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ABSTRACT

In this paper we formulate mathematically and solve maximin and minimax detection problems
for signals with power constraints. These problems arise whenever it is necessary to distinguish
between a genuine signal and a spurious one designed by an adversary with the principal goal of
deceiving the detector. The spurious (or deceptive) signal is usually subject to certain constraints,

such as limited power, which preclude it from replicating the genuine signal exactly.

The detection problem is formulated as a zero-sum game involving two players: the detector
designer and the deceptive signal designer. The payoff is the probability of error of the detector
which the detector designer tries to minimize and the deceptive signal designer to maximize.
For this detection game, saddle point solutions—whenever possible—or otherwise maximin and
minimax solutions are derived under three distinct constraints on the deceptive signal power; these
distinct constraints involves lower bounds on (i) the peak power, (ii) the probabilistic average power,

and (iii) the time average power. The cases of i.i.d. and correlated signals are both considered.
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I. INTRODUCTION

In certain areas of communications, it is necessary to employ a detector to distinguish between
a genuine signal and a spurious one. An adversary may be the designer of the spurious signal,
whose principal goal is to defeat the detector. The spurious (or deceptive) signal is subject to
certain constraints, such as limited power, which preclude it from exactly replicating the genuine
signal.

It is sometimes reasonable to assume that the detector designer has limited knowledge (or
no knowledge at all) of the statistics of the deceptive signal. It is also reasonable to assume
that information about the detector is kept confidential from the designer of the deceptive signal.
Accordingly, the appropriate mathematical formulation is that of a mathematical game. The game
we consider here involves two players, whom we call the detector designer and the deceptive signal
designer, in a zero-sum game. The strategy of the detector designer is a detector (or decision rule)
which decides whether the received signal is genuine or spurious. The strategy of the deceptive
signal designer is a probability distribution, subject to certain constraints, that governs the statistics
of the spurious signal. The payoff is the probability of error of the detector, which the detector
designer tries to minimize and the deceptive signal designer tries to maximize.

In this paper we derive the optimal strategies for the detector designer and the deceptive
signal designer when constraints are imposed on the peak power or average power of the deceptive
signal. The paper is organized as follows: In Section II, the problem is formally introduced as a
mathematical game involving a detector designer and a deceptive signal designer. In Section III, we
consider the selection of an optimal deceptive signal and an optimal detector when average power
constraints imposed involve only time averaging. It is shown that a saddle point to the game exists if
the constraints are fully known by the detector designer as well as the signal designer. In Section IV,
we consider the problem when power constraints involving ensemble averages are imposed. The
optimal density for the deceptive signal is obtained for the case of univariate densities. The formal
proof of the main result in Section VI (viz Theorem 2) is provided in Section V. In Section VI,
we provided briefly some numerical examples and compare the different deceptive signal densities,
while in Section VII we discuss some extensions of the results. Finally, in Section VIII conclusions

are drawn.

II. PROBLEM FORMULATION

The task of the detector is to decide whether the signal it receives is genuine or spurious. For

our purposes, it is sufficient to model this task as a binary hypothesis testing problem with Ho
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being the hypothesis that the signal is spurious and H; the hypothesis that the signal is genuine.
The signal received by the detector is assumed to be discrete-time, possibly obtained by sampling a
continuous-time signal; multidimensional, with dimensionality denoted by m; and stationary. The
detector collects a sample of size n and makes a decision concerning the authenticity of the signal.
Thus the data available to the detector is denoted x = (z1,...,2n), where each z; = (z41,...,Ztm)

is an m-dimensional vector. The hypotheses are formally stated thus:

Ho: X has a distribution F{™ (spurious) .
Hy: X has a distribution F\™ (genuine) W
where X = (Xj,...,X,) is arandom vector with each component X; being itself an m-dimensional
random vector. While the distribution Fl(") of the genuine signal is known to both the detector
designer and the deceptive signal designer, the distribution Fé") is chosen by the deceptive signal
designer and is unknown to the detector designer. We use F; to denote the m-variate marginal
density of F,-(n) corresponding to any one of the components of X. We assume that the distribution
under H; (the genuine signal) is continuous, having a density function fl("). In cases where there
is also a density under Hp, it is denoted by fén). The marginal density of X; under H; is denoted
fi
The detector is represented by a randomized decision rule d such that, when x is observed, H;
is decided with probability d(x). No restrictions are placed on d; any measurable function from
R™™ to [0,1] is permitted. One approach for the detector designer is to design a detector based on
the assumption of a particular distribution Fén) . Since the detector designer cannot know the true
density which governs the spurious signal, a detector designed in this manner typically operates in
a mismatch situation.
While the detector may be chosen without restriction, the deceptive signal designer’s strategy,
which is the nm-dimensional distribution Fén) of the spurious signal, must conform to certain

constraints. First, there is an upper bound on the magnitude of the signal, given by
P{qu(X:¢) > Amax} =0 (2)

where gy(-) is a quadratic form. Because of our assumption that the process is stationary, the
bound given by (2) is understood to hold for any t. Note that if the signal dimension is m = 2,
with the components of z; being in-phase and quadrature components and qy;(z¢) = z% + &3, then

(2) is has the interpretation of a constraint on the peak power or signal amplitude.
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A lower bound is also imposed on the signal. We consider three such lower bounds. Analogous
to (2), we have first
P{gr(X:) < Amin} =0 (3)

where g7, is also a quadratic form. This constraint also has an interpretation as a constraint on

signal amplitude. A more general form of (3) is
P{qL(Xl,°",XN)<D}=O (4)

where ¢, is again a quadratic form. As a particular case, we may have m = 2 and

N
1
qL(xla' . .,.'IIN) = TV' Z(m%l + 1’32) (5)

t=1
which has the interpretation of a lower bound on time-averaged power over a window of length N.

Of course, (4) reduces to (3) when N = 1.‘Finally, a lower bound may be imposed instead on the

expected power of the signal, given by

Eo q1.(X¢) > Emin (6)

where Eg denotes expectation taken under the distribution Fy. Whereas upper-bound constraints,
such as (2), typically arise from physical constraints on a transmitter, the lower-bound constraints,
such as (3), (4), and (6), are subjectively defined, their purpose being to guarantee a minimum
amplitude or power level. A weak signal risks the possibility of being dismissed as pure noise by
the detector’s receiver; hence, a minimum power level is important.

Loosely speaking, the payoff of the game is the error probability of the detector. More precisely,
the payoff is a function of the error probabilities Py and Py, which denote errors occurring when
Hy and H; are true, respectively. Such a function may be defined according to the Bayes, Neyman-
Pearson, minimax, or other performance criterion; in general, the performance measure need only
satisfy certain necessary properties. The performance measure is denoted S (Fé") ,d), as a function
of the distribution F{™ and the decision rule d.

In the theory of mathematical games, the goal is usually to obtain strategies that are either
maximin or minimax, depending on whether a player’s objective is to maximize or minimize the
payoff value. We shall not consider the so-called mixed strategies, where the strategy is chosen

randomly according to a specified distribution at each play. A mazimin solution is defined as a

pair (dM, FM) which satisfies

S(dM, M = mFaxmdin S(d, Fp) (7)
0

3



while a minimaz solution is defined as a pair (d™, F§*) which satisfies

S(d™, F§") = min max S(d, Fo) (8)
d Fo

A saddle point exists when the maximin pair and the minimax pair are the same or, alternatively,

when the following inequality holds:
S(J7F0)SS(J’F0)SS(d)F0)' (9)

In (9), the pair (d, Fp) is called a saddle point and d = d™ = d™ and Fy = FM = FJ*. It is clearly
the goal of the deceptive signal designer to employ a maximin density and of the detector designer
to employ a minimax detector.

The performance measure S may be defined according to a Bayes, Neyman-Pearson, or other
criterion. Rather than considering several different performance measures, we merely state the
properties which are required of S. First, S must be bounded and a continuous function of the
error probabilities Py and P;. Second, we require that the optimal detector for S be given by the
likelihood ratio test (LRT). Some of our proofs depend on showing that a given distribution is
not a maximin distribution. Thus we require the following property: Let d be a decision rule and
F a distribution that are candidates for being a maximin pair, that is, F' is a potential maximin
distribution and d is its minimizing decision rule. We may verify that d and F are not a maximin
pair with respect to 5, if we can find a decision rule d’ and a distribution F’ such that one of the

following two conditions is true:

(1) Pi(d) = P(d") and Py(d, F) < Po(d', F') = min,ep, Po(r, F')
where Dy = {r : Pi(r) < Pi(d)}

(2) Po(d, F) = Py(d', F") and Py(d) < P1(d’) = min,ep, Pi(7)
where Dy = {r : Py(r, F') < Py(d, F)}.

It can be shown that any performance measure defined under the Bayes or Neyman-Pearson crite-

rion satisfies the required properties.
ITI. SiGNAL DETECTION GAME UNDER A TIME
AVERAGE CONSTRAINT

A. The Optimal Strategies
We are concerned here with the detection game when the constraints (2) and (4) are imposed

on the deceptive signal. The constraint given by (3) is included as a special case of (4) with N = 1.
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The interpretation we are most interested in is that expressed by (5), namely, that of a time-average
power constraint.
The constraints define a region B € R™" which is permitted to have nonzero probability under

F{™. Specifically, this region is

= : < i ~1) 2 .
B={x lxéltasxn qu(zy) < Amaxylstsr.rrlllilN+1QL($ta ,Ti4N-1) > D} (10)

The optimal strategies are stated in Theorem 1.

THEOREM 1. The maximin distribution F’é") and minimax detector d form a saddle point of the

game. The distribution ﬁ’én) has a density

£ (50) = {cfl(n)(x) ifxe B (1)

0 otherwise

where ¢ is given by
-1
c= [/ fl(")(x) dx] . (12)
. B

The detector d is given by

J(x):{a ifxe B | (13)

1 otherwise.
Proof. The first inequality in (9) holds because the detector does not depend on the shape of the
density fén), but only on the properties that fé")(x) = 0, whenever x ¢ B. Thus, for any density
én) which conforms to the lower and upper bounds, there will actually be equality for the first

inequality in (9). The second inequality holds because d is the likelihood ratio test for the densities
fé") and fl("). a

B. Case of 1.I.D. Observations

Although the result stated in Theorem 1 is for correlated observations, there is no significant
simplification in the case of i.i.d. observations. I the genuine signal is i.i.d., the spurious signal
given by Theorem 1 is not i.i.d. in general. However, it may be desired to generate the spurious
signal as an i.i.d. signal, if the genuine signal is i.i.d. It turns out that the deceptive signal is i.i.d.

if N =1, so that the constraint (4) reduces to (3). The density (11) becomes a product density

() = [ fola) (14)
t=1
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where

fo(z) = {P‘lfl(w) if gu(z) < Amax and gr(2) > Amin (15)
0 otherwise

and p is defined by

p= P{qU(Xt) .<.. Ama.x, qL(Xt) Z Amin}-
No simplification of the detector rule (13) is possible.

C. Method for Generating the Optimal Deceptive Signal

In theory, it is quite simple to generate the optimal deceptive signal whenever it is possible
to generate data which have the same distribution as the genuine signal. To generate a vector x
from the multivariate density fén), first generate a vector x from the density fl(n). Then test the

vector for acceptance by checking whether g7(x) > Amin and qu(z¢) < Amax, fort = 1,...,n. If

the conditions hold, then x is accepted and is the desired vector from fén). Otherwise, the vector
is rejected. The process is repeated until a vector is finally accepted.

The acceptance-rejection method works well if the probability of acceptance is large enough.
In fact, the probability of acceptance is precisely ¢!, with ¢ given by (12). The number of vectors
M that must be generated before one is accepted has a geometric distribution, with the probability
of success being ¢~!. Therefore, the average value of M is c. If ¢~! is very small, then the average
value of M may be too large to make the acceptance-rejection method feasible. If Ap;y and Amax
remain fixed and the dimensionality n is increased, ¢=! decreases. Thus, if n is large, it is likely

R

that the acceptance-rejection method may be too expensive to use.
If n is too large to make the method feasible, suboptimal methods are possible. Consider, for

example, an ARMA model for the genuine signal,

L M-1
X+ Y aiXei= Y blUi; (17)
i=1

=0

where {U,} is an i.i.d. process and the signal dimensionality is m = 1. After each X, is generated, we
check for the upper bound (2) and the lower bound (4). If the the recently generated X is rejected,
then we may generate X; again by generating another U; and using the same X,;_,...,X;_; and
Ui_M+1,---,Ui-1 that were previously used. The method, of course, generates an approximately
optimal signal. If i.i.d. data are to be generated, then each component z; may be generated and

tested independently of all other components.



IV. SIGNAL DETECTION GAME UNDER AN EXPECTED
PowER CONSTRAINT

When we consider the lower bound (6) on the expected power, we are confronted with a problem
*which is significantly more difficult than the one considered in the preceding section. Consequently,
we must take the dimensionality to be m = 1 and the length of the observed data segment to be
n = 1. We provide here the optimal (maximin) deceptive signal distribution, but not the optimal
(minimax) detector. The density of the genuine signal is assumed to be non-zero only for positive
numbers; in Section VII we discuss the application to densities which allow positive and negative
values.

The solution to the problem is obtained in two phases. First we approximate the problem by a
finite dimensional one and obtain its solution. Then we consider the limit as the dimensionality of

the finite dimensional problem goes to infinity, thus obtaining the solution to the original problem.
A. The Finite Dimensional Problem
Throughout this section, we use the notation I4 for the indicator function
1 fzeA
A
IA(.'L') = { .
0 ifz¢ A

and Fi(u,v] and G;(u,v] to denote the integrals
Fi(u,v] 2 / dFi(z)
(u,2]
Gi(u,v] & / 2 dFy(z).
(u,]

The integration is actually performed over the interval (u,v], which includes-the point v. More
generally, F;I and G;I involve integration over the interval I, which may or may not include the
endpoints. Since F; does not contain any point masses, this distinction is only necessary when Fg
is involved.

To make the analysis manageable, we assume that the distribution Fy has a density of the

form
M
fo(®) = eilu,_y ) (2) fo(2) (18)
i=1 ’
with¢; > 0and 0 = wp < u3 < ... < upyr = Amax. A justification for this particular form is

given in the next section. (See Proposition 1.) As observed in (18), in each region the density fo
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matches the densify f1 as closely as possible, their ratio being constant. By restricting attention
to densities of the form (18), we make the problem more manageable in that we must find only the
optimal values of the parameters {c¢;} and {u;}. We also allow limiting forms of (18), so that, if
Up -1 — Amax, for example, we may obtain a point mass at A ,x.

For the specific form of the density (18), the constraint (6) becomes

M
Z ¢iG1(ui—1, %] > Enin. (19)

i=1
This constraint imposes further constraints on the values of the parameters. Note that when

Gl (0’ Amax]

Emin > Fl(oa Amax]

(20)

does not hold, the solution is trivial: we take fy to be a scaled version of f; over the interval
[0, Amax]. In this case, the lower bound on expected power is superfluous. If (20) does hold, then
probzibility mass must be moved to the right to increase the average power under Hy, that is, we
cannot have ¢; = ¢; = --- = ¢pr. Consequently, we assume that (20) is true.
The detector which is optimal against the density (18) is the likelihood ratio test (LRT), which
has the form
M
d(z) = Zaij(u._l,u.](m) F T Apar,00)(T) (21)
i=1
where 0 < o; < 1fori=1,...,M. Actually, the o; parameters in (21) may take only the three
values 0, o, and 1. This is because in a LRT, randomization is necessary only when fi(z)/fo(z)
is precisely equal to the threshold. The randomization parameter a determines the particular

operating point on the receiver operating characteristic (ROC).

B. Case of M =2
For the case of M = 2, the density fo given by (18) has the form

fo(z) = crdio,uy) r(x) + c2liy, a0 f1(2). (22)

The optimal (maximin) density takes one of the following two forms:

fO(m) = CII(O,Amu)fl(l') + hé(Amax - l') (23)

fo(z) = cad(upin Amar) (T) f1(2). (24)
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In the first density (23), u, is taken as far to the right as possible, resulting in a point mass (Dirac
¢ function) at the point Anax. The value of c; is taken as large as possible and the point mass h
as small as possible, while still maintaining the lower bound (6) on expected power. The graph of
such a density is shown in Figure 2, which may be compared to the graph of f; in Figure 1. (N.B.
We did not try to show the proper scaling on the y-axis.)

For this particular form of the density, the constraint (6) becomes

chl(O) Amax) + hA2 2 Emin- (25)

max —
Since fy is a probability density, we have also
c1F1(0, Amax] + h = 1. (26)

From (25) and (26), we obtain the inequalities

Amax - Emin
< 27
as AmaxFl(O’ Amax] - Gl(o’ Amax] ( )
h> EminFl(Oa Amax] - G}(O, Amax] (28)

- AmaxF] (0’ Amax] - Gl(ov Amax] '

Note that the best performance results are obtained when we take equality in (27) and (28).

In the second density (24), uy is taken as far to the left as possible, u; = upy,, causing ¢y
to take the value 0 and ¢, to take its minimum value. The minimum value w%;,, obtained from
(6) and the fact that fy is a probability density, is given by umin = Z~1(Emin), Wwhere Z is the
increasing function

7AN Gl(ta Amax]

Z(t) N Fl(ta Amax] (29)

and Z~! its inverse. The minimum value of ¢; is given by ¢; = Fi (umin, A}n&x]"l. This density is of
the same form as the one given in Section 3, where a lower bound on the amplitude was imposed.
Figure 3 shows the graph of such a density.

Which of these forms the optimal density takes depends on the specific performance measure,
the density f1, and the value E|,;,. It may be necessary to determine the value of the performance
measure for both densities and compare the results in order to determine which density is optimal.
As a particular example, we take the performance measure $ to be the maximum of the two error
probabilities. Because of the randomization in the decision rule, this means that S = Fy = P1,

that is, the performance measure is the minimum value of Py under the constraint that P, = F.
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First consider the form given by (23) with equality taken in (27) and (28). The optimal decision
rule (LRT) is
o if0<z< Anax
d(z)={ 0 ifz= Amax (30)
1 ifz> Amax-

Therefore the error probabilities are given by

Py = ClfClFl(Oy Amax)

(31)
P] = (1 - O:)F](O,Amax).
Taking a so that Py = P; yields
A
Q1(Emin) = Po = P
_ (A?nax - Emin)Fl(Ov Amax] (32)
A?nax - Emln + A?naxFl(O, Amax] - Gl(O? Amax] ’
Next consider the form given by (24). The optimal decision rule against (24) is given by
if min < <A X
d(m:{a i Upin <2 < Ama (33)
1 otherwise.
Evaluating Py and P;, and choosing a so that Py = P;, yields
L Fi(u ins Amax
Q2(Eunin) 2 Py = Py = 11 (nis Ao (34)

Fl(“mina Amax] +1 -

For a given value of Fyy;,, we evaluate the two expressions @1 and Q-. If @1 > () then the optimal

density is (23); otherwise, (24) is optimal.

C. Caseof M =3
For the case of M = 3, the density fo given by (18) takes the form

fo(z) = e1d(0,u) [1(2) + c2l(u; ug) [1(2) + €31 (uy uq) fi (). (35)

The optimal density takes the form

fO(x) = c2I(U1,Amax)(1:)fl(a:) + ha(Amax - :IZ) (36)

and is shown in Figure 4. Comparing (36) and (35), we see that in the optimization uz — Amax,

causing a point mass h at Amayx; and u; decreases, forcing ¢; to take the value 0. It is possible
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and, in many cases actually true, that u; = 0 or that A = 0 in (36). In such cases, the density
reduces to one the ones which is optimal for two regions. It is not possible, however, to have u; =0
and h = 0 simultaneously, if the condition (20) holds. Since we must have [ fo(z)dz = 1 and
1) 2% fo(z) dz = Emin, only one of the three parameters, ¢y, 41, and h, may chosen independently.
This one independent parameter must be determined by a one-dimensional optimization; the other
parameters may then be determined from the independent parameter.

As a particular example, we consider again the performance measure S = Py = P;. The

optimal decision rule (LRT) against the density (36) is

1 f0<z<u orz> Anax
d(z)=<{ a ifu <z < Amax (37)
0 ifz=Anax.

The error probabilities are given by

Py = acy F1(uy, Amax)

(38)
Pl = (1 - a)Fl(uh Amax]-
Taking uy as the independent parameter and choosing « so that P, = P; we have
A . A2 - Emin Fi(u >A a
Q(ulaEmin)zPozPl = ( X ) 1( Lo X] (39)

A?naxFl(ul, Amax] - Gl(ulyAmax] + Ar2nax - Emin )

The function @ must be optimized over u;. Since this function is differentiable, we may set
the derivative equal to zero to find any potential maximum points in the interval (0, %min). The

derivative is given by

"fll(u)(A?nax - Emin){A::nax - Emin + ’U,2F1(’U,, Amax] - GI(U, Amax]}

0
—Q(u7 En ) =
du min |AZ, . Fi(u1, Amax] = G1(U1, Amax] + AZiax — Emin‘2

(40)
The maximizing value of u; will occur either at a point in (0, umin) Where the derivative is zero,
or at one of the endpoints 0 or upy;,. Whenever u; is taken as one of the endpoints, density is the

same as the density that is optimal for M = 2.

D. Caseof M > 4
Nothing is to be gained by taking M > 4, since the optimal density will have the form (36).

This is the gist of Theorem 2, which is proved in the following section.
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THEOREM 2. Let Fp be the maximin distribution in Cps. Then Fy takes one of these three forms:
(a) Fy € C3, with a point mass at Apmax and ¢; = 0; (b) Fo € Ca, with a point mass at Amax; (€)
Fy € Cy, with ¢; = 0.
Evidently, the density fo follows f; as closely as possible over the “center” region (uj, Amax), while a
zero region is allowed to the left (at (0,u;]) and a point mass is allowed to the right (at Amax). The
zero region and the point mass are required to increase the average powér; however, introducing
another “level” in the center region would make fo look even less like f;. We think that this
intuitive reasoning makes good sense. Our proof, however, relies on mathematics and not intuition.
The form of the densities given for M = 2 and M = 3 actually define the form of the maximin

distribution in the class of all distributions which satisfy the required constraints. This is the result

of Theorem 3.

THEOREM 3. Let Fy be the maximin distribution in the class of all distributions satisfying the
constraints (2) and (6). Then Fy has one of the forms given in Theorem 2.

Proof. Let {Foa} be any sequence of d.f.s, where Fyps has the form given by (41), that converges
to Fp. Let FJ, be the maximin d.f. in the class Cps. From Theorem 2, we know that Fg,, has
one of the forms (a), (b), or (¢). Furthermore, since Fgy, = Fgs for M > 3, the sequence [Fg),
converges to a distribution F§. Let S(F') denote the minimum value of the performance measure:
S(F)=1infy S(d, F). Then S(Fop) > S(F§a,) for all M. Since § is continuous, the inequality hold
in the limit: S(Fp) > S(Fg)-

V. PROOF OF THEOREM 2 -

= e

In this section, we include a series of lemmas, propositions, and so on, which, had they been
included in the preceding section, would have made it considerably less readable. Essentially, these
results prove the statements made in the preceding section.

The first matter which deserves attention is the justification of the form of the density given
by (18). From a purely engineering viewpoint, the approach to the problem based on M-regions
can be justified by the argument that it is a practical approach to a difficult problem. However,
a mathematical justification is also possible. It is possible to approximate any n-dimensional
distribution function (d.f.) arbitrarily closely by a distribution function which has a density of the

form
M
fx) = eidp(x) (41)
i=1
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where the R; are rectangles in n-dimensions. The approximation improves as M increases. Note
that the density in (41) has flat tops, that is, f is constant over the region R;. A mathematically
precise statement of this approximation states that there is a sequence of d.f.s having densities of
.the form (41) that converge to the required d.f. in the Levy Metric (or weak topology), as M — oo.
Thus we may conclude that we lose little in terms of optimality if we take M quite large.

When it comes to approximating the maximin distribution, we may, however, improve on the
approximation (41). Let the regions Ry, R, ..., Rar and the amount of mass y; that is assigned to

R; be fixed. Call the set of d.f.s that satisfy this property Bas, that is,

By 2 {F:F(R) =pii=1,...,M)}.

Then we have the following proposition.

ProposiTioN 1. If F is the maximin d.f. in By, then F has a density of the form

M
f(x) = Ir (x)eifu(x). (42)
=1

Proof. Let S be the performance measure involved and d the minimizing decision rule correspond-
ing to F, S(d, F) = inf, S(r, F). Note that because of the form of d, it has the same performance
for every distribution in Bys. If F' is any other d.f. in By, then inf, S(r, F') < S(d, F') = S(d, F).
0

The next issue we address is the proof that the maximin density in the class of M-region
densities, where M > 3, is in the class of 3-region densities. We consider only univariate d.f.s which

have densities of the form

M
f(z) = ZI(u'_hul.](x)cifl(x), 0<¢;<Kfori=1,...,M. (43)
i=1

The upper bound K on the ¢;s is necessary for now to avoid delta functions in the densities. Define

the set Cps(K) of d.f.s by
Cm(K) = {F : F has a density (43) and [2®f(2)dz > Emin}-

Note that the c¢;’s need not all be distinct; in this sense, Cas_1(K) C Cpr(K). We make the
following distinction, however: If F and F' are two different distributions, such that F ¢ Cr(K),
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F' € Cp(K), F' ¢ CL(K), M > L, and S(F,d) = S(F',d'), where d minimizes § with respect to F
and d’' minimizes S with respect to F', then F” is not a maximin distribution. In other words, when
the maximin distribution is not unique, only the distribution (or distributions) which is “minimal”
is considered a maximin distribution.

The LRT for any d.f. in Ba(K') has the form

M
d(z) =Y ail(u,_; (%) + L Amar,c0)(2): (44)
=1

This is used in the results which follow.

LEMMA 1. If {c;} are the parameters of the maximin density in Car(K'), then ¢; < ¢z <... < epre
Proof. In this proof, all symbols with a prime (') correspond to F’, while all the unprimed symbols
cbrrespond to F. Let d be the minimizing decision rule corresponding to a chosen F' € Cp(K).
Suppose cj+1 < ¢;. Let F' be a d.f. in Car(K) with u} = u; for all ¢ and ¢} = ¢; for 7 # 5,7 + 1.
Assume c;- = c9+1. Let d' be a decision rule such that Py(d', F') = Py(d, F) and inf, Py(r, F') =
Po(d', F'). Note that o} = o}, where a}, i = 1,..., M, correspond to d' [See (44)]. Since
Fuj_1,uj41) = F'(uj-1,ujt1], we have Po(d, F) < Py(d', F) = Py(d', F'). Thus (d, F) cannot be

a maximin pair. {

Now consider the interval (u;_y,u;j41}, which is the union of the two intervals (u;_1,u;] and
(uj,u;+1]. For now, we want to optimize over only the parameters uj, cj, and c;41, while keeping

the other parameters fixed. Since f is a probability density, we must have

M
/f(x)df = aiF(wio,u) =1 (45)
i=1

Furthermore, the lower bound on average power requires that

M
/:czf(a:)dz = Z ¢;G1(ui—1,%) 2 Emin- (46)

=1
If we solve (45) for ¢;4+1 and substitute into (46), we obtain the bound

UGi(uj,ujp1] ~ VFi(uj, wjpa)

c; < 1(u;) 2
7= R (g1, w5)G (g, wipa] = Fi(ug, vie1]Ga(ujog, )

(47)
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with

Uvei- Z eiFy(uimy, ui)

i#i-1,j
N
V = Enin — Z ¢iG1(ui—1, ui).
i#i_1,j

Note that with all the other parameters fixed, U represents the portion of the probability mass
assigned to the interval (uj_1,u;41], while V represents the contribution from (u;_1,u;j41] to the

expected power. If we solve (45) for ¢; and substitute into (46), we obtain the bound

VF(uj_1, uj] = UGl(uj—l’uj]
Fi(uj_1,45]Gr (g, uj41] = Fi(ug, wj41)Ga (w1, ug]

A
cir1 2 €2(u;) = (48)
Note that the denominator in £; and £, is. always positive. The inequality £; < £, is equivalent to
the inequality

Vo Gilyj-1,uj41)
Yoo Gy, i) 49
U™ F(uj-1,uj41] (49)

which is analogous to (37). The inequality (37) is global, while (49) is local.

Equality holds in (47) if and only if inequality holds in (48), and as Em;, increases with u;
fixed, {; decreases and £; increases. Note that ¢1(u;) — 0 as u; moves to the left, and £2(u;) — +o0
as u; moves to the right. These constraints quantify the idea that probability mass must be moved

to the right in order to meet the constraint on expected power.

LemMMma 2. If (49) holds, then €;(u;) and £3(u;) are increasing functions of u;.

Proof. The derivatives of £; and {, are

dé S {VE(uj_1,u541] - UG1(ujon, wjp ) H{ G (), wjza) — wd Fi(uj, ujp]}

de -

: 5 (50)
| Fy (o1, w5]G1 (v, wjen] — Fi(uj, wier)Gruj—1, uj)|

dty  fi){VA (w1, ] = UG (uj-1, wjpa] H{ud Fi(uy -1, u5] = Ga(ujon, w5}
du; |Fy (w1, w3061 (g, wje] = Fa (g, wjpn )G (ujor, uj)|

(51)

It is easy to see that all of the factors in the derivatives are positive; therefore the derivatives are
positive. a0

If we choose our interval (u;_;,u;41] appropriately and optimize over uj, ¢;, and ¢j41, then
we get either u; increasing, with ¢; 41 — ¢j42, or u; decreasing, with ¢; — ¢;_1, thus reducing the

number of intervals from M to M — 1. This is the gist of Lemma 3.
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LEMMA 3. If Fy € Cyq(K), M > 3, and Fy ¢ Car—1(K), then Fp is not maximin in Car(K).
Proof. We prove the contrapositive of the statement, that is, if Fp is not in Cpr—1(K), then Fp
cannot be maximin. Qur proof will consist of constructing a distribution F’ € Cas_1 () such that
Pi(d, Fp) = Py(d', F') and Py(d, Fy) < Po(d', F'), where d and d’ are the minimizing decision rules
for Fy and F’, respectively. The construction involves moving u; to the right or left while keeping
ui, 1 # j, and ¢;, ¢ # 7,7 + 1, fixed. The parameters ¢; and c;41 are allowed to change.

Suppose that Fy ¢ Cpr_1(K), which means that ¢; < ¢a < --- < ep. The LRT for testing
Fy against F; is given by (44) with each a; equal to 0, e, or 1. Since the ¢;s are all distinct, only
one of the a;s can be equal to a, say a;. We may assume without loss of generality that ¢, > 0.
(Otherwise, if ¢ = 0, we must have a = ax = 1. Take a = a1 = 0.) The case of k > M — 1 must

be treated as a special case; for now assume that k¥ < M — 1. The error probabilities are given by

k=1

Py = acp Fy(uk—1,ux] + ZCiFl(Ui_hui] (52)
i=1

Pl = Fl(uk-—la Amax] - aFl(uk—louk]- (53)

If we solve (53) for e,
_ Fi(ug-1, Amax] — Py

54
Fl(uk—la Uk] ( )
and substitute into (52), we have
k-1
Py = ci{Fy(tk-1, Amax) = P} + ) ciFy(wic1, ] (85)
i=1

which allows us to see the effects of the parameters on Py while P is fixed. Suppose a > 0. Then
from (54) we know that the coefficient of ¢y in (55) is positive. Therefore, Py is as large as possible
only if ¢j is as large as possible, which means that ¢, = £1(ux) and cxy1 = £3(ux). Furthermore,
if we increase u; while keeping Py fixed, then c¢x = €1(uk), cx41 = f2(ux), and Fp all increase.
Construct F’ from Fy by moving u/, to the right (from uy), keeping ¢} = £1(u},) and ¢ ; = £2(u}),
until C;c+1 = c}c+2. If o = 0, then the coefficient of ¢, in (55) is zero. Therefore, we may construct
F' as before, the difference being that Py(d, F) = Pi(d’, F') and Py(d, Fy) = Po(d', F'). By our
assumption concerning uniqueness, Fy cannot be maximin in Cas(K).

Now consider the case where k > M — 1. Using

k=1 M
ZciFl(ui—l,ui] =1- ZCiFl(U:‘—l, u;) (56)
i=1 i=k
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in (55), we have

M
PO = Ck{F](Uk, Amax] - Pl} +1- Z ciFl(ui—l’ui]' (57)

i=k41

Suppose @ < 1. Then from (54) the coefficient of ¢; in (57) is negative. Thus if we decrease
uk—1 while keeping P fixed, then ¢x_y = £;(ux—1) and ¢x = €2(up_1) both decrease while Py
increases. Construct F’ from Fy by moving u}_; to the left (from ux_1), keeping ¢} _; = €1 (uj_;)
and ¢}, = £y(u}_,), until ¢_; = ¢j_,. If @ = 1, then the coefficient of c; is zero. Therefore, we

may construct F' as before. In either case, we conclude that Fy is not maximin in Cpr(K). a

LEMMA 4. Let Fj be the maximin distribution in Cas(K). Then Fy takes one of these three forms:
(a) Fo € C3(K), with ¢; = 0 and ¢3 = K; (b) Fy € Co(K), with ¢; = K; or (¢) Fy € Co(K), with
¢ =0.

Proof. From Lemma 3 we know that Fy € C3(L). The minimizing decision rule has the form (44).
If @y =0, then a3 = a3 = 0. If az = 1, then a; = a; = 1. In both cases, the performance does
not depend on the density involved. Thus we have to consider the cases (i) 0 < a; < 15 (ii) a; =1,
ay=0a3=0;(1li)0< s <1;(iviay=a; =1,a3 =0;and (v)0< a3 < 1.

Case (i). The error probabilities are given by (55) with j = 1. Since the coefficient of ¢;
is positive, we may increase Py, while keeping Py fixed, by increasing ¢; and u;. The result is a
density of the form (b).

Case (ii). As long as u; and ¢; remain fixed, Py and Py will not change. Therefore, we may
take ¢3 = K, moving us to the right if necessary. This results in a density of the form (b).

Case (iii). The error probabilities are given by either (55) or (57) with j = 2. Since the
coefficient of ¢; in (55) is positive, we may increase Fy, while keeping P; fixed, by increasing ¢, and
uy. Similarly, since the coefficient of ¢; in (57) is negative, we may increase Py, while keeping P,
fixed, by decreasing ¢; and u;. We may not increase Py if ¢; = 0 (u; cannot be moved any farther
to the left) or if ¢ = K (uy cannot move any farther to the right). Thus we have a density of the
form (a).

Case (iv). As long as up and c3 remain fixed, Py and P; will not change. Therefore, we may
take ¢; = 0, moving u; to the left if necessary. This results in a density of the form (c).

Case (v). The error probabilities are given by (57) with j = 3. Since the coefficient of c3 is
negative, we may increase Py, while keeping P; fixed, by decreasing c3 and uy. This results in a

density of the form (c). a
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We are now ready to remove the restriction that ¢; < K. Define

e 2 | Cu(K)
K>1

where the bar denotes the closure. By taking the closure of the union, we allow point masses in
the distributions (delta functions in the densities).

Proof of Theorem 2.

Let Fp x denote the maximin distribution in Cps(K), and S(F) the minimum value of the per-
formance measure when testing F against Fy. Certainly S(Fp i) < S(Fp,L) for K < L. Thus
{S(Fo,x)}3%~; is a bounded increasing sequence which has a limit S*. If Fp is any limit point of
the sequence {Fy k)}$_;, then by Lemma 3 it must have one of the three forms (a), (b), or (c), as
stated in the theorem. Let F be any other distribution in Cps which is a candidate for being the
maximin distribution. There must be a sequence {Fi} of distributions, with Fx € Cps(K), which
converges to F. Since S(F, K') < S(Fo,x) for each K, and since § is continuous, it follows that
the inequality holds in the limit, too. Thus S(F) < §(Fy) = S§*. By our assumption concerning

uniqueness, F' is maximin in Cps only if it is “minimal,” that is, F has one of the forms (a), (b), or

(c). g

VI. EXAMPLES

We mentioned briefly in Section II that the purpose of the lower bound constraints on the

spurious signal is to increase the average or minimum power received by the detector. One of the

prime concerns of the designer of the system that generates the spurious signal is the trade-off
between average the power received by the detector and the probability of error of the detector. It
is desired to generate the strongest signal possible (up to the physical limit of the transmitter) while
keeping the detector error probability as high as possible. When the deceptive signal source gener-
ates continuously at peak transmitter power (a constant signal), an intelligently designed detector
can discriminate with zero error probability. On the other hand, if no lower bound constraint is
placed on the power of the transmitted deceptive signal, the detector error probability is relatively
high, though not equal to 1 if the upper bound on the deceptive signal is lower than the maximum
possible amplitude of the genuine signal. We now present briefly some results, which compare the
performance of the deceptive signal under some of the distributions given in earlier sections with
the average power/error probability trade-off shown explicitly. The error probabilities obtained in

the simulation results are those of the optimal matched detectors.
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We assume that the genuine signal has a lognormal distribution. Thus we have X; = exp(oY;+
1), where {X;} is the observed genuine signal, and we assume {Y;} to be a first-order Gaussian
autoregressive process with

Yir = pYi + V1= ple - (58)
where {¢;} is an i.i.d. N(0,1) sequence. The parameters are p = 0.8, 0> = 0.25, and p = 0.9 for the
correlated case and p = 0 for the i.i.d case. We take A.,.x = 4, which is the 88th percentile of the
genuine distribution. Thus, the maximum power which may be transmitted by the deceptive signal
source is A2, = 16. In the included figures, we normalize the average deceptive signal power by
dividing by the maximum powér.

Performance results for the i.i.d. case are shown in Figure 5. The detector employed in each
case is given by Theorem 1. The deceptive signal actually generated was the one described in the
last part of Section 3 for a first order AR process. The ordinates of the plots show the common value
of the error probabilities Py = P;, obtained by properly choosing the randomization parameter «

in the test (13). The abscissas show the ratio of the average power actually transmitted to the

2

maximum possible power AZ .

The two plots represent two different lengths for the window over
which the power is averaged [see Eqn. (10)]. The case of N = 1 involves a lower-bound constraint
on the signal amplitude. The curves are parameterized by the value of the lower bound D. The
plots show that the longer window length improves the deceptive signals performance significantly.
Recall that the signal with N = 1 is i.i.d., while the other is not.

Figure 6 shows a similar situation, but with the genuine signal being correlated. Comparing
Figures 5 and 6 reveals that it is harder for the detector to correctly distinguish the signals when
the genuine signal is correlated. As before, increasing the window length improves the performance
of the deceptive signal.

Finally, we look at the performance of the density (36) obtained under an expected power
constraint. For a single sample, the optimal decision rule ({LRT) is given by (37), and value of the

performance measure max(Fp, P;) is given by (39). For multiple i.i.d. samples, the performance

measure under the optimal detector is similar to (39) and is given by

(Argnax - Emin)nFl (Ul 3 Amax]n
(ArznaxFl(ul ) Amax] - Gl(ula Amax])n + (A?nax - Emin)n

Q(n)(ulaEmin) é (59)

where 7 is the sample size. Figure 7 shows the value of Q™ with u; chosen optimally, plotted as
a function of Enj,/A2,,,; this is shown by the curve labeled EP. The other curves are the same as

those shown in Figure 5. The univariate density (36) obtained under an expected power constraint
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and used to generate an i.i.d. signal shows a significantly better performance than the densities

which were derived under a lower bound on the time-averaged power.

VII. EXTENSIONS OF THE RESULTS

One of the key factors necessary to obtain the results in Sections VI and V is the fact the
the number of parameters to be dealt with is minimal. When we try to extend the results to a
dimension larger than 1 or to densities which admit positive as well as negative values, we find
that the number of parameters to optimize over becomes significantly larger. The two constraints
available to us—that the density integrate to 1 and that the expected power be equal to Ep,ip—allow
us to reduce the number of independent parameters by at most two.

Consider first the extension to a dimensionality greater than 1, say 2. If we divide the region
(0, Amax)? into four regions, by taking two break points in each dimension, for example, then we
have a total of six parameters to optimize over. Using the constraints we have available, we may
reduce this to four independent parameters. However, if we take three break points per dimension,
then we have eleven independent parameters to optimize over.

There are other problems associated with a higher dimensionality. Unless the density is fairly
simple, generating a signal which has the distribution defined by the multivariate density may be
too difficult to be practical. Furthermore, we would not necessarily be achieving our primary goal
of obtaining a stationary signal which is effective at deceiving the detector while maintaining an
increased power level. What we would actually have, if we obtain an optimal n-variate density, is
a method to generate optimal blocks of n.

One extension is worth mentioning, however. Suppose the signal dimension m is greater than 1.
If the genuine signal is i.i.d., then we may gen‘erate blocks of m independently from an optimal (or
nearly optimal) m-variate density, if such a density can be found. That the result would be good
may be expected, considering the comparison of the i.i.d. signals in the preceding section. Now,
suppose that we begin with a finite dimensional problem, as in Section VI, where the regions in

(0, Ajmax]™ are defined by the parameters 0 = up < u3 < *++ < p = Amax as
Ri={x:z; > uj_q for 1 <j <n,and z; < u; for at least one z;}

fori=1,...,M. In this case, the lemmas and theorems in Sections VI and V go through as before,
the final result being a point mass at (Amax, -+ +» Amax), @ scaled region over Ry, and a zero region

over R,. A signal with this density may be easily generated.
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Finally, we consider the extension to densities with positive and negative support. It is clear
that, for nonsymmetric densities, we may approximate the problem by a finite dimensional one,
as in Section IV. If we fix the amount of mass provided for positive values, then we can apply
Theorems 2 and 3 to the “positive” and “negative” parts of the density to obtain a density of the

form [compare (36)]

max %

fo(-T) = C2_1(.4 ;‘)(x)fl(x) + h—b‘(Ar_r—'nax - .’E) + C;I(u:’,A'* )(m)fl(x) + h+5(A$ax - .’l:) (60)

max

where the first two terms on the right hand side correspond to the “negative” part and the last
two to the “positive” part. Recall that (36) involves three parameters, ¢a, 43, and h. Using the
two available constraints, we reduce this to one independent parameter to optimize over. In (60),
however, we have six parameters, and we must optimize over four independent ones. In the case
where f; is symmetric, fo is symmetric, and we have only one independent parameter to optimize

over.

VIII. CONCLUSION

In this paper, we have formulated a detection game which pits a detector designer against
a deceptive signal designer. Different constraints on the probability distribution governing the
deceptive signal were imposed. In the case of a lower bound on the time-averaged power of the
signal, we showed that if the detector designer knows the parameters of the constraints on the
deceptive signal, then the optimal detector and optimal distribution form a saddle point of the
detection game. We provided both the optimal detector and the optimal distribution. Given
a lower bound on the expected power, rather than the time-averaged power, we were unable to
obtain the optimal detector, but provided the optimal distribution for the case where the signal
dimension is one and the length of the data segment is one. '

The results for the time-averaged power constraint are fairly complete. They are also the very
practical. We presented a method for generating the optimal deceptive signal and an approximately
optimal deceptive signal. It was shown that even if the genuine signal is i.i.d., the optimal deceptive
signal is not i.i.d. in general. The exception to this occurs when the constraints are imposed on the
signal amplitude only.

For the case of a lower-bound on the expected power of the deceptive signal, the game does
not have a saddle point. We obtained the optimal density for the case of a univariate density and

showed that the result is applicable in a situation where the genuine signal is i.i.d. Our numerical
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results which compare the signals obtained under a time-averaged power constraint and an expected
power constraint show that the latter performs significantly better.

We discussed the possibility of extending our results. We showed that it is possible to obtain
an m-variate density which resembles the optimal univariate density, and suggested that such a
density be used to generate an i.i.d. signal having dimension m. We also showed that the results
for an expected power constraint are valid for nonsymmetric densities which allow both positive
and negative values.

Our results, particularly those in Section III, assume that the detector designer knows the
parameters of the constraints placed on the deceptive signal. This assumption is unrealistic and
pessimistic from the viewpoint of the deceptive signal designer. One area for further research
could be to relax or remove this assumption. For example, the detector designer may presuppose
a probability distribution on the parameters, and thereby pursue a Bayesian approach to the
detector design, or, if no assumption is made concerning the parameters, a minimax approach
may be pursued. In either case, we expect that the research will lead into the area of mized
strategies, where a player chooses his strategy according to a probability distribution. In the case
of an expected power constraint on the signal, where there is no saddle point, it seems that mixed

strategies may also be apﬁropriate.
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Figure 1. Graph of f,.

Amax

Figure 2. Graph of fo given by Eqgn. (23).
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Figure 3. Graph of fo given by Eqgn. (24).
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Figure 4. Graph of to given by Eqn. (36).
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