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accurate, computationally efficient, robust in a wide range of conditions, does not
require any hardware modifications, and can be added (as a software add-on) to
systems already manufactured and placed into service. We have also implemented

the technology in a demonstration prototype for both area and swipe scanners.
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Chapter 1

INTRODUCTION

Authentication verifies the claim about the identity of an entity. Biometric
technologies measure unique personal characteristics which can be used to identify
individuals with a high degree of certainty and thus have the potential to certify the
connection between people and the systems they are authorized to use.

Using biometrics for authentication of people to systems provides convenience.
When authenticating to portable devices, such as smartphones and laptops, how-
ever, security problems may arise because this authentication usually takes place
in unsupervised environments (e.g., at home). Since a portable device can be eas-
ily stolen, an attacker with physical access to it can launch a powerful attack by
manipulating the data which is acquired and transmitted by the biometric scanner.
Furthermore, the biometric information has a low degree of secrecy as it can be
captured by an unintended recipient and even without user’s consent. Since the
biometric characteristics are difficult to change and cannot be revoked, their com-
promise may lead to more serious consequences than, for example, a compromise
of a password. Finally, regardless of all effort to keep user’s biometrics private, the
widespread use of biometric technologies are set to make the biometric information
essentially publicly available, with the face photos being public even today.

To counter some of these security threats, we have developed a technology



for automated authentication of fingerprint scanners. Fingerprint scanners have
unique patterns that can be used to distinguish one scanner from another one.
The pattern, which we call scanner pattern, stems from the variability of device
characteristics at silicon level and is caused by imperfections of the conversion from
the input to the scanner (i.e., the object applied to it) to its output (i.e., the digital
image). The scanner pattern is a sufficiently unique, persistent, and unalterable
intrinsic characteristic of the fingerprint scanners even to those of exactly the same
technology, manufacturer, and model. Our technology is able to distinguish the
pattern of one scanner from the pattern of another scanner of exactly the same
model by extracting the pattern from a single image, acquired with each scanner.
In this way, the scanner pattern can be used to enhance the security of a bio-
metric system by authenticating the scanner, used to acquire a particular fingerprint
image, and thus detect attacks on the scanner, such as detecting an image containing
the fingerprint pattern of the legitimate user and acquired with the authentic finger-
print scanner replaced by another image that still contains the fingerprint pattern
of the legitimate user but has been acquired with another, unauthentic fingerprint
scanner. The technology uses the conventional authentication steps of enrolment
and verification, each of which can be implemented in a portable device, a desktop,
or a remote server. The technology is extremely accurate, computationally efficient,
robust in a wide range of conditions, does not require any hardware modifications,
and can be added (as a software add-on) to systems already manufactured and
placed into service. We have also implemented the technology in a demonstration

prototype for both area and swipe fingerprint scanners.



Combining the biometric authentication with a scanner authentication leads to
a two-part authentication, which we call bipartite authentication, that verifies both
the identity of the user and the “identity” of the fingerprint scanner. Therefore, we
see the main, although not necessarily the ultimate, application of this technology
as a method to improve the security of portable devices with an additional layer.
Strong security is required to gain the confidence of the users in their devices as
secure universal terminals for online access to virtually all consumer services: from
bank applications to mobile commerce to access to health care anywhere and at any

time, for access to medical records, etc.



Chapter 2
MOTIVATION AND BACKGROUND

2.1 Biometric Authentication and Biometric Systems

The objective of authentication of people is establishing their identity. The
three general methods for authentication are based on: (1) what you know, e.g.,
a password, (2) what you have, e.g., a token, and (3) what you are. In the third
method, the identification is based on person’s physiological or behavioral traits,
called collectively biometrics. Using biometrics for identification is not new — it
has been around for centuries. Today biometrics is also used for authentication to
systems and automated verification of identity.

The advantages of using biometrics for authentication over the first two meth-

ods are [Jain et al. 2006]:

e Biometrics cannot be lost or forgotten;
e Biometrics are difficult to copy, share, and distribute;
e Biometrics are difficult to forge;

e Biometric authentication requires presence of the person at the time and point

of authentication.

Unfortunately, today’s electronic technologies to great extent diminish these
advantages and even create other types of challenges.

4



The conceptual diagram of a generic system that uses biometrics, as specified
by [ISO/IEC SD 11}, is shown in Figure 2.1. Although the figure describes a typi-
cal biometric system for authentication, its subsystems and processes are common
for other applications that use biometrics. These conceptual subsystems need not

correspond to physical subsystems in a real biometric system.

DATA SIGNAL

CAPTURE \\; PROCESSING YMATCH'NG >| DECISION
A
Biometrics Sample Features Similarity Outcome
score
Template 2
STORAGE —~—
Template

Figure 2.1: Generic biometric system

The Data Capture Subsystem (see Figure 2.1) takes a signal/image of the
biometric identifier that the individual has presented to the biometric sensor and
produces a biometric sample. This sample may be further compressed and/or en-
crypted and transmitted to the Signal Processing Subsystem. The latter extracts
the distinguishing features from the sample, which may include segmentation, fea-
ture extraction, and quality control. In case of enrollment, it also creates one or
more templates that may require several presentations. The template can be stored
in the Storage Subsystem, within a biometric capture device, on a portable medium
(e.g., in a smartcard), or on a personal computer/local server. The Matching Sub-

system compares the features against one or more templates and outputs similarity



scores that measure the degree of similarity between them. Based on the scores, on
a pre-defined threshold, and on the type of operation (verification or identification),
the Decision Subsystem produces a decision outcome. It is also possible to have
a multi-biometric system that uses different biometric identifiers (as samples and
templates), where the separate scores are combined and evaluated by the Decision
Subsystem.

A Secure Biometric System, as defined in [INCITS M1/06-0424], may also in-
clude defense against biometric sensor attacks, biometric sample modification and /or
injection attacks, a liveness detection to make sure that the captured biometric sam-
ple comes from a live person, etc.

The subsystems of a biometric system may be implemented in different phys-
ical systems: central/distributed (server), local (client), device (peripheral), and
on-token. Depending on the location of the template storage and the location of
the biometric match operations, [[INCITS M1/06-0424] defines several architectural

RRAN1Y

configurations. Of interest for us are “store on device/match on device,” “store on
token, match on device,” and “store on token/match on token.”

Due to several factors (discussed in section 2.2.2), rarely are the feature sets
extracted from two biometric samples the same. The variability in the feature set of a
person is referred to as intra-class variation, and the variability between the features
sets of two different persons is referred to as inter-class variation [Jain et al. 2008].
Thus, a design objective is to find a feature set with small intra-class variation and

large inter-class variation.

The event when the similarity score between the feature sets taken from two



different persons exceeds the threshold and the Decision Subsystem produces a pos-
itive decision (match) is referred to as false accept. The probability of this event is
termed False Accept Rate (FAR). On the other hand, the event when the similarity
score between the features sets taken from one and the same person is below the
threshold and the Decision Subsystem produces a negative decision (non-match) is
referred to as false reject. The probability of this event is termed Fualse Reject Rate
(FRR). There is a specific and intrinsic tradeoff between FAR and FRR, and the
function between the two is the Receiver Operating Characteristic (ROC). The ROC
is a primary performance metric of every biometric system [Jain et al. 2008]. The

error rate when FAR = FRR is called Equal Error Rate (FRR).

2.2 Biometric Identifiers and Their Characteristics

2.2.1 Biometric Identifiers

A physiological and/or behavioral characteristic that is sufficiently universal,
distinct, permanent, collectable, and acceptable to be collected can be used as a
biometric identifier [Maltoni et al. 2003]. Besides that, it is important that the
biometric system, using this identifier, have high performance and be difficult to
circumvent.

The biometric identifier of interest to our research is the fingerprint, which
characteristics are summarized next. Other physiological biometric identifiers are
the face, iris, hand geometry, palm vein patterns, DNA, retinal scans, ear shape,

and body odor. Written signatures, voice, and typing patterns are typical behavioral



biometrics ([NIST SP 800-32] and [Jain et al. 2006]).

Fingerprints

There are several reasons for choosing the fingerprint as the biometrics of
primary interest in our research. The fingerprint systems have a very good balance
between the desirable properties for biometric identifiers and systems as described

above ([Maltoni et al. 2003, Jain et al. 2006]).

e Fingerprints are highly distinct and their pattern develops early in life;

e Fingerprint details are permanent. The features used by most matching al-
gorithms are minutiae — the points of ridge and valley endings, lakes, points,

and spurs;

e The use of fingerprints for identification of people is century-old long and quite

mature, although it has been first systematized for law enforcement;

e Live-scan scanners can acquire high-quality fingerprint images;

e Low cost and small-sized implementations are available. This is a very im-
portant condition for their wide deployment, especially in portable electronic

devices.

Nevertheless, changes in the environment (e.g., moisture), cuts and bruises,
and changes due to ageing still pose certain challenges to the fingerprint technologies.
Furthermore, the fingerprint algorithms are computationally intensive.

A typical fingerprint with its minutiae is shown in Figure 2.2.



Figure 2.2: Fingerprint and its minutiae

2.2.2 Characteristics of Biometrics

2.2.2.1 Biometric Variance

In contrast to a password or a PIN code, the biometric information is not exact
— it varies as a result of measuring a physical object (still or moving). Different
captures of the biometrics of the same individual produce different biometric samples
which, very often, produce different, however slightly, feature sets. The groups of
factors that render the biometric information not uniquely repeatable are three

[Jain et al. 2006]:

A. Inconsistent presentation: inconsistent user interaction with the sensor.
For example, the 3D finger is projected onto the 2D surface of the sensor, the
finger is not a solid object and therefore it gets deformed during this mapping,

and each biometric acquisition may capture different parts of the finger;



B. Irreproducible presentation: changes in the biometric identifiers over time
which, for example, can be due to aging, wear-and-tear, injuries, and patho-

logical developments;

C. Imperfect image/representational acquisition such as imperfections and
noise in the biometric sensor, nonuniform contact, environmental conditions
(moisture, temperature, dirt), different illumination, imperfect feature extrac-

tion, etc.

The biometric variance results in imperfect user identification and authenti-

cation (FAR and FRR as discussed in Section 2.1).

2.2.2.2 Biometrics and Security

Besides its variance, using biometrics in security applications faces additional

challenges because the biometric information:

e has a low degree of secrecy, i.e., it is difficult to be kept strictly private.
INIST SP 800-63] states that “biometrics do not constitute secrets suitable

for use in the conventional remote authentication protocols;”

e is not easily changeable. Unlike passwords and PIN codes, once compromised,

most biometrics cannot be changed (without surgical intervention) or be re-

voked;

e can be counterfeited. In unattended environments, an attacker can use models
of the genuine biometric identifier, can make several attempts, or can even

10



physically violate the integrity of the biometric sensor in order to substitute

the legitimate information [INCITS M1/06-0424].

The low degree of secrecy of the biometric information was demonstrated in a
protest by the Chaos Computer Club (a hackers organization) against the increasing
use of biometrics. In the March 2008 edition of its magazine, the club published
the fingerprint of the German Minister of the Interior (Home Secretary) Wolfgang
Schauble, warning that the fingerprints are not as safe as politicians claim and
that “they should not be part of any critical security application.” The hackers
further included a thin film that can be taped over someone’s finger to deceive
fingerprint readers with Schauble’s fingerprint; they even created dummy fingers
from his fingerprint [Heise Online 2008].

Even when the enrolled biometric templates are encrypted and stored in secure
databases, function creep and owner abuse cannot be ignored as security threats.
Furthermore, illegal access to private information in such “secure databases” is be-
coming a serious problem. Privacy Rights Clearinghouse estimated that since 2005
only in the US, over 500 million records containing personal information such as
Social Security numbers, account numbers, and driver’s license numbers, have been
compromised (stolen or exposed) due to security breaches [PR Clearninghouse 2010].
Finally, an investigation [Robertson 2009] by The Associated Press revealed that
“banks and other companies that handle your information are not being nearly as
cautious as they could,” which results in gambling with your personal data once

you pay with a credit card. Under such circumstances, people’s mistrust in the abil-

11



ity of systems and networks to protect their confidential information is completely
justified.

In summary, regardless of all effort to keep user’s biometrics private, the
widespread use of biometric technologies are set to make the biometric informa-
tion essentially publicly available, with the face photos being public even today.

Using biometric information for authentication, however, can provide several

advantages over the systems that use other means of user identification because