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Hydraulic Fracturing (hydro fracking) has revolutionized oil and gas 

production in the United States. Controversy has been widespread and plenty of 

uncertainty remains commonplace in the public. The topic of hazardous chemicals 

and pollution associated with hydro fracking will be presented in some detail. 

However, the key focus will be on sensors and lightning mitigation at produced 

hydrocarbon storage batteries. Unmitigated fires and explosions will be shown to 

cause $10 million per direct strike in some lightning risk zones. Lightning has stood 

as an unresolved threat to hydrocarbon storage facilities for over 100 years. 

Literature research has shown that 33% of all modern hydrocarbon tank accidents 

  



are due to lightning (Chang and Lin, 2006); in addition, cloud-ground lightning strikes 

are predicted to increase by 50% this century (Romps et al., 2014). An overlay of the 

current National Lightning Detection Network (NLDN) risk map and the Energy 

Information Administration (EIA) shale play map clearly show the lightning threat only 

increasing with the migration of future shale activities. While planning may change, 

shale deposits and regional lightning threats are not changing geographically; this 

research quantifies the threat and outlines clear lightning mitigation strategies. 

Furthermore, real-time detection and the associated methodology of lightning 

mitigation have implications for industries far beyond hydro fracking. By leveraging 

industrial standards for Fire and Gas Systems (FGS) such as IEC 61511, the 

proposed lightning effects mitigation system has a pathway toward verification and 

eventual validation at a broad array of industrial sites. Some extended applications 

included Navy fuel storage depots and Liquefied Natural Gas (LNG) facilities. 
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Chapter 1: Introduction 
This Chapter begins with an overview of hydraulic fracturing (fracking) from 

the past to the present along with a review of key terms, risks associated with 

fracking and areas where fracking could benefit from operational optimization.  A 

statement of the problem under investigation is presented followed by envisioned 

beneficiaries of the research.  The Chapter concludes with a description of the 

organization of the entire document. 

 

1.1 Background – Hydraulic Fracturing, Definitions, Risks, 

and Operational Optimization 

In ancient times, lightning strikes would ignite underground seepages of 

natural gas. These self-sustaining fires of seemingly mystical origin mystified the 

ancient Greeks. On occasion this even resulted in the construction of temples 

housing priestess including the Oracle of Delphi whose prophetic powers were 

thought to originate from the flames (Speight, 2007).   

Natural gas is, in many ways, the ideal fossil fuel. It is clean, easy to 

transport, and convenient to use.   From an historical perspective, in 1821 William A. 

Hart drilled a 27 foot deep well in Fredonia, New York  in an effort to get a larger flow 

of gas from a surface seepage of natural gas. This was the first well intentionally 

drilled to obtain natural gas (Victor et al., 2006; Speight, 2007). For most of the 

1800s, natural gas was used almost exclusively as a fuel for lamps. Because there 

were no pipelines to bring gas into individual homes, most of the gas went to light 

city streets. 
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It took the construction of pipelines to bring natural gas to new markets. One 

of the first lengthy pipelines was built in 1891, it was in excess of 100 miles 

long and carried gas from fields in central Indiana to Chicago. This first 

pipeline did not initiate an immediate construction boom; rather, there were 

very few pipelines built until after World War II in the 1940s (Tussing and 

Barlow, 1984; Foss and Head, 2004).  

         Improvements in metals, welding techniques and pipe making during 

that war made pipeline construction more economically attractive. In addition, 

necessity due to costal tanker disruptions during World War II caused an 

uptick in large gas pipeline construction; Tennessee Gas Company built a 24 

inch diameter, 1265 mile long natural gas line from the desert southwest to the 

East Coast (Kennedy, 1993).   After World War II, the nation began building its 

pipeline network. Throughout the 1950s and 1960s, thousands of miles of 

pipeline were constructed throughout the United States. Today, the U.S. 

pipeline network, a map of which is presented as Fig. 1-1, if laid end-to-end, 

would stretch to the moon and back twice (Islam, 2014). 
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Fig. 1-1.  Natural gas pipelines within the US (source: Energy Information 

Administration) (2009).  

 

       Like oil production, some natural gas flows freely to wells because the natural 

pressure of the underground reservoir forces the gas through the reservoir rocks. 

These types of gas wells require only a "Christmas tree" – such as that shown in Fig. 1-

2, or a series of pipes and valves on the surface, to control the flow of gas. 

 

 

 

Fig. 1-2.  Natural gas "Christmas Tree". 

 

In 2015, only a small number of these free-flowing gas formations still exist in many 

U.S. gas fields. This implies that in the vast majority of gas extraction wells in the U.S., 

some type of pumping system is required to extract the gas present in underground 

formations. 
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Often, the flow of gas through a reservoir can be improved by creating tiny 

cracks in the rock, called "fractures," that serve as open pathways for the gas to flow. 

In a technique called "hydraulic fracturing," drillers force high pressure fluids 

(principally water) into the underground geological formation to crack the rock. A 

"propping agent", most commonly a very fine grain sand or even tiny glass beads, is 

added to the fluid to prop open the fractures when the pressure is decreased.   A 

diagrammatic depiction of the process is presented as Fig. 1-3.   

It is worth noting that the process of “treating” carbonate rock formations with 

acid for enhanced oil extraction, was first done in 1895 by the Standard Oil Company 

in Lima, Ohio (Kalfayan, 2007; 1895). Following this, a patent was issued to Herman 

Frasch in 1896 for the process (Dyke, 1896). In 1934 and 1933, Putnam et al. 

published papers describing the techniques and advancements for the acid 

treatment of oil wells (Putnam, 1933; Putnam and Fry, 1934). In the 1934 paper, 

Putnam outlined how over the previous 3 years, 3,000 “lime” oil wells were treated 

with acid resulting in an average production increase of 448% overall (Putnam and 

Fry, 1934). As a further advancement, the first recorded use of hydraulic fracturing – 

“fracking” – with a propping agent (a type of sand) was performed in the late 1940s 

(Kalfayan, 2007).  The practice continued at a modest pace throughout the 1950s 

and 1960s with a significant expansion in volume productivity from unconventional 

(hydro fracked) wells in the late 1960s and 1970s as can be clearly interpreted from 

a 2010 paper by Nehring (NEHRING, 2010) .  Fracking has been performed around 

the world, but became of substantially notoriety in the U.S. in the 2000’s when the 

companion technology of horizontal drilling allowed oil and natural gas extraction to 

radically improve in efficiency (Hill et al., 2012). This recent growth in the horizontal 
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drill process has been profound; for example, in 2013 61% of U.S. wells drilled were 

horizontal as compared to 10% in 2004 (Hughes, 2013). 

From the standpoint of a easy to understand definition, the fracking 

procedure itself can be defined as: “…the precise stimulation activity, limited to the 

fluid action in initiating and extending cracks in the rock” (King, 2012). Of course, the 

entire hydro fracking project is much more complicated as will be shown in the 

balance of this chapter; in fact, Fig. 1-3 begins to highlight some of the complexity 

involved. 
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Fig. 1-3.  Representation of a fractured "well" (Howarth et al., 2011a) 
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The growth pattern of natural gas as the fuel of choice is clearly described in 

(EIA, 2011) and its tradeoffs are debated in (Howarth et al., 2011a). As the U.S. 

Department of Energy (DOE) explains, domestic natural gas will grow to displace 

coal in the coming decades (EIA, 2011). Much more recently, the DOE also cited the 

relatively low cost of natural gas and the continued expectation for price reductions 

as a principal reason for its accelerated industrial use.  

This industrial utilization feedback loop – increased use leading to increased 

demand leading to increased production leading to increased supply - is further 

driving the expansion of natural gas use. It is anticipated that by 2040, natural gas 

will overtake coal as the principal source of electricity generation in the United States 

(EIA, 2014).  As previously mentioned, the increasing use of horizontal drilling 

coupled with fracking techniques has led to a recalculation of the world reserves of 

natural gas, as seen in Fig. 1-4.    
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Fig. 1-4.  World reserves of natural gas (Howarth et al., 2011a) 

 

As previously stated, hydraulic fracturing (fracking) - also referred to as  

“hydro fracking” or “hydro-fracking” involves the stimulation of a drilled and 

completed well for the maximum extraction of underground resources including: 

natural gas, oil, and even geothermal energy. From a project management 

perspective, the end-to-end process associated with well preparation and fracking 

has numerous steps, including: injection fluid acquisition, well drilling and 

construction, stimulation and recovery, and environmentally compliant waste 

disposal (2010b).  

The horizontal drilling process can have a dramatic increase on the 

production rates vs. conventional vertical drilling and production operations. For 

example, experts from a major fracking company indicate that “shale plays” 

(geological formations of shale rock where hydrocarbons reside) near Midland, TX 

have greatly benefited from the combination of horizontal drilling and hydro fracking 

technology with the production rate per well increasing by 5-15 times over a 

conventional well. In other words, conventional wells in the Midland, TX area would 

yield 100 bbl of crude per day with horizontal drilling alone, whereas hydro fracking 

and horizontal operations can result in wells that produce 1500 bbl per day. --The 

economic implications of such an increase are obvious. 
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Fig. 1-5. Depiction of horizontal and vertical fracked wells (Murchison Oil & 

Gas, 2010). 

 

Fig. 1-5 illustrates how horizontal wells have a larger stimulation volume than 

vertical wells. Since shale plays are in layers, horizontal wells can follow the pay 

region more efficiently than vertical wells. To increase production even more, drilling 

locations – referred to as “pads” -  often have 3 or more wells to minimize logistics 

per well and setup communication between wells during fracking. Geological oil/gas 

reservoir engineers sometimes referring to “well communications” in the context that 

within the geological formation, fracking at one well site may influence production 

and extraction from neighboring wells.  Such well communication results in localized 

fracturing of the shale play region between wells, and thus producing even large 

production than single non-communicating wells1.   

1 Wells in communication are in close proximity as to influence the production of 
adjacent wells 
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Fig. 1-6.  Decline curve for Marcellus shale gas wells  

Naturally, a well’s production rate does not remain constant for its entire life, 

from a mathematical prospective, fracked wells can follow a pattern of exponential 

decay 

 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑒𝑒−𝑄𝑄𝑄𝑄 

Eq. 1-1. Exponential decay well production curve (Hill et al., 2012) 

 

In Eq. 1, Q is a scalar and determines the overall production decay 

characteristics of a fracked well. Several examples are shown in Fig. 1-7. 
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Fig. 1-7. Fracked well production over time (plots of Eq. 1-1) 

 

In addition to these natural log decay functions shown in Fig. 1-7, exploration 

and production companies (E&P companies) also use harmonic and hyperbolic 

curves. The choice in curve is supported by regional geology, and experience with 

adjacent wells (Lee and Wattenbarger, 1996).  

Some of the most common decline curve trend functions are outlined in 

Petroleum Production Systems by Hill et al. (Hill et al., 2012) are shown in Table 1-1.  

 

Curve Type Exponential Harmonic Hyperbolic 

Instantaneous 
production rate 

at time t 

𝑞𝑞(𝑡𝑡) =  𝑞𝑞𝑖𝑖𝑒𝑒−𝑎𝑎𝑎𝑎 𝑞𝑞(𝑡𝑡) =  
𝑞𝑞𝑖𝑖

1 + 𝑎𝑎𝑖𝑖𝑡𝑡
 𝑞𝑞(𝑡𝑡) =  

𝑞𝑞𝑖𝑖
(1 + 𝑎𝑎𝑖𝑖𝑡𝑡

𝑛𝑛
)𝑛𝑛

 

Table 1-1. Common decline curve trend functions (Hill et al., 2012) 
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The Estimated Ultimate Recovery (EUR) provides a fair benchmark for 

recoverable resources while providing insight into what the marginal cost might be 

for extended recovery. However as an Energy Information Administration (EIA) 

report indicates (2012), these estimates are highly variable and differ from well to 

well and don’t include the impacts of new technologies (such as sensors) being 

adopted. With all this said, it is easy to see that a fracked well provides the vast 

majority of their payback in the 0-2 year range--- this is truly where money can be 

made or lost. In particular, an end-to-end exploration and production company must 

consider models such as Net Present Value (NPV) to determine the value of a 

particular well.  

  

1.1.1 Operational Optimization  

Before we present NPV in relation to the fracking arena, another term to 

consider is Energy Return on Energy Invested (ERoEI). In simple terms, this is the 

total amount of energy required to produce a unit of recoverable hydrocarbons. 

Guilford et al. has done an exhaustive study of ERoEI for U.S. oil and gas; In their 

paper (Guilford et al., 2011), a total of 13 point estimates for ERoEI were taken over 

a 90 year period. The authors proceed to discuss a simple Eq. and my research 

efforts have built upon their Eq. to be more inclusive of sensors.    

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
 

Eq. 1-2. ERoI (Guilford et al., 2011) 
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Within this dissertation, the approach is taken that energy and cost are 

fungible concepts. In particular, a unit of energy can easily be calculated in terms of 

currency or USD. So, it follows that ERoI can be transformed into USD values by 

using the daily traded market value for energy commodities such as WTI (West 

Texas Intermediate) crude and Natural Gas. If we simply transform energy saved 

into terms of money saved we can then see the connection between Eq. 1-1 and 1-2.  

 

This research project now introduces the novel concept of SARoI (Sensor 

Augmented Return on Investment). By building upon the research of Guilford et al., 

how does the introduction of sensors into fracking operations impact the potential for 

financial savings?  In the following Eq., the concept of Sensor Augmented Return on 

Investment (SARoI) is introduced. SARoI parallels ERoI, but the benefit of a sensor 

is calculated in terms of currency rather than energy saved.     

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡𝑒𝑒𝑒𝑒 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
 

Eq. 1-4. Sensor Augmented Return on Investment 

 

 

𝑁𝑁𝑁𝑁𝑁𝑁 =  �
𝑆𝑆𝑡𝑡

(1 + 𝑖𝑖𝑑𝑑)𝑡𝑡
− 𝐼𝐼𝑜𝑜

𝑛𝑛

𝑡𝑡=1

 

Eq. 1-5. Net Present Value (Mian, 2011) 

St = (gross revenue – LOE – taxes) at the end of year t 

I0 = initial investment outlay at t=0  

id = the discount rate; required minimal rate of return 

n = the practical economic life of the well project 
13 

 



 

 

In Eq. 1-5., M.A. Mian presents the concept of Net Present Value (NPV) in relation to 

a resource in the petroleum industry (Mian, 2011). We now take Eq. 1-5 and modify it 

for the production profile of a hydro fracked well as follows. The contribution of 

sensors to the NPV of a hydro fracked well project is clearly shown in Eq. 1-6 by the 

integration of Eq. 2 and 5. 

𝑁𝑁𝑁𝑁𝑁𝑁 =  �
(𝑒𝑒−𝑄𝑄𝑄𝑄)− 𝐿𝐿𝐿𝐿𝐿𝐿 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

(1 + 𝑖𝑖𝑑𝑑)𝑡𝑡
− 𝐼𝐼𝑜𝑜

𝑛𝑛

𝑡𝑡=1

 

Eq. 1-6. Sensors contribute to the NPV of a hydro fracking project. 

 

In Eq. 1-6, a production profile of e-x is assumed; however, as was discussed in 

relation to Fig. 1-9, harmonic and hyperbolic profile curves can also be used (Lee 

and Wattenbarger, 1996).  

1.1.2 Fracking Operations 

As shown in Fig. 1-8, hydro fracking operations can be broken down into 3 

separate operational domains. The intersection – and a key element of this 

dissertation’s research – of transportation and surface operations is the “product 

storage” shown in Fig. 1-8. 
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Fig. 1-8: Hydraulic Fracturing Project Anatomy 

 

 The transportation operational area of Fig. 1-9 principally deals with the 

transportation of materials and supplies for hydro fracking operations including: sand, 

water, chemicals, big iron, equipment / machinery, waste water, solid garbage, 

produced oil, and produced gas.  

 The only portion of transportation that was examined in this dissertation was 

the transportation and storage of produced gas and oil at the battery2 facility; the in-

field experiments conducted for this research observed a distributed star-network 

topology for feed pipelines from operational fracking wells to a centralized storage 

battery.  Pipes were run on the surface – versus being buried – from the well pads to 

2 The battery is an onsite storage and rudimentary purification facility for produced 
liquid hydrocarbons. In our case, storage tanks are fiberglass. 
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Surface 
Operations

Transportation

Hydrologic 
Fracturing 
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Production 

Operational logistics, 
product storage and 
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the battery where limited chemical separation occurred, and the resultant separated 

constituents pumped into separate storage tanks. 

 While the subsurface – or downhole – operations and the general surface 

operations (such as sand truck placement and unloading) are not central to this 

research, Fig. 1-9 depicts how surface operations, transportation, intersect and 

impact storage.  Individuals interested in finding out more information on these two 

topics should consult (Holloway and Rudd). 

 

 

Fig. 1-9. Components of Surface Operations 

 

Logistics at hydro fracking sites could be greatly improved with better sensors 

and integrated management systems. Currently large hydro fracking companies 

have no master historian working in collaboration with an overall project 

management system that is able to ingest live field information from sensors. Robust 
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and purpose built sensors deployed at the operational edge are key for a more 

efficient view on operational risk. 

Fracking is not a monolithic process that is invariable through time; rather, 

fracking pads house a large collection of hardware that is moved on and off site as 

required. Some of this equipment includes pumps, hose fittings, tools, drill bits and 

pipe. Tracking the location and inventory of these items is currently done only by 

inspection and is not automated (based on discussions with onsite engineering 

supervisors). While individual companies may have a large number of fracking sites 

in a relatively small geographical area, the sheer volume of wells, such as these 

shown in the photograph of Fig. 1-10 – which this researcher took while flying over 

west Texas immediately shows the potential logistics and informatics difficulties for 

sub-optimally managed projects. 

 

Fig. 1-10.  West Texas fracking sites – Rooke 2014  

  

Transportation of sand, water, chemicals, and other supplies to and from 

fracking sites lack an integrated project management system. Often during fracking 

operations, sand trucks are lined up in a queue waiting to be unloaded at a cost of 

$150 per hour for the driver alone; see Fig. 1-11. Truck and unload sensors could 
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easily be placed onsite and integrated with real-time traffic from public sources like 

Google Traffic to more efficiently schedule trucks.  

 

Fig. 1-12. Photograph of fracking sand trucks being unloaded – Rooke 2014 

 

Gathering pipes, shown in Fig. 1-12, transport all liquid products to the battery. The 

mixture of fluids transported within the gathering pipes includes waste water, crude 

oil and other hydrocarbons.  
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Fig. 1-12. Gathering pipes lead to the Battery (photograph taken by author). 

 

The battery is where it all comes together. The fluid mixture coming from the 

fracked wells - typically between 6-8 well pads (with each pad containing 3 or more 

producing wells) - is gathered at the battery.  Product from each well is transported 

by polyethylene pipes which are for the most part simply ran on the surface as 

shown in Fig. 1-12. Very limited chemical separation is performed at the battery 

where the produced petroleum is stored in the fiberglass tanks of Fig. 1-13. With that 

said, the produced hydrocarbons are not of sufficient quality for immediate 

distribution, and undergo crude separation of heavy hydrocarbons and even sulfur 

containing gases such as hydrogen sulfide at the battery (Howarth et al., 2011b).    
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Fig. 1-13: The battery (photograph taken by author). 

 

 1.1.3 The fracking process in detail 

The process of fracking itself takes place below ground and is beyond the 

scope of this research project. Underground, the complex world of geology enters 

into the picture; and with that, so do additional complications. However, sensors are 

used underground mostly notably pressure, temperature, and vibration sensors. 

Often, these sensors use fiber optics as both the sensor and the communications 

path (Hill and Meltz, 1997).  

 The “downhole” arena of fracking has been heavily researched; this is where 

the shale deposits reside; and thus, hydrocarbons including: methane, ethane, and 

butane. Also, crude oil is produce, which in some case is the principal object for the 

fracking operation. Of course, this is dependent on geology, and in some Texas 

plays, crude oil amounts to 70% of the revenue per well.  

 Form a percentage perspective, fracking fluid is principally composed of sand 

(silica) and water. There are also other components including guar gum, antifungal 
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agents, surfactants, and anticorrosion agents; for a complete list of Halliburton 

chemicals used and their calculated concentration review a paper written by Rooke 

et al. in 2011 (Rooke and Fuhr, 2011) from which Table 1-1 was extracted.  

 

Table 1-1: Calculated concentration of chemicals in fracking fluid; Rooke et al. 

(Rooke and Fuhr, 2011). 

 

 

While the technologies and (many) procedures associated with fracking have just 

been presented, it is worthwhile to take a step-by-step review of the entire hydraulic 

fracturing procedure.   

Well initiation: 

Fracking Fluid 
Component 

Product Name

Median Overall 
Concentration of 

Component in 
Fracking Fluid Purpose Chemical 

ACGIH TLV-TWA 
(Exposure Safty)

OSHA PEL-TWA 
(Exposure Safty)

Portion of 
Component 

(Median value 
taken)

Concentration 
of Chemical in 

Overall 
Fracking Fluid 

(Parts per 
Million)

CAT®-3 0.1000% Breaker Catalyst EDTA/Copper chelate 1 mg/m3 20.0% 2.0
CAT®-4 0.0055% Breaker Catalyst Diethylenetriamine 1 ppm (S) 45.0% 0.2

CL-23™ 0.0600% Crosslink Agent
Zirconium, acetate lactate oxo 

ammonium complexes 5 mg/m3 45.0% 2.7
CL-23™ 0.0600% Crosslink Agent Ammonium chloride 10 mg/m3 10 mg/m3 14.0% 0.8
CL-37™ 0.0325% Crosslink Agent Triethanolamine zirconate 5 mg/m3 5 mg/m3 80.0% 2.6
CL-37™ 0.0325% Crosslink Agent Propanol 100 ppm 200 ppm 20.0% 0.7
CL-37™ 0.0325% Crosslink Agent Glycerine 10 mg/m3 15 mg/m3 20.0% 0.7

FR-66™ 0.0600% Friction Reducer
Hydrotreated light petroleum 

distillate 200 mg/m3 20.0% 1.2

LoSurf-300D™ 0.1750% Surfactant
Heavy aromatic petroleum 

naphtha 5 mg/m3 5 mg/m3 20.0% 3.5
LoSurf-300D™ 0.1750% Surfactant Naphthalene 10 ppm 10 ppm 3.0% 0.5
LoSurf-300D™ 0.1750% Surfactant 1,2,4 Trimethylbenzene 25 ppm 0.5% 0.1

LoSurf-300D™ 0.1750% Surfactant

Poly(oxy-1,2-ethanediyl), alpha-
(4-nonylphenyl)-omega-hydroxy-

, branched
Not listed but 

likely toxic
Not listed but 

likely toxic 2.5% 0.4

HAI-404M™ 1.5000% Corrosion Inhibitor 1-(Benzyl)quinolinium chloride 
Not listed but 

likely toxic
Not listed but 

likely toxic 7.5% 11.3

BE-6™ 0.0018% Biocide 2-Bromo-2-nitro-1,3-propanediol
Not listed but 

likely toxic
Not listed but 

likely toxic 80.0% 0.1

LGC-36UC™ 0.4250% Liquid Gel Concentrate Naphtha, hydrotreated heavy
Not listed might 

be toxic
Not listed might 

be toxic 45.0% 19.1

BE-9™ 0.0750% Biocide
Tributyl tetradecyl phosphonium 

chloride

Not listed, No 
evidence of 

Mutagenicity not 
considered a 
Carcinogen

Not Listed, No 
evidence of 

Mutagenicity not 
considered a 
Carcinogen 7.5% 0.6

BE-3S™ 0.0150% Biocide
2-Monobromo-3-

nitrilopropionamide Likely non toxic Likely non toxic 3.0% 0.05

BE-3S™ 0.0150% Biocide
2,2 Dibromo-3-

nitrilopropionamide
Dow Chemical 

company
Dow Chemical 

company 80.0% 1.2
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Companies start the drilling process on typically a 3-acre pad of land, which 

provides space for the many trucks that become part of an oil and gas drilling 

process.  The process begins with vertical drilling. A drilling rig is brought on site to 

drill the well, which will go to depths of up to 10,000 feet below the surface. This 

process can take from a week to 10 days, depending on the site’s operation and 

subsurface geology.  Drilling stops initially below the water table so that the well can 

be encased in cement to prevent anything from the well leaking into the water table. 

Once the casing is completed, a 7-inch drill bit will drill more than a mile to get to the 

leased formation in which to frack or in certain cases, such as the Niobrara or Codell 

formations, stacked hydrocarbon-laced formations beneath several impermeable 

rock formations. Once the drill bit hits bottom, or the “pay zone,” the company will 

drill what is called the “bend,” which is the curve the well takes to get into the 

horizontal portion of the zone. The bend alone could take up to two days to drill.  

Throughout the drilling process, drilling mud is pumped in to cool the drill bit and act 

as a means for the resulting debris to leave the well (Dunn, 2014). 

The horizontal portion of the well is then drilled for an additional 4,000 to 

10,000 feet, then encased in cement, with a 4-inch metal pipe in the center to allow 

for the oil and gas to flow to the surface. At this point, the well is just a hole drilled 

into the ground, with a cement barrier between the pipe, the formations and water 

table.  With the drilling completed, the drilling rig is packed up and activity stops until 

the actual fracking begins.  The time between drilling being completed and fracking 

beginning typically ranges from days to weeks (Dunn, 2014).  

 

Focusing on the frack: 
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The actual fracking process uses a considerable amount of machinery 

capable of driving the fluid down more than a mile, coupled with calculations of the 

exact mixtures of chemicals and water and sand (see Fig. 1-16)  and the pressure it 

takes to crack tiny little fissures into rocks, more than a mile beneath the surface.  

Fine grain sand transported to the well site via trucks along with large amounts of 

water and chemical additives are pumped into the well at high pressures, so as to 

crack the rock in different stages in the horizontal (parallel to the surface) portion of 

the well (Dunn, 2014). 

Conversations between the author and on-site fracking engineers: “To open 

fractures at bottom-hole pressures in the Eagle Ford, Niobrara, and the Permian 

Basin you probably need downhole pressures of 10,000 psi or so to open the rocks”. 

The chemicals do not erode the rock to create the cracks or fracs — it’s the high 

pressure of the water that opens them up. The chemicals, such as guar gum are 

added to help the water to gel, allowing the sand an easier vehicle in which to move. 

(again from the conversation:) “When it’s thicker, it does a better job of carrying sand 

downhole, if you think about a handful of sand at a lake, and you put it in water, the 

sand will settle quickly to the bottom of the lake. We don’t want that to happen in 

factures.” (Dunn, 2014) 

Those cracks, now held open by the fine grain sand, release the trapped oil 

and gas inside, which flow back to the surface after the downward pressure from 

fluids is released from the well.  Soap ingredients are frequently added to the gel to 

prevent bacterial growth in the well, reducing the probability of bacterial-released 

gases.   

The Layout: 
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The sand, water, chemicals and production that comes out of the well during 

the fracking of the well - commonly called flowback – plus injection of the fracking 

fluid into the well, requires numerous trucks to carry the water, the sand, and the 

chemicals to mix them all together, and more truck horsepower to combine it all to 

shoot down through a pipe into an 8-inch hole in the ground are used. To prep the 

area, several 500-barrel tanks for water storage or a massive, 40,000-barrel pool to 

store water – preinjection and flowback-  is erected on the periphery of the site. Sand 

storage tanks arrive, then are filled. A typical frac job will utilize from 1.5 million to 6 

million pounds of sand. Due to all of the top-side machinery and processes involved, 

traditional (non) sensor-augmented project management methodologies are far from 

optimal.  

(again, continuing the conversation:)  “When the rest of the crew arrives on 

location, they’ll typically rig up to the well head with a missile.”  The missile is a 

manifold around which most of the activity centers, to ultimately pump fracking fluid 

downhole. Crews will line on each side of the missile five to six semi-trucks, which 

contain the horsepower to create enough pressure to pump the fluid downhole at the 

proper rate. 

In addition to the horsepower trucks, there are sand trucks and trucks 

containing the chemical additives to thicken the water to keep the sand moving in the 

well.  A hydration truck, through which the chemicals are added to the water to “gel,” 

and a blender, which mixes that fluid with the sand, are nearby. All surround the 

missile in a horseshoe shape.  “The blender sends the mixture of sand water to the 

low-pressure side of the missile. From that missile, we have 10-12 connections to the 

individual horsepower units, which really pressurize the mixture of sand and fluids so 
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the (missile) can send it (through its high-pressure side) downhole at pressures that 

can crack the rock open.” 

That one process is good for one frack, or stage, at which the horizontal well 

is cracked from being hit at such high pressures.  A typical well can have 20 fracks, 

each necessitating this procedure of blending, pressurizing and cracking. A typical 

frack job can last up to 20 hours — one frack stage per hour — from start to finish. 

At the open end, or the top of the horseshoe, is a data center, or a trailer containing 

about five to six people controlling the science of the job. There’s usually a 

representative or two from the oil and gas company, a frack job supervisor and an 

engineer.  On jobs where crews utilize a large pool of water, the water is usually 

being heated to temperatures of about 70 degrees to provide the perfect chemical 

combination with the additives and sand.  At some point in the drilling and completion 

process, crews will build oil and gas storage tanks, vapor recovery units to control air 

emissions, and oil and gas separators for the eventual well production. All will be 

strategically located around the wellhead. 

 

Completion: 

Once all the fracks are created, the downward pressure is removed from the 

well. Within a couple of days, the release of that pressure will reverse, allowing the 

oil and gas to flow from the rocks and up the well.  (from the conversation;) “At end of 

the frac job, the flow stream is reversed.  Instead of pumping things downhole, due to 

the pressure we created, we have almost no pressure at the surface, then the flow 

reverts and oil and gas and some of the water find their way back from downhole to 

the surface.”  All the equipment is removed from the site, leaving only the wellhead, 

the storage tanks, separators and emissions control. Production can last for years. 
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Unrefined produce hydrocarbons are gathered from 6 or more well heads and 

transported in 3-inch polyethylene gathering pipes to a local battery facility (see Fig. 

1-13).  These hydrocarbons are stored in the battery which was briefly discussed in 

section 1.1.2, and will be covered in detail throughout this dissertation. 

1.1.4 Risk of lightning  

The mixture of chemicals present in a storage battery pose a threat to the 

environment – if spilled, etc – as well as a financial risk to the fracking company, 

again if spilled, etc.  A particular risk to both the environment and the fracking 

company arises if the storage tank explodes and/or catches on fire (Argyropoulos et 

al., 2012).  Such situations have occurred numerous times due to lightning strikes 

(Chang and Lin, 2006), such a burning storage battery fire is shown in Fig. 1-15. 

   

    (a)      (b) 

Fig. 1-14.  Fracking batteries on fire (a) Texas, (b) North Dakota.  Both fires were 

caused by lightning strikes. 

 

As a fact of nature, lightning strikes are difficult to avoid, and are by far the 

primary cause of catastrophic storage tank incidents (Chang and Lin, 2006). Chapter 

3 of this dissertation will highlight how others have made efforts to ground tanks with 

limited success and even counterproductive results. This situation might have been 
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substantially lessened if instrumentation could have sensed the increase in the 

electric field and static charge increasing on the storage tanks, relayed that 

information to a control system which could adjust the ratios of the constituent fluids 

in each tank thereby lessening the probability of a fire if struck by lightning.  --This 

forms the essence of the dissertation’s research question.  It is also immediately 

apparent that the organizations and individuals who would benefit from the research 

question “answer” are: us, the environment and the fracking company. 

 

1.2 Statement of the Problem Under Investigation 

Large scale hydraulic fracturing sites with inherent exposure to potentially 

catastrophic events such as lightning, lack sensor integration with decision 

algorithms. Many parameters at a fracking site are observed by an operator and 

action is taken manually. After discussions with engineers of numerous fracking 

company owner-operators including Pioneer Natural Resources (PXD), Exxon, and 

Halliburton, it quickly became apparent that a lack of trust and actualization is 

preventing change. Scholarly studies have shown that the decision of operators to 

trust automated controls is dependent on their general trust in automation and their 

own self-confidence (Bisantz and Seong, 2001). In particular, senior and often more 

risk adverse engineers have an attitude of “if it ain’t broke, don’t fix it”. Control 

systems including Supervisory Control and Data Acquisition (SCADA) systems 

operate under the premises of maximum availability with limited features. Operators 

in the industrial controls arena are highly risk adverse, and thus do not embrace 

change. However, tradition must change as sensors with automatous decision 

algorithms are introduced into industry.  
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The problem being addressed by this thesis involves the integration of 

customized electric field sensors and communications to allow for the measurement 

of static field increases on fiberglass tanks used in hydraulic fracturing storage 

batteries.  The instrumentation must be correctly deployed with local communications 

– to allow an on-battery control system to adjust the constituent chemicals in the 

storage tanks to reduce the combustibility of the fuel being stored (for the ignition 

source, lightning, and the oxygen present (the storage tanks are in the field) cannot 

be controlled) – per Fig. 1-16’s Explosion Triangle – but thereby reduce the risk 

associated with a lightning-induced fire at a fracking site storage battery. 

 

Fig. 1-15.  The Explosion Triangle. 

 

While the specific use of this dissertation’s research is immediate (and 

obvious), the more general point is the integration of a sensor-based automated 

operations management systems to reduce risk.  Once proven in this specific 

example, the concept may be expanded to other areas of applicability. 
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1.3   Beneficiaries of this Research 

Hydro fracking operations will be the immediate beneficiaries of this research. 

In addition there will be broader implications associated with this sensor-based 

automated mitigation and protection systems. Benefits to the fracking industry will 

include lower operational risk cost through better detection of lightning and higher 

profits through less unnecessary downtime due to lightning strikes.  

 

1.4 Organization of the Document 

 This dissertation is comprised of 6 Chapters.  Chapter 1 presented an 

overview of fracking and an initial description of the research problem.  Chapter 2 

presents a more thorough “deep dive” into the importance of the research problem 

and the potential impact of being able to obtain an answer to the research questions 

associated with the project.  Chapter 3 is a review of the pertinent literature and prior 

efforts.  The approach and methodology used in the pursuit of an answer to the 

research question is presented in Chapter 4.  The research findings are presented in 

Chapter 5 followed by a Summary and suggestions for further research in Chapter 6. 
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Chapter 2:  Description of the Research Questions 
Addressed 

This chapter begins with an extensive review of the safety of hydraulic 

fracturing storage facilities. The research questions alluded to in Chapter 1 are more 

fully explained in section 2.2.  Implications of “an answer” to these questions are 

presented and the chapter concludes with a summary. 

 

2.1 The Safety of Hydraulic Fracturing Storage Facilities 

The primary topic of this dissertation’s research involves the risks and safety 

of the storage facilities – the batteries – associated with hydraulic fracturing and the 

application of sensor technologies for improved operation and safety.  It is worthwhile 

to review the wider scope of hazards associated – correctly or incorrectly attributed 

to drilling, fracking, producing wells for particularly in the case of the fracking fluids, 

the chemicals will to varying amounts be present in the batteries. As this is important 

in light of accidents associated with storage facilities. 

2.1.1 Risks & Hazards of the fracking process 

The process of fracturing a well is far from benign. The following sections 

provide an overview of some of the issues and impacts related to this well stimulation 

technique. Fig. 2-1 provides a window into the massive scale of a hydro fracking 

operation. Here a well has been completed and capped and is ready for production. 

At this stage, the well is filled with a column of drilling mud to holdback the massive 

internal pressures imparted upon the fracked oil and gas deposit. During the 

production phase, of this well, the mud will be removed as oil and gas enter the well 

and extrude the drilling mud upward.   
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Fig. 2-1. Fracking pad with well head 

 

Water Use: 

In 2010, the U.S. Environmental Protection Agency estimated that 70 to 140 

billion gallons of water are used to fracture 35,000 wells in the United States each 

year. This equals the approximate annual water consumption of 40 to 80 cities each 

with a population of 50,000. Fracture treatments in coalbed methane wells use from 

50,000 to 350,000 gallons of water per well, while deeper horizontal shale wells can 

use anywhere from 2,000,000 to 10,000,000 gallons of water to fracture a single 

well. The extraction of so much water for fracking has raised concerns about the 
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ecological impacts to aquatic resources, as well as dewatering of drinking water 

aquifers. It has been estimated that the transportation of two to five million gallons of 

water (fresh or waste water) requires 1,400 truck trips averaging a distance of 35 

miles. Thus, not only does water used for hydraulic fracturing deplete fresh water 

supplies and impact aquatic habitat, the transportation of so much water also creates 

localized air quality, safety and road repair issues (Rahm, 2011), (Nicot and Scanlon, 

2012). 

 

Sand and Proppants: 

Conventional oil and gas wells use, on average, 300,000 pounds of proppant, 

coalbed fracture treatments use anywhere from 75,000 to 320,000 pounds of 

proppant and shale gas wells can use more than 4,000,000 pounds of proppant per 

well. Frac sand mines are springing up across the country, from Wisconsin to Texas, 

bringing with them their own set of impacts. Mining sand for proppant use generates 

its own range of impacts, including water consumption and air emissions, as well as 

potential health problems related to crystalline silica (Pearson, 2013), (Smathers, 

2011). 

 

Chemicals: 

In addition to large volumes of water, a variety of chemicals are used in 

hydraulic fracturing fluids.  The oil and gas industry and trade groups are quick to 

point out that chemicals typically make up just 0.5 and 2.0% of the total volume of 

the fracturing fluid.  When millions of gallons of water are being used, however, the 

amount of chemicals per fracking operation is very large. For example, a four million 
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gallon fracturing operation would use from 80 to 330 tons of chemicals (Sawyer, 

2009) 

 

As part of New York State’s Draft Supplemental Generic Environmental 

Impact Statement (SGEIS) related to Horizontal Drilling and High-Volume Hydraulic 

Fracturing in the Marcellus Shale, the Department of Environmental Conservation 

complied a list of chemicals and additives used during hydraulic fracturing. The table 

below provides examples of various types of hydraulic fracturing additives proposed 

for use in New York. 

   

ADDITIVE 
TYPE 

DISCRIPTION OF PURPOSE EXAMPLES OF 
CHEMICALS 

Proppant “Props” open fractures and allows gas / fluids to 
flow more freely to the well bore. 

Sand [Sintered 
bauxite; 
zirconium oxide; 
ceramic beads] 

Acid Cleans up perforation intervals of cement and 
drilling mud prior to fracturing fluid injection, and 
provides accessible path to formation. 

Hydrochloric acid 
(HCl, 3% to 28%) 
or muriatic acid 

Breaker Reduces the viscosity of the fluid in order to 
release proppant into fractures and enhance the 
recovery of the fracturing fluid. 

Peroxydisulfates 

Bactericide 
/ Biocide 

Inhibits growth of organisms that could produce 
gases (particularly hydrogen sulfide) that could 
contaminate methane gas. Also prevents the 
growth of bacteria which can reduce the ability 
of the fluid to carry proppant into the fractures. 

Gluteraldehyde; 
2-Bromo-2-nitro-
1,2-propanediol 

Buffer / pH 
Adjusting 

Agent 

Adjusts and controls the pH of the fluid in order 
to maximize the effectiveness of other additives 
such as crosslinkers. 

Sodium or 
potassium 
carbonate; acetic 
acid 

Clay 
Stabilizer / 
Control 

Prevents swelling and migration of formation 
clays which could block pore spaces thereby 
reducing permeability. 

Salts (e.g., 
tetramethyl 
ammonium 
chloride) 
[Potassium 
chloride] 
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Corrosion 
Inhibitor
  

Reduces rust formation on steel tubing, well 
casings, tools, and tanks (used only in fracturing 
fluids that contain acid). 

Oxygen 
Scavengers 

Crosslinker The fluid viscosity is increased using phosphate 
esters combined with metals. The metals are 
referred to as crosslinking agents. The 
increased fracturing fluid viscosity allows the 
fluid to carry more proppant into the fractures. 

borate salts, 
Sodium acrylate-
acrylamide 
copolymer 

Friction 
Reducer 

Allows fracture fluids to be injected at optimum 
rates and pressures by minimizing friction. 

polyacrylamide 
(PAM); petroleum 
distillates 

Gelling 
Agent 

Increases fracturing fluid viscosity, allowing the 
fluid to carry more proppant into the fractures. 

Guar gum; 
petroleum 
distillate 

Iron 
Control 

Prevents the precipitation of carbonates and 
sulfates (calcium carbonate, calcium sulfate, 
barium sulfate) which could plug off the 
formation. 

Ammonium 
chloride; ethylene 
glycol; 
polyacrylate 

Solvent Additive which is soluble in oil, water & acid-
based treatment fluids which is used to control 
the wettability of contact surfaces or to prevent 
or break emulsions. 

Various aromatic 
hydrocarbons, 
methanol, 
isopropanol 

Surfactant Reduces fracturing fluid surface tension thereby 
aiding fluid recovery. 

ethoxylated 
alcohol 
 

 

Table 2-1. Fracking chemicals proposed for fracking in New York State (Earthworks). 

 

Many fracturing fluid chemicals are known to be toxic to humans and wildlife, 

and several are known to cause cancer.  Potentially toxic substances include 

petroleum distillates such as kerosene and diesel fuel (which contain benzene, 

ethylbenzene, toluene, xylene, naphthalene and other chemicals); polycyclic 

aromatic hydrocarbons; methanol; formaldehyde; ethylene glycol; glycol ethers; 

hydrochloric acid; and sodium hydroxide. 

Very small quantities of some fracking chemicals are capable of 

contaminating millions of gallons of water.  According to the Environmental Working 

Group, petroleum-based products known as petroleum distillates such as kerosene 

34 

 



 

(also known as hydrotreated light distillates, mineral spirits, and a petroleum distillate 

blends) are likely to contain benzene, a known human carcinogen that is toxic in 

water at levels greater than five parts per billion (or 0.005 parts per million). 

Other chemicals, used in fracking such as 1,2-Dichloroethane, are volatile organic 

compounds (VOCs). Volatile organic constituents have been shown to be present in 

fracturing fluid flowback wastes at levels that exceed drinking water standards. For 

example, testing of flowback samples from Texas have revealed concentrations of 

1,2-Dichloroethane (DCA) at 1,580 ppb, which is more than 316 times EPA’s 

Maximum Contaminant Level for 1,2-Dichloroethane in drinking water. VOCs not 

only pose a health concern while in the water, the volatile nature of the constituents 

means that they can also easily enter the air. According to researchers at the  

University of Pittsburgh's Center for Healthy Environments and Communities, 

organic compounds brought to the surface in the fracturing flowback or produced 

water often go into open impoundments (frac ponds), where the volatile organic 

chemicals can offgas into the air. 

When companies have an excess of unused hydraulic fracturing fluids, they 

either use them at another job or dispose of them. These same fluids (in diluted 

form) are allowed to be injected directly into or adjacent to USDWs3 (Underground 

Source of Drinking Water). Under the Safe Drinking Water Act (SWDA), hazardous 

wastes may not be injected into USDWs (EPA, 2012). Moreover, even if hazardous 

wastes are decharacterized (for example, diluted with water so that they are 

rendered non-hazardous), wastes must still be injected into a formation that is below 

3 A USDW is any aquifer which contains less than 10,000 mg/l total dissolved solids 
and is currently being used as a drinking water source or is of adequate quantity and 
quality for public consumption in the future  
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the USDW. Clearly, some hydraulic fracturing fluids contain chemicals deemed to be 

"hazardous wastes." To accommodate for this risk, the EPA has developed injection 

well Class categories with stringent guidelines (EPA, 2012) . In particular Class I 

owner-operators must demonstrate the financial capability to complete and plug the 

well (Tsang et al., 2002). On the other extreme, Class V owner-operators have the 

least oversight provided they adhere to the Safe Drinking Water Act (SDWA) (EPA, 

2013).    

Class of disposal well Application and Description 
Class I Injection of municipal or industrial waste 

(including hazardous waste) below the 
deepest USDW. 

Class II Injection related to oil and gas 
production, including enhanced 
hydrocarbon recovery and hydrocarbon 
storage. 

Class III Injection of fluids for the extraction of 
minerals. 

Class IV Injection of hazardous or radioactive 
waste into or above a USDW (banned 
by regulation and statutes). 

Class V All other wells used for injection of 
fluids. These are generally shallow 
wells used to inject nonhazardous 
fluids into or above a USDW. 

Table 2-2. EPA injection well classifications (Tsang et al., 2002). 

 

Health Concerns: 

Human exposure to fracking chemicals can occur by ingesting chemicals that 

have spilled and entered drinking water sources, through direct skin contact with the 

chemicals or wastes (e.g., by workers, spill responders or health care professionals), 

or by breathing in vapors from flowback wastes stored in pits or tanks. 
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In 2011, Colborn et al. published a paper entitled “Natural Gas Operations 

from a Public Health Perspective” (Colborn et al., 2011). In this paper, they 

summarized health effect information for 353 chemicals used to drill and fracture 

natural gas wells in the United States. Health effects were broken into 12 categories: 

skin, eye and sensory organ, respiratory, gastrointestinal and liver, brain and 

nervous system, immune, kidney, cardiovascular and blood, cancer, mutagenic, 

endocrine disruption, other, and ecological effects.  The chart below illustrates the 

possible health effects associated with the 353 natural gas-related chemicals for 

which Colborn and her co-authors were able to gather health-effects data. 

 

Fig. 2-2. Possible health effects of chemicals natural gas operations (Colborn et al., 

2011) 

 

Colborn’s paper provides a list of 71 potentially hazardous drilling and fracturing 

chemicals, i.e., those that are associated with 10 or more health effects. 

Natural gas drilling and hydraulic fracturing chemicals with 10 or more health effects 
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Chemicals Used in Natural Gas Development 

2,2',2"-Nitrilotriethanol 
2-Ethylhexanol 
5-Chloro-2-methyl-4-

isothiazolin-3-one 
Acetic acid 
Acrolein 
Acrylamide (2-

propenamide) 
Acrylic acid 
Ammonia 
Ammonium chloride 
Ammonium nitrate 
Aniline 
Benzyl chloride 
Boric acid 
Cadmium 
Calcium hypochlorite 
Chlorine 
Chlorine dioxide 
Dibromoacetonitrile 1 
Diesel 2 
Diethanolamine 
Diethylenetriamine 
Dimethyl formamide 
Epidian 
Ethanol (acetylenic 
alcohol)Ethyl mercaptan 
Ethylbenzene 
Ethylene glycol 

Ethylene oxide 
Ferrous sulfate 
Formaldehyde 
Formic acid 
Fuel oil #2 
Glutaraldehyde 
Glyoxal 
Hydrodesulfurized 
kerosene 
Hydrogen sulfide 
Iron 
Isobutyl alcohol (2-
methyl-1-propanol) 
Isopropanol (propan-2-ol) 
Kerosene 
Light naphthenic 
distillates, hydrotreated 
Mercaptoacidic acid 
Methanol 
Methylene 
bis(thiocyanate) 
Monoethanolamine 
NaHCO3 
Naphtha, petroleum 
medium aliphatic 
Naphthalene 
Natural gas condensates 
Nickel sulfate 
Paraformaldehyde 

Petroleum distillate/ 
naphtha 
Phosphonium, 
tetrakis(hydroxymethyl)-
sulfate 
Propane-1,2-diol 
Sodium bromate 
Sodium chlorite (chlorous 
acid, sodium salt) 
Sodium hypochlorite 
Sodium nitrate 
Sodium nitrite 
Sodium sulfite 
Styrene 
Sulfur dioxide 
Sulfuric acid 
Tetrahydro-3,5-dimethyl-
2H-1,3,5-thiadiazine-2-
thione (Dazomet) 
Titanium dioxide 
Tributyl phosphate 
Triethylene glycol 
Urea 
Xylene 
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Table 2-3. Chemicals used in natural gas development (Colborn et al., 2011). 

 

While Colborn and her co-workers focused on chemicals used in natural gas 

development, the chemicals used to fracture oil wells are very similar or the same.  

Information regarding hydraulic fracturing fluid chemicals posted on the FracFocus4 

web site indicates that Bakken Shale oil wells may contain toxic chemicals such as 

hydrotreated light distillate, methanol, ethylene glycol, 2-butoxyethanol (2-BE), 

phosphonium, tetrakis(hydroxymethyl)-sulfate (aka phosphonic acid),  acetic acid, 

ethanol, and napthlene 

 

Surface Water and Soil Contamination: 

Spills of fracturing chemicals and wastes during transportation, fracturing 

operations and waste disposal have contaminated soil and surface waters. In 2013, 

41 spills impacted surface water in Colorado alone. This section provides a few 

examples of spills related to hydraulic fracturing that have led to environmental 

impacts (Ferner, 2014). 

 Two spills kill fish: In September 2009, Cabot Oil and Gas spilled hydraulic 

fracturing fluid gel LGC-35 twice at the company’s Heitsman gas well. The two 

incidents released between 6,000 and 8,000 gallons of the fracturing fluid, polluting 

Stevens Creek (near Domock, PA) resulting in a fish kill.  LGC-35, a well lubricant 

used during the fracturing process. A third spill of LGC-35 occurred a week later, but 

4 http://www.fracfocusdata.org/DisclosureSearch/ 
 

Ethylene glycol 
monobutyl ether (2-BE) 

Petroleum distillate 
naptha 
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did not enter the creek. As a consequence, Cabot faced $4,000 in civil penalties and 

$915 in emergency response costs levied by the Pennsylvania Department of 

Environmental Protection (DEP) (Wilber, 2009). 

 In another incident, a wastewater pit overflowed at Atlas Resources’ Cowden 

17 gas well, and an unknown quantity of hydraulic fracturing fluid wastes entered 

Dunkle Run, a “high quality watershed”. The company failed to report the spill. In 

August 2010 the Pennsylvania Department of Environmental Protection (DEP) levied 

a $97,350 fine against Atlas Resources (2010a; Wilber, 2012). 

 Another fracturing fluid spill impacts a high quality waterway: In May 2010, 

Range Resources was fined was fined $141,175 for failing to immediately notify the 

Pennsylvania Department of Environmental Protection when the company spilled 

250 barrels of diluted fracturing fluids due to a broken joint in a transmission line. The 

fluids flowed into an unnamed tributary of Brush Creek in Washington County 

Pennsylvania, killing at least 168 fish, salamanders and frogs.  The watercourse is 

designated as a warm-water fishery under Pennsylvania’s special protection waters 

program (Rahm, 2011). 

 Fracturing fluids affect soil and pond: In May 2011, a mechanical problem at 

a Pennsylvania natural gas well caused thousands of gallons of briny water and 

fracking fluid of unknown composition to spew out of the well, overwhelm 

containment facilities and flow across a field and into a pond. The local emergency 

management agency told seven families to evacuate their homes. It took a response 

team -- Houston-based Boots and Coots -- 13 hours to reach the site. Six days went 

by before workers were able to seal the leak and replace the wellhead (Kusnetz, 

2011). 
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Groundwater Contamination: 

As mentioned previously, hydraulic fracturing is used in many coalbed 

methane (CBM) production areas. Some coal beds contain groundwater of high 

enough quality to be considered underground sources of drinking water (USDWs). 

In 2004, the U.S. Environmental Protection Agency (EPA) released a final 

study on Evaluation of Impacts to Underground Sources of Drinking Water by 

Hydraulic Fracturing of Coalbed Methane Reservoirs. In the study, EPA found that 

ten out of eleven CBM basins in the U.S. are located, at least in part, within USDWs. 

Furthermore, the EPA determined that in some cases, hydraulic fracturing chemicals 

are injected directly into USDWs during the course of normal fracturing operations 

(see chapter 1 for a listing of fracking chemicals). 

Calculations performed by EPA and reported in the study show that at least 

nine hydraulic fracturing chemicals may be injected into or close to USDWs at 

concentrations that pose a threat to human health. The chart below is a reproduction 

of the data from the EPA draft study. Chemicals may be injected at concentrations 

that are anywhere from 4 to almost 13,000 times the acceptable concentration in 

drinking water. Not only does the injection of these chemicals pose a short-term 

threat to drinking water quality, it is quite possible that there could be long-term 

negative consequences for USDWs from these fracturing fluids. According to the 

EPA study, studies conducted by the oil and gas industry, and interviews with 

industry and regulators, 20 to 85% of fracturing fluids may remain in the formation, 

which means the fluids could continue to be a source of groundwater contamination 

for years to come. 
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The potential long-term consequences of dewatering and hydraulic fracturing 

on water resources have been summed up by professional hydrogeologist who spent 

32 years with the U.S. Geological Survey: 

At greatest risk of contamination are the coalbed aquifers currently used as 

sources of drinking water. For example, in the Powder River Basin (PRB) the 

coalbeds are the best aquifers. CBM production in the PRB will destroy most of 

these water wells; BLM predicts drawdowns...that will render the water wells in the 

coal unusable because the water levels will drop 600 to 800 feet. The CBM 

production in the PRB is predicted to be largely over by the year 2020. By the year 

2060 water levels in the coalbeds are predicted to have recovered to within 95% of 

their current levels; the coalbeds will again become useful aquifers. However, 

contamination associated with hydrofracturing in the basin could threaten the 

usefulness of the aquifers for future use. 

As mentioned previously, more than 90% of fracking fluids remain in the 

ground. Some fracturing gels remain stranded in the formation, even when 

companies have tried to flush out the gels using water and strong acids. Also, 

studies show that gelling agents in hydraulic fracturing fluids decrease the 

permeability of coals, which is the opposite of what hydraulic fracturing is supposed 

to do (i.e., increase the permeability of the coal formations).  Other similar, unwanted 

side effects from water- and chemical-based fracturing include: solids plugging up 

the cracks; water retention in the formation; and chemical reactions between the 

formation minerals and stimulation fluids. All of these cause a reduction in the 

permeability in the geological formations. 

Air Quality: 
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In many oil and gas producing regions, there has been a degradation of air 

quality as drilling increases. For example, in Texas, high levels of benzene have 

been measured in the air near wells in the Barnett Shale gas fields. These volatile air 

toxics may be originating from a variety of gas-field source such as separators, 

dehydrators, condensers, compressors, chemical spills, and leaking pipes and 

valves. 

Increasingly, research is being conducted on the potential air emissions 

released during the fracturing flow back stage, when wastewater returns to the 

surface. Shales contain numerous organic hydrocarbons, and additional chemicals 

are injected underground during shale gas drilling, well stimulation (e.g., hydraulic 

fracturing), and well workovers. 

The Pittsburgh University Center for Healthy Environments and Communities 

(CHEC) has been examining how organic compounds in the shale can be mobilized 

during fracturing and gas extraction processes. According to the CHEC researchers, 

these organic compounds are brought to the surface in the fracturing flowback or 

produced water, and often go into open impoundments (frac ponds), where the 

waste water, “will offgas its organic compounds into the air. This becomes an air 

pollution problem, and the organic compounds are now termed Hazardous Air 

Pollutants (HAP’s).” 

The initial draft of the New York draft supplemental environmental impacts 

statement related to drilling in the Marcellus Shale (which is no longer available on-

line) included information on modeling of potential air impacts from fracturing fluid 

wastes stored in centralized impoundments. One analysis looked at the volatile 

organic compound methanol, which is known to be present in fracturing fluids such 

as surfactants, cross-linkers, scale inhibitors and iron control additives. The state 
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calculated that a centralized fracturing flowback waste impoundment serving 10 wells 

(5 million gallons of flowback per well) could have an annual emission of 32.5 tons of 

methanol. 

The U.S. EPA reports that “chronic inhalation or oral exposure to methanol 

may result in headache, dizziness, giddiness, insomnia, nausea, gastric 

disturbances, conjunctivitis, visual disturbances (blurred vision), and blindness in 

humans.” Open pits, tanks or impoundments that accept flowback wastes from one 

well would have a much smaller emission of volatile organic compounds (VOC) like 

methanol than facilities accepting wastes from multiple wells. But there are 

centralized flowback facilities like those belonging to Range Resources in 

Washington County, Pennsylvania that have been designed for “long-term use,” and 

thus, are likely to accept wastes from more than one well. 

New York’s air modeling further suggested that the emission of Hazardous 

Air Pollutants (HAPs) from centralized flowback impoundments could exceed 

ambient air thresholds 1,000 meters (3,300 feet) from the impoundment, and could 

cause the impoundment to qualify as a major source of HAPs. 

Methanol is just one of the VOCs contained in flowback water.  The combined 

emissions from all VOCs present in flowback stored at centralized impoundments 

could be very large, depending on the composition of the fracturing fluids used at the 

wells. Data released on flowback water from wells in Pennsylvania reveal that 

numerous volatile organic chemicals are returning to the surface, sometime in high 

concentrations.  The Pennsylvania Department of Environmental Protection looked 

for 70 volatile organic compounds in flowback, and 27 different chemicals showed 

up. 
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Again referring to the Colburn paper, 37% of the chemicals used during 

natural gas drilling, fracturing and production (for which health data were available) 

were found to be volatile, with the ability to become airborne.  they compared the 

potential health impacts of volatile chemicals with those chemicals more like to be 

found in water (i.e., chemicals with high solubility). Their study reported that “far 

more of the volatile chemicals (81%) can cause harm to the brain and nervous 

system.  71% of the volatile chemicals can harm the cardiovascular system and 

blood, and 66% can harm the kidneys,” producing a profile that “displays a higher 

frequency of health effects than the water soluble chemicals.”  The researchers add 

that the chance of exposures to volatile chemicals are increased by case they can be 

inhaled, ingested and absorbed through the skin. It’s worth noting that citizens of the 

gas field are experiencing health effects related to volatile chemicals from pits 

(Colborn et al., 2011). 

 In 2005, numerous Colorado residents experienced severe odors and health 

impacts related to flowback and drilling pits and tanks in Garfield County.  According 

to Dion and Debbie Enlow complained to the Colorado Oil and Gas Conservation 

Commission about odors from a Barrett wellpad upwind from their home. The pad 

had four wells that were undergoing completion/hydraulic fracturing. Dion Enlow 

complained to the company that the smell was so bad that "I can't go outside and 

breathe." 

 In Pennsylvania, a fracturing flowback wastewater pit just beyond June 

Chappel’s property line created odors similar to gasoline and kerosene, which forced 

her inside, left a greasy film on her windows, on one occasion created a white dust 

that fell over her yard. Chappel and her neighbors lived with the noxious odors until 

they hired an attorney and Range Resources agreed to remove the impoundment. 
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 In March 2010, a fracturing flowback wastewater impoundment in 

Washington County, Pennsylvania caught fire and exploded producing a cloud of 

thick, black smoke that could be seen miles away. For several days prior to the 

explosion nearby citizens had tried to alert state officials about noxious odors from 

the impoundment that were sickening their families, but “their voicemail boxes were 

full.” 

 

Waste Disposal: 

It has been reported that anywhere from 25 – 100% of the chemical-laced 

hydraulic fracturing fluids return to the surface from Marcellus Shale operations 

(Cooley, 2012). Based on the data in a paper by Nicot et al., Table 2-4 clearly shows 

the variability of water use per well in Texas plays; however, the magnitude of water 

usage per well is clear (Nicot and Scanlon, 2012).    
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Table 2-4. Water usage in Texas shale plays per well (Nicot and Scanlon, 

2012; Cooley, 2012)   

 

This means that for some shale gas wells, millions of gallons of wastewater 

are generated, and require either treatment for re-use, or disposal.  As the industry 

expands, the volume of waste generated is also increasing rapidly. Between 2010 

and 2011, the waste volume increased by 70% in Pennsylvania to reach more than 

610 million gallons. 

The sheer volume of wastes, combined with high concentrations of certain chemicals 

in the flowback from fracturing operations, are posing major waste management 

challenges for the Marcellus Shale states.  Also, the US Geological Survey has 

found that flowback may contain a variety of formation materials, including brines, 

heavy metals, radionuclides, and organics, which can make wastewater treatment 

difficult and expensive (Howarth et al., 2011a; Brown, 2014). 

According to an article in ProPublica, New York City’s Health Department has 

raised concerns about the concentrations of radioactive materials in wastewater from 

natural gas wells (Lustgarten, 2009). In a July, 2009 letter obtained by ProPublica, 

the Department wrote that “Handling and disposal of this wastewater could be a 

public health concern.” The letter also mentioned that the state may have difficulty 
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disposing of the waste, that thorough testing will be needed at water treatment 

plants, and that workers may need to be monitored for radiation as much as they 

might be at nuclear facilities (Lustgarten, 2009). 

Options for disposal of radioactive flowback or produced water include 

underground injection in Class II UIC wells and offsite treatment (refer to Table 2-2 

for UIC classifications). The U.S. Environmental Protection Agency has indicated that 

Class II UIC injection disposal wells are uncommon in New York, and existing wells 

aren't licensed to receive radioactive waste. A research article by Ellsworth published 

in a 2013 issue of Science indicates that injection wells have also been linked to 

earthquakes (Ellsworth, 2013). In terms of offsite treatment, it is not known if any of 

New York’s water treatment facilities are capable of handling radioactive wastewater. 

Pennsylvania state regulators and the natural gas industry are also facing challenges 

regarding how to ensure proper disposal of the millions of gallons of chemical-laced 

wastewater generated daily from hydraulic fracturing and gas production in the 

Marcellus shale. Drinking water treatment facilities in Pennsylvania are not equipped 

to treat and remove many flowback contaminants, but rather, rely on dilution of 

chlorides, sulfates and other chemicals in surface waters used for drinking water 

supplies. 

During the fall of 2008, the disposal of large volumes of flowback and 

produced water at publicly owned treatment works (POTWs) contributed to high total 

dissolved solids (TDS) levels measured in Pennsylvania’s Monongahela River and 

its tributaries. Studies showed that in addition to the Monongahela River, many of the 

other rivers and streams in Pennsylvania had a very limited ability to assimilate 

additional TDS, sulfate and chlorides, and that the high concentrations of these 

constituents were harming aquatic communities. Research by Carnegie Mellon 

48 

 



 

University and Pittsburgh Water and Sewer Authority experts suggests that the 

natural gas industry has contributed to elevated levels of bromide in the Allegheny 

and Beaver Rivers.  Bromides react with disinfectants used by municipal treatment 

plants to create brominated trihalomethanes, which have been linked to several 

types of cancer and birth defects. 

In August of 2010, Pennsylvania enacted new rules limiting the discharge of 

wastewater from gas drilling to 500 milligrams per liter of total dissolved solids (TDS) 

and 250 milligrams per liter for chlorides. The number of municipal facilities allowed 

to take drilling and fracking wastewater has dropped from 27 in 2010 to 15 in 2011. 

Disposal of drilling and fracking waste water is going to continue to present a 

challenge to local and state governments as more wells are developed across the 

country. 

Chemical Disclosure: 

Fracking companies have been reluctant to share the chemical composition 

of their fracking fluids often citing trade secret protection. A Natural Research 

Defense Council paper published in 2012 explains disclosure and rules on 

enforcement (McFeeley, 2012).   One potentially frustrating issue for surface owners 

is that it has not been easy to find out what chemicals are being used during the 

hydraulic fracturing operations in your neighborhood. According to the Natural 

Resources Defense Council, in the late 1990s and early 2000s attempts by various 

environmental and ranching advocacy organizations to obtain chemical compositions 

of hydraulic fracturing fluids were largely unsuccessful because oil and gas 

companies refused to reveal detailed information citing proprietary protection 

(McFeeley, 2012). 
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Hydraulic Fracturing Best Practices: 

From a public health perspective, if hydraulic fracturing stimulation takes 

place, the best option is to fracture formations using sand and water without any 

additives, or sand and water with non-toxic additives. Non-toxic additives are being 

used by the offshore oil and gas industry, which has had to develop fracturing fluids 

that are non-toxic to marine organisms. It is common to use diesel in hydraulic 

fracturing fluids. This should be avoided, since diesel contains the carcinogen 

benzene, as well as other harmful chemicals such as naphthalene, toluene, 

ethylbenzene and xylene. According to the company Halliburton, "Diesel does not 

enhance the efficiency of the fracturing fluid; it is merely a component of the delivery 

system." It is technologically feasible to replace diesel with non-toxic "delivery 

systems," such as plain water. According to the EPA, "Water-based alternatives exist 

and from an environmental perspective, these water-based products are preferable." 

For example, Air Products offers a Nitrogen based fracking fluid with a gas phase of 

nitrogen in the range of 53% to 95% by volume. Thus, alternatives such as the 

nitrogen based fracking fluid by Air Products can drastically decrease water 

consumption (Kothare, 2012).   

2.1.2 Fire and Gas Safety systems (FGS) 

Before we can discuss FGS systems, highlights of the IEC 61511 technical 

standard must be presented. The IEC (International Electrotechnical Commission) is 

a worldwide standardization committee that collaborates closely with the 

Organization for Standardization (ISO). IEC 61511 addresses safety instrumented 

systems which deploy electrical/electronic/programmable electronic systems that 

leverage logic solvers. This standard also addresses instrumented sensors systems 
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with safety as a goal. The standard further describes the need for a: risk 

assessment, operational requirements, framework, and safety management / 

activities (Smith and Simpson, 2010). In the context of IEC 61511, FGS systems are 

considered to be mitigative SIS (Safety Instrumented System); in other words, they 

respond to an event after it has occurred.  This has applications in industrial settings 

where personnel must be evacuated or control elements can finalize an Emergency 

Shut Down (ESD) as described in section 2.1.3.   

IEC 61508 is a sister standard of IEC 61511 with a focus on the design of 

hardware and software for safety system while IEC 61511 is relevant to users and 

integrators. Together, these two standards support the internationally recognized 

development and deployment of SIS(s) (Gall, 2008).  

2.1.3 Emergency Shut Down (ESD) Systems 

An ESD System is designed to minimize the impact of an industrial anomaly 

after it has occurred. When integrated with logic solvers running voting functionality, 

ESD systems can function in preventative manner to control multi- dimensional 

impacts. The system leverages sensor, logic solvers, and final control elements also 

called a safety instrumented function (SIF). Each SIF works to reduce risk by 

preventing a specific hazard from occurring if called upon by the logic solver. Further, 

a SIL (Safety Integrity Level) is set for a certain facet of the system that centers 

around availability and risk reduction (Jin et al., 2003), (Goble, 2010).   
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Table 2-5. Safety Integrity Levels (Jin et al., 2003) 

By quickly reviewing Table 2-5, it’s clear to see that the decision of a SIL falls 

within the realm of design; this is because IEC 61508 focuses on hardware and 

software for a system rather than integration.  

From a process planning standpoint let us now focus on Fig. 2-3. Here the 

practitioner is to adhere to IEC 61511 and design in requirements and a general 

philosophy for functionality of the FGS system. The first step in designing a system in 

accordance with Fig. 2-3 is to codify operational requirements for the FGS system. 

By following IEC 61511 and a design flowchart like Fig. 2-3 (left hand side), a 

systems engineer can refine a FGS solution in line with operational goals of risk and 

safety. Furthermore, critical questions can be answered before costly hardware and 

software solutions are implemented by following IEC 61508.  Some items for 

consideration for during this stage of the FGS process are (Kenexis, 2013):  

• Regulatory Requirements 

• Standardized Design Practices 

• Corporate standards or policy 

• Project management and risk policy  
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• Process Hazards Analysis (PHA) Recommendations 

• Recommendations from an Auditor; hazard insurance or regulatory 
oversight 
 
 

 

Fig. 2-3. Design and implementation of FGS (Kenexis, 2013). 

 

Fig. 2-4 serves as the backdrop for a disccussion of Independent Protection 

Layers (IPL). Each IPL can be passive or active, but must be independent of all 

others. Each IPL must play some sort of role in mitigation of a particular risk or 

hazard (Summers, 2003). The following list outlines the baisc criteria of an IPL 

according to a paper by Summers (Summers, 2003). 
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Now that an IPL has been defined, its place in a risk mitigation strategy becomes 

more apparent. At both the design and operational phases of IPL solutions, systems 

engineers and project managers work together to to define the risk strategy. 

Probabailites can be assgned to the success and failure of each IPL; this will result in 

a nested calculation which reviels the current operational risk of a system. 

Additional details will be presented in Chapter 4 when research methodogies 

are presented.  

Criteria of an Independent Protection Layer (IPL) according to Summers 
(Summers, 2003) 

 
• Specificity. The IPL is capable of detecting and preventing or mitigating the 
consequences of specified, potentially hazardous event(s), such as a runaway 
reaction, loss of containment, or an explosion. 
 
• Independence. An IPL is independent of all the other protection layers 
associated with the identified potentially hazardous event. Independence requires 
that the performance is not affected by the failure of another protection layer or 
by the conditions that caused another protection layer to fail. Most importantly, 
the protection layer is independent of the initiating cause. 
 
• Dependability. The protection provided by the IPL reduces the identified risk by 
a known and specified amount. 
 
• Auditability. The IPL is designed to permit regular periodic validation of the 
protective function. 
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Fig. 2-4. FGS is like an IPL (Independent Protection Layer) (Kenexis, 2013). 

 

Fig. 2-5 is in essence a framework for the equations shown in Eq. 2-1. A graphical 

representation of safety sensor systems can help the project manager understand 

the dynamic risk posture as operational conditions change at filed sites. The need for 

additional sensors can be assessed or coverage (footprints) of sensors can be 

adjusted at compensate for an unacceptable risk level. Sensor-augmented risk 

management” systems can be implemented with concepts shown in Fig 2-4 and Fig 

2-5. More details will be discussed in chapter 4 and 5 when methodology and results 

are presented.      
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Fig. 2-5. Modeling Risk in FGS engineering (Kenexis, 2013). 

From a risk and analysis equations 2-1 through 2-3 directly support Fig. 2-5 and help 

FGS engineers realize the inherent risk associated with a particular design solution.  

 

 

 

 

Eqs. 2-1 through 2-3. Risk equations for an FGS system (Kenexis, 2013). 

 

By using these equations and derivatives thereof (to be shown in Chapter 5), 

it is possible to model an FGS system in conjunction with sensors. More specifically, 

the model can lend some consideration to the accuracy and number of sensors 

required to reduce the residual risk.  

Sensor performance and coverage along with FGS effectiveness are of 

paramount importance to this model. Risk can be calculated by using risk integration 

Eq. 2-1      Fi*(F1+S1*F2) = Residual Risk (per year) 

Eq. 2-2      Fi*(S1*S2) = Mitigated Risk (per year) 

Eq. 2-3      S1*S2 = “FGS Effectiveness” 
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event tree summation. Obviously without the proper sensor in place, a particular risk 

modality would be overlooked and by definition result in a residual risk. For example, 

natural events such as lightning strikes are an understood risk; however, if a sensor 

system lacks detection of this phenomenon, then the risk cannot be countered. 

Better still, if a system had the ability to predict the likelihood of such an event then 

corrective measures can be taken. 

2.1.4 Lightning and the future of hydraulic fracturing  

As published by Romps, et al. in 2014 Science article, cloud-ground lightning 

strikes are predicted to increase by 50% during the 21st century due to global 

warming (Romps et al., 2014). As Fig. 2-8 clearly shows, cloud-ground lightning 

strikes as reported by the National Lightning Detection Network (NLDN) differ 

significantly across the country.  
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Fig. 2-6. Incidences of cloud-ground across the United States5 

 

According to a document on the NOAA Lightning Safety website6 Lightning is 

responsible for an average of 55-60 fatalities in the United States. 

  ■  Insurance losses exceed $1 billion annualy 

There are about 25 million cloud-ground lightning strikes in the U.S. each year7. 

 

 

The Lightning Safty site at NOAA continues to explain that injuries to people tend to 

follow occupations. Obviously people who work outside are at the greatest risk for 

lightning injury. The outlined occupations are considered to have the most exposure 

to lightning injury.  

• Logging 

• Explosive handling or storage 

• Heavy equipment operation 

• Plumbing and pipe fitting 

• Construction and building maintenance 

• Farming and field labor 

• Telecommunications field repair 

5http://www.vaisala.com/en/products/thunderstormandlightningdetectionsystems/Pag
es/NLDN.aspx 
 
6 http://www.lightningsafety.noaa.gov/resources/ttl6-10.pdf 

 
7 http://www.lightningsafety.noaa.gov/ 
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• Power utility field repair 

 

If Fig. 2-6 is superimposed upon the map of current and prospective shale plays (Fig. 

2-7), the importance of lightning in relation to fracking becomes apparent.  

 

Fig. 2-7. Current and prospective U.S. shale plays in 2015 based on the EIA8 

 

As was shown at the outset of this sub-section, global warming is predicted to cause 

a 50% increase in cloud-ground lightning incidences over this century (Romps et al., 

2014). Shale resourced hydrocarbons are expected to play an increasingly larger 

role in our energy economy for the foreseeable future.  In an interview with CNN on 

8 U.S. Energy Information Administration (EIA) 2015 
http://www.eia.gov/oil_gas/rpd/shale_gas.jpg 
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April 13th, 2015, Tom Kloza, Chief Oil Analyst at the Oil Price Information Service 

agrees with a forecast (Rystad Energy)9 for U.S. oil production to rise to a new 

record this year by saying they are "very reasonable." This will make the U.S. the 

third-largest crude oil producer, trailing only Saudi Arabia and Russia. If total 

hydrocarbon production is considered, the U.S. should keep its title as the world's 

top oil producer.10 By reviewing Fig. 2-8, the rapid growth in oil and gas production 

from U.S. hydro fracked shale plays becomes apparent.      

 

Fig. 2-8. U.S. Energy Information Administration (EIA) Oil and Gas production11 

 

Cloud-ground lightning has been predicted to increase, while fracking for oil and gas 

is clearly on the assent. These intersecting factors alone should concern the 

operators of vulnerable hydrocarbon batteries; however, there is one additional 

factor. If Fig. 2-6 and Fig. 2-7 are overlayed, as shown in Fig. 2-9, it quickly becomes 

9 http://www.rystadenergy.com/ 
10 http://money.cnn.com/2015/04/13/investing/us-oil-production-record/index.html 
11 http://www.eia.gov/todayinenergy/detail.cfm?id=13451 
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clear that prospective fracking sites are located in substantial parts of the lightning 

prone Deep South. 

 

There is an obvious need for increased lightning “reediness” in the hydro 

fracking industry.  

 

 

Fig. 2-9. Overlay of lightning risk and shale play maps 

2.2 Research Questions to be Answered 

Fire and Gas Safety (FGS) systems are widely deployed in industrial 

environments (Association, 2004). The deployed atmospheric charge and tank 

charge sensors (to be detailed in Chapter 4) present IPL (Independent Protection 

Layers) that are analogous to the function and mission of widely accepted FGS 

systems.  
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1.) As fracking continues throughout the United States (and world), data is 

showing that the prevalence of lightning in fracking areas will increase 

dramatically.  Therefore the risk of an explosion – with accompanying financial 

and environmental consequences – is expected to increase dramatically as 

well.  Is there a way to use sensors and modeling to help minimize the financial 

and environmental losses and issues?  If so, could it be automated? 

 

In order to answer this fundamental question, a number of associated 

questions must be answered, including: 

 

2.) Develop the driving equations of the intersecting items, such as: 

• probability of lightning strikes,  

• cost of an environmental incident (pollutant dependent) 

• well production estimation (temporal dependent) 

• cost to incumbent organization for an incident (cost to fracking 

company) 

3.) What are the border implications for sensors and lightning detection 

beyond hydro fracking hydrocarbon storage? 

  

2.3   Implications of “an Answer” 

With research question 1, I will explore a pathway toward minimizing the 

costs associated with lightning strikes on hydro fracking sites. From the prospective 
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of environmental impacts and risk costs prospective. The answers should provide a 

pathway toward automation of lightning mitigation systems.  

With question 2 answered, fundamental relationships will be realized and 

thus, the groundwork will be set for understanding how sensors systems with 

automated mitigation systems will impact the operation of hydro fracking sites. Also 

of interest is the touch points for these types of systems, and how can they be 

leveraged by the operations manager in the future. These fundamental questions are 

important for the design and validation of future such systems.  

 The implications of an answer to questions 3 will enable a lightning mitigation 

solution to find applications in large-scale hydrocarbon storage facilities.  

2.4 Summary 

This chapter detailed chemicals associated with the hydro fracking process for the 

purposed of understanding the problem space, and to gain an understanding 

pollution potential from tank accidents. The chapter then introduced the concept of 

an Independent Protection Layer (IPL) and its relation to automated safety systems. 

The chapter then introduce the lightning threat in the context of hydro fracking shale 

plays. In closing, the chapter introduced the research questions for this dissertation.  
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Chapter 3:  Literature Review and Related Activities 
 

This chapter discusses literature relating to hydro fracking tank composition 

and reviews a detailed assessment of tank accidents. In addition, tank storage 

standards are presented and conclusions related to unintended volatile contaminants 

are made toward the end of Section 3.1 Then, In section 3.2 a functional overview of 

sensors is provided within the context of the human sense of smell. In addition, 

thermal, chemical and optical sensors are discussed with applications. This is 

followed by the introduction of sensor touch points for hydro fracking. The chapter 

closes with a brief discussion of risk and decision trees. 

3.1 On-site Petroleum Storage and Safety 

In a 2002 paper drafted by Eckert (Eckert, 2004), regulation of petroleum 

storage tanks between 1983 and 1998 is studied with a view toward compliance. The 

paper opens by stating “In Canada and the United States it is common for 

environmental regulators to respond to a detected violation by issuing a warning 

rather than prosecuting the violator” (Eckert, 2004). So, if an agent faces no financial 

penalty from a violation, then violations will be common place (Polinsky).  

Despite this, the petroleum industry has taken tank safety seriously, and 

innovative designs have been patented for about 100 years thus far (Clifford, 1918). 

In this time frame, tank design was focused mostly on mechanical construction from 

various steel components (1927) and even to some extent the loss of product due to 

evaporation (Ivan, 1929). More importantly to this research, is the early interest 

(1916) in petroleum storage tank design related to the prevention of lightning initiated 

fires (Munn, 1916).     
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The fracking industry depends both steel and relatively cheap fiberglass 

storage tanks at the battery. From a practical prospective, fiberglass storage tanks 

for battery applications have become a common standard; due to their low relative 

cost and corrosion resistance (Eckert, 2004). As a highly cited paper by Chang et al. 

states; at 33% of storage tank accidents, lightning stands out as the #1 cause 

(Chang and Lin, 2006). Chang’s detailed paper explores 242 hydro carbon storage 

tank accidents over decades and complied table 3-1 below. Clearly, lightning stands 

out as the #1 cause of storage tank accidents. Table 3-1. General cause of hydro 

carbon storage tank accidents (Chang and Lin, 2006). 

 

Table 3-1. General cause of hydrocarbon storage tank accidents (Chang and Lin, 

2006). 
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The Occupational Safety & Health Administration (OSHA) under the United 

States Department of Labor indicates that fiberglass tanks are flammable, and are 

only suitable for storage of certain types of liquids in rural areas (United States 

Depatment of Labor - Occupational Saftey & Health Administration, 1993). Further, 

there use falls under the OSHA 1910.106(b)(1) standard if there use is relegated to 

underground instillations for many Classes of liquids (United States Depatment of 

Labor - Occupational Saftey & Health Administration, 1993). In particular, above 

ground fiberglass storage tanks shall not contain Class I, II or IIIA flammable liquids 

according to the cited OSHA standard (United States Depatment of Labor - 

Occupational Saftey & Health Administration, 1993). However, if the tank is assumed 

to be in a rural area and contain Class IIIB liquids such as crude oil, use is permitted 

in accordance with the National Fire Protection Association (NFPA) 30 (2015) 

standard (United States Depatment of Labor - Occupational Saftey & Health 

Administration, 1993), (National Fire Protection Association (NFPA)). 

NFPA 30 (2015) Class Examples 

Class IA Diethyl Ether, Ethylene Oxide, some 
light crude oils 

Class IB Motor and Aviation Gasolines, Toluene, 
Lacquers, Lacquer Thinner 

Class IC Xylene, some paints, some solvent‐
based cements 

Class II Diesel Fuel, Paint Thinner   
Class IIIA Home Heating Oil   
Class IIIB (OK for Fiberglass tanks) Cooking Oils, Lubricating Oils, Motor Oil   

Table 3-2. NFPA 30 (2015) Classes of Flammable and Combustible Liquids 

(National Fire Protection Association (NFPA)). 

 Following the recommended practices of NFPA 30 (2015), fiberglass tanks 

used at fracking site batteries are housed on the surface in rural areas, and from that 

standpoint, they are considered to be in compliance. However, as Table 3-2 clearly 
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shows, light crude oils and many other shorter chain and more volatile hydro carbons 

are not Class IIIB. In addition, any dissolved and degassing methane and ethane are 

also beyond the spirit of NFPA 30 (realizing they are gasses and NFPA 30 does not 

apply). None the less, these degassing short carbon chain have remarkably low 

flashpoints, and are extremely flammable (Haynes, 2013). This results in a situation 

where essentially any ignition source can easily trigger a fire or an explosion. In 

addition, the battery facility has a rudimentary separation column (shown in figure 3-

1) that is intended to mostly remove some volatile contaminants. Thus, the fiberglass 

tanks clearly hold more than just pure Class IIIB liquids. This mixture can directly 

exacerbate any tendency towards flammability of the storage tank. 

 

Fig. 3-1. Battery separation column 
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3.2   An Examination of Sensors Applicable for Use In and 

Around Hydraulic Fracturing Storage Batteries 

3.2.1 Sensors  

A block diagram of a generic sensor system is shown in Fig. 3-2, where Grundler has 

taken the approach of sensors paralleling the functionality of a living organism, 

prescribed here in its simplest form  (Gründler, 2007).  

 

Figure 3-2. Basic anatomy of a sensor – adapted from (Gründler, 2007). 

  

3.2.2 The transducer 

The transducer is the “gateway” of a sensor, it connects the sensor to the 

outside world  (see Figure 3-2); it functions by converting one form of energy into 

another (for our purposes electrical signals) (Agarwal and Lang, 2005). The 

transduction device simply transforms signals from the sensor into output ready for 

further processing or display on a Human Machine Interface (HMI) see (Fig 3-3).  
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Fig. 3-3. Human Machine Interface (HMI) – Rooke 2014 

The HMI (Fig. 3-3) is an example of a “Higher Level System” as shown in Fig 

3-2. This particular HMI is operational in a “blender” in preparation for fracturing 

operations. At this interface, a technician can modify the mixture in accordance with 

best practices and standards (Halliburton, 2013).   

3.2.3 Thermal Imaging and Physical sensors 

Physical sensors represent a broad class of sensors that measure physical 

phenomena not limited to: vibration, heat, shock, acceleration, acoustic, and 

pressure. As a relevant example, Crippa et al. (Crippa et al., 2009) presents the 

cost/benefit relationship of a fire risk assessment methodology with a decision tree 

(event tree), and Infrared imaging. Crippa explains that the first step is to establish a 

realistic level of risk with a particular facility without risk reduction measures in place. 

Then quantifying the potential for risk reduction that can be realized with a single or 

multiple risk mitigation measures.  

3.2.4 Chemical sensors 

One chemical sensor that is always present is your nose. In more scientific 

terms, your olfactory system is responsible for airborne chemical sensing. At a very 
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basic level olfactory transduction (recall transducer discussion in 3.2.1) is triggered 

by the binding of odorant molecules to receptors located on the cilia on the surface of 

specialized olfactory cells (Cagan, 2012; Getchell, 1986). Actions occur on a 

microscopic scale since olfactory cilia are around 0.25 µm in diameter (Nakamura 

and Gold, 1987).  Recognition of a certain odor is the result of a concert of sensory 

cells each reporting only a facet of the odor (Lancet, 1986).  

This information is transmitted to a region of the forebrain known as the olfactory 

bulb where “date fusion” takes place, and a vertebrate animal is able to distinguish a 

particular odor (this is analogous to the microprocessor and computation blocks in 

Figure 3-2) (Shepherd and Greer, 1998). 

By referring to Fig. 3-2 and 3-4 one can see how the olfactory system like any 

sensor system encodes stimuli (in this case chemical odors) and transduces and 

transmits this information to higher order centers (as in Fig. 3-2). At present, little is 

known about the central organization of the olfactory system; in particular, somatic 

sensory and visual cortices leverage special maps whereas the olfactory bulb 

transmits signals to higher centers (cerebral cortex) that uses an unknown 

mechanism to distinguish “features” of various smells (Purves D, 2001).  
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Figure 3-4. Olfactory system (Purves D, 2001). 
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Fig. 3-5. Olfactory systems oriented view (Purves D, 2001). 

 

Indeed, the olfactory sensor system is complicated; yet on the most fundamental 

level, it parallels manmade sensor systems of almost any kind (refer to Fig. 3-5 and 

Fig. 3-2).  

As we step away from the exclusive world of smell; it can be said that 

chemical sensors represent a class of devices that provide information concerning 

the chemical species present in a measurement environment that is typically in the 

liquid or gas phase (Banica, 2012). However, some chemical sensors including 

corrosion sensors can function within solid boundaries and even leverage the power 

of wireless technology to transmit information (Andringa et al., 2005). So, chemical 

sensors run the gamut when it comes to sensing: solid, liquid, and gas. 

As we bring our literature research back to the topic at hand, hydro fracking 

chemical sensors are primarily used to monitor air, water, and geological 
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phenomenon. Chemical species in the atmosphere surrounding hydro fracking 

facilities has been of interest to researchers 

3.2.5 Fiber Optic Sensors 

The discipline of fiber optics is a detailed field, and much of it is beyond the 

scope of this dissertation. However, a brief overview of the optical fiber from a 

general prospective shall now be presented. The speed of light is dependent upon 

the medium of its travel; this helps define the concept of refractive index and its 

origins date back to the time of Newton (Lipson et al., 2010). Refractive index or 

index of refraction “n” describes how radiation or light travels through a material and 

shown in equation 3-1  (Hecht, 2002). In this equation, n is the refractive index of the 

material, c is the speed of light in a vacuum and υ is the phase velocity of light in the 

chosen medium (Hecht, 2002). 

𝑛𝑛 =  
𝑐𝑐
𝜐𝜐
 

Equation 3-1. Refractive index or index or refraction 

 

With the concept of refractive index having been presented, the concept of 

Snell’s Law can be explored. Snell’s Law was presented in literature by Willebrord 

Snell in 1621; while others including Thomas Hariot, Walter Warner, and Sir Thomas 

Aylesbury were independently working on the same physical phenomena, Snell is 

historically credited with the discovery (Shirley, 1951). Before we present Snell’s 

Law, a companion concept is the critical angle. In simple terms, if we have two 

materials with varying refractive indices, the critical angle is the angle which anything 

less results in total internal reflection.  
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𝑛𝑛1 sin𝜃𝜃1 =  𝑛𝑛2 sin𝜃𝜃2 

Equation 3-2. Snell’s Law 

 

An illustration of Snell’s law, critical angle, and total internal reflection is 

shown in Figure 3-6 where n1 represents the center of an optical fiber (core) and n2 

represents the cladding of a fiber.  

 

Figure 3-6. Optical fiber and basic concepts  

 

As a sub-class of sensors that span both physical and chemical sensors we 

have the fiber optic sensor. This type of sensor plays a significant role in the oil and 

gas arena and due to ability to sense passively without endpoint electronics is 

particularly useful for the hostile downhole environment. As an example, 

Schlumberger Limited has developed fiber optic sensors for downhole temperature 

pressure measurements for application in oil wells with possible applications in gas 

wells. This technology known as a Distributed Temperature Systems takes 

advantage of fact that fiber optic sensors often have what amounts to the equivalent 

of thousands of distributed sensors along the fiber’s length. A fiber Bragg grating (fig. 

74 

 



 

3-7) can be a key component of a modern distributed fiber optic sensor system (Hill 

and Meltz, 1997), (Kersey and Berkoff, 1992).  

In short, a Bragg grating is a fabricated periodic pattern of differing indices of 

refraction to create a desired effect; sometimes holographic methods are used to 

impose this pattern (Meltz et al., 1989) (Fig. 3-8). The Bragg grating is capable of 

measuring: vibrational, temperature, and pressure information which is relayed in 

real-time along the entire depth of the production well. This enables the 

measurement of reservoir performance, and to help judge well completion integrity. 

Many of these types of sensors use Bragg grating technology the can even function 

simultaneously as a temperature and pressure sensor as explained in research by 

Annamdas (Annamdas and Annamdas, 2010).  

 

Fig. 3-7. Fiber optic Brag grating in action 
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Fig. 3-8. Fiber optic Bragg grating – “burning” a pattern 

 

A specific implementation of Bragg technology was studied by Keul et al. 

(Keul et al., 2005) and again by Hornby et al. (Hornby et al., 2005). These studies 

deployed permeant “in-well” fiber optic sensors capable of measuring microseismic 

events which proved useful for understanding reservoir behavior when contrasted 

with surface seismic readings (Keul et al., 2005), (Hornby et al., 2005). Before this 

technology was tested by Keul et al., other fiber optic seismic sensor systems 

(lacking Bragg technology) proved to be bulky, and unfit for “in-well” deployment 

(Gardner and Garrett, 1988). 

3.2.6 Hydrologic Fracturing Sensor Touchpoints 

Hydrologic fracturing operations offer a significant opportunity for smart 

sensor technology. The fracking process is many decades old and thus, from a 

mechanical and chemical standpoint is well understood. In order to show how 
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sensors can align with fracking operations, we now highlight the various categories 

of sensors for surface hydro fracking operations   

 

• Well and Drilling Sensors 

• Surface activity sensors 

• Asset tracking 

• Atmospheric Sensors 

• Aquatic Sensors  

• Seismic and Ground Condition Sensors 

 

Well and Drilling Sensors are used to monitor the progress of well completion. They 

are considered to be “down hole” sensors that must in some cases survive unique 

conditions as well as limitations of RF (wireless) underground. Some explorations 

companies use fiber optics as both the sensor and the physical medium for 

transmitting telemetry information 

 

Surface Activity and Storage Sensors in the hydro fracking arena should focus on the 

movement of equipment and movement of fracking vehicles such as water trucks. 

How does all this movement impact the environment through accelerated erosion 

and noise? In addition, this project has deployed EM Field sensors on the battery 

where produced hydrocarbons are stored and susceptible to lightning strikes and 

charge buildup resulting in fires.  

 

Asset Tracking and automation with sensors is a critical area for project 

management of these sites. Unfortunately, most hydro fracking exploration 
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companies fail to use automated site asset tracking with sensor systems. By 

leveraging such a system, equipment and supplies could be tagged with low-cost 

RFID tags. By using a system with multiple readers and landmark references (fixed 

know RFID points) in combination with Probabilistic Kalman Filtering, precision and 

accuracy can be achieved to within centimeters in 3 dimensions (Bekkali et al., 2007; 

Nazari Shirehjini and Shirmohammadi, 2009). The benefits of such a sensor system 

to the owner operator of hydro fracking sites will discussed in chapter 5. 

 

Atmospheric Sensors are of particular importance to PXD and a case study of such 

sensors along with results will be presented in subsequent chapter 4. DAQFactory a 

controls and simulation environment in combination with the Python scripting 

language is used to show decision tree algorithm enabled sensors in action. PXD 

currently has lightning sensors deployed at the battery that were part of this research 

project.   

 

Aquatic Sensors can be used to monitor both underground water sources including 

both wells and aquifers. In addition, holding ponds and water discharged directly into 

waterways can also be measured for radioactivity and chemical concentration.  

 

Seismic and Ground Condition Sensors can be used to show the relationship 

between hydro fracking activities and seismic activity adjacent to hydro fracking 

sites. Several scholarly studies and even the hydro fracking industry itself has shown 

that there is a correlation between minor seismic activates and hydro fracking 

operations. 
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3.3   Examples of Prior Activities in Risk and Optimization at 

Fracking Batteries 

3.3.1 Risk  

The Project Management Body of Knowledge (PMBOK) describes risk in this 

way: ‘An uncertain event or condition, that if it occurs, has a positive or negative 

effect on a project’s objective.’ (Institute, 2008) The focus here is on the term 

uncertain event; it is unknown if this event will or won’t happen, and maybe even 

when it could happen. With this said, a project manager is only concerned with 

events that will impact the project. (Weaver, 2008)  

 In order to gain a foundational understanding of risk, it is critical to 

understand two hand-in-glove pairs of terms: uncertainty vs. variability along with 

accuracy vs. precision. In particular, uncertainty refers to a situation that might occur, 

where variability is an inherent in almost every project or process. The goal is to 

minimize unexplained variability to achieve acceptable outcomes (Weaver, 2008). 

Precision refers to the repeatability of a process while accuracy refers to the degree 

of “correctness” of a process. You must have both precision and accuracy to shoot 

consistent 3-point shots in basketball. 

3.3.2 Decision Trees 

Given certain conditions or parameters, a sensor system will be able to make 

decisions to for instance: open or close valves, turn on or off pumps, sound alarms, 

or simply cease an operation. While decision trees are part of this dissertation, they 

are by no means the focus of this research. Rather, decision trees are one of many 

tools that can be used as a vehicle for automated sensor systems. There is direct 
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interplay with decision trees and the implementation of IPLs. Should mitigation be 

activated or not?  

 

 

Figure 3-8. Example Decision Tree 

 

3.4 Summary 

Fiberglass hydrocarbon storage tanks are ubiquitous in the fracking industry; 

they are relatively cheap and unfortunately flammable. Sensors can play critical role 

in mitigating the impacts from lightning strikes on hydrocarbon storage tanks. The 

diversity of sensors coupled with the presented touch points for hydro fracking 

operations hold promise for additional integration in the future.  
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Chapter 4:  Research Methodology 
 

First, we review the research questions presented in Chapter 2, cite their 

importance and present a methodology to discover answers to these research 

questions. Some fundamental questions to have in mind are: why are methodologies 

used by others on similar problems relevant to our problem? Did others have flaws in 

their methodologies? What makes our approach valid?  

4.1 Appropriate Methodology for Addressing the Research 

Questions 

In sections 2.2 and 2.3 we presented research questions and also presented 

implications for the industry if sound answers are discovered. In section 2.2 we 

presented the research questions as re-written here: 

 

1.) As fracking continues throughout the United States (and world), data is showing 

that the prevalence of lightning in fracking areas will increase dramatically.  

Therefore the risk of an explosion – with accompanying financial and environmental 

consequences – is expected to increase dramatically as well.  Is there a way to use 

sensors and modeling to help minimize the financial and environmental losses and 

issues?  If so, could it be automated? 

 

In order to answer this fundamental question, a number of associated questions 

must be answered, including: 

 

2.) Develop the driving equations of the intersecting items, such as: 
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• probability of lightning strikes,  

• cost of an environmental incident (pollutant dependent) 

• well production estimation (temporal dependent) 

• cost to incumbent organization for an incident (cost to fracking company) 

3.) What are the border implications for sensors and lightning detection beyond 

hydro fracking hydrocarbon storage? 

 

Let us now consider the following to aid our analysis:  

o Are methodologies used by others on similar problems relevant to our 

problem?  

o Did others have flaws in their methodologies?  

o What makes our approach valid? 

4.1.1 Relevant methodologies used by others 

The problem of lightning in open-air industrial settings is a well-known 

problem (Chang and Lin, 2006). Operation supervisors at these sites resort to 

weather forecasts and rules of thumb to change operational posture or even suspend 

operations. For purposes of insurance and indemnification, most operators use 

NOAA lightning guidelines12.  

The onsite managers are often burdened with the responsibility of making a 

real-time decision with financial considerations such as: equipment might be lost, 

environmental damage may occur, or lives might be lost (due to lightning strikes). 

12 http://www.lightningsafety.noaa.gov/resources/large_venue.pdf 
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Often SOPs implement broad OPCONs (Operational Condition) that may not 

account for all risk or consequences in real-time operations. 

Before the particular methodologies used by others is presented, the 

concepts of Time of Arrival (TOA) and Time of Group Arrival (TOGA) shall be 

discussed.  TOA is sometimes called Time of Flight (TOF); as such this is the 

amount of time it takes for a signal to travel from the transmitter (source) to the 

receiver (detector). As an expansion on TOA, TOGA is the fusion of more than one 

TOA contribution to produce more enriched and accurate data; geolocation is more 

precise as a general consequence.   

An organization called Blitzortung has developed a community-based 

platform for Time-of-Arrival lightning detection. Unassembled sensors kits for 

purchase are currently only a modest 200 Euros (Fig 4-1) (Wanke, 2014). 
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Fig. 4-1. Community-based platform for Time-of-Arrival lightning detection 

 

This project is setting out to form a low-cost solution to world-wide location 

solutions. The accuracy and precision (see Fig 5-16), is based on the spacing of 

each station; typically 50 – 250 Km. Sensors detect lightning strikes, then transmit 

the occurrence of an electromagnetic pulse to central servers for information fusion. 

However any data supplied to the project can only be used for non-commercial 

purposes. Furthermore, since these are kits, Blitzortung says that any modifications 

to the kit including the amplifier will invalidate you contribution to the community TOA 

calculations. In addition, the kit is susceptible to any electromagnetic interference 

from: power supplies, computers, fluorescent lamps, and Televisions. In some cases 

Blitzortung says that this has resulted in invalid data being transmitted. The 

information from one station is not enough to compute the position of a lightning 

strike; a minimum of 4 stations is required (Wanke, 2014).  

 Another organization called the World Wide Lightning Location Network 

(WWLLN) determines the location of lightning events around the globe in real-time   

with a focus on stroke power (Hutchins et al., 2012). This system operates with 1 km 

errors for location information and has detection efficiency of >90%; in addition, the 

system can provide an estimation discharge amplitude and polarity (Jacobson et al., 

2006). The system detects VLF electromagnetic radiation and leverages TOA and 

TOGA much like the Blitzortung system (Abreu et al., 2010).   
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The National Oceanic and Atmospheric Administration (NOAA) takes a 

different approach to detecting lightning strikes13. In cooperation with the U.S. Air 

Force 14th Weather Squadron located in Ashville, NC. Through this squadron, the Air 

Force works with the United States National Climatic Data Center (NCDC)14; a 

branch of NOAA. Currently, cloud-to-ground and intra-cloud lightning flashes are 

detected by a network of 100 ground stations across the country. The flashes are 

mapped in real-time by the National Lightning Detection Network (NLDN) developed 

by the New Mexico Institute of Mining and Technology (NMIMT). Users have access 

to real-time data (Government or Military only) and the public has access to 

processed data of over 160 Million flashes since 1986 (raw data is not available for 

public or commercial use)15 The same NSSL site (as footnoted below) discussed an 

experimental satellite that observes flashes in tropical regions, but is unable to 

differentiate between cloud-cloud and cloud-ground lightning.     

4.1.2 Flaws in methodologies used by others 

As outlined in section 4.1.1, there are 2 primary methodologies used by 

others for the detection of lightning events. They were VLF (Radio Frequency) 

signals and TOA techniques, and ground based photonic detectors. Both of these 

general techniques are not predictive in nature; they are observing past events. In 

addition, none of the systems including the community sourced effort by Blitzortung 

13 http://www.ncdc.noaa.gov/data-access/severe-weather/lightning-products-and-
services 
 
14 http://www.ncdc.noaa.gov/ 
 
15 https://www.nssl.noaa.gov/education/svrwx101/lightning/detection/ 
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will permit the real-time sharing of raw data for commercial or public consumption.  

While some of these systems as described had detection accuracies of 1 Km and 

efficiencies of >90%, without real-time access to raw data, this is little use to the 

industrial practitioner or automated system in assessing lightening risk hear and 

now.  

4.1.3 Deployed methodology - Lightning Anticipation Technology  

By deploying a system that detects atmospheric charge buildup, the test 

system is able to predict a lightning strike. Lightning is caused by electrical charge 

separation in the atmosphere. The intensity of this charge separation can be 

determined by measuring the electric field, which is accomplished with an Electric 

Field Meter (EFM) Thus, monitoring of the electric field can warn people of a 

potentially dangerous situation, before the first lightning occurs. Following is a 

description of the process. 

On a clear day, when the atmosphere is clear of storm clouds, the primary 

source of electric charge creating an electric field on the surface of the earth is the 

ionosphere. This can be thought of as a large dome-shaped electrode high above 

the earth, which produces positive charges which contrast to the relatively negatively 

charged earth. This scenario creates what is termed a "fair weather" electric field due 

to the positive charge overhead. When this "fair" field is measured by the EFM, it can 

be seen to produce an output of from 50 to about 200 Volts per meter ("V/m"). This 

value varies, depending upon conditions in the atmosphere, and is also altered by 

"local effects". Such effects are caused by anything which can carry electrical 

charge, including but not limited to atmospheric space charge, dust, smoke, litter, 
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etc. Usually, though, the field stays between -50 and -200 V/m during fair or non-

stormy weather. 

When thunderclouds form, however, processes within their vicinity cause the 

formation of negative electric charges (the opposite of the ionosphere) at the cloud 

base. As the charge builds, it creates a "foul weather" electric field which grows and 

then begins to cancel out the "fair weather" field. As it builds further, it becomes 

many times greater than the fair weather field. It is this "foul weather" electric field 

which intensifies to the point that the air can no longer insulate the opposite charges. 

Finally, the positive and negative charges are drawn together suddenly via any 

convenient "weak spot" which occurs in the atmosphere. This is the energetic 

discharge we call lightning. 

Foul weather electric fields can reach values of well over 10,000 volts per 

meter at the ground during a storm. 

It is the separation of positive and negative electric charges into large groups 

which creates the lightning hazard. These groups, of opposite polarity, are naturally 

attracted to each other but held apart by the atmosphere's insulating properties. As 

these groups grow during the formation of a storm, the force of their attraction can 

exceed the atmosphere's ability to keep them separated. Lightning is the sudden, 

intense electrical recombination of these groups which occurs when this point is 

reached. The local electric field varies in proportion to the strength of these groups 

and their distance from the measuring device, so its measurement gives an idea as 

to the likelihood of lightning occurring. A strong electric field indicates that the 

situation is conducive to the formation of lightning. 

This is an over-simplified explanation of what is actually a very complex 

process. It is clear, however, that determining the local electric field can play a major 
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role in determining the likelihood of lightning occurring in a particular area of the 

earth. 

Military (U.S. Navy NAVSEA) and other government agencies (NOAA) have 

determined that electric fields above 2000 Volts per meter create the greatest 

lightning threat. Many operations centers have requirements to cease and secure 

certain operations when the electric field reaches this number in an effort to reduce 

damage or injuries caused by lightning. A high electric field reading does not ensure 

that lightning will occur, but only that conditions are conducive to its occurring. 

Experiments have shown that due to the relatively large size of 

thunderclouds, the electric field does not show tremendous variation over short 

distances. If the electric field has reached a value of 2000 Volts per meter at one 

location (a dangerous level), it will be reasonable to assume that the level is 

dangerous for several miles, at least, in any direction. Likewise, if the level is below 

500 Volts per meter (a relatively non-hazardous level), it can be assumed that the 

hazard is low for at least several miles. 

Although predicting an actual lightning strike is difficult if not impossible no 

matter what technique is used, monitoring the local electric field along with some 

interpretation and experience can be one of the best ways to determine how likely it 

is for lightning to strike an area. 

The electric field variations during a typical thunderstorm are shown in Figure 

1. Before 2240 hours, the field is low and positive (fair weather polarity), but small 

"bumps" indicate distant lightning. The local threat is probably still low at this time. At 

2240, the field "crosses zero", and begins to climb. This is when one should prepare 

to take cover. Around 2250 the field exceeds 2kV/m, and the threat should be 

considered serious. The small "bumps" due to the distant lightning are often not 
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present, particularly if the buildup is directly overhead and lightning has not yet 

begun. What is important here is the average level of the field. 

 

Figure 4-2.  Electric field measurements during a typical lightning storm (from 

Mission Instruments). 

 

As a storm builds, the physical arrangement of the charged bodies (clouds) 

combined with the various effects they have on the local atmosphere can create a 

variety of electric field build-up patterns. Also, when lightning strikes, either between 

the cloud charge pockets or between these pockets and the earth, it will cause a 

large change in the electric field as seen by a EFM. These changes, often fast-

occurring and short-lived, can take the field back and forth between fair and foul 

polarities many times during a storm as can be seen between 2300 and 2330. No 

lightning events occur after about 2341. This is typical of end-of-storm behavior, 
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although a significant threat still exists. Lightning often does typically occur during 

this phase of the storm.  

 

4.2 Instrumentation and Communications for In-Field Research 

Large scale hydraulic fracturing sites with inherent exposure to potentially 

catastrophic events, lack sensor integration with decision algorithms. This is 

particularly true for catastrophic atmospheric events such as charge induction, and 

direct lightning strikes. 

Field instruments supply raw data that must be analyzed in the context of risk 

in order to make informed project decisions at a particular site. By using equations 

presented in Chapter 2 and 3 for application in Chapter 5 I will lay the ground work 

for an analytic tool that will provide planners and managers with unique insight into 

the lightning threat and their operations.   

 

4.3   Unique attributes of the Field Test Location 

Large scale industrial operations will be the immediate beneficiaries of this 

research. As such, the chosen facility was hosted by Pioneer Natural Resources 

(PXD) at a functioning hydro fracking site. The specific site will be outline in greater 

detail in Chapter 5. For relevance to this section, the specific reason for choosing this 

particular battery for our test site involved access and general logistics. The chosen 

site has easy access from a main access road and houses the right kind of battery 

tanks for my tests (fiberglass tanks). Realizing that producing meaningful results will 

require a diversity of tanks.  

 

4.4   Candidate Analysis Tools for Data Interpretation 
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Fig. 4-3. DAQFactory model and control interface 

 

Given enough detailed information about the system of systems that 

comprises the hydro fracking operation, a complete model and interface can be 

developed (Fig. 4-3). However, this is a multi-million dollar effort that will require 

years of onsite proprietary access to PXD operations and equipment across diverse 

sites. 

Notwithstanding these limitations, very important foundational steps can be 

taken toward providing value to hydro fracking operations. By using basic simulation 

tools such as Monte Carlo, the threat of lightning and a potential mitigation strategy 

can be quantified.    
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4.5   Operational system for lightning and charge situational awareness  

As was explained in section 4.1.3, this research project deployed an 

atmospheric charge solution for lightning detection. To reiterate, this technology 

differs greatly from the VHF (Radio Frequency) and photonic detectors used by 

others including NOAA as outlined in section 4.1. 

 

 

Fig. 4-4. Campbell Scientific (CS110) Electric Field Meter 

By deploying a proven electric field meter designed by Campbell Scientific 

(CS110), for the application of measuring atmospheric charge to predict lightning 

strikes, performance variables can be minimized. Since the CS110 sensor system is 

a proven technology, performance has been benchmarked by various organizations 

including NAVSEA (U.S. Navy), NASA, and NOAA.  

 These organizations have developed thresholds for lightning warning hazards  

with a device such as the CS110. NASA (in collaboration with NOAA) considers a 
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charge reading on the CS110 ABS (1000 V/m) to represent a hazard within its 

Launch Pad Lightening Warning System (LPLWS). The U.S. Navy takes a more 

conservative approach and considers a charge reading on the CS110 above ABS 

(2000 V/m)16   

 

Fig. 4-4. Electric Field vs. time during an electromagnetic storm (CS110) 

 

In addition to Electric Field monitoring by the CS110, a custom built solution 

was deployed to monitor the electrostatic buildup on fiberglass tanks as this has 

been shown to be a pathway for tanks fires by other researchers (Chang and Lin, 

2006). Thus, monitoring the static charge buildup on fiberglass tanks is a facet of our 

approach to answer the research questions outlined in chapter 2 and again at the 

outset of this chapter. 

16 ABS in this case represents absolute value. Obviously, the smaller the number, the 
easer a system may trigger an alarm. 
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The deployed tank charge monitoring solution will be described at length in 

Chapter 5, however here we highlight its value as a methodology toward answering 

our research objectives. By measuring the electrical charge buildup and non-

conductive fiberglass tanks, there exists another modality for evaluating the potential 

for electrical discharge; in this case on a much smaller scale than a direct lightning 

strike namely, static discharge. The results can be similar as a static discharge cans 

till trigger a fire or in some cases depending on volatile contaminants, and explosion 

(see Table 3-2). Produced hydrocarbons and are known to be a mix of many 

components and therefore do not only exhibit the moderate volatility associate with 

crude oil. 

 

4.6   Data Acquisition via Remote Telemetry – Data Fusion 

 In order to transform data into intelligence, it must be fused with other 

parameters including tank charge sensors and even humidity conditions in the 

atmosphere. Intelligence is a product of data fusion and is the basis upon which an 

operator or planner can take action.  

 Data fusion can be loosely defined as the exploitation of information from 

multiple data sources (sensors) to estimate or infer a set of desired attributes about a 

set of target entities (Hall and Llinas, 1997).  The sensors can be similar in nature 

(e.g., temperature sensors) or quite diverse (i.e., multi-modal), such as a 

combination of temperature sensors, pressure sensors, humidity sensors, cameras, 

etc.  Data collected usually overlap in time and/or space, or are complementary in 

nature.  A natural question to ask is why anyone should care about such fusion of 

data from multiple sources.  A short yet quite general answer is that it provides the 
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following advantages over a single data source scenario:  1) wider spatial/temporal 

coverage, 2) improved robustness/fault tolerance, and 3) improved estimation of 

relevant information from raw data. Fig. 4-5 illustrates the basic idea of fusing data 

from multiple sensors.   

 

Fig. 4-5. A Sensor Fusion Scenario Inside a Building 

 The figure portrays a scenario of a typical office space with a hallway and 

multiple rooms on each side.  Four different sensors are mounted on the ceiling in 

each room:  1) a carbon-dioxide sensor, 2) an acoustic sensor, 3) an infrared sensor, 

and 4) a visible camera.  Data from each of these sensors in each room are 

combined by a data fusion node shown mounted in the ceiling over the hallway.  This 

node combines the data from all the sensors and produces high-level knowledge 

about this space that can be used to automatically control the indoor environment or 

by a building manager to assess the operational efficiency of the lightning system 

and HVAC (heating, ventilation, and air conditioning) in the facility. 
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4.6.1 Wider Spatial/Temporal Coverage 

Wider coverage is obtained by aggregating data from individual sensors with 

each sensor having a relatively limited coverage.  For example, suppose a building is 

monitored through security cameras which are the data sources in this case.  One 

camera may be able to only see the main entrance area but not the rest of the 

building.  So, with this camera alone, one would not have any information about the 

status of the other areas in the building.  However, if a second camera is placed on 

the opposite corner and the data from both the cameras are combined, one can now 

monitor the entrance area as well as the opposite end of the building.  Adding more 

cameras will provide surveillance coverage for more and more areas by aggregating 

or fusing the data from each camera.  Thus, fusion of data from multiple sensors can 

provide wider spatial coverage.  The same can be true in terms of temporal coverage 

as well.  A visible camera may only work during the day when there is adequate light 

available, but will likely not work at night when the building is dark.  If an infrared 

camera with the ability to see during the night is also deployed, data from these two 

types of cameras can be combined to gain wider temporal coverage.  Such spatial 

and temporal monitoring without a coverage gap is critical in many applications, and 

data fusion is a key enabler behind such capabilities. 

4.6.2 Better Robustness/Fault Tolerance 

Having more than one source of data (i.e., redundant sources) can provide 

better robustness or fault tolerance.  If a small subset of the sensors happens to fail 

or malfunction, the data from the other sensors can fill the gap and maintain the flow 

of critical data.  Care needs to be taken, however, to differentiate data streams 

obtained from malfunctioning sensors from data provided by properly functioning 
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sensors.  Otherwise, completely inappropriate decisions may be made in a given 

situation. To help identify this, simple and often effective technique is a consensus-

based approach in which the majority of compatible data are assumed to be the 

standard and any disagreements from this standard are assumed to be problematic.  

The underlying assumption is that failures are rare and that most of the sensors are 

not faulty.   

4.6.3 Better Estimation of Information from Data 

Having a multitude of sensors measuring raw target parameters creates the 

possibility of inferring a much higher level of information about the target than is 

usually possible with a single sensor.  However, it is important that raw data from 

multiple sensors are not highly correlated.  The more diverse the data, the better the 

estimation will be. 

For example, suppose we are trying to extract the three-dimensional shape of 

an object from three different cameras.  If one camera each is dedicated to capturing 

the front view, the rear view, and the top view, then combining the images from all 

three cameras can provide a fairly decent idea about the shape of the object.  This is 

because the images from the three cameras were taken from three very different 

viewpoints and hence they were diverse or fairly uncorrelated.  However, if all three 

cameras are placed near each other in front of the object, there is no good way to 

infer the shape at the top or the back side of the object.  In this case, the data from 

the multiple sensors (cameras) are very similar and not diverse enough to provide 

more inference than can be determined from a single sensor.  Such data are said to 

be highly correlated.  So, if a set of sensors is deployed to produce data that are 
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significantly uncorrelated, then data fusion across those sensors can greatly improve 

estimates of the target’s attributes of interest.   

Various research efforts have shown how using data fusion helps improve 

estimating target parameters.  For example, Strelow et al. (Strelow and Singh, 2002) 

fused optical, as well as inertial parameters, then measurements were used to obtain 

optimal motion estimates of targets.  Also, research by Veth et al. (Veth and Raquet, 

2007) has demonstrated the value of integrating optical and inertial measurement 

units for navigation.   

4.6.4 Technical Details 

Sensor fusion can be broadly classified into two categories:  1) homogeneous 

and 2) heterogeneous.  In the first case, the sensors that produce data to be fused 

are identical in terms of sensing capabilities and output properties, whereas in the 

second case, the system consists of diverse kinds of sensors, such as acoustic 

sensors, imaging sensors, temperature sensors, pressure sensors, etc.  In general, 

fusion across a set of homogeneous sensors is easier than fusion of data from 

heterogeneous sensors, primarily because data alignment, one of the most 

fundamental steps in data fusion, which is easier in the case of homogeneous 

sensors.   

The data fusion process can also be categorized into three broad classes based on 

the amount of pre-processing done on the raw data before fusing them:  1) low-level 

fusion, 2) feature (intermediate)-level fusion, and 3) decision (high)-level fusion. 
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4.6.5 Low-Level Fusion 

 In low-level fusion, raw data from the sensors are fed to the fusion engine 

with minimal pre-processing and the engine extracts all high-level information.  The 

volume of data transferred between a data source and the fusion node is relatively 

high because the sensors can collect quite a large volume of raw data to be fused.  

This may make this paradigm infeasible where the communication bandwidth is low 

Fig. 4-6, illustrates this fusion paradigm.   

 

Fig. 4-6.  Low-Level Data Fusion Scheme 

4.6.6 Feature-Level Fusion 

 This scenario can be thought of as an intermediate-level data fusion scheme.  

Each sensor platform has sufficient computational capability to identify interesting 

properties corresponding to the desired targets and extract a set of relevant features 

to be input to the fusion engine.  It then extracts high-level information by combining 

these features from the individual sensors; Fig. 4-7 illustrates this fusion paradigm.  

The paradigm is based on the assumption that it is possible to identify and segment 

the targets in each sensor data on its own without any input from any other sensor.  

The extracted features generally require a significantly smaller data volume than that 
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of the raw sensor data.  Because the only data transferred between a sensor node 

and the fusion engine are the extracted features, the communication bandwidth 

required under this fusion scheme is significantly less than what is required in the 

case of low-level fusion. 

 

Fig. 4-7. Feature-Level Fusion Scheme 

4.6.7 Decision-Level Fusion 

 In this case, each of the data sources have sufficient onboard computing 

capability to process the raw sensor data to generate higher-level information with a 

more compact representation than the raw data.  It is this higher-level information 

that the sensor nodes feed to the fusion engine.  As a result the communication 

bandwidth requirements are more modest than in the case of low-level fusion. Fig. 4-

8. illustrates the concept of decision level data fusion. 
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Fig. 4-8. Decision-Level Fusion Scheme 

 As an example, suppose one wanted to count the number of people in a 

building where each office is equipped with a camera to capture images at pre-

defined time intervals.  For this scenario, assume that image processing algorithms 

have been developed to extract the number of people that appear in a captured 

image.  In a low-level fusion scenario, the camera in each room will send the raw 

image pixel data to a fusion engine which will then process each image to find the 

number of people in each office, and subsequently add the numbers from each office 

to report the total number of people in all the offices combined.  Because each 

camera transmits the raw image, the bandwidth requirement is quite high. 

 In the case of feature-level fusion, each sensor may analyze its image to 

determine the segments that show change from a reference image, such as an 

empty room.  Then the changes would likely correspond to human occupants.  

However, a change may also correspond to an item in the room that has been 

moved since the reference image was captured, such as a chair.  The sensor in this 

paradigm does not differentiate humans from non-humans.  It simply identifies the 

image segments corresponding to such changes and extracts relevant features, such 

as the area, shapes, and locations in the image of these segments.  It then sends 
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these features to the fusion node which combines them to produce the high-level 

knowledge about the environment. 

 In contrast, with a high-level fusion scenario, each camera system will locally 

run all the algorithms necessary to extract the accurate count of people in the 

respective room by fully analyzing the captured raw image and only send this 

number (a single integer) to the fusion engine, which will add up the numbers sent by 

each camera to output the final result. Obviously, the bandwidth requirement in this 

case for the transfer of high-level information (a single number) by each sensor to 

the fusion engine is significantly lower than that in the previous cases where the 

whole image or the features had to be transferred.  But this reduction in bandwidth 

comes at the expense of each camera system requiring enough computational 

power to perform complete image analysis. 

4.6.8 Distributed versus Centralized Fusion 

 Traditionally, a centralized architecture has been common in data-fusion 

systems.  In such a system, there is a single fusion processing node, and all the 

sensors send their data to this node.  The fusion node is responsible for all aspects 

of data merging and extraction of high level information; Fig. 4-9. illustrates a 

centralized fusion system (Esteban et al., 2005).  This approach is algorithmically 

simple to implement but requires significant communication bandwidth because 

every sensor needs to send the entire output to the fusion node.  A major drawback 

of this approach is its susceptibility to a single point of failure.  If the fusion node fails, 

the entire system ceases operation. 
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Fig. 4-9. Centralized Fusion Architecture 

 However, a data-fusion system does not necessarily need to have a 

centralized architecture.  The fusion task can be performed in a distributed manner.  

An incremental step toward distributed fusion from a centralized framework is an 

architecture in which the overall fusion task can be divided into smaller subtasks that 

are performed by separate fusion sub-engines.  The output of each of these sub-

engines can then be merged at a master fusion node to produce the final fused 

output.  This is a bi-level hierarchical fusion architecture.  The obvious generalization 

is a multi-level hierarchy.  Hierarchical fusion architectures can be broadly classified 

into two categories—one with feedback and the other without feedback among the 

fusion nodes. Fig. 4-10 illustrates the concept of hierarchical fusion.  Error! 

Reference source not found. 4-10(a) shows an architecture without feedback, and 

Fig. 4-10(b) shows one with feedback. 
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Fig. 4-10. Hierarchical Data-Fusion Architectures 

 There are several advantages to hierarchical data-fusion schemes 

(Varshney, 1997).  It requires significantly less communication bandwidth because a 

low-level fusion node receives data from a smaller number of sensor nodes 

compared to the case of centralized fusion.  Plus, the data volume transferred 

between any two fusion nodes is significantly smaller than the raw sensor data size 

because the fusion nodes usually transfer aggregated information at a higher level of 

information abstraction with a more compact representation than raw sensor output.  

In addition, each fusion node requires smaller computational capacity because the 

computational tasks are distributed across multiple fusion nodes.  These also do not 

have any single point of catastrophic failure and, hence, are more resilient.   

 The extreme case of a distributed and decentralized data fusion framework is 

one in which there are no designated fusion engines but a network of sensors, as a 

whole, produces the desired fused output through cooperative computation.  Such 
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computational frameworks are known as “swarm” algorithms (Yiyue et al., 2012).  

Such systems are more robust and fault tolerant than centralized or semi-centralized 

architectures because the swarms are robust against the failure of a subset of 

nodes.  There is no predefined communication hierarchy or topology and the network 

is capable of autonomously reconfiguring its communication pathways if a set of 

nodes happen to fail.  Also, adding new nodes into the system is seamless.  This 

makes this type of architecture highly scalable.   

 Despite these advantages, the distributed and decentralized fusion 

architectures pose a number of challenges.  In the hierarchical scheme, it is not 

trivial to design an optimal architecture, such as defining the assignment of sensor 

subsets to first-level fusion nodes and the communication topology for the fusion 

nodes.  Also, one cannot take a centralized fusion algorithm and apply it in a 

hierarchical fusion system.  The algorithms need to be tailored to the architecture, 

which is not an easy task.  Designing a swarm-based algorithm for data fusion is 

likely the most complex of all the decentralized fusion schemes.  This has led to 

research to address these challenges (Moses et al., 2006; Chair and Varshney, 

1986; Durrant-Whyte et al., 1990; Julier and Uhlmann, 2001; Makarenko and 

Durrant-Whyte, 2004; Rao et al., 1993). 

4.6.9 Data Fusion Process Model 

 Data fusion systems are highly domain specific, and there is no one-size-fits-

all solution that can be deployed without considering the specific requirements for the 

application.  Because of such diverse system requirements, it was important to 

develop a common descriptive substrate to elucidate the core concepts of data 
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fusion as a discipline.  This led to the development of the data-fusion process model 

which decomposes any data fusion task into a set of six subtasks, or levels. This 

general process mode is applicable across diverse application domains (Steinberg et 

al., 1999; White, 1988).   

Six sub-tasks for data-fusion processing 

Level 0:  Source Preprocessing/Data Alignment 

Level 1:  Object Refinement 

Level 2:  Situation Refinement 

Level 3:  Impact Assessment (or Threat Refinement) 

Level 4:  Process Refinement 

Level 5:  User Refinement (or Cognitive Refinement) 

 Source pre-processing is one of the most fundamental steps in any data-

fusion framework.  Here, the raw data are subjected to a set of conditioning steps to 

make them ready for fusion.  Examples of such conditioning are noise reduction for 

noisy images, color space translation (such as conversion of color images to 

monochrome images), orienting all geo-spatial data to north up, scaling all data to a 

desired range, etc.  It is important to understand that no actual fusion of data from 

different sources takes place at this level.  One particular pre-processing—data 

alignment —task deserves elaboration as it is almost ubiquitous in data fusion 

applications.  Data alignment refers to the task of bringing raw data from all the 

sensors to a common representational framework so that one can make a valid 

comparison and assess the similarities or dissimilarities among the data.  Data 

alignment is not a simple or easy task by any means.  In fact, this can be one of the 
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most critical steps in a data fusion pipeline.  If the alignment is incorrect; all 

subsequent analyses will produce incorrect inferences.   

 The situation gets far more complex when the sensors are heterogeneous in 

nature.  For example, if one installs microphones to detect human voices in areas 

where cameras may not be deployed or carbon dioxide sensors to get an estimate of 

the number of people, the data from all these different sensors need to be aligned 

before they can be fused to make a unified interpretation.  Aligning such disparate 

data sources is a challenging task. 

 

Level 1:  Object Refinement 

 The core task is to fuse the Level 0 data from the various data sources to 

identify items of interest.  Sensors can have different resolutions, angles of view, or 

other characteristics.  The classification step essentially groups the identified items 

into categories.  The processes used in Level 1 are highly application specific. 

 Level 1 processing becomes especially challenging when a larger number of 

items are to be tracked.  Not only does the computation complexity increase, but the 

situation injects uncertainty and ambiguity through occlusions, overlaps, and track 

intersections (Uhlmann, 1992; Bar-Shalom and Li, 1995).   

 

Level 2:  Situation Refinement 

 The goal of Level 2 is to determine relationships among the detected 

targets/entities as well as the environment to extract a context.  The targets (objects, 
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spatio-temporal events, etc.) detected in Level 1 need to be aggregated in this stage 

to obtain desired contextual knowledge. Besides aggregating target objects, it is also 

useful to aggregate the temporal information of events because the same event can 

imply a vastly different context depending on its time of occurrence. A time sequence 

also can provide insight.  A sequence of events in a specific time order can provide 

valuable contextual information about a situation.  

Level 3:  Impact Assessment  

 The essence of impact assessment is to extrapolate the situational 

awareness obtained in Level 2 to forecast the evolution of the scenario in the future.  

This requires prediction based on currently observed events and estimating the 

ramifications of those events.   

Level 4:  Process Refinement 

 In essence, process refinement is not part of any core fusion task, but it 

refers to the auxiliary task of monitoring the performance of the current fusion 

infrastructure and dynamically modifying aspects of the framework to achieve optimal 

performance.  For example, the sensors may need to be re-oriented to improve 

coverage, or the Level 1 fusion may need to be switched from a lower level fusion 

mode to a higher decision level fusion. 

   

Level 5:  User Refinement 

 Level 5 involves the process of incorporating a human-in-the-loop facility by 

incorporating various human-computer interaction (HCI) mechanisms into the data-
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fusion pipeline.  Examples of such HCI methods are information visualization, haptic 

feedback17, and verbal interaction (Preece et al., 1994). 

4.6.10 Characteristic Interdependencies 

 Any data-fusion task involves a set of subtasks.  The fusion model formalizes 

these subtasks into six levels as elaborated in section 4.6.9.  However, each of these 

levels can be decomposed further depending on the application domain.  Most of 

these subtasks represent interdependent problems.   

 The most basic interdependency is between Level 0 pre-processing and 

estimation of the various states of the target.  The uncertainty in these state 

estimates is highly dependent on the fidelity of the data-alignment task.  Any error in 

data alignment will likely be amplified in the subsequent stages of the fusion pipeline.   

 Another crucial interdependency is between the uncertainty in the final fused 

result and the uncertainty in the data gathered by the sensors.  Uncertainty in raw 

sensor data can arise from various sources, such as sensor calibration drift, 

uncertainty in the location of the sensor itself (e.g., in a GPS-denied environment), 

uncertainty in the location of a target (e.g., when the target is occluded), etc.  Such 

uncertainties, if not taken into account in the fusion process, can have significant 

impact on the accuracy of the fused output.   

 The communication bandwidth among the sensors or between a sensor and 

a fusion engine can affect the choice of fusion architecture to use. 

17 Tactile feedback such as vibrations 
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 The available power source also determines the type of fusion system to be 

deployed.  For example, in a building surveillance system, all sensors, as well as the 

fusion engine, can draw power from the buildings electrical infrastructure.  So, power 

availability is not a constraint.  Hence, they can operate almost indefinitely and be of 

a permanent nature.  However, if we want to deploy a set of temporary sensors, or 

sensors without a hard-wired power source, this will impose limits on the 

architecture. For example lightning detection solutions and in particular, the CS110 

EFM is in my case a solar powered solution.   

 Criticality of the fused product influences the architecture of the data-fusion 

system as well.  If it is imperative, for some reason, to collect data without 

interruption, it is essential to build as much redundancy into the system as possible 

within the constraints of the project. Lack of redundancy in this case, can result in 

loss of data.  

4.6.11 Typical Applications 

 Data fusion has tremendous potential in the building management domain by 

reducing the cost of day-to-day operations and maintenance through efficient 

coordination of various active components such as HVAC, electrical systems, and 

mechanical systems, as well as reducing waste of valuable resources such as water 

and power.  Operation and maintenance are usually the most expensive elements of 

a building’s life cycle expenses, and these costs usually increase over time as a 

building gets older.  An appropriate sensor fusion framework installed in a building 

can significantly reduce these costs. Bogen (Bogen et al., 2011) states that, “… 

approximately $15.8 billion of annual U.S. capital facility industry efficiency losses 
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are due to inadequate interoperability in design, engineering, facilities 

management….” A sensor suite that is properly chosen and deployed in a building 

and the appropriate fusion of the data from these sensors can provide reliable, 

accurate, and actionable near real-time information that a building operations 

manager can leverage to make decisions about the most efficient control of the 

various components.  This can result in substantial energy savings and reduced 

operational cost.   

 A key component in efficient building operations is real-time information about 

occupancy load distribution across a facility.  If the dynamic occupancy profile can be 

determined in real-time, the information can be exploited for automatic dynamic 

control of lightning, temperature, air-flow, and other indoor environmental parameters 

to provide optimal comfort for the occupants without wasting energy on maintaining 

the same level of comfort in unoccupied areas.  To determine a building-wide 

occupancy profile, it is necessary to deploy a suite of sensors of different modalities 

(such as temperature sensors, humidity sensors, visible cameras, infrared sensors, 

etc.) distributed throughout the building.  Information from these sensors could then 

be fused to produce a unified and actionable knowledge product that can be used to 

optimally control the various building systems. 

 Another area of interest in energy efficient building management is predictive 

occupancy modeling.  By discretely sampling the occupancy load distribution data 

obtained through multi-sensor fusion and archiving the data in a database over a 

significant period of time, machine-learning techniques can be applied to discern 
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occupancy patterns.  These patterns can then be used to predict spatio-temporal18 

occupancy and activate the systems appropriately to bring the relevant areas to the 

desired environmental state at the right time.   

 Human activity detection in an indoor environment has been an active area of 

research, motivated not only by energy conservation, but also by other application 

domains, such as gaming.  However, the fundamental technological advances 

resulting from these diverse research activities can be exploited in smart building 

management systems.  Coen (Coen, 1998) carried out one of the earliest instances 

of research about tracking people and activity detection in a room.  His team used 

multiple sensors to detect locations of people and their activities and offered 

automated help using artificial intelligence algorithms. Mozer (Mozer, 1999) 

developed a framework where a building learns by observing occupant behaviors 

over time.  The key differentiator of this research was that the building had the ability 

to adapt its functionality to the inhabitants’ desires and habits.  

At a finer level, data fusion can play an important role in getting reliable estimates 

about the state of a specific sub-system in a building.  For example, Huang (Huang 

et al., 2009) developed a data fusion scheme for improving the measurement of the 

cooling load in chiller plants in buildings. 

4.7 Summary 

This chapter began by reiterating our research questions originally proposed 

in Chapter 2 along with thought questions to keep in mind during the evaluation of 

18 Belonging to both space and time 
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our methodology for answering our research questions. The chapter then covered 

the highly relevant topic of sensor data fusion. Understanding this process is 

important to our research questions and broader implications of the solutions to be 

presented in Chapter 5 along with broader implications of this research to be 

presented in Chapter 6.  
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Chapter 5:  Conclusions, Findings and Implications 
  

This chapter presents the research findings placing them within the context of 

the environmental and cost implications discussed in the previous chapters. The 

chapter is organized in the following manner:  Section 5.1 presents the rational for 

choosing the incumbent category of sensors and discuss the Hatchett case study. 

This will be followed by section 5.2 where I will outline the specific sensors chosen, 

the measurement system design, how the sensors and system operates as well as 

the data measured. Sensor installation – included installation verification procedures 

– is presented in Section 5.3.  The process used for the instrumentation field 

measurements is in Section 5.4 while Section 5.5 discusses the measurements and 

their implications. Section 5.6 will take a practical approach by calculating the 

potential risk reduction of such a system ($USD). Section 5.6 also presents the cost 

and benefits of the deployed lightning and charge sensor system. In the face of the 

lightning threat19, formulas and calculations will be presented that will assist 

planners, operators, and managers of large hydrocarbon storage facilities20 with the 

mitigation of the lightning threat.   

Section 5.7 will examine the usefulness of this system design to industry in 

general. The chapter concludes with section 5.8 in which I will summarize final 

thoughts and implications from this chapter concluding with final thoughts on risk if 

no further action is taken by industry.     

19 A 2014 research paper published in Science by Romps et al., University of 
California Berkley supports a 50% increase in in cloud-ground Lightning strikes 
during this century due to the realities of global warming  
20 A detailed multi-decade study of 242 hydrocarbon storage tank accidents by Chang 
et al. showed that 33% were cause by lightning. 
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5.1 Category of Sensors selected and Test Site 

 As discussed in prior chapters, there are a wide array of sensors and 

systems that were candidates for use in the experimental phase of this dissertation.  

The categories of sensors used in this research are presented in this section. 

5.1.1 Rational for sensor category selection 

 In order to answer the research questions posed in Chapter 2, the ability to 

measure an approaching lightning threat in real-time is required. As was explained in 

Chapter 4, other prominent methodologies used to measure lightning frequency and 

geolocation do exist.  

One category is used by the National Oceanigraphic and Atmospheric 

Agency (NOAA) , their National Lightning Detection Network (NLDN).  NLDN 

incorporates an array of geographically dispersed photonic (flash) detectors 

operating in a cooperative manner to geolocate and deconflict lightning flashes 

(details in Chapter 4). Unfortunately for my research I was not able to access NLDN 

data, for they will only provide raw data streams to the Government and Military. The 

public has access to processed subset data that is (at best) months old.  

The second category of lightning detection sensors leverages the radio 

emissions (3-30 KHz ) from the energetic discharge associated with a lightning 

event. As described in Chapter 4, a cooperative organization based in Germany has 

a basic solution that starts at 200 Euros. This small entry price will allow you to be a 

good citizen of the world by contributing an RF (radio frequency) emission and GPS 

(with time stamp) measurement node. This TOA (Time of Arrival) and TGOA (Time 

Group of Arrival) information is fused in a central repository with other nodes. While 
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this is a promising solution, it is not real-time and you don’t own the data. 

Furthermore, commercial use of this data is forbidden.         

 With the incumbent solution, the user owns the data. Plus, cooperation with 

multiple devices is not required, but could be beneficial (see chapter 4; data fusion) If 

data fusion is leveraged, the atmospheric charge sensors and the tank charge 

sensors present a unique opportunity to assess the approach of a lightning and 

charge threat. The corollary is also realized though a drop in energy of the 

atmospheric charge sensor and tank charge sensor.  

5.1.2 Hatchett case study 

The primary reason for choosing the Hatchett lease battery - located near 

Midland Texas  - for this research was the easy access and availability of the battery 

tanks that were required upon which measurements could be used to determine the 

validity of answers to the research questions posed in Chapter 2.  A representative 

google earth image of the Hatchett Battery is presented as Figure 5-1. The tanks in 

use at the site were a mixture of fiberglass and welded steel. 
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Fig. 5-1. Hatchett deployment site with weather station visible 

 

Specifically, some tanks were all metal, and some were all fiberglass 

whereas one we even constructed with a fiberglass “cap” atop a steel body. The 

tanks were on the order of  500 bbl21 each in volume and were 16’ in height with 

about a 15’6’’ foot diameter. For the sake of a common reference, a tank would hold 

21,000 U.S. Gallons of crude oil if full. The fiberglass version of this tank costs about 

$16,70022 without shipping or instillation costs. At today’s WTI crude price of around 

$50 / bbl, each tank can hold $25,000 worth of crude oil. However, tank sizes range 

greatly from 27 bbl to 1000 bbl for local battery sites. --- Regional crude storage sites 

have tanks holding many thousands of bbl. ready for transport by rail (Fig. 5-2).       

21 1 bbl (barrel) of crude oil in the U.S. = 42 gallons  
22 http://www.jmackenergy.com/GUNBARREL-TANKS/ 
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Fig. 5-2. Regional crude storage for rail transportation – Rooke 2014 

5.2 Chosen sensors, their data and functionality  

I collaborated with ORNL for the selection and procurement of system 

components that met specifications for the required tests. My involvement centered 

around selection of components and the verification and calibration of the system 

following deployment. While my research questions are key to my dissertation, 

answers are also of use to PXD and other fracking production companies. 

5.2.1 Atmospheric charge sensors 

Using uniquely integrated Common Off The Shelf (COTS) components, a 

multi-parameter sensor station was developed and deployed at the Hatchett site to 

facilitate local atmospheric measurements. Some key goals and considerations are 

outlined here: 

• Measure local weather conditions. 

• Measure electric field in the local atmosphere. 

• Measure local lightning strike activity. 
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• No local power or communications available. 

 

Local weather conditions such as humidity, wind speed, and direction can be 

accurately measured with this this sensor station. More importantly, the atmospheric 

electric field can be accurately measured; results to be presented in section 5.5. In 

addition, this customized device has a lightning detector with event range monitoring. 

While the Hatchett site does have electrical power, it was not available for this 

experiment. So, a 20 watt solar panel with a rechargeable battery was used to power 

this instrument cluster. The desire was to have a standalone system that did not 

depend on the site for electrical power. Part of the reasoning behind this is the lack 

of power access in the Midland “boomtown” environment. The local utility will often 

charge around 1 Million dollars for a modest power line with grid access. Thus, 

having an independent instrument cluster is an important feature. Communications 

were accomplished every 10 minutes through a satellite directed antenna called out 

as the “Cell modem antenna” in Fig. 5-6.   
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Fig. 5-2. Campbell Scientific CS110 Electric Field Meter23 

Each CS110 is calibrated in the factory in a calibration chamber as shown in Fig 5-3. 

The reciprocating shutter opens and closes during measurements. It is electrically 

connected to the ground potential and upon the shutter opening the electric field of 

the atmosphere is taken. The difference between the two measurements provides a 

user with the voltage potential difference. Thus, the degree to which the atmosphere 

is “energized” and capable of producing lightning can be considered for activation of 

the IPL (Independent Protection Layer) for lightning mitigation.  

23 http://s.campbellsci.com/documents/us/manuals/cs110.pdf 
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Fig. 5-3. CS110 Calibration Chamber 

During calibration, Eq. 5-1 is used where data is plotted with the goal to 

obtain a R2 close as close to 1.00 as possible (strait line); in fact, the instrument is 

calibrated to this standard. The term Mparallel_plate is related to the size of the electrode 

in the CS110 and feedback from the capacitor in the charge amplifier. Whereas the 

term Oparallel_plate is in essence the measure of how “dirty” your electrode is and 

represents unwanted surface charges from non-conductive deposits on the 

electrodes.  

E = Mparallel_plate⋅V + Oparallel_plate 

Eq. 5-1 

Once in the field, the instrument must be calibrated to meet site 

specifications. The factory calibration is only valid for an instrument mounted flush 

with the earth; this is not realistic for a field instillation due to weather (water 
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intrusion) and general debris associated with a long-term field deployment (see 

section 5.3).  

5.2.2 Tank Sensors 

 The operational criteria for the tank sensors was a combination of proper 

dynamic range and the availability of COTS components. After literature and industry 

surveys, few commercial sensing options were identified. The search ended with the 

textile industry and Monroe Electronics. Components were ordered from Monroe and 

an electrostatic fieldmeter sensor was adapted for tank usage whereas before, the 

components were designed to monitor static charge on textile web materials. The 

installed static sensor system for tanks have the following design characteristics: 

 

• Sensors must measure electric charge at tank surface locations. 

o +/-40KV charge measurement range 

o Input resistance of > 10^12 ohms 

• Tank locations are Class 1 and Division 1 rated24. 

• No local power or communications available. 

• Flexible and easy to install. 

To accomplish these operational goals, I consulted with ORNL who then worked with 

Monroe to develop a “charge plate” concept. This was principally done to protect the 

sensor and from weather by bringing the tank surface charge to the sensor via the 

charge plate. 

24 Class I, Div. 1 – Locations where ignitable concentrations of flammable gases, 
vapors or liquids are atmospherically present on a continuous basis or often under 
normal use conditions. – NFPA 70 (National Fire Protection Association)  
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Fig. 5-4. Overview of deployed tank charge sensor 

As an added benefit, the Monroe 177A electrostatic fieldmeter could reliably monitor 

static buildup in the weather tight instrument hut. For a closer look at the electrostatic 

sensor and its isolation box, see Fig. 5-5. 

 

Fig. 5-5. Electrostatic sensor and isolation enclosure 

 

Since it is well documented by Chang (Chang and Lin, 2006) and others that 

electrical storms induce a charge on fiberglass storage tanks from a distance of 15 – 
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150 km sometimes resulting in documented cases of arcs and subsequent fires. 

Thus, tank charging during storms is important to this research. Instillation location is 

a key variable that will be discussed in section 5.3.    

5.3 Installation and verification of sensors  

5.3.1 Atmospheric sensors  

I was mindful of component interoperability and the need to meet system 

requirements for this sensor deployment.  This was described in section 5.2.1, the 

CS110 chosen as the Electric Field Monitor due to its well documented 

performance25 

25 http://s.campbellsci.com/documents/us/manuals/cs110.pdf 
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Fig. 5-6. Deployed weather station with CS110 electric field meter sensor 

 

Installation of the “weather station” with an atmospheric charge (CS110) 

sensor was a mostly a drop in place process, with some acceptations. The CS110 is 
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a Common Off The Shelf (COTS) product built by Campbell Scientific and marketed 

as an Electric Field Meter26.  

The CS110 was mounted in a slightly inverted manner has shown in Fig. 5-6. 

By doing this, the effective gain will be reduced; however, unwanted electric fields 

will also be reduced thereby enhancing the desired gain. By using Eq. 5-2 at the 

Hatchett site, I verified the R2 to be .997.  

Mcorrected = Csite⋅Mparallel_plate 

Eq. 5-2. CS110 Field calibration 

For the terms in Eq. 5-2, Mcorrected is the correct multiplier whereas Mparallel_plate is 

unique to every CS110 and independent of the site deployment. Csite is the site 

specific term and can be impacted by vegetation and other nearby objects. In 

addition, the filed calibration should be done in the absence of precipitation or foul 

weather. An example of an in-field calibration is shown in Fig. 5-7. It is common 

factor in -100 V/m as a fair weather correction factor27. 

26 http://s.campbellsci.com/documents/us/manuals/cs110.pdf 
 
27 A negative sign is used to indicate the electrostatic force on a positive charge 
exhibited by the earth. 
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Fig. 5-7. CS110 Field Calibration plot 

This infield calibration was part of the verification process. I became keenly 

aware of the need to keep electrode clean during calibration and the sensitivities the 

instrument displayed during high humidity mornings vs. dry afternoons; the 

instrument was calibrated during a dry afternoon on October 9th 2014.    
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Fig. 5-8. Alignment of satellite communication antenna – Rooke 2014 

  

Since the Hatchett site is off a dirt road, about 45 miles from the Midland 

International Airport; communication and electrical power were a concern. Providing 

power to the weather station simply involved the deployment of a 20W solar panel 

and a rechargeable battery. Due to the strong West Texas sun, this setup was 

verified to supply sufficient power to the weather station.  
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As shown in Fig. 5-8, the station used a satellite modem for telemetry and 

transmitted measurement every 10 min. Alignment of the antenna was critical and 

was readjusted by me during the verification process. 

5.3.2 Tank charge sensors 

 

Fig. 5-9 Fiberglas tank charge sensor instillation at Hatchett 

Fiberglass tanks were of particular interest since charge measurement of 

these types of tanks was supportive to answering our research questions. As Chang 

et al. and other have pointed out, electrical storms are capable of inductively 

charging tanks from a distance of 15 – 150 km (this will be further analyzed in 

subsequent sections of this chapter). Although the process for grounding a tank to 
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dissipate charge buildup sounds simple, as others have experienced this is not an 

absolute solution (see literature research in Chapter 3). The instillation process 

involved choosing charge “pick-up” locations across various locations on the tank. 

There was no previous published basis for mounting charge pickup locations of 

these types of battery tanks with these specific connections and associated piping.  

 

 

Fig. 5-10. Steel tank charge sensor instillation at Hatchett 

In a similar manner to the fiberglass tanks, the steel tank leveraged a similar 

instillation method. However, there were only 2 pickups as the steel tank was more 
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of a control and not the direct object of study. Steel tanks dissipate charge buildup 

much more rapidly than fiberglass due to their inherent conductive properties.  

 

Table. 5-1 Wiring diagram of tank charge sensors 

 Table 5-1 shows the wiring diagram for the tank “pick-ups”. Charge 

information will travel along the accompanying wires to a charge transducer located 

in the instrument “hut” at Hatchett (Fig. 5-11). This building housed any weather 

sensitive instruments including the ones outlined in Fig. 5-13. 

 

Fig. 5-11. Instrument “hut” at Hatchett 
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Fig. 5-12 details all the major components housed in the data hut. This 

provided a weather tight and environmentally stable enclosure for sensitive 

measurement equipment.    

 

Fig. 5-12. Instruments for charge measurement of tanks 

 

5.4 Instrumentation field measurement process 

5.4.1 Atmospheric sensors 

While the deployed solution is in a constant state of operation system errors 

due sometimes occur causing system crashes. Furthermore, due to the dusty 

weather conditions of the Midland area, the CS110 requires occasional cleaning. Its 

current form factor is not conducive for a long-term, zero maintenance solution.   
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5.4.2 Tanks charge sensors 

 The charge measurement process was highly dependent on a storm of 

adequate strength passing within the charge footprint (see Fig 5-34) Due to 

idiosyncrasies with equipment, including the Monroe 177A, system “crashes” were a 

reality. Thus, a technician was required to be local during testing, and hopefully a 

significant electrical storm would pass by during that time. 

5.5 Measurements and Implications 

The measurements obtained did indeed indicate an approaching lightning 

storm. Implications of these results support the efficacy of such a system for the 

prediction of a near-term lightning events. Further implications will be discussed in 

greater detail in sections 5.6 – 5.8 and by extension chapter 6 as a whole.  

5.5.1 Atmospheric sensors 

 The atmospheric Electric Field Monitor (EFM) was a CS110 made by 

Campbell Scientific. Thus, as expected the CS110 performed to specifications 

described in the user’s manual28 Results are shown in the following Figs. throughout 

this section.   

28 http://s.campbellsci.com/documents/us/manuals/cs110.pdf 
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Fig. 5-13. Measured Lightning Strikes 

Fig 5-13, helps to provide a backdrop for EFM readings with the CS110 to be 

shown in Fig. 5-14. So, when studying these results, take note of the time and date 

stamps as they correlate. By NAVSEA (U.S. Navy) 2000 V/m and NOAA standards 

of 1000 V/m correlating a lightning strike “warning”, Fig. 5-15 does indicate a 500 

V/m EFM drop about 10 minutes before lightning first strikes. Thus, the predictive 

abilities of the CS110 have been replicated in this field study. Furthermore, many 

other high V/m swings measured with the CS110 correlate with actual lightning 

strikes in the area. If the area under the plot in Fig. 5-15 is integrated, it is 

representative of the intensity of the electrical storm. However, these details have not 

been fully quantified. 
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Fig. 5-14. Electromagnetic Field strength during storm event 

Since the CS110 showed promise in a storm event at the end of July 2014, a long-

term experiment was setup to gauge the stability of the CS110 and its precision and 

accuracy in predicting and measuring electrical storms. Fig. 5-17 shows a test that 

gathered data for over a month. The instrument was found to present characteristics 

of accuracy, but lacked precision in the quantification of lightning strikes. This result 

was expected since deconfliction of lightning strokes can be challenging with a field 

charge sensor. This is one major advantage that the NLDN (NOAA) has since it used 

photonics and cooperative ranging and geolocation in the assignment of a unique 

lightning stroke. --- A presentation of accuracy and precision is now timely --- 
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Accuracy and precision can be explained as follows. If a process or 

measurement yields the same result independent of hitting a “target” than one could 

say the grouping is tight, and thus the precision is high. Where accuracy is not 

concerned with a grouping, and more concerned with the average result being on 

target. This can be better understood through study of the following figure. 

 

 

 

Fig. 5-16  Accuracy vs. Precision 

 

In Fig. 5-16. , targets 1, 2, & 3 from a good introduction to the concepts of 

accuracy and precision. Target 1 shows a marksman that on average has great 

accuracy, yet lacks precision; this would be called a poor grouping. Target 2 shows 

great precision and somewhat poor accuracy; this marksman has a tight grouping yet 

is missing the mark; better check your gun sites. Besides gun sites, another way of 

saying the same thing could be your system or instrument is repeatable, but is 

consistently incorrect in the same way.  Target 3 hits the spot; here we have both 

high precision and accuracy.  
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Fig. 5-17. Long-term field test of the CS110 

The utility of the CS110 for the quantification of lightning stoke count is 

uncertain. From the preliminary results gathered from field tests, thus far the CS110 

appears to be well suited for predicting possible lightening activity and ill-suited for 

deconflicting stroke count in highly active storms. 

5.5.2 Tank charge sensors 

Fig. 5-18. shows the mounting locations for the charge “pickups”. The lettered labels 

correspond to the data charts within this section.  
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Fig. 5-18. Tank charge sensor “pickup” locations 
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Fig. 5-19. Tank charge data; fair weather day (Part 1) 

 As expected, Fig. 5-19 shows data logged during fair weather conditions, 

none of the tanks showed a charge buildup. So, this data serves as a reasonable 

control for experimentation during stormy weather conditions.  

 Fig. 5-20 follows as expected and no “pickup” locations are showing 

unwarranted background charge. I now have a good baseline for experimentation 

during electrical storm events.  

 April 9th – April 13th 2015 were days of moderate storm activity around the 

Hatchett battery. As expected, Fig. 5-21 – 5-22 show some minimal levels of 

charging from some of the “pickup” locations. However, there was some level of 

disappointment since many locations did not show increased charge readings. 

   
139 

 



 

 

Fig. 5-20 Tank charge data; fair weather day (Part 2) 

 

Fig. 5-21. Tank charge data; low intensity weather day (Part 1) 
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Fig. 5-22. Tank charge data; low intensity weather day (Part 2) 

This minimal reaction to the moderate electrical activity could be associated with 

poor “pickup” locations or the possibility of poor induction from a weak storm passing 

too far from the battery tank to make a difference.  

5.6 Potential risk reduction of system 

The true value of a solution remains unappreciated until its operational and 

financial impact are realized. As was explained in the earlier sections of this chapter, 

the lightning in charge solution is capable of providing up to a 10 minute window of 

advanced warning prior to a lightning strike. In addition, tank charge sensors provide 
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an extra dimension of operational input for fusion with atmospheric charge sensor 

data. This sensor combination provides a unique solution to operators of large 

hydrocarbon storage tanks.  

Calculations and models presented in this section will equip project managers 

and decision makers with valuable tools for use in operations and planning. --- The 

tool tells a decision maker which sized tank to use in a specific lightning threat zone 

at a specific time in the life-cycle of a well (recall well decline curves) --- (young 

highly productive wells will get hit harder with shutdowns in operation)  

Of course, the calculations must include the "cost" of the atmospheric charge 

and tank sensors as well as the benefit they provide to the IPL (Independent 

Protection Layers) that trigger the Nitrogen tank flood.  

5.6.1 Cost of a lightning strike  

The cost of battery tanks used in the industry are shown in the following plot 

(Fig. 5-23). The scatter plot also includes a trend line to enable future formulaic 

calculations. The idea here is to get a general trend line for purposes of calculations 

to help shape cost for lightning strikes. All costs are estimated to include removal of 

a lightning damaged tank, and cleanup. Then of course, the points also include 

delivery, taxes, complete instillation of a new tank. 
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Fig. 5-23. Cost of replacing fiberglass gunbarrel tanks 

 

As shown in Fig. 5-23, the replacement cost includes an estimate of cleaning 

up and removing an old tank following a lightning strike. However, it is difficult to 

know the extent of damage cause from the incident, for example additional tanks 

could have been impacts during the incident and substances such as Hydrogen 

Disulfide (H2S) could have been released thus requiring additional environmental 

cleanup with hazardous material protective gear.  

As was clearly explained in in Chapter 1, fracking is a process that expends a 

large amount of diverse chemicals. So, any lightning induced fire could cause 

unforeseen secondary spills in adjacent tanks. Exact costs associated with these 

incidences are difficult to quantify. In an attempt to bound the magnitude of the 

problem, a Monte Carlo simulation was run and the results are plotted in Fig. 5-24. 
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The simulation took 1000 what-if scenarios and simulated 33 accidents for a total of 

33,000 calculations. The results of one of these sets of calculations is shown in Fig. 

5-24. Each bar in the histogram, represents the magnitude of cleanup cost 

associated with a particular accident; the lower the number, the less complicated the 

cleanup and remediation costs. 

 

Fig. 5-24. Monte Carlo simulation of 33 accidents showing cleanup magnitude 

 

 The histogram shown in Fig. 5-24 is only concentrating on the magnitude of 

the cleanup process; there is no consideration of interruptions to operations and 

production. As was explained in Chapter 1 and shown in Fig. 5-25, fracking wells 

have a production profile over their 20-30 year life. Petroleum production experts 

including Dr. Michael Economides, a University of Huston Professor who have an 

understanding of the various production profiles (Hill et al., 2012). Fig. 5-25. shows 

examples of exponential decay with varying instantaneous decline factors (Hill et 

al., 2012).  
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Fig. 5-25. Well profiles with various Instantaneous Decline Factors. 

 

While Fig. 5-25. represents a very common well profile, other common 

decline curve functions enable the calculation of instantaneous production rate of 

wells; see Table 5-2. 

Curve Type Exponential Harmonic Hyperbolic 

Instantaneous 
production rate at 

time t 

𝑞𝑞(𝑡𝑡) =  𝑞𝑞𝑖𝑖𝑒𝑒−𝑎𝑎𝑎𝑎 𝑞𝑞(𝑡𝑡) =  
𝑞𝑞𝑖𝑖

1 + 𝑎𝑎𝑖𝑖𝑡𝑡
 𝑞𝑞(𝑡𝑡) =  

𝑞𝑞𝑖𝑖
(1 + 𝑎𝑎𝑖𝑖𝑡𝑡

𝑛𝑛
)𝑛𝑛

 

 

Table. 5-2. Instantaneous production rates of wells (Hill et al., 2012). 

 

In Table 5-2, the terms are defined as follows: qi is the initial production rate, 

a and ai are the instant decline and the initial decline rates respectively. Of course, t 
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represents the production time in question. The variable n is simply equal to 1 in the 

harmonic case (and thus vanishes) whereas in the hyperbolic case n describes how 

ai changes in the out years of production.  

5.6.2 Implications to production  

By knowing the production rate of a particular well, the implications of a 

lightning strike and thus associated risk to production stoppage29 can be studied. As 

was explained in Chapter 1 & 2, a local battery is the hydrocarbon repository for 6-10 

production wells. Given this reality, an impact to the battery will affect the production 

throughput of all other wells. Furthermore, as was shown in Fig. 5-25 and Table 5-2, 

wells exhibit production rates that can be expressed in closed form solutions. So, 

with this information, we can now examine the implication of a lightning strike on the 

battery resulting in a production stoppage at time “t” for an exponential well. First, we 

will make the valid assumption that the qi for all wells supplying the battery is 1000 

bbl per day; so, given the possibility of 6-10 wells feeding this battery, its through put 

rate is 6000-10000 bbl / day assuming maximum production. As a benchmark, in the 

Bakken region of Montana and North Dakota a fracked well that starts out producing 

1000 bbl per day can decline by more than 70% by the start of the 3rd year of 

production (Tully, 2015). So from a management prospective, the production of 

fracked wells is heavily front loaded; any disruption to the production of a young well 

can have dramatic implications for production. We now translate these implications 

into an estimate of financial loss from the loss of crude oil to the fracking company. If 

the initial production rate of our wells under consideration was 1000 bbl per day and 

29 If a local battery is shutdown, production at 6-10 wells will completely stop. 
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we assume that 8 wells are feeding a battery impacted by lightning, what is the 

production loss profile of a battery assuming an exponential decay profile? 

 

 

Fig. 5-26. Implications of a lightning strike to a battery 

 

In Fig. 5-26, the implications of a lightning strike on a fracking battery quickly 

become apparent. If a lightning strike were to occur on day 365 of production, then 

the production loss over 21-days could amount to $7,747,650 with crude oil priced at 

$60 / bbl. Of course this is a raw number and does not factor in transportation of the 

product and equipment usage. However, labor is factored in since for companies like 

PXD, many employees are paid salaries since subcontracting is minimized. So, 

simply idling an otherwise productive well can be costly. 

The key point to make with the plot shown in Fig. 5-26 is that loss to 

production from a lightning strike is highly dependent upon when it occurs in the 
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lifecycle of a well. As an example, if we extend the same plot out and the lightning 

strike were to occur at 20-years in the lifecycle, the production loss would only be 

$61,000.  

By compiling the concepts shown in Figs. 5-23 through 5-26, we can develop 

a relationship that shows the total loss from a lightning strike to a fracking battery 

(Eq. 5-3.) 

 

𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 $𝑈𝑈𝑈𝑈𝑈𝑈 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

= 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

+ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑢𝑢𝑢𝑢 

Eq. 5-3. Financial Implications of a battery lightning strike 

5.6.3 The lightning threat 
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Fig. 5-27 Incidences of cloud-ground across the United States30 

  

By reviewing Fig. 5-27, it becomes clear that the lightning threat is regional.  

Now the shale play map produced by the EIA is presented in Fig. 5-28 for study. 

Special note should be taken of current and prospective shale plays. 

 

Fig. 5-28. Current and prospective U.S. shale plays in 2015 based on the EIA31 

Fig. 5-29 is an overlay of Figs. 5-27 & 5-28, after examination it becomes 

apparent that could-ground lightning often occurs in regions with hydro fracking 

30http://www.vaisala.com/en/products/thunderstormandlightningdetectionsystems/Pag
es/NLDN.aspx 
 
31 U.S. Energy Information Administration (EIA) 2015 
http://www.eia.gov/oil_gas/rpd/shale_gas.jpg 
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plays. Moreover, a closer inspection of Fig. 5-29 indicates that planned fracking 

plays in the Deep South closely align with the lightning threat. The superimposed 

maps solidify the case for lightning as a present and increasing threat for fracking 

(Fig. 5-29).   

To complete the trifecta, a detailed study published in Science in 2014 by a 

Berkley research group indicates that due to global warming, calculations indicate a 

50% increase in cloud-ground lightning events over this century (Romps et al., 

2014). ---In light of these 3 factors, the implications are clear; lightning presents a 

credible and growing threat to the fracking industry.  

 

Fig. 5-29. Incidences of cloud-ground across the United States 
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 While the lightning overlay looks attractive, there is also a methodology 

behind their construction. They are based on flash detection via an array of NOAA-

NLDN32 optical sensors; additional details are listed below.33  

NLDN Network Specifications 

• Thunderstorm detection efficiency in excess of 99% 

• Flash detection efficiency greater than 95% 

• Median location accuracy of 150-250m or better 

• Network uptimes nearing 99.99% 

• Data feed uptimes of better than 99.9% 

• Event timing precision of 1 microsecond RMS 

• Accurate peak current measurements 

• Accurate cloud / cloud to ground classification 

 
However, it is important to note that data from the NLDN is only available in 

raw from to U.S. Military and Government. The public has access to processed data 

that is often several months to a year old. For instance, this dissertation only includes 

Lightning data from Hatchett up until the end of 2014. --- So, the NLDN while 

sophisticated, does not provide raw data feeds in real-time to the public and is 

therefore limited in its utility for current storm events.  

 
 By inspecting Fig. 5-29 it becomes apparent that the Lightning threat is 

regional and obviously, fracking operations are stationary. So, for purposes of a 

32 National Oceanic and Atmospheric Administration (NOAA); National Lightning 
Detection Network (NLDN) 
33http://www.vaisala.com/en/products/thunderstormandlightningdetectionsystems/Pag
es/NLDN.aspx 
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credible threat to fracking operations, Lightning is a local concern. For calculation 

purposes, NOAA through its contractor VAISALA has a repository of Lightning strike 

data for regional areas going back to 1986.  VAISALA calculates the number of 

cloud-ground lightning strikes per day and records this data in 4 km Albers Equal 

Area grids34 that cover the Unites States.  

My test site was Hatchett lease. The lease is a 340 acre area that housed 

several fracking wells and my test battery. The exact coordinates of the test site are 

32.321953, -101.882291 by dropping these coordinates directly into the search box 

of NOAA’s Service Weather Data Inventory site35, Lightning strike data for a 25 sq. 

mile “tile” can be obtained; this very example is shown in Fig. 5-30.  

34 Albers equal-area conic projection, is (named after Heinrich C. Albers), conic, 
equal area map projection that leverages 2 standard parallels or in our case 25 sq. mile 
tiles are used. http://en.wikipedia.org/wiki/Albers_projection 
35 http://www.ncdc.noaa.gov/swdi/#TileSearch 
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Fig. 5-30 Lightning strike data by day; Hatchett test battery 

 

Knowing the historical Lightning activity just one year, is not entirely useful. 

Given this, I have complied daily Lightning activity for the Hatchett “tile” over the past 

15 years. This information consisted 370 lightning event days with most days having 

more than one recorded lightning flash see Fig. 5-31. While the graph is detailed and 

seasonal patterns are clear, data in the format has limited use to answer our 

research questions posed in Chapter 2.  
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Fig. 5-31. Daily Lightning activity at Hatchett over 15 years 

  

In order to answer our research questions, the data used to construct Fig. 5-

31 must be modified to show the relative Lightning threat per month; knowing will be 

much more useful to a planner and operator. Indeed, this has been done in Fig. 5-32.  

With the approach to understanding monthly totals, it is possible to develop a 

Lightning risk profile for the Hatchett location unique to a particular month. Obviously 

since this is the Southwestern United States, the warmer months of March – October 

have the most electrical storm activity. If we now glance back at Fig. 5-31, evidently, 

the ferocity of some electrical storms is profound while others are either far off in the 

distance or merely a whimper in comparison. Some storms in June exhibited more 

than 300 flashes while many others only registered in the single digits or even only 1 

flash.     
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Fig. 5-32. Total flash counts at Hatchett per month over 15 years 

 

Fig. 5-31. Is quite revealing; over a 15-year period, the months have large viabilities 

in electrical storm activity. Moreover, some days in the most energetic month of June 

might only have 1-5 flashes where some notable days has over 300. The key point 

here is that while as expected, March – October have the most electrical storm 

activity, assigning an average for a particular month while useful, does not provide 

the whole picture.  Figure 5-31 provides more useful information that will be used to 

calculate monthly Lightning risk in section 5.6. 
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Fig. 5-33. Average lightning events per month at Hatchett 

 

Table 5-3 shows the monthly average Lightning flashes per month over a 15 year 

period for Hatchett. The standard deviation varies greatly between months and most 

notably is largest in the peak months of lightning activity. Fig. 5-34 helps to display 

this dramatic level of difference in storm intensity; it is not surprising that the 

standard deviation is high in these months. --- The month of November has the 

highest, but this is due to the very small storm count, and the skewing properties of 

one single strong storm.   
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Fig. 5-34. Flash counts of storm events during peak months over 15 years 

 

If we make the reasonable assumption that most thunderstorms in the Midland, TX 

area (near Hatchett) pass at similar speeds, then logically more electrical activity is 

concentrated in the same block of time for the active summer months.  

 

Table 5-3. Average and Standard Deviation 
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Thus, in the stronger storms of the summer, more lightning risk is compressed in the 

same block of time. So, risk follows this pattern and is concentrated more in the 

summer months. Any mitigation strategy through and IPL (Independent Protection 

Layer) will have the greatest risk mitigation vs. cost benefit in these highly active 

months. A mitigation strategy will be discussed in section 5.7 that will account for this 

reality.  

5.6.4 Risk and costing it all out 

As was described in detail in section 5.4.1, the cost to a nominal 8 well 

fracking operation could amount to $7,747,650 from the temporary shutdown of the 

battery and subsequent production disruptions.  Of course, that is not the totally 

potential financial losses; we now revisit Eq. 5-3 and now build Table 5-4 for a more 

complete picture of cost.   

 

Table 5-4. Potential cost of a Lightning strike at day of 365 production 

 

 Most costs in Table 5-4 depend upon basic calculations that can be backed 

up in an easily explainable manner. The public relations, reputation, and in turn the 

USD Comments
Production Loss  $      7,747,650 Section 5.4.1 and Fig. 5-13

Equipment Loss and Replacement  $           83,906 
Fig 5-10, y=114.74X + 26536; assume 

500 bbl tank
Loss of Product  $           30,000 assume $60 / bbl and 500 bbl tank

Hazardous Cleanup  $           99,000 

Average cleanup cost based on 33,000 
Monte Carlo simulated tank accidents; 

Fig. 5-11.

Public relations; reputation; added 
regulation? Unknown?

BP is still paying for a 5 year old 
disaster today; they "will make it right"

TOTAL potential cost of                            
Lightning Battery Strike 7,960,556$ 
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potential for added regulation costs are mostly beyond the scope of this dissertation. 

With that said, for a large company with a brand to protect, along with the persistent 

gaze of regulators and the “frack no” public, the costs could exceed the production 

loss. In relation to the the BP Deepwater Horizon spill, besides 14.3 Billion in cleanup 

costs (Gilbert, 2014), another consequence of the disaster hit BP at the pump with a 

26% loss in profit margins following the oil spill (Barrage et al., 2014). From the 

standpoint of environmental fines alone, a judge in a 2014 court decision imposed a 

$4,300 per barrel of crude spilled under the Clean Water Act which equates to $18 

Billion USD (Gilbert, 2014). 

 

 

Fig 5-35. Current cost of BP Deepwater Horizon oil spill (Q2 2014) (Gilbert, 2014). 

5.6.5 Direct Lightning strike and charge induction risks 

 As Chang et al. outlines, the direct lightning strike zone is between 100 and 

10 m and out of 80 Lightning tank accidents studied, 12 tanks were impacts in this 

manner resulting in obliteration (Chang and Lin, 2006). For example a refinery tank 
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was hit with a direct strike in October of 1995 resulting in $50 million (2015 USD) in 

property damages. --- It took 20 months for the refinery to recover to full production.  

 While direct strikes are dramatic, a more sinister threat is tank charge 

induction. The massive charge energy from an electrical storm has an induction 

footprint of 15 to 150 sq km. Thus, from a probability prospective, the charge 

induction threat is of significant concern.  

For our calculations, we will make the reasonable assumption that 90% of the NLDN 

flashes recorded are within the 15 to 150 sq km window since our “tile” is 25 sq. 

miles

 

Fig. 5-36 Charge induction area according to Chang et al. (Chang and Lin, 2006) in 

relation to our tile 

 

 Given this simple overlay of charge induction upon our NLDN tile, through 

simple geometric calculations, at least 76% of the NLDN recorded flashes are within 

the charge induction zone. For example, if we use the values shown in Table 5-3, 

then for the month of July, part of the 25 square mile tile will be under the induction 

zone 17 times. We now generate a table to show the average number of induction 

zone days for each month at Hatchett (Table 5-5). This simply show then number of 

times per a given month (on average) that we can expect our tile to be under the 

induction zone. 
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Table 5-5. Average number of induction zone events per month 

 

 At the beginning of this section, we note that a direct strike radius has a 

damage reach of up to 100 m which is the same as 31,416 sq. meters or 0.0314 sq. 

km. Given that the area of a battery is conveniently around this area, our calculation 

would appear simple; however, there are many storage batteries in a 25 sq mile tile. 

For instance, it is easy to count 30 such storage batteries surrounding the Hatchett 

site. However, we step back and look at just 1 tank; a general equation for the 

probability of a direct strike on any tank in the tile is shown in Eq. 5-2.  

  

𝑃𝑃 =  
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴 𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 

Eq. 5-4 Probability of a direct lightning strike; given month and site 

 

By taking Eq. 5-4 and inserting our values shown in Table 5-5., we are able to 

generate Table 5-6 which shows the risk of a direct battery strike in a given month at 

Hatchett site        
15 years of 

lightning data
Average lightning 

event count
Induction zone events 

per month over the tile
JAN 0.3 0.2
FEB 1.1 0.8

MAR 21.2 16.1
APR 23.8 18.1
MAY 32.7 24.8
JUN 127.7 97.1
JUL 66.1 50.3

AUG 72.3 55.0
SEP 29.4 22.3
OCT 33.1 25.2
NOV 14.6 11.1
DEC 2.5 1.9
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Hatchett. --- keeping mind that this is for only one battery. As was previously stated, 

the 25 sq. km tile area has several battery facilities.  

 

 

Table 5-6. Probability of a one battery strike on a battery at Hatchett 

By assuming that all direct strikes result in deviation, the balance of our calculations 

will be show a potential worst case scenario for a fracking operator such as PXD. 

5.6.6 Summary Costs  

The $7,960,556 number from Table 5-4 will now be revisited. With that value 

in mind, a financial risk exposure table will now be calculated with the values in Table 

5-6 to give us Table 5-7. 

Hackett site        
15 years of 

lightning data Average 

Probability of 1 battery 
being in the strike zone 

during the month
JAN 0.3 0.0001
FEB 1.1 0.0005

MAR 21.2 0.0103
APR 23.8 0.0115
MAY 32.7 0.0158
JUN 127.7 0.0619
JUL 66.1 0.0321

AUG 72.3 0.0351
SEP 29.4 0.0143
OCT 33.1 0.0161
NOV 14.6 0.0071
DEC 2.5 0.0012
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Table 5-7. Cost of direct strike risk for 1 battery at Hatchett 

 

So, the cost of risk exposure varies greatly between seasons. As such, a 365 day 

operating schedule for a mitigation system makes little economic sense. For 

example, months December – February could be used for system maintenance.  

 For a final cost basis, our mitigation system cannot exceed $1,640,000 in 

annual expenses including amortized CAPEX and ongoing maintenance. As was 

previously stated, this risk exposure cost is for only on battery. If the final lightening 

mitigation IPL and system can cover multiple batteries with limited additional cost, 

then it would be highly valued. 

Hatchett site        
15 years of 

lightning data Average 

Probability of 1 battery 
being in the strike zone 

during the month

Cost of exposure 
to lighting risk 
(Direct Strike)

JAN 0.3 0.0001 1,029.44$                 
FEB 1.1 0.0005 4,117.77$                 

MAR 21.2 0.0103 81,840.66$               
APR 23.8 0.0115 91,877.73$               
MAY 32.7 0.0158 126,106.68$            
JUN 127.7 0.0619 493,102.86$            
JUL 66.1 0.0321 255,301.69$            

AUG 72.3 0.0351 279,236.22$            
SEP 29.4 0.0143 113,496.01$            
OCT 33.1 0.0161 127,908.21$            
NOV 14.6 0.0071 56,361.97$               
DEC 2.5 0.0012 9,779.70$                 

TOTAL 1,640,158.94$         
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 5.7   Lightning impact mitigation and the application to 

industry  

Real-time prediction of possible Lightning events at the battery is of limited 

value if there is no mitigation strategy. In this section, we present a mitigation 

strategy and the associated IPLs. Furthermore, I will show how triggered IPLs will 

introduce Nitrogen flooding for lightning impact mitigation. 

IPLs were detailed in sections 2.1.2 and 2.1.3 under the guise of Fire and 

Gas Safety systems (FGS) and Emergency Shut Down (ESD)36. Within these 

sections, design standards for these systems were described and summarized in 

Table 2-5. The IPL and mitigation solution presented herein follows portions of the 

IEC 61511-2 standard. The lightning strike preparation and mitigation strategy to be 

described parallels the functionality of a FGS and EDS system as was shown Figs. 

2-8 and 2-9. and shown here again for purposes of discussion. As was described in 

sections 2.1.2 and 2.1.3, both FGS and EDS systems are widely deployed in 

industrial settings and built upon the rigger of the IEC 61511 standard.  

 

 

36 By convention, Shutdown is broken into two separate words to follow the acronym 
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Fig. 5-37. Modeling risk in FGS systems (Kenexis, 2013). 

  

“An alarm system can be used as a method of risk reduction by reducing the demand 

rate on the SIS37 providing: 

• the sensor used for the alarm system is not used for control purposes where 

loss of control would lead to a demand on the SIF38; 

• the sensor used for the alarm system is not used as part of the SIS; 

(Instrumentation, 2004) 

When deciding if risk reduction is required, it becomes necessary to establish safety 

and environmental targets. These targets might be aligned to a certain site or 

operator and will be compared to the level of risk without additional safety functions. 

  

37 Safety Instrumented System  
38 Safety Instrumented Function 
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Once the need for risk reduction is established, it becomes necessary to 

identify the required functions that mitigate and return to a safe state. The functions 

may be described in generic terms without details to particular technologies (this will 

be relegated to IEC 61508; see Table 2-5).  

 

For alignment with IEC 61511, the hazard and risk analysis should consider the 

following: 

• “each determined hazardous event and the event sequences that contribute 

to it;” 

• “the consequences and likelihood of the event sequences with which each 

hazardous event is associated; these may be expressed quantitatively or 

qualitatively;” 

• “the measures taken to reduce or remove hazards and risks;” 

• “the assumptions made during the analysis of the risks, including the 

estimated demand rates and equipment failure rates; any credit taken for 

operational constraints or human intervention should be 

detailed;”(Instrumentation, 2004) 

 

The IEC 61511 clearly states that designing an architecture is an iterative 

process and designs will change as more details become available (Instrumentation, 

2004). 

5.7.1 Nitrogen flooding for mitigation 

 Nitrogen is an inert gas that displaces oxygen from the combustion triangle 

(Fig. 1-16). By following IEC 61511, for the design of a proposed mitigation strategy, 
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it is known that a signal from the decision and fusion engine with inputs from 

atmospheric charge and tank charge sensors will trigger the IPL (see Chapter 4 for 

details on sensors and fusion). By reviewing Fig. 5-37 and considering Fig. 5-38, the 

description of the Nitrogen mitigation solution will become more apparent.   

 

 

 

 

Fig. 5-38. IPL equations 

 

If we assign realistic probabilities of 80% effectiveness or 0.20 to S1 (tank charge 

sensor) and 90% effectiveness or 0.10 to S2 (atmospheric charge sensor), we can 

calculate the combined effectiveness of our IPL(s). The term “Fi” is simply the 

probability of the event occurring if there is no protection. --- So without completing 

the calculation, it is easy to see that an IPL configuration will help to mitigate almost 

all of the Lightning induced fire threat.  

 This works well in equation form, but how would it work in the field? Or by 

extension other hydrocarbon storage facilities such as large jet fuel storage centers 

or oil refineries?  

 The most likely method is to have a centrally located source of Liquid 

Nitrogen with evaporators. Ubiquitous poly-ethylene tubing could transfer nitrogen to 

all batteries within a reasonable distance.  

 Since sensor information from one atmospheric charge sensor can cover 

several square miles of area, several batteries can be monitored with only one 

atmospheric sensor. Even more importantly, a more advanced system can leverage 

Fi*(F1+S1*F2) = Residual Risk (per unit time) 

Fi*(S1*S2) = Mitigated Risk (per unit time) 

S1*S2 = “Lightning Mitigation Effectiveness” 
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sensor fusion methodologies (described in Chapter 4) to setup voting between 

sensors including tank charge sensors and other atmospheric sensors.  

In the proceeding sections of Chapter 5, many foundational calculations were 

made describing the lightning threat at the Hatchett site. In addition, lightning threats 

and trends for the future were also presented. The culmination of many of the 

calculations is shown in Table 5-8. It is important to note that “A” was calculated 

based on consideration of unmitigated risk and sensor performance. Following this, 

column “B” considered the cost of a battery strike ($7,960,556 from Table 5-4) in light 

of results from column “A”.   

 

Table 5-8. Residual risk cost after mitigation 

 

 

A B
Hatchett 

site        
15 years 

of 
lightning 

data Average 

Unmitigated risk - 
Probability of 1 

battery being in the 
strike zone during 

the month

Fi*(F1+S1*F2) 
Residual Risk per 

month

Residual Risk Cost 
following Nirtogen 

Mitigation
JAN 0.3 0.0001 0.00004 288.24$                      
FEB 1.1 0.0005 0.00014 1,152.98$                  

MAR 21.2 0.0103 0.00288 22,915.39$                
APR 23.8 0.0115 0.00323 25,725.76$                
MAY 32.7 0.0158 0.00444 35,309.87$                
JUN 127.7 0.0619 0.01734 138,068.80$              
JUL 66.1 0.0321 0.00898 71,484.47$                

AUG 72.3 0.0351 0.00982 78,186.14$                
SEP 29.4 0.0143 0.00399 31,778.88$                
OCT 33.1 0.0161 0.00450 35,814.30$                
NOV 14.6 0.0071 0.00198 15,781.35$                
DEC 2.5 0.0012 0.00034 2,738.32$                  

459,244.50$              
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Loss from 1 lightning strike 
including all presented factors 

Mitigation solution reduces 
annualize risk cost to… 

$10 million per direct strike $459,000 per tank 

Saves the fracking industry close to 
$1.2 million in annual risk cost 

exposure per battery tank 
Table 5-9. Bottom-line impact of mitigation solution 

5.7.2 Proposed architecture and costs 

 Development of an architecture must consider the operational constraints of 

such a system also with considerations for cost. As was previously outlined in 

section 5.6.3, the lightning risk follows seasonal patterns. However, the intensity of 

storms and their associated durations varies significantly; this is particularly true in 

the summer months. Any proposed solution must account for this operationally 

reality.  An architecture is now presented which will allow for long periods of dynamic 

nitrogen flooding of hydrocarbon tanks during high lightning risk days while also 

seamlessly functioning in low event days; see Fig. 5-39.   

 Take note of Fig. 5-17; trigger thresholds are set at the absolute value of 

1000 V/m2 for a charge on the EFM sensor. Once this threshold (established by 

NASA for its Launch Pad Lightning Warning System - LPLWS) is crossed the system 

shown in Fig. 5-39 will be activated.  
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Fig. 5-39. Architecture for Mitigative solution 

 Once a predetermined lighting risk threshold is crossed, a signal is sent from 

the EFM sensor station to a centrally located nitrogen source. In Fig. 5-39, liquid 

nitrogen is shown, but the nitrogen could simply be compressed gas. In the latter 

case, nitrogen loss due to storage alone would be eliminated. Cryogenic storage 

tanks such as Liquid Nitrogen tanks are given a NER% rating for storage efficiency. 

In general, the larger the tank, the less percent is loss to static evaporation alone; a 

typical NER% rating is 1.539 where NER stands for the daily Normal Evaporation 

Rate in % per day at 70 degrees Fahrenheit and 1 atmosphere of pressure. Ideally, 

this value of 1.5% NER should be considered when calculating the cost of a liquid 

nitrogen vs. compressed nitrogen solution. One should note that delivered liquid 

39 http://www.cyl-tec.com/docs/liquid_cylinder_owners_manual.pdf 
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nitrogen costs range from $0.06 - $0.10 USD per liter; this cost depends greatly on 

the location for delivery.   

 For calculations herein, the cost of $0.10 USD per liter will be considered 

which equates to the same cost for 1500 liters of nitrogen gas when evaporated at 

Standard Temperature and Pressure. It is assumed that the 500 bbl hydrocarbon 

storage battery tanks are 75% full on average; the presented nitrogen mitigation 

solution will be required to displace 125 bbl of headspace with nitrogen gas per 

system activation event. As was explained earlier, 1 bbl is 42 U.S. Gallons or 159.6 

letters; thereby giving us a headspace volume of 159.6 liters for the 4 hydrocarbon 

battery tanks at Hatchett. An additional assumption is that nitrogen gas will purge 

rapidly upon initial activation and then slowly during the munities surrounding 

triggering events; this will result in nitrogen consumption amounting to 10 times this 

volume or 1596 liters. As explained earlier in this section, that volume of gaseous 

nitrogen would expend about 1 liter of LN2 (liquid nitrogen) amounting to an expense 

of $.10 USD. More importantly, as indicated in Table 5-3, the average monthly 

lighting flash count over a 15 year period for Hatchett is 15. We will assume that 

each of these flashes activates the mitigation solution. Thus, the monthly liquid 

nitrogen consumption will be 15 liters per battery or 150 liters for 10 batteries. At 

$1.50 per liter including delivery, this amounts to a $225 monthly expense for LN2 for 

lightning mitigation alone.  There will be more monthly nitrogen loss due to a NER% 

per day of 1.5 than consumed in say a 500 liter LN2 tank. Specifically, 182 liters per 

month amounting to $273 worth of LN2 per month. Thus, the total expenditures for 

LN2 per month for both mitigation and NER is $498. 

 An alternative solution is to have compressed nitrogen cylinders at each of 10 

hydrocarbon batteries resulting in no NER since by definition, there is no evaporative 
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loss. Plus there is no CAPEX for the instillation of long runs of polyethylene tubing. 

Each battery would receive alarm and signaling information from the EFM station via 

the wireless telemetry link. Pricing for compressed nitrogen gas cylinders with 

delivery is about $.30 per cubic foot which is $.01 per liter. By using the same logic in 

relation to the number of triggering events shown earlier in this section, there will be 

22,500 liters on average of nitrogen gas consumed per battery per month at 

Hatchett. For expense purposes, this equates to 795 cubic feet or $239 per month.  

 In summary, the CAPX for the liquid nitrogen based solution is $405,000 

including an LN2 orca for storage along with polyethylene tubing. Whereas the 

CAPEX can be minimized to only $105,000 for a compressed nitrogen solution since 

no polyethylene runs are required. The monthly operational expenditures for the LN2 

solution are $3637 and the compressed nitrogen solution is $3378. 

 By equating all this information to daily dollar values, and plotting them in Fig. 

5-40, it becomes apparent that the daily expense for both the LN2 and compressed 

nitrogen solutions are far below the value of the crude oil produced; even at year 20 

of production. The driving factors in making a decision are the CAPEX for both 

solutions presented earlier in this section. The plot clearly shows that the solution 

remains viable even in the out years of production. 
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Fig. 5-40. Daily value of production for 8 wells vs. daily cost of LN2 and nitrogen 

mitigation solutions. 

 

 Thus, the basic concept of this architecture for lighting mitigation in the 

fracking environment is a viable solution from an economic prospective.   
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5.8 Summary 

In chapter 5, I answered the first 2 research questions posed in Chapter 2 by 

applying the methodologies discussed in Chapter 4.  I didn’t see this at all.  Now I am 

skim reading the document.  But you need to call out explicitly something like: 

Research Question 1 posed in Chapter 2 read as follows: Is there a way to 

use sensors and modeling to help minimize the financial and environmental losses 

and issues?  If so, could it be automated? 

This family of questions has been answered through the assessment of risk 

cost basis thought this chapter. My mitigation solution was clearly shown to reduce 

the annualized risk cost basis for an operating fracking well (Table 5-8)  In addition, 

fundamental equations were presented that govern the automation of IPL mitigation 

systems (Fig 5-36) These equations were present in the context of standards 

including IEC 61511 in preparation for automation and validation. 

 

In order to answer this fundamental question, a number of associated questions 

must be answered, including: 

 

2.) Develop the driving equations of the intersecting items, such as: 

• probability of lightning strikes,  

• cost of an environmental incident (pollutant dependent) 

• well production estimation (temporal dependent) 

• cost to incumbent organization for an incident (cost to fracking company) 

Question 2 was answered in within chapter 5 as follows. The probability of a lightning 

strike was examined in detail in section 5.6.3. The cost of an environmental incident 

from pollution was estimated in Fig. 5-24 and a large scale example was shown in 
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Fig. 5-35 which extends to a $2.15 million by using the same logic on a 500 bbl 

battery tank. Well production estimates based on the age of the well was presented 

in Section 5.6.2. Plus, the cost of an unmitigated direct strike on a tank was 

discussed in Section 5.6.4  

 

*** If implemented, in a functional IPL mitigation system, these answers will 

save the hydro fracking industry $1.64 million in risk cost exposure per battery 

tank in the Midland lightning risk zone (Table 5-7). *** 

 

Lightning has been a documented threat to hydrocarbon storage facilities for 

over 100 years. There have been no disruptive solutions presented or implemented 

to remove Lightning as a concern. A detailed study by Chang shows that 33% of 241 

tank accidents were caused by lightning (Chang and Lin, 2006).  

 As was detailed in Chapter 2, researchers have concluded that cloud-ground 

Lightning strikes are likely to increase by 50% over the current decade due to global 

warming (Romps et al., 2014) Furthermore, the combination of Lightning risk maps 

(NOAA) and prospective shale plays (EIA) shown in Chapter 2 help highlight the 

importance of Lightning risk mitigation for the future of hydro fracking operations.  

My methodology can be extend to other Lightning threat areas and even 

other processes and facilities beyond hydro fracking. This research work has carved 

a path forward for the integration of sensors in safety critical systems (SCS) for hydro 

fracking and storage facilities. This contribution to the body of knowledge along with 

the broader implications that will be explored further in Chapter 6 will serve as a 

springboard for follow-on research by others. 
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5.8.1 Risk conclusions and mitigation  

A direct strike on a battery tank can be devastating both financially and 

environmentally.  The probabilities of such an occurrence – as presented in this 

chapter - are sobering. Without a lightning effect mitigation system for hydrocarbon 

storage systems, tank fires and chemical spillages will continue in hydrocarbon 

storage tanks costing operators millions or in some cases billions of dollars. 
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Chapter 6:  Conclusions and Recommendations 
 

6.1 Research Summary 

 Lightning has stood as an unresolved threat to hydrocarbon storage facilities 

for over 100 years. Literature research has shown that 33% of all modern 

hydrocarbon tank accidents are due to lightning (Chang and Lin, 2006); in addition, 

cloud-ground lightning strikes are predicted to increase by 50% this century (Romps 

et al., 2014). An overlay of the current National Lightning Detection Network (NLDN) 

risk map and the Energy Information Administration shale play map clearly show the 

lightning threat only increasing with the migration of future shale activities. While 

planning may change, shale deposits and regional lightning threats are not changing 

geographically; this research quantifies the threat and outlines clear lightning 

mitigation strategies.  

 Furthermore, real-time detection and the associated methodology of lightning 

mitigation have implications for industries far beyond hydro fracking. By leveraging 

industrial standards for Fire and Gas Systems (FGS) such as IEC 61511, the 

proposed lightning effects mitigation system has a pathway toward verification and 

eventual validation at a broad array of industrial sites. Some extended applications 

included Navy fuel storage depots and Liquefied Natural Gas (LNG) facilities as 

shown in Fig. 6-1. 
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Recommendations include the deployment of Lightning and charge sensor 

systems at candidate sites for completion of the V&V40 process through operational 

system verification of software and hardware with IEC 61508 and ANSI/ISA S84.  

6.2 Conclusions 

 I have concluded that a lightning strike on a hydro fracking battery has the 

potential to cause $8.0 million in lost productivity and cleanup costs (assume $60/bbl 

oil). This does not even factor in a possible $4,300 per bbl41 fine that was recently 

imposed in an oil spill case for violation of the Clean Water Act (Gilbert, 2014). For a 

nominal 500 bbl tank at a hydro fracking battery, that amounts to $2.2 million in fines 

alone. So, the total loss for one lightning strike on a fracking battery can exceed $10 

million dollars. 

 From a risk cost prospective, the annual financial exposure varies by location 

and age of wells involved. For our case study at Hatchett, the annual productivity risk 

cost exposure for just one direct lightning strike exceeds $1.6 million (accounting for 

lightning likelihood and 1 year old wells). Thus, any mitigation solution presented 

must have a smaller annualized cost basis per hydrocarbon tank to be considered.  

Validation of my lightning mitigation system with IEC 61511 and IPL42 

principles for FGS43 systems has shown that the annual residual risk cost is reduced 

to $50,000 per battery tank. 

40 Verification and Validation 
41 bbl is shorthand for barrel where one U.S. bbl of oil is 42 U.S. gallons. 
42 Independent Protection Layer (see Chapter 2) 
43 Fire and Gas System (or Solution; see Chapter 2) 
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Lightning striking a large hydrocarbon facility such as an oil refinery can have  

catastrophic consequences; in one such case, direct property losses totaled $56 

million (2014 USD)  with unpublished losses in productivity lasting years (Mahoney, 

1997).   Lightning is a fact of nature however, a direct strike can be mitigated, and as 

shown my solution will dramatically reduce risk cost exposure.  

6.3 Validation of Assumptions, Appropriateness of Analysis 

Methodology, and Interpretation of Results.  

 It was assumed that real-time lightning sensor systems with associated strike 

mitigation were viable from a technical and cost basis. This assumption was 

validated though calculations for lightning risk cost, IEC 61511, and IPL performance 

calculations. It was further assumed that deployed atmospheric lightning sensors and 

tank charge sensors will serve as a critical component of the lightning mitigation 

IPLs. Sensors for atmospheric charge were validated through field deployments and 

subsequent performance to NAVSEA44 and NOAA charge standards. Tank charge 

sensors showed some promise in field tests, yet lacked sufficient results to be 

validated with any standard level of performance or functionality.    

 Analysis methodologies leveraged for this research played a key role in 

answering our research questions. Calculations of geographically specific lightning 

threats highlighted the expected risk exposure with no mitigation. Deployment of both 

real-time lightning prediction sensors and charge tank sensors demonstrated a basis 

for a mitigation strategy.      

44 Naval Sea Systems Command (NAVSEA) 
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6.4 Contributions to the Body of Knowledge 

To date, there have been no scholarly research papers exploring the nexus of 

sensors for real-time detection of lightning threats for hydro fracking operations while 

considering fracked well productivity. Even more importantly, there has been no 

research showing how sensors can predict a near-time lightning threat and invoke 

low cost mitigative strategies in the event of a direct strike or discharge. Lightning is 

a persist threat to hydrocarbon storage tanks. Solutions were presented that if 

implemented, will save hydrocarbon storage and processing companies millions in 

loss avoidance from unmitigated lightning strikes. 

The presented lightning detection and mitigation solution will have a direct 

impact on the risk cost profile of hydro fracking operations. I detailed a lightning 

mitigation solution based on sensors deployed to measure the lightning threat and 

charge buildup on operating hydro fracking battery tanks. This field research was 

performed at an operating hydro fracking battery of a multi-billion dollar fracking 

company. This research included the systems engineering of sensor systems for 

lightning threat detection and tank charge measurement.  

Furthermore, the risk cost basis for lightning exposure at the Hatchett battery 

site was assessed and implications for risk were presented. A methodology was 

developed to calculate the lightning risk cost basis at any site in the United States. 

Moreover, this developed methodology can be used to asses lightning risk in hydro 

fracking operations at a given stage in the lifecycle of a well; this provides an 

important tool for planners.  

A pathway toward extension of these solutions to a broader class of problems 

beyond hydro fracking operations has been prepared. Large hydrocarbon storage 

facilities such as Navy fuel depots and Liquid Natural Gas (LNG) terminals have 
180 

 



 

reduced their lightning exposure through rigorous safety engineering and 

standards.45 However, accidents form lightning strikes have occurred with 

catastrophic consequences (Mahoney, 1997; Chang and Lin, 2006). The 

methodology and technology developed in the course of this research will have a 

direct play in large-scale hydrocarbon storage facilities. Deployment of the 

researched solutions presented here, will have profoundly positive implications on 

the lightning cost risk curve at these large storage facilities.   

 

Fig. 6-1. Large hydrocarbon storage facilities; Navy refueling and LNG terminals 

 

The United States is still considering specifics Laws for LNG terminal exclusion 

zones and working to understand the consequences of leaks in relations to 

explosions or fires (Havens and Spicer, 2007). This uncertainty in regulation and 

disaster response makes these massive facilities particularly vulnerable to 

unmitigated lightning strikes.  

 

Research Question 3 was presented in Chapter 2 as follows. 

45 National Fire Protection Association (NFPA) 30 and others 
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3.) What are the broader implications for sensors and lightning detection 

beyond hydro fracking hydrocarbon storage?  

Clearly, chapter 6 has shown the broader implications of solutions presented in 

Chapter 5. Section 6.4 discussed contributions to the body of knowledge and how 

these answers present solutions for large-scale hydrocarbon storage facilities. As an 

example a lightning strike on a large-scale hydrocarbon site resulted in $56 million in 

damages from infrastructure alone (Section 6.2). 

6.5 Recommendations for Future Research 

 During the course of this dissertation research, I found technology areas that 

could potentially be used in future research investigations into this area.  I 

recommend that any installation utilizing a system that includes the current Electric 

Field Monitor (CS110) system deployed at Hatchett should be interfaced with an IPL 

emulator. This will represent the beginning of the verification process and where 

software and hardware will be deployed and tested in accordance with IEC 61508 

and ANSI/ISA S84. In particular, software and hardware will be designed with 

detailed operational realities at the core of development.  

Lightning Mapping Array (LMA) technology can be used to assess the 

intensity and 3D attributes of electrical storms in real-time. The growth or decay of a 

storm can be assessed with this technology. Virtualized images with <50 m feature 

resolution are regenerated by leveraging natural VHF radio emissions from lightning 

discharges to render dynamic 4D46 images (Goodman et al., 2005). The principal 

advantage of LMA technology is the ability to understand total lightning data and 

46 3D with a time component  
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separate intra-cloud lightning from cloud-ground discharges. While the data is not 

presented anywhere near-real time – and therefore isn’t immediately useful for a 

short occurrence warning it is anticipated that LMA research will result in systems 

that will help forecasters assess the metamorphosis of an electrical storm in real-

time. By analyzing total lightning data, a 3-5 min warning can be provided before the 

first cloud-ground strike.47 

 Furthermore, I recommend that the petroleum industry should establish 

Public Private Partnerships (PPP) with curators of LMA systems including NOAA and 

NASA. By establishing these relationships, the petroleum industry can gain access to 

live LMA feeds for further study and eventual implementation for lightning mitigation 

(as described thought this dissertation). Furthermore, the government will gain 

valuable knowledge with potential applications for lightning mitigation at military 

explosive and ordnance storage facilities.     

 

 

 

 

 

 

  

47 NASA, Short-term Prediction Research and Transition Center 
183 

 

                                                



 

References 
 

1895. A great discovery. Oil City Derrick. 
 
1927. Oil-storage tank. Google Patents. 
 
2009. EIA - Natural Gas Pipeline Network - U.S. Natural Gas Pipeline Network Map. 
 
2010a. DEP fines Atlas Resources. Pittsburgh Business Times. 
 
2010b. Hydraulic fracturing research study. EPA/600/F-10/002( 
 
2012. Annual Energy Outlook, 2012. Washington, DC: US Energy Information 

Administration (EIA). 
 
Abreu, D., Chandan, D., Holzworth, R. & Strong, K. 2010. A performance 

assessment of the World Wide Lightning Location Network (WWLLN) via 
comparison with the Canadian Lightning Detection Network (CLDN). 
Atmospheric Measurement Techniques, 3(4), pp 1143-1153. 

 
Agarwal, A. & Lang, J. 2005. Foundations of analog and digital electronic circuits: 

Morgan Kaufmann. 
 
Andringa, M. M., Neikirk, D. P., Dickerson, N. P. & Wood, S. L. Unpowered wireless 

corrosion sensor for steel reinforced concrete.  Sensors, 2005 IEEE, 2005. 
IEEE, 4 pp. 

 
Annamdas, K. K. K. & Annamdas, V. G. M. Review on developments in fiber optical 

sensors and applications.  SPIE Defense, Security, and Sensing, 2010. 
International Society for Optics and Photonics, 76770R-76770R-12. 

 
Argyropoulos, C., Christolis, M., Nivolianitou, Z. & Markatos, N. 2012. A hazards 

assessment methodology for large liquid hydrocarbon fuel tanks. Journal of 
Loss Prevention in the Process Industries, 25(2), pp 329-335. 

 
Association, N. O. a. G. 2004. APPLICATION OF IEC 61508 AND IEC 61511 IN 

THE NORWEGIAN PETROLEUM INDUSTRY. 
 
Banica, F.-G. 2012. Chemical Sensors and Biosensors: Fundamentals and 

Applications: John Wiley & Sons. 
 
Bar-Shalom, Y. & Li, X.-R. 1995. Multitarget-multisensor tracking: principles and 

techniques. Storrs, CT: University of Connecticut, 1995. 
 
Barrage, L., Chyn, E. & Hastings, J. 2014. Advertising, reputation, and environmental 

stewardship: Evidence from the bp oil spill,   
 

184 

 



 

Bekkali, A., Sanson, H. & Matsumoto, M. RFID indoor positioning based on 
probabilistic RFID map and kalman filtering.  Wireless and Mobile Computing, 
Networking and Communications, 2007. WiMOB 2007. Third IEEE 
International Conference on, 2007. IEEE, 21-21. 

 
Bisantz, A. M. & Seong, Y. 2001. Assessment of operator trust in and utilization of 

automated decision-aids under different framing conditions. International 
Journal of Industrial Ergonomics, 28(2), pp 85-97. 

 
Bogen, C., Rashid, M. & East, E. W. 2011. A FRAMEWORK FOR BUILDING 

INFORMATION FUSION. CIB W078/CIB W, 102( 
 
Brown, V. J. 2014. Radionuclides in fracking wastewater: managing a toxic blend. 

Environmental health perspectives, 122(2), pp A50. 
 
Cagan, R. 2012. Biochemistry of taste and olfaction: Elsevier. 
 
Chair, Z. & Varshney, P. 1986. Optimal data fusion in multiple sensor detection 

systems. Aerospace and Electronic Systems, IEEE Transactions on, 1), pp 
98-101. 

 
Chang, J. I. & Lin, C.-C. 2006. A study of storage tank accidents. Journal of loss 

prevention in the process industries, 19(1), pp 51-59. 
 
Clifford, V. 1918. Oil-storage tank. Google Patents. 
 
Coen, M. H. Design principles for intelligent environments.  AAAI/IAAI, 1998. 547-

554. 
 
Colborn, T., Kwiatkowski, C., Schultz, K. & Bachran, M. 2011. Natural gas operations 

from a public health perspective. Human and Ecological Risk Assessment: 
An International Journal, 17(5), pp 1039-1056. 

 
Cooley, H. D., Kristina 2012. Hydraulic Fracturing and Water Resources: Separating 

the Frack from the Fiction. Pacific Institute. 
 
Crippa, C., Fiorentini, L., Rossini, V., Stefanelli, R., Tafaro, S. & Marchi, M. 2009. 

Fire risk management system for safe operation of large atmospheric storage 
tanks. Journal of Loss Prevention in the Process Industries, 22(5), pp 574-
581. 

 
Dunn, S. 2014. Fracking 101: Breaking down the most important part of today's oil, 

gas drilling. The Tribune. 
 
Durrant-Whyte, H. F., Rao, B. & Hu, H. Toward a fully decentralized architecture for 

multi-sensor data fusion.  Robotics and Automation, 1990. Proceedings., 
1990 IEEE International Conference on, 1990. IEEE, 1331-1336. 

 
Dyke, W. 1896. fea soh. Google Patents. 
 

185 

 



 

Earthworks Hydraulic Fracturing 101. 
 
Eckert, H. 2004. Inspections, warnings, and compliance: the case of petroleum 

storage regulation. Journal of Environmental Economics and Management, 
47(2), pp 232-259. 

 
EIA, U. 2011. Annual energy outlook 2011 with projections to 2035. Washington DC: 

Energy Information Administration, United States Department of Energy. 
 
EIA, U. 2014. Annual Energy Outlook 2014 Early Release Overview. Washington 

DC: Energy Information Administration, United States Department of Energy. 
 
Ellsworth, W. L. 2013. Injection-induced earthquakes. Science, 341(6142), pp 

1225942. 
 
EPA 2012. Frequently Asked Questions about the Underground Injection Control 

(UIC) Program. EPA's REgion 6 Office. 
 
EPA 2013. Safe Drinking Water Act: Basic information. 
 
Esteban, J., Starr, A., Willetts, R., Hannah, P. & Bryanston-Cross, P. 2005. A review 

of data fusion models and architectures: towards engineering guidelines. 
Neural Computing & Applications, 14(4), pp 273-281. 

 
Ferner, M. 2014. Colorado Saw More Than One Oil Spill A Day In 2013. The 

Huffington Post  
 
Foss, M. M. & Head, C. 2004. Interstate Natural Gas--Quality Specifications & 

Interchangeability. Center for Energy Economics, Bureau of Economic 
Geology, University of Texas at Austin. 

 
Gall, H. Functional safety IEC 61508/IEC 61511 the impact to certification and the 

user.  Computer Systems and Applications, 2008. AICCSA 2008. IEEE/ACS 
International Conference on, 2008. IEEE, 1027-1031. 

 
Gardner, D. & Garrett, S. Fiber optic seismic sensor.  OE/Fibers' 87, 1988. 

International Society for Optics and Photonics, 271-278. 
 
Getchell, T. V. 1986. Functional properties of vertebrate olfactory receptor neurons. 

Physiological reviews, 66(3), pp 772-818. 
 
Gilbert, D. 2014. BP Is Found Grossly Negligent in Deepwater Horizon Disaster. Wall 

Street Journal. 
 
Goble, W. M. 2010. Control systems safety evaluation and reliability: ISA. 
 
Goodman, S. J., Blakeslee, R., Christian, H., Koshak, W., Bailey, J., Hall, J., McCaul, 

E., Buechler, D., Darden, C. & Burks, J. 2005. The North Alabama lightning 
mapping array: Recent severe storm observations and future prospects. 
Atmospheric research, 76(1), pp 423-437. 

186 

 



 

 
Gründler, P. 2007. Chemical sensors: an introduction for scientists and engineers: 

Springer Science & Business Media. 
 
Guilford, M. C., Hall, C. A., O’Connor, P. & Cleveland, C. J. 2011. A new long term 

assessment of energy return on investment (EROI) for US oil and gas 
discovery and production. Sustainability, 3(10), pp 1866-1887. 

 
Hall, D. L. & Llinas, J. 1997. An introduction to multisensor data fusion. Proceedings 

of the IEEE, 85(1), pp 6-23. 
 
Halliburton 2013. Fracturing Fluid Systems: Broad Variety of Systems Enables 

Customizing the Treatment Fluid to Reservoir Requirements. 
 
Havens, J. & Spicer, T. 2007. United states regulations for siting LNG terminals: 

problems and potential. Journal of hazardous materials, 140(3), pp 439-443. 
 
Haynes, W. M. 2013. CRC handbook of chemistry and physics: CRC press. 
 
Hecht, E. 2002. Optics, 4th. International edition, Addison-Wesley, San Francisco. 
 
Hill, A. D., Ehlig-Economides, C. & Zhu, D. 2012. Petroleum Production Systems: 

Pearson Education. 
 
Hill, K. O. & Meltz, G. 1997. Fiber Bragg grating technology fundamentals and 

overview. Journal of lightwave technology, 15(8), pp 1263-1276. 
 
Holloway, M. D. & Rudd, O. Fracking Operations. Kirk-Othmer Encyclopedia of 

Chemical Technology. 
 
Hornby, B. E., Bostick III, F., Williams, B. A., Lewis, K. A. & Garossino, P. G. 2005. 

Field test of a permanent in-well fiber-optic seismic system. Geophysics, 
70(4), pp E11-E19. 

 
Howarth, R. W., Ingraffea, A. & Engelder, T. 2011a. Natural gas: Should fracking 

stop? Nature, 477(7364), pp 271-275. 
 
Howarth, R. W., Santoro, R. & Ingraffea, A. 2011b. Methane and the greenhouse-

gas footprint of natural gas from shale formations. Climatic Change, 106(4), 
pp 679-690. 

 
Huang, G., Wang, S., Xiao, F. & Sun, Y. 2009. A data fusion scheme for building 

automation systems of building central chilling plants. Automation in 
Construction, 18(3), pp 302-309. 

 
Hughes, J. D. 2013. Energy: A reality check on the shale revolution. Nature, 

494(7437), pp 307-308. 
 
Hutchins, M. L., Holzworth, R. H., Rodger, C. J. & Brundell, J. B. 2012. Far-field 

power of lightning strokes as measured by the World Wide Lightning Location 
187 

 



 

Network. Journal of Atmospheric and Oceanic Technology, 29(8), pp 1102-
1110. 

 
Institute, P. M. A Guide to the Project Management Body of Knowledge: PMBOK® 

Guide. 2008. Project Management Institute. 
 
Instrumentation, S. a. A. S. I. 2004. IEC 61511. ANSI/ISA-84.00.01-2004), pp. 
 
Islam, M. R. 2014. Unconventional Gas Reservoirs: Evaluation, Appraisal, and 

Development: Elsevier. 
 
Ivan, R. A. 1929. Oil-storage tank. Google Patents. 
 
Jacobson, A. R., Holzworth, R., Harlin, J., Dowden, R. & Lay, E. 2006. Performance 

assessment of the world wide lightning location network (WWLLN), using the 
Los Alamos sferic array (LASA) as ground truth. Journal of Atmospheric and 
Oceanic Technology, 23(8), pp 1082-1092. 

 
Jin, S. H., Yeo, Y. K., Moon, I., Chung, Y. & Kim, I. W. 2003. Evaluation of safety 

instrumented systems using reliability analysis. Process Safety Progress, 
22(3), pp 169-173. 

 
Julier, S. J. & Uhlmann, J. K. 2001. General decentralized data fusion with 

covariance intersection (CI). 
 
Kalfayan, L. J. Fracture Acidizing: History Present State and Future.  SPE Hydraulic 

Fracturing Technology Conference, 2007. Society of Petroleum Engineers. 
 
Kenexis 2013. Fire and Gas Systems Engineering Handbook. Kenexis Consulting 

Corporation. 
 
Kennedy, J. L. 1993. Oil and gas pipeline fundamentals: Pennwell books. 
 
Kersey, A. & Berkoff, T. 1992. Fiber-optic Bragg-grating differential-temperature 

sensor. Photonics Technology Letters, IEEE, 4(10), pp 1183-1185. 
 
Keul, P. R., Mastin, E., Blanco, J., Maguérez, M., Bostick, T. & Knudsen, S. 2005. 

Using a fiber-optic seismic array for well monitoring. The Leading Edge, 
24(1), pp 68-70. 

 
King, G. E. Hydraulic fracturing 101: what every representative, environmentalist, 

regulator, reporter, investor, university researcher, neighbor and engineer 
should know about estimating frac risk and improving frac performance in 
unconventional gas and oil wells.  SPE Hydraulic Fracturing Technology 
Conference, 2012. Society of Petroleum Engineers. 

 
Kothare, S. 2012. Economics and applicability of nitrogen for fracking. Air Products. 
 
Kusnetz, N. 2011. Response to Pa. Gas Well Accident Took 13 Hours Despite State 

Plan for Quick Action. ProPublica Journalism in the Public Intrest. 
188 

 



 

 
Lancet, D. 1986. Vertebrate olfactory reception. Annual review of neuroscience, 9(1), 

pp 329-355. 
 
Lee, W. J. & Wattenbarger, R. A. 1996. Gas reservoir engineering. 
 
Lipson, A., Lipson, S. G. & Lipson, H. 2010. Optical physics: Cambridge University 

Press. 
 
Lustgarten, A. 2009. Is New York’s Marcellus Shale Too Hot to Handle? ProPublica 

Journalism in the Public Intrest. 
 
Mahoney, D. G. 1997. Large property damage losses in the hydrocarbon-chemical 

industries: A thirty-year review: M & M Protection Consultants. 
 
Makarenko, A. & Durrant-Whyte, H. Decentralized data fusion and control in active 

sensor networks.  Proceedings of the Seventh International Conference on 
Information Fusion, 2004. 479-486. 

 
McFeeley, M. 2012. State hydraulic fracturing disclosure rules and enforcement: a 

comparison: Natural Resources Defense Council. 
 
Meltz, G., Morey, W. W. & Glenn, W. 1989. Formation of Bragg gratings in optical 

fibers by a transverse holographic method. Optics letters, 14(15), pp 823-825. 
 
Mian, M. A. 2011. Project economics and decision analysis: deterministic models: 

Pennwell Books. 
 
Moses, R. L., Wainwright, M. J. & Willsky, A. S. 2006. Distributed fusion in sensor 

networks. 
 
Mozer, M. C. 1999. An intelligent environment must be adaptive. Intelligent systems 

and their applications, IEEE, 14(2), pp 11-13. 
 
Munn, M. J. 1916. Oil-storage tank. Google Patents. 
 
Murchison Oil & Gas, I. 2010. Geographic Footprint: Murchison Oil & Gas has been 

a successful Permian and San Juan basin operator for over 30 years. 
 
Nakamura, T. & Gold, G. H. 1987. A cyclic nucleotide-gated conductance in olfactory 

receptor cilia. 
 
National Fire Protection Association (NFPA) NFPA 30: Flammable and Combustible 

Liquids Code. 
 
Nazari Shirehjini, A. & Shirmohammadi, S. A high precision sensor system for indoor 

object positioning and monitoring.  Robotic and Sensors Environments, 2009. 
ROSE 2009. IEEE International Workshop on, 2009. IEEE, 75-79. 

 
NEHRING, D. 2010. Natural gas from shale bursts onto the scene. 

189 

 



 

 
Nicot, J.-P. & Scanlon, B. R. 2012. Water use for shale-gas production in Texas, US. 

Environmental science & technology, 46(6), pp 3580-3586. 
 
Pearson, T. W. 2013. Frac sand mining in Wisconsin: Understanding emerging 

conflicts and community organizing. Culture, Agriculture, Food and 
Environment, 35(1), pp 30-40. 

 
Polinsky, A. S., S. The optimal trade-off between the probability and magnitude of 

fines. Amer. Econom., Rev. 69(5), pp. 
 
Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S. & Carey, T. 1994. Human-

computer interaction: Addison-Wesley Longman Ltd. 
 
Purves D, A. G., Fitzpatrick D, et al. 2001. The Organization of the Olfactory System. 

Neuroscience 2nd edition. 
 
Putnam, S. 1933. Development of acid treatment of oil wells involves careful study of 

problems of each. Oil and Gas Jnl. 
 
Putnam, S. W. & Fry, W. A. 1934. Chemically Controlled Acidation of Oil Wells. 

Industrial & Engineering Chemistry, 26(9), pp 921-924. 
 
Rahm, D. 2011. Regulating hydraulic fracturing in shale gas plays: The case of 

Texas. Energy Policy, 39(5), pp 2974-2981. 
 
Rao, B., Durrant-Whyte, H. & Sheen, J. 1993. A fully decentralized multi-sensor 

system for tracking and surveillance. The International Journal of Robotics 
Research, 12(1), pp 20-44. 

 
Romps, D. M., Seeley, J. T., Vollaro, D. & Molinari, J. 2014. Projected increase in 

lightning strikes in the United States due to global warming. Science, 
346(6211), pp 851-854. 

 
Rooke, S. & Fuhr, P. 2011. Wireless Sensor Networks(WSNs) For Real-Time 

Situational Awareness of Hydrofracking Operations. Water Resources 
Impact, 13(4), pp 16-20. 

 
Sawyer, H. a. 2009. Impact Assessment of Natural Gas Production in the New York 

City Water Supply Watershed. p.5. 
 
Shepherd, G. M. & Greer, C. A. 1998. Olfactory bulb. The synaptic organization of 

the brain (4th ed.), 159-203. 
 
Shirley, J. W. 1951. An early experimental determination of Snell's law. American 

Journal of Physics, 19(9), pp 507-508. 
 
Smathers, J. 2011. Sand mining surges in Wisconsin. Wisconsin Watch. 
 

190 

 



 

Smith, D. J. & Simpson, K. G. 2010. Safety Critical Systems Handbook: A 
STRAIGHTFOWARD GUIDE TO FUNCTIONAL SAFETY, IEC 61508 (2010 
EDITION) AND RELATED STANDARDS, INCLUDING PROCESS IEC 61511 
AND MACHINERY IEC 62061 AND ISO 13849: Elsevier. 

 
Speight, J. G. 2007. Natural gas: a basic handbook: Elsevier. 
 
Steinberg, A. N., Bowman, C. L. & White, F. E. Revisions to the JDL data fusion 

model.  AeroSense'99, 1999. International Society for Optics and Photonics, 
430-441. 

 
Strelow, D. & Singh, S. Optimal motion estimation from visual and inertial 

measurements.  Applications of Computer Vision, 2002.(WACV 2002). 
Proceedings. Sixth IEEE Workshop on, 2002. IEEE, 314-319. 

 
Summers, A. E. 2003. Introduction to layers of protection analysis. Journal of 

Hazardous Materials, 104(1), pp 163-168. 
 
Tsang, C.-F., Benson, S. M., Kobelski, B. & Smith, R. E. 2002. Scientific 

considerations related to regulation development for CO2 sequestration in 
brine formations. Environmental Geology, 42(2-3), pp 275-281. 

 
Tully, S. 2015. The shale oil revolution is in danger. Fortune. 
 
Tussing, A. R. & Barlow, C. C. 1984. Natural gas industry: evolution, structure, and 

economics. 
 
Uhlmann, J. K. 1992. Algorithms for multiple-target tracking. American Scientist, 128-

141. 
 
United States Depatment of Labor - Occupational Saftey & Health Administration 

1993. Standard Interpretations. 1910.106( 
 
Varshney, P. K. 1997. Multisensor data fusion. Electronics & Communication 

Engineering Journal, 9(6), pp 245-253. 
 
Veth, M. & Raquet, J. 2007. Two-dimensional stochastic projections for tight 

integration of optical and inertial sensors for navigation,   
 
Victor, D. G., Jaffe, A. M. & Hayes, M. H. 2006. Natural Gas and Geopolitics: From 

1970 to 2040: Cambridge University Press. 
 
Wanke, E. A., Richo; Volgnandrt, Tobias 2014. A World-Wide Low-Cost Community-

Based Time-of-Arrival Lightning Detection and Lightning Location Network. 
Blitzortung.org. 

 
Weaver, P. The meaning of risk in an uncertain world.  PMI Global Congress–EMEA, 

la www. mosaicprojects. com. au/Resources Papers. html/Risk, 2008. 
 

191 

 



 

White, F. E. A model for data fusion.  Proc. 1st National Symposium on Sensor 
Fusion, 1988. 149-158. 

 
Wilber, T. 2009. State probes spill at gas-drilling site. Ithaca Journal. 
 
Wilber, T. 2012. Under the surface: Fracking, fortunes, and the fate of the Marcellus 

Shale: Cornell University Press. 
 
Yiyue, W., Hongmei, L. & Hengyang, H. Wireless sensor network deployment using 

an optimized artificial fish swarm algorithm.  Computer Science and 
Electronics Engineering (ICCSEE), 2012 International Conference on, 2012. 
IEEE, 90-94. 

 
 
 

192 

 


	Sterling Sean Rooke, Ph.D., 2015
	Chapter 1: Introduction
	1.1 Background – Hydraulic Fracturing, Definitions, Risks, and Operational Optimization
	1.1.1 Operational Optimization
	1.1.2 Fracking Operations
	1.1.3 The fracking process in detail
	1.1.4 Risk of lightning

	1.3   Beneficiaries of this Research
	1.4 Organization of the Document

	Chapter 2:  Description of the Research Questions Addressed
	2.1 The Safety of Hydraulic Fracturing Storage Facilities
	2.1.1 Risks & Hazards of the fracking process
	2.1.2 Fire and Gas Safety systems (FGS)
	2.1.3 Emergency Shut Down (ESD) Systems
	2.1.4 Lightning and the future of hydraulic fracturing

	2.2 Research Questions to be Answered
	2.3   Implications of “an Answer”
	2.4 Summary

	Chapter 3:  Literature Review and Related Activities
	3.1 On-site Petroleum Storage and Safety
	3.2   An Examination of Sensors Applicable for Use In and Around Hydraulic Fracturing Storage Batteries
	3.2.1 Sensors
	3.2.2 The transducer
	3.2.3 Thermal Imaging and Physical sensors
	3.2.4 Chemical sensors
	3.2.5 Fiber Optic Sensors
	3.2.6 Hydrologic Fracturing Sensor Touchpoints

	3.3   Examples of Prior Activities in Risk and Optimization at Fracking Batteries
	3.3.1 Risk
	3.3.2 Decision Trees

	3.4 Summary

	Chapter 4:  Research Methodology
	4.1 Appropriate Methodology for Addressing the Research Questions
	4.1.1 Relevant methodologies used by others
	4.1.2 Flaws in methodologies used by others
	4.1.3 Deployed methodology - Lightning Anticipation Technology
	4.6.1 Wider Spatial/Temporal Coverage
	4.6.2 Better Robustness/Fault Tolerance
	4.6.3 Better Estimation of Information from Data
	4.6.4 Technical Details
	4.6.5 Low-Level Fusion
	4.6.6 Feature-Level Fusion
	4.6.7 Decision-Level Fusion
	4.6.8 Distributed versus Centralized Fusion
	4.6.9 Data Fusion Process Model
	Level 1:  Object Refinement
	Level 2:  Situation Refinement
	Level 4:  Process Refinement
	Level 5:  User Refinement

	4.6.10 Characteristic Interdependencies
	4.6.11 Typical Applications

	4.7 Summary

	Chapter 5:  Conclusions, Findings and Implications
	5.1 Category of Sensors selected and Test Site
	5.1.1 Rational for sensor category selection
	5.1.2 Hatchett case study

	5.2 Chosen sensors, their data and functionality
	5.2.1 Atmospheric charge sensors
	5.2.2 Tank Sensors

	5.3 Installation and verification of sensors
	5.3.1 Atmospheric sensors
	5.3.2 Tank charge sensors

	5.4 Instrumentation field measurement process
	5.4.1 Atmospheric sensors
	5.4.2 Tanks charge sensors

	5.5 Measurements and Implications
	5.5.1 Atmospheric sensors
	5.5.2 Tank charge sensors

	5.6 Potential risk reduction of system
	5.6.1 Cost of a lightning strike
	5.6.2 Implications to production
	5.6.3 The lightning threat
	5.6.4 Risk and costing it all out
	5.6.5 Direct Lightning strike and charge induction risks
	5.6.6 Summary Costs

	5.7   Lightning impact mitigation and the application to industry
	5.7.1 Nitrogen flooding for mitigation
	5.7.2 Proposed architecture and costs

	5.8 Summary
	5.8.1 Risk conclusions and mitigation


	Chapter 6:  Conclusions and Recommendations
	6.1 Research Summary
	6.2 Conclusions
	6.3 Validation of Assumptions, Appropriateness of Analysis Methodology, and Interpretation of Results.
	6.4 Contributions to the Body of Knowledge
	6.5 Recommendations for Future Research

	References

