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Ideas of stochastic control have found applications in a variety of areas. A subclass

of the problems with parameterized policies (including some stochastic impulse control

problems) has received significant attention recently because of emerging applications

in the areas of engineering, management, and mathematical finance. However, explicit

solutions for this type of stochastic control problems only exist for some special cases, and

effective numerical methods are relatively rare. Deriving efficient stochastic derivative

estimators for payoff functions with discontinuities arising in many problems of practical

interest is very challenging. Global optimization problems are extremely hard to solve

due to the typical multimodal properties of objective functions. With the increasing

availability of computing power and memory, there is a rapid development in the merging

of simulation and optimization techniques. Developing new and efficient simulation-based

optimization algorithms for solving stochastic control and global optimization problems is

the primary goal of this thesis.



First we develop a new simulation-based optimization algorithm to solve a stochastic

control problem with a parameterized policy that arises in the setting of dynamic pricing

and inventory control. We consider a joint dynamic pricing and inventory control problem

with continuous stochastic demand and model the problem as a stochastic control problem.

An explicit solution is given when a special demand model is considered. For general

demand models with a parameterized policy, we develop a new simulation-based method

to solve this stochastic control problem. We prove the convergence of the algorithm and

show the effectiveness of the algorithm by numerical experiments.

In the second part of this thesis, we focus on the problem of estimating the deriva-

tives for a class of discontinuous payoff functions, for which existing methods are either

not valid or not efficient. We derive a new unbiased stochastic derivative estimator for

performance functions containing indicator functions. One important feature of this new

estimator is that it can be computed from a single sample path or simulation, whereas

existing estimators in the literature require additional simulations.

Finally we propose a new framework for solving global optimization problems by

establishing a connection with evolutionary games, and show that a particular equilibrium

set of the evolutionary game is asymptotically stable. Based on this connection, we pro-

pose a Model-based Evolutionary Optimization (MEO) algorithm, which uses probabilistic

models to generate new candidate solutions and uses dynamics from evolutionary game

theory to govern the evolution of the probabilistic models. MEO gives new insight into

the mechanism of model updating in model-based global optimization algorithms from

the perspective of evolutionary game theory. Furthermore, it opens the door to devel-

oping new algorithms by using various learning algorithms and analysis techniques from

evolutionary game theory.
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Chapter 1

Introduction

Stochastic control has been widely applied to many different areas of engineering

and management. There are many stochastic control problems that do not have analytical

solutions due to the generality of the model, and existing numerical methods are either

not applicable or not effective. Gradient estimation plays an important role in simulation

optimization and sensitivity analysis, and deriving efficient stochastic derivative estimators

for payoff functions with discontinuities arising in many problems of practical interest is

very challenging. Global optimization problems are generally very hard to solve. Although

there are many heuristic algorithms proposed to solve global optimization problems, many

are very hard to analyze in general. Due to the increasing availability of computing

power, simulation optimization is a very promising technique to handle difficult stochastic

control and global optimization problems. In this dissertation, we propose new simulation

optimization methodologies to solve stochastic control and global optimization problems.

This chapter gives a brief introduction of the motivation, and then introduces simulation

optimization and the idea of using game theory, particularly evolutionary game theory,

for optimization, followed by research contributions and outline of the thesis.
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1.1 Motivation

1.1.1 Stochastic Control Problems in Revenue Management

With the rapid expansion of the Internet and e-commerce, consumers have easier

access to prices of products. Pricing is one of the most effective tools that can be manipu-

lated to encourage or discourage demand, especially for price-sensitive customers. A high

initial inventory level provides the seller incentive to lower the price in order to stimulate

demand and reduce holding costs. However, as the inventory level changes, the behavior

of customers also changes. In order to maximize the expected profit, the seller should

incorporate all the information available and adjust the price accordingly. There is a

substantial literature on dynamic pricing ([1, 27, 24, 13]), and various models have been

proposed. The dynamic pricing models can be grouped into two categories: discrete-time

models and continuous-time models.

For discrete-time models, independent demands arrive at discrete times ([27, 24, 21]).

The demand is generally a function of a deterministic term and a random noise term,

both of which might depend on the price, time, and the amount sold. Additive and

multiplicative models are two types of models that are commonly used ([13]). Under

the Markovian assumption, the dynamic pricing problem in the discrete-time case can

be modeled as a Markov decision process (MDP), and can be solved by using standard

value iteration or policy iteration algorithms ([8, 27, 24]). Under some mild conditions,

[27] proved that a base-stock list price policy is optimal; they also showed the benefit of

dynamic pricing versus static pricing.

For continuous-time models, the most common formulation assumes that the de-

mand follows a Poisson process with a deterministic intensity that depends on the price
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and time ([39, 40, 14, 28, 73]). In [39], sellers intend to sell a finite number of identical

units over a finite horizon with the demand following a Poisson process, with independent,

identically distributed reservation prices. The dynamic pricing problem is then formulated

as a stochastic control problem. In the case of Poisson demand, when reservation prices is

exponentially distributed, the optimal pricing strategy can be easily derived; however no

analytical solutions exist for general models. [73] introduced uncertainties into the arrival

rate of the demand model, formulated the dynamic pricing problem as a stochastic game,

and gave an analytical solution for a special demand model. [26] incorporated customer

choice into the model, and gave a heuristic pricing policy with upper and lower bounds.

Continuous stochastic diffusion processes have been used to model demands that

arrive continuously; decisions can be made at any time for these models ([4, 25, 99, 10, 6]),

as opposed to the Poisson demand model, in which demands arrive at discrete epochs,

where decisions are made. [4] applied stochastic control theory to study an inventory

control problem with a Brownian demand and explicitly characterized the optimal policy.

[99] proved the optimality of an (s, S) policy for a one-dimensional diffusion inventory

system. More recently, [6] considered an inventory control problem where the demand

process is composed of a compound Poisson process and a Brownian motion and proved

the optimality of an (s, S) policy. Other related works using Brownian demands include

[85, 7, 19, 20], and [5]. All these works treating diffusion demand models focus on inventory

control to characterize the optimal ordering policy, whereas works addressing the problem

of jointly optimizing pricing and ordering policies under Brownian demands are relatively

rare. [86] analyzed a dynamic pricing problem with demand uncertainty modeled by a

Brownian motion without incorporating ordering decisions.

When a price-sensitive demand is modeled by continuous diffusion process, the dy-
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namic pricing problem can be formulated as a stochastic control problem. For a class of

pricing policies that allow a limited number of price changes, for example the markdown

pricing policy, the problem of jointly optimizing the prices and the initial inventory level

can be formulated as a continuous stochastic control problem with the initial ordering as

a decision variable.

The aforementioned stochastic control problem generally does not admit an analyt-

ical solution. [22] considered a special continuous demand model, where the arrival rate

and the uncertainty term in the demand only depend on the price. In their formulation,

the dynamic pricing problem is transformed into a deterministic optimization problem and

is solved numerically. But their method cannot be generalized to solve dynamic pricing

problems with general demand models. There are two major types of numerical methods

for stochastic control problems ([83]). Purely deterministic approximation methods dis-

cretize the HJB equation by finite differences or a finite element method, and thus obtain

an approximate value function at points on the space-time grid. Probabilistic methods

include the Markov chain approximation method presented by [70]. Markov chain approx-

imation and finite differences cannot be applied directly to the dynamic pricing problem

with a limited number of price changes because of this constraint on the pricing policy.

Moreover, it is desirable to understand how the uncertainties in the demand and the chang-

ing of other parameters, such as parameters in the arrival rate and holding cost, would

affect the pricing policy and the profit. This sensitivity information cannot be obtained

directly using Markov chain approximation.

In the literature of supply chain management, simulation-based algorithms have

been applied to solve inventory control problems ([31, 34, 45, 66, 60]) and network revenue

management problems ([9, 104]). In simulation-based algorithms, the key is to obtain
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efficient gradient estimations. [9] proposed an innovative simulation-based method for

computing protection levels in a virtual nesting control scheme, in which a finite differences

estimator is derived, because a discrete model for capacity and demand is used. [104]

analyzed a continuous version of the problem, which enabled the derivation of a gradient

estimator using infinitesimal perturbation analysis (IPA). However, all these methods can

only be applied to discrete-time models.

1.1.2 Gradient Estimation

For complex stochastic models requiring simulation, gradient estimates play an im-

portant role in both sensitivity analysis and gradient-based optimization. As indicated in

chapter 7 of [44] for the application of derivative estimates in finance, “Whereas the prices

themselves can often be observed in the market, their sensitivities cannot, so accurate

calculation of sensitivities is arguably even more important than calculation of prices.”

In the last three decades, gradient estimation has been studied extensively in the

simulation literature. Infinitesimal perturbation analysis (IPA) and the likelihood ratio

(LR) method are two of the main techniques [53, 92]. Other techniques include smoothed

perturbation analysis (SPA), which can be applied to performance functions containing

discontinuities, and methods based on weak derivatives (WD) and Malliavin calculus.

Introduced in [52], IPA has been widely used in sensitivity analysis for discrete-event

systems (please see applications of IPA in queueing systems and inventory control problems

in [100, 43, 53, 35, 46, 72, 3]) as well as for financial derivatives [44, 17, 36]. IPA enables the

sensitivity of a performance function to be estimated while observing a single sample path

of a system and hence offers significant computational savings compared with the “brute

force” finite differences method. However, IPA requires the performance function to be
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almost surely continuous, which makes IPA not applicable in many cases. For example,

second-order derivatives cannot be obtained by IPA for European call options [17].

Rather than differentiating a performance function as IPA does, the likelihood ratio

(LR) method constructs derivative estimators from the derivatives of the probability mea-

sure associated with a simulation model. The method was proposed by [48], [87], and [91]

to study discrete event systems and has also been used in financial applications [17, 44].

It is also called the score function (SF) method [92]. More exposition of the LR method

can be found in [91, 90, 32]. The LR method does not require continuity of performance

functions and hence is more widely applicable than IPA. However, parameters of interest

have to be in probability density functions in order to apply LR, whereas in many cases

they appear naturally in performance functions. The push in and push out method may

be able to move parameters of interest out of the performance function and push them

into a probability density function [92]; then the LR method can be applied. However the

push in and push out method has only been demonstrated on some simple cases [92].

1.1.3 Global Optimization

Global optimization aims at finding the global optimal solutions for problems with

many local optimal solutions. Due to the presence of possible multiple local extrema,

global optimization problems are typically extremely difficult to solve. Various mod-

els and heuristics have been proposed to solve global optimization problems. According

to the criteria in [110], global optimization algorithms can be grouped as instance-based

methods and model-based methods. Instance-based methods generate new candidate solu-

tions that explicitly depend on the the previous solutions. Among instance-based methods

are simulated annealing [63], genetic algorithm [97], tabu search ([47]), and nested parti-
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tion [93, 94]. Different from instance-based methods, model-based methods generate new

candidate solutions based on models, which are updated by using the previously gener-

ated solutions. Some of the well known model-based methods include cross-entropy (CE)

method [15, 75], model-based reference adaptive search (MRAS) [59], and estimation of

distribution algorithms (EDAs) [80]. Recently, [109] formulated the global optimization

problem as a filtering problem and presented a new particle filtering-based framework to

solve global optimization problems. Bayes updating is used to guide the evolution of the

probability models that are used to generate new candidate solutions.

Many global optimization algorithms need to generate and maintain a group of

candidate solutions. How to update and maintain this group of samples is the key in

these global optimization algorithms. Most of the model-based algorithms use single mode

probabilistic models to generate candidate solutions, which fails to capture the multimodal

properties of global optimization problems.

With the increasing availability of computing power and memory, there has been a

rapid development in the merging of simulation and optimization techniques [33]. Simulation-

based methods have become very promising when dealing with the above challenges.

1.2 Simulation Optimization

Generally speaking, simulation optimization covers a large collection of optimiza-

tion techniques that are developed using Monte Carlo simulation to solve decision making

problems in many different areas. Typically there are three classes of simulation optimiza-

tion algorithms: sample average approximation (SAA) ([64]), gradient-based algorithms,

and random search. The basic idea of SAA is to approximate expectations using the corre-

sponding sample average function and then solve the resulting sample average optimization
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problem. Then existing linear programming and nonlinear optimization techniques can

be applied is one of the major advantages of SAA. Here we give a brief introduction of

stochastic approximation, which belongs to the type of gradient-based algorithms.

1.2.1 Stochastic Approximation

Stochastic approximation (SA) is a gradient-based optimization method for stochas-

tic systems. The SA method was first introduced by the pioneering paper [88]. The

classical SA algorithm solves the following stochastic optimization problem

sup
θ∈Θ

E[H(θ)], (1.1)

where Θ is the domain of the parameter θ, by mimicking the gradient ascent method.

Denote g(θ) = ∂E[H(θ)]
∂θ as the gradient of E[H(θ)] with respect to the parameter θ. Let

ĝ(θ) be an estimator of the gradient g(θ); the SA algorithm generates iterates by the

formula

θk+1 = ΠΘ(θk + akĝ(θk)),

where θk is the value of the parameter at the beginning of iteration k, {ak} is a sequence

of positive step sizes, and ΠΘ is a projection onto the parameter set Θ. SA has several

desirable properties that make it attractive for adaptive schemes. It is a simulation-based

algorithm, which only needs estimates of the gradient information, not the exact gradient.

It usually has low computational and memory requirements for each iteration.

There are various conditions on the sequence of step sizes that ensure the con-

vergence of the algorithm [68]. SA has been successfully applied in many areas such as

adaptive signal processing, adaptive control, artificial intelligence, and operations research
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[16]. Glasserman et al. [45] applied SA to solve an inventory control problem. Bertsimas

et al. [9] and van Ryzin et al. [104] used stochastic approximation to find the optimal vir-

tual nesting control policy for a network revenue management problem. Topaloglu [102]

applied SA to find the optimal bid prices for a network revenue management problem.

Kunnumkal et al.[66] computed the optimal base-stock levels for some inventory control

problems using SA. However in all the aforementioned applications, they assume that

demands follow some discrete-time models. To the best of our knowledge SA has not

been applied to solve the continuous stochastic control problem formulated out of the dy-

namic pricing problem in Section 1.1.1 because of the difficulty of precisely simulating the

evolution of the inventory level and the difficulty of obtaining good gradient estimators.

1.2.2 Random Search and Evolutionary Game Theory

The class of random search algorithms includes nested partitions ([93]), and algo-

rithms adapted from metaheuristics for deterministic optimization problems such as ge-

netic algorithms ([97]), tabu search ([47]), and simulated annealing ([63]). As introduced

in Section 1.1.3, model-based algorithms such as EDAs ([80]), cross-entropy ([15, 75]), and

MRAS ([59]) are also random search algorithms proposed recently. As a general tool to

study strategic interaction of players using different strategies, game theory can also be

used to study the interaction and evolving of samples in random search. We now give a

brief introduction to the literature of game theory and evolutionary game theory and their

application to random search, learning, and optimization.

Game theory studies the strategic interaction of players using different strategies; it

has been applied in many areas such as economics, engineering, and biology [38, 95]. A

Nash equilibrium is a set of strategies, one for each player, such that no one has an incentive
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to unilaterally deviate from his own strategy. In order to obtain Nash equilibria in games,

many learning algorithms have been designed. Some of the well know learning algorithms

include fictitious play [18], stochastic fictitious play [38], and regret matching [50]. These

learning algorithms have also been successfully applied in other areas, such as multi-agent

learning [95] and optimization [71, 41]. Recently, Lambert et al. [71] and Garcia et al.

[42] have applied game theory to solve discrete optimization problems, where they model

the optimization problem as a potential game. Fictitious play and joint fictitious play are

adopted to obtain the Nash equilibrium and two sampled version of fictitious and joint

fictitious play are also proposed in [71, 42]. For a potential game, although fictitious play

has been proven to converge to a mixed strategy Nash equilibrium, the mixed strategy

equilibrium might not be a feasible solution for the optimization problem. The algorithms

in [42, 71] only work for discrete optimization problems with a finite solution space, and

moreover the Nash equilibrium obtained by fictitious play might only be a local optimal

solution.

Evolutionary game theory applies game theory to study the evolution of the number

of players playing different strategies in a population setting. After being introduced by

biologist Maynard Smith [76], evolutionary game theory has become popular in biology

and is attracting increasing interest from researchers in other areas such as engineering and

economics. Different from static games, replicator dynamics is introduced in evolutionary

games, and in this scheme the growth rate of the proportion of players using a certain

strategy is equal to the difference between the average payoff of that strategy and the

average payoff of the whole population. Replicator dynamics can also be used as a learning

algorithm to study the behavior of multiple agents ([103]).
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1.3 Research Contributions

The goal is to develop efficient simulation-based algorithms to solve stochastic con-

trol problems derived from a revenue management problem, and to solve global optimiza-

tion problems. We are also interested in constructing efficient gradient estimators for

payoff functions with discontinuities. We have conducted our research along the following

three lines.

First, we develop a simulation-based algorithm for solving a stochastic control prob-

lem with parameterized policies in revenue management. The algorithm is motivated by

the fact that the combined dynamic pricing and inventory control problem in revenue

management generally does not have analytical solutions, and numerical methods such as

Markov Chain approximations and finite differences cannot be applied directly to solve the

problem. We model the dynamic pricing problem as a stochastic control problem and give

a theoretical solution for a special case when there are no constraints on the number of

price changes during the selling process. For pricing policies that allow a limited number

of price changes, a new algorithm is developed to simulate the evolution of the inventory

level; a novel sample path based gradient estimator for stopping times with respect to

parameters of interest is constructed. We also derive a new SPA gradient estimator to

overcome the difficulty of differentiating a performance function with discontinuous sam-

ple paths. We have studied the unbiasedness property of the gradient estimators and the

convergence of the stochastic approximation algorithm.

Second, we derive a new computationally efficient derivative estimator for payoff

functions with indicator functions containing parameters of interest. Motivated by the

push out method, we circumvent the difficulty of differentiating the indicator function by

a change of random variables. Thus we change the underlying probability measure with
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which we run simulations and move parameters of interest out of the indicator function.

The support of the new random variable does not depend on any parameters of interest.

Then inspired by IPA and LR, we derive a new derivative estimation technique called the

Support independent unified Likelihood Ratio and Infinitesimal Perturbation Analysis

(SLRPA), which has the following desirable properties:

• SLRPA connects and generalizes IPA and LR, which can be viewed as special cases

of the SLRPA estimators.

• SLRPA estimators need no additional simulations, i.e., sensitivities with respect to

various parameters can be obtained by a single run of simulation.

• SLRPA estimators work for both continuous and jump processes, are easy to imple-

ment, and have comparatively low variance.

• SLRPA estimators are unbiased, assuming some mild regularity conditions.

It is worth pointing out that Glasserman (Chapter 7 in [44]) proposed an “LR-PW”

estimator to estimate the second derivative for European call options, which is obtained

by first applying the LR method and then the PW method; however, SLRPA is not a

simple sequential application of the LR and IPA methods and hence is essentially different

from the “LR-PW” method.

Finally, we propose a new general framework called Model-base Evolutionary Op-

timization for solving global optimization problems. The main idea of our method is to

formulate the global optimization problem as an evolutionary game and to use dynamics

in evolutionary game theory to study the evolution of the candidate solutions. The pro-

cess of searching for the optimal solution is carried out through the procedure of reaching

the equilibrium set of an evolutionary game. Specifically, we establish a connection be-
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tween evolutionary game theory and the global optimization problem by partitioning the

solution region of the global optimization problem into subsets and letting different play-

ers play strategies in different subsets. Differential dynamics such as replicator dynamics

are used to govern the evolution of the candidate solutions for the optimization problem.

Furthermore, we introduce probabilistic models to generate candidate solutions and for-

mulate the global optimization problem as an evolutionary game with continuous strategy

spaces, based on which, a Model-based Evolutionary Optimization (MEO) algorithm is

developed. Moreover, to better capture the multimodal property of global optimization

problems, we propose to use a population of models to generate candidate solutions and a

new Population Model-based Evolutionary Optimization (PMEO) algorithm is proposed,

in which evolutionary game theory is used to study the evolution of these models. The way

we formulate global optimization problems as evolutionary games provides a new insight

into the mechanism for generating new candidate solutions and the mechanism of model

updating for model-based global optimization algorithms. For example, one special case

of the MEO algorithm gives a new explanation for the CE method. This evolutionary

game setting for global optimization problems makes it possible to study the convergence

property of model-based algorithms by using analytical tools in the evolutionary game

theory literature, and it also provides new possibilities to develop new algorithms, for

example, the PMEO algorithm we developed.

1.4 Dissertation Outline

Chapter 2 provides the necessary background and literature on simulation opti-

mization. It starts with the formulation of stochastic optimization and stochastic control

problems. Then simulation optimization techniques such as stochastic approximation and
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gradient estimation are reviewed. Finally, basic concepts of evolutionary game theory are

introduced.

Chapter 3 presents our research work on a simulation optimization algorithm for

solving a dynamic pricing and inventory control problem in revenue management. Section

3.1 gives the introduction and motivation. Section 3.2 describes the general model and

the problem formulation, and gives an analytical solution for a special model. Section 3.3

describes the simulation algorithm for a revenue management problem over a finite horizon,

and presents unbiased gradient estimators to be used in the stochastic approximation

algorithm. Section 3.4 gives the problem formulation for jointly optimizing the prices and

the initial inventory level, and proves the convergence of the stochastic approximation

algorithm. Section 3.5 gives a simulation algorithm for the revenue management problem

over an infinite horizon. Section 3.6 illustrates the proposed algorithms with numerical

examples. Conclusions are given in Section 3.7.

Chapter 4 presents a new stochastic derivative estimation technique for performance

functions containing discontinuities. Sections 4.1 and 4.2 give a literature review and

background introduction of the IPA and the LR methods. A detailed description of the

new derivative estimator is given in Section 4.3. In Section 4.4, unbiasedness of the given

estimators is proved and some examples are given to illustrate the application of SLRIPA

in Section 4.5. Numerical results are shown in Section 4.6 followed by conclusions in

Section 4.7.

Chapter 5 presents a new simulation optimization framework for solving global op-

timization problems by establishing a connection between global optimization and evolu-

tionary game theory. Section 5.1 gives a brief literature review and motivation. Section

5.2 establishes a connection between evolutionary game theory and global optimization.
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Section 5.3 formulates the optimization problem as an evolutionary game with a contin-

uous strategy space, and establishes a connection between a particular equilibrium set of

the replicator dynamics and global optimal solutions of the optimization problem. Based

on this connection, a model-based evolutionary optimization algorithm is presented. Sec-

tion 5.4 presents a population model-based evolutionary optimization algorithm by using

a mixture distribution as the probabilistic model which includes a population of individ-

ual models. Section 5.5 illustrates the performance of the algorithm on some benchmark

problems. Conclusions are given in Section 5.6.

Chapter 6 concludes the dissertation and outlines some future research.
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Chapter 2

Preliminaries

2.1 Simulation Optimization

In the literature of simulation, simulation optimization often considers the following

stochastic optimization problem:

sup
θ∈Θ

E[H(θ)], (2.1)

where Θ is the domain of the parameter θ and H(·) is a random variable depending on θ.

This is a static stochastic optimization problem with a parameterized decision variable θ.

As opposed to the static nature of the stochastic optimization problem (2.1), researchers

in the control community generally consider optimal control problems that have a dynamic

nature. In the continuous-time case, let Xt be a Markov process and X0 = x, and consider

the following objective function

Jπ(x) = E
[ ∫ T

0
e−rtR(t,Xt, ut)dt+Φ(XT )|X0 = x

]
,

where T is the time horizon of interest and r the discount rate; X(t) can be viewed as the

state of the system at epoch t, which generally satisfies a stochastic differential equation;

R(t, x, u) is a reward function depending on state x and control u at epoch t, and Φ(·)

is the terminal reward; π is a control policy and ut = π(t,Xt) is the control at epoch t.
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Then the optimal control problem can be formulated as

sup
π
Jπ(x). (2.2)

The corresponding performance measure in discrete-time has the form

Jµ(x) = E
[ T−1∑
k=0

γkG(xk, uk) + Φ(T, xT )|x0 = x
]
,

where xk is the state at epoch k of a controlled Markov process {xk} and its transition

probability at epoch k depends on both the state xk−1 at epoch k − 1 and the action

uk = µk(xk−1), where µk is an element of the control policy µ = {µ0, µ1, . . . , µT−1}; γ is

a discounting factor, G(·, ·) is a reward function, and Φ(·, ·) is the terminal reward. The

optimal control problem of this Markov decision process can be formulated as

sup
µ
Jµ(x). (2.3)

If the policy π in (2.2) or µ in (2.3) is a stationary parameterized policy, i.e., π(t, x) =

fθ(x) for all t and all admissible x or µ = {hθ, hθ, . . . , hθ}, where fθ and hθ are two

functions parameterized by θ, the optimization problem (2.2) or (2.3) is now in the form

of (2.1). Generally, the stochastic optimization problem (2.1) can be viewed as a special

case of (2.2) or (2.3).

When there is finite number of choices in the parameter set Θ of (2.1), techniques in

the literature of ranking and selection can be applied to solve the problem ([30]). When

parameters in Θ take continuous values, typically there are three classes of algorithms

for solving the static optimization problem (2.1): sample average approximation (SAA)
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([64]), gradient-based algorithms, and random search. The basic idea of SAA is to approx-

imate the expectation using the corresponding sample average function and then solve the

resulting sample average optimization problem. Then existing linear programming and

nonlinear optimization techniques can be applied to solve the resulting sample average op-

timization problem; this is one of the major advantages of SAA. Gradient-based algorithms

will be discussed in the following section.

2.1.1 Gradient-based Algorithms

2.1.1.1 Stochastic Approximation

Stochastic approximation (SA) is one of the most important and popular techniques

for simulation optimization. The basic underlying assumption to apply SA is that the

stochastic optimization problem (2.1) can be solved by finding a zero of the gradient, i.e.

by solving

g(θ) = 0,

where g(θ) = ∂E[H(θ)]
∂θ . For functions that are not convex, this may lead only to local

optimality. Let ĝ(θ) be an estimator of the gradient g(θ); the SA algorithm generates

iterates by the formula

θk+1 = ΠΘ(θk + akĝ(θk)), (2.4)

where θk is the value of the parameter at the beginning of iteration k, {ak} is a sequence

of positive step sizes, and ΠΘ is a projection onto the parameter set Θ. To ensure the

convergence of the SA algorithm, the sequence {ak} needs to be selected appropriately,
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generally satisfying: ak > 0, ak → 0,
∑∞

k=1 ak = ∞. The rate of change of the appropri-

ately chosen sequence {ak} will slow down as k becomes larger; this achieves some sort of

averaging effect of the noisy observations. The insight of this averaging effect obtained by

the properly chosen updating sequence and the associated proofs have led to an enormous

literature on general recursive stochastic algorithms.

To simplify the presentation of some convergence results, we denote the bias of the

gradient estimator at iteration k by βk: βk = g(θk)−ĝ(θk), where g(θk) is the true gradient

g(θk) =
∂E[H(θ)]

∂θ

∣∣∣
θ=θk

.

Define the cumulative step size as sn =
∑n−1

i=1 ai and define a function ρ(s) = max{n : sn ≤

s}. To prove the convergence of the algorithm 2.4, we make the following assumptions:

Assumption 2.1 The sequence of step sizes {ak} satisfies: ak > 0, ak → 0,
∑∞

k=1 ak =

∞.

Assumption 2.2 Assume that the domain of the parameter set Θ is defined by {li(θ) ≤

0, i = 1, . . . , s}, where {li(·)} are continuously differentiable functions. At each θ that is

on the boundary of Θ, the gradients of the active constraints are linearly independent.

Assumption 2.3 For each ϵ > 0 and s > 0, limn→∞ P (supn≤l≤ρ(sk+s) ∥
∑l

i=n aiβi∥ >

ϵ) = 0.

Assumption 2.4 The expectation of the value function E[H(θ)] is continuously differ-

entiable.

Assumption 2.5 {anβn} is a bounded sequence tending to zero w.p.1.
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Theorem 6.3.1 of [67] proves the convergence of the stochastic approximation algo-

rithm; this theorem is restated below.

Theorem 2.1 For the optimization problem (2.1), let Θ⋆ be the set of Kuhn-Tucker

points. Let Assumptions 2.1, 2.2, 2.3, 2.4, and 2.5 hold for the stochastic approxima-

tion algorithm (2.4). If Θ⋆ is connected, the sequence of points {θn} converges to a point

in Θ⋆ in probability as n goes to infinity.

2.1.1.2 Gradient Estimation

A good gradient estimator with small bias or no bias and low variance is critical

to the performance of the stochastic approximation algorithm. Gradient estimation has

been studied extensively in the literature of gradient estimation, and in the following we

will give a brief introduction to the existing gradient estimation techniques.

For ease of explanation, assume that the performance functionH(θ) in the stochastic

optimization problem (2.1) is of the form H(X(ω; θ)), where X(ω; θ) is a random variable

defined on the probability space (Ωω,Fω,Pω), and θ ∈ Θ ⊂ Rn. For example, in a queueing

system, θ could be the mean arrival time and X the interarrival time. J(θ) can be written

as

J(θ) =

∫
Ω
H(X(ω; θ))dPω(ω). (2.5)

Suppose we are interested in the sensitivities of J(θ) with respect to the parameters θ.

We introduce three major gradient estimation methods that have been widely applied in

the literature: finite differences (FD), infinitesimal perturbation analysis (IPA), and the

likelihood ratio method (LR).
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A. Finite Differences

The finite differences method is a “brute force” or “naive” method, which simply estimates

the objective function at two different values of the parameter and then takes the difference

of the estimates divided by the difference of values of the parameter to obtain a gradient

estimator. The estimator could be extremely noisy if the two values of the parameter are

close to each other since the output is stochastic; hence there is a trade-off between bias

and variance when choosing values of the parameter. The ith component of the one-sided

forward difference gradient estimator is given by

H(X(ω; θ +∆θiei))−H(X(ω; θ))

∆θi
,

where ∆θi is a perturbation of the ith element of θ, and ei denotes the unit vector in the

ith direction.

The ith component of the two-sided symmetric difference gradient estimator is given

by:

H(X(ω; θ +∆θiei))−H(X(ω; θ −∆θiei))

2∆θi
.

For each realization of the sample ω, one gradient estimate is obtained.

B. Infinitesimal Perturbation Analysis

Different from FD, IPA examines the properties of sample paths and derives unbiased

gradient estimators by directly operating on the sample paths. To obtain a gradient esti-

mator for J(θ) with respect to θ, under appropriate conditions, IPA directly differentiates
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the performance function H to obtain an unbiased gradient estimator

∇θJ(θ) = EPω [∇θH(X(ω; θ))], ,

= EPω

[dH(X)

dX

(∂X(ω; θ)

∂θ1
, . . . ,

∂X(ω; θ)

∂θn

)]
, (2.6)

where ∇θ = ( ∂
∂θ1

, · · · , ∂
∂θn

); dH(X)
dX can be understood as the derivative of H given a

random variate X, the derivation of which requires some knowledge about the structure

of H; ∂X(ω;θ)
∂θi

is the derivative of a random variable with respect to the parameter θi

([100, 32]). Assume ∀θ ∈ Θ, X(ω; θ) is differentiable w.p.1. The derivative of the random

variable X for each ω is then defined as

∂X(ω; θ)

∂θi
= lim

∆θi→0

X(ω; θ +∆θiei)−X(ω; θ)

∆θi
.

For example, ifX is exponentially distributed with a parameter λ, i.e., X ∼ Exp(λ), X can

be generated from a uniformly distributed random variable ω ∼ U [0, 1] as X = −λ lnω.

Then an IPA estimator of X with respect to λ is given by X
λ .

If the distribution function F (·; θ) of X(ω; θ) is known, we have

∂X(ω; θ)

∂θi
= − ∂F (X; θ)/∂θi

∂F (X; θ)/∂X
,

the derivation of which can be found in [100]. Since ω does not depend on θ, we only

need to generate one single sample path ω to get an estimate of the sensitivity for each

parameter of interest. IPA explores the structure of sample paths, and the resulting

gradient estimator generally has a lower variance compared with FD and LR.

The interchangeability of differentiation and integration is needed to derive (2.6),
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which generally requires H to be uniformly integrable. One sufficient condition given by

Glasserman ([43]) is that H is Lipschitz continuous with respect to the parameter of inter-

est. When there are discontinuities in sample paths of X, IPA generally cannot be applied

directly. Deriving efficient gradient estimators for payoff functions with discontinuities is

a challenge.

C. Likelihood Ratios (LR)

In contrast to IPA, LR differentiates probability measures instead of the performance func-

tions to construct derivative estimators and hence does not require continuity of perfor-

mance functions along sample paths. To derive an LR derivative estimator for H(X(ω; θ))

with respect to θ, we assume that PX is the probability measure induced by the random

variable X(ω; θ), i.e., PX(B; θ) = Pω{ω : X(ω; θ) ∈ B} for any B ∈ B(R), where B(R) is

the Borel σ-algebra. By the change of variable formula [96], we have

∫
Ω
H(X(ω; θ))dPω(ω) =

∫
H(x)dPX(x; θ).

Differentiating both sides of the above equation gives

∇θJ(θ) = EQ̂

[
H(X)

(
∇θ ln

dPX

dQ̂
(X)

)dPX

dQ̂
(X)

]
= EQ

[
H(X)

(
∇θ ln

dPX

dQ̂
(X)

)dPX

dQ
(X)

]
, (2.7)

where Q̂ is the Lebesgue measure if X is a continuous random variable and is the counting

measure if X is a discrete random variable (i.e., dPX/dQ̂ corresponds to the probability

density and mass functions, respectively); Q is a probability measure such that PX is

absolutely continuous with respect to Q. H(X)
(
∇θ ln

dPX

dQ̂
(X)

)
dPX
dQ (X) is called the LR
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derivative estimator. The LR method does not require the performance function to be

continuous, and the interchangeability of differentiation and integration is often not a

problem [44]. However, it is not always possible to move parameters of interest into

probability density functions; morover, note that the support of the distribution of X

should not depend on θ1 when deriving (2.7). Compared with IPA, LR estimators tend

to have larger variances, especially when the input process involves an oft-repeated (e.g.

i.i.d) random variable whose common distribution depends on the parameter of interest.

Although IPA is constructed by differentiating the performance function, whereas

LR involves differentiation of the underlying probability measure, it is possible to unify

them in a single framework as in [72].

2.2 Global Optimization

We consider the following optimization problem:

y⋆ ∈ argmax
y∈Y

H(y), (2.8)

where the solution space Y ⊂ Rn is a nonempty set. The objective function H : Y → R is

a deterministic function bounded from above, i.e., ∃U ∈ R such that H(y) ≤ U ∀y ∈ Y.

y⋆ is a global optimal solution if H(y⋆) ≥ H(y) ∀y ̸= y⋆, y ∈ Y.

In this section, we review the model-based cross-entropy method that can be applied

to solve (2.8) and evolutionary game theory.
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2.2.1 Cross-Entropy (CE) Algorithms

CE was first designed to estimate the probability of rare events and then it was

realized that CE can also be used to solve global optimization problems. Let {f(·; θ)}

be a family of probability density functions defined on Y parameterized by a parameter

(vector) θ. The CE algorithm initially tries to estimate the following probability

l = Pθ(H(Y ) ≥ γ), (2.9)

where γ is a real number. Suppose H(Y ) has a maximum H⋆. When γ is close to H⋆,

{H(Y ) ≥ γ} is a rare event. The optimal importance sampling distribution for this rare

event estimation problem is given by

g⋆(y) =
1{H(Y ) ≥ γ}f(y; θ)

l
, (2.10)

where 1{·} is an indicator function. It is easy to see that the optimal importance sampling

distribution requires the probability density (mass) concentrated on the area {y : H(y) ≥

γ}. Since l in (2.10) is unknown, g⋆ does not have an analytical form. In order to solve

this rare event simulation problem, CE finds the optimal f(·; θ⋆) in the parameterized

family {f(·; θ)} to approximate g⋆. To solve the global optimization problem (2.8), CE

solves a sequence of rare event estimation problem and adaptively updates {γk}, so that

the resulting p.d.f/p.m.f with parameter θk assigns most of the probability or mass to

{y : H(y) ≥ γk} and thus candidate solutions close to the global optimal solutions can be

sampled with a high probability. The main CE algorithm for optimization is summarized

as follows.
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Algorithm 2.2.1 (Main CE algorithm for optimization) Choose ρ ∈ (0, 1] to be the

fraction of samples chosen for parameter updating and let N be the number of samples

generated at each iteration.

1. Choose an initial parameter θ0 ∈ Θ and set k = 0.

2. Generate samples Y1, . . . , YN from f(·; θk) and compute the 1 − ρ quantile of the

performance γk by ordering {H(Yi)
N
i=1} from smallest to largest.

3. Update the parameter θk+1 by solving the optimization problem

θk+1 := argmax
θ∈Θ

1

N

N∑
i=1

1{H(Yi) ≥ γk} ln f(Yi; θ).

4. If for some k > d, say d = 5,

γk = γk−1 = . . . = γk−d,

then stop; otherwise, set k = k + 1 and reiterate from step 2.

2.2.2 Evolutionary Games

In this section, we give a brief introduction to game theory and evolutionary game

theory. Consider a simple two-player game. A is the payoff matrix for player I and B

is the payoff matrix for player II. Player I has the pure strategy set S1 = {1, . . . , n},

and S2 = {1, . . . , n} is the pure strategy set for player II. If player I plays the pure

strategy i and player II plays j, player I receives aij , the (i, j) element of A, and player II

receives bij , the (i, j) element of B. The mixed strategy of player I is a probability vector

x = (x1, . . . , xn)
T , where xi is the probability of choosing strategy i ∈ S1. Similarly, B
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is the payoff matrix for player II with mixed strategy y = (y1, . . . , yn)
T . If the game is

symmetric, we have BT = A. The expected payoff for player I and player II will be xTAy

and xTBy, respectively.

Evolutionary game theory studies the game in a population setting. Assume there is

a population of agents which are programmed to play n different pure strategies in the set

{1, . . . , n} and let xi be the percentage of agents playing pure strategies i for i ∈ {1, . . . , n}

in the population. We assume that xi is a differentiable function of time t. If individuals

meet randomly and then engage in a symmetric game with a payoff matrix A, then (Ax)i

is the expected payoff for an individual playing strategy i and xTAx is the payoff of an

agent that is randomly selected from the population, which is also the population average

payoff. If the payoff of the individual playing i is greater than the population average

payoff, the number of agents playing i will increase. Assume that the per capita rate of

growth, i.e. the logarithmic derivative ˙(lnxi) := ẋi/xi, is given by the difference between

the payoff for type i and the average payoff in the population. This yields the replicator

equation ([107])

ẋi = xi((Ax)i − xTAx) ∀i = 1, . . . , n.

Replicator dynamics is a selection process, according to which, more successful strategies

will spread in the population.

2.2.3 Other Dynamics

Besides replicator dynamics, there are other dynamics ([55]), and we introduce three

as follows.
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2.2.3.1 Imitation Dynamics

The imitation dynamics is given by ẋi = xi
∑

j [ϕij(x) − ϕji(x)]xj , where ϕij is

the rate at which an agent playing the strategy j adopts the strategy i. One plausible

assumption is that this rate depends only on the payoffs achieved by the two agents, i.e.,

ϕij(x) = ϕ(fi, fj), where fi, fj are payoff functions and ϕ(u, v) defines the imitation rule

(the same for all players). The simplest rule is to imitate the better, i.e.,

ϕ(u, v) =


0 if u ≤ v,

1 if u > v.

In this case, the percentage of agents playing a strategy increases if and only if its payoff

is larger than the median of the payoffs of all the strategies.

2.2.3.2 Best Response and Logit Dynamics

Unlike imitation dynamics, best response dynamics requires more than imitating

the better agent, and chooses the best reply to the current mean population strategy x:

ẋ ∈ BR(x)− x,

where BR(x) is the set of best replies to x ([55]). The smoothed version of the best

response dynamics-logit dynamics is given as follows:

ẋi =
efi/ϵ∑
j e

fj/ϵ
− xi

with ϵ > 0. As ϵ→ 0, this converges to the best reply dynamics.
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2.2.3.3 The Brown-von Neumann-Nash Dynamics

The Brown-von Neumann-Nash dynamics (BNN), is defined by

ẋi = ki(x)− xi

M∑
j=1

kj(x),

where ki(x) = max(0, fi −
∑M

j=1 xjfj) denotes the positive part of the excess payoff for

the strategy i. The discrete-time version of the above dynamics is given by

xi(t+ 1) =
xi(t) + ki(x(t))

1 +
∑M

j=1 kj(x(t))
, ∀i = 1, . . . ,M.
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Chapter 3

Simulation-based Algorithm for Dynamic Pricing and Inventory

Control

3.1 Introduction and Motivation

In this chapter we consider a joint optimization of dynamic pricing and inventory

control problem and focus on developing a simulation-based algorithm to solve this prob-

lem. As mentioned in Chapter 1, in the literature of revenue management, there are two

different types of demand models: discrete-time models and continuous-time models. For

discrete-time models, dynamic pricing research works include [27, 24, 21]. Related works

using continuous Brownian demands include [85, 7, 19, 20], and [5].

All these works using continuous Brownian demand models focus on inventory con-

trol and try to characterize the optimal ordering policy, whereas works addressing the

problem of jointly optimizing pricing and ordering policies under Brownian demands are

relatively rare. [86] analyzed a dynamic pricing problem with demand uncertainty mod-

eled by a Brownian motion without incorporating ordering decisions. For a price-sensitive

demand modeled by continuous diffusion processes, the dynamic pricing problem can be

formulated as a stochastic control problem. For a class of pricing policies that allow a

limited number of price changes, for example the markdown pricing policy, the problem

of jointly optimizing the prices and the initial inventory level can be formulated as a

continuous stochastic control problem with the initial ordering as a decision variable.

The aforementioned stochastic control problem generally does not admit an analyti-
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cal solution. [22] considered a special continuous demand model, where the arrival rate and

the uncertainty term in the demand only depend on the price. In their formulation, the

dynamic pricing problem is transformed into a deterministic optimization problem and is

solved numerically. But their method cannot be generalized to solve dynamic pricing prob-

lems with general demand models. There are two major types of numerical methods for

stochastic control problems ([83]). Purely deterministic approximation methods discretize

the HJB equation by finite differences or a finite element method, and thus obtain an ap-

proximate value function at points on the space-time grid. Probabilistic methods include

the Markov chain approximation method presented by [70]. Markov chain approximation

and finite differences cannot be applied directly to the dynamic pricing problem with a

limited number of price changes because of the constraint on the pricing policy. Moreover,

it is desirable to understand how the uncertainties in the demand and the changing of

other parameters, such as parameters in the arrival rate and holding cost, would affect

the pricing policy and the profit. This sensitivity information cannot be obtained directly

using Markov chain approximation.

In the literature of supply chain management, simulation-based algorithms have

been applied to solve inventory control problems ([31, 34, 45, 66, 60]) and network revenue

management problems ([9, 104]). In simulation-based algorithms, the key is to obtain

efficient gradient estimations. [9] proposed an innovative simulation-based optimization

method for computing protection levels in a virtual nesting control scheme, in which a

finite difference estimator is derived, because a discrete model for capacity and demand

is used. [104] analyzed a continuous version of the problem, which enabled the derivation

of a gradient estimator using infinitesimal perturbation analysis (IPA). However, all these

methods can only be applied to discrete-time models.
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Introduced by [52], IPA has been widely used in sensitivity analysis for discrete-

event systems. IPA enables the sensitivity of a performance function to be estimated

while observing a single sample path of a system and hence offers significant computational

savings compared to “brute force” finite difference methods. IPA generally requires the

performance function to be continuous, which makes IPA not applicable in many cases.

By using conditional expectation, smoothed perturbation analysis (SPA) ([49, 37]) can

sometimes “smooth” out the discontinuities in sample paths. Rather than differentiating

a performance function as IPA does, the likelihood ratio (LR) method constructs derivative

estimators from the derivatives of the probability measure associated with a simulation

model. The method was proposed by [48], [87], and [91] to study discrete-event systems

and has also been used in financial applications ([44]).

Motivated by the fact that the combined dynamic pricing and inventory control

problem generally does not have an analytical solution, and numerical methods such as

Markov Chain approximation and finite differences cannot be used to solve the problem

effectively, we develop a simulation-based algorithm for solving this stochastic control

problem in revenue management.

3.2 General Model

We consider a problem in which a vendor wants to sell a single item with an initial

inventory level X0 = S, and no inventory is ordered during the selling process. The price

of the item can be adjusted dynamically over time. The selling process will continue until

the inventory is depleted for an infinite horizon problem; for a finite horizon problem, the

selling process stops before T , where T is a positive constant. We assume that the demand
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depends on the price, and the cumulative demand up to time t follows a diffusion process:

Dt =

∫ t

0
λ(ps)ds+

∫ t

0
σ(Ds, ps)dBs, t ≥ 0, (3.1)

where ps is the price at time s, λ(p) is the demand at price p; σ(·, ·) is a measure of the

volatility, and {Bs} is a standard Brownian motion. The differential form of the demand

is given by: dDt = λ(pt)dt+ σ(Dt, pt)dBt. In our model, Dt might be negative because of

the Brownian motion, which can be interpreted as return of the product. Here we assume

σ(·, ·) has a general form to emphasize wider applicability. Let Xt denote the inventory

level at time t, given by Xt = X0−Dt, where X0 is the initial inventory level. Xt satisfies

the stochastic differential equation

dXt = −dDt = −λ(pt)dt− σ(X0 −Xt, pt)dBt. (3.2)

Assume that the holding cost per unit time is c(x) for an inventory level x. The

epoch when all the inventory is sold is a stopping time, defined by τ = inf{t : Xt = 0}. We

adjust the prices over time to sell the inventory over the horizon of interest [0, T ], with the

goal of maximizing the expected total profit, which is given by E
[ ∫ τ∧T

0 psdDs− c(Xs)ds
]
,

where τ ∧ T = min{τ, T}, psdDs is the revenue obtained when dDs inventory is sold,

c(Xs)ds is the holding cost associated with the inventory Xs for the time period ds, and

T is a fixed constant for a finite horizon problem and ∞ for an infinite horizon problem.

Here, we begin by considering a Markov control policy π : [0, T ]× R+ → P such that the

price at time t is given by pt = π(t,Xt), where P ⊂ R+ is the domain of the price.
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3.2.1 Dynamic Pricing Over a Fixed Time

With a Markov control policy π, the total expected profit starting from time t with

inventory x is

Jπ(t, x) =E
[ ∫ τ∧T

t
−psdXs − c(Xs)ds

∣∣∣Xt = x
]

=E
[ ∫ τ∧T

t
ps[λ(ps)ds+ σ(Xt −Xs, ps)dBs]− c(Xs)ds

∣∣∣Xt = x
]

=E
[ ∫ τ∧T

t
[psλ(ps)− c(Xs)]ds

∣∣∣Xt = x
]
.

The third equality above follows since E[
∫ T
t σ(Xt−Xs, ps)dBs|Xt = x] = 0. The dynamic

pricing problem can be formulated as

sup
π
Jπ(0, S). (OPT1)

Denote V (t, x) = supπ Jπ(t, x). The Hamilton-Jacobi-Bellman (HJB) equation for the

optimization problem OPT1 is given by

sup
ps

[LV (s, xs) + psλ(ps)− c(xs)] = 0, (3.3)

with boundary conditions V (T, x) = 0 ∀ x ∈ [0, S], and V (t, 0) = 0 ∀t, where

L ≡ ∂

∂t
+ (−λ(ps))

∂

∂x
+

1

2
[σ(X0 − xs, ps)]

2 ∂
2

∂x2

.
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3.2.2 Dynamic Pricing Over Infinite Horizon

Consider the dynamic pricing problem with a selling period over an infinite horizon.

Given a pricing policy π, the total expected profit is

Jπ(S) = E
[ ∫ τ

0
ps(−dXs)− c(Xs)ds|X0 = S

]
= E

[ ∫ τ

0
[psλ(ps)− c(Xs)]ds|X0 = S

]
.

Then the dynamic pricing problem can be formulated as

sup
π
Jπ(S). (OPT2)

The value function V is defined as V (x) = supπ Jπ(x). For the optimization problem

OPT2, the HJB equation is

sup
p∈P

[LV (x) + pλ(p)− c(x)] = 0, (3.4)

with the boundary condition V (0) = 0, where L ≡ (−λ(p)) ∂
∂x + 1

2 [σ(X0 − x, p)]2 ∂2

∂x2 .

The HJB equations (3.3) and (3.4) are difficult to solve, and there is no closed-form

solution in general. We give an analytical solution for a special case of the infinite horizon

problem in the following, in which λ(p) = a − bp, σ(y, p) = ϑp
√
y, and the cost function

c(x) = rx2.

Theorem 3.1 For the demand model with σ(y, p) = ϑp
√
y, arrival rate λ(p) = a − bp,

and holding cost c(x) = rx2, where a, b, ϑ, r are some positive constants, if the following
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condition holds,

b+
1

4b
− ϑ2 > 0,

the optimal pricing policy for the problem (OPT2) is p⋆ = 2bα2x+bα1
2ϑ2α2x+2b−2ϑ2X0

and the optimal

value function is V (x) = α2x
2 + α1x, where

α1 =
4abα2 − 2ϑ4α2X0

4b2
, α2 =

√
r

b+ 1
4b − ϑ2

.

Proof. We assume that the optimal function takes the form V (x) = α2x
2+α1x; then we

plug this value function into the HJB equation (3.4) and take the derivative with respect

to p, which is set to zero to get the optimal p∗. Substituting this p∗ back into (3.4) and

letting all the coefficients of x and x2 be zero gives the result. It is easy to check that the

second derivative condition also holds.

3.3 Pricing with Fixed Number of Price Changes Over Finite Horizon

As mentioned in Section 3.2.2, the HJB equations are difficult to solve, and there

is no analytical solution for general stochastic control problems except for some problems

with special structure like the linear stochastic quadratic control problem. Numerical

methods such as Markov chain approximation and finite difference may give us very good

approximate results, but in the resulting pricing policy, prices could change frequently

with the changing of the inventory level, and this may not be practical. Henceforth, we

consider a class of pricing policies that only allow a limited number of price changes, which

includes the well-known markdown pricing policy.
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3.3.1 Formulation of the Optimization Problem

Consider selling the inventory over a finite time interval [0, T ]. LetN be the maximal

number of times that the price can be changed; let S = S0 > S1 > · · · > SN−1 > SN = 0

be fixed inventory levels, at which the price changes. Define the first time when the

inventory drops to Sk as τk = inf{t ≥ 0 : Xt = Sk}. As shown in Figure 3.1, before

the inventory level falls to S1 at τ1, the price p1 is charged; the price p2 is then charged

until the inventory drops to S2 at τ2; finally, the price pN is charged until the inventory

drops to SN = 0. If all the inventory cannot be sold before T , the selling process stops

at T . This type of policy includes the markdown pricing policy that is widely applied in

high-tech and perishable products retailing ([101]). Let πf = {pk, k = 1, · · · , N} denote

this non-Markov pricing policy; we try to find {pk} to maximize the total expected profit,

given by

Vπf
(S) = E

[ N∑
k=1

∫ τk∧T

τk−1

−pkdXs − c(Xs)ds|X0 = S
]
, (3.5)

where we define τ0 = 0. The dynamic pricing problem can be formulated as

sup
πf

Vπf
(S). (3.6)

To simplify the notation, we denote Vπf
by V henceforth and define the incremental value

function by

∆Vk = E
[ ∫ τk∧T

τk−1

−pkdXs − c(Xs)ds|Xτk−1
= Sk−1

]
. (3.7)
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There is no analytical solution for the above optimization problem (3.6) in general. We

propose a simulation-based method to solve this problem. We first discretize the stochastic

differential equation (3.2) and then present an algorithm to simulate the inventory level

and estimate the stopping times {τk}, from which we define discretized incremental value

functions to estimate the incremental value function {∆Vk}. Second, we derive gradient

estimators for the expectation of the discretized value function with respect to the prices

{pk}. Finally, we use stochastic approximation to find the optimal prices {p⋆k}.

1
S

kS

kτ

2
p

1
τ

0
S

1
p

2
τ

2
S

sp ...
kp 1+kp

Figure 3.1: Pricing policy

3.3.2 Estimate the Value Function

In this section, we first use Euler discretization to discretize the stochastic differential

equation (3.2), describe how to simulate the inventory level, and define the discretized

value function. Then we analyze the properties of a stopping time and show how to

estimate the conditional expectation of the stopping time in the discretized value function.

Finally, we give a simulation algorithm to estimate the discretized value function.
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3.3.2.1 The Inventory Level

To simulate the evolution of the inventory level given a pricing policy πf , we dis-

cretize time with a fixed time step h. Set τ0 = 0 and denote the time when price pk is

first charged for k ≥ 1 by tk0 = τk−1, where we use the superscript k in tk0 to indicate that

price pk is active. Define tki = τk−1 + ih as the discretized time, with the corresponding

inventory level denoted by Xk
i , which follows the Euler discretization of the stochastic

differential equation (3.2):

Xk
i+1 = Xk

i − λ(pk)(t
k
i+1 − tki )− σ(X0 −Xk

i , pk)
√
tki+1 − tkiZ

k
i+1, (3.8)

for τk−1 ≤ tki < τk, where {Zk
i } are independent and identically distributed standard

normal random variables. Denote a realization of Xk
i by xki . Sample paths of the inventory

level are generated as follows:

Start from x10 = S0 and generate x11 using equation (3.8) with z11 generated from a

standard normal distribution. Then we want to decide if the inventory crosses S1, i.e., if a

stopping time occurs in [t10, t
1
1]. Consider two different possibilities x11 > S1 and x11 ≤ S1.

If x11 > S1, by the properties of Brownian motion, the inventory level crosses S1 in

[t10, t
1
1] with a probability 1− η11, where η

1
1 defined later is a positive number depending on

x10, x
1
1 and S1. To decide if a stopping time occurs in [t10, t

1
1], generate a random number

U1
1 ∼ U [0, 1]. If U1

1 < η11, the inventory level does not cross S1, and then we continue to

generate sample points of the inventory using equation (3.8) and check if a stopping time

occurs. If U1
1 ≥ η11, a stopping time denoted by τ11 occurs in [t10, t

1
1]. Then starting from

τ11 , price p2 is charged and more sample points are generated starting from τ11 with a fixed

time step h similarly.
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If x11 ≤ S1, a stopping time denoted by τ11 must have occurred in [t10, t
1
1]. Then

starting from τ11 , price p2 is charged and more sample points are generated starting from

τ11 using equation (3.8) with a fixed time step h similarly.

A more detailed description of the sample path generation algorithm is presented

below:

Step 0: Initialization. Set i = 0, k = 1, x10 = S0, and t
1
0 = 0.

Step 1: Set tki+1 = tki +h. If t
k
i+1+h < T , generate xki+1 at tki+1 using equation (3.8) with

zki+1 generated from a standard normal distribution; otherwise generate xki+1 by

xki+1 = xki − λ(pk)(T − tki )− σ(S − xki , pk)
√
T − tki z

k
i+1. (3.9)

Given xki at tki and xki+1 at tki+1, we want to decide if the inventory crosses Sk in [tki , t
k
i+1],

i.e., if a stopping time occurs in [tki , t
k
i+1]. Consider two different possibilities xki+1 > Sk

and xki+1 ≤ Sk.

Step 2–Case 1: xki+1 > Sk. Define the minimum of xt between time tki and tki+1 given

xki and xki+1 by ℓki+1 = inftki <t≤tki+1
xt, and define ℓk0 = Sk−1 in particular. By [61], we have

P
(
ℓki+1 > Sk

∣∣xki , xki+1

)
= ηki+1(Sk, x

k
i , x

k
i+1), where

ηki+1(Sk, x
k
i , x

k
i+1) = 1− exp

(
−

2(xki − Sk)(x
k
i+1 − Sk)

(ti − ti−1)[σ(X0 − xki , pk)]
2

)
, xki > Sk, x

k
i+1 > Sk.

To decide if a stopping time occurs in [tki , t
k
i+1], generate U

k
i+1 ∼ U [0, 1]. If Uk

i+1 < ηki+1,

the inventory does not cross Sk; set i = i + 1, and return to Step 1. If Uk
i+1 ≥ ηki+1, the
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inventory may cross Sk in [tki , t
k
i+1]. Define

τki+1 = min
{
T, inf{t : xt = 0, given xki and xki+1, and ℓ

k
i+1 < 0}

}
. (3.10)

Set τk = τki+1, where the index i + 1 is used to indicate that the stopping time occurs

in [tki , t
k
i+1]. Charge price pk+1 starting from τk. Define tk+1

0 = τk, x
k+1
0 = Sk, set

k = k + 1, i = 0, and return to Step 1.

Case 2: xki+1 ≤ Sk. The inventory must have crossed Sk in [tki , t
k
i+1] and the first time

that the inventory crossed Sk is defined by

τki+1 = min
{
T, inf{t : xt = 0, given xki and xki+1 ≤ Sk}

}
.

Set τk = τki+1 and charge price pk+1 starting from τk. Define tk+1
0 = τk, x

k+1
0 = Sk, set

k = k + 1, i = 0, and return to Step 1.

To simplify the problem, define υk = min{i : xki > Sk, x
k
i+1 ≤ Sk}, which indicates

the first time interval in which the inventory level must have crossed Sk. Similarly, define

ne = min{k : tki < T ≤ tki+1 for some i} and υe = min{i : tne
i < T ≤ tne

i+1}. It is easy to

see that when the selling stops between tki and tki+1, ne is the index k of the active price

pk and υe is the index i of time tki , which indicate the time interval in which the selling

stops and the index of the corresponding active price, respectively.
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3.3.2.2 Discretized Value Function

Given a pricing policy πf , the discretized incremental value function ∆V̂k corre-

sponding to (3.7) computed along a sample path is given by

∆V̂k =− pk∆Sk −
υk∑

m=0

{[m−1∑
i=0

c(xki )h+ c(xkm)
(
E[τkm+1|xkm, xkm+1]− tkm

)]
×

m∏
j=0

I{Uk
j <ηkj }

I{Uk
m+1≥ηkm+1}

}
, (3.11)

where ∆Sk = Sk − Sk−1 is the change of the inventory level when pk is active for k < ne,

and ∆Sne = xne
υe+1

∏υe
j=0 I{Une

j <ηne
ne }I{U

ne
υe+1<ηne

υe+1}I{x
ne
υe+1≥0} − Sne−1 is the change of the

inventory level when pne is active; for simplicity, define ηk0 = 1 and let
∑m−1

i=0 c(xki )h = 0

for m = 0. The first part of the right hand side of ∆V̂k is the revenue obtained by

selling −∆Sk amount of inventory, and the second part is the holding cost; the product

of indicator functions indicates the time interval in which the price changes.

Along a sample path, the discretized value function corresponding to (3.5) can be

computed by V̂ =
∑ne

k=1∆V̂k. The dynamic pricing problem over a finite horizon (3.6)

can be transformed to:

sup
πf

E
[
V̂ (S)

]
, (3.12)

where πf = {pk, k = 1, · · · , N} is the pricing policy, and the expectation is taken under the

policy πf . Stochastic approximation will be used to solve this optimization problem later.

In the following sections, we first analyze how to compute the conditional expectation of a

stopping time in (3.11) that is needed to estimate E[V̂ (S)] and give a simulation algorithm

to estimate E[V̂ (S)]. Then we derive sample path-based gradient estimators for E[V̂ (S)]
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with respect to pricing parameters {pi, i = 1, · · · , N}.

3.3.2.3 Estimating the Expectation of Stopping Times

To estimate the expectation of V̂ (S) by using Monte Carlo simulation requires

estimating the expectation of the stopping time τki+1 given two end points. Given xki

and xki+1 at time tki and tki+1, denote the conditional probability density of τki+1 by

fk(t) = P (τki+1 ∈ [t, t+ dt]|xki , xki+1), which is given by ([78]):

fk(t) =
(xki − Sk)√

2π(t− tki )
3[σ(X0 − xki , pk)]

2

√
h

tki+1 − t

× exp

{
−

[(xki − xki+1)(t− tki )− (xki − Sk)h]
2

2h(t− tki )(t
k
υk+1 − t)[σ(X0 − xki , pk)]

2

}
. (3.13)

Generating from this density can be accomplished by generating inverse Gaussian random

variables as we now describe in the two possible cases.

Case 1. Xk
i > Sk and Xk

i+1 < Sk:

The probability density function of an inverse Gaussian random variable Y is given

as

gk(y;λk, θk) =

√
λk

2πy3
exp

(
− λk(y − θk)

2

2θ2ky

)
, (3.14)

where θk is the mean and λk is the shape parameter. Notice that fk(t) is the probability

density function of a stopping time of a Brownian motion conditioned on two given end

points, whereas the inverse Gaussian distribution describes the distribution of the time it

takes for a Brownian motion to reach a certain level. It is easy to show that if a random

variable Y has the density gk(y;λk, θk) with θk = − xk
i −Sk

xk
i+1−Sk

and λk =
(xk

i −Sk)
2

h[σ(X0−xk
i ,pk)]

2 , then
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tki +
hY
1+Y has the probability density function (3.13). Then we have

E[τki+1|xki , xki+1] =

∫ tki+1

tki

t
fk(t)

d
t =

∫ ∞

0
ygk(y;λk, θk)dy = E

[
tki +

hY

1 + Y

]
, (3.15)

where Y is an inverse Gaussian random variable that has the density g(y;λk, θk) with

θk = − xk
i −Sk

xk
i+1−Sk

and λk =
(xk

i −Sk)
2

h[σ(X0−xk
i ,pk)]

2 .

Case 2. Xk
i > Sk and Xk

i+1 > Sk:

In this case, by the definition of τki+1 in (3.10), τki+1 is well defined only when

ℓki+1 < Sk, i.e., the minimum of the inventory level is less than Sk between time tki and

tki+1. Conditioned on ℓki+1 < Sk, we have

E[τki+1|xki , xki+1] =

∫ tki+1

tki

t
fk(t)

P (ℓki+1 < Sk)
dt =

∫ ∞

0
y
gk(y;λk, θk)

P (ℓki+1 < Sk)
dy = E

[
tki +

hȲ

1 + Ȳ

]
,

(3.16)

where Ȳ is an inverse Gaussian random variable that has the density g(y;λk,−θk). There-

fore we can obtain unbiased estimates of the expectation of τki+1 by generating inverse

Gaussian random variates. Inverse Gaussian random variates can be generated by using

the algorithm in [79].

3.3.2.4 Simulation Algorithm

We use the following algorithm to simulate the inventory level and to generate inverse

Gaussian random variates that are used to estimate the expectation of the stopping time.

By following this algorithm, an unbiased estimate of E[V̂ (S)] can be obtained. When the

discretized step size goes to 0, we have E[limh→0 V̂ (S)] = E[V (S)].
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Algorithm 1. (Simulation Algorithm Over Finite Horizon)

Initialization: For a given pricing policy πf , choose a time step h > 0. Let k = 1, t10 = 0,

I0 = 1, and x10 = S0 = S. Let τ0 = 0.

• step 1: Set i = 0, tk0 = τk−1 for k > 1, Ik = 1, and xk0 = Sk−1. Go to step 2.

• step 2: Let the price be pk according to the pricing policy πf and generate zki+1 ∼

N(0, 1). Let tki+1 = tki + h.

– When tki+1 + h < T , compute xki+1 by (3.8).

∗ If xki+1 ≥ Sk, generate U
k
i ∼ U(0, 1), and compute ηki+1(Sk, x

k
i , x

k
i+1). If

Ik = 1, let Ik = IkI{Uk
i <ηki+1}

, θk =
xk
i −Sk

xk
i+1−Sk

, λk =
(xk

i −Sk)
2

h[σ(S−xk
i ,pk)]

2 , i = i+ 1,

then go to step 3;

∗ If xki > Sk > xki+1, let υk = i, θk = − xk
i −Sk

xk
i+1−Sk

, and λk =
(xk

i −Sk)
2

h[σ(S−xk
i ,pk)]

2 ,

then go to step 3.

– If tki + h < T ≤ tki+1 + h, let υe = i, ne = k, and compute xki+1 by equation

(3.9).

∗ If xkυe+1 > 0, generate Uk
i ∼ U(0, 1), and compute ηki+1(0, x

k
υe , x

k
υe+1). Let

θk =
xk
i

xk
i+1

and λk =
(xk

i )
2

h[σ(S−xk
i ,pk)]

2 .

∗ If xkυe+1 ≤ 0, let θk = − xk
i

xk
i+1

and λk =
(xk

i )
2

h[σ(S−xk
i ,pk)]

2 .

∗ Generate a sample y from (3.14). Let τki+1 = tki +
hy
1+y and stop.

• step 3: Generate a sample y from (3.14). Let τki+1 = tki +
hy
1+y .

– When Ik = 1, if Xk
i+1 > Sk, the price does not change and go to step 2; if

Xk
i+1 ≤ Sk, the price changes, let τk = τki+1, k = k + 1, and go to step 1.

– When Ik = 0, the price changes, let τk = τki+1, and go to step 1.
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3.3.3 Gradient Estimation

In this section, we derive gradient estimators for E[V̂ (S)] with respect to the pricing

parameters {pk}, which involve the gradient estimators of the inventory level, and the

stopping times. To circumvent the difficulty of differentiating indicator functions in V̂ (S),

smoothed perturbation analysis ([37]) is used. Before deriving the gradient estimators, we

make the following assumptions.

Assumption 3.1 λ(·) is differentiable, and σ(·, ·) is differentiable in both its arguments;

λ(·) is Lipschitz continuous and σ(·, ·) is Lipschitz continuous in each argument, i.e., there

exist positive constants Kλ, Kg1, and Kg2 such that

∥λ(p′)− λ(p)∥ ≤ Kλ∥p′ − p∥,

∥σ(X ′, p)− σ(X, p)∥ ≤ Kg1∥X ′ −X∥,

∥σ(X, p′)− σ(X, p)∥ ≤ Kg2∥p′ − p∥.

Assumption 3.2 The prices {pk} are bounded from above and below, i.e. pk ∈ [p, p̄]∀k =

1, · · · , N , where p and p̄ are positive constants, and p < p̄; the arrival rate λ(p) lies in the

interval [λ, λ̄] and σ(·, ·) belongs to [σ, σ̄], where λ, λ̄, σ, and σ̄ are positive constants and

λ < λ̄, σ < σ̄. The cost function c(x) is a polynomial function of x.

Assumption 3.1 is very common and is satisfied by many practical models. Assumption

3.2 puts some constraints on the holding cost. One of the special cases for the holding

cost is the commonly used linear cost, which satisfies Assumption 3.2. We write Xk
i (pk)

to show the dependence of Xk
i on price pk.

Lemma 3.1 If Assumptions 3.1 and 3.2 hold, there exist random variables {Λk
i , Λ̄

k
i } with
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finite nth moments for all positive integers n, such that Xk
i satisfies

∥Xk
i (p

′
k)−Xk

i (pk)∥ ≤Λk
i ∥p′k − pk∥ w.p.1 ∀ k ∈ {1, · · · , N}, (3.17)

∥Xk
i (pk)∥ ≤ Λ̄k

i w.p.1. ∀ k ∈ {1, · · · , N} (3.18)

for all pk, p
′
k ∈ [p, p̄]. There exist random variables {Φk

i } and {Φ̄k
i }, whose nth moments are

finite for all positive integers n, such that ∥c(Xk
i )∥ ≤ Φk

i w.p.1; and ∥c((Xk
i )

′− c(Xk
i ))∥ ≤

Φ̄k
i ∥(Xk

i )
′ −Xk

i ∥ w.p.1.

Proof. The proof is by induction. We only prove the result for the states {X1
i } before

the stopping time τ1; other cases can be proved similarly. Let τ0 = t0. Since Xτ1 = S1 is

a scalar, the theorem is proved for Xτ1 . Similarly X0(t0) = S is a constant, and the claim

is trivial at t0. The state X1(p1) at t1 is given by X1
1 (p1) = X0 + λ(p1)(t1 − t0) + σ(X0 −

X0, p1)
√
t1 − t0Z1. By Assumption 3.1, we have

∥X1
1 (p

′
1)−X1

1 (p1)∥

≤∥λ(p′1)(t1 − t0)− λ(p1)(t1 − t0)∥+ ∥σ(X0 −X0), p
′
1)
√
t1 − t0Z1

− σ(X0 −X0, p1)
√
t1 − t0Z1∥

≤Kλh∥p′1 − p1∥+
√
h∥Z1∥Kg2∥p′1 − p1∥ = Λ1

1∥p′ − p∥, w.p.1,

where Λ1
1 = hKλ +

√
hKg2∥Z1∥ with E[Λ1

1] ≤ M1
1 and E[(Λ1

1)
2] ≤ V1

1 , where M1
1 =

hKλ +
√
hKg−2 and V1

1 = (hKλ)
2 + 2h

√
hKλKg2 + h(Kg2)

2. It is also easy to show there

exists a N 1
1 such that E[(Λ1

1)
4] ≤ N 1

1 . For other parameters pk, k ∈ {2, · · · , N}, the claim
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is trivial since X1
1 is independent of pk. We also have

∥X1
1 (p1)∥ ≤∥X1

0∥+ ∥λ(p1)(t1 − t0)∥+ ∥σ(X0 −X0), p1)
√
t1 − t0Z1∥

≤S + λ̄h+ σ̄
√
h∥Z1∥ = Λ̄1

1, w.p.1,

where Λ̄1
1 = S + λ̄h + σ̄

√
h∥Z1∥ with E[Λ̄1

1] ≤ M1
1 and E[(Λ̄1

1)
2] ≤ V1

1, where M1
1 =

S+λ̄h+σ̄
√
h and V1

1 = (S+λ̄)2+2(S+λ̄)σ̄
√
h+σ̄2h, since E[∥Z1∥] < 1 and E[∥Z1∥2] = 1.

Now assume that the claim (3.18) is true for X1
j . Then for X1

j+1, we have

X1
j+1 =X

1
j + λ(p1) + σ(X0 −X1

j , p1)
√
tj+1 − tjZj+1

≤ ∥X1
j ∥+ σ̄

√
h∥Zj+1∥ ≤ Λ̄1

j + σ̄
√
h∥Zj+1∥ = Λ̄1

j+1, w.p.1.

Therefore (3.18) is true for X1
j+1. Let X

1
j (p

′
1) denote the value of X

1
j when p1 is perturbed

to be p′1. By Assumptions 3.1 and 3.2, we have

∥X1
j+1(p

′
1)−X1

j+1(p1)∥

≤∥X1
j (p

′
1)−X1

j (p1)∥+ (tj+1 − tj)∥λ(p′1)− λ(p1)∥+

∥
√
tj+1 − tjZj+1∥∥σ(X0 −X1

j , p
′
1)− σ(X0 −X1

j , p1)∥

≤Λ1
j∥p′1 − p1∥+ hKλ∥p′1 − p1∥+

√
h∥Zj+1∥

{
Kg1∥X1

j (p
′
1)−X1

j (p1)∥+Kg2∥p′1 − p1∥
}

≤Λ1
j+1∥p′1 − p1∥, w.p.1,

where Λ1
j+1 = Λ1

j+hKλ+
√
h∥Zj+1∥Kg1Λ

1
j+Kg2∥. Assume that there exist finite constants

M1
j , V1

j , and N 1
j such that E[Λ1

j ] < M1
j , E[(Λ1

j )
2] < V1

j , and and E[(Λ1
j )

4] < N 1
j .

Moreover, notice that Zj+1 and Λ1
j are independent. It is easy to show that there exist
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finite constants M1
j+1, V1

j+1, and N 1
j+1 such that E[Λ1

j+1] ≤ M1
j+1, E[(Λ1

j+1)
2] ≤ V1

j+1,

and E[(Λ1
j+1)

4] < N 1
j+1. The claims (3.17) and (3.18) for Xk

i follow from a similar proof,

which is omitted. Since τ < T , it at most takes ⌈T/h⌉ steps to get to τ1. Therefore the

theorem holds for all K.

Similarly, we can show that all the nth moment of Λk
i is finite, where n is any

positive integer. Since the nth moment of Xk
i is upper bounded by the nth moment of

Λk
i , and c(·) is a polynomial function by Assumption 3.2, there exists a random variable

Φk
i+1 which has finite nth moment, such that c(Xk

i ) < Φk
i+1 w.p.1; there exists a random

variable Φ̄k
i+1 with finite nth moment, such that ∥c((Xk

i )
′− c(Xk

i ))∥ ≤ Φ̄k
i+1∥(Xk

i )
′−Xk

i ∥.

�

3.3.3.1 Gradient Estimation for the Inventory

From equation (3.8), we can see that because λ(pk) and σ(X0 − xki , pk) are differ-

entiable in pk, then x
k
i is differentiable in pk. For xki > Sk, x

k
i+1 > Sk, t

k
i+1 ≤ T − h, and

i ̸= 0 or k = 1 and i = 0, the gradient of xki with respect to pk, k ∈ {1, · · · , N} is given by

∂xki+1

∂pk
=
∂xki
∂pk

− ∂λ(pk)

∂pk
(tki+1 − tki )

−
(∂σ(X0 − xki , pk)

∂pk
− ∂σ(X0 − xki , pk)

∂xki

∂xki
∂pk

)√
tki+1 − tki z

k
i+1. (3.19)

The boundary conditions are

∂X0

∂pk
= 0,

∂xkτk
∂pk

= 0. (3.20)

The above boundary conditions hold because X0 is a constant, and xkτk = Sk.
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When xki > Sk and t
k
i+1 > T−h > tki , from Algorithm 1, we know that tki = τk−1+ih.

Equation (3.9) can be rewritten as

xki+1 = xki − λ(pk)
(
T − τk−1 − ih

)
− σ(X0 − xki , pk)

√
T − τk−1 − ihzki+1.

Differentiating both sides of the above equation with respect to pl for l ≤ k yields

∂xki+1

∂pl
= λ(pk)

∂τl
∂pl

+
σ(X0 − xki , pk)

2
√
T − τk−1 − ih

∂τl
∂pl

zki+1 ∀ l < k, (3.21)

∂xki+1

∂pk
=
∂xki
∂pk

− ∂λ(pk)

∂pk

(
T − τk−1 − ih

)
−
(∂σ(X0 − xki , pk)

∂pk

− ∂σ(X0 − xki , pk)

∂xki

∂xki
∂pk

)√
T − τk−1 − ihzki+1. (3.22)

3.3.3.2 Likelihood Ratio Method for Gradient Estimation of Stop-

ping Times

Since the density of τki+1 given two end points is known, we can use the likelihood

ratio method ([48, 91]) to obtain a gradient estimator. The likelihood ratio gradient

estimator is derived by assuming the interchangeability of the derivative and the integral:

∂E[τki+1|xki , xki+1]

∂pk
=

∫ ti+1

ti

τ
∂ ln fk(τ)

∂pk
fk(τ)dτ. (3.23)
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The above equality holds because fk(ti) = 0 and fk(ti+1) = 0. By using the inverse

Gaussian distribution, we have

∂E[τki+1|xki , xki+1]

∂pk
=

∂

∂pk

∫ ∞

0

(
tki +

hy

1 + y

)
gk(y;λk, θk)dy

=

∫ ∞

0

hy

1 + y

∂ ln gk(y;λk, θk)

∂pk
gk(y;λk, θk)dy.

We use

Rk(τ
k
i+1;x

k
i , x

k
i+1) =

hy

1 + y

∂ ln gk(y;λk, θk)

∂pk
(3.24)

to denote the likelihood ratio gradient estimator of τki+1 with respect to pk.

3.3.3.3 Sample Path-Based Gradient Estimator for Stopping Times

Although the likelihood ratio gradient estimator is easy to obtain, generally it has a

larger variance compared with sample path-based gradient estimators. We derive a sample

path-based gradient estimator by constructing a Brownian bridge, which starts from xki ,

hits Sk at τki+1, and ends at xki+1 .

Let Xk
t be the inventory level at time t, where tki ≤ t < tki+1; X

k
t is governed by the

following equation

Xk
t = xki − λ(pk)(t− tki )− σ(X0 − xki , pk)W (t− tki ),

where W (t− tki ) is a Brownian motion at time t− tki . Given two end points xki and xki+1,

we construct a Brownian bridge X̂k
t starting from xki and ending at xki+1, which is defined
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by ([62, 96]):

X̂k
t = xki +

xki+1 − xki
h

(t− tki )− σ(X0 − xki , pk)(t
k
i+1 − t)W̃

( t− tki
tki+1 − t

)
, (3.25)

where W̃ is a Brownian motion independent of W .

For the stochastic process X̂k
t , define the first time when X̂k

t hits Sk by

τ̂ki+1 = inf{t : X̂k
t = Sk}. (3.26)

We derive an unbiased gradient estimator for
∂E[τki+1|(xk

i ,x
k
i+1)]

∂pk
considering two different

cases.

Case 1. xki > Sk and xki+1 < Sk:

In this case, τ̂ki+1 is well defined as it always exists, and we have the following lemma.

Lemma 3.2 Given two points xki and xki+1, the conditional distribution of the random

variable τ̂ki+1 defined by (3.26) is the same as the conditional distribution of the random

variable τki+1. Hence we have

E[τki+1|xki , xki+1] = E[τ̂ki+1|xki , xki+1].

Proof. By the properties of a Brownian bridge, we know that the finite dimensional

distributions of a Brownian bridge are the same as the finite dimensional distributions of

the corresponding conditional Brownian motion. Since τki+1 is the stopping time defined

by Xk
t , whereas τ̂

k
i+1 is defined by X̂k

t in (3.26), τki+1 has the same distribution as τ̂ki+1
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given xki and xki+1. Therefore we conclude that

E[τki+1|(xki , xki+1)] = E[τ̂ki+1|(xki , xki+1)].

�

By Lemma 3.2, a gradient estimator for E[τki+1|(xki , xki+1)] with respect to pk can

be obtained by deriving a gradient estimator for E[τ̂ki+1|(xki , xki+1)] with respect to pk. By

equation (3.25), there exists a realization w̃k of W̃ such that at time τ̂ki+1 we have

Sk = xki +
xki+1 − xki

h
(τ̂ki+1 − tki )− σ(X0 − xki , pk)(t

k
i+1 − τ̂ki+1)w̃k. (3.27)

Given τ̂ki+1, w̃k can be computed by

w̃k =
−Sk +

xk
i
h (tki+1 − τ̂ki+1) +

xk
i+1

h (τ̂ki+1 − tki )

σ(X0 − xki , pk)(t
k
i+1 − τ̂ki+1)

. (3.28)

An unbiased gradient estimator for
∂E[τki+1|(xk

i ,x
k
i+1)]

∂pk
is given by the following lemma.

Lemma 3.3 If Assumptions 3.1 and 3.2 hold, there exists a random variable Ψk
i with

finite nth moment for all positive integers n, such that

Dk(τ
k
i+1;x

k
i , x

k
i+1) ≤

(tki+1 − τki+1)Ψ
k
i

Sk − xki+1

w.p.1.,

where Dk(τ
k
i+1;x

k
i , x

k
i+1) is given by

Dk(τ
k
i+1;x

k
i , x

k
i+1) =

∂xk
i

∂pk

tki+1−τki+1

h +
∂xk

i+1

∂pk

τki+1−tki
h − ∂σ(X0−xk

i ,pk)
∂pk

(tki+1 − τki+1)w̃k

Sk−xk
i+1

ti+1−τki+1

, (3.29)
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in which w̃k is given by (3.28); Dk(·; ·, ·) is an unbiased gradient estimator for
∂E[τki+1|(xk

i ,x
k
i+1)]

∂pk
.

Proof. Given xki , x
k
i+1, the inventory levels at tki and tki+1 with price pk, and a realization

w̃k of W̃
(

τ̂ki+1−tki
tki+1−τ̂ki+1

)
, we rewrite equation (3.27) below for convenience:

Sk = xki +
xki+1 − xki

h
(τ̂ki+1 − tki )− σ(X0 − xki , pk)(t

k
i+1 − τ̂ki+1)W̃

( τ̂ki+1 − tki
tki+1 − τ̂ki+1

)
. (3.30)

Now we do a perturbation analysis. Perturb price pk to pk +∆θ, where ∆θ is small

scalar. Denote (xki )
′, (xki+1)

′, and (τ̂ki+1)
′ the corresponding values of xki , x

k
i+1, and τ̂

k
i+1 at

price pk +∆θ. (τ̂ki+1)
′ satisfies the following equation:

Sk = (xki )
′ +

(xki+1)
′ − (xki )

′

h

(
(τ̂ki+1)

′ − tki
)

− σ(X0 − (xki )
′, pk +∆θ)(tki+1 − (τ̂ki+1)

′)W̃
( (τ̂ki+1)

′ − tki
tki+1 − (τ̂ki+1)

′

)
, (3.31)

For simplicity we denote W̃
(

τ̂ki+1−tki
tki+1−τ̂ki+1

)
by W̃ and W̃

(
(τ̂ki+1)

′−tki
tki+1−(τ̂ki+1)

′

)
by W̃ ′. Let Ft be the

filtration generated by
{
W̃
(

t−tki
tki+1−t

)}
. By properties of Brownian motion, W̃

(
t−tki
tki+1−t

)
is

a martingale. Without loss of generality, assume that (τ̂ki+1)
′ ≥ τ̂ki+1. By the definition

(3.26), (τ̂ki+1)
′ is a stopping time. Therefore by optional stopping theory ([12])

E[W̃ ′ − W̃ |W̃ ] = 0. (3.32)

Subtract equation (3.30) on each side of equation (3.31), take expectation on each

side of the resulting equation conditioning on W̃ , then divide each side by ∆θ, and take
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the limit as ∆θ goes to zero. We have

0 =
∂xki
∂pk

+
(∂xki+1

∂pk
− ∂xki

∂k

) τ̂ki+1 − tki
h

+
xki+1 − xki

h

∂E
[
τ̂ki+1|W̃

]
∂pk

− ∂σ(X0 − xki , pk)

∂pk
(tki+1 − τ̂ki+1)W̃ − σ(X0 − xki , pk)t

k
i+1 lim

∆θ→0

1

∆θ
E[W̃ ′ − W̃ |W̃ ]

+ σ(X0 − xki , pk)τ̂
k
i+1 lim

∆θ→0

1

∆θ
E
[
(τ̂ki+1)

′W̃ ′ − τ̂ki+1W̃
′ + τ̂ki+1W̃

′ − τ̂ki+1W̃ |W̃
]

=
∂xki
∂pk

+
(∂xki+1

∂pk
− ∂xki

∂k

) τ̂ki+1 − tki
h

+
xki+1 − xki

h

∂E
[
τ̂ki+1|W̃

]
∂pk

− ∂σ(X0 − xki , pk)

∂pk
(tki+1 − τ̂ki+1)W̃ + σ(X0 − xki , pk)

∂E[τ̂ki+1|W̃ ]

∂pk
W̃ , (3.33)

where the second equality is obtained by (3.32). After some algebraic operations, we have

∂E[τ̂ki+1|W̃ ]

∂pk
=

∂xk
i

∂pk

tki+1−τ̂ki+1

h +
∂xk

i+1

∂pk

τ̂ki+1−tki
h − ∂σ(X0−xk

i ,pk)
∂pk

(tki+1 − τ̂ki+1)w̃k

Sk−xk
i+1

ti+1−τ̂ki+1

.

Denote
∂E[τ̂ki+1|W̃ ]

∂pk
by Dk(τ̂

k
i+1;x

k
i , x

k
i+1), which satisfies

∥Dk(τ̂
k
i+1;x

k
i , x

k
i+1)∥ ≤

∥∥∥∥∥
∂xk

i
∂pk

tki+1−τ̂ki+1

h +
∂xk

i+1

∂pk

τ̂ki+1−tki
h − ∂σ

∂pk
(tki+1 − τ̂ki+1)w̃k

Sk−xk
i+1

ti+1−τ̂ki+1

∥∥∥∥∥
≤
tki+1 − τ̂ki+1

Sk − xki+1

(∥∥∥∥∂xki∂pk

∥∥∥∥+ ∥∥∥∥∂xki+1

∂pk

∥∥∥∥+ ∥∥∥∥ ∂σ∂pk z̃k
∥∥∥∥
)

≤
tki+1 − τ̂ki+1

Sk − xki+1

(
Λk
i + Λk

i+1 + (Kg1Λ
k
i +Kg2)

1

σ
(Λ

k
i + Λ

k
i+1 + Sk)

)
=

(tki+1 − τ̂ki+1)Ψ
k
i

Sk − xki+1

w.p.1, (3.34)

where Ψk
i =

(
Λk
i + Λk

i+1 + (Kg1Λ
k
i +Kg2)

1
σ (Λ

k
i + Λ

k
i+1 + Sk

))
. By Assumptions 3.1, 3.2,

and Lemma 3.1, Λk
i+1, Ψ

k
i+1 has finite nth moment for any positive finite integer n. Given

xki and xki+1,
(tki+1−τ̂ki+1)Ψ

k
i

Sk−xk
i+1

is finite w.p.1, and has a finite expectation. By the dominated

convergence theorem, Dk(τ̂
k
i+1;x

k
i , x

k
i+1) is unbiased. Since τki+1 and τ̂ki+1 have the same
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distribution, Dk(τ
k
i+1;x

k
i , x

k
i+1) is an unbiased gradient estimator for

∂E[τki+1|(xk
i ,x

k
i+1)]

∂pk
, which

has similar properties as Dk(τ̂
k
i+1;x

k
i , x

k
i+1).�

Case 2. xki > Sk and xki+1 > Sk:

By the definition of τki+1 in (3.10), τki+1 is well defined only when ℓki+1 < Sk, i.e.,

the minimum of the inventory level is less than Sk between time tki and tki+1. In this case,

we know that the expectation of τki+1 is given by (3.16) conditioned on ℓki+1 < Sk. It

is not difficult to see that equation (3.16) is the same as equation (3.15) when the two

given end points in (3.16) are xki and x̃ki+1 where x̃ki+1 = 2Sk − xki+1. Therefore the the

gradient estimation in this case is transformed into Case 1 with two given points xki and

x̃ki+1 at time tki and tki+1, respectively. As in Case 1, a pathwise gradient estimator for

E[τki+1|(xki , xki+1)] given by (3.16) with respect to pk is Dk(τ
k
i+1;x

k
i , x̃

k
i+1).

3.3.3.4 Gradient Estimator for the Value Function

Now we show how to estimate the gradient of E[V̂ (S)] with respect to the pricing

policy parameters. Note that V̂ =
∑ne

k=1∆V̂k. Since there are indicator functions in

∆V̂k defined by (3.11), which are discontinuous, unbiased pathwise gradient estimators

for E[V̂ (S)] cannot be obtained directly. In the following, we give an unbiased pathwise

gradient estimator for E[V̂ (S)] using smoothed perturbation analysis (SPA).

Examining the incremental value function ∆V̂k, it is easy to see that ∆V̂k is contin-

uous at Xk
j = Sk for j = 1, · · · , υk + 1. Hence the difficulty of differentiating ∆V̂k comes

from the indicator functions I{Uk
i <ηki }

and I{Uk
i ≥ηki }

for i = 1, · · · , υk+1, which make ∆V̂k

discontinuous. From equation (3.11), we can see that given pk and {Xk
n, ∀ n ≤ m}, the

values of the indicator functions change at Uk⋆
i = ηki for i = 1, · · · , υk + 1, where Uk⋆

i is
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one sample value of Uk
i ∼ U(0, 1). We write ηki (pk) to explicitly show the dependence of

ηki on the price pk; similarly we write ∆V̂k(pk) to show the dependence of ∆V̂k on the

price pk.

Now we perturb pk to pk +∆θ and pk −∆θ for a small ∆θ. The values of ηki at the

new parameters are ηki (pk+∆θ) and ηki (pk−∆θ), respectively. Without loss of generality,

assume Uk⋆
i ≤ ηki (pk +∆θ), and Uk⋆

i ≥ ηki (pk −∆θ). Define

Bk
i (U

k⋆
i , pk,∆θ) =

{
Uk
i :

Uk⋆
i ≤ Uk

i ≤ ηki (pk +∆θ);

and Uk⋆
i ≥ Uk

i ≥ ηki (pk −∆θ).

for i = 1, · · · , υk.

Bk
i (U

k⋆
i , pk,∆θ) contains U

k
i such that Uk

i − ηki with the price pk +∆θ has a different sign

than it does with the price pk − ∆θ. Similarly, define Bk
e (U

k⋆
e , pk,∆θ) = {Uk

e : Uk⋆
e ≤

Uk
e ≤ ηne

υe+1(pk +∆θ), or Uk⋆
e ≥ Uk

e ≥ ηne
υe+1(pk −∆θ)}, where Uk

e ∼ U(0, 1) for k < ne.

Let Bk
i (U

k⋆
i , pk,∆θ) be the complement of Bk

i (U
k⋆
i , pk,∆θ). For simplicity, we use Bk

i to

represent Bk
i (U

k⋆
i , pk,∆θ), and define B = Bk

e

∪υk
i=1 Bk

i . By the property of the iterated

conditional expectation, for k < ne,

E[∆V̂k|B] = − pk∆Sk − E
[ υk∑
m=0

{[m−1∑
i=0

c(Xk
i )h+ c(Xk

m)(E[τkm+1|(Xk
m, X

k
m+1)]

− tkm)
] m∏
j=0

I{Uk
j <ηkj }

I{Uk
m+1≥ηkm+1}

}
|B
]
.

Restricted to the set B, ∆V̂k will not change abruptly if we perturb pk, since ∆V̂k is

continuous in pk. Directly differentiating the part inside the right hand side expectation
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in the above equation yields

Dk
p∆V̂k = −∆Sk − pk

∆Sk
∂pk

−
υk∑

m=0

{[m−1∑
i=0

∂c(Xk
i )

∂pk
h+

∂c(Xk
m)

∂pk
(E[τkm+1|(Xk

m, X
k
m+1)]− tkm)

+ c(Xk
m)E[Gk(τ

k
m+1;X

k
m, X

k
m+1)]

] m∏
j=0

I{Uk
j <ηkj }

I{Uk
m+1≥ηkm+1}

}
, (3.35)

where Dk
p∆V̂k is the derivative of ∆V̂k with respect to pk conditioned on B; Gk is the

gradient estimators of the stopping time with respect to pk. When Xk
m > Sk and Xk

m+1 >

Sk, we define Gk by: Gk(τ
k
m+1;X

k
m, X

k
m+1) = Dk(τ

k
m+1;X

k
m, 2Sk −Xk

m+1); when X
k
m > Sk

and Xk
m+1 ≤ Sk, Gk(τ

k
m+1;X

k
m, X

k
m+1) = Dk(τ

k
m+1;X

k
m, X

k
m+1) where Dk is defined by

(3.29).

By equations (3.21) and (3.22), Xne
υe+1 depends on pl for l ≤ ne since it depends on

all the previous stopping times when the price changes, whereas {Xk
i } do not depend on

pl for l < k, k ̸= ne by (3.19). The derivative of ∆V̂ne with respect to pl for l < ne is given

by

D l
p∆V̂ne = − pne

∂∆Sne

pl
− c(Xne

υe )E
[
Gl(τ

ne
υe+1;X

ne
υe , X

ne
υe+1)

]
. (3.36)

Since {Xk
i } do not depend on pl for l < k and k ̸= ne, ∆V̂k does not depends on pl for

l < k and k ̸= ne. Hence the gradient estimator of E[V̂ |B] with respect to pk is given by

Dk
p V̂ |B = Dk

p∆V̂k|B + Dk
p∆V̂ne |B, ∀k ̸= ne (3.37)

Dne
p V̂ |B = Dne

p ∆V̂ne |B, (3.38)

where we use the sign |B to mean that the gradient estimators apply when sample paths

are restricted to B.
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We now prove that the gradient estimators (3.37) and (3.38) are unbiased.

Lemma 3.4 If Assumptions 3.1 and 3.2 hold, there exist positive constants {Gk
D} and

random variables {Υk
D} with E[Υk

D] ≤ Gk
D, such that

Dk
p V̂ |B ≤ Υk

D w.p.1, for k ≤ ne,

where Dk
p V̂ |B is given by equations (3.37) and (3.38). The following result also holds:

∂E
[
V̂ |B

]
∂pk

= E
[
Dk

p V̂ |B
]
, for k ≤ ne.

Proof. First consider Dk
p∆V̂k. From Assumptions 3.1 and 3.2 and Lemma 3.1

∥∥∥ m∑
i=1

∂c(Xk
i−1)

∂pk
h+

∂c(Xk
m)

∂pk
(E[τkm+1|(Xk

m, X
k
m+1)]− tkm)

∥∥∥ ≤
υk∑

m=0

Φ̄k
mΛk

mh. (3.39)

Assume when Xk
m > Sk, X

k
m+1 < Sk, and by Assumption 3.2 and Lemma 3.3,

∥∥c(Xk
m)E[Gk(τ

k
m+1;X

k
m, X

k
m+1)]I{Uk

m<ηkm}
∥∥ ≤ Φk

m

(tkm+1 − τkm+1)Ψ
k
m

Sk −Xk
m+1

I{Uk
m<ηkm}. (3.40)

From the density function (3.13), we have

χ = E
[(tkm+1 − τkm+1)

Sk − xkm+1

∣∣xkm, xkm+1

]
=

1

Sk − xkm+1

∫ tkm+1

tkm

1√
2πσ2

(t− tkm)−3/2(tkm+1 − t)1/2

× exp
(
−
[
(xkm − Sk)(t

k
m+1 − t)− (Sk − xkm+1)(t− tkm)

]2
2h(t− tkm)(tkm+1 − t)σ2

)
dt
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After some algebraic operations, we have

χ =
1

Sk − xkm+1

∫ h

0
exp

((xkm − xkm+1)
2

2hσ2

)
u−3/2 exp

(
− (xkm − Sk)

2

2uσ2

)
× (h− u)1/2 exp

(
−

(Sk − xkm+1)
2

2(h− u)σ2

)
du let u = t− tkm

≤ 1

Sk − xkm+1

exp
((xkm − xkm+1)

2

2hσ2

)(∫ h

0
u−3 exp

(
− (xkm − Sk)

2

uσ2

)
du
)1/2

×
(∫ h

0
(h− u) exp

(
−

(Sk − xkm+1)
2

(h− u)σ2

))1/2
du. by Hödler’s inequality

(3.41)

Furthermore,

∫ h

0
u−3 exp

(
− (xkm − Sk)

2

uσ2

)
du =

∫ ∞

1/h
s exp

(
− (xkm − Sk)

2s

σ2

)
ds

≤ σ2

(xkm − Sk)2h
+

σ4

(xkm − Sk)4
. (3.42)

Similarly, we have

∫ h

0
(h− u) exp

(
−

(Sk − xkm+1)
2

(h− u)σ2

)
≤

(Sk − xkm+1)
2h

2σ2

(
1− exp

(
−

−(Sk − xkm+1)
2

σ2h

))
+

(Sk − xkm+1)
4

σ4
. (3.43)

Applying (3.41), (3.42), and (3.43) to (3.40) gives

∥∥c(Xk
m)E[Gk(τ

k
m+1;X

k
m, X

k
m+1)]I{Uk

m<ηkm}
∥∥ ≤Mk, (3.44)
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where

Mk =
1

(Xk
m − Sk)2

I{Uk
m<ηkm}Φ

k
mΨk

m exp
((Xk

m −Xk
m+1)

2

2hσ2

)
×
√
σ2(Xk

m − Sk)2

h
+ σ4

√
h

2σ2
+

(Sk −Xk
m+1)

2

σ4
.

To show that Mk has a finite expectation, we first show that E
[

1
(Xk

m−Sk)2
I{Uk

m<ηkm}

]
has a finite expectation. Applying Assumption 3.2 and Lemma 3.1 yields

E
[ 1

(Xk
m − Sk)2

I{Uk
m<ηkm}

]
= E

[ 1

(Xk
m − Sk)2

(
1− exp

(
−

2(Xk
m−1 − Sk)(X

k
m − Sk)

hσ2

))]
≤ bkm, (3.45)

where bkm is a positive constant. (3.45) holds since Ψk
m, X

k
m−1 and Xj

m all have finite nth

moment for any positive integer n, and the exponential term goes to 1 exponentially when

Xk
m−Sk is close to zero. It is easy to show that the above holds even when Xk

m > Sk and

Xk
m+1 > Sk.

Note that Φk
m and Φk

mΨk
m in Mk are polynomial functions of Xk

i and they have

finite moments. By (3.45) and Cauchy-Schwarz inequality, it can be easily shown that

there exists a positive constant ckm, such that E[Mk] ≤ ck.

Combining the fact that υkh < T , Assumption 3.2, and Lemma 3.1, we have

E[

υk∑
m=0

Φ̄k
mΛk

mh] ≤
⌈T/h⌉∑
m=0

√
E[(Φ̄k

m)2]
√
E[(Λk

m)2] ≤ dk, (3.46)
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where dk is a positive constant. Combining (3.39), (3.45), (3.44), and (3.46) yields

∥Dk
p∆V̂k∥ < Υk

1, (3.47)

where Υk
1 = Sk−1 − Sk +

∑υk
m=0 Φ̄

k
mΛk

mh+Mk. From (3.39), (3.45), and (3.46), we know

that E[Υk
1] ≤ Gk

1 , where Gk
1 = (Sk−1 − Sk) + ck + dk. Similarly, we can prove that there

exists a random variable Υk
2 with E[Υk

2] ≤ Gk
2 , such that Dk

p∆V̂ne ≤ Υk
2. Together with

(3.47), we have Dk
p V̂ ≤ Υk

D, where Υk
D = Υk

1 + Υk
2, and E[Υk

D] ≤ Gk
D, Gk

D = Gk
1 + Gk

2 .

By the dominated convergence theorem, for k < ne, the first part of the theorem is

proved. Similarly we prove the theorem for the gradient estimator Dne
p V̂ and the details

are omitted. �

In the following, we derive a gradient estimator for E[V̂ ] with respect to pk for

k = 1, · · · , ne. We circumvent the difficulty of differentiating indicator function in V̂ by

conditioning on the set B.

Theorem 3.2 If Assumptions 3.1 and 3.2 hold, we have

∂E[V̂ ]

∂pk
= E[C k

p V̂ ] + E
[
Dk

p∆V̂k + Dk
p∆V̂ne

]
, for k < ne; (3.48)

∂E[V̂ ]

∂pne

= E[C ne
p V̂ ] + E

[
Dne

p ∆V̂ne

]
, (3.49)

where C k
p V̂ = C k

e +
∑υk

m=1 C k
p,m, in which C ne

p,m and C k
p,m are given by

C k
e =

∂ηne
υe+1

∂pk

(
− τne

υe+1 + T + xne
υe+1 − Sne

) υe∏
n=0

I{Une
n <ηne

n }I{xne
υe+1≥0} for k < ne,

C ne
e = 0;
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and

C k
p,m =

∂ηkm
∂pk

E
{[
c(Xk

m−1)(τ
k
m − tkm−1) +

ne∑
n=k+1

∆V̂n|tk+1
0 = τkm

]m−1∏
n=0

I{Uk
n<ηkn}

−
υk−1∑
j=m

[ j∑
i=m

c(Xi−1)h+ c(Xj)(τ
k
j+1 − tkj ) +

ne∑
n=k+1

∆V̂n|tk+1
0 = τkj+1

]

×
j∏

n=0,n̸=m

I{Uk
n<ηkn}I{Uk

n+1≥ηkn+1}

∣∣∣Uk
m = ηkm

}
,

(3.50)

Dk
p∆V̂k and Dk

p∆V̂ne are defined by (3.35) and (3.36), respectively.

Proof. Assume k < ne and let Uk⋆
i = ηki (pk). Without loss of generality, assume that

Uk⋆
i ≤ Uk

i ≤ ηki (pk +∆θ) and Uk⋆
i ≥ Uk

i ≥ ηki (pk −∆θ). Then

∂

∂pk
E[V̂ (pk)] = lim

∆θ→0

E[V̂ (pk +∆θ)− V̂ (pk −∆θ)]

2∆θ
= E

[ υk∑
m=1

Ξk
m + Ξk

e

]
+Π+ o(∆θ),

where

Π = lim
∆θ→0

E[V̂ (pk +∆θ)− V̂ (pk −∆θ)|B]P (B)
2∆θ

,

Ξk
m =

E[V̂ (pk +∆θ)− V̂ (pk −∆θ)|Bk
m]P (Bk

m)

2∆θ
,

Ξk
e =

E[V̂ (pk +∆θ)− V̂ (pk −∆θ)|Bne
υe+1]P (B

ne
υe+1)

2∆θ
,

and o(∆θ) denotes the higher order terms in ∆θ.
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For 1 ≤ m ≤ υk, Ξm is given by

Ξk
m = lim

∆θ→0

E[V̂ (pk +∆θ)− V̂ (pk −∆θ)|Bk
m]P (Bk

m)

2∆θ

= lim
∆θ→0

E[V̂ (pk +∆θ)− V̂ (pk −∆θ)|Bk
m] lim

∆θ→0

P (Bk
m)

2∆θ
.

Since {Uk
i } are random variables uniformly distributed on [0, 1], we have

lim
∆θ→0

P (Bk
m)

2∆θ
= lim

∆θ→0

∫ ηkm(pk+∆θ)

ηkm(pk−∆θ)
dt

2∆θ
= lim

∆θ→0

∂ηkm(pk)
∂pk

× 2∆θ + o(∆θ)

2∆θ
=
∂ηkm(pk)

∂pk
.

The second equality is obtained by using the mean value theorem. Furthermore, it is also

easy to show that Ξk
m = E[C k

p V̂ ]. Similarly we can also show that Ξk
e = E[C k

e V̂ ].

By Lemma 3.4 and the fact that lim∆θ→0 P (B) = 1, we have

Π = lim
∆θ→0

E[V̂ (pk +∆θ)− V̂ (pk −∆θ)|B]P (B)
2∆θ

= E[Dk
p∆V̂k + Dk

p∆V̂ne ].

Now consider the case that Uk⋆
i −ηki (pk+∆θ) and Uk⋆

i −ηki (pk−∆θ) have the same

sign; the indicator function I{Uk
i <ηki }

is always 0 or 1 in this case for i = 1, · · · , υk, and

hence there are no points of discontinuity in V̂ . Therefore by Lemma 3.4, we have

∂

∂pk
E[V̂ (pk)] = lim

∆θ→0

E[V̂ (pk +∆θ)− V̂ (pk −∆θ)]

2∆θ
= E[Dk

p∆V̂k + Dk
p∆V̂ne ] k < ne.

Note that if Uk⋆
i −ηki (pk+∆θ) and Uk⋆

i −ηki (pk−∆θ) have the same sign for small enough

∆θ, we have
∂ηki (pk)
∂pk

|ηki =Uk⋆
i

= 0. Hence (3.48) still holds. (3.49) can also be proved

similarly. �

By Theorem 3.2, we can use the following gradient estimators to estimate the gra-
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dient of E[V̂ ] with respect to prices {pk, k = 1, · · · , ne} along a sample path generated by

Algorithm 1:

G k
p V̂ = C k

p V̂ + Dk
p∆V̂k + Dk

p∆V̂ne , for k < ne;

G ne
p V̂ = C ne

p V̂ + Dne
p ∆V̂ne .

Remark 3.1 The above gradient estimator contains two parts. For example, for k < ne,

the first part is Dk
p∆V̂k+Dk

p∆V̂ne, which is derived from the continuous parts of the sample

path. The other part is S k
p V̂ , which is derived from the discontinuous parts of the sample

path by using the smoothed perturbation analysis technique.

3.3.4 Stochastic Approximation Algorithm

With the gradient estimators given above, we seek to use stochastic approxima-

tion (SA) to solve the dynamic pricing problem (3.12). The SA algorithm goes back to

the pioneering paper by [88]. For a recent exposition, please see [69]. The classical SA

algorithm solves the following optimization problem by mimicking the gradient ascend

method: maxθ E[J(θ)]. Let g(θ) = ∂E[J(θ)]
∂θ denote the gradient of E[J(θ)] with respect

to the parameter θ. Let ĝ(θ) be an estimate of the gradient g(θ); SA generates iterates

by the formula θ(n+1) = ΠΘ(θ
(n) + a(n)ĝ(θ(n))), where θ(n) is the value of the parameter

at the beginning of the iteration n, a(n) is a sequence of positive step sizes, and ΠΘ is a

projection onto the parameter set Θ.

In our setting, to maximize E
[∑N

k=1∆V̂k
]
over the admissible pricing policy πf , we

assume that we have an initial pricing policy π
(0)
f = {p(0)k , k = 1, · · · , N}, and a sequence
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of step sizes {a(n)}, which have the following properties:

a(n) > 0, lim
n−→∞

a(n) = 0,
∞∑
n=1

a(n) = +∞,
∞∑
n=1

[a(n)]2 < +∞. (3.51)

Algorithm 2: Stochastic Approximation Algorithm

• Step 1. Given an initial feasible set of prices {p(0)k , k = 1, · · · , N}

• Step 2. For n = 1 to In do :

– Generate a sample path by Algorithm 1 and compute a gradient estimate using

Theorem 3.2 :G k
p V̂ (p

(n−1)
k ) for k = 1, · · · , ne. Pick a new step size a(n).

– Update the pricing policy using p
(n)
k := ΠP(p

(n−1)
k + a(n)G k

p V̂ (p
(n−1)
k )), for

k = 1, · · · , ne.

• Step 3. Return {p(In)k , k = 1, · · · , ne}, and stop.

3.3.4.1 Convergence of the Stochastic Approximation Algorithm

We show that Algorithm 2 has fairly robust local convergence properties. In Al-

gorithm 2, the gradient estimator G k
p V̂ (p

(n)
k ) is in fact a noisy estimate of the gradi-

ent of E[V̂ (p
(n)
k )]. Let the bias (error) of the gradient estimate at iteration n be β

(n)
k :

β
(n)
k = G k

p V̂ (p
(n)
k )− ∂E[V̂ ]

∂pk
for k = 1, · · · , ne. From Theorem 3.2, we know that

E[β
(n)
k |p(0)k , p

(1)
k , · · · , p(n−1)

k ] = 0.

To simplify the notation, define the cumulative step size as sn =
∑n−1

i=1 a
(i) and

define a function ρ(s) = max{n : sn ≤ s}. To prove the convergence of Algorithm 2, we

make the following assumptions.
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Assumption 3.3 {a(n)} is a sequence of positive real numbers such that a(n) > 0, and

limn→∞ a(n) = 0.

Assumption 3.4 The constraint set P is closed and bounded, and is defined by P = {p :

qj(p) ≤ 0, j = 1, · · · , s}. {qj(p)} are continuously differentiable. At each p ∈ ∂P, the

gradients of the active constraints are linearly independent.

Assumption 3.5 For each ϵ > 0 and s > 0, limn→∞ P (supn≤l≤ρ(sk+s) ∥
∑l

i=n a
(i)β

(i)
k ∥ >

ϵ) = 0.

Assumption 3.6 The expectation of the value function E[V̂ ] is continuously differen-

tiable.

Assumption 3.7 a(n)E[∥β(n)k ∥2] → 0 as n→ 0.

To validate Assumptions 3.5, 3.6, and 3.7, we first prove the following two lemmas.

Lemma 3.5 If Assumptions 3.1 and 3.2 hold, E[V̂ ] is continuously differentiable in pk

for k ≤ N .

Proof. The indicator functions in the gradient estimator G k
p V̂ make it discontinuous at

Uk
m = ηkm for m = 1, · · · , υk − 1. However, Uk

m is a continuous random variable; hence the

gradient G k
p V̂ is continuous w.p.1. Therefore for any sequence of {pik}, limpik→pk

G k
p V̂ (pik) =

G k
p V̂ (pk), w.p.1. Applying Assumption 3.2 and Lemma 3.1 yields

∂ηkm+1

∂pk
=
(
1− exp

(
−

2(xkm − Sk)(x
k
m+1 − Sk)

hσ2

)) 2

hσ2

×
(∂xkm
∂pk

(xkm+1 − Sk) +
∂xkm+1

∂pk
(xkm − Sk)

)
≤ 2

hσ2
(Λk

mΛ̄k
m+1 + Λk

m+1Λ̄
k
m).
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Combining the above inequality, Assumption 3.2, and Lemma 3.1, we have

∥C k
p V̂ ∥ ≤

υk∑
m=0

2

hσ2
(Λk

mΛ̄k
m+1 + Λk

m+1Λ̄
k
m)(Φk

mh+ 2(p̄S +
N∑
i=1

υi∑
j=0

Φi
jh))

+
2

hσ2
(Λne

υe Λ̄
ne
υe+1 + Λne

υe+1Λ̄
ne
υe )T.

Since {Λk
m}, {Λ̄k

m}, and {Φk
m} all have finite nth moment for any finite positive integer n,

we have E[∥C k
p V̂ ∥] < ∞. Together with Lemma 3.4, we have E[∥G k

p V̂ ∥] < ∞. By the

dominated convergence theorem

lim
pik→pk

∂E[V̂ (p)]

∂p

∣∣∣
p=pik

= E[G k
p V̂ (pk)]. (3.52)

Applying (3.52) and Theorem 3.2 yields

lim
pik→pk

∂E[V̂ (p)]

∂p

∣∣∣
p=pik

=
∂E[V̂ (p)]

∂p

∣∣∣
p=pk

.

�

The next lemma shows that the gradient estimators {G k
p V̂ } given above have finite

variances.

Lemma 3.6 If Assumptions 3.1 and 3.2 hold, there exist positive constants {Uk}, such

that E[(G k
p V̂ )2] < Uk.

Proof. First we prove the theorem for k < ne. The result for k = ne can be proved in a

similar way.
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By the Cauchy-Schwarz inequality,

E[(GpV̂ )2] = E[(C k
p V̂ )2 + 2C k

p V̂k(D
k
p∆V̂k + Dk

p∆V̂ne) + (Dk
p∆V̂k + Dk

p∆V̂ne)
2]

≤ E[(C k
p V̂ )2] + E[(Dk

p∆V̂k + Dk
p∆V̂ne)

2]

+ 2
√
E[(C k

p V̂ )2]
√
E[(Dk

p∆V̂k + Dk
p∆V̂ne)

2].

Therefore, to prove the theorem, we only need to prove that E[(C k
p V̂ )2] and E[(Dk

p∆V̂k +

Dk
p∆V̂ne)

2] are upper bounded by constants.

By Assumption 3.2 and Lemma 3.1, we have

∂ηkm
∂pk

=
(
1− exp

(
−

2(xkm − Sk)(x
k
m+1 − Sk)

hσ2

)) 2

hσ2

(∂xkm
∂pk

(xkm+1 − Sk) +
∂xkm+1

∂pk
(xkm − Sk)

)
≤ 2

hσ2
(Λk

mΛ̄k
m+1 + Λk

m+1Λ̄
k
m). (3.53)

From Assumption 3.2 and Lemma 3.1, we know Λk
m and Λ̄k

m are random variables with

finite nth moments, for any positive integer n. By using Cauchy-Schwarz inequality, we

can show that there exist constants {Ck
m} such that

E[(Φk
m)4(Λk

mΛ̄k
m+1 + Λk

m+1Λ̄
k
m)4] ≤ Ck

m ∀ m < T/h. (3.54)

Combining Assumptions 3.1 and 3.2, Lemma 3.1, inequalities (3.53), (3.54), (3.58) and
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the fact that υneh ≤ T , by Cauchy-Schwarz inequality we have

E[(C k
p V̂ )2] ≤ E

[( υk∑
m=0

2

hσ2
(Λk

mΛ̄k
m+1 + Λk

m+1Λ̄
k
m)Φk

mT
)2]

≤ 4T 4

σ4h4

⌈T/h⌉∑
i=0,j=0,i>j

{
E
[√

(Φk
i )

4(Λk
i Λ̄

k
i+1 + Λk

i+1Λ̄
k
i )

4
]

× E
[√

(Φk
j )

4(Λk
j Λ̄

k
j+1 + Λk

j+1Λ̄
k
j )

4
]}

≤ Uk, (3.55)

where Uk = 4T 4

σ4h4

∑⌈T/h⌉
i=0,j=0,i>j C

k
i C

k
j .

By Assumptions 3.1 and 3.2, and Lemmas 3.1 and 3.3, E[(Dk
p∆V̂k)

2] is bounded by

E[(Dk
p∆V̂k)

2]

≤E
[(
S +

υk∑
m=0

Φ̄k
mΛk

mh+

υk∑
m=0

(
Φk
mE[Gk(τ

k
m+1, X

k
m, X

k
m+1)]

m∏
j=0

I{Uk
j <ηkj }

))2]
=E
[
S2 + (

υk∑
m=0

(Φ̄k
mΛk

mh)
2 +

υk∑
m=0

(Φk
m)2E[(Gk)

2(τkm+1, X
k
m, X

k
m+1)]I{Uk

m<ηkm}

+ 2S
( υk∑

m=0

Φ̄k
mΛk

mh+

υk∑
m=0

Φk
mE[Gk(τ

k
m+1, X

k
m, X

k
m+1)]I{Uk

m<ηkm}

)
+ 2

υk∑
m=0

Φ̄k
mΛk

m

(
ΦE[Gk|Xk

υk
, Xk

υk+1]I{Uk
υk

<ηkυk
}

]
. (3.56)

Since {Φk
m}, {Φ̄k

m}, {Λk
m} have finite nth moment for any positive integer n, and υk < T/h,

similar to the proof of (3.55), there exist positive constants η1 and η2, such that

E[(

υk∑
m=0

Φ̄k
mΛk

mh)
2] < η1, E[

υk∑
m=0

Φ̄k
mΛk

mh] < η2. (3.57)
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As in the proof of (3.44) and (3.45), we can show that

E
[ υk∑
m=0

Φk
mE[Gk|Xk

υk
, Xk

υk+1]I{Uk
υk

<ηkυk
}
]
< µ1,

E[

υk∑
m=0

Φ̄k
mΛk

mΦk
mE[Gk|Xk

υk
, Xk

υk+1]] < µ2, (3.58)

where µ1 and µ2, are positive constants. By Assumptions 3.1 and 3.2, and Lemmas 3.1

and 3.3, as in the proof of (3.45), we have

E
[ υk∑
m=0

(Φk
m)2E[(Gk)

2
k(τ

k
m+1, X

k
m, X

k
m+1)]I{Uk

m<ηkm}
]
≤ µ3. (3.59)

Substituting (3.57), (3.58), and (3.59) into (3.56) yields

E[(Dk
p∆V̂k)

2] ≤ S2 + η1 + µ3 + 2S(η2 + µ1) + 2µ2 = βk1 , (3.60)

where βk is a positive constant. Similarly, we can prove that there exist positive constants

βk2 , β
k
3 such that

E[(Dk
p∆V̂ne)

2] ≤ βk2 , E[Dk
p∆V̂kD

k
p∆V̂ne ] ≤ βk3 . (3.61)

Combining (3.55), (3.60), and (3.61) yields

E[(G k
p V̂ )2] ≤ Uk + βk1 + βk2 + 2βk3 + 2

√
Uk

√
βk1 + βk2 + 2βk3 = Uk.

�

The following theorem shows the convergence property of Algorithm 2.
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Theorem 3.3 For the optimization problem (3.12), let P⋆ be the set of Kuhn-Tucker

points. Then Assumptions 3.3, 3.4, 3.5, 3.6, and 3.7 hold for the Stochastic Approximation

Algorithm 2. If P⋆ is connected, the sequence of points {p(n)k } converges to a point in P⋆

in probability as n goes to infinity.

Proof. We prove the theorem by applying Theorem 6.3.1 of [67]. First we verify that

Assumptions 3.3, 3.4, 3.5, 3.6, and 3.7 hold for our algorithm. Assumption 3.3 holds

since we choose the step-size according to (3.51). Assumption 3.4 holds because the

constrained set is {p ≤ pk ≤ p̄}. Note that ∥
∑l

i=n a
(i)β

(i)
k ∥, l ≥ n is a submartingale since∑l

i=n a
(i)β

(i)
k , l ≥ n is a martingale and the Euclidean norm is convex. Hence

P
(

sup
n≤l≤ρ(sk+s)

∥
l∑

i=n

a(i)β
(i)
k ∥ > ϵ

)
= P

(
sup

n≤l≤ρ(sk+s)

( l∑
i=n

a(i)β
(i)
k

)2
> ϵ2

)

≤
E
[(∑ρ(sk+s)

i=k a(i)β
(i)
k

)2]
ϵ2

=

∑ρ(sk+s)
i=n [a(i)]2E[[β

(i)
k ]2]

ϵ2

≤
∑∞

i=n[a
(i)]2E[[β

(i)
k ]2]

ϵ2
.

Assumption 3.6 holds because of Lemma 3.5. Assumption 3.7 is valid by the choice of a(i)

and Lemma 3.6. By Theorem 6.3.1 of [67], we complete the proof. �

3.4 Joint Optimization of Dynamic Pricing and Initial Order

Algorithm 1 and Algorithm 2 address the dynamic pricing problem with a fixed

amount of inventory. Now we extend the dynamic pricing problem and allow to choose

the initial order S freely. A similar pricing policy as in Section 3.3.1 is adopted, in which

the price changes at Sk = N−k
N S for i = 1, · · · , N . The inventory levels at which the price
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can be changed are proportional to the initial inventory level with a fixed ratio. Given an

initial order S and a pricing policy πf , we can use Algorithm 1 to generate sample paths,

along which discretized incremental value functions {∆V̂k} can be calculated by (3.11).

The joint dynamic pricing and initial order optimization problem can be formulated as

sup
πf ,S

E
[
V̂ (S)

∣∣∣X0 = S
]
. (3.62)

Similar to the dynamic pricing problem (3.12), we use SA to solve (3.62). The gradient

estimators {G k
p V̂ } still work here. In the following, we derive gradient estimators for the

expectation of the discretized value function with respect to the initial order S.

3.4.1 Derivative estimator with respect to the initial order

The gradient of xki with respect to S can be easily obtained. For xki > Sk, x
k
i+1 > Sk

and tki+1 ≤ T − h,

∂xki+1

∂S
=
∂xki
∂S

−
(∂σ(X0 − xki , pk)

∂xki

∂xki
∂S

)√
tki+1 − tki z

k
i+1.

The boundary conditions are ∂X0
∂S = 1,

∂xk
τk

∂S = N−k
N .

When xki > Sk, and t
k
i+1 > T − h > tki , we have

∂xki+1

∂S
=
∂xki
∂S

+ λ(pk)
∂τk−1

∂S
+
∂σ(X0 − xki , pk))

∂xki

∂xki
∂S

√
T − τk−1 − ihzki+1

+
σ(X0 − xki , pk)

2
√
T − τk−1 − ih

∂τk
∂S

zki+1.
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3.4.2 Sample Path-Based Gradient Estimators for Stopping Times

We derive a sample path-based gradient estimator for the expectation of τki+1 with

respect to S along a similar line as in Section 3.3.3.3. When xki > Sk and xki+1 < Sk, the

gradient estimator is given by

∂τki+1

∂S
=

−N−k
N +

∂xk
i

∂S

tki+1−τki+1

h +
∂xk

i+1

∂S

τki+1−tki
h − ∂σ(X0−xk

i ,pk)
∂S

√
N(τki+1)Zk

−xk
i+1

h +
xk
i
h + σ(X0 − xki , pk)

∂N(τk
i+1

)

∂τk
i+1

2
√

N(τki+1)
Zk

= Dτ
S(τ

k
i+1;x

k
i , x

k
i+1), (3.63)

where Zk is defined in (3.28). When xki > Sk and xki+1 > Sk, the gradient estimator is

given by
∂τki+1

∂S = Dτ
S(τ̂k;x

k
i , x̃

k
i+1) where x̃

k
i+1 = 2Sk − xki+1.

3.4.3 Likelihood Ratio Gradient Estimators for Stopping Times

A likelihood ratio gradient estimator of the expectation of the stopping time τki+1

with respect to S can be obtained in a similar way as we derived (3.23) and (3.24). The

likelihood ratio gradient estimator is derived by assuming the interchangeability of the

derivative and the integral:

∂E[τki+1|xki , xki+1]

∂S
=

∫ ti+1

ti

τ
∂ ln fk(τ)

∂S
fk(τ)dτ.

By using the inverse Gaussian distribution, we can rewrite the above equation as

∂E[τki+1|xki , xki+1]

∂S
=

∫ ∞

0

hy

1 + y

∂ ln gk(y;λk, θk)

∂S
gk(y;λk, θk)dy.
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We use RS(τ
k
i+1;x

k
i , x

k
i+1) =

hy
1+y

∂ ln gk(y;λk,θk)
∂S to denote the likelihood ratio gradient esti-

mator.

3.4.4 Gradient Estimator for Value Function

Similarly as in Section 3.3.3.4, the values of the indicator functions in ∆V̂k change

at Uk⋆
i = ηki (S). We use conditional expectation to smooth out the discontinuities. Now

we perturb S to S + ∆θ and S − ∆θ for a small ∆θ. The values of ηki at the new

parameters are ηki (S + ∆θ) and ηki (S − ∆θ), respectively. Without loss of generality,

assume Uk⋆
i ≤ ηki (S +∆θ), and Uk⋆

i ≥ ηki (S −∆θ). Define the following sets

Ak
i (U

k⋆
i , S,∆θ) =

{
Uk
i :

Uk⋆
i ≤ Uk

i ≤ ηki (S +∆θ);

and Uk⋆
i ≥ Uk

i ≥ ηki (S −∆θ).

for i = 1, · · · , υk.

Ak
i (U

k⋆
i , S,∆θ) contains Uk

i such that Uk
i −ηki with the price S+∆θ has a different sign than

it does with the price S −∆θ. Let Ak
i (U

k⋆
i , S,∆θ) be the complement of Ak

i (U
k⋆
i , S,∆θ).

For simplicity, we use Ak
i to represent Ak

i (U
k⋆
i , S,∆θ), and define A =

∪υk
i=1Ak

i .

Restricted to the set A, the signs of the indicator functions in ∆V̂k will not change.

By direct differentiation, we can easily obtain the following gradient estimator forE[{∆V̂k}|A]:

DS∆V̂k = − pk
∂∆Sk
∂S

−
υk∑

m=0

{[m−1∑
i=0

(∂c(Xk
i )

∂S
h+

∂c(Xk
m)

∂S
(E[τkm+1|(Xk

m, X
k
m+1)]− tkm)

+ c(Xk
m)E[GS(τ

k
m+1;X

k
m, X

k
m+1)]

)] m∏
j=0

I{Uk
j <ηkj }

I{Uk
m+1≥ηkm+1}

}
, (3.64)
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where

GS(τ
k
m+1;X

k
m, X

k
m+1) = Dτ

S(τ
k
m+1;X

k
m, X

k
m+1) when Xk

m > Sk, X
k
m+1 ≤ Sk,

GS(τ
k
m+1;X

k
m, X

k
m+1) = Dτ

S(τ
k
m+1;X

k
m, 2Sk −Xk

m+1) when Xk
m > Sk, X

k
m+1 > Sk.

The following lemma states that the above gradient estimator is unbiased.

Lemma 3.7 If Assumptions 3.1 and 3.2 hold, we have

∂E
[
∆V̂k|A

]
∂S

= E
[
DS∆V̂k|A

]
,

where DS is defined by (3.64), i.e., the gradient estimator (3.64) is unbiased.

Proof. The proof is similar to the proof of Lemma 3.4. �

Theorem 3.4 If Assumptions 3.1 and 3.2 hold, we have

∂E[∆V̂k]

∂S
= E[SS∆V̂k] + E

[
DS∆V̂k

]
, (3.65)

where SS∆V̂k =
∑υk

m=1 C k
S,m, in which C k

S,m is given by

C k
S,m =

∂ηkm
∂S

E
{[
c(Xk

m−1)(τ
k
m − tkm−1) +

ne∑
n=k+1

V̂n|tk+1
0 = τkm

]m−1∏
n=0

I{Uk
n<ηkn}

−
υk∑

j=m

[ j∑
i=m

c(Xi−1)h+ c(Xj)(τ
k
j+1 − tkj ) +

ne∑
n=k+1

V̂n|tk+1
0 = τkj+1

]

×
j∏

n=0,n̸=m

I{Uk
n<ηkn}I{Uk

n+1≥ηkn+1}

}
;

DS∆V̂k is defined by (3.64); τkm is the first time that the inventory level hits Sk given

Xk
m−1 and Xk

m.
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The gradient estimator of V̂ with respect to S is given by GSV̂ =
∑ne

k=1

(
SS∆V̂k+DS∆V̂k

)
.

3.5 Pricing Over Infinite Horizon

In this section, we consider selling all the inventory over an infinite horizon using a

pricing policy πf as in Section 3.3 . Similar to Algorithm 1, we use the following algorithm

to simulate the discretized value function.

Algorithm 3. (Simulation Algorithm Over Infinite Horizon)

Initialization: for a given pricing policy πf , choose a time step h > 0. Let k = 1, t10 = 0,

I0 = 1, x10 = S0 = S, and τ0 = 0.

• step 1: If k > N , stop; otherwise set i = 0, tk0 = τk−1 for k > 1, Ik = 1, and

xk0 = Sk−1. Go to step 2.

• step 2: Let the price be pk according to the pricing policy πf and generate zki+1 ∼

N(0, 1). Compute xki+1 by (3.8).

– When xki+1 ≥ Sk, generate U
k
i uniformly on [0, 1], and compute ηki+1. If Ik = 1,

let Ik = IkI{Uk
i <ηki+1}

, θk =
xk
i −Sk

xk
i+1−Sk

, and λk =
(xk

i −Sk)
2

h[σ(S−xk
i ,pk)]

2 , set i = i+1, then

go to step 3.

– When xki > Sk > xki+1, let υk = i, θk = − xk
i −Sk

xk
i+1−Sk

, and λk =
(xk

i −Sk)
2

h[σ(S−xk
i ,pk)]

2 ,

then go to step 3.

• step 3: Generate a sample yk from the inverse Gaussian distribution (3.14). Let

τki+1 = tki +
hy
1+y .

– When Ik = 1, if Xk
i+1 > Sk, the price does not change and go to Step 2, and

if Xk
i+1 ≤ Sk, let τk = τkk+1, k = k + 1, and go to Step 1.
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– When Ik = 0 and Xk
i+1 > Sk, the price changes, let τk = τki+1, then go to Step

1.

With the above simulation scheme, the remaining formulation of the joint inventory

control and dynamic pricing problem over an infinite horizon is very similar to that over

a finite time horizon. Instead of solving the optimization problem (3.12), we solve the

following optimization problem:

sup
πf ,S

E
[ N∑

i=1

∆V̂i

∣∣∣X0 = S
]
. (3.66)

Note that the arrival rate of the demand (3.1) at time t only depends on the price at

t, and σ(X0 − Xk
t , pk) depends on the cumulative demand and the price at t, but not

explicitly on the time t. This property simplifies the problem of estimating the gradient

of the expected discretized profit functions, and yields the following result.

Theorem 3.5 Under Assumptions 3.1 and 3.2, we have

∂
∑N

i=1E
[
∆V̂i

]
∂pk

=
∂E
[
∆V̂k

]
∂pk

= E
[∆V̂k
∂pk

]
.

Proof. From the boundary conditions (3.20), xk−1
τk−1

does not depend on pk−1, and hence

xki does not depend on pk−1 by (3.8). In ∆V̂k defined by (3.11), τkm+1 − tkm only depends

on xkm and xkm+1, which do not depend on pk−1. It is easy to show iteratively that ∆V̂k

does not depends on pi for i < k − 1. Hence the theorem is proved. �

The gradient estimators given by (3.19) and the boundary condition (3.20) for {xki }

are still valid. We can also use the gradient estimator (3.29) for {τki+1}. However, for

dynamic pricing problems over an infinite horizon, the stopping time τN could be infinity,
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which is different from the dynamic pricing problem over a finite horizon T . We show that

the stopping times {τk} now have the following property.

Lemma 3.8 If Assumptions 3.1 and 3.2 hold, there exist positive constants M1 and M2,

such that the first and second moments of the stopping time {τk} satisfy

E[τk] ≤ M1, E[(τk)
2] ≤ M2. ∀k = 1, · · · , N.

Proof. We prove this lemma by applying optional stopping theory. Without loss of

generality, we start from the inventory level Sk−1 at time τk−1 with the selling price pk.

From Algorithm 3, we know that

Xk
1 = Sk−1 − λ(pk)h− σ

√
hZk

1 ,

· · ·

Xk
i+1 = Xk

i − λ(pk)h− σ
√
hZk

i+1.

Summing up all the above equations gives

Xk
i+1 = Sk−1 − λ(pk)h× i−

i∑
l=0

σ
√
hZk

l+1.

Define a new stochastic process Mi+1 =
∑i

l=0 g(X0 −Xk
l , pk)

√
hZk

l+1 = Sk−1 − λ(pk)(i+

1)h −Xk
i+1. Let Fk

i be the filtration generated by random variables {Zk
m,m = 1, · · · , i}.

Note that Mi is a martingale with respect to the filtration Fk
i . It is easy to show that

υk + 1 = inf{i+ 1 : xki > Sk, x
k
i+1 ≤ Sk} is a stopping time. By optional stopping theory,
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E[Mυk+1] = E[M0] = 0, i.e,

E[Mυk+1] = E
[
Sk−1 − λ(pk)(υk + 1)h−Xk

υk+1]

= Sk−1 − λ(pk)E[υk + 1]h−E[Xk
υk+1] = 0. (3.67)

Note that Xk
υk+1 is no greater than Sk. Therefore E[Xk

υk+1] ≤ Sk, together with (3.67),

yields
Sk−1−Sk

λ(pk)
− h ≤ E[υkh]. From (3.67), we know that

Sk−1 − λ(pk)E[υk + 1]h = E[Xk
υk+1] = E[Xk

υ − λ(pk)h− σ
√
hZk

υk+1]

> Sk − λ(pk)h− σ
√
h

∫ ∞

Xk
υk

−λh−Sk

σ
√

h

1√
2π
z exp (

−z2

2
)dz > Sk − λh− σ

√
h.

The first inequality holds since Xk
υk

is greater than Sk. Hence we have

E[υkh] <
Sk−1 − Sk + σ

√
h

λ(pk)
. (3.68)

Combining (3.68) and the fact υkh ≤ τk − τk−1 ≤ (υk + 1)h yields

E[τk]− E[τk−1] ≤
Sk−1 − Sk + σ

√
h

λ(pk)
+ h ≤ Sk−1 − Sk

λ
+ h.

By iteratively applying the above inequality to the stopping times τi for i = 1, · · · , k, and

then taking the sum, we have

E[τN ] ≤ M1, (3.69)

where M1 =
S0−Sk+Nσ

√
h

λ +Nh.

To derive a bound on the second moment of the stopping times, we define a stochastic
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process Ai+1 = (
∑i

l=0 g(X0 −Xk
l , pk)

√
hZk

l+1)
2 −

∑i
l=0 g

2(X0 −Xk
l , pk)h. Note that Ai+1

is also a martingale with respect to the filtration Fk
i+1 and υk + 1 is a stopping time. By

the optional stopping theory, E[Aυk+1] = E[A0] = 0, i.e.,

E[Aυk+1] = E[
(
Sk−1 − λ(pk)(υk + 1)h−Xk

υk+1

)2
]− E[

υk∑
l=0

g2(X0 −Xk
l , pk)h]

= (Sk−1)
2 + λ2(pk)E[((υk + 1)h)2]− 2Sk−1λ(pk)E[(υk + 1)h]− 2Sk−1E[Xk

υk+1]

+ 2λ(pk)E[(υk + 1)hXk
υk+1] + E[(Xk

υk+1)
2]−E

[ υk∑
l=0

g2(X0 −Xk
l−1, pk)

]
h = 0.

(3.70)

Note that Xk
υk+1 is no greater than Sk. Combining the inequalities (3.68) and (3.70) yields

E[((υk + 1)h)2] =
1

λ2(pk)

[
− S2

k−1 + 2Sk−1λ(pk)E[(υk + 1)h] + 2Sk−1E[Xk
υk+1]

− 2λ(pk)E[(υk + 1)hXk
υk+1]− E[(Xk

υk+1)
2] + E[

υk∑
l=0

g2(X0 −Xk
l−1, pk)h]

]
≤ b1,

where b1 =
1

λ2(pk)

[
S2
k−1 + 2Sk−1λ(pk)h+ σ2

(Sk−1−Sk+σ
√
h

λ + h
)]
. Therefore we have

E[(τk − τk−1)
2] ≤ E[(υkh+ h)2] ≤ b1. (3.71)

Combining (3.69) and (3.71), we conclude that there exists a positive constant M2, such

that E[(τN )2] ≤ M2.�

With Lemma 3.8, by using similar techniques as in Section 3.3, we have
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Theorem 3.6 If Assumptions 3.1 and 3.2 hold, we have

∂E[∆V̂k]

∂pk
= E[C k

p,I∆V̂k] + E
[
Dk

p∆V̂k
]
, for all k ≤ N ,

∂E[∆V̂k]

∂S
= E[CS,I∆V̂k] + E

[
DS∆V̂k

]
, for all k ≤ N ,

where Dk
p∆V̂k and DS∆V̂k are given by (3.35) and (3.64), respectively; Cp,I∆V̂k and

CS,I∆V̂k are given by C k
p,I∆V̂k =

∑υk
m=1 C k

p,I,m, CS,I∆V̂ k =
∑υk

m=1 C k
S,I,m, in which

C k
p,I,m and C k

S,I,m are defined by

C k
p,I,m =

∂ηkm
∂pk

E
[
c(Xk

m−1)(τ
k
m − tkm)

m−1∏
n=0

I{Uk
n<ηkn} −

υk∑
j=m

( j∑
i=m

c(Xi−1)h

+ c(Xj)(τ
k
j+1 − tkj )

) j∏
n=0,n̸=m

I{Uk
n<ηkn}I{Uk

n+1≥ηkn+1}

]
,

C k
S,I,m =

∂ηkm
∂S

E
[
c(Xk

m−1)(τ
k
m − tkm)

m−1∏
n=0

I{Uk
n<ηkn} −

υk∑
j=m

( j∑
i=m

c(Xi−1)h

+ c(Xj)(τ
k
j+1 − tkj )

) j∏
n=0,n̸=m

I{Uk
n<ηkn}I{Uk

n+1≥ηkn+1}

]
.

The gradient estimators of V̂ with respect to pk and S are given by G k
p V̂ =

∑N
k=1

(
S k

p,I V̂k+

Dk
p V̂k

)
, and G k

S V̂ =
∑N

k=1

(
SS,I V̂k +Dk

S V̂k
)
, respectively. With these gradient estimators,

we can use SA to find the optimal initial inventory level and the optimal pricing pol-

icy. Convergence results for the SA algorithms for the infinite horizon problem can be

established similarly, and all the details are omitted.

3.6 Numerical Experiments

In this section, we test the gradient estimators of the expected discretized profit

function and the proposed stochastic approximation algorithm 2 for revenue management
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problems both over an infinite horizon and over a finite horizon with different parameter

settings, using a class of pricing policy πf , in which the price can only be changed a limited

number of times.

3.6.1 Infinite Horizon Problem

Consider the revenue management problem (3.66) in Section 3.5 over an infinite

horizon. In order to show the effectiveness of the proposed algorithm, we assume that the

arrival rate of the demand is λ(p) = 30−p, the uncertainty parameter σ in the demand is a

constant, and the holding cost per unit time is c(x) = αx, where α is a positive scalar. For

this model, analytical solutions of the optimal pricing policy, and the sensitivities of the

expected discretized profit with respect to various parameters can be obtained by using

the method in [22].

3.6.1.1 Sensitivity Analysis

We first conduct a simulation experiment to compute sensitivities of the expected

discretized profit with respect to various parameters, including the pricing parameters,

the initial inventory level, the uncertainty parameter σ, and the holding cost parameter

α. In this specific experiment, we assume that the price can be changed twice, i.e., N = 3.

Let S be the initial inventory level. A price p1 is charged until the inventory level falls to

2S
3 , then a price p2 is charged until the inventory level falls to S

3 , and finally p3 is used

until all the items are sold.

To compute sensitivities, we first generate sample paths by using Algorithm 3; along

each sample path, sensitivities of the expected discretized profit function with respect to

various parameters can be obtained. Let the time step in Algorithm 3 be h = 0.1, the
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Table 3.1: Infinite Time Sensitivity Estimation Results (Standard Error in Parentheses)

σ = 1 σ = 3 σ = 5 σ = 7

∂V̂ /∂p1
LR 5.91(2.55) 4.02(1.27) 4.30(0.78) 5.03(1.24)
PW 5.47(0.18) 5.40(0.32) 5.08(0.40) 3.88(0.50)
ANA 5.52 5.26 4.72 3.92

∂V̂ /∂p2
LR 18.85(2.00) 16.03(0.51) 15.44(0.38) 14.57(0.32)
PW 16.70(0.09) 16.47(0.17) 16.04(0.22) 15.43(0.27)
ANA 16.63 16.367 15.83 15.03

∂V̂ /∂p3
LR 27.75(0.01) 27.47(0.03) 26.97(0.06) 26.12(0.09)
PW 27.73(0.01) 27.47(0.03) 26.99(0.06) 26.36(0.09)
ANA 27.74 27.48 26.94 26.14

∂V̂ /∂S
LR 10.28(0.32) 9.85(0.14) 9.88(0.08) 9.83(0.13)
PW 10.05(0.02) 10.03(0.04) 9.98(0.04) 9.86(0.05)
ANA 10.00 9.96 9.88 9.76

∂V̂ /∂α
LR -505.2(0.3) -508.2(0.9) -515.3(1.5) -531.1(2.2)
PW -505.3 (0.3) -509.9(0.9) -516.0(1.5) -530.8(2.1)
ANA -500.5 -504.5 -512.5 -524.5

∂V̂ /∂σ
LR 0.27(1.66) -1.75(0.90) -4.46(0.48) -5.99(0.48)
PW -1.51(0.31) -3.28(0.34) -4.642(0.39) -7.38(0.44)
ANA -1.00 -3.00 -5.00 -7.00

holding cost parameter α = 1, and the initial inventory level S = 100. We let the prices

p1 = p2 = p3 = 20. In the simulation experiment, we generate 4000 independent sample

paths. Along each sample path, we implement two estimators for each parameter denoted

by LR and PW. LR represents the LR estimator when LR for the expected stopping times

is used to derive gradient estimators for the expected discretized profit; PW represents

the pathwise estimator when the sample path-based estimator for the expected stopping

times is used to derive gradient estimators for the expected discretized profit.
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Table 3.1 lists the sensitivities of the expected discretized profit with respect to

various parameters for different uncertainty levels in the demand model by using differ-

ent methods. The numbers in parentheses are standard errors. The proposed pathwise

algorithm generally performs better than the LR method for most of the parameters at

different uncertainty levels, especially for the prices p1, p2, and S, which are used in SA

to find the optimal prices and the optimal initial inventory level. The simulation results

of the proposed method are very close to the analytical ones with a comparatively small

standard error.

3.6.1.2 Joint Optimization of Prices and Initial Inventory Level

With the above gradient estimation results, we use SA to jointly optimize prices

and the initial inventory level. The optimal pricing policy can be obtained numerically

using the method in [22]. We conduct two experiments with the number of price changes

N = 2 and N = 3. In the demand model, we set σ = 1.

When N = 2, the price is allowed to change once when the inventory hits S/2,

where S is the initial inventory level. To implement the SA algorithm, we first generate 20

sample paths by using Algorithm 3, and compute gradient estimates along these sample

paths for parameters of interest. Then we use Algorithm 2 to update these parameters.

In Algorithm 2, we set a = 0.10/k when updating prices, where k is the iteration

number, and a = 15/k when updating S. Figures 3.2(a) and 3.2(b) show the prices

and the initial inventory levels, respectively, at different iterations when we iteratively

update the prices and the inventory level by using the SA algorithm. In Figure 3.2(a),

p1 is the price that is charged before the inventory level falls to S/2, and p2 is the price

after the inventory level first falls bellow S/2; p⋆1 and p⋆2 are the corresponding optimal
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prices. In Figure 3.2(b), S is the initial inventory level, and S⋆ is the corresponding

optimal value. V in Figure 3.4(a) is the average profit, and V ⋆ is the expected discretized

profit corresponding to the optimal policy. From the simulation results, we can see our

simulation algorithm converges to the optimal values quickly.
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Figure 3.2: Prices and Inventory when N = 2
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Figure 3.3: Prices and Inventory when N = 3

Figures 3.3(a), 3.3(b), and 3.4(b) show the convergence of the prices, the initial

inventory level, and the average profit of the SA algorithm, respectively, when the price

is allowed to change twice, i.e., N = 3. Again, we can see that the proposed algorithm
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works well. When N = 3, Figure 3.5(a) shows how the optimal pricing policies change

when we change the initial inventory level. The optimal prices decrease when the initial

inventory level increases, since with the increase of the initial inventory level, lowering the

prices will increase the demand, and hence reduce the holding cost. Figure 3.5(b) shows

the optimal average profits for different initial inventory levels. We can see that at the

beginning, an increase in the initial inventory level brings an increase in the profit.
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Figure 3.4: Profit

However up to a certain level, an increase in the initial inventory level will reduce

the profit since the revenue increase due to the increase in the initial inventory level is

less than the holding cost increase. This figure shows the benefit of optimizing the initial

inventory level. The average profit improves significantly if we jointly optimize the prices

and the initial inventory level. Figure 3.6(a) shows the simulation results of dynamic

pricing with a fixed initial inventory level S = 150, when we vary the number of price

changes allowed in the pricing policy. We can see that when the price changes are more

than 4, the increase in the profit is not remarkable any more. In other words, we can

say that pricing policies that allow the price to change continuously only provide limited
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advantage over the pricing policies that allow a limited number of price changes.
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Figure 3.5: Pricing Policy and Profit Changes
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Figure 3.6: Effect of Price Changes and Profit

3.6.2 Finite Horizon Problem

Now we consider the revenue management problem (3.12) over a finite horizon; we

use the same demand model as the one over an infinite time horizon. We assume that

the arrival rate of the demand is λ(p) = 30− p, σ is a constant, and the holding cost per
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unit time is c(x) = αx. We adopt the pricing policy in which only a limited number of

price changes can be made during the selling process. The selling process stops at T = 8.

There is no analytical form for the sensitivities of the expected discretized profit function

with respect to parameters of interest, such as the pricing parameter pi, i = 1, · · · , N , and

the initial inventory level S. There is also no analytical solution for the optimal pricing

policy or the optimal initial inventory level.

We assume that the price can only be changed once, i.e., N = 2. We generate

sample paths using Algorithm 1; along each sample path, sensitivities of the expected

discretized profit function with respect to various parameters can be obtained. The time

step in Algorithm 1 is h = 0.1; the holding cost parameter α = 1; the initial inventory level

is S = 100. We let p1 = 20 and p2 = 20. In the simulation experiment, we generate 4000

independent sample paths. Along each sample path, we implement two estimators denoted

by LR and PW. LR represents the LR estimator when LR for the expected stopping times

is used to derive gradient estimators for the expected discretized profit; PW is the pathwise

estimator when the sample path-based estimator for the expected stopping times is used

to derive gradient estimators for the expected discretized profit.

Table 3.2 lists the gradient estimates of the expected discretized profit function with

respect to the prices p1, p2, and the initial inventory level S. The pathwise estimators out-

perform the LR estimators with a much smaller standard error. The pathwise estimators

also have relatively constant performances for different values of σ. Again we only need

one simulation run to obtain the gradients of the expected discretized profit function with

respect to all parameters of interest by using the proposed method.
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Table 3.2: Finite Time Sensitivity Estimation Results (Standard Error in Parentheses)

σ = 1 σ = 1.5 σ = 2 σ = 2.5

∂V̂ /∂p1
LR -59.3(17) -51.3(12.7) -59.9(11.1) -63.1(9.1)
PW -63.8(1.4) -62.2(1.3) -63.8(1.4) -64.2(1.4)

∂V̂ /∂p2
LR -34.27(0.05) -34.21(0.08) -34.3(0.1) -34.4(0.1)
PW -34.28(0.05) -34.40(0.08) -34.2(0.1) -34.2(0.1)

∂V̂ /∂S
LR -6.0(1.7) -5.0(1.3) -5.9(1.1) -5.6(0.9)
PW -6.5(0.2) -6.0(0.2) -5.9(0.1) -5.8(0.1)

3.6.2.1 Joint Optimization of Prices and Initial Inventory Level

We assume that the price can only be changed a limited number of times in the

pricing policies. With the above gradient estimation results, we use SA to jointly optimize

prices and the initial inventory level. In the SA algorithm, we set a = 0.10/k when

computing p1 and p2, where k is the iteration number, and a = 15/k when computing

S. We present simulation results for the case N = 2; the price is allowed to change one
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Figure 3.7: Prices and Inventory with N = 2 over Finite Time

time when the inventory hits S/2, where S is the initial inventory level. Figures 3.7(a),

3.7(b), and 3.6(b) show that the prices, the initial inventory level, and the average profit
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converge quickly to the optimal values. Compared with the results of the corresponding

infinite horizon revenue management problem in Figures 3.2(a), 3.2(b), and 3.4(a), we can

see that the optimal initial inventory level changes sharply if we only allow selling the

inventory over a finite horizon. The corresponding pricing policy and the final profit also

change.

3.7 Conclusions

We considered dynamic pricing problems for inventory systems with price-sensitive

demand, which follows a continuous-time, continuous-state stochastic process instead of

the commonly used discrete-time stochastic process. We formulated the dynamic pricing

problem as a stochastic control problem, and gave an analytical solution for a special

demand model.

When only a finite number of price changes is allowed in the pricing policy, we

proposed a simulation-based method for solving the pricing problem under a broad range

of demand models. We gave a new simulation scheme to simulate the evolution of the

inventory level. Based on the generated sample paths, we derived gradient estimators of

the expected discretized profit function with respect to various parameters. Specifically,

we gave a pathwise gradient estimator for stopping times by using a Brownian bridge.

When we derived the gradient estimators for the expected discretized profit function, we

circumvented the difficulty of differentiating a performance function with discontinuous

sample paths by using smoothed perturbation analysis. We showed the unbiasedness

of the resulting estimators. We also showed the convergence of the SA algorithm with

the proposed gradient estimators. Simulation examples demonstrated that the proposed

algorithm works well.
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Chapter 4

A New Gradient Estimator for Discontinuous Payoff Functions

4.1 Introduction and Motivation

In this chapter, we consider performance functions of the following form:

L(X(ω; θ1), Z; θ2)1{X(ω; θ1) > θ2}, (4.1)

which is a function of a real-valued vector of parameters θ1 ∈ Θ1 ⊂ Rd, a real-valued

parameter θ2 ∈ Θ2 ⊂ R, a random variable X(ω; θ1), and a vector of other random

variables Z. ω is the randomness in the random variable X and 1{·} is the indicator

function. For example, for a European option, θ1 could be the initial stock price and X

the stock price at time T , where T is the time when the European option expires. We are

interested in obtaining an efficient gradient estimator for ∂E[]L(X(ω;θ1),Z;θ2)1{X(ω;θ1)>θ2}
∂θ ,

where θ could be an element of θ1 or θ2.

Payoff functions of the form (4.1) are found in many financial applications. For

example, the European call option payoff has the form (4.1), but it still happens to be

continuous, so IPA can be applied. However, the first derivative of the payoff will be

discontinuous due to the indicator function, so that IPA would not be applicable, e.g., for

estimating the gamma. The American call option pricing problem considered in [36] and

[51] also has payoff functions of a similar form with indicator functions that make the payoff

functions discontinuous; hence IPA does not work. By using conditional expectation,
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smoothed perturbation analysis (SPA) ([49, 37]) can sometimes overcome the difficulty of

differentiating an indicator function, but SPA requires choosing what to condition on, and

an SPA estimator often requires more computation because of the estimation of conditional

expectations. Although LR doesn’t require the payoff function to be continuous, it is

not applicable directly when the support of the random variable X(ω; θ1) involves the

parameters θ1 and/or θ2.

4.1.1 Related Literature

In the last three decades, derivative estimation has been studied extensively in the

simulation literature. Infinitesimal perturbation analysis (IPA) and the likelihood ratio

(LR) method are two of the main techniques ([53, 90]). Other techniques include smoothed

perturbation analysis (SPA), which can be applied to performance functions containing

discontinuities, and methods based on weak derivatives (WD) and Malliavin calculus ([29,

23]), and finite-difference-based and kernel estimation-based methods ([57, 56, 74]).

Introduced by [52], IPA has been widely used in sensitivity analysis for discrete-event

systems (see applications of IPA in queueing systems and inventory control problems in

([100, 43, 53, 35, 46, 72, 3])), as well as for financial derivatives ([44, 17, 36]). IPA enables

the sensitivity of a performance function to be estimated while observing a single sample

path of a system and hence offers significant computational savings compared to “brute

force” finite difference methods. However, IPA generally requires the performance function

to be continuous with respect to parameters of interest, which makes IPA not applicable

in many cases. For example, second-order derivatives cannot be obtained by IPA for

European call options ([17]).

Rather than differentiating a performance function as IPA does, the likelihood ratio
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(LR) method constructs derivative estimators from the derivatives of the probability mea-

sure associated with a simulation model. The method was proposed by [48], [87], and [91]

to study discrete event systems and has also been used in financial applications ([17, 44]).

It is also called the score function (SF) method ([90]). For further information on the

LR method, see [91, 90, 32]. The LR method does not require continuity of performance

functions and hence is more widely applicable than IPA. However, parameters of interest

have to be in probability density functions in order to apply LR, whereas in many cases

they appear naturally in performance functions. The push-out method may be able to

move parameters of interest out of the performance function and push them into a proba-

bility density function ([90]); then the LR method can be applied. However the push-out

method has only been demonstrated on some simple cases ([90]).

4.1.2 Background of Gradient Estimation

LetH(X(ω; θ1); θ2) be a performance function of a stochastic system, whereX(ω; θ1)

is a random variable defined on the probability space (Ωω,Fω,Pω), and θ1 and θ2 are

defined the same way as in (4.1). For example, in a queueing system, θ1 could be the

mean arrival time and X the interarrival time. Let J(θ1, θ2) = EPω [H(X(ω; θ1); θ2)],

where EPω [·] denotes expectation with respect to the probability measure Pω. J(θ1, θ2)

can be written as

J(θ1, θ2) =

∫
Ω
H(X(ω; θ1); θ2)dPω(ω). (4.2)

Random variables can be generated from U(0, 1) random numbers by transforming them

in an appropriate way. Hence J(θ1, θ2) can always be written in the form of (4.2). Suppose
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we are interested in the sensitivities of J(θ1, θ2) with respect to the parameters θ1 and θ2.

Under appropriate conditions, we have

∇θ1J(θ1, θ2) = EPω [∇θ1H(X(ω; θ1); θ2)],

∂J(θ1, θ2)

∂θ2
= EPω

[∂H(X(ω; θ1); θ2)

∂θ2

]
, (4.3)

where ∇θ1 = ( ∂
∂θ11

, · · · , ∂
∂θ1d

). Note that

∂H(X(ω; θ1); θ2)

∂θ1i
=
∂H(X(ω; θ1); θ2)

∂X(ω; θ1)

∂X(ω; θ1)

∂θ1i
,

where ∂X(ω;θ1)
∂θ1i

is the derivative of a random variable ([100, 32]). ∇θ1H(X(ω; θ1); θ2) and

∂H(X(ω;θ1);θ2)
∂θ2

are the IPA derivative estimators. Since ω does not depend on θ1 and θ2,

we only need to generate one single sample path ω to get an estimate of the sensitivity

for each parameter of interest. IPA requires the interchange of orders for integration

and differentiation, which usually requires the performance function H(X(ω; θ1); θ2) to be

continuous.

In contrast to IPA, LR differentiates probability measures instead of the perfor-

mance functions to construct derivative estimators and hence does not require continuity

of performance functions along sample paths. To derive an LR derivative estimator for

H(X(ω; θ1); θ2) with respect to θ1, we assume that PX is the probability measure in-

duced by the random variable X(ω; θ1), i.e., PX(B; θ1) = Pω{ω : X(ω; θ1) ∈ B} for any

B ⊂ B(R), where B(R) is a Borel set. By the change of variable formula ([96]), we have

∫
Ω
H(X(ω; θ1); θ2)dPω(ω) =

∫
H(x; θ2)dPX(x; θ1),
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Differentiating both sides of the above equation gives

∇θ1J(θ1, θ2) = EQ̂

[
H(X; θ2)

(
∇θ1 ln

dPX

dQ̂
(X)

)dPX

dQ̂
(X)

]
= EQ

[
H(X; θ2)

(
∇θ1 ln

dPX

dQ̂
(X)

)dPX

dQ
(X)

]
, (4.4)

where Q̂ is the Lebesgue measure if X is a continuous random variable and is the counting

measure if X is a discrete random variable (i.e., dPX/dQ̂ corresponds to the probability

density and mass functions, respectively); Q is a probability measure such that PX is

absolutely continuous with respect to Q.

H(X; θ2)
(
∇θ1 ln

dPX

dQ̂
(X)

)dPX

dQ
(X)

is called the LR derivative estimator. The LR method does not require the performance

function to be continuous, and the interchangeability of differentiation and integration is

often not a problem ([44]). However, first, it is not always possible to move parameters of

interest into probability density functions; second, note that the support of the distribution

of X should not depend on θ1 when deriving (4.3) and (4.4). For performance functions

in the form of (4.1), LR is not applicable directly if the support of the distribution of

X depends on the parameter of interest. Compared with IPA, LR estimators tend to

have larger variance, especially when the input process involves an oft-repeated (e.g. i.i.d)

random variable whose common distribution depends on the parameter of interest.

Although IPA is constructed by differentiating the performance function, whereas

LR involves differentiation of the underlying probability measure, it is possible to unify

them in a single framework as in [72].
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4.2 SLRIPA Derivative Estimator

The expectation of the performance function (4.1) is denoted as

J̃(θ1, θ2) = EPω [L(X(ω; θ1), Z; θ2)1{X(ω; θ1) > θ2}], (4.5)

where Z is defined on a probability space (ΩZ ,FZ ,PZ). Let (Ω,F) be the product space

of (Ωω,Fω) and (ΩZ ,FZ). Here ΩZ is a sample space and FZ is a σ-algebra defined

on ΩZ ; X and Z are independent and are defined on the probability space (Ω,F ,P),

where dP(ω, z) = dPω(ω) × dPZ(z). Here the expectation is actually computed with

respect to the measure P, but to emphasize the effect of Pω, we use the measure Pω

as a subscript of the expectation. We assume that the random variable X(ω; θ1) has

a probability density or mass function f(x; θ1) with support [a(θ1), b(θ1)], where θ1 =

(θ11, · · · , θ1d)T is a real-valued vector of continuous parameters, and a(θ1) and b(θ1) can

be −∞ and +∞, respectively. To simplify the notation, we sometimes use X to denote

X(ω; θ1). Note that if L equals 1, then J̃(θ1, θ2) becomes the probability that X is greater

than θ2. We are interested in estimating ∂J̃(θ1,θ2)
∂θ , where θ could be θ1i for i = 1, 2, · · · , d,

or θ2. Since there is an indicator function in J̃(θ1, θ2), the direct IPA estimator is biased.

4.2.1 Derivation of SLRIPA

Our method consists of two steps. First we move the parameter θ2 out of the

indicator function through an appropriate change of random variables; the critical feature

of the change is that the support of the distribution of the new random variable no longer

depends on the parameter of interest. The resulting form allows us to obtain the unbiased

SLRIPA estimator by simultaneously applying LR and IPA.
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Assume that we can define a random variable Y = Γ(X; θ1, θ2), where Γ is a function

of X with parameters θ1 and θ2, such that Y satisfies two conditions. First, the support of

the random variable Y does not depend on θ1 and θ2, and Γ is invertible as a function ofX.

The specific form of Γ will be given for several different cases, in which the support of the

distribution of X is in different forms, in the following subsections. Second, there exists

a function ψ(Y ), such that ψ does not depend on θ1 and θ2 explicitly, and X(ω; θ1) > θ2

is equivalent to ψ(Y ) > 0. Let PY be the probability measure induced by the random

variable Y . We have

∂J̃(θ1, θ2)

∂θ
=
∂

∂θ
EPω [L(X(ω; θ1), Z; θ2)1{X(ω; θ1) > θ2}]

=
∂

∂θ
EPY

[L(Γ−1(Y ; θ1, θ2), Z; θ2)1{ψ(Y ) > 0}]

=
∂

∂θ
EQ̂

[
L(Γ−1(Y ; θ1, θ2), Z; θ2)1{ψ(Y ) > 0}dPY

dQ̂
(Y )
]
, (4.6)

where Q̂ is the Lebesgue measure if Y is a continuous random variable and is the counting

measure if Y is a discrete random variable. Similar as in (4.5), we use PY as the subscripts

of the expectation operator to emphasize the effect of PY when computing the above

expectation.

Note that (4.6) has two terms related to the parameter θ1 and/or the parameter

θ2: L(Γ−1(Y ; θ1, θ2), Z; θ2) and the Radon-Nikodym derivative dPY

dQ̂
(Y ). The indicator

function 1{X(ω; θ1) > θ2} becomes 1{ψ(Y ) > 0}, which no longer has any dependence

on the parameters. Hence, given Y , a perturbation in the parameter θ will affect the

function L(Γ−1(Y ; θ1, θ2), Z; θ2) and the Radon-Nikodym derivative dPY

dQ̂
(Y ), but not the

indicator function 1{ψ(Y ) > 0}. In other words, the effect of the parameter θ has been

moved out of the indicator function and is transferred into the Radon-Nikodym derivative.
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Thus, we can apply IPA to L(Γ−1(Y ; θ1, θ2), Z; θ2) and use LR for dPY

dQ̂
(Y ). Let Q̃ be a

probability measure, such that PY is absolutely continuous with respect to Q̃. Then

assuming differentiation and expectation can be interchanged in (4.6), we have

∂J̃(θ1, θ2)

∂θ
=EQ̃

[∂L(Γ−1(Y ; θ1, θ2), Z; θ2)

∂θ
1{ψ(Y ) > 0}dPY

dQ̃
(Y )
]

+ EQ̃

[
L(Γ−1(Y ; θ1, θ2), Z; θ2)1{ψ(Y ) > 0}

∂ ln dPY

dQ̂
(Y )

∂θ

dPY

dQ̃
(Y )
]
. (4.7)

Mild regularity conditions to be given later, allow the interchange of expectation and

differentiation in (4.6), whereas the interchange of expectation and differentiation would

not be valid in directly differentiating (4.1). Here we call

∂L(Γ−1(Y ; θ1, θ2), Z; θ2)

∂θ
1{ψ(Y ) > 0}dPY

dQ̃
(Y )

+ L(Γ−1(Y ; θ1, θ2), Z; θ2)1{ψ(Y ) > 0}
∂ ln dPY

dQ̂
(Y )

∂θ

dPY

dQ̃
(Y ) (4.8)

the SLRIPA derivative estimator. In particular, if Q̃ is the probability measure induced

by Y , then the SLRIPA derivative estimator is

∂L(Γ−1(Y ; θ1, θ2), Z; θ2)

∂θ
1{ψ(Y ) > 0}

+ L(Γ−1(Y ; θ1, θ2), Z; θ2)1{ψ(Y ) > 0}
∂ ln dPY

dQ̂
(Y )

∂θ
. (4.9)

Remark 4.1 It is critical to choose the functions Γ and ψ such that the support of Y and

the indicator function do not depend on the parameters of interest. For payoff functions

of the form (4.5), we give specific SLRIPA estimators for several different cases later.

Remark 4.2 Other than writing the SLRIPA estimator in terms of the newly defined
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random variable Y , it might be desirable to represent the SLRIPA derivative estimator in

terms of the original random variable X, when X has specific physical meanings. One

way to accomplish this is letting Q̃ be the probability measure induced by X, and then we

can write the SLRIPA estimator in terms of the original random variable X as follows:

∂L(Γ−1(Y ; θ1, θ2), Z; θ2)

∂θ

∣∣∣
Y=Γ(X;θ1,θ2)

1{X > θ2}

+ L(X,Z; θ2)1{X > θ2}
∂ ln dPY

dQ̂
(Y )

∂θ

∣∣∣
Y=Γ(X;θ1,θ2)

. (4.10)

More generally, the choice of Q̃ might be based on the ease and/or efficiency in carrying

out the simulations depending on the specific problem. One natural approach is to design

Q̃ to reduce the variance of the SLRIPA derivative estimator by viewing Q̃ as a probability

measure for importance sampling; formulating and solving this problem is an interesting

topic for future research.

4.2.1.1 b(θ1) = +∞ and a(θ1) is finite

We assume that θ2 > a(θ1); otherwise, the indicator function 1{X > θ2} would

always be 1, and this degenerate case will be considered later. Define a new random

variable by Y = X−a(θ1)
θ2−a(θ1)

, and note the distribution of the new random variable Y has

support [0,+∞], which does not depend on the parameters θ1 and θ2. Furthermore X −

θ2 > 0 ⇐⇒ Y − 1 > 0. Hence we can define Γ(X; θ1, θ2) =
X−a(θ1)
θ2−a(θ1)

and ψ(Y ) = Y − 1.
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Then X = Γ−1(Y ; θ1, θ2) = (θ2 − a(θ1))Y + a(θ1). The SLRIPA estimator (4.8) becomes

∂L((θ2 − a(θ1))Y + a(θ1), Z; θ2)

∂θ
1{ψ(Y ) > 0}dPY

dQ̃
(Y )

+ L((θ2 − a(θ1))Y + a(θ1), Z; θ2)1{ψ(Y ) > 0}
∂ ln dPY

dQ̂
(Y )

∂θ

dPY

dQ̃
(Y ). (4.11)

4.2.1.2 b(θ1) is finite and a(θ1) is finite.

We do a similar analysis as in the above case and define a random variable:

Y = Γ(X; θ1, θ2) =
(X − a(θ1))(b(θ1)− θ2)

(b(θ1)−X)(θ2 − a(θ1))
.

Again the distribution of the new random variable Y has support [0,∞), which does not

depend on the parameters θ1 and θ2. We also assume that a(θ1) < θ2 < b(θ1); otherwise,

the indicator function is always the constant 1 or 0, and this degenerate case will be

considered later. Notice the relation X − θ2 > 0 ⇐⇒ ψ(Y ) = Y − 1 > 0. The SLRIPA

estimator (4.8) is given by

∂

∂θ
L
(b(θ1)(θ2 − a(θ2))Y + a(θ1)(b(θ1)− θ2)

(θ2 − a(θ1))Y + (b(θ1)− θ2)
, Z; θ2

)
1{ψ(Y ) > 0}dPY

dQ̃
(Y )

+ L
(b(θ1)(θ2 − a(θ2))Y + a(θ1)(b(θ1)− θ2)

(θ2 − a(θ1))Y + (b(θ1)− θ2)
, Z; θ2

)
1{ψ(Y ) > 0}

∂ ln dPY

dQ̂
(Y )

∂θ

dPY

dQ̃
(Y ).

(4.12)

4.2.1.3 Other cases

The case where a(θ1) = −∞ and b(θ1) is finite can be done similarly as in the case

when a(θ1) is finite and b(θ1) = +∞. When a(θ1) = −∞ and b(θ1) = +∞, we can define

the new random variable as X/θ2 or X − θ2. This case is trivial and we omit the details.
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When the function L does not depend on θ2 after the change of random variables, the

SLRIPA estimator for the sensitivity with respect to the parameter θ2 will be the same as

the estimator obtained by the push-out method ([90]). In this case, the push-out method

can be viewed as a special case of the SLRIPA method.

Remark 4.3 For payoff functions of more general forms, for example, in which X is the

sum of random variables X =
∑m

i=1Xi or the product of random variables X =
∏m

k=1Xi,

SLRIPA can still be applied. In simple cases in which the support of Xi does not depend on

any parameter, we can define Yi = Xi/θ2 for the sum case and Y1 = X1/θ2 for the product

case. For problems in which the support of Xi depends on parameters of interest, we can

define Yi according to the two different cases in Sections 4.2.1.1 and 4.2.1.2. Practically,

for many financial applications, defining Y = X/θ2 will work.

4.2.2 LR and IPA as Special Cases of SLRIPA

From the description in Section 4.1.2, we can see that LR and IPA are closely related

to each other and they are connected by a change of random variable; this relationship

has been well known in the literature ([72]). We show how IPA and LR can be viewed as

special cases of SLRIPA. Here we assume that the indicator function in the performance

function (4.1) is always 1, and we are interested in estimating ∂Ĵ(θ1,θ2)
∂θ , where

Ĵ(θ1, θ2) = E[L(X(ω; θ1), Z; θ2)]. (4.13)

First we derive the SLRIPA derivative estimators for ∂E[Ĵ(θ1,θ2)]
∂θ before we show that

LR and IPA are special cases of SLRIPA.

Case 1. b(θ1) = +∞ and a(θ1) is finite
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Since there is no indicator function, we only need to define a new random variable whose

support does not depend on either parameter. Define Y = X − a(θ1). Along the same

line as the analysis in Section 4.2, the SLRIPA estimator is

∂L(Y + a(θ1), Z; θ2)

∂θ

dPY

dQ̃
(Y ) + L(Y + a(θ1), Z; θ2)

∂ ln dPY

dQ̂
(Y )

∂θ

dPY

dQ̃
(Y ). (4.14)

Case 2. b(θ1) is finite and a(θ1) is finite

Now we define Y = X−a(θ1)
b(θ1)−X . Similarly, the SLRIPA estimator is

∂

∂θ
L
(b(θ1)Y + a(θ1)

Y + 1
, Z; θ2

)dPY

dQ̃
(Y ) + L

(b(θ1)Y + a(θ1)

Y + 1
, Z; θ2

)∂ ln dPY

dQ̂
(Y )

∂θ

dPY

dQ̃
(Y ).

(4.15)

The case that a(θ1) = −∞ and b(θ1) is finite can be done similarly as the case when

a(θ1) is finite and b(θ1) = +∞. For the case that a = −∞ and b = +∞, the LR or IPA

method can be applied directly.

4.2.2.1 LR and IPA as Special Cases of SLRIPA

Now we show that LR and IPA are just special cases of SLRIPA when a and b do

not depend on θ1.

First we consider the estimator in (4.14). Note that P (Y ≤ y) = P (X − a ≤ y).

Hence we have dPY (Y ) = dPX(Y + a). We can always choose a probability measure Q

such that dQ̃(Y ) = dQ(Y + a). For example, if there is a probability density function

gY such that dQ̃(Y ) = gY (Y )dY , then dQ(Y ) can be defined as dQ(Y ) = gY (Y − a)dY .
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Therefore we have dPY

dQ̃ (Y ) = dPX
dQ (Y + a). If θ = θ1i for i = 1, 2, · · · , d, we have

∂Ĵ(θ1, θ2)

∂θ1i
=EQ̃

[
L(Y + a, Z; θ2)

∂ ln dPY

dQ̂
(Y )

∂θ1i

dPY

dQ̃
(Y )
]

=EQ

[
L(Y + a, Z; θ2)

∂ ln dPX

dQ̂
(Y + a)

∂θ1i

dPX

dQ
(Y + a)

]
=EQ

[
L(X,Z; θ2)

∂ ln dPX

dQ̂
(X)

∂θ1i

dPX

dQ
(X)

]
.

Note that L(X,Z; θ2)
∂ ln

dPX
dQ̂

(X)

∂θ1i
dPX
dQ (X) is an LR estimator. Hence we show that the LR

estimator is equivalent to an SLRIPA estimator.

If θ = θ2, we have

∂Ĵ(θ1, θ2)

∂θ2
=EQ̃

[∂L(Y + a, Z; θ2)

∂θ2

dPY

dQ̃
(Y )
]

=EQ

[∂L(Y + a, Z; θ2)

∂θ2

dPX

dQ
(Y + a)

]
=EQ

[∂L(X,Z; θ2)
∂θ2

dPX

dQ
(X)

]
.

Note that ∂L(X,Z;θ2)
∂θ2

dPX
dQ (X) is an IPA estimator, which is equivalent to the SLRIPA esti-

mator we obtained. Similarly, we can also show (4.15) is equivalent to an LR estimator

or an IPA estimator. From the above analysis, we can see the SLRIPA technique includes

LR and IPA as special cases and can be applied to more general classes of functions.

4.2.3 Comparison between SLRIPA and SPA Derivative Estimators

SPA is another technique that can deal with performance functions with disconti-

nuities in parameters of interest. It is critical to choose what to condition on in order to

get a good SPA derivative estimator. Under appropriate conditions, an SPA estimator
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can be obtained as in [105]:

∂J̃(θ1, θ2)

∂θ
=EPX

[
L(X,Z; θ2)

∂(−X + b(θ1))

∂θ
|X = b(θ1)

]
f(b(θ1); θ1)

+ EPX

[
L(X,Z; θ2)

∂(X − θ2)

∂θ

∣∣∣X = θ2

]
f(θ2; θ1)

+ EPX

[∂L(X,Z; θ2)
∂θ

1{X > θ2}
]
.

Hence an SPA estimator is given by

EPX

[
L(X,Z; θ2)

∂(−X + b(θ1))

∂θ
|X = b(θ1)

]
f(b(θ1); θ1)

+ EPX

[
L(X,Z; θ2)

∂(X − θ2)

∂θ

∣∣∣X = θ2

]
f(θ2; θ1) +

∂L(X,Z; θ2)

∂θ
1{X > θ2}.

Note that there are conditional expectation terms in estimators obtained by SPA,

which generally involves more computation, whereas only a single run of simulation is

needed to obtain derivative estimates with respect to various parameters of interest with

the SLRIPA estimator.

Remark 4.4 [56] proposed an approach to obtain derivatives of a probability function.

[74] generalized the results of [56] to functions of a more general form containing an indi-

cator function and obtained a derivative estimator that generally has two parts, including a

conditional expectation part, estimated using the kernel method. The conditional expecta-

tion part can be intuitively viewed as the derivative of the indicator function in the method

of [74]. In SLRIPA, the effects of parameters of interest in the indicator function have

been transferred into two different parts through a change of variables. One part of the

effect is transferred into the function L, from which the IPA part of SLRIPA is obtained;

the other part is in the Radon-Nikodym derivative, from which the LR part is obtained.
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Thus, the additional part in SLRIPA estimators involves no conditional expectation terms.

4.3 Unbiasedness of the Estimator

In this section, we give conditions such that the SLRIPA estimators derived in

Section 4.2 are unbiased. Specifically, we show that the interchange of integral and

derivative is valid under these conditions. Recall the random variable Y is defined as

Y = Γ(X; θ1, θ2), where Γ is a function of X with parameters θ1 ∈ Θ1 and θ2 ∈ Θ2,

where Θ1 and Θ2 are assumed to be open subsets of Rd and R, respectively. Therefore

the Radon-Nikodym derivative dPY

dQ̂
is a function of the parameters θ1 and θ2. To prove

the unbiasedness of the estimators, we need the following assumptions:

A1. ∂L(·,Z;θ2)
∂X and ∂L(X,Z;·)

∂θ2
exist almost everywhere.

A2. dPY

dQ̂
is differentiable almost everywhere with respect to θ1i for i = 1, · · · , d and θ2.

A3. The support of the distribution ofX is given by [a(θ1),∞], where a(θ1) is differentiable

with respect to θ1.

(a), For every θ1i, i = 1, · · · , d, which is a component of the vector θ1 ∈ Θ1, there exists

an ϵ > 0, such that if B(ϵ, θ1i) = {θ̃1i : |θ̃1i − θ1i| < ϵ, (θ11, · · · , θ̃1i, · · · , θ1d) ∈ Θ1}, then

EQ̃

[
sup

θ̃1i∈B(ϵ,θ1i)

∣∣∣∂L((θ2 − a)Y + a, Z; θ2)

∂θ̃1i

dPY

dQ̃
(Y )
∣∣∣] <∞,

EQ̃

[
sup

θ̃1i∈B(ϵ,θ1i)

∣∣∣L((θ2 − a)Y + a, Z; θ2)
∂ ln dPY

dQ̂

∂θ̃1i
(Y )

dPY

dQ̃
(Y )
∣∣∣] <∞.

(b), For every θ2 ∈ Θ2, there exists an ϵ > 0, such that if B(ϵ, θ2) = {θ̃2 ∈ Θ2 : |θ̃2−θ2| <
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ϵ}, then

EQ̃

[
sup

θ̃2∈B(ϵ,θ2)

∣∣∣∂L((θ2 − a)Y + a, Z; θ2)

∂θ̃2

dPY

dQ̃
(Y )
∣∣∣] <∞,

EQ̃

[
sup

θ̃2∈B(ϵ,θ2)

∣∣∣L((θ2 − a)Y + a, Z; θ2)
∂ ln dPY

dQ̂

∂θ̃2
(Y )

dPY

dQ̃
(Y )
∣∣∣] <∞.

A4. The support of the distribution of X is given by [a(θ1), b(θ1)], where a(θ1) and b(θ1)

are differentiable with respect to θ1.

(a), For every θ1i, i = 1, · · · , d, which is a component of the vector θ1 ∈ Θ1, there exists

an ϵ > 0, such that if B(ϵ, θ1i) = {θ̃1i : |θ̃1i − θ1i| < ϵ, (θ11, · · · , θ̃1i, · · · , θ1d) ∈ Θ1}, then

EQ̃

[
sup

θ̃1i∈B(ϵ,θ1i)

∣∣∣∂L
(
b(θ2−a)Y+a(b−θ2)
(θ2−a)Y+(b−θ2)

, Z; θ2

)
∂θ̃1i

dPY

dQ̃
(Y )
∣∣∣] <∞,

EQ̃

[
sup

θ̃1i∈B(ϵ,θ1i)

∣∣∣L(b(θ2 − a)Y + a(b− θ2)

(θ2 − a)Y + (b− θ2)
, Z; θ2

)∂ ln dPY

dQ̂

∂θ̃1i
(Y )

dPY

dQ̃
(Y )
∣∣∣] <∞.

(b), For every θ2 ∈ Θ2, there exists an ϵ > 0, such that if B(ϵ, θ2) = {θ̃2 ∈ Θ2 : |θ̃2−θ2| <

ϵ}, then

EQ̃

[
sup

θ̃2∈B(ϵ,θ2)

∣∣∣∂L
(
b(θ2−a)Y+a(b−θ2)
(θ2−a)Y+(b−θ2)

, Z; θ2

)
∂θ̃2

dPY

dQ̃
(Y )
∣∣∣] <∞,

EQ̃

[
sup

θ̃2∈B(ϵ,θ2)

∣∣∣L(b(θ2 − a)Y + a(b− θ2)

(θ2 − a)Y + (b− θ2)
, Z; θ2

)∂ ln dPY

dQ̂

∂θ̃2
(Y )

dPY

dQ̃
(Y )
∣∣∣] <∞.

Theorem 4.1 Under conditions A1, A2, A3(a), the SLRIPA stochastic derivative esti-

mator given by (4.11) with θ = θ1i is unbiased for ∂J̃(θ1,θ2)
∂θ1i

, where θ1i is a component

of θ1 ∈ Θ1 for i = 1, · · · , d. Under conditions A1, A2, A3(b), the SLRIPA stochastic

derivative estimator given by (4.11) with θ = θ2 ∈ Θ2 is unbiased for ∂J̃(θ1,θ2)
∂θ2

.

Proof. Assume that we are interested in the gradient estimator for ∂J̃(θ1,θ2)
∂θ2

. To indicate
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that the probability measure PY depends on the parameter θ2, we rewrite it as PY (θ2) and

write the Radon-Nikodym derivative dPY

dQ̂
as dPY

dQ̂
(Y, θ2) in the following part of the proof.

For simplicity, denote

φ(θ2) = EQ̂

[
L((θ2 − a)Y + a, Z; θ2)1{Y > 1}dPY

dQ̂
(Y, θ2)

]
M(Y, Z; θ2) = L((θ2 − a)Y + a, Z; θ2)1{Y > 1}.

Assume δ is sufficiently small, such that θ2 + δ ∈ B(ϵ, θ2). We have

φ(θ2 + δ)− φ(θ2)

δ
= EQ̂

[1
δ

(
M(Y,Z; θ2 + δ)

dPY

dQ̂
(Y, θ2 + δ)

−M(Y, Z; θ2)
dPY

dQ̂
(Y, θ2)

)]
.

By A1, A2, and the mean value theorem, there exist η1 ∈ [θ2 − δ, θ2 + δ] and η2 ∈

[θ2 − δ, θ2 + δ], such that

EQ̂

[1
δ

(
M(Y, Z; θ2 + δ)

dPY

dQ̂
(Y, θ2 + δ)−M(Y, z; θ2)

dPY

dQ̂
(Y, θ2)

)]
=EQ̂

[1
δ

(
M(Y, Z; θ2 + δ)

dPY

dQ̂
(Y, θ2 + δ)−M(Y,Z; θ2)

dPY

dQ̂
(Y, θ2 + δ)

)
+

1

δ

(
M(Y, Z; θ2)

dPY

dQ̂
(Y, θ2 + δ)−M(Y, Z; θ2)

dPY

dQ̂
(Y, θ2)

)]
=EQ̂

[ ∂

∂θ̃2
M(Y, Z; θ̃2)

∣∣∣
θ̃2=η1(Y,Z)

dPY

dQ̂
(Y, θ2 + δ) (4.16)

+M(Y, Z; θ2)
∂

∂θ̃2

dPY

dQ̂
(Y, θ̃2)

∣∣∣
θ̃2=η2(Y,Z)

]
=EQ̃

[ ∂

∂θ̃2
M(Y, Z; θ̃2)

∣∣∣
θ̃2=η1(Y,Z)

dPY

dQ̃
(Y, θ2 + δ)

+M(Y, Z; θ2)
∂

∂θ̃2
ln
(dPY

dQ̂
(Y, θ̃2)

)dPY

dQ̃
(Y, θ̃2)

∣∣∣
θ̃2=η2(Y,Z)

]
(4.17)
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Therefore, by A3 and (4.16), we have

lim
δ→0

EQ̂

[1
δ

(
M(Y, Z; θ2 + δ)

dPY

dQ̂
(Y, θ2 + δ)−M(y, z; θ2)

dPY

dQ̂
(Y, θ2)

)]

≤ lim
δ→0

EQ̃

[
sup

θ̃2∈B(ϵ,θ2)

∣∣∣ ∂
∂θ̃2

M(Y,Z; θ̃2)
dPY

dQ̃
(Y, θ2 + δ)

∣∣∣
θ̃2=η1(Y,Z)

]
+ lim

δ→0
EQ̃

[
sup

θ̃2∈B(ϵ,θ2)

∣∣∣M(Y,Z; θ2)
∂

∂θ̃2
ln
dPY

dQ̂
(Y, θ̃2)

dPY

dQ̃
(Y, θ̃2)

∣∣∣
θ̃2=η2(Y,Z)

]
<∞.

By the dominated convergence theorem, we have

∂

∂θ2
EQ̂

[
M(Y, Z; θ2)

dPY

dQ̂
(Y, θ2)

]
=EQ̃

[( ∂

∂θ2
M(Y, Z; θ2)

+M(Y, Z; θ2)
∂

∂θ2
ln
dPY

dQ̂
(Y, θ2)

)dPY

dQ̃
(Y, θ2)

]
.

Hence, the estimator (4.11) is unbiased. The theorem can be proved analogously when

θ = θ1i for i = 1, · · · , d.

Theorem 4.2 Under conditions A1, A2, A4(a), the SLRIPA stochastic derivative esti-

mator given by (4.12) with θ = θ1i for ∂J̃(θ1,θ2)
∂θ1i

is unbiased, where θ1i is a component

of θ1 ∈ Θ1 for i = 1, · · · , d. Under conditions A1, A2, A4(b), the SLRIPA stochastic

derivative estimator given by (4.12) with θ = θ2 ∈ Θ2 for ∂J̃(θ1,θ2)
∂θ2

is unbiased.

Proof. This theorem follows from an analogous argument as in the proof of Theorem

4.1.
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4.4 Application of SLRIPA Derivative Estimator

In this section, we give several examples to illustrate the application of the proposed

SLRIPA derivative estimator.

4.4.1 Derivative Estimation for European Call Options

4.4.1.1 Black-Scholes Model

We consider a European call option with the underlying security price {St} satisfying

the Black-Scholes model dSt = St(rdt+σdBt), where r is the riskless rate, σ is the volatility

parameter, and Bt is a standard Brownian motion. The payoff function of a European

call option is given by JE(ST ) = e−rT (ST − K)1{ST ≥ K}, where T is the expiration

date of the option and K is the strike price. The lognormal random variable ST can be

represented as ST = S0 exp [(r − σ2/2)T + σ
√
TZ], where Z is a standard normal random

variable and S0 is the initial stock price. Suppose that we are interested in estimating

delta, which is the derivative of E[JE(ST )] with respect to S0. Since the payoff function

JE(ST ) is continuous, we have

delta =
∂E[JE(ST )]

∂S0
= E

[
e−rT ∂ST

∂S0
1{ST ≥ K}

]
= E

[
e−rT ST

S0
1{ST ≥ K}

]
.

e−rT ST
S0

1{ST ≥ K} is the IPA estimator. Similarly, the IPA estimator for ∂E[JE ]
∂K is given

by −e−rT 1{ST ≥ K}. However, IPA cannot be used to estimate the second derivative

gamma, which is defined as gamma = ∂2E[JE(ST )]
∂S2

0
= ∂

∂S0
E
[
e−rT ST

S0
1{ST ≥ K}

]
, since

e−rT ST
S0

1{ST ≥ K} is not a continuous function of ST . The LR method can be used to

obtain a derivative estimator for gamma ([17]), but it is no longer applicable to estimate
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∂E[JE ]
∂K . SLRIPA can be applied to estimate first derivatives with respect to all the param-

eters of interest and to estimate the second derivative gamma. In this simple example,

both IPA and SLRIPA are applicable for first derivatives, and IPA is preferred since it

generally has lower variance.

To obtain SLRIPA estimators, we define Y = ST /K; the probability density function

of Y is given by fE,Y (y) =
dP (ST /K≤y)

dy = 1
σ
√
Ty
n(d), where n(·) is the probability density

of a standard normal random variable, and d = ln(Ky/S0)−(r−σ2)T

σ
√
T

. The SLRIPA derivative

estimator (4.8) for ∂E[JE ]
∂θ (θ could be S0, r, K, or σ) is given by

e−rT ∂(KY −K)

∂θ
1{Y > 1}dPY

dQ̃
(Y ) + e−rT (KY −K)1{Y > 1}

∂ ln dPY

dQ̂
(Y )

∂θ

dPY

dQ̃
(Y ),

where dPY = fE,Y (Y )dY , and Q̃ is a probability measure such that PY is absolutely

continuous with respect to Q̃. The second derivative gamma can be obtained by the

SLRIPA technique:

gamma =
d2E[JE(ST )]

dS2
0

=
d

dS0
EQ̃

[
e−rT (KY −K)1{Y > 1}

∂ ln dPY

dQ̂
(Y )

∂S0

dPY

dQ̃
(Y )
]

= EQ̃

[
e−rT (KY −K)1{Y > 1}

∂2(ln dPY

dQ̂
(Y ))

∂S0

dPY

dQ̃
(Y )
]

+ EQ̃

[
e−rT (KY −K)1{Y > 1}

(∂(ln dPY

dQ̂
(Y ))

∂S0

)2dPY

dQ̃
(Y )
]
.

Since the support of the distribution of ST is the interval (0,∞), which does not depend

on S0, the SLRIPA derivative estimator with respect to the parameter S0 turns out to be

the same as the LR derivative estimator. This is true for other parameters as well, except

for K, where LR cannot be applied directly.
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4.4.1.2 Ornstein-Uhlenbeck Model

We consider a European call option with the underlying security price {St} satisfying

the Ornstein-Uhlenbeck model: dSt = ρ(µ− St)dt+ σdBt, where ρ is a positive constant,

σ the volatility parameter, and Bt a standard Brownian motion. The payoff function of a

European call option is given by JE(ST ) = e−rT (ST −K)1{ST ≥ K}. ST can be written

exactly as ST = S0e
−ρT + µ(1 − e−ρT ) + σ

√
1−e−2ρT

2ρ Z, where Z is a standard normal

random variable and S0 is the initial stock price.

Suppose that we are interested in estimating ∂E[JE(ST )]
∂K . The LR method cannot be

applied, since K is in an indicator function. Now we derive an SLRIPA estimator. We de-

fine Y = ST /K; the probability density function of Y is given by fE,Y (y) =
dP (ST /K≤y)

dy =

K
m2
n(d), where m1 = S0e

−ρT + µ(1 − e−ρT ), m2 = σ
√

1−e−2ρT

2ρ , and d = Ky−m1

m2
. The

SLRIPA derivative estimator (4.8) for ∂E[JE(ST )]
∂K is given by

e−rT (Y − 1)1{Y > 1}dPY

dQ̃
(Y ) + e−rT (KY −K)1{Y > 1}

∂ ln dPY

dQ̂
(Y )

∂K

dPY

dQ̃
(Y ),

where dPY = fE,Y (Y )dY and Q̃ is a probability measure such that PY is absolutely

continuous with respect to Q̃. If Q̃ is the probability measure induced by ST , the SLRIPA

estimator for ∂E[JE(ST )]
∂K in terms of ST is given as

DK = e−rT (ST /K − 1)1{ST > K}+ e−rT (ST −K)1{ST > K}(m2)
2 − ST (ST −m1)

(m2)2K
.

4.4.2 Derivative Estimation for Barrier Option

We consider a discretely monitored up-and-out European barrier option, which is

worthless if the underlying security price exceeds a barrier H. The discounted payoff
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function is given by JB(Sm) = e−rT (Sm−K)1{Sm ≥ K}1{max{S1, · · · , Sm} ≤ H}, where

Si denotes the discretely monitored price Sti for i = 1, · · · ,m and {0 = t0 < t1 < · · · <

tm = T}. JB(Sm) can be rewritten as JB(Sm) = e−rT (Sm −K)1{Sm ≥ K}
∏m

i=1 1{Si ≤

H}. Assume St follows a geometric Brownian motion, i.e., St = S0e
(r−σ2/2)t+σBt .

We are interested in estimating ∂E[JB(Sm)]
∂θ , where θ could be S0, r, σ, and H, which

correspond to delta, rho, and vega, respectively, for the first three parameters. Now we de-

rive SLRIPA derivative estimators. We know that Si+1 = Sie
(r−σ2/2)(ti+1−ti)+σ

√
ti+1−tiZi+1 ,

where {Zi+1} are independent and identically distributed standard normal random vari-

ables. Define Y = S1/H, and Xi+1 = e(r−σ2/2)(ti+1−ti)+σ
√
ti+1−tiZi+1 for i = 1, · · · ,m− 1.

It is easy to see that S1 = Y H and Si = S1
∏i

k=2Xk for i > 1; Si ≤ H is equivalent to

Y ≤ 1 for i = 1, and Y
∏i

k=2Xk ≤ 1 for i > 1.

Let fY denote the probability density function of Y , and let fi denote the probability

density function of Xi for i = 2, · · · ,m. By the results of Section 4.2, we write the SLRIPA

estimator in terms of Y and {X2, · · · , Xm} as (see the details of the derivation in the

appendix):

Dθ =
∂e−rT

(
HY

∏m
i=2Xi −K

)
∂θ

1
{
HY

m∏
k=2

Xk ≥ K
}
1{Y ≤ 1}

{ m∏
i=2

1{Y
i∏

k=2

Xk ≤ 1}
}

+ e−rT
(
HY

m∏
k=2

Xk −K
)
1
{
HY

m∏
k=2

Xk ≥ K
}
1{Y ≤ 1}

m∏
i=2

1{Y
i∏

k=2

Xk ≤ 1}

×
(∂ ln fY

∂θ
+

m∑
i=1

∂ ln fi
∂θ

)
.

In particular, the SLRIPA derivative estimator for delta can be written in terms of the

113



original random variables S1, · · · , Sm as

DS0 = e−rT (Sm −K)1{Sm ≥ K}
m∏
i=1

1{Si ≤ H}
( lnS1 − lnS0 − (r − σ2/2)t1

S0σ2t1

)
.

The SLRIPA derivative estimator for ∂E[JB(Sm)]
∂H is

DH = e−rT Sm
H

1{Sm ≥ K}
m∏
i=1

1{Si ≤ H}+ e−rT (Sm −K)1{Sm ≥ K}

×
m∏
i=1

1{Si ≤ H}
(
− lnS1 − lnS0 − (r − σ2/2)t1

Hσ2t1

)
.

Compared with the payoff function of the European call option, there are multiple indicator

functions in the payoff function of the barrier option. By using the SLRIPA method,

we circumvent the difficulty of differentiating all the indicator functions. Although the

SLRIPA derivative estimators with respect to S0, r, σ are the same as the LR estimators,

SLRIPA is applicable for ∂E[JB(Sm)]
∂H , whereas LR is not. Again we only need to generate

one sample path to obtain a derivative estimate for all the parameters of interest.

4.4.3 Sensitivity Analysis for American Call Option

In this section, we will apply SLRIPA to an American call option pricing problem.

4.4.3.1 Price Model

Assume that the underlying stock of the American call option distributes a known

cash dividend of amount Dj at time tj =
∑j

i=1 τj (τj > 0), j = 1, . . . , η(T ), where η(T )

is the number of dividends distributed during the lifetime of the call option, τ1 denotes

the time until the first ex-dividend date, τi, i = 2, . . . , η(T )− 1 denote the time between

114



subsequent ex-dividends, and τη(T ) denotes the time from the last ex-dividend date to the

expiration date. We denote the stock price at time t as St.

Following the standard models (e.g., [98]), assume that after the ex-dividend, the

stock price drops by the amount of the dividend, i.e., St+j
= St−j

− Dj . We also denote

τη(T )+1 = T −
∑η(T )

i=1 τi, τ0 = 0, tη(T )+1 = T . The dividend amounts are assumed to be

deterministic and known. Although an American call option can be exercised at any time

before the expiration date T , it is well known that the option should only be exercised

right before an ex-dividend date or at the expiration date. Therefore, we assume that on

every ex-dividend date τj , there is a corresponding threshold stock price sj(≥ K) that

does not depend on the other parameters. and the option is exercised if St−j
> sj , where

K is the strike price of the American option. The payoff function of the American call

option can be written as JT = e−rT ĴT , where

ĴT =
( η(T )∑

i=1

[ i−1∏
j=1

1{St−j ≤ sj}1{St−i > si}(St−i −K)+er(T−ti)
]

+

η(T )∏
j=1

1{St−j ≤ sj}(ST −K)+
)
.

We are interested in estimating the sensitivity of the option price E[JT ] with respect to

the parameter θ, which could be r, si, i = 1, · · · , η(T ), or other parameters of interest, i.e.,

our goal is to estimate: ∂E[JT ]
∂θ = e−rT

[
∂E[ĴT ]

∂θ − E[ĴT ]
∂(rT )
∂θ

]
. The option price is equal to

the expected payoff E[JT ] under the optimal (payoff maximizing) set of threshold values

{s⋆j}.

Assume that aside from the discrete jumps at the ex-dividend dates, the stock

price changes continuously, i.e., according to a function h(Z;S, t, r, σ), where S is the

current stock price, σ is a parameter, and Z is a random vector that does not depend on
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other parameters. h(Z;S, t, r, σ) gives the stock price after duration t from the present

given current stock price S. Define the continuous part of the stock price as S̃t: S̃t =

h(Z; S̃0, t, r, σ). The stock price with dividends can be recovered from S̃t by discounting

the dividends over the correct period of time as follows:

St = S̃t +

η(T )∑
i=j+1

Die
−r(ti−t), for tj ≤ t < tj+1, j = 0, 1, . . . , η(T ). (4.18)

Just prior to ex-dividend dates where an early exercise decision is made, the stock price

is given by St−j
= S̃tj +

∑η(T )
i=j Di exp

(
− r

∑i
k=j+1 τk

)
, j = 1, . . . , η(T ). To simplify the

problem, we first consider the case when η(T ) = 1. We will drop the subscript on the

dividend, i.e., D1 , D and St+1
= St−1

−D. Let s be the threshold parameter. The payoff

function without discount is:

ĴT = 1{St−1 > s}(St−1 −K)+er(T−t1) + 1{St−1 ≤ s}(ST −K)+. (4.19)

4.4.3.2 SLRIPA Gradient Estimator

Assume the underlying security price of the American call option is governed by

a geometric Brownian motion, i.e., the continuous part of the stock price is given by

h(Z; S̃0, t, r, σ) = S̃0e
(r−σ2/2)t+σ

√
tZ , and h−1(y, S̃0, t, r, σ) = ln y−ln S̃0−(r−σ2/2)t

σ
√
t

, where

S̃0 = S0 − De−rτ1 and Z is a standard normal random variable. We have S̃t−1
=

S̃0e
(r−σ2/2)τ1+σ

√
τ1Z1 , St−1

= S̃t−1
+D, ST = S̃T = (St−1

−D)e(r−σ2/2)τ2+σ
√
τ2Z2 , where Z1

and Z2 are two independent standard normal random variables. The payoff function (4.19)

falls into the type of payoff functions given by (4.1) to which SLRIPA can be applied.

Denote Ĵ1
T = 1{St−1 > s}(St−1 − K)+er(T−t1) and Ĵ2

T = 1{St−1 ≤ s}(ST − K)+.
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Note that D ≤ St−1
< ∞. Let θ1 = (r, σ, S0, D,K), θ2 = s, and a(θ1) = D, b = ∞.

From the analysis in Section 4.2.1.1, we define Y = Γ(St−1
; θ1, θ2) =

S
t−1

−D

s−D =
S̃
t−1

s−D . Then

St−1
= Γ−1(Y ; θ1, θ2) = Y (s − D) + D, and St−1

> s is equivalent to ψ(Y ) = Y − 1 > 0.

Since s > K > D, s − D is always positive, the probability density function of the new

random variable Y is given by

fY (Y ≤ y) =
∂P (Y ≤ y)

∂y
=

1

yσ
√
τ1
n(h−1(y(s−D); S̃0, τ1, r, σ)).

The payoff function for E[Ĵ1
T ] is L(St−1

; θ1, θ2) = (St−1
−K)+, and the SLRIPA estimator

(4.8) for
∂E[Ĵ1

T ]
∂θ , where θ could be S0, r, σ, s, or K, is given by

D1 =1{Y > 1} ∂
∂θ

[(Y (s−D) +D −K)+er(T−t1)]
dPY

dQ̃
(Y )

+ 1{Y > 1}er(T−t1)(Y (s−D) +D −K)+
∂ln dPY

dQ̂
(Y )

∂θ

dPY

dQ̃
(Y ).

For the derivative of E[Ĵ2
T ] with respect to θ, note that St−1

≤ s is equivalent to

ψ(Y ) = −Y +1 ≥ 0, and the payoff function is L(St−1
, Z2; θ1, θ2) = [h(Z2;St−1

−D, τ2, r, σ)−

K]+. The SLRIPA estimator (4.8) for
∂E[Ĵ2

T ]
∂θ is given by

D2 =1{Y ≤ 1} ∂
∂θ

[h(Z2;Y (s−D), τ2, r, σ)−K]+
dPY

dQ̃
(Y )

+ 1{Y ≤ 1}[h(Z2;Y (s−D), τ2, r, σ)−K]+
∂ln dPY

dQ̂
(Y )

∂θ

dPY

dQ̃
(Y ).

Since ∂E[ĴT ]
∂θ =

∂E[Ĵ1
T ]

∂θ +
∂E[Ĵ2

T ]
∂θ , the derivative estimator for E[JT ] with respect to θ is

Dθ = e−rT (D1 + D2). In particular, if Q̃ is the probability measure induced by St−1
, the
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SLRIPA estimator for ∂E[JT ]
∂s can be written in terms of St−1

and ST as

Ds = e−rt11{St−1 > s}1{St−1 > K}
St−1

−D

s−D

+ e−rt11{St−1 > s}(St−1 −K)+
1

σ2τ1(s−D)
M

+ e−rT 1{St−1 ≤ s} ST
s−D

+ e−rT 1{St−1 ≤ s}(ST −K)+
1

σ2τ1(s−D)
M, (4.20)

where M =
(
ln (St−1

−D)− ln S̃0 − (r − σ2/2)τ1

)
.

The SLRIPA estimators for E[JT ] with respect to parameters K, S0, σ, r, and

D written in terms of original random variables are given as follows. To simplify the

notation, we define M =
(
ln (St−1

−D)− ln S̃0 − (r − σ2/2)τ1

)
.

1 :θ = K

e−rt11{St−1 > s}1{St−1 > K} − e−rT 1{St−1 ≤ s}1{ST > K}.

2 :θ = S0

e−rt11{St−1 > s}(St−1 −K)+
1

σ2S̃0τ1
M + e−rT 1{St−1 ≤ s}(ST −K)+

1

σ2S̃0τ1
M.

3 :θ = σ

e−rt11{St−1 > s}(St−1 −K)+
[−1

σ
+

1

σ3τ1

((
ln (St−1

−D)− ln S̃0 − rτ1
)2 − σ4(τ1)

2

4

)]
+ e−rT 1{St−1 ≤ s}1{ST > K}ST (−στ2 +

√
τ2Z2)

+ e−rT 1{St−1 ≤ s}(ST −K)+
[−1

σ

+
1

σ3τ1

((
ln (St−1

−D)− ln S̃0 − rτ1
)2 − σ4(τ1)

2

4

)]
.

(4.21)
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4 :θ = r

e−rt11{St−1 > s}(T − t1)(St−1
−K)+ + e−rt11{St−1 > s}(St−1 −K)+

M

σ2

+ e−rT 1{St−1 ≤ s}τ2(ST −K)+ + e−rT 1{St−1 ≤ s}(ST −K)+
M

σ2
.

5 :θ = D

e−rt11{St−1 > s}1{St−1 > K}
(
−
St−1

−D

s−D
+ 1
)

+ e−rt11{St−1 > s}(St−1 −K)+
M

σ2τ1(s−D)

+ e−rT 1{St−1 ≤ s}1{ST > K} ST
−s+D

+ e−rT 1{St−1 ≤ s}(ST −K)+
M

σ2τ1(s−D)
.

Remark 4.5 Note that the indicator functions in ĴT have a parameter s, so the direct

IPA estimator with respect to the parameter s is biased. Using the smoothing property

of conditional expectation, [36] derived an unbiased smoothed perturbation analysis (SPA)

estimator, but it requires additional simulations.

Remark 4.6 For American options with multiple ex-dividend dates, SLRIPA estimators

are given in the online e-companion. Each estimate of the derivative with respect to all the

parameters including si, i = 1, . . . , η(T ) can be obtained by generating only one sample

path, which is not the case for estimators given in [36] and [51].

Remark 4.7 In the American call option pricing example, if Euler discretization with

time step ∆t is used to simulate the stock price, then the number of terms in the sum of

likelihood ratios in SLRIPA increases as ∆t → 0; thus the variance of SLRIPA increases

linearly with the number of time steps just as in the LR method. Similarly, the number of

terms in the sum of likelihood ratios increases linearly with the number of ex-dividend dates.

However for the threshold parameters, si only appears in one of the marginal probability
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densities, and hence the variance of the derivative estimator with respect to si does not

increase as the number of ex-dividend dates increases.

4.4.3.3 Unbiasedness Result

Based on Theorem 4.1, unbiasedness of all the estimators can be verified. The

following theorem establishes the result for the threshold parameter in the single dividend

case, and proofs for the other examples and parameters follow analogous arguments.

Theorem 4.3 The estimator given by (4.20) is unbiased for ∂E[JT ]
∂s .

Proof. The proof consists in finding a bound required by the dominated convergence

theorem to justify the interchange of integration and differentiation. Note that s ≥ K and

we have

E[St−1
] = E[S̃0e

(r−σ2/2)τ1+σ
√
τ1Z1 +D] <∞,

E[ST ] = E[S̃0e
(r−σ2/2)τ1+σ

√
τ1Z1e(r−σ2/2)(T−t1)+σ

√
T−t1Z2 ] <∞.

Therefore

E

[
e−rt1 sup

s

{
1{St−1 > s}1{St−1 −K > 0}

St−1
−D

s−D

}]
≤ E

[
e−rt1

St−1
−D

K −D

]
< ∞.

Similarly, we also have

E

[
e−rt1 sup

s

{
1{St−1 > s}(St−1 −K)+

1

σ2τ1(s−D)

×
(
ln
((St−1 −D)

S̃0

)
− (r − σ2/2)τ1

)}]
≤E

[
e−rt1(St−1

−K)+
1

σ2τ1(K −D)

(
ln
(St−1
S̃0

)
− (r − σ2/2)τ1

)]
<∞,
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and

E
[
e−rT sup

s

{
1{St−1 ≤ s} ST

s−D

}]
≤ E

[
e−rT ST

K −D

]
< ∞.

We also have

E

[
e−rT sup

s

{
1{St−1 ≤ s}(ST −K)+

1

σ2τ1(s−D)

×
(
ln
((St−1 −D)

S̃0

)
− (r − σ2/2)τ1

)}]
≤E

[
e−rT (ST −K)+

1

σ2τ1(K −D)

(
ln
(St−1
S̃0

)
− (r − σ2/2)τ1

)]
<∞.

Therefore condition A3(b) in Section 4.3 holds. Conditions A1 and A2 hold by the property

of the payoff function JT . The proof is completed by Theorem 4.1. �

4.4.3.4 The American Call Option with a Different Stock Price Model

Every m days, the continuous part of the stock price is given as: S̃t = S̃0e
rtX,

where X ∼ U(1 − σ
√
t, 1 + σ

√
t) and σ

√
t < 1. Let hi(Zi;S, t, r, σ) = Sert(1 + σ

√
tZi),

where {Zi} are iid random variables distributed as U(−1, 1). Define hi as hi(S; t, r, σ) =

Sert
[∏i

j=1(1 + σ
√
mZj)

]
(1 + σ

√
t− imZi+1). for t ∈ [im, (i + 1)m]. For simplicity, we

will assume τ1 = m, τ2 < m, T = τ1 + τ2. Then

h−1
1 (y; S̃0, τ1, r, σ) =

1

σ
√
τ1

( y

S̃0erτ1
− 1
)
;

S̃0 =S0 −De−rτ1 ;

S̃t−1
=h0(S̃0; τ1, r, σ) = S̃0e

rτ1(1 + σ
√
τ1Z1);
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St−1
=S̃t−1

+D = S̃0e
rτ1(1 + σ

√
τ1Z1) +D;

S̃T =(St−1
−D)erτ2(1 + σ

√
T − τ1Z2).

Let θ1 = (r, σ, S0, D,K) and θ2 = s. Note that St−1
∈ [a, b], where a = S̃0e

rτ1(1−σ√τ1)+D

and b = S̃0e
rτ1(1+σ

√
τ1)+D, hence we can apply the SLRIPA estimator in Section 4.2.1.2.

Define a new random variable

Y = Γ(St−1
; θ1, θ2) =

(St−1
− a)(b− s)

(b− St−1
)(s− a)

, (4.22)

then

St−1
= Γ−1(Y ; θ1, θ2) =

bY (s− a) + a(b− s)

Y (s− a) + (b− s)
.

Hence

P (Y ≤ y) =P
((St−1 − a)(b− s)

(b− St−1
)(s− a)

≤ y
)
= P

(
St−1

≤ Γ−1(y; θ1, θ2)
)

=P
(
Z1 ≤ h−1

1 (Γ−1(y; θ1, θ2)−D; S̃0, τ1, r, σ)
)

=

∫ h−1
1 (Γ−1(y;θ1,θ2)−D;S̃0,τ1,r,σ)

−1
f1(z1)dz1,

where f1(z1) = 1/2 for z1 ∈ (−1, 1), so the probability density function of Y is

fY (y) =
∂P (Y ≤ y)

∂y
=

1

2

∂h−1
1 (Γ−1(y; θ1, θ2)−D; S̃0, τ1, r, σ)

∂y

=
1

2σ
√
τ1S̃0erτ1

(b− a)(b− s)(s− a)

(y(s− a) + (b− s))2
.

The payoff function for E[Ĵ1
T ] is L(St−1

; θ1, θ2) = (St−1
−K)+, and by the analysis in
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Section 4.2, the SLRIPA estimator (4.9) for
∂E[Ĵ1

T ]
∂θ is given by:

1{Y > 1}1{Γ−1(Y ; θ1, θ2) > K}∂(Γ
−1(Y ; θ1, θ2)−K)

∂θ
er(T−τ1)

+ 1{Y > 1}er(T−τ1)(Γ−1(Y ; θ1, θ2)−K)+
∂ ln fY (Y )

∂θ
.

Consider estimating the derivative of E[Ĵ2
T ] with respect to θ. Note that St−1

≤ s

is equivalent to ψ(Y ) = −Y + 1 ≥ 0, and the payoff function is L(St−1
, Z2; θ1, θ2) =

[h(Z2;St−1
−D, τ2, r, σ)−K]+. By the analysis in Section 4.2, then the SLRIPA estimator

(4.9) for
∂E[Ĵ2

T ]
∂θ is given by

1{Y ≤ 1}∂(h2(Z2; Γ
−1(Y ; θ1, θ2)−D, τ2, r, σ)−K)+

∂θ

+ 1{Y ≤ 1}(h2(Z2; Γ
−1(Y ; θ1, θ2)−D, τ2, r, σ)−K)+

∂ ln fY (Y )

∂θ
.

So the full SLRIPA estimator for E[JT ] with respect to θ is given by

e−rτ11{Y > 1}1{Γ−1(Y ; θ1, θ2) > K}∂(Γ
−1(Y ; θ1, θ2)−K)

∂θ

+ e−rτ11{Y > 1}(Γ−1(Y ; θ1, θ2)−K)+
∂ ln fY (Y )

∂θ

+ e−rT 1{Y ≤ 1}∂(h2(Z2; Γ
−1(Y ; θ1, θ2)−D, τ2, r, σ)−K)+

∂θ

+ e−rT 1{Y ≤ 1}(h2(Z2; Γ
−1(Y ; θ1, θ2)−D, τ2, r, σ)−K)+

∂ ln fY (Y )

∂θ

−
[
e−rτ11{Y > 1}(Γ−1(Y ; θ1, θ2)−K)+

+ e−rT 1{Y ≤ 1}(h2(Z2; Γ
−1(Y ; θ1, θ2)−D, τ2, r, σ)−K)+]

∂(rT )

∂θ
. (4.23)
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4.4.3.5 The American Call Option with Multiple Ex-Dividend Dates

We now extend the results in Section 4.4.3 to the cases where there are mul-

tiple ex-dividend dates. To simplify the problem, we denote dj =
∑η(T )

i=j Di exp
(
−

r
∑i

k=j+1 τk

)
, j = 1, . . . , η(T ). Since the support of the distribution of the random

variables St−i
, i = 1, · · · , η(T ) depends on the parameters of interest and the indica-

tor function also contains parameters, we do the following change of random variables to

move the parameters out of the indicator functions and make the support independent

of the parameters of interests. Define Y1 = g1(St−1
) =

S
t−1

−d1

s1−d1
, . . . Yη(T ) = gη(T )(St−

η(T )
) =

S
t−
η(T )

−dη(T )

sη(T )−dη(T )
, Yη(T )+1 = gη(T )+1(ST ) = ST . Therefore we have

∂E[ĴT ]

∂θ
=
∂

∂θ
E
[ η(T )∑

i=1

( i−1∏
j=1

1{St−j ≤ sj}1{St−i > si}(St−i −K)+er(T−ti)
)

+

η(T )∏
j=1

1{St−j ≤ sj}(ST −K)+
]

=
∂

∂θ

{ η(T )∑
i=1

(∫ ∞

0

i−1∏
j=1

1{yj ≤ 1}1{yi > 1}(yi(si − di) + di)
+er(T−ti)

× f1(y1)f2;1(y2; y1) · · · fi;i−1(yi; yi−1)dy1 · · · dyi
)

+

∫ ∞

0

η(T )∏
j=1

1{yj ≤ 1}(yη(T )+1 −K)+f1(y1)f2;1(y2; y1) · · ·

× fη(T )+1;η(T )(yη(T )+1; yη(T ))

× dy1 · · · dyη(T )+1

}
,

where f1 is the probability density function of the random variable Y1, and fi;i−1 is the

probability density function of the random variable Yi given Yi−1, which can be eas-

ily obtained. Assuming interchangeability of integral and derivative, we have ∂E[ĴT ]
∂θ =
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∂E[Ĵ1
T ]

∂θ +
∂E[Ĵ2

T ]
∂θ , where

∂E[Ĵ1
T ]

∂θ
=

η(T )∑
i=1

(∫ ∞

0

i−1∏
j=1

1{yj ≤ 1}1{yi > 1}∂(yi(si − di) + di)
+er(T−ti)

∂θ

× f1(y1) · · · fi;i−1(yi; yi−1)dy1 · · · dyi
)

+

η(T )∑
i=1

(∫ ∞

0

i−1∏
j=1

1{yj ≤ 1}1{yi > 1}(yi(si − di) + di)
+er(T−ti)

×
( i∑

k=1

∂ ln fi;i−1(yi; yi−1)

∂θ

)
f1(y1)f2;1(y2; y1) · · ·

× fi;i−1(yi; yi−1)dy1 · · · dyi
)
,

∂E[Ĵ2
T ]

∂θ
=

∫ ∞

0

η(T )∏
j=1

1{yj ≤ 1}
∂(yη(T )+1 −K)+

∂θ

× f1(y1)f2;1(y2; y1) · · · fη(T )+1;η(T )(yη(T )+1; yη(T ))dy1 · · · dyη(T )+1

+

∫ ∞

0

η(T )∏
j=1

1{yj ≤ 1}(yη(T )+1 −K)+
( η(T )+1∑

i=1

∂ ln fi;i−1(yi; yi−1)

∂θ

)
× f1(y1)f2;1(y2; y1) · · · fη(T )+1;η(T )(yη(T )+1; yη(T ))dy1 · · · dyη(T )+1.

The SLRIPA estimator for ∂E[JT ]
∂θ is given by

η(T )∑
i=1

(
e−rti

i−1∏
j=1

1{Yj ≤ 1}1{Yi > 1}∂(Yi(si − di) + di)
+

∂θ

)

+

η(T )∑
i=1

(
e−rti

i−1∏
j=1

1{Yj ≤ 1}1{Yi > 1}(Yi(si − di) + di)
+

( i∑
k=1

∂ ln fi;i−1(Yi;Yi−1)

∂θ

))

+ e−rT

η(T )∏
j=1

1{Yj ≤ 1}
∂(Yη(T )+1 −K)+

∂θ

+ e−rT

η(T )∏
j=1

1{Yj ≤ 1}(Yη(T )+1 −K)+
( η(T )+1∑

i=1

∂ ln fi;i−1(Yi;Yi−1)

∂θ

)
− Φ (4.24)
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where

Φ = −
( η(T )∑

i=1

e−rti

i−1∏
j=1

1{Yj ≤ 1}1{Yi > 1}(Yi(si − di)−K)+

+ e−rT

η(T )∏
j=1

1{Yj ≤ 1}(Yη(T )+1 −K)+
)∂(rT )

∂θ
.

Remark 4.8 Although the estimator (4.24) is written in terms of {Yi}, it can be rewritten

in terms of {St−i } by applying Yi = gi(St−i
).

4.4.4 Discussion

As shown by examples in this section, SLRIPA is generally applicable for appli-

cations that have payoff functions containing indicator functions and is especially useful

in the setting where the payoff function is discontinuous, so IPA cannot be applied and

other methods usually require additional simulation. In practical applications, for payoff

functions not exactly of the form L(X(ω; θ1), z; θ2)1{X(ω; θ1) > θ2}, SLRIPA may still

be applicable, for example, for problems with multiple indicator functions as in the bar-

rier option and American call option examples. The idea is to make the payoff function

continuous with respect to parameters of interest through changes of variables and make

the support of new random variables independent of any parameter of interest as well. In

order to apply SLRIPA, some technical conditions are required. For instance, the part

of the payoff function not containing indicator functions should satisfy some continuity

conditions, and the probability density function of the random variable inside the indica-

tor function can be obtained. These technical requirements are generally not a problem

for financial applications. However for problems with random variables that have more

complicated forms and cannot be written in simple functions of random variables with
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known probability density functions, it might be more difficult to apply SLRIPA. One of

the key advantages of SLRIPA is that it is easy to implement and only requires a single

run of simulation to obtain one estimate, i.e., no resimulation is needed.

4.5 Simulation Results

In this section, we give some numerical results when applying the SLRIPA estimator

to sensitivity analysis of barrier options and American option pricing problems.

4.5.1 European Barrier Option

Consider the up-and-out European barrier option in Section 4.4.2, where the stock

price St = S0e
(r−σ2/2)t+σBt . We let σ = 0.1, r = 0.05, T = 1,H = 110, S0 = K = 100,

with m the number of discretized points, and h = T/m the time step. For the SLRIPA

derivative estimators Dθ given in Section 4.4.2, we give numerical results for DH , as this

SLRIPA estimator is new, and there is no LR or IPA derivative estimator for the price of

this barrier option with respect to H. Using the approach in [105], we can also derive the

following SPA estimator:

m∑
p=1

{
e−rT

p∏
i=1

1{Si ≤ H}E
[
(Sm −K)1{Sm ≥ K}

m∏
i=p

1{Si ≤ H}|Sp = H
] 1

Hσ
√
h
n(ϕ)

}
,

where ϕ =
lnH−lnSp−1−(r−σ2/2)h

σ
√
h

.

We compare the performance of the proposed SLRIPA derivative estimator with

that of the above SPA estimator and a finite-difference estimator. For the finite differ-

ence estimator with respect to H, we perturb H to H + h and divide the difference of

the payoff function at H and H + h by h, where h is a small positive number; common
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Table 4.1: Sensitivity of Barrier Option: ∂JT /∂H (Standard Error in Parentheses)

r = 0.05, σ = 0.10
m = 10 m = 20 m = 30

FD 0.329(0.084) 0.310(0.077) 0.271(0.071)
SPA 0.286(0.011) 0.262(0.013) 0.254(0.015)

SLRIPA 0.276(0.018) 0.251(0.024) 0.266(0.028)

random numbers are used. In our simulation setting, we set h = 0.2 to compute the finite

difference estimator. For the SPA estimator, we generate 10 sample paths to estimate

each conditional expectation term in the SPA estimators separately. We performed 2, 000

independent replications for each estimator, and the results are summarized in Table 4.1

with the standard error in the parentheses. From the simulation results, we can see that

SLRIPA has comparable performance with SPA, with a slightly larger standard error. How-

ever, SLRIPA only needs to generate a single sample path to obtain one estimate, whereas

SPA needs to estimate m conditional expectations, thus requiring a substantially higher

amount of computation. It is not clear whether SPA performs better than the SLRIPA

method in terms of variance if the variances introduced by the conditional expectations

in SPA are considered, but there are many ways in which this could be done, so this is an

interesting topic for future research. In any case, our estimator requires less computation,

as no additional simulation is required.

4.5.2 American Call Option

4.5.2.1 Sensitivity Analysis

We consider the sensitivity estimation of an American option with a single ex-

dividend date and compare the results of the SLRIPA estimators, finite difference esti-
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mators, and the estimators given in [36]. Two different values for D,K, σ are tested, and

parameter values are S0 = 40; r = 0.05; D = 0.5 (D = 1.0); K = 40 (K = 45), σ =

0.10 (σ = 0.30); t1 = 4/12; T = 6/12.

For the finite difference estimator with respect to θ, we perturb θ to θ + h and

divide the difference of the payoff function at θ and θ+h by h, where h is a small positive

number; common random numbers are used. The SPA estimators in [36] require additional

simulations for the conditional expectation term for various parameters especially when

there are multiple ex-dividend dates, and we do a separate estimation to estimate the

conditional expectation term. In our simulation setting, we set h = 0.1 to compute

finite difference estimators with respect to parameters S0, s, and h = 0.01 with respect to

σ, r,D and K. We generated 10 sample paths to estimate conditional expectation terms

in the SPA estimators separately. We performed 2, 000 independent replications for each

estimator. From the simulation results in Table 4.2, we can see that SLRIPA generally

performs better than the finite difference method. Compared with SPA, SLRIPA has

comparative performance in terms of variance, but with much less computation. Again, a

single sample path is needed to obtain one estimate for all the parameters of interest.

4.5.2.2 Optimal Threshold Policy

With an estimate of the derivative with respect to the early exercise threshold

parameters, we can solve the American option pricing problem as an optimization problem

by applying stochastic approximation (SA) ([68]). The classical SA algorithm solves the

following optimization problem by mimicking the gradient ascent method: maxθ E[JT (θ)].

In our settings, JT is the return of the American option as a function of θ, which is the

early exercise threshold parameter s for the single ex-dividend case and a vector when
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Table 4.2: Sensitivity of American Option (Standard Error in Parentheses)

r = 0.05, σ = 0.30
D = 0.5, s = K = 40, D = 0.5, s = K = 45, D = 1.0, s = K = 40

∂JT/∂K
FD -0.584(0.011) -0.342(0.010) -0.581(0.011)
SPA -0.584(0.011) -0.342(0.010) -0.581(0.011)

SLRIPA -0.584(0.011) -0.342(0.010) -0.581(0.011)

∂JT/∂S0

FD 0.489(0.093) 0.288(0.079) 0.562(0.054)
SPA 0.557(0.013) 0.316(0.014) 0.564(0.013)

SLRIPA 0.559(0.031) 0.320(0.021) 0.553(0.033)

∂JT/∂s
FD 0.169(0.070) 0.048(0.034) 0.089(0.048)
SPA 0.113(0.004) 0.086(0.003) 0.102(0.004)

SLRIPA 0.111(0.031) 0.094(0.016) 0.112(0.029)

∂JT/∂σ
FD 9.544(0.373) 9.058(0.872) 9.703(0.446)
SPA 10.031(0.331) 8.960(0.363) 9.793(0.326)

SLRIPA 9.972(1.334) 8.730(0.910) 10.592(1.679)

∂JT/∂r
FD 5.528(1.078) 4.205(0.819) 6.920(0.451)
SPA 6.836(0.167) 4.395(0.191) 7.000(0.169)

SLRIPA 6.839(0.374) 4.422(0.259) 6.836(0.399)

∂JT/∂D
FD -0.156(0.007) -0.170(0.008) -0.161(0.007)
SPA -0.158(0.007) -0.159(0.008) -0.162(0.007)

SLRIPA -0.158(0.007) -0.159(0.007) -0.162(0.007)

there are multiple ex-dividend points.

The optimal parameter θ∗ determines the optimal exercise threshold policy that

defines the value of the American option. Let ĝ(θ) be an estimator of the gradient ∂E[JT (θ)]
∂θ ;

the SA algorithm generates iterates by the formula: θk+1 = ΠΘ(θk + akĝ(θk)), where θk

is the value of the parameter at the beginning of iteration k, ak is a sequence of positive

step sizes, and ΠΘ is a projection onto the parameter set Θ. There are various conditions

on the sequence of step sizes that ensure the convergence of the algorithm ([68]). In our
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simulation experiments, we adopt the harmonic series an = a/n, which is also used in [36].

Table 4.3: Optimal Threshold and Corresponding Expected Payoff (Standard Error Based
on 10 Runs)

r = 0.05, σ = 0.10
D = 0.5 D = 0.5 D = 1.0 D = 1.0
K = 40 K = 45 K = 40 K = 45

s⋆ 41.69 47.19 40.62 45.84
s̃⋆ 41.77(0.03) 45.92(0.01) 40.61(0.02) 45.59(0.01)
J⋆
T 1.411 0.089 1.323 0.063

J̃⋆
T 1.410 0.087 1.323 0.062

r = 0.05, σ = 0.30
D = 0.5 D = 0.5 D = 1.0 D = 1.0
K = 40 K = 45 K = 40 K = 45

s⋆ 47.97 55.08 44.48 50.56
s̃⋆ 47.48(0.14) 52.01(0.08) 44.85(0.08) 50.41(0.06)
J⋆
T 3.586 1.756 3.414 1.618

J̃⋆
T 3.586 1.753 3.413 1.618

Given the derivative estimator with respect to the threshold parameter s, we use

the SA algorithm to compute the optimal threshold policy and obtain estimates of the

American option price. In the SA algorithm, we set a = 20 for the case of parameter

values r = 0.05, σ = 0.1, and a = 60 for r = 0.05, σ = 0.3. The algorithm is started with

s = K and is stopped if the difference between two consecutive iterative values of s is less

than ϵ = 5 × 10−5. 2000 sample paths are generated to estimate the gradient for each

iteration of the SA algorithm. We performed 10 independent replications. Once we have

the threshold parameter s, the expected payoff can be computed analytically. In Table

4.3, s⋆ is the optimal threshold policy computed by Roll-Geske-Whaley formula [98] and

J⋆
T is the corresponding option price, s̃⋆ is the threshold policy obtained by SA, and J̃⋆

T is

the corresponding expected payoff. From Table 4.3, we can see that s̃⋆ is very close to s⋆,

and the expected payoff with the threshold parameter obtained by SA agrees with the true
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option price within a penny. Figure 1 shows a typical sample path of the rapidly converging

stochastic approximation algorithm with parameters r = 0.05, σ = 0.10,K = 40, D = 1.0,

and S0 = 40.
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Figure 4.1: Convergence of SA with r = 0.05, σ = 0.10,K = 40, D = 1.0, and S0 = 40

4.6 Conclusions

We have presented a new stochastic derivative estimation approach for discontinu-

ous payoff functions of a special form, for which IPA and LR may give biased estimates.

Although unbiased estimators for these types of functions have been derived using other

techniques such as SPA, the resulting estimators require additional simulations. By com-

bining a change of variables with both IPA and LR, we show how to derive unbiased

estimators that can be computed using only a single simulation replication. Simulation

experiments illustrate the effectiveness of the proposed method.

SLRIPA uses changes of variables to smooth out discontinuities, whereas SPA uses

conditional expectations. We note that generally SLRIPA has two parts: an LR part
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and an IPA part, while SPA is composed of an IPA part and a conditional expectation

part. An interesting future research topic is to explore the connection between SPA and

SLRIPA. Since LR works in a general Markov chain setting, extending SLRIPA to this

general setting and studying the properties of the resulting SLRIPA estimators is another

natural future research direction.
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Chapter 5

Model-based Evolutionary Optimization

5.1 Introduction and Motivation

In this chapter, we focus on developing a novel simulation optimization framework

based on evolutionary game theory for solving the following global optimization problem

y⋆ ∈ argmax
y∈Y

H(y),

where the solution space Y ⊂ Rn is a nonempty set.

As in Chapter 1 and Chapter 2, according to the criteria in [110], we classify global

optimization algorithms as instance-based, which include simulated annealing ([63]), ge-

netic algorithms ([97]), tabu search ([47]), and nested partitions ([93]), and model-based

methods, which includes estimation of distribution algorithms (EDAs) ([80]), the cross-

entropy (CE) method ([15, 75]), model reference adaptive search (MRAS) ([59]), and

particle filtering-based method ([109]).

Since the emerging of genetic algorithms, many instance-based algorithms have been

developed and well studied. On the other hand, the age of model-based algorithms is

relatively young and the convergence behavior and performance of model-based algorithms

are not well understood. Further exploration of the properties of model-based algorithms

and developing new computational efficient algorithms are the principal purpose of the

research presented in this Chapter.
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EDAs, CE, MRAS, and algorithms based on particle filtering are different from each

other in the way of interpreting and updating the probabilistic models. In these model-

based global optimization algorithms, candidate solutions are generated from probabilistic

models, which are updated by these candidate solutions in such a way that better solutions

will have a higher chance to be sampled at the next iteration. Similarly, in evolutionary

games, the dynamics are such that better strategies will spread in the population. This

similarity motivates us to connect global optimization problems with evolutionary games.

The dynamics that are used to study the evolution of strategies in evolutionary games

provides us a powerful tool to investigate the model updating in model-based algorithms.

Game theory studies the strategic interaction of players using different strategies;

it has been applied in many areas such as economics, engineering, and biology ([38, 95]).

Recently, [71] and [41] have applied game theory to solve discrete optimization problems,

where they model the optimization problem as a potential game. Fictitious play and joint

fictitious play are adopted to obtain the Nash equilibrium, and two sampled version of

fictitious and joint fictitious play are also proposed in [71] and [41]. For a potential game,

although fictitious play has been proven to converge to a mixed strategy Nash equilibrium,

the mixed strategy equilibrium might not be a feasible solution for the optimization prob-

lem. The algorithms in [41] and [71] only work for discrete optimization problems with a

finite solution space, and moreover the Nash equilibrium obtained by fictitious play might

only be a locally optimal solution.

Evolutionary game theory applies game theory to study the evolution of the number

of players playing different strategies in a population setting. After being introduced

by the biologist [77], evolutionary game theory has become popular in biology and has

attracted increasing interest from researchers in other areas. As opposed to static games,
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evolutionary games involve a population of players and study the evolution of players by

using replicator dynamics, which sets the growth rate of the proportion of players using

a certain strategy equal to the difference between the average payoff of that strategy and

the average payoff of the entire population. Replicator dynamics can also be used as a

learning algorithm to study the behavior of multiple agents ([103]).

The main idea of our method is to formulate the global optimization problem as

an evolutionary game and to use dynamics from evolutionary game theory to study the

evolution of the candidate solutions. Searching for the optimal solution is carried out

through the dynamics of reaching equilibrium points in evolutionary games. Specifically,

we establish a connection between evolutionary game theory and optimization by parti-

tioning the solution region of a global optimization problem and letting different players

play strategies in different subsets. Differential dynamics such as replicator dynamics are

used to govern the evolution of the candidate solutions for the optimization problem. Fur-

thermore, we introduce probabilistic models to generate candidate solutions and formulate

the global optimization problem as an evolutionary game with continuous strategy spaces.

We show that there is a strong connection between a particular equilibrium set of the

replicator dynamics and the global optimal solutions. By using Lyapunov theory, we also

show that the particular equilibrium set is asymptotically stable under mild conditions.

Based on the connection between the equilibrium points and global optimal solutions,

a Model-based Evolutionary Optimization (MEO) algorithm is developed. Moreover, to

better capture the multimodal property of global optimization problems, we propose to

use a population of models to generate candidate solutions and a new Population Model-

based Evolutionary Optimization (PMEO) algorithm is proposed, in which evolutionary

game theory is used to study the evolution of those individual models, and models with
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best performances will survive eventually. Motivated by the idea of mutation strategies

in evolutionary games, we introduce mutation strategies into the framework of PMEO

to further improve the algorithm’s ability for escaping trap of low quality solutions. In

preliminary numerical experiments, PMEO is able to find good solutions.

The way we formulate global optimization problems as evolutionary games provides

new insights into the mechanism for generating new candidate solutions and the mecha-

nism of model updating for model-based global optimization algorithms. For example, one

special case of the MEO algorithm leads to a new interpretation of the CE method. This

evolutionary game setting for global optimization problems makes it possible to study the

convergence property of model-based algorithms by using analytical tools in the evolution-

ary game theory literature and it also provides possibilities for developing new algorithms,

such as the PMEO algorithm developed in this Chapter.

5.2 Connecting Optimization and Evolutionary Game Theory

Consider the following optimization problem:

y⋆ ∈ argmax
y∈Y

H(y), (5.1)

where the solution space Y ⊆ Rn is a nonempty set. The objective function H : Y → R is

a deterministic function that is continuous almost everywhere. Assume the set of global

optimal solutions is nonempty and finite. y⋆ is a global optimal solution if H(y⋆) ≥

H(y) ∀y ̸= y⋆, y ∈ Y.

Assume that the solution space Y can be partitioned intoM disjoint subsets G1, ...,GM .

At each iteration, generate N1, . . . , NM candidate solutions using some random sampling
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algorithm in the corresponding subsets G1, ...,GM , and the total number of solutions gen-

erated is a fixed number:
∑M

i=1Ni = N . Our goal is to sample more around an optimal

solution y⋆, and thus increase the chance of finding an optimal solution. From an evolu-

tionary game theory perspective, we view the N samples (candidate solutions) as agents,

who are programmed to play M different pure strategies {1, . . . ,M}. By playing the pure

strategy i, we mean sampling a candidate solution in the subset Gi. Hence there are Ni

agents playing the pure strategy i. An agent playing a pure strategy i will receive a payoff

fi given by

fi =
1

Ni

Ni∑
j=1

φ(H(yij)), ∀i = 1, . . . ,M, (5.2)

where φ : R → R+ is a strictly increasing function and {yij , j = 1, . . . , Ni} are the

candidate solutions generated from the subset Gi. Note that the payoff fi only depends

on the actions of agents playing strategy i. Define xi =
Ni
N as the percentage of agents

playing the pure strategy i for all i ∈ {1, . . . ,M} and we have
∑M

i=1 xi = 1. According

to the analysis in Section 2.2.2, the evolution of the number of agents playing different

strategies in this evolutionary game is governed by the replicator dynamics

ẋi = xi(fi −
M∑
j=1

xjfj), ∀i = 1, . . . ,M. (5.3)

From (5.3), it is easy to see that if the payoff of strategy i is greater than the average

payoff, i.e., fi >
∑M

j=1 xjfj , the proportion of agents playing i will increase. From the

viewpoint of simulation-based optimization, more samples will be drawn from the more

promising area - the subset Gi. It is easy to check equation (5.3) preserves
∑M

i=1 xi = 1.

Note that from equation (5.2), we can see fi only depends on the actions of agents

playing strategy i, which is independent of xj , j ̸= i. In other words, the payoff received
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by agents playing i is irrelevant to the actions of agents playing other different strategies.

In this evolutionary game setting, agents can be viewed as competing against nature [106].

The function fi is random; it is a Monte Carlo estimate of the mean of φ(H(·)) in set G.

Note that the replicator dynamics (5.3) is a differential equation. Since our optimiza-

tion algorithm is simulation-based, we need a discretized version of replicator dynamics.

In matrix games introduced in Section 2.2.2, the discrete replicator dynamics is given by

xi(t+ 1) = xi(t)
(Ax(t))i + c

x(t)TAx(t) + c
,

where c is some constant to make sure that the denominator is not zero. The discretized

replicator dynamics corresponding to (5.3) is

xi(t+ 1) = xi(t)
f ti + c∑M

j=1 xj(t)f
t
j + c

, ∀i = 1, . . . ,M, (5.4)

where f tj is the payoff received by an agent playing a strategy j at time t. We can see

from (5.4) that the percentage {xi(t+1)} of agents playing each strategy changes at each

iteration by a factor proportional to the average payoff of the corresponding strategy. The

percentage of agents playing a strategy increases only if its payoff is greater than the

average payoff, and the amount of increase depends on the difference of the payoff of the

particular strategy and the average payoff.

The discrete replicator dynamics (5.4) governs the evolution of percentages of sam-

ples in different regions. By incorporating the ideas of the nested partitions method ([93]),

promising regions can further be partitioned to perform a finer search, and non-promising

regions can be combined. Then replicator dynamics can be applied again to concentrate

most of the samples on the most promising region. How to partition the solution region
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and to generate candidate solutions efficiently in the resulting subsets is critical to solving

the global optimization problem and requires further investigation. We will not pursue the

idea of incorporating nested partitions method further in this Chapter. Instead, we con-

sider the problem from the perspective of evolutionary games with continuous strategies

spaces.

5.3 Model-based Evolutionary Optimization

Now we consider an evolutionary game with a continuous strategy space. Let B be

a Borel σ-algebra on Y, the strategy space of the game; for each t, let Pt be a probability

measure defined on (Y,B). Let ∆ denote the set of all strategies (probability measures) on

Y. Let Me(Y,B) denote the linear span of ∆, the space of all finite and signed measures.

Every single point y ∈ Y can be viewed as a pure strategy. The fraction of agents

playing the pure strategy y at time t is Pt(dy). An agent playing the pure strategy y

obtains a fitness φ(H(y)). The fraction of agents adopting different strategies in the

continuous game is described by the probability measure Pt defined on the strategy space

Y, so the average payoff of the whole population is given by

EPt [φ(H(Y ))] =

∫
Y
φ(H(y))Pt(dy).

In evolutionary game theory ([82]), the evolution of this probability measure is

governed by some dynamics such as replicator dynamics. Let A be a measurable set in

Y. The replicator dynamics with a continuous strategy space is given by

Ṗt(A ) =

∫
A
(φ(H(y))− EPt [φ(H(Y ))])Pt(dy). (5.5)

140



From (5.5), we can see that if φ(H(y)) outperforms EPt [φ(H(Y ))], the probability measure

around y will increase. In this evolutionary game setting, the payoff φ(H(y)) depends only

on y, and not on the other strategies. Similar to the analysis in Section 5.2, in this game,

agents are competing against nature. Equation (5.5) is inspired by extending (5.3) to a

continuous setting.

Since the probability measure doesn’t have a specific structure, it would be very

difficult to use (5.5) directly. If there exists a probability density function pt, such that

Pt(dy) = ptµ(dy), where µ(·) is the Lebesgue measure defined on (Y,B), then (5.5) becomes

ṗt(y) = (φ(H(y))− EPt [φ(H(Y ))])pt(y), (5.6)

which governs the evolution of the probability density function on the continuous strategy

space. When pt(y) is used as our model to generate candidate solutions for the global

optimization problem (5.1), the differential equation (5.6) can be used to update the model

pt(y), with the final goal of making the probability density function pt(y) concentrated on

a small set containing the global optimal solutions. Then the global optimization problem

can be easily solved by sampling from the obtained probability density function.

Remark 5.1 What is interesting about equation (5.6) is that it is a nonlinear ordinary dif-

ferential equation, indexed by y, which is different from the linear partial (Fokker-Planck)

differential equation that governs the probability density evolution of a Markov process.

This nonlinearity also makes the convergence analysis that will be given below more diffi-

cult. The random process it describes is known as a nonlinear Markov process [65].
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5.3.1 Analysis of the Replicator Dynamics with a Continuous Strat-

egy Space

In this section, we study the properties of the equilibrium points of (5.5) and their

connection with the global optimal solutions for the optimization problem by exploring

the tools of equilibrium analysis in the literature of game theory and stability analysis in

dynamic systems.

5.3.1.1 Convergence Analysis of Equilibrium Set

We make the following assumption to conduct the convergence analysis.

Assumption 5.1 There exist constants L and M such that L ≤ φ(H(y)) ≤ M for all

y ∈ Y.

Assumption 5.1 is needed to ensure that the average fitness function EPt [φ(H(Y ))] is

well defined. Functions that are lower bounded by −∞ can be truncated by a constant

L , which does not change the solution of the optimization problem since maximization

problems are considered here.

We first show that the replicator dynamics (5.5) is well defined.

Theorem 5.1 If Assumption 5.1 holds, for each P0 defined on (Y,B), the ordinary dif-

ferential equation (5.5) has a unique solution for t ∈ [0,∞].

Proof: Our proof follows the method proposed by [81] and [54]. Let ∥ · ∥ denote the

variational norm on (Me,B), which is defined as

∥P∥ = sup
g

∣∣∣ ∫
Y
g(y)P(dy)

∣∣∣,
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where the sup is taken over all measurable functions g : Y → R and supy∈Y |g(y)| ≤ 1.

For simplicity, let

J(Pt) =

∫
A
(φ(H(y))− EPt [φ(H(Y ))])Pt(dy).

By Assumption 5.1 that L ≤ φ(H(y)) ≤ M ,∀y ∈ Y, we have

∥J(P)∥ ≤ 2max(|L |, |M |).

Hence J(P) is bounded ∀P ∈ ∆. We now show that J is Lipschitz continuous. Let P and

Q be two different probability measures in ∆; then

∥J(P)− J(Q)∥

= ∥
∫

A
φ(H(y))P(dy)− EP[φ(H(Y ))]P− (

∫
A
φ(H(y))Q(dy)− EQ[φ(H(Y ))Q])∥

≤ ∥EP[φ(H(Y ))]P−EP[φ(H(Y ))]Q+ EP[φ(H(Y ))]Q− EQ[φ(H(Y ))]Q∥

+

∫
A
|φ(H(y))|∥P−Q∥(dy)

≤ |EP[φ(H(Y ))]|∥P−Q∥+
∫
Y
|φ(H(y))|∥P−Q∥(dy) +

∫
A
|φ(H(y))|∥P−Q∥(dy)

≤ 3max(|L |, |M|)∥P−Q∥.

Therefore, J is Lipschitz continuous on the set of probability measures with variational

norm. By Corollary 3.9 of [108], the ordinary differential equation Ṗt(A ) = J(Pt) with an

initial measure P0 ∈ ∆ has a unique solution Pt. �

Assume that P⋆ is an equilibrium distribution for the replicator dynamics (5.5), and

thus we have J(P⋆) = 0. It is easy to see that P⋆ = δy⋆i for i = 1, . . . ,m are equilibrium
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points of (5.5), and we might guess there is a strong connection between the equilibrium

points of (5.5) and the optimal solutions of the global optimization problem (5.1). To

further study the properties of the equilibrium points of the replicator dynamics (5.5), the

Prokhorov metric is used to measure the distance between different strategies (probability

measures):

ρ(P,Q) := inf{ϵ > 0 : Q(A ) ≤ P(A ϵ) + ϵ and P(A ) ≤ Q(A ϵ) + ϵ, ∀A ∈ B},

where A ϵ := {x : ∃ỹ ∈ A , d(ỹ, x) < ϵ}, in which d is a metric defined on Y. Then the

convergence of ρ(Qn,Q) → 0 is equivalent to the weak convergence of Qn to Q ([2]).

The following definition specifies the dynamic stability concepts we will be using for

the infinite dimensional system (5.5).

Definition 5.1 Let E be a set in ∆. For a point P ∈ ∆, define the distance between P

and E as ρ(P, E) = inf{ρ(P,Q),∀Q ∈ E}. E is called Lyapunov stable if for all ϵ > 0, there

exists η > 0 such that ρ(P0, E) < η =⇒ ρ(Pt, E) < ϵ for all t > 0.

Definition 5.2 Let E be a set in ∆. E is called asymptotically stable if E is Lyapunov

stable and there exists η > 0 such that ρ(P0, E) < η =⇒ ρ(Pt, E) → 0 as t→ ∞.

The following theorem shows that the overall fitness of the strategy (probability

measure) Pt is monotonically increasing over time.

Theorem 5.2 Let Pt be a solution of the replicator dynamics (5.5). If Assumption 5.1

holds, the average payoff of the entire population EPt [φ(H(Y ))] is monotonically increasing

with time t. If Assumption 5.1 holds and Pt is not an equilibrium point of (5.5), then

EPt [φ(H(Y ))] is strictly increasing with time t.
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Proof: Differentiate the average payoff:

d

dt
EPt [φ(H(Y ))] =

∫
Y
φ(H(y))

dPt

dt
(dy)

=

∫
Y
φ(H(y))(φ(H(y))− EPt [φ(H(Y ))])Pt(dy)

=
(
EPt [φ

2(H(Y ))]− (EPt [φ(H(Y ))])2
)
≥ 0.

The first equality above holds by the dominated convergence theorem, since φ(H(·)) is

upper and lower bounded by finite constants, and hence the derivative of Pt is bounded,

using (5.5); the second equality above is obtained by applying (5.5); the last inequality

holds since EPt [φ
2(H(Y ))] − (EPt [φ(H(Y ))])2 is just the variance of φ(H(·)) under the

measure Pt. Therefore the first claim is proved.

The second claim is proved by contradiction. Assume for some t that d
dtEPt [φ(H(Y ))] =

0. It is easy to see that when d
dtEPt [φ(H(Y ))] = 0, we have φ(H(y)) = C, where

C = EPt [φ(H(Y ))] is a constant, which is an equilibrium point of (5.5). This contradicts

the fact that Pt is not an equilibrium point. Therefore, we must have d
dtEPt [φ(H(Y ))] > 0

when Pt is not an equilibrium point, and the theorem is proved. �

Before presenting the main theorem of the convergence analysis, we give the defini-

tion of a particular strategy set.

Definition 5.3 ∆0 ⊂ ∆ is the set containing all P0 for which there exists a y⋆k such

that P0(Ã) > 0 for any set Ã ∈ B that contains y⋆k and has a positive Lebesgue measure

µ(Ã) > 0. Let C = {P⋆ : P⋆ = limt→∞ Pt starting from some P0 ∈ ∆0}.

We also need the following assumptions.

Assumption 5.2 There is a finite number of global optimal solutions {y⋆1, . . . , y⋆m} for
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the optimization problem (5.1), where m is a positive integer.

Assumption 5.3 φ(·) is continuous and strictly increasing.

Theorem 5.3 If Assumptions 5.1, 5.2, and 5.3 hold, then the following hold:

C1. for any P⋆ ∈ C, there exist αi ≥ 0, for i = 1, . . . ,m with
∑m

i=1 αi = 1 such that

P⋆ =
∑m

i=1 αiδy⋆i ;

C2. the set C can be represented as C = {P⋆ : P⋆ =
∑m

i=1 αiδy⋆i , for some
∑m

i=1 αi =

1, αi ≥ 0,∀i = 1, . . . ,m}; in addition, it is asymptotically stable.

Proof: Let H∗ denote the global optimal value of φ(H(·)), i.e., H∗ = maxy∈Y φ(H(y))

and we prove the claim C1 by contradiction. Assume there exists a P̃, an equilibrium

point in C that is not of the form P̃ =
∑m

i=1 αiδy⋆i . Combining with Assumption 5.2, we

see that P̃ does not put all the measure to global optimal solutions, and hence there exist

positive constants ϵ1 and ϵ2, and a measurable set A1 ∈ B such that P̃(A1) > ϵ1 and

φ(H(y)) < H∗ − ϵ2 for almost all y ∈ A1. Let ϵ = ϵ1ϵ2; then we have

EP̃[φ(H(Y ))] ≤ H∗(1− ϵ1) + ϵ1(H
∗ − ϵ2) = H∗ − ϵ. (5.7)

By the definition of C in Definition 5.3 and the fact P̃ ∈ C, there exist a P0 ∈ ∆0

and a trajectory Pt starting from P0 such that Pt → P̃ as t→ ∞. We have

EPt [φ(H(Y ))] ≤ EP̃[φ(H(Y ))] ≤ H∗ − ϵ, (5.8)

since EPt [φ(H(Y ))] is monotonically increasing over time by Theorem 2, and by inequality

(5.7).
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Since P0 ∈ ∆0 and by Definition 5.3, there exist a point y⋆k ∈ Ã and a measurable

set Ã with µ(Ã) > 0 containing y⋆k such that P0(Ã) > 0. Then by the continuity of φ(·)

from Assumption 5.3 and the continuity of H(·) at y⋆k, there exists a measurable set S ∈ Ã

with µ(S) > 0 such that P0(S) > 0, y⋆k ∈ S, and φ(H(y)) > H∗ − ϵ/2 for all y ∈ S. Note

that

Ṗt(S) =
∫
S
(φ(H(y))− EPt [φ(H(Y ))])Pt(dy)

=

∫
S
φ(H(y))Pt(dy)−EPt [φ(H(Y ))]Pt(S)

≥ (H∗ − ϵ/2− (H∗ − ϵ))Pt(S) =
ϵ

2
Pt(S), (5.9)

where the third inequality holds by (5.8). Therefore we have

Ṗt

Pt
(S) ≥ ϵ

2
∀t ≥ 0.

By integrating both sides of the above inequality from 0 to t, we obtain Pt(S) ≥ e
ϵ
2
tP0(S)

for all t ≥ 0. Since P0(S) is a positive constant, Pt(S) goes to infinity as t goes to

infinity, which contradicts the fact that P⋆ = limt→∞ Pt is a probability measure in C; this

concludes the first part of the proof.

Now we prove the claim C2. First we prove that the set C is equal to the set

E = {P⋆ : P⋆ =
∑m

i=1 αiδy⋆i , for some
∑m

i=1 αi = 1, αi ≥ 0,∀i = 1, . . . ,m}. By the claim

C1, C ⊆ E . It is also easy to check that E ⊆ ∆0, and then by the definition of C, E ⊆ C.

Hence C = E .

Now we prove C is asymptotically stable by using a generalized Lyapunov theory

on the metric space (Me, ρ). We first show that the set C is compact. To prove C is
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compact in a metric space, we show that any sequence {P⋆
n =

∑m
i=1 α

n
i δy⋆i } in C has a

convergent subsequence that converges to a point in C. Note that (αn
1 , α

n
2 , . . . , α

n
m) ∈

Rm lives in a simplex for each n. Since a simplex in the Euclidean space is closed and

hence is compact, there exists a subsequence {(αn1
1 , α

n1
2 , . . . , α

n1
m )} that converges to a

point (α1, α2, . . . , αm) in the simplex. Corresponding to this subsequence, there exists a

subsequence of probability measures {P⋆
n1

=
∑m

i=1 α
n1
i δy⋆i } converging to a point P⋆ =∑m

i=1 αiδy⋆i ∈ C. Therefore C is compact.

Define a Lyapunov function V (P) = EP⋆ [φ(H(Y ))] − EP[φ(H(Y ))], where P⋆ is a

point in C; notice that V (Pt) is positive for all Pt ∈ ∆\C and V (Pt) = 0 for Pt ∈ C.

From the proof of Theorem 5.2, we know that V̇ (Pt) < 0 for all t > 0 if Pt is not in C.

From a generalization of Lyapunov’s theorem (see Chapter V of [11]), the compact set C

is asymptotically stable. �

Remark 5.2 Chapter V of [11] presented a generalized Lyapunov’s theorem on a general

metric space. In the proof of Theorem 5.3, we applied this generalization of Lyapunov’s

theorem on the metric space (Me, ρ).

Remark 5.3 The above analysis in this section is done under the assumption that H(·) is

continuous almost everywhere. Similar results can be obtained when H(·) is not continuous

almost everywhere under some more general assumptions by extending the above analysis.

Remark 5.4 Theorems 5.2 and 5.3 build a connection between the optimal solutions of

the global optimization problem (5.1) and a particular equilibrium set of the correspond-

ing evolutionary game. By Theorem 5.3, global optimal solutions can be approached by

following a trajectory of the replicator dynamics (5.5) starting from a point in ∆0.
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Remark 5.5 The construction of the initial probability measure P0 is critical for de-

signing algorithms to obtain equilibrium points. Assumption 5.2 ensures that a small set

around an optimal solution can be sampled with a positive probability. One possible choice

of P0 is a probability measure with a continuous probability density function and support

on all of Y, for example, the probability density function of a Gaussian distribution.

5.3.2 General Model-based Evolutionary Optimization Algorithm

In this section, we give a Model-based Evolutionary Optimization Algorithm based

on the connection between the evolutionary game and the global optimization problem.

Assume that there is a probability density function pt associated with the probability

measure Pt.

There are many dynamics in evolutionary game theory that can be used to govern

the evolution of the fraction of agents playing different strategies, as shown in Section

2.2.3.1 for evolutionary games with finite strategies. Similarly, these dynamics can also

be extended to games with a continuous strategies space to govern the evolution of the

probabilistic model pt(y). For example, for replicator dynamics, we have equation (5.6),

which is rewritten here:

ṗt(y) = (φ(H(y))− EPt [φ(H(Y ))])pt(y).

To describe these dynamics in a unified form, we use the following compact representation:

ṗt(y) = D(φ(H(y)), Ept [φ(H(Y ))], pt(y)), (5.10)

where D is simply a function with three arguments and ṗt(y) is a function of these three
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quantities. The corresponding discrete-time version is

pk+1(y) = Dd(φ(H(y)), Epk [φ(H(Y ))], pk(y)).

5.3.2.1 Model-based Evolutionary Optimization

From the analysis in Section 5.3.1, we know that global optimal solutions can be

obtained by generating samples from some equilibrium distributions of the replicator dy-

namics (5.5); these equilibrium distributions can be approached by following trajectories

of (5.5) starting from P0 ∈ ∆0. Based on this connection, we give the following Model-

based Evolutionary Optimization (MEO) algorithm.

Model-based Evolutionary Optimization Algorithm

0. Initialization. Choose ρ ∈ (0, 1] and an initial p0 defined on Y. Set k = 0 and

γ0 = −∞.

1. Quantile calculation. Calculate the (1− ρ) quantile γk:

γk = sup
l
{l : Pk(H(y) ≥ l) ≥ ρ}.

If γk < γk−1 and k > 1, set γk = γk−1. Set k = k + 1 and go to step 2.

2. Update the probabilistic model:

pk(y) = Dd(φ(H(y))I{H(y)≥γk−1}, Ept [φ(H(Y ))I{H(Y )≥γk−1}], pk−1(y)).

3. Stop if some stopping criterion is satisfied; otherwise go to step 1.
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In the MEO algorithm, the parameter ρ specifies the proportion of samples that

will be used to update the probabilistic model; ρ also defines a sequence of 1− ρ quantiles

{γk, k = 1, 2, . . .}. These quantiles are used to obtain a sequence of nondecreasing thresh-

olds that are used to select samples for model updating. Only those samples that perform

better than these thresholds will be used for model updating in step 2. These quantiles

help to concentrate the computational effort of the algorithm on promising candidate so-

lutions, and they also help to rule out samples with bad performance. The overall idea

of the algorithm is conceptually simple. We use the sequence of nondecreasing thresholds

to select promising samples, which are then used to update the probabilistic model gov-

erned by evolutionary dynamics. Once the probabilistic model approaches the equilibrium

distribution, optimal solutions or solutions very close to optimal solutions can be easily

obtained by sampling from the resulting distribution.

5.3.2.2 Monte Carlo Version of MEO

In MEO, the structure of the density pk is not specified, and it might be difficult to

generate candidate solutions from a general density pk. The choice of pk is crucial to the

performance of the MEO algorithm. Note that by Theorem 5.3, the equilibrium points

obtained by starting from P0 ∈ ∆0 are of the form P⋆ =
∑m

i=1 αiδy⋆i , where
∑m

i=1 αi = 1

and αi ≥ 0 for i = 1, . . . ,m, which suggests using a sum of Dirac functions to approx-

imate pt. Assume a group of candidate solutions {yit}Ni=1 is generated from pt; then the

probability density function pt can be approximated by

p̂t(y) =

N∑
i=1

wi
tδ(y − yit),
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where δ denotes the Dirac function, and {wi
t}Ni=1 are weights satisfying

∑N
i=1w

i
t = 1. If

we use this approximation p̂t as our probabilistic model, we can rewrite (5.10) as

N∑
i=1

∂wi
t

∂t
δ(y − yit) = D

(
φ(H(y)),

N∑
j=1

wj
tφ(H(yjt )),

N∑
i=1

wi
tδ(y − yit)

)
,

which is equivalent to

∂wi
t

∂t
= D

(
φ(H(yit)),

N∑
j=1

wj
tφ(H(yjt )), w

i
t

)
, ∀i = 1, . . . , N. (5.11)

The discrete-time version of (5.11) is

wi
k+1 = Dd

(
φ(H(yik)),

N∑
j=1

wj
kφ(H(yjk)), w

i
k

)
, ∀i = 1, . . . , N.

In particular, for replicator dynamics, we have

wi
k+1 =

φ(H(yik))∑N
j=1w

j
kφ(H(yjk))

wi
k, ∀i = 1, . . . , N.

Although an updated density approximation p̂k+1(y) =
∑N

i=1w
i
k+1δ(y − yik) is ob-

tained, it cannot be used directly to generate new candidate solutions. We construct a

new continuous density to approximate p̂k+1, which is done by projecting p̂k+1 onto some

parameterized family of distributions gθ. The idea of projection onto a parameterized

family has also been used in CE ([89]) and MRAS ([59]). Specifically, we try to minimize

the Kullback-Leibler (KL) distance between the parameterized distribution gθ and p̂k+1:

θk+1 = argmin
θ∈Θ

DKL

(
p̂k+1∥gθ

)
, (5.12)
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where Θ is the domain of θ, and the KL distance is defined as

DKL

(
p̂k+1, gθ

)
=

∫
y∈Y

ln
p̂k+1(y)

gθ(y)
p̂k+1(y)dy

=

∫
y∈Y

ln p̂k+1(y)p̂k+1(y)dy −
∫
y∈Y

ln gθ(y)p̂k+1(y)dy.

Since the first term does not depend on the parameter θ, the minimization problem (5.12)

is equivalent to

max
θ∈Θ

∫
y∈Y

ln gθ(y)p̂k+1(y)dy,

which can be rewritten as

max
θ∈Θ

N∑
i=1

wi
k+1 ln gθ(y

i
k).

Based on the above analysis, a Monte Carlo simulation version of the MEO algorithm is

given as follows.

Simulated Model-based Evolutionary Optimization Algorithm (SMEO)

0. Initialization. Specify N as the total number of candidate solutions generated at

each iteration. Choose ρ ∈ (0, 1] and an initial gθ0 defined on Y. Set k = 0,

wi
0 = 1/N for i = 1, . . . , N , and γ0 = −∞.

1. Quantile Calculation. Generate N candidate solutions {yik}Ni=1 from gθk . Calculate

the 1 − ρ quantile γk of {yik}Ni=1. If γk < γk−1 and k > 1, set γk = γk−1 and
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wi
k−1 = 1/N for i = 1, . . . , N . Set k = k + 1 and go to step 2.

2. Updating the probabilistic model. The discrete approximation of the model is

p̂k(y) =
∑N

i=1w
i
kδ(y − yik−1), where

wi
k = Dd

(
φ(H(yik−1))I{H(yik−1)≥γk−1},

N∑
j=1

wj
k−1φ(H(yjk−1))I{H(yjk−1)≥γk−1}

, wi
k−1

)
,

for i = 1, . . . , N .

3. Density projection. Construct gθ by projecting the density p̂k =
∑N

i=1w
i
kδ(y−yik−1)

onto gθ:

θk = argmax
θ∈Θ

N∑
i=1

wi
k ln gθ(y

i
k−1).

4. Stop if some stopping criterion is satisfied; otherwise go to step 1.

Generally it is not easy to solve the optimization problem (5.12), which depends on

the choice of gθ. However for gθ in an exponential family, analytical solutions exist ([15]).

If replicator dynamics is used in the Simulated Model-based Evolutionary Optimiza-

tion Algorithm above, then in step 2, we have

wi
k =

1
Nφ(H(yik−1))I{H(yik−1)≥γk−1}∑N
j=1

1
Nφ(H(yjk−1))I{H(yjk−1)≥γk−1}

, ∀i = 1, . . . , N.

It is easy to show that the SMEO algorithm gives the same updated probabilistic model

gθ as the extended CE algorithm in [15] when multivariate normal distributions with

independent components are used for gθ.

When the Brown-von Neumann-Nash dynamics is used, defineNe =
∑N

j=1 I{H(yjk−1)≥γk−1}
,
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and then we have

wi
k =

1
Ne

+max(0, φ(H(yik−1))I{H(yik−1)≥γk−1} −
∑N

j=1 φ(H(yjk−1))I{H(yik−1)≥γk−1})

1 +
∑N

l=1max(0, φ(H(ylk−1))I{H(ylk−1)≥γk−1} −
∑N

j=1 φ(H(yjk−1))I{H(yik−1)≥γk−1})
,

for ∀i = 1, . . . , N .

Remark 5.6 In CE, the parameterized density function is chosen at the beginning of the

algorithm and then the parameter is adaptively updated by an adaptively updated group

of elite solutions. In SMEO, the probabilistic model is estimated by some weighted Dirac

functions and the evolution of the estimated density function is governed by replicator dy-

namics. Projecting the estimated density function onto a parameterized family of density

functions is the final step in SMEO. The Dirac function only gives a coarse approximation

of the density function. One direction to improve SMEO is to explore effective approxi-

mations of the density function based on generated samples.

5.4 Population Model-based Evolutionary Optimization

In the SMEO algorithm given in Section 5.3.2, the probability density approximation

p̂k is inherently multimodal for global optimization problems with many local maxima.

The projection of p̂k onto a family of unimodal probability density functions gθ cannot

capture this multimodal property. Motivated by the work of [58], in which candidate

solutions were generated from a group of models with the emphasis on optimization of

budget allocation, we consider using a mixture distribution as our probabilistic model

in the SMEO algorithm, and focus on studying the evolving behavior of the individual

models in the mixture distribution. The global optimization problem is formulated as an

evolutionary game along similar lines as in Section 5.3.
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5.4.1 Population Model

Let Γ = {gθ1t , . . . , gθMt } be a set of M parameterized probability density functions

at time t on Y. Assume that {gθit , i = 1, . . . ,M} belong to a parameterized distribution

family {gθ, θ ∈ Θ}, where Θ is the parameter space. Consider generating N samples from

the following probability density function at t:

gt(y) =
M∑
i=1

αi
tgθit(y), (5.13)

where αi
t ≥ 0 and

∑M
i=1 α

i
t = 1. We can use stratified sampling to generate N i = ⌊αi

tN⌋

samples {yin, n = 1, . . . , Ni} from gθit for i = 1, . . . ,M − 1, and NM = N −
∑M−1

i=1 N i

samples {yMn , n = 1, . . . , Nm} from gθMt , respectively. With these samples, the probability

density function gθit can be approximated by

ĝθit(y) =

N i∑
n=1

wi
t,nδ(y − yin), ∀i = 1, . . . ,M, (5.14)

where {wi
t,n} satisfy wi

t,n ≥ 0,
∑N i

n=1w
i
t,n = 1 can be obtained and updated from the SMEO

algorithm. Thus, gt(y) can be approximated as

ĝt(y) =

M∑
i=1

αi
t

N i∑
n=1

wi
t,nδ(y − yin). (5.15)

In the above equation, both αi
t and w

i
t,n are evolving with time, and they are also

interacting with each other. To analyze the evolution of ĝt, assume that there are two

time scales in (5.15), i.e., αi
t is evolving on a fast time scale, and wi

t,n is changing on a slow

time scale. wi
t,n can be viewed as a constant when αi

t is changing. If replicator dynamics
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is used in (5.10), then we have

M∑
i=1

∂αi
t

∂t

N i∑
n=1

wi
t,nδ(y − yin) =

M∑
i=1

αi
t

N i∑
n=1

wi
t,nδ(y − yin)

[
φ(H(y))−

M∑
i=1

αi
t

N i∑
n=1

wi
t,nφ(H(yin))

]
,

which leads to

∂αi
t

∂t
= αi

t

(
Îi −

M∑
j=1

αj
t Îj
)
, ∀i = 1, . . . ,M, (5.16)

where Îj =
∑Nj

n=1w
j
t,nφ(H(yjn)). It is easy to see from (5.16) that if Îi, the performance of

the probability model i, is greater than the average performance
∑M

j=1 α
j
t Îj , more samples

will be generated from the model i. The evolution of the weights {αi
t} can be viewed as an

evolution of the balance between exploration and exploitation when searching for optimal

solutions. The discrete-time version of (5.16) is

αi
k+1 = αi

k

Îi
k∑M

j=1 α
j
kÎ

j
k

. (5.17)

When Brown-von Neumann-Nash Dynamics is used, we have

αi
k+1 =

αi
k +max(0, Îi

k −
∑M

j=1 α
j
kÎ

j
k)

1 +
∑M

l=1max(0, Î l
k −

∑M
j=1 α

j
kÎ

j
k)
. (5.18)

Remark 5.7 By the strong law of large numbers, when N i → ∞, Îi → Eθi [φ(H(Y ))],

where the expectation is taken under the probability measure induced by gθi.

Remark 5.8 The above analysis is done by viewing each y ∈ Y as a strategy, as in Section

5.3. Since samples are generated from a population of models, we can set up an evolution-

ary game from a different perspective. Assume there are {1, . . . ,M} pure strategies in an
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evolutionary game corresponding to the probability density functions {gθi , i = 1, . . . ,M}.

The action of playing a pure strategy i can be viewed as generating samples from gθi; α
i
t is

the percentage of agents that play i at each iteration. Assume that the payoff of playing the

pure strategy i is Îi. By replicator dynamics, the same conclusion that {αi
t, i = 1, . . . ,M}

is governed by (5.16) can be reached.

Remark 5.9 A mean-field equation similar to (5.16) has been obtained in [106], in which

evolutionary game theory is used to study strategies for pursuit. By deriving the mean-field

equation as an orthogonal projection (with respect to the Fisher-Rao-Shahshahani metric)

of a linear vector field in the positive orthant, [106] showed that

αi
t =

αi
0e

Îit∑M
j αj

0e
Îjt

(5.19)

solves (5.16). The model with the highest average payoff dominates all the other models,

which agrees with the intention of generating more samples from promising models.

5.4.2 Updating Population of the Probability Models

From the replicator dynamics (5.16), the weights of more promising models will

increase, resulting in generating more samples from the promising models. Besides doing

exploration on a fast time scale, we also exploit individual models to further improve the

performance of the algorithm on a slow time scale, which can be carried out through

biasing the probability density functions {gθi , i = 1, . . . ,M} towards promising areas by

using previously generated candidate solutions.
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5.4.2.1 Updating of Probabilistic Model

Many model-based methods such as EDAs, CE, and MRAS can be incorporated

into our framework to update the population of probabilistic models. Here we use the

SMEO method (CE can be viewed as a special case of SMEO; see Section 5.3.2.2). Let

gθ be a parameterized family of distributions. Generate Nk
i = ⌊αi

kN⌋ samples {yik,j , j =

1, . . . , N i
k} from gθik

for all i = 1, . . . ,M − 1, and N −
∑M−1

i=1 N i
k samples from gθMk

, and

calculate the performances H(yik,j) at iteration k. Then as in the SMEO algorithm, we

project (5.14) onto an exponential family, and when replicator dynamics is used, the

parameter of gθik
is updated by

θik = argmax
θ∈Θ

N i
k−1∑
j=1

1
N i

k−1
φ(H(yi,jk−1))I{H(yi,jk−1)≥γk−1}∑N i

k−1

m=1
1

N i
k−1

φ(H(yi,mk−1))I{H(yi,mk−1)≥γk−1}

ln gθ(y
i,j
k−1), ∀i = 1, . . . ,M,

(5.20)

where γk−1 is a positive threshold parameter.

The exponential family contains a broad class of distributions, such as the Gaussian

and binomial. A closed form solution of θik in (5.20) can be obtained if the exponential

family is used to update the distributions. For continuous optimization problems, it is

convenient to use multivariate Gaussian distributions with independent components. At

iteration k, assume that the parameterized distribution has the following form:

gθik
(y) =

n∏
d=1

1√
2π(σi,dk )2

exp
(
−

(yd − µi,dk )2

2(σi,dk )2

)
, ∀i = 1, . . . ,M, (5.21)

where n is the problem dimension, yd is the dth element of y, and µi,dk , σi,dk are parameters.

Define the “elite” sets L i
k = {yi,jk : H(yi,jk ) ≥ γ} ∀i = 1, . . . ,M , and solve the
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optimization problem (5.20). We obtain

µ̃i,dk+1 =

∑
y∈L i

k
φ(H(y))yd∑

y∈L i
k
φ(H(y))

,

(σ̃i,dk+1)
2 =

∑
y∈L i

k
φ(H(y))(yd − µi,dk+1)

2∑
y∈L i

k
φ(H(y))

,

for all d = 1, . . . , n and i = 1, . . . ,M . Let Ñ i
k be the total number of elements in L i

k for

i = 1, . . . ,M . When Brown-von Neumann-Nash dynamics is used, similar to the case of

replicator dynamics, we can show that

µ̃i,dk+1 =

∑
y∈L i

k

[
1
Ñ i

k

+max(0, φ(H(y))− 1
Ñ i

k

∑
y∈L i

k
φ(H(y)))

]
yd

1 +
∑

y∈L i
k

[
max(0, φ(H(y))− 1

Ñ i
k

∑
y∈L i

k
φ(H(y)))

] ,

(σ̃i,dk+1)
2 =

∑
y∈L i

k

[
1
Ñ i

k

+max(0, φ(H(y))− 1
Ñ i

k

∑
y∈L i

k
φ(H(y)))

]
(yd − µi,dk+1)

2

1 +
∑

y∈L i
k

[
max(0, φ(H(y))− 1

Ñ i
k

∑
y∈L i

k
φ(H(y)))

] ,

for all d = 1, . . . , n and i = 1, . . . ,M . Let ν be a mixing parameter, and update the

parameters by

µi,dk+1 = (1− ν)µ̃i,dk+1 + νµi,dk ,

(σi,dk+1)
2 = (1− ν)(σ̃i,dk+1)

2 + ν
(
(σi,dk )2 + (µi,dk+1 − µi,dk )2

)
, (5.22)

for all d = 1, . . . , n and i = 1, . . . ,M . The mixing parameter, which is widely applied in

model-based algorithms ([15, 59]), can prevent the premature convergence of the algorithm.

5.4.3 PMEO Algorithm

Our algorithm is a simulation-based optimization algorithm, and hence stochastic

counterparts are used to estimate expectations of random variables. The approximate
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performance Îi
k(γ) is given by

Îi
k(γ) =

1∑N i
k

j=1 I{H(yi,jk )≥γ}

N i
k∑

j=1

φ(H(yi,jk ))I{H(yi,jk )≥γ}, ∀i = 1, . . . ,M. (5.23)

Based on the above analysis, we give the following Population Model-based Evolutionary

Optimization algorithm.

Population Model-based Evolutionary Optimization Algorithm

0. Initialization: Choose N as the number of total samples at each iteration. Specify

the initial weights {αi
0, i = 1, . . . ,M} and the probability density function {gθi0 , i =

1, . . . ,M}. Choose ρ as the quantile parameter. Set k = 0 and γ0 = −∞.

1. Generate N i
k = ⌊αi

kN⌋ samples {yi,jk , j = 1, . . . , N i
k} from gθik

for all i = 1, . . . ,M−1,

and N −
∑M−1

i=1 N i
k samples from gθMk

; compute the performances H(yi,jk ) over all

i, j. Order the performances from smallest to largest, H(1) ≤ . . . ≤ H(N). Let γk

be the (1 − ρ) sample quantile of performances: γk = H(⌈(1−ρ)N⌉). When k > 0, if

γk ≤ γk−1, set γk = γk−1. Generate the “elite” sets L i
k = {yi,jk : H(yi,jk ) ≥ γk} for

all i = 1, . . . ,M . Compute Îi
k by (5.23).

2. Let

αi
k+1 = αi

k

Îi
k∑M

j=1 αj Îj
k

.

Update the parameter θik+1 according to (5.22) for i = 1, . . . ,M .

3. If a stopping rule is met, then stop; otherwise set k = k + 1 and go to step 1.

If Brown-von Neumann-Nash dynamics is used, then (5.18) will be used in Step 2 of the

above algorithm. Maximization problems are considered in the above algorithm, which

can be easily adjusted for solving minimization problems.
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5.4.3.1 Properties of Population Model Updating of PMEO

In this section, we show that the overall fitness of the probabilistic model gk in

PMEO is monotonically increasing.

Theorem 5.4 Let gk(y) =
∑M

i=1 α
i
kgθik

(y) be the probabilistic model used at iteration k in

the PMEO algorithm. For a given γk+1, we have

Egk+1
[φ(H(Y ))I{H(y)≥γk+1}] ≥ Egk [φ(H(Y )))I{H(y)≥γk+1}].

Proof: First we show that the fitness of individual models {gθnk }, i.e., the individual model

updated by SMEO, is increasing. In this part of the proof we use a similar technique as in

the proof of Theorem 2 in [59]. From SMEO, assume that at iteration k + 1, we generate

{yik+1}Ni=1 candidate solutions from gθnk . Define

p̃k+2(y) =

N∑
i+1

1
Nφ(H(yik+1))I{H(yik+1)≥γk+1}

gθn
k+1

gθn
k

(yik+1)∑N
j=1

1
Nφ(H(yjk+1))I{H(yjk+1)≥γk+1}

δ(y − yik+1).

From the SMEO algorithm in Section 5.3.2.2, we have

p̂k+1 =

N∑
i+1

1
Nφ(H(yik+1))I{H(yk+1

i )≥γk+1}∑N
j=1

1
Nφ(H(yjk+1))I{H(yjk+1)≥γk+1}

δ(y − yik+1).
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By equation (5.12), θnk+1 minimizes the K-L divergence DKL

(
p̂k+1∥gθ

)
, and hence we have

0 ≤ DKL

(
p̂k+1∥gθnk

)
−DKL

(
p̂k+1∥gθnk+1

)
≤ DKL

(
p̂k+1∥gθnk

)
−DKL

(
p̂k+1∥gθnk+1

)
+DKL

(
p̂k+1∥p̃k+2

)
= Ep̂k+1

[ln p̂k+1]− Ep̂k+1
[ln gnθk ]− Ep̂k+1

[ln p̂k+1] + Ep̂k+1
[ln gθnk+1

]

+ Ep̂k+1

[ gθnk
gθnk+1

(Y )
]
+ ln

∑N
j=1 φ(H(yjk+1))I{H(yjk+1)≥γk+1}

gθn
k+1

gθn
k

(yjk+1)∑N
i=1 φ(H(yik+1))I{H(yik+1)≥γk+1}

= ln

∑N
j=1 φ(H(yjk+1))I{H(yjk+1)≥γk+1}

gθn
k+1

gθn
k

(yjk+1)∑N
i=1 φ(H(yik+1))I{H(yik+1)≥γk+1}

,

where the second inequality holds since the K-L divergence is always nonnegative. There-

fore we have

N∑
j=1

φ(H(yjk+1))I{H(yjk+1)≥γk+1}

gθnk+1

gθnk
(yjk+1) ≥

N∑
j=1

φ(H(yjk+1))I{H(yjk+1)≥γk+1}
.

We divide both sides of the above equation by N , and take limit on both sides as N → ∞,

and then by the strong law of large numbers,

Eθnk+1
[φ(H(Y ))I{H(y)≥γk+1}] ≥ Eθnk

[φ(H(Y ))I{H(y)≥γk+1}]. (5.24)

Now we prove that the fitness of gk is monotonically increasing. By the definition of αi
k+1,

Egk+1
[φ(H(Y ))I{H(y)≥γk+1}]

=
M∑
i=1

αi
k+1Eθik+1

[φ(H(Y ))I{H(y)≥γk+1}]

=

M∑
i=1

αi
kEθik+1

[φ(H(Y ))I{H(y)≥γk+1}]∑M
j=1Eθjk

[φ(H(Y ))I{H(y)≥γk+1}]
Eθik+1

[φ(H(Y ))I{H(y)≥γk+1}].

163



Therefore we have

Egk+1
[φ(H(Y ))I{H(y)≥γk+1}]− Egk [φ(H(Y ))I{H(y)≥γk+1}]

=

M∑
i=1

αi
k(Eθik+1

[φ(H(Y ))I{H(y)≥γk+1}])
2∑M

j=1Eθjk
[φ(H(Y ))I{H(y)≥γk+1}]

−
M∑
j=1

αj
kEθjk

[φ(H(Y ))I{H(y)≥γk+1}]

≥

∑M
i=1 α

i
k(Eθik

i [φ(H(Y ))I{H(y)≥γk+1}])
2 − (

∑M
i=1 α

i
kEθik

[φ(H(Y ))I{H(y)≥γk+1}])
2∑M

j=1Eθjk
[φ(H(Y ))I{H(y)≥γk+1}]

≥ 0.

The first equality holds by equation (5.24) and the last inequality holds since the variance

of a random variable is always nonnegative. �

Remark 5.10 [106] showed that the right hand side of (5.16) is the gradient of the average

fitness
∑M

j=1 α
j
t Îj with respect to a Fisher-Rao-Shahshahani metric, and thus concluded

that (5.16) is a gradient ascent equation, which gave another interesting explanation that

the average fitness of the probabilistic model in PMEO is monotonically increasing as

stated in Theorem 4.

5.4.3.2 PMEO with Mutation Strategies

In the mixture distribution (5.13), weights of models that have lower than average

performances will approach zero eventually by (5.19). This will reduce the diversity of the

probabilistic models in the mixture that is used to generate candidate solutions. To main-

tain the diversity of the probabilistic models in the population, we propose to introduce

a mutant probabilistic model into the model population. The parameter in the mutant

probabilistic model is given by

θ̃ = θi⋆ +∆θ,
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where i⋆ = {i : Ii ≥ Ij ,∀j = 1, . . . ,M}, and ∆θ is a small random perturbation. For the

probabilistic model (5.21), we could let ∆µ = −λ + 1
2λU , where λ is a constant and U

is an n dimensional random variable with each component uniformly distributed on [0, 1],

and ∆σ2d = υ, d = 1, . . . , n, where υ is a positive constant.

Population Model-based Evolutionary Optimization Algorithm with Mu-

tation

0. Initialization: Specify N as the number of total samples at each iteration. Spec-

ify the weights {αi
0, i = 1, . . . ,M} and the probability density functions {gθi0 , i =

1, . . . ,M}. Let ρ be the quantile parameter. Set k = 0 and γ0 = −∞. Specify a

threshold weight α̃ and a λ for a mutant strategy. Specify a positive integer Nd,

and let count = 0.

1. Let i⋆ = {i : αi
k ≤ αj

k, j = 1, . . . ,M} and i⋆ = {i : αi
k ≥ αj

k, j = 1, . . . ,M}.

– If αi⋆
k < α̃, let θi⋆k = θi

⋆

k +∆θ.

– If count = Nd, let θ
i⋆
k = θi

⋆

k +∆θ and count = 0.

– Generate N i
k = ⌊αi

kN⌋ samples {yi,jk , j = 1, . . . , N i
k} from gθik

for all i =

1, . . . ,M−1, and N−
∑M−1

i=1 N i
k samples from gθMk

; compute the performances

H(yi,jk ). Order the performances from smallest to largest, H(1) ≤ . . . ≤ H(N).

Let γk be the (1 − ρ) sample quantile of performances: γk = H(⌈(1−ρ)N⌉).

When k > 0, if γk ≤ γk−1 + ϵ, set γk = γk−1 and count = count+1; otherwise

set count = 0. Define the “elite” sets L i
k = {yi,jk : H(yi,jk ) ≥ γk} for all

i = 1, . . . ,M . Compute Îi
k by (5.23).
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2. Let

αk+1
i = αk

i

Îi
k∑M

j=1 αj Îj
k

.

Update the parameter θik+1 according to (5.22) for i = 1, . . . ,M .

3. If a stopping rule is met, then stop; otherwise set k = k + 1 and go to step 1.

In the above algorithm, i⋆ is the index of the model with the worst performance,

and i⋆ is the index of the model with the best performance. count is used to count the

number of iterations in which the improvement of the threshold γk is less than a positive

constant ϵ. When the weight of the i⋆ model is less than the threshold α̃, this model

will be discarded and a mutation model based on the model with the best performance

will be introduced. If the improvement of γk is less than ϵ in Nd consecutive iterations, a

mutation strategy will also be introduced.

5.5 Numerical Examples

In this section, we illustrate the performance of the PMEO algorithm on various

benchmark problems that are well known in global optimization and compare its perfor-

mance with the CE method.

Since minimization problems are considered, whereas PMEO was in the form of

solving maximization problems, the following modifications are made. When computing

the 1−ρ quantile γk, we first order the performance function from largest to smallest, and

then take the ⌈(1−ρ)N⌉ statistics. In the PMEO with mutation algorithm, φ(·) is a strictly

increasing function, which is used to update weights of different models. Minimization

problems require a strictly decreasing function, which we take as φ(x) = r/x, where

r = αγk at iteration k and α is a positive constant.
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We test two instantiations of PMEO, one with replicator dynamics denoted by

PMEO-RP and the other with Brown-von Neumann-Nash dynamics denoted by PMEO-

BNND. We test our algorithms on the following benchmark problems, which have been

previously studied by [84], [97], and [59].

H1. Dejong’s 5th function (n = 2).

H1(y) =
[
0.002 +

25∑
j=1

1

j +
∑2

i=1(yi − aj,i)6

]
,

where aj,1 = {−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,−32,−16, 0, 16,

32,−32,−16, 0, 16, 32}; aj,1 = {−32,−32,−32,−32,−32,−16,−16,−16,−16,−16, 0, 0,

0, 0, 0, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32, }; the global optimal solution is y∗ = (−32,−32)T ,

H1(y
∗) ≈ 0.998.

H2. Rosenbrock function (n = 20).

H2(y) =
n−1∑
i=1

100(yi+1 − y2i )
2 + (yi − 1)2,

where the global optimal solution is y∗ = (1, . . . , 1)T ,H2(y
∗) = 0.

H3. Powell singular function (n = 20).

H3(y) =
n−2∑
i=1

[
(yi−1 + 10yi)

2 + 5(yi+1 − yi+2)
2 + (yi − 2yi+1)

4 + 10(yi−1 − yi+2)
4
]
,

where the global optimal solution is y∗ = (0, . . . , 0)T ,H3(y
∗) = 0.
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H4. Trigonometric function (n = 20).

H4(y) = 1 +
n∑

i=1

8 sin2(7(yi − 0.9)2) + 6 sin2(14(yi − 0.9)2) + (yi − 0.9)2,

where the global optimal solution is y∗ = (0.9, . . . , 0.9)T ,H4(y
∗) = 1.

H5. Griewank function (n = 20).

H5(y) = 1 +

n∑
i=1

8 sin2(7(yi − 0.9)2) + 6 sin2(14(yi − 0.9)2) + (yi − 0.9)2,

where the global optimal solution is y∗ = (0, . . . , 0)T ,H5(y
∗) = 0.

H6. Pintér’s function (n = 20).

H6(y) =

n∑
i=1

iy2i +

n∑
i=1

20i sin2(yi−1 sin yi − yi + sin yi+1)+

n∑
i=1

i log10(1 + i(y2i−1 − 2yi + 3yi+1 − cos yi + 1)2),

where the global optimal solution is y∗ = (0, . . . , 0)T ,H2(y
∗) = 0.

Function H1 is low dimensional with only a few local minima, which are separated by

plateaus and are relatively far apart. H2 andH3 are 20-dimensional badly scaled functions.

H4 is highly multimodal. Function H5 is highly multimodal, and H6 is both badly scaled

and highly multimodal.

In PMEO-RP and PMEO-BNND, for the six test problems, the same set of param-

eters is used. Let ρ = 0.03, ν = 0.8, ϵ = 0.02, Nd = 4, and α̃ = 0.1. Let α = 2, and use

M = 3 different models in the mixture distribution. For the exponential family, multivari-

ate normal distributions with independent components are used. Each component of the
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mean vector of the four models is uniformly selected from [−30, 20], [−20, 30], [−50, 50],

and the covariance matrix is a diagonal matrix with each diagonal element equal to 500.

N = 1400 samples are generated at each iteration. By sampling from different intervals to

obtain the mean vector for different models, a certain level of exploration is gained. How-

ever at the same time, since a fixed number of samples are generated at each iteration,

fewer samples are generated from each model when a group of models are used, which

reduces exploitation of each model. The balance between exploration and exploitation is

adjusted by the weight updating in the algorithm. To introduce the mutation strategy, we

let ∆θ = (−1
2 max(θki∗)+max(θki∗)U)×10/k, where U is an n-dimensional standard normal

random variable. Since better candidate solutions are more likely to be found around the

best model, we use max(θki∗) to define the range of our random perturbation.

For the CE method, a multivariate normal distribution with independent compo-

nents is used as the probability model. Specify the quantile parameter ρ = 0.03, and the

smoothing parameter ν = 0.7. Each element of the initial mean vector of the probability

density function is uniformly selected from [−50, 50], and the covariance matrix is a diag-

onal matrix with each diagonal element equal to 500. N = 1400 samples are generated

at each iteration. To prevent the variance matrix from converging quickly to zero, which

makes the algorithm get trapped in regions with low quality solutions, we also tried the

CE method with some other smoothing parameters, and the numerical results are reported

for CE with ν = 0.2, which seemed to give the best overall performance, and for CE with

ν = 0.7

20 independent replications of PMEO-RP, PMEO-BNND, CE with ν = 0.7, and

CE with ν = 0.2 are performed for each problem, and the numerical results are reported

in Figure 5.1(a) to Figure 5.3(b), which show the average of the current best solutions
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Figure 5.1: Dejong H1 and Rosenbrock H2

given all the samples generated. Our comparison is based on the same computational

effort. Since evaluating the performance function accounts for most of the computational

time for each algorithm, the total sample size is used to evaluate the computational effort.

Figure 5.1(a) to Figure 5.3(b) show the comparison between the CE method, PMEO-RP,

and PMEO-BNND. A dotted line represents CE with ν = 0.2, a dash doted line represents

CE with ν = 0.7, a dashed line represents PMEO-RP, and a solid line represents the

PMEO-BNND.

Function H1 has only a few local minima, but the local minima are surrounded by

plateaus. From Figure 5.1(a), we can see that CE with ν = 0.7 and CE with µ = 0.2

converge quickly to local minimal points, and fail to escape out of them. Both PMEO-RP

and PMEO-BNND clearly outperform CE with both ν = 0.7 and ν = 0.2. Because of the

multimodal property of PMEO, PMEO-RP and PMEO-BNND can quickly find a better

solution and converge to the global optimal solution.

For the badly scaled functions H2 and H3, both PMEO-RP and PMEO-BNND
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Figure 5.2: Powell Singular H3 and Trigonometric H4

perform better than CE with ν = 0.7 and CE with ν = 0.2. CE with ν = 0.7 converges

quickly to a local minimum, and never gets out of it. CE with µ = 0.2 converges to

slightly better solutions, although it converges slowly. PMEO-BNND quickly locates a

local optimal solution, and has been able to get out it. PMEO-RP has better performance

than PMEO-BNND, and particularly, in Figure 5.3(a), it can consistently get out of local

minima and finds better solutions.

PMEO-RP, PMEO-BNND, and CE with ν = 0.7 all work very well for H4 and

H5, which have many local minima, and the all three algorithms converge quickly to the

optimal solution. CE with ν = 0.2 converges much slower than the other three algorithms

since it spends more time doing exploration. For the badly scaled and highly multimodal

function H6, PMEO-RP and PMEO-BNDD are superior to both CE with ν = 0.7 and

CE with ν = 0.2. In the first 70000 samples, PMEO-RP, PMEO-BNND, and CE with

ν = 0.7 have similar performances. Then CE with ν = 0.7 gets trapped around low

quality solutions. On the other hand, PMEO-RP and PMEO-BNND successfully escape

low quality local solutions, and find better solutions.
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Figure 5.3: Griewank H5 and Pintér H6

In summary, we can see that PMEO-RP and PMEO-BNND are able to find better

solutions than CE with different smoothing parameters. PMEO-RP and PMEO-BNND

are inherently based on multimodal probability models and have a better mechanism to

escape the trap of local optimal solutions.

5.6 Conclusions

We have developed a new framework for solving global optimization problems by

formulating the global optimization problem as an evolutionary game. By using Lya-

punov theory, we showed that a particular equilibrium set of the replicator dynamics in

the evolutionary game has a strong connection with the global optimal solutions, and

this equilibrium set is asymptotically stable under mild conditions. Based on this con-

nection, we proposed a model-based evolutionary optimization (MEO) algorithm, which

includes the extended CE algorithm as an instantiation. We also proposed a population

model-based evolutionary optimization algorithm, which better captures the multimodal
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property of global optimization problems. Motivated by the ideas of mutation strategies in

evolutionary games, we introduced mutation strategies by adding random perturbations

to the best model. This enables the PMEO algorithm to escape local optimal solutions

effectively.

Preliminary numerical tests for PMEO with mutation were reported on some widely

used benchmark examples. Although simulation results show that PMEO with mutation

might be able provide high quality solutions, there are still challenges when implementing

the PMEO algorithm. Most of the parameters in PMEO are determined by trial and error,

although in our preliminary numerical tests, we found a set of parameters that work well

for all the test functions. How to effectively select parameters is an interesting topic for

future research.

As a general framework for global optimization, PMEO holds the promise to be ex-

tended to solve other optimization problems, such as optimization problems with stochastic

objective functions, and Markov decision processes with a large policy space.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This dissertation has proposed and developed new simulation-based optimization

methods for solving stochastic control problems with parameterized policies and global

optimization problems, and has also proposed a new stochastic gradient estimator for per-

formance functions containing discontinuities that can be used for simulation optimization

as well as sensitivity analysis. After a brief overview of simulation optimization and evo-

lutionary game theory in Chapter 2, we presented three main results in Chapters 3, 4, and

5, which compose the main body of this dissertation.

In Chapter 3, we considered a dynamic pricing and inventory control problem arising

in revenue management, in which the demand follows a continuous-time, continuous-state

stochastic process instead of the commonly used discrete-time stochastic process. We de-

veloped a simulation-based algorithm for solving a class of stochastic control problems

with parameterized policies, motivated by the fact that the combined dynamic pricing

and inventory control problem generally does not have analytical solutions and numerical

methods such as Markov Chain approximations and finite differences cannot be applied

directly to solve the problem. When a continuous pricing policy is allowed, we modeled

the dynamic pricing problem as a stochastic control problem and gave a theoretical so-

lution for a special case. When only a finite number of price changes is allowed in the

pricing policy, we proposed a simulation-based method for solving the pricing problem
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for a broad range of demand models. We gave a new simulation scheme to simulate the

evolution of the inventory level. Based on the generated sample paths, we derived gradient

estimators for the expected discretized profit function with respect to various parameters.

When we derived the gradient estimators for the expected discretized profit function, we

circumvented the difficulty of differentiating a performance function with discontinuous

sample paths by using smoothed perturbation analysis. We showed the unbiasedness

of the resulting estimators. We also showed the convergence of the SA algorithm with

the proposed gradient estimators. Simulation examples demonstrated that the proposed

algorithm works well.

In Chapter 4, we considered a derivative estimation problem that contains discon-

tinuous payoff functions, motivated by the fact that existing derivative estimation tech-

niques are either not valid or not efficient. Inspired by IPA and LR, we derived a new

computationally efficient derivative estimation technique called the Support independent

unified Likelihood Ratio and Infinitesimal Perturbation Analysis (SLRPA), which applies

an appropriate change of variables to circumvent the difficulty of differentiating indicator

functions and gives an unbiased derivative estimator. One critical feature of SLRIPA is

that it needs no additional simulations, i.e., sensitivities with respect to various parameters

can be obtained by a single run of simulation. We applied SLRIPA to sensitivity analysis

for European options and barrier options, and to American option pricing. Simulation

results demonstrate the effectiveness of this new derivative estimation technique.

In Chapter 5, we developed a new framework for solving global optimization prob-

lems by formulating the global optimization problem as an evolutionary game. By using

Lyapunov theory, we showed that a particular equilibrium set of the replicator dynamics

in the evolutionary game has a strong connection with the global optimal solutions, and
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this equilibrium set is asymptotically stable under mild conditions. Based on this con-

nection, we proposed a model-based evolutionary optimization (MEO) algorithm, which

includes the extended CE algorithm as an instantiation. We also proposed a population

model-based evolutionary optimization algorithm, which better captures the multimodal

property of global optimization problems. Motivated by the ideas of mutation strategies in

evolutionary games, we introduced mutation strategies by adding random perturbations

to the best model. This enables the PMEO algorithm to escape local optimal solutions

effectively. Preliminary numerical tests for PMEO with mutation were reported on some

widely used benchmark examples. The way we formulate global optimization problems as

evolutionary games provides a new insight into the mechanism for generating new candi-

date solutions and the mechanism of model updating for model-based global optimization

algorithms. For example, one special case of the MEO algorithm gives a new explana-

tion for the CE method. This evolutionary game setting for global optimization problems

makes it possible to study the convergence property of model-based algorithms by using

analytical tools in the evolutionary game theory literature.

6.2 Future Work

Our research has initiated some new and promising ideas in the field of simulation

optimization. There is still room to further refine the proposed methods and to explore

new applications. I plan to continue my research along the following lines.

In Chapter 3, we introduced a new simulation-based algorithm to solve the joint

inventory control and dynamic pricing problem in revenue management, which is a special

case of the stochastic control and impulse control problems. In a general stochastic im-

pulse control problem, times when impulse actions are applied are stopping times and the
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magnitude of the impulse action is also a random variable. The optimal policies of many

stochastic impulse control problems have a threshold structure, i.e., the impulse action

is applied when the state of the system enters a certain region. If we can parameterized

the optimal policy, it will be possible to apply the technique developed in Chapter 3 to

solve these stochastic impulse control problems. Hence, the algorithms in Chapter 3 can

be extended to solve more general stochastic control and impulse control problems that

have parameterized policies.

The stochastic control problem formulated in Chapter 3, does not have jumps in

the underlying dynamics. Stochastic control and impulse control problems with jump dif-

fusion processes arise in many applications, such as finance and management (inventory

control). The jump term in the underlying models poses challenges to simulation-based

methodologies because of the discontinuity of the sample path. Extending the algorithm in

Chapter 3 to problems with jump diffusion models is not straightforward and requires fur-

ther investigation. How to develop an efficient simulation scheme and gradient estimation

technique for these jump-diffusion models will be one of our future research directions.

For the global optimization algorithm MEO, there are several interesting directions

for future research. Studying the global optimization problem from an evolutionary game

perspective introduces dynamics such as replicator dynamics to study the evolution of the

probabilistic models, which also motivates us to consider proving the convergence rate of

model-based optimization algorithms by examining the properties of replicator dynamics

and using analytical tools in the literature of evolutionary game theory. In one of the

instantiations of the MEO algorithm given in Chapter 5, a sum of Dirac functions is used

to approximate the probability density function, and it serves as the probabilistic model

that is used to generate samples in the algorithm. This model provides a very coarse rep-
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resentation of the probability density model, and other methods such as kernel estimation

might provide better representations of the probabilistic model. How to construct effective

and efficient probabilistic models for MEO is a promising direction to pursue. Another

interesting research direction is to extend the MEO algorithm to solve Markov decision

processes (MDP), which can be done by modeling MDPs as optimization problems over

policy spaces.
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