highly costly. Therefore, a 

framework that provides turning movement estimations with acceptable accuracy is of 

great importance for intersections analysis. However, the number of studies in this area 

is limited due to the complexity of turning movements in their nature and the lack of 

ground truth data. To fill this gap, the current research introduced frameworks that 

leverage other traffic data, such as probe speed data and advanced machine learning 

methods. Additionally, this study investigated the input ground truth turning movement 

data’s impact on the proposed frameworks to illustrate its application in practice. 
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The first part of this study focused on turning movement estimation at interchanges by 

developing models to estimate the proportion of vehicles that exit freeways using off-

ramps and investigating temporary and permanent data collection strategies at target 

interchanges. For these purposes, various fully connected feedforward multi-layer NN 

models were trained. The ground truth data used in interchanges’ analysis is from the 

PeMS website, a repository for volume count records, among other traffic flow 

measures of California’s road network. The main inputs to the NN models are road 

features and probe speed data at all segments whose traffic conditions affect the target 

interchanges.  

The results of this part revealed that the introduced framework could achieve 

acceptable accuracy in estimating off-ramps vehicle proportions when ground truth 

data is collected at all intersections, even for a short duration as low as approximately 

two days. Additionally, the results indicated that continuous data collection at some 

interchanges doesn’t help estimate count proportions at locations without ground truth 

data. 

The second part of the study investigated the estimation and prediction of turning 

movement counts at intersections during each 15 minutes interval. The ground-truth 

data of turning movement counts were extracted from the GRIDSMART optical 

sensors installed on selected intersections in Austin, TX. The data of turning movement 

counts for 15 intersections in 2019 and 15 intersections in 2020 were used for analysis. 

Since 2019 was in pre-pandemic conditions, the traffic patterns were not affected by 

the lockdowns and other disease spread prevention measures. The 2020 data of turning 
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movement counts were also used since the 2020 INRIX vehicle probe data was 

provided to the author. The opportunity to compare this data and the ground-truth 

turning movement proportions led us to extract the 2020 actual turning movement 

counts in addition to the 2019 data. The comparison of turning movement proportions 

between the actual turning movements and the INRIX data illustrated significant 

differences between the two datasets. Therefore, it is concluded that the INRIX turning 

movement data is not an appropriate indicator of the actual traffic patterns in this 

application. 

Following the investigation of INRIX probe vehicle turning movements, machine 

learning models' estimation of turning movement counts was explored. The attributes 

that were used for turning movement count estimation models were the traffic speed of 

the upstream and downstream of each movement, day of the week, time of the day, 

movement-specific characteristics, and the approach volume for each specific 

movement. In this investigation, several experiments were designed to obtain a more 

detailed understanding of the estimation of turning movement counts. The experiments 

and the findings of each experiment are as follows: 

Evaluation of different model structures: The turning movement count estimation 

models were trained for each intersection separately. The machine learning models for 

this experiment were random forest, XGBoost, multi-layer perceptron (MLP), and an 

MLP with fine-tuning (MLP-FT), which uses the data of all intersections to train the 

general model followed by fine-tuning the last layer for each specific intersection. The 

models were trained on 25 randomly drawn ground truths, each including seven days 
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of data collection. The results of this experiment revealed that the MLP-FT outperforms 

other models in all measures with a median R2 of 0.96, median MAPE of %5.48, and 

median MAE of 1.96 vehicles in every 15 minutes. 

Investigation of approach traffic volume input: In the previous experiment, it was 

assumed that the approach traffic volumes for each intersection were available. This 

assumption is limiting the findings since it requires traffic detectors on all entering and 

exiting legs of an intersection. The described situation rarely is faced in real-world 

problems. Therefore, this study proposed a framework to use the available traffic count 

data to develop a traffic volume estimation model to generate the traffic volumes for 

intersection legs without a detector. Using this method, the need for traffic detectors on 

all approaches is relaxed. The experiments on the proportion of intersection legs with 

traffic detectors indicated that deploying detectors on a quarter of all intersection legs 

is almost sufficient to obtain accurate turning movement count estimates. The obtained 

performance measures for the model with traffic detectors on 25 percent of approaches 

are 0.92 for median R2, %16.68 for median MAPE, and 6.17 vehicles per 15 minutes 

for median MAE. 

Turning movement ground-truth data size: An essential factor from the perspective of 

transportation agencies and authorities is the data collection duration required to obtain 

accurate turning movement count estimates. A set of experiments were designed in this 

study to evaluate the estimation accuracy depending on the duration of data collection 

ranging from one day per year to seven days per year. The findings of this analysis 

revealed that while five days of data collection per year is not significantly different 
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from seven days, in some applications, even four days per year can be sufficient. The 

performance measures for the five days of data collection are equal to 0.88 median R2, 

%23.12 median MAPE, and 8.66 vehicles per 15 minutes median MAE. 

Based on the findings of the above-described experiments, it was concluded that the 

best combination in terms of costs and model performance is the MLP-FT model with 

traffic detector sensors deployed on 25 percent of intersection segments and a five-day 

per year turning movement count data collection for each intersection.  

Following the experiments with the turning movement count estimation framework, 

two applications among possible uses of the proposed framework were presented. In 

the first application, the prediction of turning movement counts was explored, which 

illustrated that the model could generate relatively accurate predictions 15 minutes and 

30 minutes ahead of time. The performance measures for predicting turning movement 

counts 15 minutes ahead illustrated a median R2 of 0.90, median MAPE of %21, and 

median MAE of 6.46 vehicles per 15 minutes.  

In the second application, the predictions in 15 minutes ahead were utilized to design 

the traffic signal timing in one of the study intersections. This investigation was 

performed with different durations of data collection. The signal timings and the 

resulting user delays were compared with a situation where the collected ground truth 

is used to design pre-timed signal timings. The comparisons illustrated that employing 

the presented framework can reduce the user delay to approximately 1/3 of the pre-

timed signal design. For instance, with seven days of turning movement count data 

collection, the median user delay with using the proposed framework approximately 
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equals 170 thousand hours per year, while without using the framework, it is around 

420 thousand hours. It should also be noted that in the implementation of the proposed 

framework, the traffic conditions in response to the designed signal timing can 

feedback the framework to update the predictions and re-design the signal timing or 

more accurately design the signal for subsequent intervals, which can even reduce user 

delay in excess of the computed values. The following cost-benefit analysis of the 

signal timing illustrated that even seven days of data collection costs are negligible 

relative to the user delay costs savings. Therefore, the transportation authorities can 

find methods to divert a proportion of the user delay cost savings into their own budget 

and use it for deploying the proposed framework and traffic sensors. 

8.2 Potential Future Research 

Several aspects of this study can be expanded in future works to investigate various 

components of turning movement counts estimation. The following is a list of 

recommended directions for future research: 

1. This study provided a descriptive analysis to investigate the quality of probe 

vehicles turning movement proportions. Based on the findings of this analysis, 

probe data proportions accuracy is highly dependent on the number of probe 

vehicle counts. The data available for this research did not have an acceptable 

quality to be considered for further analysis. However, given the ongoing 

improvement in commercial probe data’s penetration rate, the effect of such 

data, when added as an input to the turning movement counts estimation model, 

can be a direction to build upon these study’s findings.  
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2. One other possible direction for future work is to expand the study’s framework 

to estimate OD patterns by exploring the effect of adding this study’s estimated 

turning movements to the OD pattern estimation approaches. An iterative 

framework can be developed, given the availability of vehicles’ trajectory data 

(from probe vehicles or location-based services (LBS)). From a high-level 

view, this framework can calculate OD patterns based on the sample trajectories 

and modify them using estimated turning movement counts to estimate actual 

OD patterns.  

3. The lack of continuous ground truth turning movement counts on consecutive 

intersections prevented this study from considering the spatial relation between 

turning movement counts in a network of intersections. Given a dataset without 

such limitations is available, investigating the impact of adding spatial 

relationships (Zahedian, 2021) to the turning movement estimation models can 

be an interesting topic for future research. Additionally, advanced graph-based 

machine learning models such as graph neural network models can be used to 

expand the current study’s framework to incorporate spatial correlations in a 

network of intersections. 

4. The findings of this study indicated that the turning movement counts 

estimations accuracy significantly improves if approach volumes data is added 

to the model. Additionally, we showed that approach volumes could be 

estimated if there are sensors deployed in limited locations to collect approach 

volume ground truth data. Developing a model that optimizes the locations of 
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such sensors concerning the final turning movement estimation accuracy is 

another area to advance the current study’s proposed frameworks. 

5. One other parameter whose impact on the turning movement estimation 

framework was presented in this study was the duration for which ground truth 

turning movement data is collected at each specific intersection. Given the high 

cost of such data collection, a scheduling framework can be developed in future 

research to optimize the duration and orientation of data collection over a 

network of intersections. 

6. In this study, due to the costs of turning movement count detector installation, 

the considered strategy of detector deployment is a temporary installation. With 

moving toward the large-scale deployment of advanced traffic detectors and a 

connected environment, the system operator can access real-time data of 

turning movement counts. In such a situation, one of the fascinating future 

research directions is to predict the turning movement counts using time-series 

models capable of capturing the patterns of traffic volumes. 
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