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The primary objective of an automated visual surveillance system is to observe

and understand human behavior and report unusual or potentially dangerous ac-

tivities/events in a timely manner. Automatically understanding human behavior

from visual input, however, is a challenging task. The research presented in this

thesis focuses on designing a reasoning framework that can combine, in a principled

manner, high level contextual information with low level image processing primitives

to interpret visual information. The primary motivation for this work has been to

design a reasoning framework that draws heavily upon human like reasoning and

reasons explicitly about visual as well as non-visual information to solve classifi-

cation problems. Humans are adept at performing inference under uncertainty by

combining evidence from multiple, noisy and often contradictory sources. This the-

sis describes a logical reasoning approach in which logical rules encode high level

knowledge about the world and logical facts serve as input to the system from real

world observations. The reasoning framework supports encoding of multiple rules



for the same proposition, representing multiple lines of reasoning and also supports

encoding of rules that infer explicit negation and thereby potentially contradictory

information. Uncertainties are associated with both the logical rules that guide rea-

soning as well as with the input facts. This framework has been applied to visual

surveillance problems such as human activity recognition, identity maintenance, and

human detection. Finally, we have also applied it to the problem of collaborative

filtering to predict movie ratings by explicitly reasoning about users preferences.
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Chapter 1

Introduction

The primary objective of an automated visual surveillance system is to ensure

safety and security of the environment within which it is deployed by observing and

understanding human behavior and reporting unusual or potentially dangerous ac-

tivities or events in a timely manner. Automatically understanding human behavior

from visual input, however, is a challenging task. Successfully accomplishing this

task requires the system to (a) take visual input from possibly multiple cameras, (b)

identify objects of interest (c) classify these objects into known types (d) track the

objects while they are within the field of regard of the cameras, (e) log the occur-

rence of basic events such as object interactions, and finally (f) employ these basic

events to reason about occurrence of various activities of interest, possibly spanning

large intervals of time.

This task, however, is made challenging by the ubiquitous presence of un-

certainty within all components of this pipeline. Detecting objects and classifying

them into various classes depends heavily on the initial segmentation given to us

by methods such as background subtraction. Object occlusions and multiple object

interactions not only further complicate these tasks but also adversely affect the

system’s capacity to track and detect the occurrence of basic events. Finally, recog-

nition of human behavior based on the occurrence of these basic events can fail in
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the face of exceptions to the definition of that behavior. Since these uncertainties

are inherent in the problem we are trying to solve, they cannot be trivially elim-

inated. Therefore, the system must employ some mechanism that will allow it to

deal not only with uncertainty in the definition of these activities/events, but also

uncertainties associated with the occurrence of each of the basic events. The system

therefore needs to have the capacity to reason in the presence of uncertainties. It is

also important to note that such a system should respect the real-time demands of

a surveillance system, reporting events of interest as and when they occur.

1.1 Overview

We model the automatic visual surveillance system as a passive, rational agent

capable of defeasible reasoning under uncertainty. This agent perceives the occur-

rence of various events in the video, represents these events as logical formulae,

incorporates these formulae in its knowledge base and finally infers their conse-

quences. Among others, these consequences typically include activities of interest

like safety violations or security breaches that have been encoded within the agent

by the system programmer. Two important modules of this artificial agent are the

perception module and the reasoning module.

Any agent functioning in a real world must be capable of gathering new in-

formation by sensing its environment. The agent’s perception module takes visual

input from one or more cameras, generates events of interest from it, represents them

appropriately and incorporates them in its knowledge base. The perception module

2



employs a suite of computer vision algorithms, ranging from background subtrac-

tion [55] and tracking to appearance based human identification, to achieve this.

Unfortunately, the process of perception is seldom exact and it induces a number of

uncertainties in the system that the reasoning module needs to overcome.

The reasoning module permits the agent to arrive at logically valid conclusions

given input from the perception module. The agent maintains facts and rules in its

knowledge base. Rules are typically encoded by the system programmer and facts

are assimilated from the perception module. Since information gathered about its

environment is uncertain, it is imperative that the agent be equipped with robust

mechanisms to not only reason with potentially erroneous information, but also to

recover from mistakes it might commit.

The primary motivation for our research has been to design a high level rea-

soning framework that draws heavily upon human like reasoning and reasons explic-

itly about visual as well as non-visual information to solve classification problems.

Humans are very adept at performing inference under uncertainty by combining

evidence from multiple, noisy and sometimes contradictory sources. We use a logi-

cal reasoning approach in which logical rules encode high level knowledge about the

world and logical facts serve as the input to the system from real world observations.

The reasoning framework encodes multiple rules for the same proposition represent-

ing different lines of reasoning and also supports encoding of rules that infer explicit

negation and thereby potentially contradictory information.

Figure 1.1 shows the overall reasoning framework for a visual surveillance

application. The low level module takes video/image input and performs initial

3



Figure 1.1: Overview of system architecture for logical reasoning based activity

recognition for automated visual surveillance.
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Figure 1.2: Uncertainties assigned to logical rules and facts are taken from

a set structured as a Bilattice (a) Bilattice for prioritized default logic

(b) Bilattice for continuous valued logic where every element is of the

form:〈evidence for, evidence against〉.

processing on it such as background subtraction, tracking, object detection etc.

This information is then passed on to the mid level module where atomic patterns

of interest are recognized and syntactically structured as logical facts. This module

can also take as input pre-specified annotations of the observed scene (such as the

”bulletin-board” and ”main door” in Figure 1.1) to assert a semantically richer set

of logical facts. These logical facts are then inserted into the knowledge base of the

high level reasoning module. This module uses these facts in conjunction with rules

encoded in the logic programming language to arrive at valid inferences.
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Uncertainties are associated with both the logical rules that guide reasoning

(encoding degree of confidence of the rule) as well as the input facts (encoding

confidence of observation). These uncertainty values are taken from a set structured

as a bilattice. Bilattices are algebraic structures introduced by Ginsberg [6] as

a uniform framework within which a number of diverse applications in artificial

intelligence can be modeled. These uncertainty measures are ordered along two

axes, one along the source’s degree of information and the other along the agent’s

degree of belief. This structure provides a uniform framework which not only permits

encoding multiple rules for the same proposition, but also allows inference in the

presence of contradictory information from different sources. Figure 1.2(a) shows an

example of a discrete valued bilattice where uncertainties associated with the logical

rules and facts range from the usual t, and f to ⊥, >, dti, and dfi (i=1 to n) denoting

different degrees of uncertainty. The semantics of the reasoning in this case follow

that of prioritized default logics. Figure 1.2(b) shows a continuous valued bilattice

where every element is of the form evidence for, evidence against and is suitable

for applications where reasoning in the continuous uncertainty domain is required.

The central vertical line represents the line of indifference. If the final uncertainty

value computed for a hypothesis lies on this line, it indicates that the agent is

indifferent about whether to completely accept or completely reject the hypothesis,

either because it has no information or because its sources contradict each other.

The intuition behind using a bilattice representation is that every piece of

knowledge, be it a rule or an observation from the real world, provides a different

degree of information. An agent that has to reason about the state of the world
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based on this input will have to translate between the source’s degree of information

and its own degree of belief. Ideally, the more information a source provides, the

more strongly an agent is likely to believe it (i.e. closer to the extremities of the

degree-of-belief axis), the only exception to this rule being the case of contradictory

information. When two sources contradict each other, it will cause the agent’s degree

of belief to decrease despite the increase in information content. Such a logic based

reasoning approach also generates proofs or justifications for each classification it

makes. These justifications (or lack thereof) are further employed by the system to

explain and validate, or reject potential decisions. These proofs are also available to

the end user as an explanation of why the system has made a particular classification.

This framework also allows for top-down control feedback, driven by the high level

reasoning.

1.2 Applications

We have applied the framework described above to a number of applications

including human activity recognition, identity maintenance and human detection

within the domain of visual surveillance. For activity recognition, we employed the

reasoning framework to detect various activities of interest in surveillance video, such

as thefts, leaving packages behind, unauthorized entries into secure buildings, etc.

We also maintained the identities of all humans performing these activities, across

short visibility gaps, such as those caused by occlusions, to much longer visibility

gaps, resulting from humans, entirely leaving the field of view and later returning.
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Figure 1.3: Example of human detection using the bilattice based logical reasoning

approach.
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Identity was maintained in both cases by augmenting various contextual cues in the

environment to low level image processing primitives and explicitly reasoning about

identity. For the human detection application, the low level module detected vari-

ous body parts such as heads, torsos and legs using a boosted cascade of gradient

histogram based detectors, while the high level reasoning module imposed contex-

tual, scene geometry and human body constraints and also explicitly reasoned about

inter-human occlusions. The results obtained by applying this framework to images

taken from well known datasets compare favorably with the best previously reported

in the literature. Figure 1.3 shows the results of human detection on a single frame

from one such dataset.

We also applied this framework to the problem of preference modelling and

specifically worked on predicting movie ratings for a given user based on his/her

historical preferences as well as preferences of other users. The bilattice based log-

ical reasoning framework was able to naturally model this problem and performed

favorably compared with state of the art approaches in the field of preference mod-

elling and ranking. We have also attempted to compare theoretically, the bilattice

based reasoning approach to traditional Bayesian reasoning approaches to obtain a

better understanding of its strengths and weaknesses.

1.3 Organization of thesis

The thesis is organized as follows: Chapter 2 covers some background ma-

terial needed for various aspects of this thesis including preliminaries of logic pro-
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gramming, historical development of the theory behind reasoning, previous work on

activity recognition, identity maintenance, tracking, occlusion handling, human de-

tection and preference modelling. Chapter 3 describes the application of the logical

reasoning framework for activity recognition and lists the different activities that

the framework was successfully able to recognize. Chapter 4 motivates the problem

of identity maintenance in the context of activity recognition and describes how

default logic can be used to address this problem. It then goes on to describe how

bilattice based multivalued logics can be used to explicitly reason about identities

as well as the activities performed by humans. Chapter 5 raises the issue of han-

dling certain situations in visual surveillance where a strict bottom-up approach to

computing is insufficient. It makes the case for the need to have top-down feedback

built into a surveillance system and demonstrates how the bilattice based multival-

ued logic framework can be used to model this top-down feedback in addition to the

bottom-up information flow. Chapter 6 addresses one of the fundamental problems

in surveillance, that of actually detecting humans in the scene under difficult con-

ditions such as partial occlusions. We describe how we employ a continuous version

of the bilattice to do this and also report results and experimentally compare our

approach with a state-of-the-art human detection approach. Chapter 7 describes the

application of the reasoning framework to the problem of collaborative filtering to

predict movie ratings. We describe the methodology and also experimentally com-

pare our results with those of other state-of-the-art preference modelling and ranking

approaches. Finally, in chapter 8 we theoretically compare the bilattice based log-

ical reasoning approach with statistical approaches such as Bayesian networks and

10



approximations to full Bayesian inference such as Naive Bayes and Noisy-OR. We

conclude in chapter 8.
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Chapter 2

Background

In this chapter we will provide background and survey some related work in the

areas of reasoning, logic programming, identity maintenance and tracking, activity

recognition, human detection, and preference modelling and ranking.

2.1 Reasoning

Systems that take in new information and revise their belief set to maintain

consistency are called belief revision systems. These systems are logical frameworks

for modelling the dynamics of knowledge. A lot of work, spanning several decades,

has been done on belief revision [2, 76, 68, 18, 19] especially in building common

sense reasoning systems.

The theoretical framework within which different models of belief revision are

embedded is called an epistemological theory. The main task of such a theory is to

provide a conceptual apparatus to deal with the problems of knowledge maintenance

and change. There are several epistemic factors that constitute the core of an

epistemological theory [36]. The most important of them is the states of belief or

epistemic states. This corresponds to the set of beliefs that the agent maintains at

a certain point of time. Belief change can be interpreted as moving from one state

to another. The second factor is a classification of the agent’s epistemic attitudes.
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This corresponds to the status of various beliefs the agent harbors. For example an

agent might accept or reject a certain fact as true or assign some degree of possibility

to it. The third factor is an account of the epistemic inputs. These are facts that

are added to the belief set which might result in belief changes. The final factor is

a classification of epistemic changes. Different facts when added to the epistemic

state might trigger different kinds of epistemic changes.

2.1.1 Theory of Belief Revision

The most popular theory of belief revision so far has been the AGM theory [2,

36] proposed by Carlos Alchourrón, Peter Gärdenfors, and David Makinson. The

AGM theory defines three different kinds of belief changes: expansion, contraction

and revision. Given some proposition a and a belief set K, let us assume an agent’s

epistemic state to be either

• State 1: if it accepts a (i.e. a ∈ K)

• State 2: if it rejects a (i.e. ¬a ∈ K) or

• State 3: if it is indeterminate (i.e a /∈ K and ¬a /∈ K)

Expansion of K by a, K+
a , then becomes the operation of going from State

3 to either State 1 or State 2. Contraction, K−
a is going from either State 1 or

State 2 to State 3. Revision, K∗
a is going from State 1 to State 2 or vice versa .

The AGM theory defines a number of axioms for each of these epistemic changes.

Expansion, contraction and revision can be defined as a modification to K such

that: K+
a = Cn(K ∪ {a}), K−

a 0 a and K∗
a = (K−

¬a)
+
a (Levi’s identity) respectively.
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When a belief that is logically consistent with the original belief set is added,

the agent believes in the logical closure of the original set plus the new belief. On

the other hand, addition of a belief that is inconsistent with the existing set, causes

the agent to retreat to the most entrenched of the maximal subsets, of the existing

set, that are consistent with the new belief, adding the new proposition to that set

and closing under logical consequence. In other words, weakly held beliefs are more

vulnerable to change in face of a contradiction than strongly held ones.

2.1.1.1 Problems

Although the AGM theory is very popular, it has some drawbacks. In [37],

Hansson points out that even though the AGM model of belief change is simple and

elegant, it fails to capture several features of real world belief systems because of this

simplification. The only way to make it more realistic, according to [37] is to subject

it to various amendments and extensions, rendering the theory less mathematically

elegant.

One of the most controversial properties [82, 19] of the revision operators

is the axiom of success. Success specifies that new information has primacy over

existing beliefs of the agent. This property does not seem plausible in many real

world applications because in many cases it is not reasonable to give priority to

information just because it is new. Another property of the theory which has drawn

criticism is that it allows for beliefs to persist long after their justifying beliefs have

disappeared.
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It must be noted that the AGM model assumes the revision operators to func-

tion over deductively closed belief spaces i.e. the belief set is assumed to be closed

under consequence, K = Cn(K). It has been noted that this is computationally

intractable to support in a real world system [52].

Finally, the most significant limitation of this theory is that it has no rep-

resentation in the object-language for conditionals. In fact, Gärdenfors himself

proved [29] that it is not possible to include any conditional satisfying the Ramsey’s

test (a → b ⇐⇒ b ∈ K∗
a) without trivializing the revision operator.

2.1.2 Defeasible Reasoning

In first order logic, a conditional of the form ∀Xbird(X) → fly(X) can be

interpreted to mean: if there exists any entity with the property of being a bird,

then it has to have the property of being able to fly. There is no way of saying, for

example,

∀Xbird(X) → fly(X)

∀Xpenguin(X) → ¬fly(X)

bird(tweety)

penguin(tweety) (2.1)

without entailing a contradiction. However, commonsense tells us that as humans,

we can accept the rule “birds fly” and “tweety is a bird that cannot fly” without

contradicting ourselves.

Reasoning is defeasible when the corresponding argument is rationally com-
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pelling but not deductively valid [57]. Defeasible conditionals are those in which if

the antecedent is true then “normally” the consequent is true. Thus the sentence

α ½ β can be interpreted as “if α holds then β normally holds”. Thus using de-

feasible reasoning it is possible to say bird(X) ½ fly(X) meaning “birds normally

fly”, but there could exist exceptions. Any argument that causes this conditional

to fail is called a defeater for that rule. In this case “penguin is a bird that cannot

fly” is a defeater for “birds fly”.

2.1.2.1 Belief Revision based on Defeasible Reasoning

Rott [76] and Pollock [71] have pointed out that a possible solution of avoiding

triviality on inclusion of defeasible conditionals within the AGM framework, is to

desist from interpreting the belief set as a closed, single set of beliefs. They argue

that, one must make a sharp distinction between foundational or explicit beliefs,

denoted by Ke and derived or inferred beliefs, denoted by Ki(= K −Ke).

Belief change can then be modelled on the assumption that new beliefs are

added to Ke (which is logically consistent with the existing set of those beliefs).

Beliefs added can be inconsistent with previously inferred beliefs belonging to Ki.

The new belief set K ′, consists simply of the closure of the new explicit set, K ′
e,

under the relation of defeasible consequence, K ′ = dCn(K ′
e).

Note that the operator for closure under defeasible consequence, dCn is non-

monotonic, meaning that it does not necessarily obey A ⊂ B ⇒ dCn(A) ⊂ dCn(B).

Also note, in this case defeasible rules are explicitly represented among the agent’s
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beliefs and dCn(Ke) stays contradiction free because these defeasible rules are pro-

visioned to handle exceptions. This view is further bolstered by Gärdenfors and

Makinson [26] who argue that belief revision and nonmonotonic reasoning are “two

sides of the same coin”. It is interesting to note that we are no longer required to

have a deductively closed belief set.

2.2 Logic Programming

It is now time to move from a mathematical setup to a more practical pro-

gramming framework. A logic programming language, like its first order counter-

part, consists of constant symbols (i,e. the “individuals” in the world), function

symbols (mapping of individuals to individuals) and predicate symbols (mapping

from individuals to truth values). Atoms are of the form p(t1, · · · , tn), where the t’s

are terms and p is a predicate symbol of arity n.

2.2.1 Normal Logic Programs

Definition 1 (Normal Logic Programs N ). A normal logic program1 is a finite set

of rules of the form A0 ← A1, · · ·Am, not Am+1, · · · , not An, where each Ai is an

atom and ‘not′ is a logical connective called negation as failure.

The left hand side of the rule is called the head and the right hand side is

referred to as the body. If the body of the rule is an empty set, the rule is denoted

by A ← or simply A and is referred to as a fact. Note that logic programs make

1Normal logic programs that do not have not are called definite logic programs
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the closed world assumption, meaning that they assume that the knowledge base

contains everything that is required to be known and failure to find an atom means

it is false. Also note that not is not allowed to occur in the head of a rule.

It is interesting to observe that negation by failure bestows upon logic pro-

grams a defeasible nature. For instance we can implement the example from sub-

section 2.1.2 in the following manner

fly(X) ← bird(X), not(abnormal(X)).

abnormal(X) ← penguin(X).

bird(tweety).

bird(alfred).

penguin(tweety). (2.2)

and conclude fly(alfred) and not(fly(tweety)). Note, we would conclude

fly(tweety) in the absence of penguin(tweety) so the addition of extra information

about tweety has caused us to retract our belief that tweety can fly. In this case,

abnormal(tweety) is a defeater for fly(tweety). It is also interesting to note that

since not is not allowed in the head of the rule, we will never encounter a situation

where some a and not(a) are simultaneously true. In other words, normal logic

programs are by design contradiction free.

2.2.2 Extended Logic Programs

Definition 2 (Extended Logic Programs E). Normal programs that have been ex-

tended with the classical (explicit) negation operator, denoted by ¬, in addition to
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the (implicit) negation by failure are called extended logic programs.

The classical negation is needed when it is not possible to sensibly make the

closed world assumption. In such cases, absence of information might indicate ig-

norance which could be resolved at a later time. One also needs classical negation

if one wishes to explicitly infer negative information, e.g ¬fly(X) ← penguin(X).

(Note that not is not allowed in the head of the rule).

Unfortunately, the introduction of classical negation and its ability to reside

in the head of a rule, can cause an extended logic program to be inconsistent. It is

therefore imperative that if we wish to follow the belief revision strategy outlined

in section 2.1.2.1, we need to make sure that our default rules account for the

exceptions. Reverting again to the tweety example, we now get:

fly(X) ← bird(X), not(¬fly(X)).

¬fly(X) ← penguin(X).

bird(tweety).

bird(alfred).

penguin(tweety). (2.3)

Note that in this case too we get the same results as we did previously but

now our rule has a statement of the form not(¬fly(X)). This can be interpreted as

an attempt to disprove the negation of what is about to be proven.
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2.2.3 Defeasible Extended Logic Programs

A defeasible logic program is defined in terms of two distinct sets of rules. A

set of rules representing definite knowledge and a set of defeasible rules representing

tentative information.

Definition 3 (Definite Rule Θ). A definite rule is an ordered pair of the form

Head ← Body where Head is a literal and Body is a set of literals such that the

Body never contains the connective ‘not′. Literals could be of the form a or ¬a

(denoting classical negation).

Definition 4 (Defeasible Rule ∆). A defeasible rule is an ordered pair, denoted

Head ¾ Body where Head is a literal and Body is a set of literals which could be

of the form a or ¬a (denoting classical negation) and where the body may contain

the connective ‘not′.

Definition 5 (Defeasible Logic Program P). A defeasible logic program, P, is a

finite set of definite and defeasible rules denoted by Θ and ∆ respectively. When

needed we shall denote P by (Θ, ∆).

Defeasible derivation for a query Q given P is obtained by backward chaining

from Q using both definite as well as defeasible rules. It is assumed that the set of

definite rules, Θ is contradiction free meaning that there are no derivations possible

from it alone that prove some a and ¬a.
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2.3 Identity Maintenance and Tracking

Identity maintenance in surveillance has typically only employed some form

of appearance matching. [67] uses a SVM based approach to recognize individuals

in indoor images based on color and shape based features. [4] employs gait as

a characteristic to identify individuals while [98] performs face recognition from

video. Microsoft’s EasyLiving project [58] employs two stereo cameras to track

up to 3 people in a small room while [89] describes a multi-camera indoor people

localization in a cluttered environment.

One of the main issues to be handled by any tracking system is that of oc-

cluions. Object occlusions have been handled in literature either explicitly or implic-

itly. Pfinder [92] is one such such system that tracks objects implicitly. It represents

models of humans by a collection of colored blobs, deletion or addition of which

during and after occlusions helps it handle partial occlusions. [47] uses closed-world

regions to perform context-based tracking of multiple objects with erratic movement

and collisions. [38], [64], [61] use region tracks and appearance models to identify

people after occlusions. [54] maintains a list of persons and classifies pixels into

foreground or background. [48] presents a Bayesian blob-tracker which implicitly

handles occlusions by incorporating the number of interacting persons into the ob-

servation model and inferring it using Bayesian Network. [50] accounts for occlusions

by an outlier component in a generative appearance model and use online EM to

learn and update the parameters of this model.

Among systems that explicitly reason about occlusions, [94] incorporates an
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extra hidden process for occlusion into a dynamic Bayesian network, and relies on

the statistical inference of the hidden process to reveal occlusion relations. [78]

uses appearance models to localize objects and uses disputed pixels to resolve the

object’s depth ordering during occlusions. [56] tracks vehicles by using a ground

plane constraint to reason about vehicle occlusions. Layer representation has also

been used to model occluding objects. [73] represents self-occlusion with layered

templates, and uses a kinematic model to predict occlusions. [10] automatically

decomposes video sequences into constituent layers sorted by depths by combining

spatial information with temporal occlusions. [53] and [85] both model videos as a

layered composition of objects and use EM to infer objects appearances and motions.

[99] extend [85] by introducing the concept of background occluding layers and

explicitly inferring depth ordering of foreground layers.

2.4 Activity Recognition

A significant body of work on activity recognition has employed some form

of state-based representations such as Hidden Markov Models and their extensions.

Starner and Pentland in [84] use HMMs to recognize hand movements for Ameri-

can Sign Language. More complex models, such as Parameterized-HMMs (PHMM)

[91] have been used to model actions with underlying parameters like the direc-

tion of a pointing gesture. Coupled-HMMs (CHMM) [6], are designed to model

the interaction between two agents by coupling the states of two HMMs while,

variable length-HMMs [28] have been used to capture behavioral dependencies and
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constraints between events.

State-based models can also be used to model higher level behavior if the

states are taken to represent higher level meanings. Bobick and Ivanov [49], pro-

pose the use of a stochastic context-free grammar to compute the probability of a

temporally consistent sequence of primitive actions recognized by HMMs. Clark-

son and Pentland model events and scenes from audiovisual information in [13].

Brand and Kettnaker in [5] propose an entropic-HMM approach to minimize the

entropy of the data and thus organize the observed video activities into meaningful

states. In [42], a probabilistic finite-state automaton is used for recognizing differ-

ent scenarios, such as monitoring pedestrians or cars on a freeway. More recently

Bayesian networks have also been adopted for modelling and recognition of human

activities [22, 21, 12, 46].

Non state-based models have also been employed for activity modelling. Rota

and Thonnat [75], propose an approach for video sequence interpretation based on

declarative models of activities. They define scenarios for Vandalism, Access for-

bidden and Holdup and use a hierarchy of facts ranging from abstract to concrete

to recognize these situations. [14] investigates the use of qualitative spatio-temporal

representations and abduction in an architecture for Cognitive Vision while [8] em-

ploys a context representation scheme for surveillance systems.

[43] considers an activity to be composed of action threads and recognizes

activities by propagating constraints and likelihood of event threads in a tempo-

ral logic network. [33] uses chronicles, a temporal representation scheme for time,

events and actions, while [88] uses scenarios to declare spatio-temporal knowledge
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in vision applications. [32] uses Fuzzy Metric-Temporal Horn Logic (FMTHL) to

detect vehicle queues from road traffic scenes.

2.5 Human Detection

Human detection is another important application in the field of automated

visual surveillance. The primary question of interest is: is it possible to hypothesize

about the presence of humans with certain properties at a particular location in the

world and then come up with rules to verify which of those hypothesis are viable

and are likely to be humans.

The paper by Zhou and Nevatia [97] poses this problem as a state space search

problem. They first define a state space, Θ, comprised of states, θ, of the following

form θ = {n, {M1,M2, · · · ,Mn}}. Since the number of humans in the scene at any

point in time can vary, the complete state space consists of states of varying dimen-

sionality. In other words, Θ =
⋃∞

i=0 θn where θn is the set of states of dimension n. Θ

is essentially an infinite space from which a MAP estimate, θ∗ = argmaxθ∈ΘP (θ|I),

needs to be computed. Since Θ is such a large space, a sampling algorithm has to be

used to converge to a good solution and this sampling has to be driven by the data.

The authors use a MCMC approach that is driven by jump-diffusion dynamics with

low level features like head detectors to converge to the most likely state.

Another state based approach for detecting objects in general is the work

proposed by Hoiem et. al [41]. In this work, they model the states of objects in the

real world along with other contextual cues such as viewpoint and scene geometry.
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The inference problem is then formulated as estimating the states of these objects

given observed local evidence. Since context is also being inferred along with the

state of the object itself, this method they claim is better than any approach that

tries to only detect objects.

There are several approaches that try to detect humans as an integral whole

using different kinds of detectors. Papageorgiou et. al. [70] use SVM detectors,

Felzenszwalb [20] uses shape models and Gavrilla [31, 30] uses edge templates to

recognize full body patterns. Leibe et.al [59] employ an iterative method combining

local and global cues via a probabilistic segmentation. The most popular detector

used in such systems is a cascade of detector trained using AdaBoost as proposed by

Viola and Jones [86]. Such an approach uses as features several haar wavelets and has

been very successfully applied for face detection in [86]. Viola and Jones themselves

applied this detector to detect pedestrians in [87] and made an observation that

Haar wavelets are insufficient by themselves as features for human detection and they

augmented their system with simple motion cues to get better performance. Another

feature that is increasing in popularity is the histogram of oriented gradients. It was

introduced by Dalal and Triggs [16] and they used a SVM based classifier. This was

further extended by Zhu et. al [100] to detect whole humans using cascade of

histograms of oriented gradients.

Part based representations have also been used to detect humans. Mohan

et.al. [66] divide the human into four different parts and learn SVM detectors using

Haar wavelet features. Mikolajczyk et. al. [65] divide the human body into seven

parts and for each part a Viola-Jones approach is applied to orientation features.
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Wu and Nevatia [93] use edgelet features and learn nested cascade detectors [45] for

each of several body parts and detect the whole human using a iterative probabilistic

formulation.

The problem with all of the approaches discussed above is that very few [97,

41, 93, 59] of them follow up low level detection with high level reasoning. High

level reasoning is required to enforce global constraints to weed out false positives

and increase accuracy. Even among the approaches that do use high level reason-

ing, the models they employ are simplistic and they attempt to estimate the state

of the objects in the real world directly from weak observations. Moreover, very

few [97, 93, 59] attempt to handle inter-human occlusions. Occlusions are again

handled by making iterative hypotheses and checking to see if the hypothesis satis-

fies observation. However, the results of such systems are limited by the simplicity

of the model employed.

2.6 Preference Modelling

Learning rankings was first treated as a classification problem on pairs of ob-

jects by Herbrich et al [39] and subsequently used on a web page ranking task by

Joachims [51]. Algorithms similar to SVMs were used to learn the ranking function.

Burges et al. [11], use a neural network (RankNet) to model the underlying ranking

function. Similar to our approach it used a gradient descent technique to optimize

a probabilistic cost function–the cross entropy. The neural net is trained on pairs

of training examples using a modified backpropagation. Herbrich et al. [40] cast
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ranking as an ordinal regression problem. The actual ranks are modeled as intervals

on the real line. Hence rank boundaries play a critical role during training. The

loss function depends on pairs of examples and their target ranks. Several boosting

based algorithms have been proposed for ranking. With collaborative filtering as an

application Freund et al. [23] proposed the RankBoost algorithm for combining pref-

erences. Dekel et al. [17] present a general framework for label ranking by means of

preference graphs and graph decomposition procedure. A log-linear model is learnt

using a boosting algorithm. An efficient implementation of the RankBoost algo-

rithm for two class problems was presented in [23]. A convex-hull based relaxation

scheme was proposed in [27]. Yan and Hauptmann [95] proposed an approximate

margin-based rank learning framework by bounding the pairwise risk function.
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Chapter 3

VidMAP:Video Monitoring of Activity with Prolog

3.1 Introduction

Computer Vision based automated surveillance systems are designed to in-

terpret human activity by taking visual input from one or more cameras. In this

chapter, we will present a human activity monitoring system called VidMAP. The

objectives of the VidMAP system are two fold:

1. To continuously monitor, detect and report predefined violations observed in

the input video streams.

2. To answer specific queries about events that have already transpired in the

archived video.

Violations are activities that have been “described” to the system by the pro-

grammer using a logic programming language. These violations could be transgres-

sions in either security (thefts, unauthorized entry) or safety (unattended packages,

collisions). Forensic inquiries into archival footage are typically evoked by a user to

check for specific events of interest in the past, like “how many people entered the

building between 10:00 am to 1:00 pm?”

A possible violation that the system will have to look for is outlined in the

rules below . Assume a surveillance setup where the camera monitors an entrance
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to a building. Assume also that there exists a card reader, used to control access to

the building, that is also observable from the camera’s point of view.

Rule 1 (Entry Violation). An entry violation is defined as the activity of an un-

privileged individual entering the building.

Rule 2 (Privileged Individual). (a) An individual is privileged to enter a building

if she swipes her ID card at the card reader before entering the building.

(b) An individual is privileged to enter the building without swiping the card,

if and only if she is escorted into the building by an individual who is privileged to

enter.

(c) Every other individual is unprivileged to enter the building.

Rule 3 (Escort). An individual A, is considered an escort for individual B, if A is

considered a friend of B.

To correctly detect the violation outlined above, any visual surveillance system

needs be able to detect primitive events like swiping a card or entering a building.

It then needs to establish temporal ordering between these events, specifically in

case of this violation, the system needs to check for the absence of the card swipe

between the entry of the individual in the scene and her entry into the building.

And finally it needs to be able to distinguish between a person being escorted into

the building and a person tailgating behind someone else.

We model the automatic visual surveillance system as a passive, rational agent

capable of deductive reasoning. This agent perceives the occurrence of various events

in the video, represents these events as logical formulae in its knowledge base and
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infers their consequences. The process of inference is driven by logical rules encoded

within the system by the programmer. These logical rules encode various activities

of interest which among others, include security and safety violations.

The system is composed of three main modules. A low level image processing

module, a mid level fact generation module, and a high level reasoning module.

An agent functioning in a real world must be capable of gathering new in-

formation by sensing its environment. The agent’s low level module takes visual

input from one or more cameras and employs a suite of computer vision algorithms,

such as background subtraction [55], tracking and appearance based human iden-

tification [96] to provide input to the fact generator. The mid level fact generator

recognizes primitive events of interest from this data, and incorporates these events

as observed facts in the reasoning module’s knowledge base. The high level reasoning

module uses these facts in conjunction with rules encoded in the logic programming

language, Prolog, to arrive at valid inferences regarding activities observed in the

video.

The primary reason for employing a logic programming based approach to

recognize activity, over traditional state based approaches, is the expressive power

it bestows upon the system that allows us to not only encode complex propositions

but also functions and quantification. The use of Prolog differentiates our work

from other non-state based approaches as it not only provides us with a ready-to-

use mechanism for searching and backward chaining but, as a logic programming

language, the semantics and compositionality in Prolog are also well defined.
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(a) (b)

Figure 3.1: Figure showing background subtraction and tracking results (a) Single

frame from input video stream (b) Background subtracted result with tracking data

overlayed

3.2 Low Level Module

The low level computer vision module takes input from one or more cameras

and employs a suite of computer vision algorithms to provide input to the higher

level modules of the system.

3.2.1 Background Subtraction and Tracking

Surveillance setups typically consist of cameras that are either fixed and ob-

serve the same scene at all times or cameras that can perform pan-tilt-zoom opera-

tions. In this work, we assume static surveillance cameras and take advantage of the

stationary viewpoint by employing a background subtraction algorithm as the first

step. We use the code-book based adaptive background subtraction algorithm pro-

posed in [55]. Background subtraction gives us regions that correspond to people,
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packages, vehicles and other foreground objects of interest.

Tracking of these foreground objects over time permits us to gather temporal

properties about them. This in turn helps the fact generator to assert relevant facts

about not only the objects themselves, but also their interactions with other objects

in the scene. Figure 3.1 shows the results of background subtraction and tracking.

3.2.2 Appearance Matching

Another task the low level module is responsible for is the maintenance of a

gallery of previously viewed objects. In any surveillance scenario, it is important

to keep track of people as they disappear and reappear from the field of view of

the camera. For most part, when people disappear into an open world and later

reappear, due to large variability, it is almost impossible to say with certainty that

they were observed before or not. However, in a constrained environment, especially

one that involves closed worlds like rooms, offices, or even multiple cameras (whose

views are adjacent and close to each other) as shown in Figure 3.3, employing

an appearance matching technique, in conjunction with pre-established geometric

constraints, permits us to reason about people across multiple views.

The algorithm we use for appearance matching is the color path length based

approach proposed by [96]. This approach combines color and a geodesic path

length measure within the person’s body and builds their probabilistic models, which

are compared using the Kullback distance. Since spatial information is used for

matching the pixels, it is possible to isolate local areas of change within the person.
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This enables the system to state whether in one of the views the person was carrying

some package. Color information is encoded as either color proportions or ranks of

brightness or color. Rank ordering of color information provides for robust matching,

especially across multiple cameras.

3.3 Mid Level Module

The main task entrusted to the mid level fact generation module is that of

interpreting the data from the image processing module and populating the agent’s

knowledge base with Prolog facts. These facts correspond to observed events in the

video such as an individual entering or exiting a room, or picking up or placing down

a package on the floor.

3.3.1 Fact Generation

Data coming in from the low level image processing algorithms can be very

noisy. Due to myriad reasons background subtraction routinely introduces artifacts

in its output that can get tracked and erroneously labelled as objects of interest.

Filtering out such noisy data is of paramount importance for this module. It does so

by observing whether or not the object has been persistently tracked. For example,

it decides that a tracked object is a human if it satisfies three conditions: it is

persistent, it is tall and it has periodic movements associated with it. It considers

an object to be a package if it is persistent, does not move on its own and was at

some point in time attached to a human. Facts such as entering or exiting a room
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are generated based on the appearance or disappearance of humans from regions in

the image, labelled as portals, that are associated with the room.

3.3.2 Background Labelling

For the fact generator to correctly interpret the tracking data, it needs to

have an understanding of the scene structure. We provide this information to the

fact generator by labelling various areas of the background. The fact generator can

now generate facts based not only on object properties and their interactions with

each other, but also when objects interact with these labelled background regions.

For instance, if we label a region on the ground plane near a vending machine,

the fact generator could fire a fact at(obj 0 14,vending machine,4439), denoting

that person labelled obj 0 14 was observed to be at the vending machine at time

4439, whenever obj 0 14 appears to pause for some amount of time in that region.

Figure 3.4(b) shows a frame at which such a fact is generated by the mid level

module.

3.3.3 Sample Facts

Figure 3.2 shows some sample facts that have been generated by this module.

We see from this figure that the fact generator recognizes the foreground blob labelled

obj 0 2 as a human. It also observes that this human appears in the field of view

from the region labelled elevator at time 859 (in frames). The human appears to

pause in a region labelled as bulletin board. The human then dropsoff an object
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labelled obj 0 5 which is recognized as a package and exits the field of view from

a region labelled main door at time 1135

human(obj_0_2).

appear(obj_0_2,elevator,859).

at(obj_0_2,bulletin_board,980).

dropoff(obj_0_2,obj_0_5,1040).

package(obj_0_5).

disappear(obj_0_2,main_door,1135).

Figure 3.2: Sample Prolog facts asserted by the Fact Generator

3.4 High Level Module

The primary task of the high level reasoning module is to continually check to

see if the rules that have been encoded in the system can be satisfied by the observed

facts that are being asserted into its knowledge base. It does so by backward chaining

from each violation or activity and attempts to prove them. In this system, we write

rules in and employ a Prolog based inference engine.

The main advantage of employing a logic programming language for specifying

activities lies in its expressive nature. If one can describe an activity in plain english,

then it can usually be encoded as a logical rule1. In this section, we will list en-

1It is interesting to note that historically, a primary source of failure for expert systems has

been the inability of human experts to translate their expertise into a natural language. Therefore
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glish descriptions of a few important violations/activities and provide corresponding

Prolog rules that have been encoded in the system.

3.4.1 Thefts

Workplaces are increasingly becoming a target of thefts. Thefts are usually a

result of careless employees leaving their belongings inadequately protected. It is

therefore important for the surveillance system to recognize the activity of a theft.

We define a theft in the following manner:

Rule 4 (Theft). Theft is the activity of a person possessing an object that does not

belong to her.

Rule 5 (Possess). A person possesses an object if she carries it.

Rule 6 (Belong). An object belongs to an individual if she was seen possessing it

before anyone else.

Rule 4 abstractly captures the essence of stealing while Rule 6 arises out of

the assumption that “possession is 9/10ths of the law”. These rules can be encoded

in Prolog as follows2:

if one were to build an expert system to recognize certain objects, say airplanes, it may never be

possible to capture in natural language the processes that humans employ. In our system however,

we restrict ourselves to activities that can be “described” to the system in much the same way as

a human would to another.
2In Prolog, ‘,’ represents a conjunction, ‘not’ represents negation by failure, ‘ ’ represents “don’t

care” and ‘assert(X)’ inserts Prolog fact X into the knowledge base.
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theft(P,B,T):- human(P),

package(B),

possess(P,B,T),

not(belongs(B,P,T)).

The rule above can be interpreted as P commits a theft of object B at time T

if P possess B at time T and at that time, one cannot prove that B belongs to P.

possess(P,B,T) :-

carries(P,B,T).

belongs(B,P,T) :-

possess(P,B,T),

not((already_belongs(B,P1,_),

not(equal(P,P1)))),

assert(already_belongs(B,P,T)).

In the rule for belong above, we insert the predicate already belongs in the

knowledge base to indicate that a person P was first observed possessing the object.

Subsequent inquiries into the “belong” status of that object with fail for individuals

other than the original P.

3.4.2 Entry Violation

Another important activity that the surveillance system should be aware of

is entry violation. Entry violation as described in Rule 1 in Section 3.1, can be

encoded in Prolog as follows:
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entry_violation(P):-

human(P),

appear(P,scene,T1)

enter(P,building_door,T2),

not(privileged_to_enter(P,T1,T2)).

This rule will flag an activity as an entry violation if a person P appears in

the field of view of the camera (an event captured by P appearing in region labelled

scene) at time T1 and enters the building at time T2 such that she is not privileged

to enter the building in the time between T1 and T2. Rules 2 and 3 can be encoded

as follows

privileged_to_enter(P,T1,T2):-

at(P,card_reader,T),

T1<T, T<T2.

privileged_to_enter(P,T1,T2):-

human(P1),

not(equal(P,P1)),

at(P1,card_reader,T),

T1<T, T<T2,

enter(P1,building_door,T3),

T1<T3, T3<T2,

friend(P,P1).
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The first rule for privilege listed above states that if person P was at the card

reader at a time T occurring between T1 and T2, she is privileged to enter the

building. The second rules says that in the time between T1 and T2, if there exists

another person P1 such that she scans her card and enters the building and if P1 is

thought to be a friend of P, then P has the privilege of entry.

3.4.3 Unattended Package

Another violation that is encoded within the surveillance system is that of

unattended package.

Rule 7 (Unattended Package). A package is said to be unattended if it is dropped

off by the owner at some time and neither the owner nor a friend of the owner are

present in the vicinity of the package at a later time.

This rule reflects the fact that people can entrust their belongings to their

friends to watch over. The corresponding Prolog rule is as follows:

unattended_package(B,T):-

dropoff(P,B,T1),

disappear(P,_,T),

T>T1,

not((friend(P,P1),

standing_next_to(P1,B,T))).
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3.4.4 Friend

A person P is considered a friend (in the loosest sense of the word) of P1

by the system if P and P1 are observed standing close and facing each other for a

certain amount of time. The concept of friend or acquaintance is important because

according to our assumptions an individual can escort her friend into a (semi-secure)

building, an individual can entrust her package to a friend to watch over and finally

in case some individual A is thought to have committed some violation, then the

friends of A could either be accomplices or witnesses.

3.5 Experimental Results

This section describes the implementation details of our system as well as

some surveillance scenarios on which it has been tested. The system has been

implemented as a real-time, multi-threaded C++ application capable of handling

multi-camera scenarios. A Prolog reasoning engine has been embedded within this

C++ application.

3.5.1 Implementation Details

The application consists of two kinds of threads: the (possibly multiple) cam-

era thread(s) which are responsible for the low and mid level modules and a single

reasoning thread responsible for the high level reasoning module. For each camera

connected to the system, we create a camera thread that takes input video frames

from the camera assigned to it and runs the low level image processing algorithms
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and the mid level fact generation routines on it. The reasoning thread, when first

created, initializes the Prolog engine that is embedded within it and inserts in its

knowledge base, rules for all the predefined activities. The reasoning thread is sub-

sequently evoked every 5 seconds and every time it runs it not only assimilates facts

generated by each of the camera threads and inserts them into the Prolog engine,

but it also queries the Prolog engine for all violations it is programmed to look for.

If in any given run, the Prolog engine is able to prove as true any of the violations,

then the reasoning thread alerts the user to it.

The tool we have built also allows the user to manually click on the image,

while setting up the system, to mark and label regions in the scene. As mentioned

in section 3.3.2, these regions are used by the fact generator to log interactions of

objects with the background.

3.5.2 Scenarios

We demonstrate our system in action on a multi-camera surveillance setup as

depicted in Figure 3.3. Camera 1 observes the lobby of building with the elevator

door, bulletin board, side door, vending machine and main door lying within its

field of view, while camera 2 observes the exterior of the building observing a wall

mounted phone, a card reader and the entrance to the building. The door to the

building does not open unless one swipes their ID card across the card reader.

We tested our system on a continuous 15 minute video clip that contained

several violations including entry violations, thefts and unattended packages in ad-
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Figure 3.3: Surveillance setup showing fields of view of the cameras in relation to

the scene.

dition to significant irrelevant activity. We will now describe each of the scenarios

that were used in testing the system3.

Scenario 1 (Unauthorized Entry). (Figure 3.4) Individual 13 in camera 2 swipes

his card before entering the building. Individual 15 follows 13 into the building

without swiping his card. Once inside, they go different ways.

Scenario 2 (Escorted Entry, Watching Over). (Figure 3.5) Individual 19 in cam-

era 2 swipes his card at the card reader to enter the building while 20 merely follows

3Note: In each of the camera’s view, objects are numbered independent of other cameras, as

a result a person labelled 15 in camera 2 might appear as 14 in camera 1, however based on

appearance and geometric constraints the system is aware of the fact equal(14 in 1,15 in 2).
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him in. Once inside, in camera 1 (now referred to as 33 and 34 respectively) they

both face each other and start talking. Subsequently, 33 drops off a bag, known to

the system as 35, and disappears from view while 34 stands next to it.

In scenario 1, the system cannot prove that 13 is escorting 15 into the building

and correctly raises an entry violation, while in scenario 2, initially when 20 follows

19 into the building, the system flags it as a violation but subsequently when the

two individuals face and stand next to each other, it assumes they are acquaintances

and retracts the entry violation. Subsequently when 33 leaves his bag behind and

exits the field of view of camera 1, the system does not raise the unattended package

violation as it believes 34 is watching over it.

Scenario 3 (Unattended Package, Witness and Theft). (Figure 3.4) Individual 13

drops off package 17, near the bulletin board and exits the field of view of camera 1

through the elevator. Another individual 16, subsequently enters the scene and starts

talking with 14. After 16 leaves, 14 picks up package 17 and exits the building.

When individual 13 exits the scene, since there is no friend of 13 to watch over

the package, the system raises an unattended package violation. Subsequently when

16 starts talking to 14, it asserts that 14 and 16 are possible acquaintances. And

finally when 14 picks up the bag that originally belonged to 13, the system raises a

theft violation and asserts that 16 is a possible witness/accomplice.

In addition to these continuously monitored violations, the application has

the ability to take in a custom Prolog query from the user and resolve it using the

facts that have been accumulated till that point in time, thus supporting forensic
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inquiries. For example, to know how many people used the vending machine we

can query the system with at(P,vending machine,T) and get back a response

P=obj 0 8, T=2534 and P=obj 0 14, T=4439 denoting that humans obj 0 8 and

obj 0 14 were at the vending machine at frames 2534 and 4439 respectively.

3.5.3 Processing Time

Real time performance is a major concern while building surveillance systems.

As the number of facts that the inference engine has to evaluate increases, it is

natural to assume that the time taken by it to prove or disprove the occurrence of

various activities will increase as well. However, we would like inferences to be made

without any significant delay after the event has transpired in the video. To test

how the processing time varies as the number of facts in the Prolog knowledge base

increase, we ran the original 15 minute video in a loop for several hours and gave

that as an input to the system. The original video generated 357 facts. We looped

this video 52 times yielding 18564 facts. The time required to infer each of theft,

unattended package, entry violation and pickup is shown in Figure 3.6. As can be

seen from this graph, beyond around 10000 facts, the inference time varies linearly

with the number of facts. These times can be further improved upon by designing

the system that forgets past events if they are deemed irrelevant. This will be part

of our future work. It is also important to note that due to the multi-threaded

architecture of the application, even if the reasoning engine takes time to make

inferences, it will not affect the speed of the camera threads which will continue to
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process the input video streams and generate and assimilate facts from it in real

time.

3.6 Discussions and Conclusions

In this chapter, we described the architecture of VidMAP, a visual surveillance

system that combines real time computer vision algorithms with Prolog based logic

programming, to reason about activities observed in the input video streams. The

use of logic programming bestows upon the system expressibility to define various

activities. Specifically, using Prolog gives us a ready to use mechanism for searching

and backward chaining.

It must be noted that the performance of a system that bases its inferences

solely on visual input, depends heavily on the accuracy and scope of its lower level

algorithms. Inaccurate output by the low level algorithms can cause the reasoning

module to draw incorrect conclusions. For example, if based on appearance, the

system erroneously concludes that two humans A and B are not equal, the reasoning

engine might conclude that B commits a theft if B picks up a package belonging to

A.

The scope of the low level algorithms is important to provide the fact generator

with enough information to generate meaningful facts. In the scenarios outlined in

the previous sections, we use the theory of a friend. An incorrect theory of a friend

can cause the system to erroneously conclude that an illegal entry is legal or that

an unattended package is attended. Ideally the low level module should be able
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to interpret friendly gestures (like shaking hands) between two humans to decide

whether or not they are friends. For example, in scenario 2 person 33 could be

confronting 34 and reprimanding him for following him into the building, but our

system, as of now, will consider them to be friends. However, it must be pointed out

that while a human observer has the advantage of being able to interpret subtle body

language when people interact with each other, for most part, human reasoning,

when constrained to deduction from surveillance data alone, can be erroneous too.

Unless there is some explicit body language suggesting that 33 and 34 are not friends,

in all likelihood a human observer (who is viewing the surveillance video) may also

conclude that no violation has taken place.
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Camera 1 Camera 2

(a) Frame 4102

(b) Frame 4439

(c) Frame 4800

Figure 3.4: (a) Person 15 in camera 2 follows 13 without swiping card. (b) In camera

1 he is referred to as 14. (c) Person 13 in camera 1 drops off bag 17 and disappears

from view. Subsequently a different individual, 16 arrives and starts talking with

14.
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Camera 1 Camera 2

(a) Frame 7873

(b) Frame 8387

(c) Frame 8523

Figure 3.5: (a)Person 19 in camera 2 swipes his card and enters the building and

person 20 follows him in. (b) In camera 1, both individuals now 33 and 34 respec-

tively stand facing each other. (c) Person 34 in camera 1 is standing next to bag

35, left behind by 33.
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Chapter 4

Multivalued Logic for Identity Maintenance

4.1 Introduction

The primary goal of a visual surveillance system is to help ensure safety and

security by detecting the occurrence of activities of interest within an environment.

This typically requires the capacity to robustly track individuals not only when they

are within the field of regard of the cameras, but also when they disappear from

view and later reappear. Figure 4.1 shows an individual marked X appearing in

the scene with a bag, dropping it off in the corridor, and disappearing from view

through a door. Subsequently it shows individual Y appearing in the scene through

the same door and picking up the bag.

If individual(X) = individual(Y ), the activity by itself, is probably not of

interest from a security viewpoint. However, if individual(X) 6= individual(Y ),

Figure 4.1: Sequence of images showing individual X appearing in the scene with

a bag, depositing it on the ground and disappearing from view. Subsequently,

individual Y appears in the scene, picks up the bag and leaves.
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the activity observed could possibly be a theft. This example captures the general

problem of automatically inferring whether two individuals observed in the video

are equal or not. This problem is significant not only for camera setups where

individuals routinely disappear into and reappear from pockets of the world not

observed by the cameras, but also within a single field of view when tracking is lost

due to a variety of reasons.

Traditionally in surveillance, the problem of identity maintenance has been

addressed by appearance matching. Matching of appearances can be based on a

person’s color distribution and shape [67], gait [4], face [98] and other physical

characteristics. All of these approaches are considered weak biometrics and, by

themselves, they are inadequate for maintaining identities for recognizing complex

activities.

The objectives of this chapter are to provide a framework

1. that supports reasoning about identities of individuals observed in

video. We do this by augmenting traditional appearance matching with (a)

contextual information about the world and (b) self identifying traits associ-

ated with actions. In addition to stating whether or not two individuals are

equal, we also qualitatively encode our confidence in it.

2. that facilitates using this information on identities to recognize ac-

tivities. We also propagate our confidence in the identity statements to ac-

tivities to which they contribute.

In the example above, if the door through which individual X disappeared leads
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into a closed world (a world with no other exit), we could,under some circumstances,

infer that individual Y coming out of that door at a later time had to be equal to

individual X (with a high degree of confidence), regardless of whether or not he

appeared similar to X.

In this work, we encode contextual information about the world and our com-

mon sense knowledge about self-identifying actions as rules in a logic programming

language. Furthermore, we observe that since these rules reflect actions taking

place in a real world, they can never be definite and completely correct. We there-

fore employ default logic as the language to specify these rules, which provides our

framework the important property of nonmonotonicity (the property of retracting

or disbelieving old beliefs upon acquisition of new information). We also employ

a bilattice based multivalued representation that encodes our confidence in various

rules and propagates these confidence values to the identity statements and subse-

quently to the activities themselves. We then use prioritization over these default

rules to capture the fact that different cues could provide us with different amounts

of information. Finally, we use this information about identities of individuals to

reason about the occurrence of activities in the video.

4.2 Motivation

Our primary motivation is to build a visual surveillance system that draws

heavily upon human reasoning. While humans are very skillful in matching appear-

ances, even we commit mistakes in this process. However, we possess the capacity
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to employ context and non-visual cues to aid us in recovering from these errors.

Example 1. Upon observing an individual, from the back and walking away from us,

based on his gait and possibly body type, we tentatively conclude that the individual is

Tom, a colleague at work. However, if we suddenly remember that Tom called in sick

earlier in the day, we may decide that it cannot be Tom. Later still, if we observe

that individual enter a Black BMW, a type of car we know Tom owns, we might

conclude more strongly this time that it has to be Tom. However, before entering

the car, if the individual turns around to face us and we realize that it is a person

we have never seen before, we may definitely conclude that it is not Tom.

The example demonstrates how humans employ common sense to reason about

identities. Human reasoning is characterized, among other things, by [63]

1. Its ability to err and recover - This is important because when dealing

with uncertain input, decisions or analysis made might have to be retracted

upon acquisition of new information. In Example 1, we retracted our belief of

the person being Tom or not several times,

2. Its qualitative description of uncertainty - a qualitative gradation of

belief permits us to encode our confidence in decisions we make. In Example 1,

our degree of belief in whether or not the person was Tom moved from slightly

sure to definitely sure.

3. Prioritization - it is important to have a sense of how reliable our thread of

reasoning is. In Example 1, based on appearance we were only slightly sure,
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based on vehicle information we were more sure, based on face recognition we

were definitely sure etc.

4.3 Reasoning Framework

Logic programming systems employ formulae that are either facts or rules

to arrive at inferences. In visual surveillance, rules can be used to define various

activities of interest as well as intermediate inferences such as that of equality of

individuals. Rules are of the form “A ← A0, A1, · · · , Am” where each Ai is called an

atom and ‘,’ represents logical conjunction. Each atom is of the form p(t1, t2, · · · , tn),

where ti is a term, and p is a predicate symbol of arity n. Terms could either be

variables (denoted by upper case alphabets) or constant symbols (denoted by lower

case alphabets). The left hand side of the rule is referred to as the head and the

right hand side is the body. Rules are interpreted as “if body then head”. Facts are

logical rules of the form “A ←” (henceforth denoted by just “A”) and correspond to

the input to the inference process. These facts are the output of the computer vision

algorithms, and include “atomic” events detected in video (entering/exiting a door,

picking up a bag) and data from background subtraction and tracking. Finally, ‘¬’

represents negation such that A = ¬¬A.

4.3.1 Default Logic

Logic programming based visual surveillance systems apply a set of predefined

logical rules defining each activity to logical facts generated in real time from events
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transpiring in video to recognize activities [80]. Traditional logic programs are based

on deduction, which is a method of exact inference. If the body of a rule evaluates

to true, then the head always evaluates to true; in classical logic, there exists no

provision of changing the truth value of the head over time. Deduction therefore

requires information to be complete, precise and consistent. By contrast, in real

world surveillance scenarios, one has to deal with incomplete, imprecise and po-

tentially inconsistent information. Humans possess the ability to reason effectively

under such circumstances using what is termed “common sense reasoning”. Default

logic [74] is an attempt to formalize common sense reasoning using default rules.

Default logic expresses rules that are “true by default” or “generally true” but could

be proven false upon acquisition of new information in the future. This property of

default logic, where the truth value of a proposition can change if new information

is added to the system, is called nonmonotonicity.

Definition 6 (Default Theory). A default theory ∆ is of the form 〈W,D〉, where

W is a set of traditional first order logical formulae (rules and facts) also known as

the definite rules and D is a set of default rules of the form α:β
γ

, where α is known

as the precondition, β is known as the justification and γ is known as the inference

or conclusion.

A default rule of this form expresses that if the precondition α is known to be

true, and the justification β is consistent with what is currently in the knowledge

base, then it is possible to conclude γ. Such a rule can be also written as γ ←

α, not(¬β). ‘not’ represents the negation by “failure to prove” operator and the
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consistency check for β is done by failure to prove its negation.

Example 2. Assume the following set of rules and facts:

¬equal(P1, P2) ← distinct(P1, P2). ∈ W

equal(P1, P2) ← appear similar(P1, P2), not(¬equal(P1, P2)) ∈ D

{appear similar(a, b)}t

{appear similar(a, b), distinct(a, b)}t+1

where {· · · }t indicates the set of facts at time t and distinct(a, b) indicates that a

and b appear as two separate and distinct individuals at some point of time.

In this example, at time t, given the rules and the set of facts, the system

concludes that since it cannot prove ¬equal(a, b) and appear similar(a, b) is true,

therefore equal(a, b) is true. However, at time t+1, it is now possible to prove

¬equal(a, b) because distinct(a, b) is true and therefore the system now can no longer

conclude equal(a, b) (the default rule is blocked by the definite rule) and concludes

¬equal(a, b) instead.

While the property of a conclusion blocking another default rule is desirable

since it bestows nonmonotonicity upon the system, it can also create a problem.

Example 3. Assume the following set of rules and facts:

¬equal(P1, P2) ← distinct(P1, P2), not(equal(P1, P2)). ∈ D

equal(P1, P2) ← appear similar(P1, P2), not(¬equal(P1, P2)) ∈ D

{appear similar(a, b), distinct(a, b)}t
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In Example 3, the rule for inferring that two individuals are not equal if they

appear distinct is now made a default rule1. In this case, given the set of facts, at

time t, depending on the order in which the default rules are applied, different sets

of conclusions can be produced. If the first default is applied first, it blocks the

second default and we conclude ¬equal(a, b); but if the second default is applied

first, it blocks the first and we conclude equal(a, b).

Definition 7 (Extensions). The different sets of conclusions that can be derived by

applying defaults in different orders are called extensions.

A default theory can have multiple extensions, each capturing a possible out-

come of the definite and default rules. While multiple extensions of a default theory

list its possible outcomes, they are of not much use if a single solution is needed.

There are several different approaches in the literature to obtain a single solution

from the space of extensions of the default theory, including specificity [44], priori-

tized defaults [9] and multi-valued belief states [34]. Our system adopts the latter.

In the multivalued belief states approach, various rules in the system are re-

garded as different sources of information concerning the truth value2 of a given

proposition. These sources contribute different amounts of information to the de-

cision making process and consequently our degree of belief in these propositions

1This default rule captures the fact that if there exists a mirror in the world, it could be possible

for a single person to appear as two distinct individuals
2It is important to note that by truth value we mean our degree of belief in the veracity or

falsity of a given proposition. This is different from the actual truth value of the proposition in

the real world.
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should mirror the information content. For example, default rules are not always

correct and could be proven wrong by definite rules. Therefore, in this approach,

definite rules provide more information than default rules. We seek a representation

that combines truth value of these belief states with the information content of the

sources.

4.3.2 Bilattice Theory

Bilattices [34] provide an elegant and convenient formal framework in which

the information content from different sources can be viewed in a truth functional

manner. Truth values assigned to a given proposition are taken from a set structured

as a bilattice.

Definition 8 (Lattice). A lattice is a set L equipped with a partial ordering ≤ over

the elements of L, a greatest lower bound (glb) and a lowest upper bound (lub) and

is denoted by the triple (L,glb,lub) where glb and lub are operations from L× L →L

that are idempotent, commutative and associative

Informally a bilattice is a set, B, of truth values composed of two lattices

(B,∧,∨) and (B, ·, +) each of which is associated with a partial order ≤t and ≤k

respectively. The ≤t partial order indicates how true or false a particular value is,

with f being the minimal and t being the maximal. The ≤k partial order indicates

how much is known about a particular sentence. The minimal element here is u

(completely unknown) while the maximal element is ⊥ (representing a contradictory

state of knowledge where a sentence is both true and false). The glb and the
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lub operators on the ≤t partial order are ∧ and ∨ and correspond to the usual

logical notions of conjunction and distinction, respectively. The glb and the lub

operators on the ≤k partial order are · and +, respectively, where + corresponds

to the combination of evidence from different sources or lines of reasoning while ·

corresponds to the consensus operator. A bilattice is also equipped with a negation

operator ¬ that inverts the sense of the ≤t partial order while leaving the ≤k partial

order intact.

Definition 9 (Bilattice [34]). A bilattice is a sextuple (B,∧,∨, ·, +,¬) such that

• (B,∧,∨) and (B, ·, +) are both lattices and

• ¬ is a mapping such that

– ¬2 = 1 and

– ¬ is a homomorphism from (B,∧,∨) to (B,∨,∧) and from (B, ·, +) to

itself.

4.3.2.1 Properties of Bilattices

Figure 4.2(a) shows a bilattice corresponding to classical default logic. The set

B of truth values contains, in addition to the usual definite truth values of t and f,

dt and df corresponding to true-by-default (also called “decided-true”) and false-by-

default (also called “decided-false”), u corresponding to “unknown”, * corresponding

to “undecided” (indicating contradiction between dt and df) and ⊥ corresponding

to “contradiction” (between t and f). The t-axis reflects the partial ordering on
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(a) (b)

Figure 4.2: (a)Bilattice for default logic (b) Bilattice for prioritized default logic.

the truth values while the k-axis reflects that over the information content. This

bilattice provides us with a correlation between the amount of information and

our degree of belief in a source’s output. Procuring more information about a

proposition, indicated by rising up along the k-axis, causes us to move away from

the center of the t-axis towards more definitive truth values. The only exception

to this being in case of a contradiction, we move back to the center of the t-axis.

Negation corresponds to reflection of the bilattice about the ⊥ −u axis. It is also

important to note the this bilattice is distributive with respect to each of the four

operators. Based on this framework, we can define the truth tables for each of the

four operators as defined in figure 4.3.
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∧ ⊥ T F ∗ DT DF U

⊥ ⊥ ⊥ F U ⊥ DF U

T ⊥ T F ∗ DT DF U

F F F F F F F F

∗ U ∗ F ∗ ∗ DF U

DT ⊥ DT F ∗ DT DF U

DF DF DF F DF DF DF DF

U U U F U U DF U

∨ ⊥ T F ∗ DT DF U

⊥ ⊥ T ⊥ T DT ⊥ T

T T T T T T T T

F ⊥ T F ∗ DT DF U

∗ T T ∗ ∗ DT ∗ DT

DT DT T DT DT DT DT DT

DF ⊥ T DF ∗ DT DF U

U T T U DT DT U U

· ⊥ T F ∗ DT DF U

⊥ ⊥ T F ∗ DT DF U

T T T F ∗ DT DF U

F F F F ∗ DT DF U

∗ ∗ ∗ ∗ ∗ DT DF U

DT DT DT DT DT DT DF U

DF DF DF DF DF DF DF U

U U U U U U U U

+ ⊥ T F ∗ DT DF U

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

T ⊥ T ⊥ T T T T

F ⊥ ⊥ F F F F F

∗ ⊥ T F ∗ ∗ ∗ ∗

DT ⊥ T F ∗ DT ∗ DT

DF ⊥ T F ∗ ∗ DF DF

U ⊥ T F ∗ DT DF U

Figure 4.3: Truth table for glb and lub operators for t and the k axis of the bilattice

for default logic.
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4.3.3 Inference

Definition 10 (Truth Assignment). Given a declarative language L, a truth assign-

ment is a function φ : L → B where B is a bilattice on truth values.

The semantics of a bilattice system is given by a definition of closure. If K

is the knowledge base and φ is a truth assignment labelling each sentence k ∈ K

with a truth value then the closure of φ, denoted cl(φ), is the truth assignment that

labels information entailed by K. For example, if φ labels sentences {p, q ← p} ∈ K

as true; i.e. φ(p) = T and φ(q ← p) = T , then cl(φ) should also label q as true as

it is information entailed by K. Entailment is denoted by the symbol ‘|=’ (K |= q).

If S ⊂ L is a set of sentences entailing q, then the truth value to be assigned

to the conjunction of elements of S is

∧
p∈S

cl(φ)(p) (4.1)

This term represents the conjunction of the closure of the elements of S. It

is important to note that this term is merely a contribution to the truth value of

q and not the actual truth value itself. The reason it is merely a contribution is

because there could be other sets of sentences S that entail q representing different

lines of reasoning (or, in our case, different rules). The contributions of these sets of

sentences need to be combined using the + operator. Also, if the expression in 6.2

evaluates to false, then its contribution to the value of q should be “unknown” and

not “false”. These arguments suggest that the closure over φ of q is
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cl(φ)(q) =
∑

S|=q

u ∨ [
∧
p∈S

cl(φ)(p)] (4.2)

We also need to take into account the set of sentences entailing ¬q. Since

φ(¬q) = ¬φ(q), aggregating this information yields the following expression

cl(φ)(q) =
∑

S|=q

u ∨ [
∧
p∈S

cl(φ)(p)] + ¬
∑

S|=¬q

u ∨ [
∧
p∈S

cl(φ)(p)] (4.3)

For more information on the properties and logical inference based on bilattice

theory see [34].

Example 4 (Inference example).

φ[¬equal(P1, P2) ← distinct(P1, P2)] = DT

φ[equal(P1, P2) ← appear similar(P1, P2)] = DT

φ[appear similar(a, b)] = T

φ[distinct(a, b)] = T

cl(φ)(equal(a, b)) = [U ∨ (T ∧DT )] + ¬[U ∨ (T ∧DT )]

= [U ∨DT ] + ¬[U ∨DT ] = DT + DF = ∗

In Example 4, we encode our belief that the two rules are only true in general

and do not always hold by assigning a truth value of DT to them. We record

our belief in the facts as T and apply equation 6.4 to compute the truth value of

equal(a, b). Note in Example 3, we obtained two extensions with equal(a, b) being
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true in one and ¬equal(a, b) being true in another. Using the multivalued logic

approach we collapse these extensions and combine the two conclusions to obtain

DT + DF = ∗ or “undecided”.

4.3.4 Belief Revision

In classical AI, belief revision is the process of revising a proposition’s belief

state upon acquisition of new data. In the bilattice framework presented above,

these revisions should only occur if the new data source promises more information

than that which triggered the current truth value assignment. Note that the belief

combination operator, + is a lub operator on the k-axis, meaning it will only choose

a sentence with maximum information.

However, this poses a problem for our current theory. Since default rules

could be contradicted by other default rules, it is possible that many propositions

will suffer from a DT, DF contradiction and will settle in the * or undecided state.

According to our current theory, only a rule with more information, the definite

rules, can release it from this state. Unfortunately in visual surveillance, most rules

are default rules and therefore it might be the case that there may be no definite

rules to rescue a proposition once it gets labelled “undecided”.

Example 5. Assume that an individual enters a room we believe to be empty and

closed (no other exit). Assume also that after some time, another individual emerges

from the room who appears dissimilar from the first individual
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φ[¬equal(P1, P2) ← ¬appear similar(P1, P2)] = DT

φ[equal(P1, P2) ← enterclosedworld(P1, X, T1),

exitclosedworld(P2, X, T2), T2 > T1,

emptybefore(X, T1), emptyafter(X, T2),

not(enter or exit between(P3, T1, T2)).] = DT

φ[¬appear similar(a, b)] = T

φ[enterclosedworld(a, office, 400)] = T

φ[exitclosedworld(b, office, 523)] = T

φ[emptybefore(office, 400)] = DT

φ[emptyafter(office, 523)] = DT

φ[not(enter or exit between(P3, 400, 523)] = T

cl(φ)(equal(a, b)) = · · · = DT + DF = ∗

In Example 5, the first rule states that if two individuals do not appear similar,

then they are not equal. The second rule, states that if there exists a closed world

that we believe to be empty and we observe an individual enter it and at a subsequent

time exit it and no one else has entered or exited the closed world in between, then

we can conclude that the two individuals are equal. The set of facts captures the

activity of an individual entering a closed empty world and later reappearing and

looking dissimilar from the individual who entered. In this case, too, we have
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contradicting defaults and on applying equaltion 6.4, equal(a, b) gets labelled *.

4.3.5 Prioritized Defaults

This problem arises because thus far we are assuming that all the default rules

provide us the same amount of information, causing them to contradict each other

and force a proposition into the * state. However, suppose, instead we assume that

different defaults could provide different amounts of information and consequently

could alter our belief state by different degrees. It turns out that the bilattice

structure very elegantly generalizes to accommodate this assumption. We could

modify the previous example and state that inferring equality based on appearance

matching is a weaker default than inferring equality based on the fact that the

person entered and exited an empty closed world. Therefore, if we then assign a

label DT1 to default 1 and label DT2 to default 2 and state that DT2 is a stronger

default and has more information than DT1 we can conclude

cl(φ)(equal(a, b)) = DT2 + ¬DT1 = DT2 + DF1 = DT2

Figure 4.2(b) shows a general bilattice for a prioritized default theory with

n priorities. Formally a prioritized default theory ∆< is of the form 〈W,D, <〉 [9]

where W and D are as defined in Definition 6 and < is a strict partial ordering on

D. The semantics of the bilattice on the new set of truth values stays the same as

before.
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Figure 4.4: Prioritized bilattice employed in our system

4.4 Reasoning about Identities

Our system primarily employs four identifying cues or traits for reasoning

about identities. These cues are based on the individuals possessions, closed world

activity, knowledge and appearance. In addition to these cues, we also employ

equality axioms of reflexivity, transitivity, and symmetry.

Identity can be verified on basis of a person possessing something that only he

can possess. For example, if we know that a vehicle belongs to an individual and later

we observe another individual entering that vehicle using a key, we can conclude that

they must be equal. An individual can be identified on the basis of certain closed

world activities, examples of which we have seen earlier (see Example 5). One can
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also verify identity on the basis of the knowledge we think an individual possesses.

For example, if there is a combination lock on a door controlling access to a office

and we observe an individual successfully entering the code and opening the door to

enter the room, we can conclude that he must be the owner of that office. Finally

appearance based cues help identify individuals based on appearance. We employ a

color histogram based appearance matching algorithm.

It should be noted that any rule based on these cues can almost never be

definitive and most of them will be default rules. Also, different cues provide us with

different amounts of information as they deal with varying degrees of uncertainty.

Without loss of generality, we assume three levels or priorities of defaults3. Also,

we assume that the definite rules are never incorrect and therefore there will never

occur a contradiction between T and F . Figure 4.4 shows the resultant bilattice

employed in our system.

4.4.1 Rules of identity

In this section we will give English descriptions of various rules employed in

our system, and note their priority levels.

3The number of levels depend on the number and type of default rules. In our system and for

the environment we are observing as we shall see in subsequent sections, there is no justification

to have more than three levels.
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4.4.1.1 Priority Level 1

Appearance based identification states that if two individuals appear similar

to each other then they are equal to each other. On the other hand, if two individ-

uals do not appear similar to each other, then they are not equal. These set of rules

are required in situations where we are forced to compare individuals in the absence

of any contextual information. Assume an individual disappears from view into an

open world (a world with no constraints on the movements of that individual or oth-

ers) and another person reappears. Since the person reappearing could potentially

be anyone in the world, there is significant uncertainty associated with making an

identity decision. Therefore, these rules provide us with least information compared

to any approach that augments appearance matching with context. We therefore

assign to it priority level 14

4.4.1.2 Priority Level 2

If a number of individuals are observed entering a closed world and later reap-

pearing, the uncertainty associated with performing appearance matching as before

on that limited group of people is significantly lesser than in the previous case.

Therefore, this rule, which reduces the space of possible matches via a closed world

assumption, provides more information than pure appearance matching and we as-

4Note, in our system we employ color histogram based appearance matching which by itself

is a poor biometric, however if one were to employ a more powerful biometric system such as

fingerprint recognition or even high resolution face recognition, then such a cue would possibly

figure higher up in the bilattice.
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sign to it priority level 2.

4.4.1.3 Priority Level 3

Most of the rules based on possession and knowledge fall in this category as

they cause us to depart from comparing groups of individuals to comparing just

two individuals. For example, if we observe an individual arrive in the scene in a

vehicle, disappear from view and subsequently another individual appears in the

scene and uses a key5 to enter the vehicle, we can conclude, provided they appear

similar, that they must be equal. Here we are comparing just two individuals the

one who arrived in the vehicle and the one departing in it. Similar reasoning can

be applied to offices which require a key or a combination number to enter6. Since

the comparisons here involve an even more reduced set than the previous case, we

assign to this set of rules priority level 3

Another set of rules that fall in this prioritization are purely closed world

based rules such as an individual entering a closed world that we believe to be

empty and subsequently exiting it such that no other individual is observed entering

or exiting the closed world in between. Here, since there exists the possibility of

the individual changing their attire inside the closed world (taking off a jacket),

5At present we do not directly recognize an action like using a key. Also, many vehicles have

remote door locks which do not require a physical key. The fact that the individual uses a key is a

default assumption. We assume that if the individual purposefully walks to the vehicle and enters

it, he probably has a key. This is in contrast to loitering around the car for a while or moving

from car to car, and then entering one.
6provided we have reason to believe that the office usually has only one occupant
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appearance matching is not a strong cue. Other rules in this category are rules

that state that if we observe an individual enter a closed world and if, while we

believe he is still inside, we observe another individual elsewhere in the scene, then

they cannot be equal to each other. Closed world rules such as these clearly have

more information than rules with priority levels 1 and 2; however it isn’t clear that

they have more or less information than the knowledge and possession based rules

mentioned above. Therefore we assign to these set of rules priority level 3.

4.4.1.4 Definite rules

It is very hard to state that two individuals are definitely equal based on visual

observation alone. Irrespective of how much information one packs in such rules, it

is always possible to find ways to defeat them. Therefore, in our system we do not

have a single rule that definitely infers equality. However, it is possible to state that

two individuals are not equal. We do that when we observe them as two distinct

individuals at the same instant of time7. We also consider the equality axioms of

reflexivity, transitivity and symmetry to be definite in nature.

4.5 Activity Recognition

We can now use inferences made regarding equality of individuals to reason

about the occurrence of various activities in the input video. Moreover we can

propagate our degree of belief in the identity statement to the activities that it

7The assumption is there are no mirrors in our world. Reflective surfaces such as glass windows

never act like true mirrors, thereby giving the individual’s reflection a different appearance
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contributes to. We define three such activities and list some sample rules8.

4.5.0.5 Theft:

We define theft as the activity of an individual possessing a package that does

not belong to him. A package does not belong to an individual P1 at time T1 if it

belonged to another individual P2 at some time T2 < T1 such that ¬equal(P1, P2).

Formally,

theft(P1, B, T1) ← human(P1), bag(B), possess(P1, B, T1),¬belongs(B,P1, T1).

¬theft(P1, B, T1) ← human(P1), bag(B), possess(P1, B, T1), belongs(B, P1, T1).

(4.4)

A package does not belong to an individual P1 at time T1 if it was originally

possessed by individual P2 at some time T2 < T1 such that ¬equal(P1, P2).

¬belongs(B, P1, T1) ← original possessor(P2, B, T2), T2 < T1,¬equal(P1, P2).

belongs(B, P1, T1) ← original possessor(P2, B, T2), T2 < T1, equal(P1, P2).

8Note, due to space constraints, rules listed in this chapter are only those pertinent to the

scenarios described in the next section and represent a small (modified for ease of understanding)

subset of the rules encoded in the system. Typically for any predicate p, there exist multiple rules

deriving p and/or ¬p depending on how we want the system to behave under various scenarios.
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4.5.0.6 Entry Violation:

Assuming an identity card reader controls access to a building entrance, we

define entry violation as the activity of an individual entering the building without

scanning his card. Formally,

¬entry violation(P1) ← enter(P1, T1), scancard(P2, T2), T2 < T1, equal(P1, P2).

entry violation(P1) ← enter(P1, T1), scancard(P2, T2), T2 < T1,¬equal(P1, P2).

4.5.0.7 Unattended Package:

We define a package to be unattended if we observe an individual drop off a

package and then cease to be in its vicinity. This is captured by the following rules

¬unattended(B, T1) ← in vicinity(P1, B, T1), dropoff(P2, B, T2), equal(P1, P2).

unattended(B, T1) ← not(¬unattended(B, T1)).

Propagation of belief states from equality statements to these activities is done

using equation 6.4.

4.6 Experiments

The proposed framework has been built on top of VidMAP presented in chap-

ter 3. Multivalued default reasoning is implemented using meta-predicates provided

by Prolog. As currently implemented, this application runs at frame rate while

taking input from up to three cameras.
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The application consists of two kinds of threads: the (possibly multiple) cam-

era thread(s) which take input from the camera(s) and detect “atomic” events (like

entering a door or picking up a bag) and a single reasoning thread responsible for the

high level multivalued default reasoning. For each camera connected to the system,

we create a camera thread that first performs background subtraction and tracking

on the video. It then detects “atomic” events and syntactically structures them as

Prolog facts. The reasoning thread, when first created, starts the Prolog engine and

initializes it by inserting into its knowledge base all the predefined rules from the de-

fault theory. The reasoning thread is subsequently evoked every few seconds. Every

time it runs, it assimilates Prolog facts generated by the camera threads and inserts

them into the Prolog engine’s knowledge base. Also, for every human observed in

the video, it reasons about their identity by applying all applicable equality rules.

Finally, equality statements, along with their qualitative confidence values, are used

to reason about the occurrence of predefined activities using the rules listed in sec-

tion 4.5. If any of the activities can be proven with belief states of DT1, DT2, DT3

or T then the reasoning thread generates an alert.

The tool we have built also allows the user to manually click on the image,

while setting up the system, to mark and label regions (as ‘closed world’, ‘hand-off

region’, ‘card reader’ etc.), in the scene. These regions, as seen in Fig 4.5 and 4.6

provide the system with information about the scene structure and properties and

also helps the system to recognize a richer set of “atomic” events that log the

interactions of individuals with the environment.
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Frame 0397 Frame 0817 Frame 1131 Frame 1411 Frame 1682

Figure 4.5: Figure depicting scenario 7. Top row Camera 1 and bottom row Camera

2

4.6.1 Scenarios

We demonstrate our system in action on a multi-camera surveillance setup.

We employ cameras that have disjoint fields of view and label certain regions within

the scene as hand-off regions. Hand-off regions are areas within an image where

individuals disappear and reappear between cameras. We encode simple rules that

state that if an individual disappears from the hand-off region in one camera and

within a certain time interval appears within a specific hand-off region of another

camera and the two individuals appear similar, then they must be equal. These

rules as well as the belief states assigned to them are clearly setup specific.

We now describe a few scenarios that were used to test the system and describe

how the system performed.

Scenario 4 (Theft-See Figure 4.5 and supplemental video). Vehicle 1 0 enters the

scene and individual 1 1 appears from it and disappears from the view of camera 1

from the right hand-off region. He appears in view of camera 2 from its hand-off

region as 2 0, drops a bag, 2 1, in the corridor and enters a room (closed world).
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He is followed by another individual 2 2 (who appears from around the corner) into

the room. Subsequently an individual 2 3 exits the room, picks up the bag and exits

the view of camera 2 through the hand-off region. He appears in the hand-off region

of camera 1 as 1 2 and enters the vehicle using a key and drives away.

In this scenario, the system correctly identifies human 2 0 as being equal to

1 1 due to the hand-off rules encoded for this camera setup. When human 2 3 exits

the room, the system attempts to apply the closed world and appearance matching

(default priority 2) set of rules mentioned in section 4.4. However, it turns out

2 3 appears similar to both 2 0 and 2 2, and therefore the system derives both

φ[equal(2 3, 2 0)] = DT2 and φ[equal(2 3, 2 2)] = DT2. Note the system can also

prove φ[equal(2 0, 2 2)] = DF3 which is inconsistent if we attempt to establish the

transitivity relation. The system therefore is forced to assign φ[equal(2 3, 2 0)] = ∗2

and φ[equal(2 3, 2 2)] = ∗2 which represents the undecided state. When 2 3 picks up

the bag left behind by 2 0, the system tries to prove whether or not a theft has taken

place, however, it can only prove φ[theft(2 3, 2 1, 1415)] = ∗2 due to the uncertainty

involved in the equality statement that contributes to it. The system continues on

to correctly conclude that human 2 3 is equal to human 1 2. However, when 1 2

uses a key and enters the vehicle, it can now prove φ[equal(1 1, 1 2)] = DT3. By

transitivity, the system is then able to revise its belief of φ[equal(2 3, 2 0)] from ∗2

to DT3 and consequently revise its belief of φ[theft(2 3, 2 1, 1415)] from ∗2 to DF3,

i.e. no theft has occurred with high confidence.

In the next scenario, we assume there exists a card reader controlling access
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Frame 1197 Frame 1404 Frame 1408

Figure 4.6: Figure depicting scenario 8.

to a building.

Scenario 5 (Entry Violation). Individual 2 approaches the card reader and swipes

her card while 1 is at the phone. Individuals 1 and 2 momentarily occlude each

other causing the tracker to lose track of the individuals. Subsequently when the two

individuals separate out again, tracking is resumed and human 3 enters the building.

In this scenario, after tracking is lost and resumed, the system needs to ascer-

tain whether the person who entered the building is the one who swiped the card.

However due to a lack of any context based cues, it is forced to resort to appear-

ance matching (priority level 1) rules. Based on those rules, the system concludes

φ[equal(2, 3)] = DT1 and φ[entry violation(3)] = DF1, i.e. no entry violation has

taken place with low confidence.

Scenario 6 (Unattended Package). Human 2 16 drops a bag 2 17 in the corridor

and enters an empty room (closed world). Subsequently 2 18 exits the room.

In this scenario, the event of 2 16 entering the room, triggers the unattended

package alert as the bag’s owner is no longer in its vicinity. However, when 2 18 ap-
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pears, based on the closed world (priority level 3) rules, the system is able to conclude

φ[equal(2 16, 2 18)] = DT3 and therefore it also concludes φ[unattended(2 17, 1783)] =

DF3, i.e. the bag is not unattended with high confidence.

4.6.2 Complexity

Traditional default logics are computationally intractable. In traditional de-

fault logic, inferences can only be made if they are consistent with the current knowl-

edge base. Consistency checks in default logics are a primary source of intractability

and are required because the traditional theory does not permit inconsistent infor-

mation to persist. In our framework, however, since the truth values are really only

an agent’s belief state about the world, we relax the consistency condition and allow

for seemingly contradictory information to persist. Our framework therefore avoids

explicit consistency checks.

Another source of intractability for traditional default logics is the method of

choosing a consistent set of propositions entailed by the default theory from the

set of all its extensions. Regardless of what technique is adopted to achieve this,

enforcing the consistency constraint requires one to generate and inspect all possible

extensions of the default theory. Note, given n defaults, there are potentially n!

extensions that need to be examined. We avoid this source of intractability, again,

by relaxing the consistency constraint and believing everything our theory tells us

(albeit with different degrees of belief). The effect this achieves is that different

extensions of our default theory are collapsed into a single solution. This makes
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sense because we treat our default rules as different sources of information, none

of which can be completely discarded, and combine them in an information centric

manner. A more disciplined and formal analysis of the complexity of the proposed

theory is part of our future work.

4.7 Summary

The problem of identity maintenance is a very important problem in visual

surveillance. Many activities that we wish to recognize in surveillance video depend,

in some ways, upon the identities of the individuals involved, and therefore have to

account for the uncertainty in reasoning about them. Traditionally, identity mainte-

nance has relied solely on appearance matching, however it is extremely important

to take into account context and cues provided by certain self-identifying actions to

augment reasoning. This work is an attempt to provide a framework to do just that.

The development of this framework has been heavily influenced by human reasoning.

We believe human reasoning is characterized, among other things, by nonmonotonic-

ity, qualitative belief gradation and prioritization. We have attempted to capture

these traits in the proposed theory.
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Chapter 5

Top-Down, Bottom-Up Reasoning for Occlusion Handling

5.1 Introduction

Automated visual surveillance systems require the capacity to detect and per-

sistently track objects from their point of entry into the field of regard of the cameras,

to their point of exit. This is, however, an extremely difficult task as object tracks

are often lost due to occlusions by static structures in the scene or interactions

with other tracked objects. Figure 5.1 shows individual 0 and individual 1 disap-

pearing from view and subsequently individual 3 appearing in view from behind

an occlusion. A persistent tracking system should be able to determine whether

individual(3) = individual(0) or individual(3) = individual(1) and resume track-

ing. Moreover, if multiple individuals interact, then regardless of what goes on

during the interaction event, when the individuals separate out, the system should

be able to correctly establish identity of all individuals involved.

Traditionally, the problem of identity maintenance after occlusions has been

handled by appearance matching. The basic premise in such approaches is that if

two individuals appear similar to each other than they must be equal, while if they

appear dissimilar, then they must be not equal. However, it is additionally possible

to employ context based cues to perform identity maintenance. For example, in

Figure 5.1, individual 3 drops a bag after emerging from the occlusion. Under certain
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Figure 5.1: Sequence of images showing individual 0 and 1 disappearing from view

and 3 subsequently appearing from behind an occlusion

circumstances, it might be possible to conclude that individual(3) = individual(1)

based on the fact both of them are carrying a similar looking bag. However, it is

generally difficult to detect that either of 0 or 1 was carrying a bag. The fact that 3

was carrying a bag would be discovered first (e.g. through background subtraction)

because a “bag-like” object, 4, splits from 3. Given this information, and assuming

that the bag 4 did not change hands during the short visibility gap, searching for

the image of bag 4 in the archived images of 0 and 1 can lead us to conclude that

individual(3) = individual(1).

In most vision systems the flow of information is usually bottom-up. The

low level computer vision routines are run first to gather information which is then

provided to high level reasoning routines. However, the situation described above

requires information to flow top down. The reasoning module has to understand

that there exists a deficit of information (perhaps because appearance matching by

itself was unable to distinguish between the individuals in Figure 5.1) and given

that 3 was carrying a bag, try to actively search archival video for the presence of a

bag in images of individuals 0 or 1. This example captures the general problem of
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context driven image analysis that we address here.

In chapter 4 and [81], we described a system to perform identity maintenance

across possibly large visibility gaps by employing, in addition to traditional appear-

ance matching, several context based cues. We proposed a multivalued default logic

(MVDL) framework in which these cues were regarded as different sources of infor-

mation regarding the truth value of a given equality statement and were integrated

in an information centric manner. This system recognized the occurrence of low

level “atomic” events from the input video and provided this information to the

high level MVDL reasoning framework where identity decisions were made based on

low level observations. The flow of information was strictly bottom-up.

Here, we describe a system that treats occlusions and object interactions as

closed world events and uses the MVDL framework to explicitly reason about object

identities upon re-appearance. Specifically our contribution is the use of the high

level reasoning framework to actively resolve states representing contradictions or

lack of information regarding equality of individuals, by providing control feedback,

and driving low level image processing modules.

5.2 Overview

Persistent tracking systems have to contend with two kinds of events. The

first kind is when a tracked object is occluded by a static scene structure such

as a tree or a pillar and the second kind is when two or more tracked objects

interact, visually merging into one. When multiple tracked objects interact, our
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system does not attempt to separate out the individual objects that make up the

merged region. It, instead, maintains in its knowledge base that, for the duration

of the interaction event, the region being tracked is composed of multiple objects.

Henceforth, occlusions caused both by static structures in the scene as well as object

interactions will be collectively referred to as occlusion events.

As mentioned earlier, in addition to appearance matching, there exist several

identifying cues that can provide information about an individual’s identity. Knowl-

edge about these cues and object behavior is encoded in our system as rules in a

logic programming language. Since this knowledge represents behavior of objects

in a real world, it can never be definite and completely correct. We therefore em-

ploy default logic (which is the core of the MVDL framework) as the language to

specify these rules, which provides our framework the important property of non-

monotonicity (the property of retracting or disbelieving old beliefs upon acquisition

of new information). Default rules capture information that are “true by default”

or “generally true” but may cease to be true in the future.

The MVDL framework bestows upon the system, in addition to the property

of nonmonotonicity, the capacity to qualify identity decisions with a qualitative

confidence measure. Identity rules included in the MVDL framework are applied to

reason about object identity when an object appears from occlusion events. These

rules model occlusion events as closed world spaces; meaning that an object that

enters an occlusion event should (with exceptions) exit from it eventually. Default

logic models such assumptions while maintaining the possibility for it to be incorrect.

If only a single object is involved in an occlusion event, such as an individual walking
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behind a tree and later reappearing, the uncertainty involved in making an identity

decision is the least (as compared to scenarios where multiple objects are involved)

and therefore, such a default rule will have a very high priority (or certainty) in the

MVDL framework. This is in contrast to a situation where multiple individuals are

involved in an occlusion event and the system is forced to establish identity solely

on the basis of appearance matching. Identity decisions made on the basis of solely

appearance matching typically have the lowest priority.

Unfortunately, however, it is often the case that the only information the

system has access to is the appearance matching score. In such cases, the system

might quickly enter a state of no information or contradiction regarding identity of

a few individuals. To emerge from this state, the system tries to actively search for

specific objects of interest that will make identification more certain. The system

is composed of two layers, with the low level module performing object detection,

local low level tracking and fact generation, and the high level module responsible

for identity maintenance and providing control feedback to the low level module for

conducting searches focused on archival video.

5.3 Low Level Module

We formulate various rules for object equality and inequality based on our

knowledge about scene structure and behavior of humans, vehicles and packages.

These rules need to be applied to logical facts. Logical facts are generated by the

system by taking in video and recognizing the occurrence of certain ground atomic
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events, such as an individual entering or exiting the field of view or dropping or

picking up a package.

5.3.1 Object Detection and Local Tracking

Surveillance setups typically consist of cameras that are either fixed and ob-

serve the same scene at all times or cameras that can perform pan-tilt-zoom oper-

ations. Assuming static surveillance cameras gives us the advantage of being able

to employ binary information obtained from background subtraction to detect ob-

jects of interest. We employ a background subtraction algorithm proposed in [55].

Tracking of these objects is performed by detecting foreground “blobs” in each frame

and then matching them across consecutive frames using their color and spatial in-

formation. Across consecutive frames, these blobs could either continue to persist,

merge with or split from other blobs, appear or disappear. We are exclusively con-

cerned with tracking only three kinds of objects - human, vehicles and packages (as

opposed to tracking an arbitrary object like a hand). Due to a variety of reasons,

background subtraction routinely introduces artifacts that can get tracked and er-

roneously labelled as objects of interest. Filtering out such noisy data is important

for any tracking system; we do this by observing whether a blob continues to persist

across several frames or not.

While this form of temporal filtering culls out isolated blobs that might ap-

pear due to background subtraction errors, it does not remove regions comprised

of pixels that deviate from the background model due to physical interactions be-
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tween humans, vehicles, or packages and the scene. Examples are reflections and

shadows that appear disconnected from the shadow-casting object. Filtering out of

these artifacts can be assisted by the application of knowledge about the behavior

of humans, vehicles and packages.

5.3.2 Fact Generation

Facts are generated when certain atomic events occur in the video including

when objects appear, disappear, merge and split. These facts are annotated with

named regions in the scene where they occur. These regions are manually labelled

at setup. This helps us to generate relevant facts when an object interacts with that

region in the image. From the point of view of tracking, we are primarily interested

in regions in the image where we expect objects to appear and disappear from view.

These regions typically correspond to scene boundaries, visible portals (doors to

open or closed worlds) and static structures in the scene which could potentially

occlude tracked objects. Objects could also appear or disappear from the scene in

areas other than the ones listed above. This usually happens when objects merge

with or split from other tracked objects.

Objects can be occluded by static structures in the scene such as trees, pil-

lars, boards etc. by moving behind them. We consider these occlusions to be

closed worlds and expect that the objects will eventually emerge from them. An

object disappearing into a closed world will cause the system to generate a fact

disappear(X, Closed World, T ) where X is the object identifier, Closed World is

86



the identifier for the occlusion region in question and T is the time of the event.

Similarly when an object appears from a closed world, a corresponding appear fact

will be generated. Tracked object interactions are also regarded as closed worlds

and similar appear and disappear facts are generated when an object merges with

or splits from another object.

Facts are also generated to record appearance matching scores between indi-

viduals observed in video. We employ two kinds of appearance matching algorithms.

The first is a simple color histogram based algorithm. A histogram is constructed

from the color values of the pixels in a segmented object and compared against color

histograms of other objects using the Bhattacharyya distance. The second appear-

ance matching algorithm is more sophisticated and is run using the feedback control

mechanism described in the next subsection.

5.3.3 Control Feedback

When the high level module detects a deficit of information, it directs the low

level module to specifically gather information from certain space-time locales in

the video. We maintain a queue of the previous 300 seconds of video along with

the corresponding tracking data. This information also includes the segmentation

information for each object detected.

Feedback in our system is of three types: (a) tracking back in time (b) specif-

ically searching for an object attached or contained within another object and (c)

matching appearances of two individuals using spatial and color information. If
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the high level module requires tracking backward in time, it sends a “track back”

request to the low level module with the identifier of the object to be tracked and

the time from which the tracking is to be done. We employ a mean-shift [15] based

tracker which is initialized on the object to be tracked at the point it is detected

and run backward in time. A matching score is maintained and analyzed at each

frame to ascertain whether or not the object being tracked is being tracked reliably.

Tracking stops if either the queue of archived frames is exhausted or the matching

score drops below a certain threshold. In either case, the last tracked location is

reported to the high level module.

If continuous tracking back in time is not possible e.g. if the target object itself

is occluded as shown in Figure 5.1, then the high level module sends a “search”

request with the frame number for searching and the identifier for the object of

interest. Searching for an object attached or contained within the image of another

object is performed using the standard cross correlation based hierarchical image

matching algorithm. The search is carried out for 5 frames before and after the

search frame requested by the high level module to avoid erroneous matches as far

as possible.

The high level module can also request a higher complexity appearance match-

ing between two individuals. It does this by sending a “match” request to the low

level module which contains identifiers for both individuals it wants a matching

score for. This appearance matching algorithm is the color path length based ap-

proach [96], which combines color and a geodesic path length measure within a

person’s body to construct a statistical appearance model. Models are compared
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using the Kullback distance. The path length for a pixel is the shortest distance

measured along a path lying within the body, from the head to that pixel. See

Figure 5.2, which displays the paths along which this distance is computed for a

hand pixel. Note that although the Euclidean distance between the hand pixel and

the head is different for the two poses, the geodesic distance stays nearly the same.

Figure 5.2: Figure showing geodesic path length for a hand pixel as measured from

the head for two different poses.

5.4 High Level Module

The primary task of the high level module is to reason about an object’s

identity when it appears from occlusions. It does so both in the bottom-up fashion,

89



by taking input from the low level module and processing it as well as in the top-

down manner, actively seeking information where deemed necessary. Reasoning is

performed by applying predefined identity rules formulated in the MVDL framework

to the set of facts generated by the low level module. When the truth value assigned

to an identity decision is either unknown (u) or undecided (∗1···n), the high level

system determines to see if there exist any contextual cues that it can exploit. If

they do then, it provides control feedback to the low level module and directs it to

collect historical information that will help it emerge from the unknown or undecided

states of belief.

5.4.1 Reasoning about identity

In [81], we employed four identifying cues or traits for reasoning about iden-

tities. These cues are based on the individuals possessions, closed world activity,

knowledge and appearance. We continue to employ these identifying cues, although

in a slightly different manner. In [81], we were primarily concerned with estab-

lishing identity across large visibility gaps, such as a person entering an office, and

later re-appearing, or a person going around the corner into the open world and

re-appearing. Due to the nature of the problem, we were forced to employ cues that

we knew would persist over that gap in time.

For example, the possession based rules state that identity can be verified on

the basis of a person possessing something that only he can possess. So if it were

known that a vehicle belonged to an individual and later another individual was
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⊥

Figure 5.3: Bilattice employed in proposed system.

observed entering that vehicle using a key that he possessed, it was concluded that

the two individuals were equal. We were unable to conclude identity, however, based

on less persistent objects like bags. For example, if an individual was observed to

drop a bag in the scene and disappear from view and after a prolonged period of

time, another individual was observed to appear in the scene and pick up the bag, it

would not make sense to conclude that the two individuals were equal. The second

individual could, for example, be committing a theft. However since here we are

concerned with identity maintenance across occlusions which are relatively short

visibility gaps, we can employ objects like bags to help in establishing identity. This

requires that we make the assumption that bags do not change possession during the

visibility gap. In addition to these four categories of rules, we also employ equality

axioms of reflexivity, transitivity, and symmetry.
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5.4.2 Identity Rules

It should be noted that any rule based on the cues listed above can almost never

be definitive - most of them will be default rules. Also, different cues provide us with

different amounts of information as they deal with varying degrees of uncertainty.

Identity rules are formulated in the MVDL framework with 4 levels of priorities

for defaults. Propositions can therefore assume values taken from the set B =

{u, dt1, df1, ∗1, dt2, df2, ∗2, dt3, df3, ∗3, dt4, df4, ∗4, t, f}. the bilattice for these set of

truth values is shown in figure 5.3. The links shown in dotted lines indicate truth

values for proposition derived from top-down active search of video. We assume

that the definite rules (rules to which we assign truth values t and f) are always

correct and therefore there can never be a contradiction between such rules. This

assumption results in us ignoring the truth value ⊥. Following we provide English

descriptions of rules at each priority level.

Definite Rules: Definite rules are rules to which we assign truth value of

either t or f , (i.e. we have the most confidence in the outcome of these rules).

These rules capture knowledge that is always correct and that cannot be proven

wrong (while most rules are default rules, definite rules act as stopping rules that

terminate the revision of a proposition’s belief state).

It is very hard to state that two individuals are definitely equal based on visual

observation alone. Irrespective of how much information one includes in such rules,

it is always possible to find ways to defeat them. Therefore, in our system we do not

have a single rule that definitely infers equality. However, it is possible to state that
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two individuals are not equal. We do that when we observe them as two distinct

individuals at the same instant of time. We also consider the equality axioms of

reflexivity, transitivity and symmetry to be definite in nature.

Priority Level 4: Priority level 4 rules are those that compare only two

individuals bound by either a closed world event or an identifying object. Occlusions

are regarded as closed world events and therefore, an individual going out of view

behind an occlusion is expected to reappear. We use this to formulate the following

default rule: if we observe an individual enter an occlusion that we believe to be

empty (no other individual is currently occluded there) and at a subsequent time,

exiting it such that no other individual is observed to enter or exit that occlusion

in the time between, then the two individuals are identical. If equality between two

individuals is inferred using this rule, it will continue to hold as long as the system

has no reason to believe that the occluded region was not empty during the period

in question. If at anytime an individual that is not accounted for emerges from the

occlusion, all identity assertions made until that point in time based on this rule are

suspect and have to be retracted.

Other rules in this category are rules that state that if we observe an individual

enter a occlusion and if, while we believe he is still behind, we observe another

individual elsewhere in the scene, then these two individuals cannot be equal to

each other. Possession based rules also fall in this priority level. An individual can

be said to be equal to another individual across an occlusion event if both of them

are observed to carry a similar appearing object.

Priority Level 3: Priority level 3 rules are basically the possession based

93



rules mentioned above. The only difference is that if identity is established based

on actively searching for possession of a bag by way of top-down feedback (both

searching and tracking back in time), we assign to it a truth value of priority level

3. The reason for placing feedback based possession rules one level below pure

possession rules is because searching for similar looking objects attached to images

of individuals is a less certain process. Our confidence in establishing identity based

on what we think is a bag being carried by an individual is lower compared to

knowing for certain that a bag was indeed carried. These rules are invoked only to

resolve belief states of u, ∗1 or ∗2.

Priority Levels 2: Appearance matching based on color path length is as-

signed level 2. Appearance matching rules in general state that if two individuals

appear similar, then they must be equal, while if the do not appear similar, then

they must be not equal. Color path length based rules, while more accurate in

matching appearance, are computationally expensive and are invoked by the high

level module only when it is not possible to distinguish individuals based on the

simple color histogram based appearance matching i.e. they are only used to resolve

∗1 or u belief states.

Priority Level 1: Rules based on color histogram based appearance matching

are assigned priority level 1 as these have the least information.
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5.5 Results

Our system has been implemented as a multi-threaded, C++ application. A

Prolog reasoning engine has been embedded within this C++ application. Multival-

ued default reasoning is implemented using meta-predicates provided by Prolog. The

application consists of two kinds of threads: the camera thread (the low level mod-

ule), which take input from the camera and detects “atomic” events (like entering

a door or picking up a bag) and a reasoning thread (high level module), responsible

for the high level multivalued default reasoning. The camera thread first performs

background subtraction and local tracking. It then detects “atomic” events and

syntactically structures them as Prolog facts. The reasoning thread, when first cre-

ated, starts the Prolog engine and initializes it by inserting into its knowledge base

all the predefined rules from the default theory. The reasoning thread is subse-

quently evoked every few seconds. Every time it runs, it assimilates Prolog facts

generated by the camera thread and inserts them into the Prolog engine’s knowledge

base. Also, for every human observed in the video, it reasons about their identity

by applying all applicable equality rules. If it detects that any identity statement

is in the “unknown” or any of the “undecided” states, it attempts to actively seek

information to emerge from that state. All of the feedback controlled modules are

run in a separate thread so they do not disturb the normal bottom-up functioning

of the system.
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Figure 5.4: Sequence of images showing individual 0 and 1 disappearing from view

and 2 subsequently appearing from behind an occlusion

5.5.1 Scenarios

We describe the scenarios used to test the system.

Scenario 7 (See Figure 5.4). Two individuals 0 and 1 walk behind an occlusion.

Individual 0 is wearing a blue shirt and black pants while individual 1 is wearing a

black shirt and a blue pants. Individual 2 appears from the occlusion subsequently.

In scenario 7, the overall color distribution between the two individuals 0 and

1 is similar and therefore, the level 1 rules, based on the color histogram based ap-

pearance matching, compute φ[equal(2, 0)] = dt1 and φ[equal(2, 1)] = dt1. However,

the system is also able to prove that φ[equal(0, 1)] = f and therefore by transitivity

is forced to assign φ[equal(2, 0)] = ∗1 and φ[equal(2, 1)] = ∗1. Since the belief states

of the identity statements is ∗1, the high level module directs the system to use

the level 2 appearance matching algorithm which employs color as well as spatial

distribution of the pixels to match appearances. With this information, the system

is now able to correctly conclude φ[equal(2, 1)] = dt2 and φ[equal(2, 0)] = df2.

Scenario 8 (See Figure 5.5). Two individuals 0 and 1 approach each other and their
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Figure 5.5: Figure described in scenario 2. Top row: Events detected bottom-up.

Bottom row: Tracking back of bag

views merge. Subsequently the individuals separate out and are now labelled 2 and

3 by the system. At this point, bag 4 is detected on the ground where 0 and 1 had

merged. 3 exits the scene while 2 picks up bag 4 and exits the scene

In this scenario too as in scenario 7, the system concludes φ[equal(3, 0)] = ∗1,

φ[equal(3, 1)] = ∗1, φ[equal(2, 0)] = ∗1 and φ[equal(2, 1)] = ∗1. Application of

level 2 rules does not help in this case, as both individuals are dressed alike and

the system concludes φ[equal(3, 0)] = ∗2,φ[equal(3, 1)] = ∗2, φ[equal(2, 0)] = ∗2

and φ[equal(2, 1)] = ∗2. However when individual 2 picks up bag 4, the high level

module can now potentially apply possession based level 3 set of rules. Therefore,

it directs the low level module to track the bag backward in time from the point

when it was first detected. The bag is correctly tracked back to individual 0 and

the system concludes φ[equal(2, 0)] = dt3.

Scenario 9 (See Figure 5.1). Two similar looking individuals 0 and 1 disappear

behind an occlusion and are completely lost sight of. Subsequently, individual 3
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appears from the occlusion and drops bag 4 on the ground.

As in the previous scenario, in this scenario too, since individuals 0 and 1

appear similar, both appearance matching cues are unable to assign to the identity

statements any belief state greater than ∗2. However, at the instant the bag 4 is

detected, the high level module sends a search request to the low level module. The

object to be searched for is the bag 4 and the objects to be searched within are

images of 0 and 1. The system correctly identifies 1 as carrying the bag and revises

φ[equal(3, 1)] from ∗2 to dt3.

5.6 Discussions and Summary

This chapter describes the use of context driven top-down image analysis for

establishing identity of individuals across short visibility gaps. Use of the MVDL

framework allows the system to use the degree of information of various cues to

not only combine them in an information theoretic manner but to also detect sit-

uations where more information is needed and thus to drive the low level modules

Figure 5.6: Typical tracking failure with conventional mean shift tracker. White

arrow (manually inserted) shows correct track
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and actively seek information. Maintaining identity of individuals across occlusions

is important for any surveillance application. Any system that employs conven-

tional tracking algorithms will fail to handle situations such as those described in

the scenarios in Section 5.5 (also see Figure 5.6). By giving the system the capacity

to make identity decisions based on any available context, we give it the ability to

handle some of these difficult cases. Understandably, not all occlusion events will

be successfully handled by our system and most identity decisions will remain in

“unknown” or “undecided” states. However, the fact that there exists a deficit of in-

formation will be explicitly known. This opens up possibilities for constructing more

complex control feedback algorithms that can be used to extract more information

from archival video that will help disambiguate.
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Chapter 6

Bilattice based Logical Reasoning for Human Detection

6.1 Introduction

The primary objective of an automated visual surveillance system is to observe

and understand human behavior and report unusual or potentially dangerous activ-

ities/events in a timely manner. Realization of this objective requires at its most

basic level the capacity to robustly detect humans from input video. Human detec-

tion, however, is a difficult problem. This difficulty arises due to wide variability

in appearance of clothing, articulation, view point changes, illumination conditions,

shadows and reflections, among other factors. While detectors can be trained to

handle some of these variations and detect humans individually as a whole, their

performance degrades when humans are only partially visible due to occlusion, ei-

ther by static structures in the scene or by other humans. Part based detectors

are better suited to handle such situations because they can be used to detect the

un-occluded parts. However, the process of going from a set of partial body part

detections to a set of scene consistent, context sensitive, human hypotheses is far

from trivial.

Since part based detectors only learn part of the information from the whole

human body, they are typically less reliable and tend to generate large numbers of

false positives. Occlusions and local image noise characteristics also lead to missed
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Figure 6.1: Figure showing valid human detections and a few false positives.

detections. It is therefore important to not only exploit contextual, scene geometry

and human body constraints to weed out false positives, but also be able to explain

as many valid missing body parts as possible to correctly detect occluded humans.

Figure 6.1 shows a number of humans that are occluded by the scene boundary

as well as by each other. Ideally, a human detection system should be able to

reason about whether a hypothesis is a human or not by aggregating information

provided by different sources, both visual and non-visual. For example, in figure 6.1,

the system should reason that it is likely that individual 1 is human because two

independent sources, the head detector and the torso detector report that it is
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a human. The absence of legs indicates it is possibly not a human, however this

absence can be justified due to their occlusion by the image boundary. Furthermore,

hypothesis 1 is consistent with the scene geometry and lies on the ground plane.

Since the evidence for it being human exceeds evidence against, the system should

decide that it is indeed a human. Similar reasoning applies to individual 4, only

its legs are occluded by human 2. Evidence against A and B (inconsistent with

scene geometry and not on the ground plane respectively) exceeds evidence in favor

of them being human and therefore A and B should be rejected as being valid

hypotheses.

This chapter proposes a logic based approach that reasons and detects humans

in the manner outlined above. In this framework, knowledge about contextual cues,

scene geometry and human body constraints is encoded in the form of rules in a logic

programming language and applied to the output of low level parts based detectors.

Positive and negative information from different rules, as well as uncertainties from

detections are integrated within the bilattice framework. This framework also gener-

ates proofs or justifications for each hypothesis it proposes. These justifications (or

lack thereof) are further employed by the system to explain and validate, or reject

potential hypotheses. This allows the system to explicitly reason about complex

interactions between humans and handle occlusions. These proofs are also available

to the end user as an explanation of why the system thinks a particular hypothesis

is actually a human. We employ a boosted cascade of gradient histograms based

detector to detect individual body parts.

We have applied this framework to analyze the presence of humans in static
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images and have evaluated it on the ‘USC pedestrian set B’ [93], USC’s subset of

the CAVIAR dataset [1], that includes images of partially occluded humans (This

dataset will henceforth be referred to in this chapter as the USC-CAVIAR dataset).

We have also evaluated it on a dataset we collected on our own. In this chapter, we

refer to this dataset as Dataset-A.

6.2 Reasoning Framework

To perform the kind of reasoning outlined in section 6.1, one has to specify

rules that allow the system to take visual input from the low level detectors and

explicitly infer whether or not there exists a human at a particular location. For

instance, if we were to employ a head, torso and legs detector, then a possible rule

would be:

human(X, Y, S) ←− head(Xh, Yh, Sh),

torso(Xt, Yt, St),

legs(Xl, Yl, Sl),

geometry constraint(Xh, Yh, Sh, Xt, Yt, St, Xl, Yl, Sl),

compute center(Xh, Yh, Sh, Xt, Yt, St, Xl, Yl, Sl, X, Y, S).

This rule captures the information that if the head, torso and legs detectors were

to independently report a detection at some location and scale (by asserting facts

head(Xh, Yh, Sh), torso(Xt, Yt, St), legs(Xl, Yl, Sl) respectively), and these coordi-

nates respected certain geometric constraints, then one could conclude that there

exists a human at that location and scale. A logic programming system would search

103



the input facts to find all combinations that satisfy the rule and report the presence

of humans at those locations. Note that this rule will only detect humans that are

visible in their entirety. Similar rules can be specified for situations when one or

more of the detections are missing due to occlusions or other reasons. There are,

however, some problems with a system built on such rule specifications:

1. Traditional logics treat such rules as binary and definite, meaning that

every time the body of the rule is true, the head will have to be true. There is no

way of saying for example that if the body is true, then only in some cases, the head

of the rule holds. In other words, we need to be able to assign some uncertainty

values to the rules that captures its reliability.

2. Traditional logics treat facts as binary. We would like to take as input,

along with the detection, the uncertainty of the detection also and integrate it into

the reasoning framework

3. Traditional logic programming does not have support for explicit negation

in the head. There is no easy way of specifying a rule like:

¬human(X, Y, S)←¬scene consistent(X, Y, S).

and integrating it with positive evidence. Such a rule says that a hypothesis is not

a human if it is not consistent with the geometry of the scene.

4. Such a system will not be scalable. We would have to specify one rule

for every situation we foresee. If we would like to include in our reasoning the

output from another detector, say a hair detector to detect the presence of hair

and consequently a head, we would have to re-engineer all our rules to account for
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new situations. We would like a framework that allows us to directly include new

information without re-engineering.

5. Finally, since we would like our reasoning framework to allow us to specify

multiple rules, each contributing some positive or negative information about a

particular hypothesis, we need a way of combining these sources of information into

a single answer. Traditional logic programming does not have support for such

integration of multiple evidence.

6.2.1 Bilattice Theory

Bilattices are algebraic structures introduced by Ginsberg [35] as a uniform

framework within which a number of diverse applications in artificial intelligence

can be modelled. In [3], it was pointed out that bilattices serve as a foundation

of many areas such as logic programming, computational linguistics, distributed

knowledge processing, reasoning with imprecise information and fuzzy set theory.

In our application, the automatic human detection system is looked upon as a passive

rational agent capable of reasoning under uncertainty. Uncertainties assigned to the

rules that guide reasoning, as well as detection uncertainties reported by the low

level detectors, are taken from a set structured as a bilattice. These uncertainty

measures are ordered along two axes, one along the source’s1 degree of information

and the other along the agent’s degree of belief. As we will see, this structure

1A single rule applied to a set of facts is referred to as a source here. There can be multiple

rules deriving the same proposition (both positive and negative forms of it) and therefore we have

multiple sources of information.
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allows us to address all of the issues raised in the previous section and provides a

uniform framework which not only permits us to encode multiple rules for the same

proposition, but also allows inference in the presence of contradictory information

from different sources.

Definition 11 (Lattice). A lattice is a set L equipped with a partial ordering ≤

over its elements, a greatest lower bound (glb) and a lowest upper bound (lub) and

is denoted as L = (L,≤) where glb and lub are operations from L× L →L that are

idempotent, commutative and associative. Such a lattice is said to be complete, iff

for every finite nonempty subset M of L, there exists a unique lub and glb.

Definition 12 (Bilattice [35]). A bilattice is a triple B = (B,≤t,≤k), where B is

a nonempty set containing at least two elements and (B,≤t), (B,≤k) are complete

lattices.

Informally a bilattice is a set, B, of uncertainty measures composed of two

complete lattices (B,≤t) and (B,≤k) each of which is associated with a partial

order ≤t and ≤k respectively. The ≤t partial order (agent’s degree of belief) indi-

cates how true or false a particular value is, with f being the minimal and t being

the maximal while the ≤k partial order indicates how much is known about a par-

ticular proposition. The minimal element here is ⊥ (completely unknown) while

the maximal element is > (representing a contradictory state of knowledge where a

proposition is both true and false). The glb and the lub operators on the ≤t partial

order are ∧ and ∨ and correspond to the usual logical notions of conjunction and

distinction, respectively. The glb and the lub operators on the ≤k partial order are
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Figure 6.2: The bilattice square ([0, 1]2,≤t,≤k)

⊗ and ⊕, respectively, where ⊕ corresponds to the combination of evidence from

different sources or lines of reasoning while ⊗ corresponds to the consensus operator.

A bilattice is also equipped with a negation operator ¬ that inverts the sense of the

≤t partial order while leaving the ≤k partial order intact and a conflation operator

− which inverts the sense of the ≤k partial order while leaving the ≤t partial order

intact.

The intuition is that every piece of knowledge, be it a rule or an observation

from the real world, provides different degrees of information. An agent that has

to reason about the state of the world based on this input, will have to translate

107



the source’s degree of information, to its own degree of belief. Ideally, the more

information a source provides, the more strongly an agent is likely to believe it (i.e

closer to the extremities of the t-axis) . The only exception to this rule being the

case of contradictory information. When two sources contradict each other, it will

cause the agent’s degree of belief to decrease despite the increase in information

content. It is this decoupling of the sources and the ability of the agent to reason

independently along the truth axis that helps us address the issues raised in the

previous section. It is important to note that the line joining ⊥ and > represents

the line of indifference. If the final uncertainty value associated with a hypothesis

lies along this line, it means that the degree of belief for and degree of belief against

it cancel each other out and the agent cannot say whether the hypothesis is true or

false. Ideally the final uncertainty values should be either 〈0, 1〉 or 〈1, 0〉, but noise

in observation as well as less than completely reliable rules ensure that this is almost

never the case. The horizontal line joining t and f is the line of consistency. For

any point along this line, the degree of belief for will be exactly equal to 1-degree of

belief against and thus the final answer will be exactly consistent.

Definition 13 (Rectangular Bilattice [69]). Let L = (L,≤L) and R = (R,≤R) be

two complete lattices. A rectangular bilattice is a structure L¯R = (L×R,≤t,≤k),

where for every x1, y1 ∈ L and x2, y2 ∈ R,

1. 〈x1, x2〉 ≤t 〈y1, y2〉 ⇔ x1 ≤L y1 and x2 ≥R y2,

2. 〈x1, x2〉 ≤k 〈y1, y2〉 ⇔ x1 ≤L y1 and x2 ≤R y2,

An element 〈x1, x2〉 of the rectangular bilattice L¯R may be interpreted such
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that x1 represents the amount of belief for some assertion while x2 represents the

amount of belief against it. If we denote the glb and lub operations of complete

lattices L = (L,≤L), and R = (R,≤R) by ∧L and ∨L, and ∧R and ∨R respectively,

we can define the glb and lub operations along each axis of the bilattice L ¯ R as

follows:

〈x1, x2〉 ∧ 〈y1, y2〉 = 〈x1 ∧L y1, x2 ∨R y2〉,

〈x1, x2〉 ∨ 〈y1, y2〉 = 〈x1 ∨L y1, x2 ∧R y2〉,

〈x1, x2〉 ⊗ 〈y1, y2〉 = 〈x1 ∧L y1, x2 ∧R y2〉,

〈x1, x2〉 ⊕ 〈y1, y2〉 = 〈x1 ∨L y1, x2 ∨R y2〉, (6.1)

Of interest to us in our application is a particular class of rectangular bilattices

where L andR coincide. These structures are called squares and L¯L is abbreviated

as L2. Since detection likelihoods reported by the low level detectors are typically

normalized to lie in the [0,1] interval, the underlying lattice that we are interested

in is L = ([0, 1],≤). The bilattice that is formed by L2 is depicted in figure 6.2.

Each element in this bilattice is a tuple with the first element encoding evidence

for a proposition and the second encoding evidence against. In this bilattice, the

element f (false) is denoted by the element 〈0, 1〉 indicating, no evidence for but

full evidence against, similarly element t is denoted by 〈1, 0〉, element ⊥ by 〈0, 0〉

indicating no information at all and > is denoted by 〈1, 1〉. To fully define glb and

lub operators along both the axes of the bilattice as listed in equations 6.1, we need to

define the glb and lub operators for the lattice ([0, 1],≤). A popular choice for such

operators is typically triangular-norms and triangular-conorms. Triangular norms
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and conorms were introduced by Schweizer and Sklar [77] to model the distances in

probabilistic metric spaces. Triangular norms are used to model the glb operator

and the triangular conorm to model the lub operator within each lattice.

Definition 14 (triangular norm). A mapping

T : [0, 1]× [0, 1] → [0, 1]

is a triangular norm (t-norm) iff it is symmetric, associative, non-decreasing in each

argument and T (a, 1) = a, ∀a ∈ [0, 1]. In other words, any t-norm T satisfies the

properties:

- Symmetry: T (x, y) = T (y, x),∀x, y ∈ [0, 1]

- Associativity: T (x, T (y, z)) = T (T (x, y), z),∀x, y, z ∈ [0, 1].

- Monotonicity:T (x, y) ≤ T (x′, y′)ifx ≤ x′and y ≤ y′

- One identity: T (x, 1) = x,∀x ∈ [0, 1].

Definition 15 (triangular conorm). A mapping

S : [0, 1]× [0, 1] → [0, 1]

is a triangular conorm (t-conorm) iff it is symmetric, associative, non-decreasing in

each argument and S(a, 0) = a, ∀a ∈ [0, 1]. In other words, any t-conorm S satisfies

the properties:

- Symmetry: S(x, y) = S(y, x), ∀x, y ∈ [0, 1]

- Associativity: S(x,S(y, z)) = S(S(x, y), z),∀x, y, z ∈ [0, 1].

- Monotonicity:S(x, y) ≤ S(x′, y′)ifx ≤ x′and y ≤ y′

- Zero identity: S(x, 0) = x,∀x ∈ [0, 1].

if T is a t-norm, then the equality S(a, b) = 1−T (1−a, 1−b) defines a t-conorm
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and we say S is derived from T . There are number of possible t-norms and t-conorms

one can choose. In our application, for the underlying lattice, L = ([0, 1],≤), we

choose the t-norm such that T (x, y) ≡ x ∧L y = xy and consequently choose the

t-conorm as S(x, y) ≡ x∨L y = x+ y−xy. Based on this, the glb and lub operators

for each axis of the bilattice B can then be defined as per equation 6.1.
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6.2.2 Inference

Inference in bilattice based reasoning frameworks is performed by computing

the closure over the truth assignment.

Definition 16 (Truth Assignment). Given a declarative language L, a truth assign-

ment is a function φ : L → B where B is a bilattice on truth values or uncertainty

measures.

Definition 17 (Closure). Let K be the knowledge base and φ be a truth assignment,

labelling each every formula k ∈ K, then the closure over φ, denoted cl(φ) is the

truth assignment that labels information entailed by K.

For example, if φ labels sentences {p, q ← p} ∈ K as 〈1, 0〉 (true); i.e.

φ(p) = 〈1, 0〉 and φ(q ← p) = 〈1, 0〉, then cl(φ) should also label q as 〈1, 0〉 as

it is information entailed by K. Entailment is denoted by the symbol ‘|=’ (K |= q).

If S ⊂ L is a set of sentences entailing q, then the uncertainty measure to be

assigned to the conjunction of elements of S is

∧
p∈S

cl(φ)(p) (6.2)

This term represents the conjunction of the closure of the elements of S2. It is

important to note that this term is merely a contribution to the final uncertainty

measure of q and not the final uncertainty measure itself. The reason it is merely

a contribution is because there could be other sets of sentences S that entail q

2Recall that ∧ and ∨ are glb and lub operators along the ≤t ordering and ⊗ and ⊕ along ≤k

axis.
∧

,
∨

,
⊗

,
⊕

are their infinitary counterparts such that
⊕

p∈S p = p1 ⊕ p2 ⊕ · · · and so on
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representing different lines of reasoning (or, in our case, different rules). The contri-

butions of these sets of sentences need to be combined using the ⊕ operator along

the information (≤k) axis. Also, if the expression in 6.2 evaluates to false, then

its contribution to the value of q should be 〈0, 0〉 (unknown) and not 〈0, 1〉 (false).

These arguments suggest that the closure over φ of q is

cl(φ)(q) =
⊕

S|=q

⊥ ∨[
∧
p∈S

cl(φ)(p)] (6.3)

where ⊥ is 〈0, 0〉. This is however, only part of the information. We also

need to take into account the set of sentences entailing ¬q and aggregating this

information yields the following expression

cl(φ)(q) =
⊕

S|=q

⊥ ∨[
∧

p∈S

cl(φ)(p)]⊕ ¬
⊕

S|=¬q

⊥ ∨[
∧

p∈S

cl(φ)(p)] (6.4)

For more details see [35]

Figure 7.1 shows an example illustrating the process of computing the closure

as defined above by combining evidence from three sources. In this example, the final

uncertainty value computed is 〈0.4944, 0.72〉. This indicates that evidence against

the hypothesis at (25,95) at scale 0.9 exceeds evidence in favor of and, depending

on the final threshold for detection, this hypothesis is likely to be rejected.

6.2.3 Negation

Systems such as this typically employ different kinds of negation. One kind

of negation that has already been mentioned earlier is ¬. This negation flips the
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bilattice along the ≤t axis while leaving the ordering along the ≤k axis unchanged.

Another important kind of negation is negation by failure to prove, denoted by not.

not(A) succeeds if A fails. This operator flips the bilattice along both the ≤t axis

as well as the ≤k axis. Recall that − was defined as the conflation operator in

section 6.2. Therefore, φ(not(A)) = ¬ − φ(A). In other words, if A evaluates to

〈0, 0〉, then not(A) will evaluate to 〈1, 1〉. This operator is important when we want

to detect the absence of a particular body part for a hypothesis.

6.3 Detection System

Rules can now be defined within this bilattice framework to handle complex

situations, such as humans being partially occluded by static structures in the scene

or by other humans. Each time one of the detectors detects a body part, it asserts a

logical fact of the form φ(head(x, y, s)) = 〈α, β〉, where α is the measurement score

the detector returns at that location and scale in the image and, for simple detectors,

β is 1 − α . Rules are specified similarly as φ(human(X, Y, S) ← · · · ) = 〈γ, δ〉. γ

and δ are learnt as outlined in subsection 7.3.2. We start by initializing a number

of initial hypotheses based on the low level detections. For example, if the head

detector detects a head and asserts fact φ(head(75, 225, 1.25)) = 〈0.95, 0.05〉3, the

system records that there exists a possible hypothesis at location (75,225) at scale

1.25 and submits the query human(75, 225, 1.25) to the logic program where support

for and against it is gathered and finally combined into a single answer within the

3Note that the coordinates here are not the centers of the body parts, but rather the centers of

the body
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bilattice framework. Projecting the final uncertainty value onto the 〈0, 1〉 − 〈1, 0〉

axis, gives us the final degree of belief in the hypothesis. We will now provide English

descriptions of some of the rules employed in our system.

6.3.1 Rule Specification

Rules in such systems can be learnt automatically; however, such approaches

are typically computationally very expensive. We manually encode the rules while

automatically learning the uncertainties associated with them. The rules fall into

three categories: Detector based, Geometry based and Explanation based

Detector based: These are the simplest rules that hypothesize that a human

is present at a particular location if one or more of the detectors detects a body part

there. In other words, if a head is detected at some location, we say there exists a

human there. Note that this rule, along with all the others, is not a definite rule and

has uncertainty (say 〈α, β〉)associated with it, meaning that if a head is detected,

then α is the likelihood that it is indeed a human. There are four such rules, one

each for the head,torso, legs and fullbody based detectors.

Geometry based: Geometry based rules validate or reject human hypotheses

based on geometric and scene information. This information is entered a priori in

the system at setup time. We employ information about expected height of people

and regions of expected foot location. The expected image height rule is based on

ground plane information and anthropometry. Fixing a gaussian at an adult human’s

expected physical height allows us to generate scene consistency likelihoods for a
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particular hypothesis given its location and size. The expected foot location region

is a region demarcated in the image outside of which no valid feet can occur and

therefore serves to eliminate false positives.

Explanation based: Explanation based rules are the most important rules

for a system that has to handle occlusions. The idea here is that if the system does

not detect a particular body part, then it must be able to explain its absence for

the hypothesis to be considered valid. If it fails to explain a missing body part,

then it is construed as evidence against the hypothesis being a human. Absence

of body parts is detected using logic programming’s ‘negation as failure’ operator

(not). not(A) succeeds when A evaluates to 〈0, 0〉 as described in section 6.2.3. A

valid explanation for missing body part could either be due to occlusions by static

objects or due to occlusions by other humans.

Explaining missed detections due to occlusions by static objects is straightfor-

ward. At setup, all static occlusions are marked. Image boundaries are also treated

as occlusions and marked as shown in figure 6.1(black area at bottom of figure). For

a given hypothesis, the fraction of overlap of the missing body part with the static

occlusion is computed and reported as the uncertainty of occlusion. The process

is similar for occlusions by other human hypotheses, with the only difference being

that, in addition to the degree of occlusion, we also take into account the degree of

confidence of the hypothesis that is responsible for the occlusion, as illustrated in

117



the rule below:

human(X, Y, S) ← not(torso(Xt, Yt, St),

torso body consistent(X,Y, S, Xt, Yt, St)),

torso occluded(X, Y, S, Xo, Yo, So),

Yo > Y, human(Xo, Yo, So). (6.5)

This rule will check to see if human(X, Y, S)’s torso is occluded by human(Xo, Yo, So)

under condition that Yo > Y , meaning the occluded human is behind the ‘occluder’4

There is a similar rule for legs and also rules deriving ¬human in the absence of

explanations for missing parts.

6.3.2 Learning

Given a rule of the form A ← B1, B2, · · · , Bn, a confidence value of

〈N (A|B1, B2, · · · , Bn),N (¬A|B1, B2, · · · , Bn)
〉

is computed, where N (A|B1, B2, · · · , Bn) is the fraction of times A is true when

B1, B2, · · · , Bn is true. It is important to note that the presence of a non-zero

value for N (¬A|B1, B2, · · · , Bn) does not imply the existence of a rule of the form

4The reader might notice that calling the human(Xo, Yo, So) within the definition of a ‘human’

rule will cause the system to infer the presence of human(Xo, Yo, So) from scratch. This rule has

been presented in such a manner merely for ease of explication. In practice, we maintain a table

of inferences that the query, human(Xo, Yo, So), can tap into for unification without re-deriving

anything. Also we derive everything from the bottom of the image to the top, so human(Xo, Yo, So)

is guaranteed to unify.
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¬A ← B1, B2, · · · , Bn.
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6.3.3 Generating Proofs

As mentioned earlier, in addition to using the explanatory ability of logical

rules, we can also provide these explanations to the user as justification of why

the system believes that a given hypothesis is a human. The system provides a

straightforward technique to generate proofs from its inference tree. Since all of the

bilattice based reasoning is encoded as meta logical rules in a logic programming

language, it is easy to add predicates that succeed when the rule fires and propagate

character strings through the inference tree up to the root where they are aggregated

and displayed. Such proofs can either be dumps of the logic program itself or be

English text. In our implementation, we output the logic program as the proof tree.

6.4 Body Part Detector

Our human body part detectors are inspired by [100]. Similar to their ap-

proach we train a cascade of svm-classifiers on histograms of gradient orientations.

Instead of the hard threshold function suggested in their chapter, we apply a sig-

moid function to the output of each svm. These softly thresholded functions are

combined using a boosting algorithm [25]. After each boosting round, we calibrate

the probability of the partial classifier based on evaluation set, and set cascade de-

cision thresholds based on the sequential likelihood ratio test similar to [83]. To

train the parts-based detector, we restrict the location of the windows used dur-

ing the feature computation to the areas corresponding to the different body parts

(head/shoulder, torso, legs). The number of layers used in fullbody, head, torso and
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leg detectors were 12, 20, 20, and 7 respectively.
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6.5 Experiments

The framework has been implemented in C++ with an embedded Prolog rea-

soning engine. The C++ module initializes the Prolog engine by inserting into its

knowledge base all predefined rules. Information about scene geometry, and static

occlusions is specified through the user interface, converted to logical facts and in-

serted into the knowledge base. The C++ module then runs the detectors on the

given image and structures their output as logical facts for the Prolog knowledge

base. Initial hypotheses are created based on these facts and then evidence for or

against these hypotheses is searched for by querying for them. We will first describe

some qualitative results and show how our system reasons and resolves difficult sce-

narios, and then describe quantitative results on the USC-CAVIAR dataset as well

as on Dataset-A.

6.5.1 Qualitative Results

Tables 6.1 and 6.2 list the proofs for humans 1 and 4 from figure 6.1. In both

cases, the head and torso are visible while the legs are missing. In case of human

1, it is due to occlusion by the image boundary (which has been marked as a static

occlusion) and in case of human 4 due to occlusion by human 2. In figures 6.1

and 6.2, variables starting with G · · · are non-unified variables in Prolog, meaning

that legs cannot be found and therefore the variables of the predicate legs cannot be

instantiated. It can be seen that in both cases, evidence in favor of the hypothesis

exceeds that against.
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6.5.2 Numerical Results

We applied our framework to the set of static images taken from USC-CAVIAR

dataset. This dataset, a subset of the original CAVIAR [1] data, contains 54 frames

with 271 humans of which 75 humans are partially occluded by other humans and

18 humans are occluded by the scene boundary. This data is not part of our training

set. We have trained our parts based detector on the MIT pedestrian dataset [70].

For training purposes, the size of the human was 32x96 centered and embedded

within an image of size 64x128. We used 924 positive images and 6384 negative

images for training. Figure 6.4 shows the ROC curves for our parts based detectors

as well as for the full reasoning system. “Full Reasoning*”, in Figure 6.4, is the

ROC curve on the 75 occluded humans and table 6.3 lists detection rates for these

75 humans for different degrees of occlusion. ROC curves for part based detectors

represent detections that have no prior knowledge about scene geometry or other

anthropometric constraints. It can be seen that performing high level reasoning over

low level part based detections, especially in presence of occlusions, greatly increases

overall performance. We have also compared the performance of our system with

the results reported by Wu and Nevatia [93] on the same dataset. We have taken

results reported in their original paper and plotted them in figure 6.4 as well as

listed them in table 6.3. As can be seen, results from both systems are comparable.

We also applied our framework on another set of images taken from a dataset

we collected on our own (in this chapter we refer to it as Dataset-A). This dataset

contains 58 images (see figure 6.5) of 166 humans, walking along a corridor, 126 of
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Occlusion Degree(%) >70 70-50 50-25

Human# 10 31 34

Detection Rate(%) 87 91.4 92.6

Detection Rate(%)

(Wu Nevatia [93]) 80 90.3 91.2

Table 6.3: Detection rates on the USC-CAVIAR dataset for different degrees of oc-

clusion on the 75 humans that are occluded by other humans (with 19 false alarms).

Results of [93] on the same dataset are copied from their original paper.

whom are occluded 30% or more, 64 by the image boundary and 62 by each other.

Dataset-A is significantly harder than the USC-CAVIAR dataset due to heavier

occlusions (44 humans are occluded 70% or more), perspective distortions (causing

humans to appear tilted), and due to the fact that many humans appear in profile

view. Figure 6.6 shows the ROC curves for this dataset. It can be seen that the

low level detectors as well as the full body detector perform worse here than on the

USC-CAVIAR data, however, even in such a case, the proposed logical reasoning

approach gives a big improvement in performance. If the performance of the low

level detectors is further enhanced (to take in account profile views and handle

perspective distortions), then results of high level reasoning will further improve.

This is part of our future work.
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6.6 Discussions and Future Work

We have described a logical reasoning approach for human detection that takes

input from multiple sources of information, both visual and non-visual, and inte-

grates them into a single hypothesis within the bilattice framework. Use of logical

reasoning permits to explicitly reason about complex interactions between humans

as well as with the environment and thus handle occlusions. Structuring of this

reasoning within the bilattice framework makes it scalable, so information from new

sources can be added easily. The system also generates proofs for validation by

the operator. Such a formulation frees us from having to estimate an exponential

number of conditional interdependencies between propositions, unlike in statistical

frameworks. As can be seen from the closure expression (equation 6.4), complex-

ity of inference in such systems is linear in the number of rules and its constituent

propositions. In the future we would like to extend this system to reason explicitly

about temporal information thus helping us not only track humans, but also to

define models for and recognize human activities within a single framework.
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Figure 6.5: An image from Dataset-A

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of False Alarms

D
et

ec
tio

n 
R

at
e

Full Reasoning
Full Reasoning*
Head
Torso
Full Body
Legs
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Chapter 7

Bilattice based Logical Reasoning for Preference Modeling

7.1 Introduction

Preference modeling involves analysis and prediction of users’ preferences for a

set of objects based on their historical preference data and information about other

users. Collaborative (social) filtering [79] is an example of preference modeling and

prediction that is actively employed on the internet to recommend books, movies,

and other commodities. In collaborative filtering applications, there exist, poten-

tially, a large number of cues that can contribute to making a final prediction for

a given user. These cues could be correlations between user age, gender, occupa-

tion, education, income, etc and properties of the objects such as genre, year of

release/publication. Other cues such as individual preference for a particular actor

or author might also provide cues for a final user preference. Since many of these

cues are typically generalizations based on historical data, they will never be fully

indicative of a particular user’s preference and often times will be contradictory in

nature. Contradictions also exist because of missing data and the fact that users

themselves are not always consistent in their ratings.

In this chapter we are primarily concerned with personalized movie recom-

mendation. The task is to come up with an ordered list of movies a particular user,

say Cathy, is likely to enjoy. The system first asks Cathy to rate a list of movies
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(typically on a scale of 1 - 5) that she has previously viewed. Based on her ratings

and the ratings provided by other viewers for the same movies the system learns her

preferences and returns a ranked/ordered list of recommendations.

7.1.1 Motivation

Ideally, a preference prediction system should be able to reason about the

preference of a given user by aggregating information from different sources. For

example, the system should reason that Cathy is likely to prefer movie Casablanca

(Genre:Romance) over The Terminator (Genre:Action), because there exists an-

other user, Alice, who prefers Casablanca over The Terminator and Alice has con-

sistently rated movies similarly to Cathy. The existence of another user Tom, who

has also been rating movies similarly to Cathy, but who prefers The Terminator

over Casablanca, should indicate that perhaps Cathy does not prefer Casablanca

over The Terminator after all. However, this anomaly may be explained if Tom

is known to be a 17 year old male and data indicates that teenage males typically

rate action movies higher than romance. Cathy’s preference for Casablanca over

The Terminator should be further strengthened by the knowledge that Cathy has

historically rated movies that star Humphrey Bogart 4 stars or higher and has also

historically rated romance movies higher.
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7.1.2 Overview

We propose a logic based approach that reasons and predicts preferences in the

manner outlined above. In this framework, knowledge about inferring preference re-

lations based on data correlations, historical user preferences, and other constraints

is encoded as rules in a logic programming language. Historical user preferences

and data correlations are stored as logical facts and these facts, in conjunction with

the logical rules are employed in making predictions about a given user’s preference

over a pair of movies. Uncertainties are associated with both the logical rules (en-

coding the reliability of the rule), as well as to the logical facts (encoding degree of

belief in their veracity). Positive and negative information from the rules and facts

as well as their associated uncertainties are combined within a bilattice framework.

The bilattice formulation, permits encoding of multiple rules for the same proposi-

tion while allowing for inference in the presence of contradictory information from

different sources. This approach can also generate proofs or justifications for each

prediction it makes. These proofs can be made available to the system programmer

for debugging purposes as well to users as an indication of why the system thinks

they are likely to prefer a particular movie. We have applied the bilattice based

logical reasoning approach to predict movie ratings for the publicly available Movie-

Lens dataset. We compare our results with other state-of-the-art ranking based

approaches [11, 39, 24, 72].
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7.2 Background

Typically, for the movie task the ratings are in a ordinal scale, say from 1 to 5

stars. Many machine learning approaches have been proposed which try to predict

the actual rating. These include linear regression [90], nearest neighbor [24], and

vector similarity based approaches [7]. However experimental results in [24] show

that a ranking approach outperforms the above methods, on a set of metrics which

evaluate the quality of the ordered list returned by the system. In a typical ranking

formulation, for a given user, two movies are compared to determine which one is

preferred. In general, a list of rated movies can always be decomposed down to a

set of pairwise preference relations.

Consider a set of movies X . For any user u and (x, y) ∈ X × X we interpret

the preference relation x ºu y as ‘user u prefers movie x over movie y’. One way

of describing preference relations is by means of a ranking function. A function

fu : X → R is a ranking/scoring function representing the preference relation ºu if

∀x, y ∈ X , x ºu y ⇔ fu(x) ≥ fu(y). The ranking function fu provides a numerical

score to the movies based on which the movies can be ordered. The ranking func-

tion is similar to the utility function used in microeconomic theory [62, 39], where

utility is a measure of the satisfaction gained by consuming commodities. Various

approaches have been proposed to learn ranking functions [11, 39, 24, 72]. Most

of these use the ratings provided by other users as a feature vector for each movie.

As mentioned earlier, there exist a large number of other cues that can help make

a prediction for a given user’s preference. However, a drawback of the above men-
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tioned machine learning approaches is that it is not easy to exploit and incorporate

these cues in an existing framework.

In the proposed bilattice based logical reasoning approach, we directly infer

a proposition of the form prefer(u, x , y). This proposition is the logical equivalent

of x ºu y. Bilattices are mathematical structures proposed by Ginsberg [35]. The

use of bilattices for preference modeling has been theoretically explored by Arieli et

al. [69]. The work described in this chapter is inspired by their use of bilattices for

preference modeling but differs from it in the use of logical rules for inference and

the fact that we have applied and evaluated this approach to a real world problem

of movie ratings and compared with state-of-the-art approaches. In the past, we

have also employed the bilattice based logical reasoning framework for a number

of applications in the field of computer vision, especially to that of human activity

recognition and identity maintenance [81] for automated visual surveillance.
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7.3 Recommender system

Rules can be defined within this bilattice framework to model cues that help

predict user preference. Although the notion of preference is strictly binary, we

consider the difference in the numerical value of the movie ratings between the two

movies as an indicator of uncertainty of preference. We assume that greater the

difference in rating between the two movies, lesser the uncertainty. We normalize

this value to lie in the [0,1] unit interval. For example, if Cathy rated movie M1 as

1 and movie M2 as 5, it indicates that she definitely prefers M2 over M1 and a fact

φ[prefer(cathy, M2,M1)] = 〈1, 0〉 is asserted in the knowledge base. Similarly, if

she rates movies M3 as 2 and M4 as 3, then we assume she only slightly prefers M4

over M3 and assert φ[prefer(cathy, M4,M3)] = 〈0.625, 0.375〉1. Rules are specified

similarly as φ(prefer(U,X, Y ) ← · · · ) = 〈γ, δ〉. γ and δ are learnt as outlined in

section 7.3.2. At evaluation time, given a query user, u, and a pair of movies (x, y)

the system submits the query prefer(u, x, y) to the logic program where support

for and against it is gathered and finally combined into a single answer within the

bilattice framework. Projecting the uncertainty value onto the 〈0, 1〉 − 〈1, 0〉 axis,

gives us the final degree of belief in the hypothesis.

7.3.1 Rules Specification

In our system, we have three kinds of rules.

1Note: if Cathy had rated both M3 and M4 as 2, then we would assume she does not prefer

one over the other and assert φ[prefer(cathy, M4,M3)] = 〈0.5, 0.5〉
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User Similarity based rules: These rules capture a given user’s preference

based on his/her similarity/dissimilarity to other users.

Data correlation based rules: These rules capture correlations between

different data variables, such as those between user age, gender, occupation, edu-

cation, income, etc and properties of the movie such as genre, and year of release.

Higher order correlations such as those between more than two variables like age,

gender, and genre can also be encoded in such rules.

Personal preference based rules: These rules capture personal preferences

of a given user for genre, year of release, actor etc.

All the rules described above have both positive and negative variants. It is

important to note that rules gleaned from domain experts can be easily incorporated

into this system and their weights learned as outlined in section 7.3.2.

7.3.2 Learning

Given a rule of the form A ←B1,B2, · · · , Bn, a confidence value of

〈P(A|B1, B2, · · · , Bn),P(¬A|B1, B2, · · · , Bn)
〉

is computed, where P(A|B1, B2, · · · , Bn) is the fraction of times A is true when

B1, B2, · · · , Bn is true. When using the probabilistic sum as a t-conorm, we need

to uniformly scale down the rule weights to prevent uncertainties for all inferences

from trivially hitting 〈1, 1〉. This scaling factor can be set to be proportional to the

size of the feature vector used.

137



7.3.3 Generating proofs

The system provides a straightforward technique to generate proofs from its

inference tree. Since all of the bilattice based reasoning is encoded as meta logical

rules in a logic programming language, it is easy to add predicates that succeed

when the rule fires and propagate character strings through the inference tree up to

the root where they are aggregated and displayed. Such proofs can either be dumps

of the logic program itself or be English text. In our implementation, we output

the logic program as the proof tree. Only the relevant part of this proof tree can be

displayed by thresholding on the computed uncertainty values.

7.4 Experiments

We use the MovieLens dataset 2 which contains approximately 1 million anony-

mous ratings for 3592 movies by 6040 users. The datset also has some demographic

information on the users (gender, age, occupation, zip-code) and the genre and year

of release of the movies. Ratings are made on a discrete scale of 1 to 5. Each user

has rated at least 20 movies. The task is to predict the movie ratings for a user

based on the ratings provided by other users. We removed any movies which have

been rated by less than 20 people and any users who have rated less than 20 movies.

2Downloaded from http://www.grouplens.org/.
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7.4.1 Algorithms compared

Experimental results in [24] show that a ranking approach outperforms the

regression and classification based approaches. Hence we compare the performance

of the proposed bilattice approach against the following ranking based approaches.

1. RankNCG [72] A simple linear ranking function is learnt which maximizes the

number of pairwise agreements. The learning algorithm is based on a non-

linear conjugate-gradient algorithm. The tolerance for the conjugate gradient

procedure was set to 10−3.

2. RankNet [11] A neural network which is trained using pairwise samples based

on cross-entropy cost function.Training was done for around 500-1000 epochs.

We used two versions of the RankNet: (a) RankNet two layer A two layer

neural network with 10 hidden units; (b) RankNet linear A single layer neural

network.

3. RankSVM [51, 39] A ranking function is learnt by training an SVM classifier 3

over pairs of examples. We used a linear kernel.

4. RankBoost [24] A boosting algorithm which combines a set of weak rankings.

We used weak binary rankings as the ordering information provided by the

features, boosted for 50-100 cycles.

For the proposed bilattice framework we used the weights learnt by the RankNCG

procedure as the similarity/dissimilarity measure between users. The correlation

3SVM-light http://svmlight.joachims.org/
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based rules employ correlations only between two variables.

7.4.2 Evaluation procedure

For each user we used 70% of the movies rated by him for training and the

remaining 30% for testing. The feature vector for each movie consisted of the rating

provided by first d other users. The users were ordered by the number of movies

they have rated. Input preference relations for users who did not rate one or both

movies we considered to be unknown or 〈0, 0〉. We did not impute missing movie

ratings unlike in most other approaches compared. The results shown are averaged

over 100 users each of who has rated on average 70.93 [± 12.14] movies.

7.4.3 Performance measure

In order to asses the quality of the rankings we use a generalized version of

the Wilcoxon-Mann-Whitney (WMW) statistic [60, 27] defined as follows

WMW(f) =

∑
i

∑
j 1f(xi)≥f(xj)∑

i

∑
j 1

, (7.1)

where 1a≥b = 1 if a ≥ b and 0 otherwise and f is the ranking function learnt. The

numerator counts the number of correct pairwise orderings. The denominator is the

total number of pairwise preference relations available. The WMW is an estimate of

Pr[prefer(u, xi, xj)|xi ºu xj] for a randomly drawn pair of samples (xi, xj). This is

a generalization of the area under the ROC curve. For a perfectly ranking function

WMW=1, and for a completely random assignment WMW=0.5.
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Figure 7.2: Plot of the mean WMW statistic along with the error bars(± one stan-

dard deviation) against the number of features (d) used.

141



7.4.4 Results

Figure 7.2 shows the mean WMW statistic along with the standard deviations

for the different approaches. The following observations can be made.

(1) For small d ≤ 400 the RankNCG approach shows the best performance fol-

lowed by the proposed bilattice based framework. The remaining methods show very

similar performance. The general trend is that as d increases the WMW statistic

increases.

(2) However for large d > 400 it can be seen that as the number of features

used is increased, the accuracy of the proposed approach increases, while that of all

other competing ranking based approaches drop. One reason for this is that we have

shown the results for the users who have rated only a few movies. In such cases

the number of training examples is far less than the number of features used. It is

known that maximum likelihood estimation (used in RankNCG) often fails when

the number of features d is quite large. Also the optimization procedures used in

the other ranking based approaches result in a lack of convergence when d is very

large, possible due to numerical ill-conditioning.

While the ranking based approaches only take into account the similarity be-

tween a given user and the set of d users, the bilattice based logical reasoning

approach exploits a much richer set of constraints and correlations and therefore

gets better with increasing d.

(3) The standard deviation estimates for all the methods are roughly the same.
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7.5 Conclusions

We have presented a bilattice based logical reasoning approach for modeling

and predicting user preferences for the task of movie recommendations. Experiments

indicate that this approach gives good results especially when the size of the feature

vector is large compared to the number of training examples – a situation where the

accuracy of other ranking based approaches drops. This is due to the fact that this

approach can leverage a richer set of constraints, correlations and historical user

preferences.
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Chapter 8

Discussions

Reasoning under uncertainty is central to many real world applications and

naturally it has been well studied. AI research tackling this problem falls broadly

into two categories viz. extensional and intensional. Extensional approaches, also

known as production systems, rule-based or procedure based systems, treat un-

certainty as a generalized truth value attached to formulas and computes the un-

certainty of any formula as a function of the uncertainties of its sub-formulas. In

intensional approaches, also known as declarative or model based, uncertainty is at-

tached to the “states of affairs” or subsets of “possible worlds”. Extensional systems

tend to be computationally efficient but semantically inadequate while intensional

systems are semantically clear but computationally inefficient. The trade-off be-

tween semantic clarity and computational efficiency has been the subject of intense

research in the past.

8.1 Extensional approaches

As mentioned earlier, extensional systems work by treating uncertainty as a

generalized truth value attached to the formulas and computing uncertainty of any

formula as a function of the truth values of its sub-formulas. E.g. uncertainty of the

conjunction A ∧ B is given by some function (min or times) of the uncertainty of
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A and B individually. Rules in such systems are interpreted as licenses for certain

symbolic activities. E.g A
m−→ B means “if you see A then you are given the

license to update certainty of B by an amount that is a function of the rule strength

m”. Rules are interpreted as a summary of the past performance of the agent and

represent summaries of past information

8.1.1 Computational Merits

These systems derive their computational merits from the principle of modu-

larity which is explained next. In extensional systems, given the credibility of each

rule and the certainty of the premises, the same combination function applies uni-

formly to two rules in the system, regardless of what the other rules might be in

the knowledge base. This uniformity mirrors modularity of inference rules in such

systems. E.g. A → B has the following interpretation: If you see A anywhere in the

KB, then regardless of what other things the KB contains, and regardless of how A

was derived, you are given the license to assert B and add it to the KB. This combi-

nation of Locality (regardless of other things) and Detachment (regardless of how it

was derived) constitutes the principle of Modularity. In such systems, uncertainty

is updated as follows: Given rule A
m−→ B, if certainty of A changes by ∆A, then

the current certainty of B changes by ∆B which is a function of rule credibility m,

∆A and current certainty of B.
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8.1.2 Semantic Issues

The computational merits mentioned in the previous section come at a price.

The problems arise in several ways, mainly:

1. Bidirectional Inference

2. Limitations of modularity

3. Correlated evidence

Bidirectional Inferences Plausible reasoning requires that both predictive as well

as diagnostic components of reasoning be used. if A → B, then finding B to be

true makes A more credible (abductive reasoning). This requires reasoning both

ways. Extensional systems do not allow such bi-directional inference i.e. reasoning

from both A to B and B to A. To implement this in extensional systems, one has

to explicitly specify the reverse rule, possibly risking creation of a cycle that can

cause evidence to be cyclically amplified until both cause and effect are completely

certain with no apparent factual justification.

Removing the predictive component prevents system from exhibiting another

important pattern of plausible reasoning called explaining away: if A → B and

C → B and B is true, then finding C is true makes A less credible. To exhibit

this kind of reasoning, the system must use bidirected inferences; from evidence to

hypothesis and from hypothesis to evidence. While it might be possible to get around

this problem by exhaustively listing all possible exceptions, to restore explaining

away (without the danger of circular reasoning), any system that does that sacrifices
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on principles of modularity. Inversely, any system that updates beliefs modularly

and treats all rules equally is bound to defy patterns of plausible reasoning

Limits of Modularity In extensional systems, detachment can create problems. In

deductive logic the following holds true: A → B and B → C ⇒ A → C. In other

words, finding evidence for A leads us to conclude C by chaining. Derived evidence B

triggers the rule B → C with the same rigor as would a directly observed proposition.

However consider the case, “ground is wet → it rained” and “sprinkler is on →

ground is wet”. In this case, if an extensional system is told that sprinkler is on,

it will conclude that it rained. This is incorrect and infact finding that the sprinkler

was on should only reduce the likelihood that it rained.

Correlated Evidence Due to locality, extensional systems do not store information

on how a proposition was derived. As a result, they risk treating correlated evidence

as independent. E.g. consider a situation where someone hears a piece of news

independently from the radio, television as well as the newspapers. Since from his

point of view, the sources are independent, his belief in the veracity of the piece of

news should be very high. However, if that person were to realize later that all the

three sources got their information from the same source, then his belief in the piece

of news should decrease. This can never happen in extensional systems as they treat

each source of information completely independently of the others.
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8.2 Intensional approaches

As mentioned earlier, in intensional systems, uncertainty is attached to “states

of affairs” or subsets of “possible worlds”. Such systems compute the uncertainty

of any formula by combining sets of worlds by set theory operations. E.g. the

probability P (A∧B) is given by the weight assigned to the intersection of two sets

of worlds, one in which A is true and the other in which B is true, but P (A ∧ B)

cannot be determined by P(A) and P(B) alone. In such systems, rules represent

elastic constraints about the world. E.g. in Dempster-Shafer formalism, A
m−→ B

asserts the set of worlds in which A and B hold simultaneously has low likelihood and

hence should be excluded with probability m. In Bayesian formalism, A
m−→ B is

interpreted as conditional probability P (B|A) = m. Rules here represent summaries

of factual or empirical information.

8.2.1 Semantic Merits

The primary benefit provided by the intensional approach is the ability to

perform plausible reasoning. Unlike in extensional systems, interpreting rules as

conditional probabilities P (B|A) does not give a license to do anything. The mean-

ing of P (B|A) = m is that if you know A and A is the ONLY thing you know then

you can attach to B a probability of m. As soon as other facts K appear, the license

to assert P (B) = m is automatically revoked and we need to look up P (B|A,K).

Moreover, given that B is true, increases the credibility of A being true. All of the

issues mentioned in 8.1.2, including bidirectional inference and capacity to handle
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correlated evidence are addressed in these approaches.

8.2.2 Computational Problems

The downside of accepting a strict approach to computing uncertainties is

computational intractability. Attempting to compute P (B|A1, A2, · · · , An) for all

propositions Ai is a computationally intractable task. Due to this requirement,

probability statements leave such systems impotent, unable to initiate any compu-

tation, unless it is explicitly verified that everything else in the knowledge base is

irrelevant. Verification of irrelevancy is therefore crucial to intensional systems and

also the cause for its computational problems.

8.3 Comparisons

In this section we will note some similarities and differences between the bi-

lattice based logical reasoning approach employed in this thesis and the Bayesian

networks approach. The former is an example of an extensional approach while the

latter that of an intensional one.

8.3.1 Theoretical comparison

Comparisons between the two systems can be made at two levels. The first one

is at the level of the inference structure and the second is in the inference process

itself. The inference structure for the logical approach is specified by the logical

formulae. Given the rules and the facts, the rules are applied to the facts in an
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attempt to unify the unbounded variables in the rules with ground atoms (facts).

This process of unification produces a proof tree. This proof tree corresponds closely

to the graphical model used in Bayesian Networks. The second level at which

correspondence needs to be established is at the level of the inference procedure.

In Bayesian networks, once the graphical model is acquired, conditional probability

tables (CPTs) need to be learnt at each node. The CPT captures the statistics

of the given node conditioned on its parents. Specifically, for binary variables, the

CPT captures, for each variable, the probabilities for each of its states, conditioned

on all possible states its parents can be in. Clearly, if a given node has k parents,

then the CPT contains 2k+1 elements.

Inference in a bayesian network occurs by integrating the joint probability

function over the variables to be eliminated. This integration requires that every

element of the CPT, describing the variable to be eliminated, be considered. The

complexity of such an operation is O(n2k) assuming an average of k parents for each

of n nodes. On the other hand, in logical system such as the one employed in this

thesis, inference is defined in terms of the closure over the truth assignment. This

process takes the uncertainty value assigned to each node of the graphical model

and combines them using the join and meet operator (however they may be defined)

along both the information and truth axis of the bilattice. This operation visits each

node only once and therefore the complexity of this operation is O(n), where n is

the number of nodes in the graph.

The computation gain in using logical approaches takes the runtime from

O(n2k) to O(n). However, this computational gain comes at a cost. The cost is

150



that using the bilattice based logical reasoning framework, it is not possible to per-

form arbitrary queries. The important question that remains unanswered is, if we

restrict ourselves to only making forward queries, i.e. given some observations, we

are only interested in their consequences, then does jettisoning the extra machinery

that helps us make arbitrary queries, actually hurt us? Note that in all of the exam-

ples listed in this thesis, we have always been performing forward inferences. Given

the observations, we have inferred the activity. Given the observations, we have in-

ferred whether there exists human in the image or not. In such applications, it seems

we are not interested in e.g. inferring the likelihood of an observation given that

there exists a human in the image. In the literature, there exist approximations that

exploit this constraint to reduce the complexity of Bayesian inference from O(n2k)

to O(n). Notable among such approaches are Naive Bayes and Noisy-OR. We will

computationally compare the bilattice based logical reasoning approach with the

Noisy-OR approach since it most closely resembles it.

8.3.2 Algebraic comparison

Consider the problem of detecting humans in static images from parts. Assume

that we have designed two low level parts based detectors to detect the presence of

heads and torsos. Based on these two detectors, we can write two rules as follows:

human(X,Y, S) ← head(X,Y, S).

human(X, Y, S) ← torso(X,Y, S). (8.1)
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Figure 8.1: Simple graphical model for human detection from parts.

These two rules capture the information that if we “see” a head at a particular

location, then we can infer that there exists a human at that location. Similarly if

we “see” a torso at a particular location, then we can make a similar inference. The

graphical model for these set of rules within a statistical framework is depicted in

figure 8.1. In the Noisy-OR approach, given three random variable A, B and C,

P (A|B, C) = 1− (1− P (A|B))(1− P (A|C))

This is the key simplifying step that reduces complexity from O(n2k) to O(n).

Given the model in figure 8.1, we can then ask the question, what is the probability

of seeing a human given the observations.
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P (human|Oh, Ot) = ΣheadΣtorsoP (human|head, torso)P (head|Oh)P (torso|Ot)

= P (human|head, torso)P (head|Oh)P (torso|Ot)

+P (human|¬head, torso)P (¬head|Oh)P (torso|Ot)

+P (human|head,¬torso)P (head|Oh)P (¬torso|Ot)

+P (human|¬head,¬torso)P (¬head|Oh)P (¬torso|Ot)

= [1− (1− α)(1− β)]γδ + β(1− δ)γ + αδ(1− γ) + 0

= αδ + βγ − αβγδ (8.2)

In the bilattice based logical reasoning approach, if we assume a continuous

bilattice as described in chapter 6, and also that the t-norm is set to the product

and t-conorm to the probabilistic sum, then we get:

φ[human(X, Y, S) ← head(X,Y, S)] = 〈α, 1− α〉.

φ[human(X,Y, S) ← torso(X, Y, S)] = 〈β, 1− β〉. (8.3)
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φ(human) = φ(⊥) ∨ [φ(head) ∧ φ(human ← head)]

⊕φ(⊥) ∨ [φ(torso) ∧ φ(human ← torso)]

= 〈0, 0〉 ∨ [〈δ, 1− δ〉 ∧ 〈α, 1− α〉]

⊕〈0, 0〉 ∨ [〈γ, 1− γ〉 ∧ 〈β, 1− β〉]

= 〈0, 0〉 ∨ [〈αδ, α + δ − αδ〉 ⊕ 〈0, 0〉 ∨ [〈βγ, β + γ − βγ〉

= 〈αδ, 0〉 ⊕ 〈βγ, 0〉

= 〈αδ + βγ − αβγδ, 0〉 (8.4)

It can be seen that the expressions in equations 8.2 and 8.4 are exactly equal.

This indicates that a bilattice based logical reasoning approach will always agree

with a Noisy-OR formulation of the same problem, as long as the rules encode

positive information.

This is however not the case when there exists a rule which infers an explicit

negation. Consider the rules

φ[human(X,Y, S) ← head(X,Y, S)] = 〈α, 1− α〉.

φ[human(X, Y, S) ← torso(X,Y, S)] = 〈β, 1− β〉.

φ[human(X,Y, S) ← not(legs(X,Y, S))] = 〈η, 1− η〉. (8.5)

The third rule in the equation above captures the information that if we can-

not locate the legs of a human, then the hypothesis is probably not a human. In-

corporating this information in the bilattice based logical reasoning framework is
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straightforward and we compute the uncertainty value for human to be

φ(human) = 〈αδ + βγ − αβγδ, ωη〉 (8.6)

assuming φ[not(legs(X,Y, S))] = 〈ω, 1− ω〉. It is not clear how the third rule

can be trivially incorporated within the Noisy-OR framework while maintaining the

computational complexity of O(n) for inference.
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Chapter 9

Conclusions

The primary objective of an automated visual surveillance system is to observe

and understand human behavior and report unusual or potentially dangerous activ-

ities/events in a timely manner. Successfully accomplishing this task requires the

system to (a) take visual input from possibly multiple cameras, (b) identify objects

of interest (c) classify these objects into known types (d) track the objects while they

are within the field of regard of the cameras, (e) log the occurrence of basic events

such as object interactions, and finally (f) employ these basic events to reason about

occurrence of various activities of interest, possibly spanning large intervals of time.

This task, however, is made challenging by the ubiquitous presence of uncertainty

within all components of this pipeline.

In this thesis, we have proposed a high level logical reasoning approach draws

heavily upon human like reasoning and reasons explicitly about visual as well as non-

visual information to solve classification problems. This framework can combine, in a

principled manner, high level contextual information with low level image processing

primitives to interpret visual information and make decision under the uncertainties

inherent in visual systems. We applied this framework to the problems of human

detection, identity maintenance, occlusion handling and activity recognition within

the domain of computer vision. To demonstrate the generality of this approach,
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also applied it to a problem in the field of machine learning, that of collaborative

filtering. In all these cases, the proposed approach gave results that compared

favorably to the state-of-the-art approaches while giving us the benefits of, among

others, reduced complexity of inference, greater power of expression on account of

logic programming, and the power to generate justifications for every decision.

157



Bibliography

[1] CAVIAR homepage:http://homepages.inf.ed.ac.uk/rbf/caviar/.

[2] Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson. On the logic
of theory change: Partial meet contraction and revision functions. J. Symb.
Log., 50(2):510–530, 1985.

[3] Ofer Arieli, Chris Cornelis, Glad Deschrijver, and Etienne Kerre. Bilattice-
based squares and triangles. Lecture Notes in Computer Science: Symbolic
and Quantitative Approaches to Reasoning with Uncertainty, pages 563–575,
2005.

[4] C BenAbdelkader, R. Cutler, and L. Davis. Motion-based recognition of people
in eigengait space. In Proc of Intl. Conf. on Auto Face and Gesture Recogtn,
page 267, 2002.

[5] M. Brand and V. Kettnaker. Discovery and segmentation of activities in video.
IEEE Trans. Pattern Anal. Mach. Intell., 22(8):844–851, Aug 2000.

[6] M Brand, N Oliver, and A Pentland. Coupled hidden markov models for
complex action recognition. In Proc. CVPR, pages 994–999, 1997.

[7] J. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algo-
rithms for collaborative filtering. In Proceedings of the Fourteenth Conference
on Uncertainty in Artificial Intelligence, pages 43–52, 1998.

[8] F. Bremond and M. Thonnat. A context representation for surveillance sys-
tems. In ECCV Worshop on Conceptual Descriptions from Images, April
1996.

[9] Gerhard Brewka. Adding priorities and specificity to default logic. In JELIA
’94: Proceedings of the European Workshop on Logics in Artificial Intelligence,
pages 247–260. Springer-Verlag, 1994.

[10] G. J. Brostow and I. A. Essa. Motion based decompositing of video. Interna-
tional Conference on Computer Vision, 2001.

[11] C.J.C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton,
and G. Hullender. Learning to rank using gradient descent. In Proceeding of
the 22nd International conference on Machine Learning, 2005.

[12] H. Buxton and S. Gong. Advanced Visual Surveillance using Bayesian Net-
works. In International Conference on Computer Vision, Cambridge, Mas-
sachusetts, June 1995.

158



[13] B. Clarkson and A. Pentland. Unsupervised clustering of ambulatory audio
and video. Technical Report 471, MIT Media Lab, Perceptual Computing
Group., 1998.

[14] A. G. Cohn, D. Magee, A. Galata, D. Hogg, and S. M. Hazarika. Towards an
architecture for cognitive vision using qualitative spatio-temporal representa-
tions and abduction. In Spatial Cognition III, 2002.

[15] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-rigid ob-
jects using mean shift. Computer Vision and Pattern Recognition, Proceedings.
IEEE Conference on, 2:142–149, 2000.

[16] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
In CVPR05, pages I: 886–893, 2005.

[17] O. Dekel, C. Manning, and Y. Singer. Log-linear models for label ranking. In
S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information
Processing Systems 16. MIT Press, Cambridge, MA, 2004.
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