
ABSTRACTTitle of dissertation: REASONING WITH CONFLICTING INFOR-MATION IN ARTIFICIAL INTELLIGENCEAND DATABASE THEORYShekhar Shantaram Pradhan, Do
tor of Philosophy, 2001Dissertation dire
ted by: Professor Ja
k MinkerDepartment of Computer S
ien
e
We develop C4 a logi
 for reasoning with information 
ontaining non-logi
al
on
i
ts, where the information is en
oded in the form of normal logi
 programsand the 
on
i
ts are represented using a 
onstru
t 
alled \
ontestation." We provethat theC4 logi
 is inferentially 
on
i
t-free in the sense that the set of entailmentsof a normal logi
 program augmented with a set of 
ontestations are guaranteedto be free of the 
on
i
ts spe
i�ed by the set of 
ontestations. We provide a soundand 
omplete pro
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Chapter 1Introdu
tion
1.1 MotivationLogi
 programmingwas invented by Kowalski ([Kow74℄ and Colmerauer ([CKRP73℄.It was re
ognized at the very in
eption of the logi
 programming paradigm that itprovided a powerful and natural system for representing information and drawinginferen
es from this information. But any body of information is liable to 
ontain
on
i
ting information, and 
ertain inferential me
hanisms are liable to fun
tionpathologi
ally when reasoning with 
on
i
ting information. For instan
e, 
lassi-
al logi
 li
enses the inferen
e of any senten
e from a logi
ally in
onsistent set ofsenten
es. Clearly, in any pra
ti
al 
ontext this is a highly undesirable feature inan inferential me
hanism. Thus, there are good pra
ti
al reasons for seeking in-ferential me
hanisms that 
an behave reasonably when reasoning with 
on
i
tinginformation.Thus, given a set of senten
esS = fHeartDisease; � HeartDisease; Insured; HeartDisease! Transplantgwhere � p is the logi
al negation of p and p! q is 
lassi
al material impli
ation,1




lassi
al logi
 li
enses the inferen
e of Insured from S, but it equally li
enses theinferen
e of � Insured.Para
onsistent logi
s ([Cos74℄, [Arr79℄, [Bel77b℄) attempt to remedy this defe
tin 
lassi
al logi
 by preventing the li
ensing of any arbitrary senten
e from anin
onsistent set of senten
es. Thus, from the above set of senten
es para
onsistentlogi
s would permit the inferen
e of Insured, but would not permit the inferen
eof � Insured.However, almost all para
onsistent logi
s su�er from a related problem. Fromthe above set of senten
es S, they all (with the ex
eption of [Lin96℄) permit theinferen
e of the in
onsistent set fHeartDisease; � HeartDiseaseg. This is anundesirable result be
ause if HeartDisease 
an be inferred then it is possible toinfer Transplant from S. But it would not be wise to 
on
lude that a patientshould get a heart transplant unless there was no doubt about whether the patienthas heart disease.Thus, it would be desirable to have a logi
 that goes beyond para
onsistentlogi
s in that not only does it not li
ense the inferen
e of any arbitrary senten
efrom an in
onsistent set of senten
es, but the set of its inferen
es must itself be
onsistent. Let us 
all a logi
 inferentially 
onsistent if the set of inferen
es permit-ted by su
h a logi
 is 
onsistent. A goal of this thesis is to develop an inferentially
onsistent logi
.Logi
al in
onsisten
y among two statements is just one type of 
on
i
t amongstatements. Most generally, two statements p and q are in 
on
i
t if the truth ofp undermines the truth of q and vi
e versa. This may happen be
ause p and q areea
h other's negation, i.e., they are logi
ally in
onsistent. But two statements 
an
2




on
i
t even if there is no logi
al in
onsisten
y among them. Thus, the statementthat \John is male" and the statement that \John is female" are in 
on
i
t; butthis is be
ause the semanti
s of \male" and \female" pre
lude any one's beingboth male and female. Clearly, this is not a 
ase of logi
al in
onsisten
y. Wemay 
onsider this an instan
e of a semanti
 
on
i
t. There 
an also be evidential
on
i
ts among statements. Thus, the statement that \John solved the P = NPproblem" is in 
on
i
t with the statement that \John has an I.Q. of 70." Butthis is neither a logi
al 
on
i
t nor a semanti
 
on
i
t. Rather, the truth of the�rst statement provides eviden
e against the truth of the se
ond statement andvi
e versa. It would be desirable for a logi
 whi
h permits reasonable inferen
esfrom a set of senten
es 
ontaining possibly di�erent types of 
on
i
ts. Thus, the
on
ept of an inferentially 
onsistent logi
 
an be generalized to the 
on
ept of aninferentially 
on
i
t-free logi
. A logi
 
an be said to be inferentially 
on
i
t-freewith respe
t to spe
i�ed types of 
on
i
t if the set of inferen
es it permits is freeof any 
on
i
ts of the spe
i�ed type.Furthermore, with 
ertain types of 
on
i
ts, su
h as evidential 
on
i
ts, dif-ferent sets of statements may be in evidential 
on
i
ts to di�erent degrees. Thisopens the possibility that one statement, p, in a 
on
i
t may 
on
i
t with anotherstatement, q, to one degree, but q may 
on
i
t with p to a di�erent degree. Forexample, arguably, the statement "John has solved the P = NP problem" un-dermines the truth of "John has an I.Q. of 70" to a mu
h higher degree than thedegree to whi
h the latter statement 
an undermine the truth of the former. As alimiting 
ase, p may 
on
i
t with q to a 
ertain degree but q may not 
on
i
t withp at all. Thus, we 
an allow non-mutuality in 
on
i
ts. Thus, the 
laim that \Johnhas a high fever now" might undermine the 
laim that \John has disease D," but
3



the diagnosis of a disease, whi
h is typi
ally a matter of 
onje
ture, is generallynot taken as undermining the observation of su
h a simple bodily property as itstemperature. Thus, it would be useful to develop a framework for representingall these di�erent types of 
on
i
ts and for reasoning with information 
ontainingthese di�erent types of 
on
i
ts.The main goal of this thesis then is to devise a logi
 for reasoning with knowl-edge en
oded in the form of normal logi
 programs augmented with 
onstru
ts forspe
ifying di�erent types of 
on
i
ts su
h that the logi
 is inferentially 
on
i
t-freewith respe
t to the spe
i�ed types of 
on
i
ts.1.2 Resear
h ContributionsHere we summarize the main resear
h 
ontributions of this dissertation.� We develop C4, a logi
 for reasoning with 
on
i
ting information (Chap-ter 4).{ We present a 
onstru
t we 
all 
ontestations for spe
ifying di�erenttypes of 
on
i
ts, in
luding non-mutual 
on
i
ts (Subse
tion 4.4.1).{ We develop C4, a four-valued semanti
s for normal logi
 programs aug-mented with a set of 
ontestations representing di�erent types of 
on-
i
ts. This semanti
s is based on generalizing to the four-valued 
on-text the 
on
ept of a well-supported model ([Fag91℄) and by introdu
ingan ordering relation among the well-supported models. The 
anoni
almodels of P + C, where P is a normal logi
 program and C is a set of
ontestations, are the maximal models in terms of this ordering among4



the well-supported models of P + C (Se
tion 4.4).{ We introdu
e two types of entailment relations: strong entailment andweak entailment. We prove that the inferen
es permitted in terms ofthese entailment relations are 
on
i
t-free with respe
t to the types of
on
i
ts spe
i�ed in terms of C (Subse
tion 4.4.3).{ We prove that for any normal logi
 program augmented with a 
er-tain type of 
ontestations there is at least one 
anoni
al model of theaugmented program (Se
tion 4.4).{ We show how the four truth values of C4 and the asso
iated orderingbetween them 
an naturally be derived from the 
lassi
al truth values Tand F in the 
ontext of two players assigning the 
lassi
al truth valuesto the same set of statements, where one player's assignment is allowedto dominate the other player's assignment without outright winningagainst the other player's assignment (Se
tion 4.2).� We investigateC4 as a new semanti
s for normal logi
 programs (Chapter 5).{ We prove that every de�nite logi
 program has a unique C4 
anoni
almodel (Se
tion 5.2).{ We prove that C4 regarded as a semanti
s of normal logi
 programs(without any 
ontestations) has the property that every normal logi
program has at least one C4 
anoni
al model (Se
tion 5.2).{ We prove that the C4 semanti
s of normal logi
 programs subsumesthe stable model semanti
s of normal logi
 programs ([GL88℄) . Morepre
isely, we show that for a normal logi
 program P with any two-valued stable models, a literal l is true in every stable model of P i� l5



is weakly entailed by P under the C4 semanti
s (Se
tion 5.3).{ We prove that the C4 semanti
s of normal logi
 programs subsumesthe well-founded semanti
s ([GRS88℄) of normal logi
 programs. Morepre
isely, we show that a literal l is true in the well-founded semanti
sof P i� l is strongly entailed by P under the C4 semanti
s (Se
tion 5.4).{ We have devised a formalism to express hybrid 
onjun
tive queries onepart of whi
h must be answered in terms of strong entailment and an-other part of whi
h may be answered in terms of weak entailment (Se
-tion 5.5).� We develop three proof pro
edures. These proof pro
edures use a bottom-up
omputation strategy and are based on making assumptions of literals andkeeping tra
k of whi
h literal is inferred on the basis of whi
h assumptions.{ We provide a proof pro
edure for answering whether a ground query
onsisting of a 
onjun
tion or a disjun
tion of ground literals is weaklyentailed by a �nite and ground normal logi
 program without any 
on-testations whi
h has at least one stable model. If the program has nostable models the pro
edure dete
ts that (Se
tion 6.3). We prove thatthis proof pro
edure is sound and 
omplete with respe
t to the C4 se-manti
s for normal logi
 programs (Se
tion 6.4). We prove that theworst-
ase 
omplexity of this pro
edure is O(n2 � 2n), where n is the
ardinality of the Herbrand base of the program (Se
tion 6.6). We mod-ify this proof pro
edure to 
ompute all the stable models of a program(Se
tion 6.3).{ We provide a proof pro
edure for answering whether a ground query6




onsisting of a 
onjun
tion or a disjun
tion of ground literals is stronglyentailed by a �nite and ground normal logi
 program without any 
on-testations (Se
tion 7.3). We prove that this proof pro
edure is soundand 
omplete with respe
t to the C4 semanti
s for normal logi
 pro-grams (Se
tion 7.4). We prove that the worst-
ase 
omplexity of thispro
edure is O(n3), where n is the 
ardinality of the Herbrand baseof the program (Se
tion 7.5). We prove that this proof pro
edure also
omputes the well-founded semanti
s of a normal logi
 program (Se
-tion 7.4).{ We provide a proof pro
edure for answering a ground query to a �niteand ground normal logi
 program P augmented with a set of ground
ontestations C. The proof pro
edure 
an answer whether the query isstrongly entailed by P + C or weakly entailed by P + C(Se
tion 8.3).We prove the soundness and 
ompleteness of this pro
edure with re-spe
t to the C4 semanti
s for P + C (Se
tion 8.4). We prove that theworst-
ase 
omplexity of this pro
edure is O(n2�2n) for both weak andstrong entailment, where n is the 
ardinality of the Herbrand base ofthe program (Se
tion 8.5).� We show the 
onne
tion between integrity 
onstraints and 
ontestations. Weuse the C4 semanti
s for normal logi
 programs augmented with a set of
ontestations to provide an a

ount of propositional integrity 
onstraint sat-isfa
tion for dedu
tive databases that may be in
onsistent with their ownintegrity 
onstraints (Chapter 9).{ We propose that integrity 
onstraints be viewed as 
onstraints on what
7




an be proven from a database rather than 
onstraints on the state ofa database. We propose a new a

ount of integrity 
onstraint satisfa
-tion in terms of this reinterpretation of the role of integrity 
onstraints(Se
tion 9.2).{ We show how to translate a wide range of propositional integrity 
on-straints into 
ontestations (Se
tion 9.3).{ We show that the C4 semanti
s for normal logi
 programs augmentedwith a set of 
ontestations 
an be used as a semanti
s for dedu
tivedatabases augmented with a set of propositional integrity 
onstraints(Se
tion 9.4).� We develop an approa
h to reasoning with normal logi
 programs augmentedwith 
ontestations and preferen
es (Chapter 10). We provide a language forexpressing preferen
es among statements (Se
tion 10.2). We extend C4 toprovide two semanti
s for a normal logi
 program, LP , augmented with aset of 
ontestations, C, and a set of preferen
es, P. The �rst semanti
s isbased on using the preferen
es of P to indu
e an ordering among the well-supported models of LP + C. The se
ond semanti
s is based on the idea ofa well-supported model of LP + C satisfying the preferen
es of P. Althoughthese two semanti
s are based on di�erent ways of fa
toring in the role ofpreferen
es, we prove that these two semanti
s are equivalent (Se
tion 10.3).� Finally, we extend C4 to provide a semanti
s for extended logi
 programs,whi
h 
ontain both a default and a non-default negation (Chapter 11).{ We develop a �ve-valued semanti
s C5 whi
h is an extension of C4(Se
tion 11.3). 8



{ We prove that every extended logi
 program has at least one (
onsistent)
anoni
al model under C5 (Se
tion 11.3).{ We show how to 
apture part of the logi
al for
e of non-default nega-tion in terms of 
ontestations. If non-default negation is viewed as anapproximation of 
lassi
al negation, then logi
al 
on
i
t in a logi
 pro-gram 
an be represented in terms of the derivability of a literal and itsnon-default negation from the program. Thus, logi
al 
on
i
ts as well asnon-logi
al 
on
i
ts 
an be represented in terms of 
ontestations. Thisestablishes that 
ontestations provide a 
exible framework for express-ing and reasoning with a wide variety of 
on
i
ts among statements(Se
tion 11.3).{ We prove that C5 is inferentially 
on
i
t-free with respe
t to the ap-proximation of logi
al 
on
i
ts in terms of non-default negation (Se
-tion 11.3).{ We prove that for any extended logi
 program P whi
h has a 
onsistentanswer set, a literal l is strongly entailed by P under the answer setsemanti
s ([GL90℄) if and only if l is weakly entailed under C5 (Se
-tion 11.4).{ We have shown how the �ve truth values of C5 and orderings asso
iatedamong these truth values 
an be derived from the truth values fF; U; Tgof Kleene ([Kle50℄) and the truth and knowledge orderings among thesetruth values (Se
tion 11.5).
9



1.3 OutlineIn Chapter 2 we provide a brief des
ription of some ba
kground work. In Chap-ter 3 we introdu
e some basi
 logi
 programming terminology and des
ribe somewell-known semanti
s of normal logi
 programs. In Chapter 4 we introdu
e 
on-testations, a key 
on
ept of this dissertation. Contestations are a general wayof expressing 
on
i
ts among sets of statements. We introdu
e C4, a semanti
sof normal logi
 programs augmented with 
ontestations whi
h express non-logi
al
on
i
ts. In terms of this semanti
s we introdu
e two entailment relations: strongentailment and weak entailment. In Chapter 5 we dis
uss C4 as a semanti
s ofnormal logi
 programs. We examine the relation between C4 as a semanti
s ofnormal logi
 programs and the stable model semanti
s and the well-founded se-manti
s of normal logi
 programs. In Chapter 6 we des
ribe a proof pro
edure fordetermining whether a query is weakly entailed by a �nite and ground normal logi
program. We prove that this pro
edure is sound and 
omplete with respe
t to theC4 semanti
s for normal logi
 programs. In Chapter 6 we des
ribe a proof pro
e-dure for determining whether a query is strongly entailed by a �nite and groundnormal logi
 program. We prove that this pro
edure is sound and 
omplete withrespe
t to the C4 semanti
s for normal logi
 programs. We also show that thispro
edure 
omputes the well-founded semanti
s of a normal logi
 program. InChapter 8 we des
ribe two proof pro
edures. The �rst proof pro
edure is to de-termine whether a query is weakly entailed by a �nite and ground normal logi
program augmented with a set of 
ontestations. The se
ond proof pro
edure isto determine whether a query is strongly entailed by a �nite and ground normallogi
 program augmented with a set of 
ontestations. We prove that both of thesepro
edures are sound and 
omplete with respe
t to the C4 semanti
s for normal10



logi
 programs augmented with a set of 
ontestations. In Chapter 9 we 
onsidera semanti
s for dedu
tive databases that may be in
onsistent with a set of propo-sitional integrity 
onstraints. We introdu
e a new a

ount of integrity 
onstraintsatisfa
tion that 
an apply even to databases that may be in
onsistent with theirown integrity 
onstraints. We show how to express a wide variety of propositionalintegrity 
onstraints in terms of the language of 
ontestations. In Chapter 10 weintrodu
e preferen
es among statements, whi
h express the idea that the reasonerprefers that a normal logi
 program augmented with 
ontestations should entailthe preferred statement rather than the non-preferred statement. We show howto reason with normal logi
 programs augmented with a set of 
ontestations anda set of preferen
es. In Chapter 11 we show how the C4 semanti
s for normallogi
 programs 
an be extended to the C5 semanti
s for extended logi
 programs
ontaining both a default negation and a non-default negation. We show how we
an use the 
on
ept of 
ontestations and of non-default negation to 
apture theidea of logi
al 
on
i
ts. Thus, we provide a framework for reasoning with logi
al aswell as non-logi
al 
on
i
ts among statements. In Chapter 12 we state the major
on
lusions of this work and state some lines of future work.

11



Chapter 2Ba
kground
2.1 Introdu
tionIt has long been re
ognized that the problem of reasoning with in
onsistent infor-mation is of great pra
ti
al importan
e in 
omputer s
ien
e ([Bel77b℄, [Bel77a℄, [Gra74℄,[Gra75℄, [Gra78℄). The problem is that using 
lassi
al logi
 all senten
es 
an beinferred from an in
onsistent set of senten
es. One response is to prevent in
on-sisten
ies from arising or to remove in
onsisten
ies. Truth maintenan
e ([Doy80℄)and belief revision ([GR95℄) fall under this type of e�ort, as does integrity 
on-straint 
he
king in databases. A di�erent approa
h 
onsists not in modifying theset of senten
es from whi
h the inferen
es are made, but instead in modifying what
an be inferred from the set of senten
es. Su
h logi
s are 
alled para
onsistent log-i
s ([Cos74℄, [Arr79℄). A logi
 is 
alled para
onsistent if it 
an form the basis forreasoning with an in
onsistent set of senten
es su
h that not all senten
es 
an bederived from the set using this logi
. The semanti
al foundation of most para
on-sistent logi
s is based on departing from 
lassi
al logi
 and instead adopting someversion of multi-valued logi
 ([Gra75℄, [Bel77b℄, [FH85℄, [BS89℄, [KL92℄. Hen
e inthis 
hapter we provide some ba
kground on multi-valued logi
.12



2.2 Multi-valued Logi
sIn this se
tion we des
ribe work on three-valued and four valued logi
s.The idea of multi-valued logi
 
an be tra
ed ba
k to the work of the philosopherAristotle in the 4th 
entury B.C. In his treatise De Interpretatione he 
onsiders thetruth status of a future 
ontingent senten
e su
h as \There will be a sea-battletomorrow." He notes that it seems not entirely 
orre
t to 
all this senten
e true orfalse now. It seems to have some sort of a third truth status. Inspired by Aristotle'sdis
ussion of future 
ontingents, the Polish logi
ian Lukasiewi
z proposed a logi
based on a third truth value ([Luk20℄) and began the modern era of multi-valuedlogi
s. However, it is Kleene's work on three-valued logi
 ([Kle50℄) that has had adire
t in
uen
e on 
omputer s
ien
e (see [Fit85℄) for example).Kleene proposed a third truth value u, whi
h is supposed to mean unde�nedor unknown. He proposed a strong logi
 and a weak logi
 based on this third truthvalue. The main di�eren
e between the strong logi
 and the weak logi
 is that inthe weak logi
 a truth-fun
tionally 
ompound senten
e is always assigned u if oneof its 
onstituents is assigned u, regardless of the truth value assigned to the other
onstituents of the 
ompound senten
e.Negation has the same truth table in both the strong and weak logi
s. Thenegation of T is F , the negation of F is T , and the negation of u is u.The truth tables for 
onjun
tion, disjun
tion and impli
ation in the strongKleene logi
 and the weak Kleene logi
 are given below. Note that the only dif-feren
e between the two truth tables is when one of the arguments to a truthfun
tion is u. In that 
ase a

ording to the weak logi
 the truth value returned bythe fun
tion must be u.
13



^ T u FT T u Fu u u FF F F F
_ T u FT T T Tu T u uF T u F

! T u FT T u Fu T u uF T T TTable 2.1: Conjun
tion, disjun
tion and impli
ation in strong Kleene logi
.^ T u FT T u Fu u u uF F u F
_ T u FT T u Tu u u uF T u F

! T u FT T u Fu u u uF T u TTable 2.2: Conjun
tion, disjun
tion and impli
ation in weak Kleene logi
.
A Kleene model of a set of senten
es S is a three-valued interpretation whi
hassigns a designated truth value to all senten
es of S. The Kleene logi
s 
an be apara
onsistent logi
 only if both T and u are taken as designated truth values. Tosee this 
onsider the set S = fp; � p; qg. No interpretation whi
h assigns T or Fto p 
an satisfy both p and � p and thus 
annot be a model of S. Hen
e, for S tohave a model it must assign u to p and, thus, u must be regarded as a designatedtruth value. Thus, on the Kleene logi
s there are two models of S: a model whi
hassigns u to both p and q, and a model whi
h assigns u to p and T to q.A set of senten
es S entails a senten
e s in the Kleene logi
s i� s is assigned adesignated truth value in all the three-valued models of S. Hen
e in our example

14



S entails p, � p, and q. Thus, the Kleene logi
s are not inferentially 
onsistentlogi
s, although they are para
onsistent logi
s.Belnap ([Bel77b℄) generalizes Kleene's three valued logi
s to a four valued logi
.Belnap's four truth values are F , ?, T and >. Intuitively, assigning F (T ) meansjudging the senten
e to be false (resp., true) in the 
lassi
al logi
 sense of the term;assigning ? to a senten
e means no information to judge the senten
e as being trueor false or that the truth value of the senten
e is under-determined by the availableinformation; assigning > to a senten
e means that the truth value of the senten
eis over-determined by the available information. > is also sometimes designated byfT; Fg, whi
h 
learly indi
ates that this truth value is to be assigned to a senten
ewhen there is information to assign it T and information to assign it F . Thistruth value plays a 
ru
ial role in providing a semanti
s for an in
onsistent set ofsenten
es.There are two types of orderings asso
iated among these four truth values.A

ording to the truth ordering, �T , F �T > �T T and F �T ? �T T . A

ordingto the knowledge ordering, �K , ? �K T �K > and ? �K F �K >. Similar truthvalue orderings 
an be asso
iated with Kleene's three truth values.Although Belnap originally spe
i�ed the logi
al negation of > to be ? and thelogi
al negation of ? to be >, other logi
ians ([Fit85℄, [BS89℄) noted that it wasmore in keeping with the intuitive meaning of > and ? that the logi
al negationof > (?) should be > (resp., ?).This way of interpreting the logi
al negation of > also provides a straight-forward semanti
s for logi
al in
onsistent theories. Thus, 
onsider the set S =fp; � p; qg. A Belnap-type four-valued model of this program assigns > to p andT to q. For this to be a model, both > and T must be the designated truth values15



of this logi
. The only other model of S is one whi
h assigns > to both p and q.Hen
e, it follows that on this semanti
s S entails p, � p and q. But S does notentail � q. Thus, although Belnap's logi
 provides a para
onsistent logi
, it doesnot provide an inferentially 
onsistent logi
.Re
ently Lin ([Lin96℄) has used Belnap's four truth values to provide an infer-entially 
onsistent semanti
s for logi
ally in
onsistent theories. He augments thelanguage of propositional logi
 with two modal operators B and B
, whi
h meanbelieves and believes 
onsistently, respe
tively. Although he does not expli
itlyde�ne the 
onsistent entailments of a set of senten
es S, it is easily seen that onhis a

ount S 
onsistently entails a senten
e p i� S entails B
p. The operator B
is de�ned in terms of j=T and j=F . Given, an assignment I of truth-values to thesenten
es of S, I j=T p i� I assigns either T or fT; Fg to p and I j=F p i� I assignseither F or fT; Fg to p. Relative to a set of senten
es S, p is 
onsistently believedi� in all the 
anoni
al models I of S, I j=T p and I 6j=F p. Thus, S 
onsistentlyentails p i� in every 
anoni
al model I of S, I j=T p and I 6j=F p.If S = fp; � p; qg, then S 
onsistently entails q, but does not 
onsistentlyentail either p or � p. Lin proves that his semanti
s is inferentially 
onsistent.Lin's semanti
s is based on some unusual features. A type of entailment (
on-sistent entailment) is de�ned, but not on the basis of a 
orresponding notion ofsatisfa
tion. Furthermore, it is 
lear that from the point of view of 
onsistententailment, the only designated truth value is T . Yet any model of S must as-sign fT; Fg to p and, thus, assigning fT; Fg to p must be taken as satisfying thatsenten
e in that model. So in Lin's semanti
s the well-understood 
onne
tionsbetween the 
on
epts of designated truth values, satisfa
tion and entailment do
16



not obtain.Lin's semanti
s 
an be extended to handle some types of non-logi
al 
on
i
ts.Let us suppose that the fa
t that there is a non-logi
al 
on
i
t between p and q
an be spe
i�ed in terms of the statement � (p ^ q). In any set of senten
es S
ontaining both p and q, a 
anoni
al model of S must assign fT; Fg to both p andq, if the extension of Lin's semanti
s to non-logi
al 
on
i
ts is to be inferentially
on
i
t-free with regard to the 
on
i
t expressed by � (p^ q). However, it followsthen that � (p^q) also evaluates to fT; Fg and, thus, it follows on Lin's semanti
sthat the fa
t that p and q non-logi
ally 
on
i
t 
annot be known 
onsistently. Thisseems a paradoxi
al result: the non-logi
al 
on
i
t between p and q is supposed todetermine whi
h truth values 
an be assigned to p and q, but the fa
t that there issu
h a 
on
i
t between p and q 
annot be 
onsistently known from S. This resultholds regardless of whether the statement spe
ifying this 
on
i
t, � (p^ q), is partof S, or not part of S but used to determine whi
h interpretations of S 
ount as
anoni
al models of S.Furthermore, it is not 
lear how Lin's framework 
an be extended to reasonwith non-logi
al 
on
i
ts of varying degrees of strength.For all these reasons, even though Lin's semanti
s does provide an inferentially
onsistent semanti
s, there is a need for a di�erent approa
h that will provide aframework for reasoning with 
on
i
ting information.
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Chapter 3Logi
 Programming Preliminaries
3.1 Basi
 De�nitionBy an atom we mean a senten
e 
onsisting of an n-ary predi
ate symbol followedby n terms. A term may 
ontain fun
tion symbols, variables, and 
onstants. If aterm 
ontains no variables, it is 
alled a ground term. An atom 
onsisting entirelyof ground terms is 
alled a ground atom. By a literal we mean an atom or an atompre
eded by the default negation operator, not.By a normal logi
 rule we mean a senten
e of the following forma b1; : : : ; bm; not 
1; : : : ; not 
nwith m;n � 0. Here a; b1; : : : ; bm; 
1; : : : ; 
n are all atoms. In the above ruleb1; : : : ; bm; not 
1; : : : ; not 
n is meant to be a 
onjun
tion. The negation symbolnot is the default negation.Note that a; b1; : : : ; bm; 
1; : : : ; 
n need not be ground atoms. In this work weuse the lower 
ase letters to stand for both ground and non-ground literals. Whenwe want them to stand for ground literals we make this expli
it unless this isalready 
lear form the 
ontext. 18



A non-ground rule, i.e., a rule with a non-ground atom in it, is assumed to beimpli
itly universally quanti�ed.A normal logi
 program is a set of normal logi
 rules.Given a normal logi
 rule R = a b1; : : : ; bm; not 
1; : : : ; not 
n,� head(R) = a,� body(R) = fb1; : : : ; bm; not 
1; : : : ; not 
ng,� posbody(R) = fb1; : : : ; bmg,� negbody(R) = fnot 
1; : : : ; not 
ng.� Atoms(R) = fa; b1; : : : ; bm; 
1; : : : ; 
ngGiven a normal logi
 program P ,Atoms(P ) = [R2P Atoms(R)We sometimes interpret body(R); posbody(R); and negbody(R) to be a set ofliterals and at other times to be a 
onjun
tion of literals. The 
ontext makes 
learwhi
h interpretation is intended. Given a set of atom fa1; : : : ; ang we understandnot fa1; : : : ; ang to be a shorthand for fnot a1; : : : ;not ang.We take the underlying language to be �xed by the language of the programP under dis
ussion. By the Herbrand universe of P , we mean the set of all termsthat 
an be formed using the language of P . By the Herbrand base of P (denotedby HBP ), we mean the set of all the ground atoms that 
an be formed using thepredi
ates of P and the terms in the Herbrand universe of P .
19



By a substitution � we mean a set of the formfv1 = t1; : : : ; vk = tkgwhere ea
h vi is a variable and ea
h ti is a term. If � = ; then it is 
alled theempty substitution. By a ground substitution we mean a substitution in whi
h allti are ground terms.Given a rule R, by R� we mean the result of applying the substitution � to R.i.e., by repla
ing all the o

urren
es of ea
h variable vi in R by the 
orrespondingterm in �. By an instantiation of R we mean a R�. We 
all an instantiation aground instantiation if it is a ground rule.Given a rule R and a program P , by grd(R) we mean the set of all the groundinstantiations of R with respe
t to the terms in the Herbrand universe of P . Thisneed not be a �nite set, but it will be a 
ountable set. By grd(P ) we mean the set
onsisting of all the ground instantiations of all the rules in P with respe
t to theHerbrand universe of P .A minimal model of a normal logi
 program, P , is a model of P su
h that noproper subset of that model is itself a model of P .A de�nite logi
 program is a normal logi
 program that 
ontains no negatedatoms in its rules. It is well known that every de�nite logi
 program has a uniqueminimal model ([vEK76℄).A two-valued Herbrand interpretation of a logi
 program P is a subset of HBP ,the Herbrand base of P . Alternately, it 
an be understood as a mapping fromHBP to fT; Fg, where T and F are the 
lassi
al truth values.
20



3.2 Fixpoint TheoryLet � be a binary relation on a set S whi
h forms a partial order on the elementsof S. For any subset X of S, a 2 S is an upper bound of X if 8x 2 X; x � a, anda 2 S is a lower bound of X if 8x 2 X; x � a. a 2 S is the least upper bound(lub) of a subset X of S if a is an upper bound of X and for all upper bounds a0of X, a � a0. The greatest lower bound (glb) 
an be de�ned in a similar way. Sis a 
omplete latti
e if lub(X) and glb(X) exist for every subset X of S. Let S bea 
omplete latti
e. We say X � S is dire
ted if every �nite subset of X has anupper bound in X. Given a 
omplete latti
e S, an operator T : S ! S is said tobe 
ontinuos if T (lub(X)) = lub(T (X)) for every dire
ted subset X of L. For alatti
e S, x 2 S is a �xpoint of T if T (x) = x. We say that x is the least �xpoint(lfp) of T if x is a �xpoint of T su
h that for all �xpoints x0 of T , x � x0. Thegreatest �xpoint 
an be de�ned similarly.For an operator T , the ordinal powers of T are de�ned as:T " 0 = glb(S)T " � = T (T " (�� 1)); if � is a su

essor ordinalT " � = lubfT " �j� < �gif � is a limit ordinalThe following theorem states a well-known property of 
ontinuos operators.Theorem 3.2.1 ([Llo87℄)For a 
ontinuos operator T : S ! S, lfp(T ) = T " !, where ! is the �rst limitordinal.Van Emden and Kowalski ([vEK76℄) de�ned an operator, TP , of a program Pthat maps Herbrand interpretations of P into Herbrand interpretations of P thus:TP (I) = fa 2 HBP j a body 2 grd(P ); I j= bodyg21



where I is a Herbrand interpretation of P .The power set of the set of Herbrand interpretations of P (denoted by HBP )forms a 
omplete latti
e under the � ordering and thus the above de�ned �x-pointtheory 
an be utilized to study the semanti
s of logi
 programs. Furthermore,for de�nite logi
 programs, the TP operator is 
ontinuos over the HBP . So The-orem 3.2.1 above applies to su
h programs and so we are assured that the least�x point of T exists and 
an be 
omputed in a 
ountable number of steps. Thisprovides a way of giving an operational semanti
s for de�nite logi
 programs asstated in the following theorem of Van Emden and Kowalski.Theorem 3.2.2 (vEK76)Let P be a de�nite logi
 program and letMP be its unique minimal Herbrand model.Then MP = lfp(TP ) = TP " !The above theorem 
annot be applied to normal logi
 programs sin
e su
hprograms need not have a least �x point or a unique minimal Herbrand model.We dis
uss the semanti
s of normal logi
 programs in the next subse
tion.3.3 Semanti
s of Normal Logi
 ProgramsNormal logi
 programs need not have a unique minimal Herbrand model. The min-imal model semanti
s for normal logi
 program regards the set of all the minimalmodels of the program as the intended models of the program.Example 3.3.1 Let P = fa  not bg. The minimal models of P are fag andfbg. 22



Minimal model semanti
s is widely regarded as unsatisfa
tory for normal logi
programs. Thus, in the above example it is thought that fbg should not be re-garded as an intended model be
ause not b should be regarded as true by default.Interpreting the negation not as default negation means that negative informationshould be regarded as true unless the program provides us a reason for thinkingotherwise.In the rest of this subse
tion we introdu
e three well-known semanti
s for nor-mal logi
 programs.3.3.1 Stable Model Semanti
sIn this se
tion we introdu
e the stable model semanti
s for normal logi
 programs.The stable model semanti
s is based on the Gelfond-Lifs
hitz transformationof a program ([GL88℄).De�nition 3.3.1 Let P be a ground, normal logi
 program. Let M be a set ofground atoms. Then, the Gelfond-Lifs
hitz transformation of P isPM = fa b1; : : : ; bk j a b1; : : : ; bk; not 
1; : : : ; not 
n 2 P; 
1; : : : ; 
n 62MgNote that PM is always a de�nite program.M is a stable model of a ground, normal logi
 program P if, and only if, Mis the unique minimal model of the de�nite logi
 program PM . The stable modelsemanti
s 
onsiders the stable models of a program as its intended models.Note that this de�nition of stable models applies only to ground programs.
23



Example 3.3.2 Let P be the ground programp a; not qp b; not ra not bb not a
 q  rr  qThen, P fp;a;
g = fp a; p b; a ; 
 ; q  r; r  qg. The minimal modelof P fp;a;
g is fp; a; 
g. Hen
e fp; a; 
g is a stable model of P .Similarly, fp; b; 
g is also a stable model of P . But, fp; a; b; 
g is not a stablemodel of P .It is well known that not all normal logi
 programs have a two-valued stablemodel. Thus, P = fp not pg has no two-valued stable model. A related prob-lem with the stable model semanti
s is the so-
alled \relevan
e problem" ([Dix95℄).Let P be a program that has at least one stable model. Assume that q 62 Atoms(P ).In this sense q is not \relevant" to P . Then P [ fq  not qg has no stablemodels. That is, the addition of a rule irrelevant to P has robbed P of all its stablemodels.3.3.2 Well Founded Semanti
sA

ording to the Well Founded Semanti
s, ea
h normal logi
 program P has pre-
isely one well founded model (hen
eforth referred to as WFS(P )). However,WFS(P ) 
an be a partial model in that it assigns neither true nor false to some24



atoms. We represent the well founded model of any program as a set of positiveand negative literals.The next four de�nitions are from [GRS91℄.The well founded semanti
s is based on the idea of an unfounded set.De�nition 3.3.2 Let a program P , its asso
iated Herbrand base HBP , and apartial interpretation I be given. We say A � HBP is an unfounded set (of P)with respe
t to I if ea
h atom q 2 A satis�es the following 
ondition: For ea
hinstantiated 
lause C of P whose head is q, (at least) one of the following holds:1. Some member (positive or negative) of body(C) is false in I,2. Some member of posbody(C) o

urs in A.The union of all the unfounded sets with respe
t to I is itself an unfoundedset, UP (I), and is 
alled the greatest unfounded set of P with respe
t to I.De�nition 3.3.3 Let TP be the operator de�ned in Subse
tion 3.2. Let UP andWP be transformations between sets of literals de�ned as follows:� UP (I) is the greatest unfounded set of P with respe
t to I as de�ned above.� WP (I) = TP (I) [ not UP (I)De�nition 3.3.4 Let � range over all the 
ountable ordinals. The sets I� and I1
ontaining literals in HBP are de�ned as:� For a limit ordinal �, I� = [�<� I�Note that 0 is a limit ordinal and I0 = ;.25



� For su

essor ordinal � + 1, I�+1 =WP (I�)� Let I1 = [� I�Now we 
an de�ne the well-founded semanti
s of P , WFS(P ), asDe�nition 3.3.5 The well-founded semanti
s of P is the least �xed point of WP ,or the limit I1. Every positive literal denotes that its atom is true, every negativeliteral denotes that its atom is false, and missing atoms have no truth value assignedby the semanti
s.Example 3.3.3 As in Example 3.3.2, let P bep a; not qp b; not ra not bb not a
 q  rr  qThen, I " 1 = WP (;) = TP (;) [ not UP ((;) = f
g [ not fq; rg.I " 2 = I " 1. Hen
e, WFS(P ) = f
; not r; not qg3.3.3 Well Supported Model Semanti
sThe idea of a well supported model is a re�nement of the idea of a supported model([ABW88℄). A model M of a normal logi
 program P is 
onsidered supported if26



and only if for every a 2 M there exists a rule R 2 P su
h that head(R) = a andM j= body(R). The idea of a supported model is based on the intuition that anatom should be in a model only if there is adequate reason to in
lude that atomin the model. However, the above stated de�nition of a supported model fails tofully 
apture this intuition. This 
an be seen by noting that fpg is a supportedmodel of the program fp  pg, but intuitively this program fails to provide anadequate reason to in
lude p in its model. The idea of well supported model wasproposed to remedy this feature of supported models.De�nition 3.3.6 ([Fag91℄) A model M � HBP of a normal logi
 program P is atwo-valued well supported model if there exists a stri
t well-founded partial ordering� on the atoms in HBP su
h that for any a 2M , there exists a R 2 grd(P ) su
hthat M j= body(R), where head(R) = a, and b� a for every b 2 posbody(R).If we think of the body of a rule as providing eviden
e for attributing a 
ertaintruth-value to the head of the rule, then a well-supported model 
an be seen asassigning only that truth-value to any atom whi
h 
an be justi�ed in terms ofthe total eviden
e for it (with respe
t to that model), where the eviden
e must beindependent of the truth-value assigned to that atom and must be �nitely groundedin the fa
ts. The well-founded ordering ensures that the truth-values assigned toan atom is not justi�ed in terms of itself and the eviden
e is �nitely grounded.Thus, for instan
e, no well-supported model of a program would assign true to psimply on the basis of the rule p p.3.3.4 Relations Among the Semanti
sThe stable model semanti
s and the well supported model semanti
s turn out tobe equivalent as stated in the following theorem.27



Theorem 3.3.1 ([Fag91℄)M is a stable model of a normal logi
 program P if and only if it is a well supportedmodel of P .Well founded models are represented as a set of literals whereas stable models arerepresented as a set of atoms. However, a stable model 
an be represented as theset of literals that are true in that model. Representing stable models as a setof literals allows us to state the following two theorems whi
h state the relationbetween stable model semanti
s and well founded semanti
s.Theorem 3.3.2 ([GRS91℄)If a normal logi
 program has a well founded total model, then that model is theunique stable model of the program.Theorem 3.3.3 ([GRS91℄)The well founded partial model of a normal logi
 program is a subset of every stablemodel of that program.
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Chapter 4Model theory for normal logi
 programs with
ontestations
4.1 Introdu
tionIn this 
hapter we present a formal framework for reasoning with 
on
i
ting in-formation. Most generally, two statements p and q are in 
on
i
t if the truth of pundermines the truth of q and vi
e versa. This may happen be
ause p and q areea
h other's negation, i.e., they are logi
ally in
onsistent. But two statements 
an
on
i
t even if there is no logi
al in
onsisten
y among them. Thus, as dis
ussedin Chapter 1, there 
an be semanti
 or evidential 
on
i
ts between statements.Our fo
us in this 
hapter will be on non-logi
al 
on
i
ts. However, the frame-work we introdu
e here 
an be enri
hed to 
apture logi
al 
on
i
ts. This is donein Chapter 11. Furthermore, in this 
hapter we shall not assume that all 
on
i
tsare mutual. As dis
ussed in Chapter 1, it 
an happen that a

epting p as true 
anundermine the truth of q without a

epting q as true undermining p's 
laim to betrue. The framework we develop in this 
hapter will permit us to represent bothmutual and non-mutual 
on
i
ts.
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Even when the 
on
i
t between two statements p and q is mutual, the degreeto whi
h p undermines the truth of q may be di�erent from the degree to whi
h qundermines the truth of p. The framework we develop in this 
hapter also allowsus to represent 
on
i
ts of di�erent degrees of strength.We develop this framework using C4, a new four valued logi
. In the dis
ussionse
tion we 
ompare this logi
 to other multi-truth valued approa
hes.In Se
tion 4.2 we introdu
e the four truth values V = fF; CF; CT; Tg andprovide a fun
tion for evaluating any 
losed senten
e of the language of the programgiven an interpretation of the program based on V. In this se
tion we show how thefour truth values of C4 and the asso
iated ordering between them 
an naturallybe derived from the 
lassi
al truth values T and F in the 
ontext of two playersassigning the 
lassi
al truth values to the same set of statements, where one player'sassignment is allowed to dominate the other player's assignment without outrightwinning against the other player's assignment. In Se
tion 4.3 we generalize theidea of a two-valued well-supported model of a program to a four-valued well-supported model, and we prove that every normal logi
 program has a four-valuedwell-supported model. In Se
tion 4.4 we introdu
e 
ontestations, whi
h is a way ofrepresenting 
on
i
ts between statements. We de�ne C4, a semanti
s for normallogi
 programs augmented with 
ontestations of di�erent degrees of strength. Andin terms of this semanti
s we de�ne two types of entailment: strong entailment andweak entailment. In Se
tion 4.5 we 
ompare the C4 semanti
s with other multitruth-valued semanti
s for reasoning with 
on
i
ting information and 
ompare itwith some related work on argumentation.
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4.2 Truth Values and ValuationWe propose a four-valued logi
 with the truth values, V = fT; CT; CF; Fg. Thislogi
 will be 
alledC4 and is de�ned pre
isely in De�nition 4.4.8 below. It is 
alledC4 to suggest that it is a four valued logi
 of 
on
i
ts and 
ontestations. Here,T and F have their usual meanings, but intuitively CF means \false only be
ausesu

essfully 
ontested" and CT is the negation of CF .We de�ne a one-to-one mapping between members of V and members of N =f1; 2=3; 1=3; 0g thus: T maps to 1, CT maps to 2/3, CF maps to 1/3, and F mapsto 0. We use the ordering among the members of N to indu
e the same orderingbetween members of V. Thus, F < CF < CT < T .We may regard the four truth values ofC4 and the asso
iated ordering betweenthem as arising naturally in the following fashion. Consider two players assigningtruth values to the statements of a theory. Statements 
an be assigned the valuesT or F , and every statement of the underlying language of the theory must beassigned a truth value. Let us say player 1 has proposed the theory and player 1gets to �nally determine what truth value to assign to ea
h statement taking intoa

ount the truth value he initially assigned to the statement and the truth valueplayer 2 assigns to the statement. The two players may disagree on the assignmentof truth values to some statements. On matters of disagreement, player 1 wants tolet player 2 dominate, but not win outright. That is, if player 1 says p is true andplayer 2 says it is false, player 1 wants to relegate p to a status lower than true(i.e., let player 2 dominate), but does not want to assign it false (i.e., let player 2win outright). He wants the truth value assigned to p to re
e
t the fa
t that hewould regard p as true if it were not the fa
t that player 2 disagrees. As we shall
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see below, the truth values CF and CT are designed to play this sort of role.For any given statement the four possible 
ombinations of truth values arehT; T i; hT; F i; hF; T i; hF; F i, where the �rst 
omponent of ea
h tuple is the valueassigned by player 1 and the se
ond 
omponent is the value assigned by player 2.Sin
e hT; T i and hF; F i represent 
onsensus, player 1 will �nally assign T (F ) toany statement whi
h is assigned hT; T i (resp., hF; F i). hT; F i is the value we 
allCF and hF; T i is the value we 
all CT . If player 2 is allowed to dominate but notwin, then F < hT; F i < T . Similarly, F < hF; T i < T . We also hold thathT; F i < hF; T i be
ause player 1 allows player 2 to dominate. This produ
es thetotal ordering F < hT; F i < hF; T i < Twhi
h is the ordering we have adopted in this 
hapter where hT; F i is 
alled CFand hF; T i is 
alled CT .Our terminology of domination 
an be de�ned pre
isely. To say that player 2dominates player 1 is to say that the 
omposite truth values are to be ordered �rstin terms of the se
ond 
omponent of ea
h 
omposite (i.e., the truth value assignedby player 2) and if they are equal in terms of the se
ond 
omponent then they areto be evaluated in terms of the �rst 
omponent. On the other hand, to say thatplayer 1 dominates player 2 is to say that the 
omposite truth values are to beordered �rst in terms of the �rst 
omponent of ea
h 
omposite (i.e., the truth valueassigned by player 1) and if they are equal in terms of the �rst 
omponent thenthey are to be evaluated in terms of the se
ond 
omponent. To say that neitherplayer dominates the other player is to say that one 
omposite truth value t1 isgreater than or equal to another truth value t2 if t1 is greater than or equal to t2 inboth 
omponents and otherwise if neither is greater than or equal to the other in
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both 
omponents then the two truth values are in
omparable. In this 
ase hT; F iand hF; T i are in
omparable.T and CT are the designated values. That is, assigning T or CT to a senten
eis taken as regarding that senten
e as true. F is regarded as the default valuein the sense that unless a senten
e is assigned some other value it is taken asbeing assigned F . In the 
ontext of well supported models, it is assumed that theassignment of F to a senten
e requires no justi�
ation.An interpretation for a normal logi
 program P is a mapping from HBP , theHerbrand base of P , to V, or equivalently to N . In the following we de�ne afun
tion I 0 whi
h extends the mapping I to the (
losed) senten
es of the language.De�nition 4.2.1 Let I be an interpretation. Then I 0 is a mapping from thesenten
es of the language to N re
ursively de�ned as:� If S is a ground atom then I 0(S) = I(S).� If S is a 
losed senten
e then I 0(not S) = 1� I 0(S)� If S1 and S2 are (
losed) senten
es thenI 0(S1 ^ S2) = min(I 0(S1); I 0(S2))I 0(S1 _ S2) = max(I 0(S1); I 0(S2))I 0(S1  S2) = 8>>>>>><>>>>>>: T if I 0(S1) � I 0(S2)CT if I 0(S1) = CF and I 0(S2) = CTF otherwise� For any senten
e p(X) with one unbound variable X,I 0(8Xp(X)) = minfI 0(p(t)) j t 2 HUPg:33



� For any senten
e p(X) with one unbound variable X,I 0(9Xp(X)) = maxfI 0(p(t)) j t 2 HUPg:Note that if we use only the 
lassi
al truth values, T and F , then I 0(S1  S2)redu
es to the 
lassi
al evaluation of impli
ation whi
h says that S1  S2 isevaluated as F if and only if S2 is T and S1 is F and otherwise it is evaluatedas T . Thus, our evaluation fun
tion for impli
ation is one way of generalizing the
lassi
al evaluation fun
tion to the multi-valued setting.Note that on the interpretation of negation proposed above, not not p = p and,for any interpretation I whi
h assigns a truth value from V to p, I 0( not p) = not I 0(p).Furthermore, p q is logi
ally equivalent to not q  not p. However, p q isnot logi
ally equivalent to p _ not q in terms of the above de�nition of impli
ation.For instan
e, CF  CF = T , but CF _ not CF = CT .It should also be pointed out that although in many multi-valued logi
s impli-
ations 
an be assigned only the 
lassi
al truth values (T and F ), our evaluationfun
tion also permits CT to be assigned to impli
ations. It will be seen below thatthis allows there to be a model for su
h pathologi
al rules as p  not p. Thus,a model 
an be assigned to any normal logi
 program, whi
h permits one to drawreasonable inferen
es from any normal logi
 program.Given a set of literals fa1; : : : ; ang, we use I 0fa1; : : : ; ang as shorthand forfI 0(a1); : : : ; I 0(an)g:Given a rule head  body, by I 0 (body) we mean min(I 0fS j S 2 bodyg):When there is no possibility of 
onfusion, in the following we use I to meanboth the mapping from atoms to truth values (interpretation I, properly speaking)34



as well as the evaluation fun
tion I 0 whi
h is based on the interpretation I properlyspeaking.4.3 Model Theoreti
 PreliminariesFor the purposes of the model theory of logi
 programs, we envisage the programP to be augmented as follows:1. The atoms true, CTrue, CFalse and false. It is assumed that true evaluatesto T , CTrue evaluates to CT , CFalse evaluates to CF and false evaluatesto F in any interpretation.2. if P 
ontains no 
onstants, the dummy rule p($a)  p($a), where $a is a
onstant.3. Any rule with an empty body is assumed to have true as its body.4. For ea
h atom in HBP , su
h that there is no rule in grd(P ) with that atomin the head, we add a rule with that atom as head and an atom denoting thedefault truth value as the body. Sin
e we have 
hosen F as the default truthvalue, this atom will be false. Thus, if we have no information regarding anatom it will end up getting assigned the default truth value.Augmenting the logi
 program in this manner allows us to state the modeltheory more elegantly than if we did not augment it thus. (More spe
i�
ally, ithelps with the de�nition of a well-supported model below.) It should be 
lear in thefollowing that the augmentation does not 
hange the a
tual semanti
s attributedto a logi
 program.
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De�nition 4.3.1 We say that an interpretation I satis�es a rule R if I 0(R) 2fCT; Tg.Our notion of satisfa
tion is one way of generalizing the 
lassi
al notion whi
h saysthat a rule is satis�ed by an interpretation if it is true, or equivalently, if it has adesignated truth value. In C4 the designated truth values are CT and T .4.3.1 Four-valued Well-Supported ModelsCentral to our semanti
s is the idea of a well-supported model ( [Fag91℄), whi
hwas de�ned in Chapter 3. In this subse
tion we show how to generalize it tofour-valued well-supported models.Re
all that the idea behind the two-valued well supported model is that a well-supported model 
an be seen as assigning only that truth-value to any atom whi
h
an be justi�ed in terms of the total eviden
e for it (with respe
t to that model),where the eviden
e must be independent of the truth-value assigned to that atomand must be �nitely grounded in the fa
ts. The well-founded ordering ensuresthat the truth-values assigned to an atom is not justi�ed in terms of itself and theeviden
e is �nitely grounded. Thus, for instan
e, no well-supported model of aprogram would assign true to p simply on the basis of the rule p p.It is this idea whi
h we wish to generalize to the four-valued 
ontext. Theassignment of the default truth value is assumed to require no justi�
ation or ev-iden
e. The following de�nition assumes that F (or 0) is the default truth value.The assignment of any other truth value to an atom requires a non-
ir
ular justi-�
ation that is �nitely grounded in the fa
ts. An atom whi
h has no eviden
e forit must be assigned the default truth value. In this 
ontext having no eviden
e foran atom means 36



� having no information in support of that atom, or� having only false information in support of that atom.There is no information in support of an atom in 
ase there are no rules in theoriginal program with that atom in the head, i.e., the only rules in the augmentedprogram with that atom in the head have the spe
ial atom denoting the defaulttruth value in the body. To say that there is only false information in support ofan atom (relative to an interpretation) is to say that the bodies of all rules withthat atom in the head evaluate to F in that interpretation.De�nition 4.3.2 A model I of P is a well supported model if there exists a stri
twell-founded partial ordering � on the atoms in HBP su
h that for any atom ain HBP su
h that F < I(a), there exists a R 2 grd(LP ) su
h that1. head(R) = a, and2. I(a) � I 0(body(R)), and3. F < I 0(body(R)), and4. b� a for every b 2 posbody(R).In the 
ase of C4, 
ondition 3 in the above de�nition 
an be subsumed by
ondition 2 and the requirement that F < I(a), but we state it expli
itly toindi
ate that the attribution of a non-default truth value to an atom 
an be wellsupported in terms of a rule only if the body of the rule provides eviden
e for thatatom.We assume that in any su
h well-founded ordering the spe
ial atoms true,CTrue and CFalse are not ordered with respe
t to ea
h other and are less than
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any other atom. Roughly speaking, a model is well supported if the truth valueattributed to ea
h atom is justi�ed in terms of some rule of whi
h that atom is thehead. It is assumed that if the body of a rule supports the attribution of a 
ertaintruth value to an atom, then it supports the attribution of a lesser truth value tothat atom. However, we regard it as epistemi
ally unreasonable to attribute anatom a lesser truth value if a higher one 
an be well supported.Example 4.3.1 Let P be the ground program fa  b; b  a; 
  not d; d  not dg. Then, in any well-supported model of P , a and b must be assigned Fand d must be assigned CF . In addition, assigning CT to 
 would result in awell-supported model. But note that assigning CF to 
 would also result in a well-supported model.Note that when the only truth values used are T and F , the four-valued de�nitionof a well-supported model redu
es to the two-valued de�nition of a well-supportedmodel.Although not every normal program has a two-valued well-supported modelin the sense of [Fag91℄, every normal program has a four-valued well-supportedmodel.Theorem 4.3.1 Every normal logi
 program has at least one four-valued well-supported model.Proof: We show below how to 
onstru
t a well-supported interpretation.Let P be a normal logi
 program. Assign T (resp. F ) to all atoms in HBPwhi
h would be assigned T (resp. F ) in WFS(P ), the well-founded semanti
sfor P (see Chapter 3 above). Assign CF to all other atoms. We show that I
onstru
ted thus is a four-valued well-supported model of P .38



I fails to be a model of P only if the head of a rule is assigned F or CF . Butthe head of a rule is assigned F only if WFS(P ) assigns it F and WFS(P ) is amodel of su
h rules and so all su
h rules evaluate to T in I. On the other hand,by 
onstru
tion, the head of a rule is assigned CF only if neither that atom nor itsnegation is in WFS(P ). This means that some member of the body of that ruledoes not evaluate to T . Sin
e in our 
onstru
tion of the model we do not assignCT to any atom, this member of the body must evaluate to CF or F . In either
ase the rule evaluates to T . Hen
e, I must be a model of P .It is 
lear that I is a supported model of P in the sense that for ea
h a 2 HBPthere is a R 2 grd(P ), su
h that head(R) = a and I(a) � I 0(body(R)). To showthat it is well-supported we need to show that there is a well-founded ordering ofthe sort required in De�nition 4.3.2.An atom is assigned T in WFS(P ) if and only if that atom o

urs in someiteration of the TP operator. This ensures that a well-founded ordering 
an be
onstru
ted among those atoms that are assigned T by I in terms of when they�rst o

ur in an iteration of the TP operator. Call it�T . Note that no atoms areassigned CT by I. We show that a well-founded ordering�CF 
an be 
onstru
tedamong the atoms that are assigned CF by I. By way of 
ontradi
tion assumeotherwise. So there must be a �-minimal set S whi
h 
onsists of atoms that getassigned CF and whose members 
annot be arranged in a well-founded ordering.But then all su
h atoms would belong to an unfounded set in the 
omputation ofWFS(P ). So they would all be assigned F inWFS(P ) and would thus be assignedF by I. Thus a 
ontradi
tion. And hen
e it must be possible to 
onstru
t a well-founded ordering �CF on the atoms that get assigned CF .The well-founded ordering � that we require is any superset of �T [ �CF
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satisfying the 
onstraint that no atom in�T is less than any atom in�CF in termsof �. There must be a well-founded ordering satisfying this 
onstraint be
auseany atom that gets assigned T (by WFS(P ) and thus by I) must have a rule withthat atom in the head su
h that no member of the posbody of that rule is unde�nedin WFS(P ) and thus assigned CF by I.This shows that I is a well-supported model of P .4.4 Semanti
s of ContestationWe write A 
ontests b as A ,! b, where A is a 
onjun
tion of ground literals andb is a ground atom.De�nition 4.4.1 Let A ,! b be any 
ontestations. Then� Contestor(A ,! b) = A� Contested(A ,! b) = bIn this 
ase we also 
all A the 
ontestor of b and we say that b is 
ontested by A.If b is 
ontested by any A then we 
all b a 
ontested atom. We say that a groundrule R is 
ontested if head(R) is a 
ontested atom. We say that a non-ground ruleR is 
ontested if there is a ground substitution � su
h that head(R�) is a 
ontestedatom. When a logi
 program P is augmented with a set of 
ontestations C wesay P is 
onstrained by C and write it as P + C. As noted above, A ,! b 
an beunderstood as saying that the truth of A provides eviden
e against the truth ofb. But this leaves open the question of whether this means that b is false. We
an envisage 
ontestations of di�erent strengths. One type of 
ontestation maybe su
h that the truth of A guarantees the falsity of b, whereas a weaker type of40




ontestation may be understood as saying that the truth of A merely ensures thatb is not true. One 
an also imagine 
ontestations where A must have the value Tin order to blo
k b from being true, whereas others in whi
h A must be at leastCT . Most generally A ,! b 
an be understood as saying that if A has a value of� then b 
an at most have a value of � (a 
ap of �).Let 
ap be a mapping from V to V. Clearly there 
an be many su
h mappings.In this 
ontext we 
all su
h mappings `
ap fun
tions'. One su
h 
ap fun
tion 
api
an be asso
iated with a 
ontestation A ,! b in the sense that if A is assigned thetruth value � then b must be assigned at most 
api(�). This idea is 
aptured inthe following de�nition.De�nition 4.4.2 Let A be a 
onjun
tion of literals in HBP and b be any atom inHBP . Let 
ap be a 
ap fun
tion asso
iated with A ,! b. Then A ,! b is satis�ed byan interpretation I of P if, and only if, if I 0(A) is � then I 0(b) is at most 
ap(�).Note that A ,! b is trivially satis�ed in I if A evaluates to an � in I 0 su
h that
ap(�) = T . In a situation where 
ap(�) = T , A ,! b pla
es no restri
tion on thetruth value of b.In the following we indi
ate the fa
t that a 
ertain 
ap fun
tion 
api is asso
iatedwith a 
ontestation A ,! b by writing the 
ontestations as A ,!i b.In the table below we de�ne three 
ap fun
tions.If A ,! b is asso
iated with 
ap1, then it 
an be understood as saying that if Ais assigned a value of at least CT in I then b must be assigned a value of at mostCF if A ,! b is satis�ed by I. And if A is assigned any other value then A ,! bpla
es no 
onstraints on the value of b.
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ap1 
ap2 
ap3T 7! CF T 7! CF T 7! CFCT 7! CF CT 7! CF CT 7! CTCF 7! T CF 7! CT CF 7! TF 7! T F 7! T F 7! TTable 4.1: The 
ap1, 
ap2 and 
ap3 fun
tionsIf A ,! b is asso
iated with 
ap2, then it 
an be understood as saying that if Ais assigned a value of at least CT in I then b must be assigned a value of at mostCF and if A is assigned a value of CF then b must be assigned a value of at mostCT if A ,! b is satis�ed by I. And if A is assigned any other value then A ,! bpla
es no 
onstraints on the value of b.If A ,! b is asso
iated with 
ap3, then it 
an be understood as saying that if Ais assigned a value of T in I then b must be assigned a value of at most CF andif A is assigned a value of CT then b must be assigned a value of at most CT ifA ,! b is satis�ed by I. And if A is assigned any other value then A ,! b pla
esno 
onstraints on the value of b.Re
all that F is the default value. We regard all 
ap fun
tions 
apj su
h that
apj(�) < T when � is F as ill de�ned be
ause assigning the default value to any
ontestor should pla
e no restri
tion on the truth value of the atom 
ontested bythat 
ontestor. All 
ap fun
tions dis
ussed in the following will be assumed to benot ill de�ned in the above sense.Example 4.4.1 Let P be the ground program f
  not a; a  not b; b  not a; d  g. Let C = f
 ,!1 dg. That is, let the 
ap fun
tion asso
iated with42



C be 
ap1 as de�ned above. The table below displays some of the interpretations ofP that satisfy C. a b 
 dI1 T F F TI2 T F F CTI3 CT CF CF TI4 CT CF CF CTI5 CF CT CT CFI6 CF CT T CFI7 CF CT CF TI8 F T T CFTable 4.2: An example of interpretations that satisfy a 
ontestationIn the above example I1, I2, I3, I4, and I7 trivially satisfy 
 ,!1 d be
ause inthese interpretations 
 is assigned a truth value lower than CT .In the above example I5, I6, and I8 are not models of P . However, as we shallsee below, they turn out to be models of P + C. I2 and I4 are not epistemi
allyreasonable models be
ause they assign d a value lower than would be supported bythe eviden
e for d (i.e., T ). Similarly, I7 is not an epistemi
ally reasonable modelbe
ause 
 is attributed a lower value than would be supported by the eviden
e.On the other hand, I6 is also not an epistemi
ally reasonable model be
ause theeviden
e for 
 
an not support the assignment of T to 
. Both I5 and I7 satisfy
 ,!1 d, but it seems 
lear that the proper way to satisfy 
 ,!1 d is by assigningCF to d be
ause 
 provides eviden
e against d whereas there is no eviden
e against
. 43



Intuitively a model of P + C is an epistemi
ally reasonable model if it assignsea
h atom the maximum truth value that it 
an be assigned taking into a

ountthe eviden
e for and against that atom relative to the assignment of truth valueto the other atoms. In the following we 
apture the intuitive idea of epistemi
allyreasonable models in terms of these three steps:� Eviden
e for and eviden
e against must be 
ombined together� Attribution of truth values to an atom must be justi�ed in terms of eviden
efor and against it� An atom must be attributed the maximal justi�ed truth value.4.4.1 Combining Eviden
e For and AgainstSin
e we understand the truth-value of the body of a rule (with respe
t to aninterpretation) as providing eviden
e for attributing a 
ertain truth-value to itshead and we interpret a 
ontestation as saying that the 
ontestor provides eviden
eagainst the truth of the 
ontested atom, we 
an 
ombine these two ideas whenthe 
ontested atom is also the head of a rule. Thus, we 
an say that the eviden
eprovided by the body of a rule for the truth of the head of a rule must be 
onstrainedor 
apped by the eviden
e presented against the head of the rule by the truth ofits 
ontestors. This idea is 
aptured below.First we de�ne a fun
tion 
ap0 whi
h takes an atom, a 
ontestation and aninterpretation as arguments and returns a spe
ial atom as a value.De�nition 4.4.3 Let b be an atom, not ne
essarily ground. Let Cj be a 
ontesta-tion with an asso
iated 
ap fun
tion 
api. Then, 
ap0i(b; Cj; I) returns the spe
ial
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atom whi
h always evaluates to 
api(I(Contestor(Cj))) if Contested(Cj) = b�, forsome substitution � whi
h 
an be the empty substitution, otherwise 
ap0i(b; Cj; I) re-turns the spe
ial atom true.Example 4.4.2 Let Cj = a ,!i b. Let 
api be 
ap2 as de�ned above. If I assignsT or CT to a then 
ap0i(b; Cj; I) returns the spe
ial atom CFalse whi
h alwaysevaluates to CF . However, if I assigns CF to a then 
ap0i(b; Cj; I) returns thespe
ial atom CTrue whi
h always evaluates to CT .We systemati
ally abuse notation by extending the above de�nition of 
ap0i tohave a set of 
ontestations as an argument instead of a single 
ontestation.De�nition 4.4.4 Let b be an atom and C be a set of 
ontestations su
h that ea
hmember of C has the same asso
iated 
ap fun
tion 
api. Let I be an interpretation.Then, 
ap0i(b; C; I) = minf
ap0i(b; Cj; I) j Cj 2 CgWhen a logi
 program P is augmented with a set of 
ontestations C, we sayP is 
onstrained by C and write it as P + C. Ea
h rule R in P is 
onsidered as
onstrained by C. We write a rule R 
onstrained by C as head(R)  C body(R).We 
all su
h rules `
onstrained rules'. The fun
tion I 0 (De�nition 4.2.1) needs tobe modi�ed to evaluate 
onstrained rules. We de�ne this fun
tion below.De�nition 4.4.5 Let P be a normal logi
 program whi
h is 
onstrained by C, aset of 
ontestations. Let 
api be the 
ap fun
tion asso
iated with C. Let I be aninterpretation of P . Then, I 00 is a mapping from the rules of the language to Nre
ursively de�ned as:� If E is a literal or a 
onjun
tion or a disjun
tion of literals then I 00(E) =I 0(E). 45



� If E is a rule (head  C body) thenI 00(E) = I 0(head  body; 
ap0i(head; C; I))In the above de�nition we assume that a unit rule, that is, a rule of the formp  is impli
itly a rule of the form p  true. Thus we distinguish between theatom p and the rule p  . The atom p would be evaluated in terms of the �rst
lause of the above de�nition, whereas the rule p  would be evaluated in termsof the se
ond 
lause.If a 
ontestor of the head of a rule evaluates to at least �, then it provideseviden
e against the head being any greater than 
ap(�). Thus, in e�e
t, the
ontestor puts an upper limit or a 
ap on how mu
h eviden
e there 
an be for thehead. This idea is 
aptured by the se
ond part of the above de�nition by insertingthe spe
ial atom whi
h always evaluates to 
api(�) in the body of the rule. Thisbrings out exa
tly how the rule is 
onstrained by the 
ontestations.Note that I 00 redu
es to I 0 when C = ;.In the following we assume that the senten
es of any program are evaluateda

ording to I 00.In the above de�nition we have assumed that the 
ontestations are homoge-neous in the sense there is only some one 
ap fun
tion asso
iated with the entire
lass of 
ontestations C. But it is possible that C may 
ontain many di�erent typesof 
ontestations where ea
h type has its own asso
iated 
ap fun
tion. This allowsour formalism to represent heterogeneous 
ontestations. Thus, suppose we 
anexhaustively partition C into C1; : : : ; Cn in terms of their di�erent asso
iated 
apfun
tions. Then we 
an de�ne n 
ap0i fun
tions where ea
h 
ap0i(b; C; I) returnsthe spe
ial atom whi
h always evaluates to 
api(�) if there exists a 
ontestation46



A ,!i b 2 Ci su
h that I 0(A) = �, where Ci is the subset of C with whi
h 
api isasso
iated; otherwise 
ap0i(b; C; I) returns the spe
ial atom true.In 
ase C 
ontains heterogeneous 
ontestations, I 00 
an be understood asI 00(head  C body) = I 00(head  body; 
ap01(head; C; I); : : : ; 
ap0n(head; C; I))4.4.2 Justi�ed Attribution of Truth-valuesIn this subse
tion we 
arry out the se
ond step in de�ning epistemi
ally reasonablemodels.The attribution of a truth value to an atom in a model of P + C is justi�ed ifthat attribution is well-supported in terms of the rules of P + C, where these rulesare now understood as 
onstrained rules. Thus we must extend the previouslyde�ned 
on
ept of well-supported models of P to P +C. We do this by taking intoa

ount the eviden
e 
ontrary to ea
h atom whi
h is attributed a value greaterthan the default truth value in determining whether the attribution of this valueis well supported.De�nition 4.4.6 Let P be a normal logi
 program. Let C be a set of 
ontestationswhi
h 
an be partitioned into the sets fC1; : : : ; Cng with ea
h distin
t Ci asso
iatedwith a distin
t 
ap fun
tion 
api. Then model I of P +C is a well supported modelif there exists a stri
t well-founded partial ordering � on the atoms in HBP su
hthat for any atom a in HBP su
h that F < I(a), there exists an R 2 grd(P ) + Csu
h that1. head(R) = a, and2. I(a) � I(body(R) ^ 
ap01(a; C1; I) ^ � � � ^ 
ap0n(a; Cn; I)), and47



3. b� a for every b 2 posbody(R).Note that in 
ase C = ; the well-supported models of P + C be
ome the well-supported models of P as de�ned in De�nition 4.3.2. As in that de�nition, ifthe attribution of a truth-value to an atom is well-supported in a model then theattribution of a lower truth-value to that atom is also well-supported. However,we shall see in the next se
tion that a well-supported model will not be regardedas an epistemi
ally reasonable model if it does not attribute an atom the highesttruth-value that would be well-supported in that model.Theorem 4.3.1 above says that every normal logi
 program has at least one well-supported model. However, whether P + C has a well-supported model dependson the 
ap fun
tions asso
iated with C. It 
an easily be shown that if 
ap1 isthe 
ap fun
tion asso
iated with C then there 
an be no guarantee that P + Chas a well-supported model. The example below illustrates this point. HoweverTheorem 4.4.1 below says that P +C has a well-supported model if 
ap2 is the 
apfun
tion asso
iated with C.Example 4.4.3 Let P be the ground program fp  q; q  g and let C = fp ,!1qg. That is, let 
ap1 be the asso
iated 
ap fun
tion. If an interpretation I were toassign T or CT to p then I would have to assign CF to q to satisfy C, in whi
h 
asethe assignment of T or CT to p would not be well-supported. On the other hand ifCF were assigned to p then CT would have to be assigned to q in order for I tobe a model of p  q. But in that 
ase it would not be a model of the 
onstrainedrule q  
ap01(q; C; I) sin
e 
ap01(q; C; I) would evaluate to T . Similarly I 
annotassign F to p without failing to model one of the two 
lauses of P + C.The following theorem says that every P + C has at least one well-supportedmodel if 
ap2 is the 
ap fun
tion asso
iated with C. Re
all that the only di�eren
e48



between 
ap1 and 
ap2 is that 
ap1(CF ) = T and 
ap2(CF ) = CT . Thus, inthe 
ase of the program and 
ontestations in the above example, an interpretationwhi
h assigns CF to p and CT to q would be a well-supported model if 
ap2 isasso
iated with p ,! q. This is be
ause 
ap02(q; C; I) would evaluate to CT and, inC4, CF  CT evaluates to CT .Theorem 4.4.1 Let P be any normal logi
 program and let C be any set of 
on-testations. Let 
ap2 be the 
ap fun
tion asso
iated with C. Then P + C has at leastone well-supported model.Proof: We show below how to 
onstru
t a well-supported interpretation I of P+Cassuming that 
ap2 is the 
ap fun
tion asso
iated with C.Let J be an interpretation of P su
h that J assigns F to any atom a su
h thatnot a 2 WFS(P ), the well-founded semanti
s for P . Let J assign T to all atoms asu
h that a 2 WFS(P ). Let J assign CF to all other atoms in HBP . Modify thisinterpretation J so that all atoms a are assigned CF su
h that B ,!2 a 2 C andJ (B) = T and J (a) = T . Call this interpretation J 0. We propagate this 
hangein the status of a to all atoms whose presen
e in WFS(P ) depended on a beingin WFS(P ) by deleting all rules R from grd(P ) su
h that J 0(head(R)) = CF .Let P 0 be the modi�ed program. We modify J 0 so that all atoms a su
h thatJ 0(a) = T but a 62 WFS(P 0) are assigned CF . Similarly all atoms a su
h thatJ 0(a) = F but not a 62 WFS(P 0) are assigned CF . Call this interpretation I.We show below that I is a well-supported model of P + C.Clearly, I fails to be a model of P+C only if I fails to be a model of grd(P )+C.I fails to be a model of grd(P ) + C only if the head of some rule is assigned Fand the body evaluates to a value greater than F or the head is assigned CF and49



the body evaluates to T . But the head of a rule is assigned F by I only if thenegation of the head is inWFS(P 0), in whi
h 
ase some literal in the body of ea
hrule of P 0 is false in WFS(P 0) and thus evaluates to F in I. So I is a model ofany rule whose head is assigned F by I. The head of a rule a is assigned CF onlyif neither a nor its negation is in WFS(P ) or a is in WFS(P ) but some 
ontestorof a evaluates to T in J or a is in WFS(P ) but a is not in WFS(P 0). In the �rst
ase no rule with a as head 
an have its body evaluate to T in J and thus notin I. In the se
ond 
ase 
ap02(a; C;J 0) evaluates to CF or CT and so the body ofany su
h 
onstrained rule 
annot evaluate to T in J 0 and thus not in I. In thelast 
ase the body of any su
h rule 
ontains some literal that does not belong toWFS(P 0) and so evaluates to CF or CT in I. Thus I is a model of grd(P ) + C.Hen
e, I is a model of P + C.It is 
lear that for ea
h a 2 HBP there is a a 2 grd(P ), su
h that head(R) = aand I(a) � I 0(body(R)^ 
ap02(a; C; I)). To show that I is well-supported we needto additionally show there is a well-founded ordering on HBP of the sort requiredby the de�nition of a well-supported model. Su
h an ordering 
an be 
onstru
tedexa
tly as in the proof of Theorem 4.3.1.4.4.3 Maximally Justi�edIn the previous subse
tion we showed how to 
apture the idea that the attributionof a truth-value to any atom must be justi�ed in epistemi
ally reasonable models.In this se
tion we show how to 
apture the idea that an epistemi
ally reasonablemodel must attribute an atom the highest truth-value that would be well-supportedin that model.Re
all that in any model I a rule is assigned CT only if it attributes CF to50



the head and CT to the body of the rule. In some 
ases it is impossible to have awell-supported model of the program whi
h 
an assign CT to the head of the ruleand at the same time have the body evaluate to CT (e.g. p  not p). But inother 
ases this is possible. So we 
an have two models of a program where onemodel assigns CF to the head of a rule and CT to the body and the other whi
hassigns CT to head of that rule and CT to the body. In the �rst model the rulewould evaluate to CT whereas in the se
ond the rule would evaluate to T . In su
h
ases the higher the value assigned to the head the higher the value assigned tothe rule. Thus we 
an rank the well-supported models of P + C in terms of thetruth-value they assign to the rules of P + C. From the above dis
ussion we seethat those well-supported models would be ranked higher whi
h assign a higherjusti�ed truth-value to the atoms. In order to 
apture this idea we introdu
e a
lausal ordering between interpretations.Let I1 and I2 be two interpretations of P + C. Then, I1 �P+C I2 if, and onlyif, I 001 (R) � I 002 (R) for every rule R in P + C.I1 <P+C I2 if, and only if, I1 �P+C I2 and it is not the 
ase that I2 �P+C I1.Given a set of interpretations �, we say that an interpretation Ii is maximalwith respe
t to P +C in � if there is no interpretation Ij 2 � su
h that Ii <P+C Ij.When C = ; the 
lausal ordering produ
es an ordering among the modelsof P . It is 
ustomary in this 
ontext to introdu
e a pointwise ordering amonginterpretations, either in terms of a truth ordering or in terms of a knowledgeordering among atoms. Thus, we 
ould introdu
e: I1 �p I2 i� for all atoms a inHBP , I1(a) �P I2(a). But the two orderings do not produ
e the same result.
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Let P be the ground program fp  q;not r;not s; r  not s; s  not r;not p; q  g. Consider the following two models of P .p q r sI1 CF T CF CTI2 CT T CF CFTable 4.3: Pointwise vs. 
lausal ordering among models.In this 
ase the two models are in
omparable in terms of the pointwise ordering,but I1 is stri
tly greater than I2 in terms of the 
lausal ordering.It seems to us that we should use the 
lausal ordering instead of the pointwiseordering be
ause a model is supposed to be a model of the senten
es of a theory;it is not required to be a model of the atoms of the theory. Hen
e, models thatmaximize the degree of truth of rules should be preferred.In terms of the idea of maximal models in the 
lausal ordering we 
an de�nethe 
anoni
al models of P + C.De�nition 4.4.7 The 
anoni
al models of P+C are the 
lausally maximal modelsamong the well-supported models of P + C:The idea of epistemi
ally reasonable models is fully 
aptured in terms of theabove de�ned idea of 
anoni
al models.Example 4.4.4 As in Example 4.4.1 above, letP = f
 not a; a not b; b not a; d gand let C = f
 ,!1 dg52



Then the 
anoni
al models of P + C area b 
 dI1 T F F TI2 CT CF CF TI3 CF CT CT CFI4 F T T CFTable 4.4: An example of the 
anoni
al models P + CIn ea
h of these models all the 
onstrained rules evaluate to T and thus thesemodels must be maximal in the 
lausal ordering. Note that the rule d C evaluatesto T in I4 even though the atom d is assigned CF be
ause the 
ontestor of devaluates to T and thus d C is evaluated as d CFalse. Thus, we see that theidea of epistemi
ally reasonable models is 
aptured in the 
anoni
al model theory.Now we are in a position to formally de�ne the semanti
s C4.De�nition 4.4.8 By C4 we mean the four truth-values with the asso
iated order-ing among them, the evaluation fun
tions I 0 and I 00, the relation of satisfa
tionbetween interpretations and senten
es, the sele
tion fun
tion among the modelsof a program impli
it in the de�nition of a well-supported model, the 
lausal or-dering among interpretations and the sele
tion fun
tion among models impli
it inDe�nition 4.4.7 of 
anoni
al models.The following theorem follows dire
tly from Theorem 4.4.1 above.Theorem 4.4.2 Let P be any normal logi
 program and let C be any set of 
on-testations. Then P + C has at least one 
anoni
al model.53



We have de�ned the 
on
ept of a normal logi
 program P satisfying a set of
ontestations C and we have de�ned the 
anoni
al models of P + C. The followingtheorem ties together these two 
on
epts.Theorem 4.4.3 Every 
anoni
al model of P + C satis�es C.Proof: Let I be a 
anoni
al model of P +C. Assume by way of 
ontradi
tion thatthere is a Cj 2 C su
h that Cj is not satis�ed by I. Let Contestor(Cj) evaluateto � in I. Let Contested(Cj) evaluate to � in I. Let the 
ap fun
tion asso
iatedwith Cj be 
api. Thus, if I violates Cj then � > 
api(�).Any rule R 2 grd(P ) + C su
h that head(R) = Contested(Cj), is evaluatedby I 00 as if R has 
ap0i(head(R); Cj; I 00) in its body. 
ap0i(head(R); Cj; I 00) returnsthe spe
ial atom whi
h evaluates to 
api(�). Thus, the body of any R su
h thathead(R) = Contested(Cj) 
an evaluate to at most 
api(�) in I. Hen
e sin
ewe assumed that Contested(Cj) evaluates to � and � > 
api(�), it follows thathead(R) evaluates to a truth-value greater than the truth-value of body(R) forany su
h R. Thus, I 
annot be a well-supported model and, thus, 
annot be a
anoni
al model of grd(P ) + C. Hen
e, I 
annot be 
anoni
al model of P + C.Thus, we get a 
ontradi
tion.The 
onverse of the above theorem does not hold. That is, it is not true thatevery model of P that satis�es C is a 
anoni
al model of P+C. This was illustratedin Examples 4.4.1 and 4.4.4.De�nition 4.4.9 P + C strongly entails a literal p under C4 if, and only if, pevaluates to T in all the 
anoni
al models of P + C.P + C weakly entails a literal p under C4 if, and only if, p evaluates to at leastCT in all the 
anoni
al models of P + C.54



It is 
lear that if P + C strongly entails p then it weakly entails p.Theorem 4.4.4 C4 as a semanti
s of normal logi
 programs augmented with aset of 
ontestations is inferentially 
on
i
t-free with regard to the 
on
i
ts spe
i�edby the set of 
ontestations.Proof: Let P be a normal logi
 program and let C be a set of 
ontestations. Thenwe 
an establish that C4 is inferentially 
on
i
t free by establishing that the setof strong and weak entailments of P + C satisfy C. This follows trivially fromTheorem 4.4.3 above.In the 
ase where C = ;, the 
anoni
al models of P + C = P are simplythe 
lausally maximal models among the well-supported models of P . Thus, C4provides a new semanti
s for normal logi
 programs. It is 
lear that the de�nitionsof weak and strong entailment 
arry over to the 
ase when C = ;. We explore thisnew semanti
s of normal logi
 programs in Chapter 5.4.5 Dis
ussionIn this 
hapter we have introdu
ed the idea of 
ontestations, whi
h is a way ofrepresenting 
on
i
ts between statements. A 
ontestation against a statement isalso taken as eviden
e against the statement, whereas a normal logi
 rule with thatstatement in the head is understood as stating eviden
e in favor of that statement.There 
an be 
ontestations of di�erent degrees of strength. We have introdu
edC4, a semanti
s for normal logi
 programs augmented with 
ontestations. Thissemanti
s is based on four truth values with an asso
iated ordering between them.Our semanti
s is based on the idea of epistemi
ally reasonable models whi
h is55




aptured in terms of the idea of well-supported models, a 
lausal ordering betweenwell-supported models and the idea of 
ombining eviden
e against a statement withthe eviden
e for that statement. The 
anoni
al models of a normal logi
 programplus a set of 
ontestations are the well-supported models whi
h are maximal inthe 
lausal ordering. Based on this model theory we have introdu
ed two typesof entailment: strong entailment and weak entailment. We have shown that everynormal logi
 program augmented with 
ontestations whi
h are interpreted in a
ertain way has at least one 
anoni
al model.In the following we 
ompare the truth values of C4 and the asso
iated orderingwith other multi-valued logi
s in terms of the ground program P = fa  ; b  gand the set of 
ontestations C = fb ,!1 ag. First, 
lassi
al two-valued logi
 
annotprovide a model for P + C. The only model of P , whi
h assigns true to both aand b, does not satisfy b ,!1 a. A three valued logi
 ([Kle50℄) would provide asa model of P + C the interpretation whi
h assigns u to a and T to b. As notedin Chapter 2, su
h a logi
 would have to 
onsider u as a designated truth value.Thus, P + C would entail both a and the negation of a in terms of a three-valuedlogi
. Hen
e, su
h a logi
 would not be inferentially 
on
i
t-free. A Belnap typeof four values ([Bel77b℄) would presumably assign T to b and fT; Fg to a. Thus,not a would also evaluate to fT; Fg. Depending on the rules for entailment, thiswould have the 
onsequen
e that P + C above would entail both a and not a orit would entail neither. Both of these seem to us undesirable 
onsequen
es. Inmany 
ontexts it would be useful to infer the negation of a su

essfully 
ontestedstatement. P + C should entail not a without entailing a, as in C4.In Se
tion 4.2 we showed how the four truth values of C4 and the ordering
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between them 
an naturally be derived from the 
lassi
al truth values T and Fin terms of two players assigning T or F to a set of senten
es, where player 2'sassignments are allowed to dominate player 1's assignment without winning out-right. Instead of the two players we 
an also think of this in terms of eviden
e for astatement and eviden
e 
ontrary to the statement. Thus, eviden
e for a statementplays the role of player 1 and eviden
e 
ontrary to a statement plays the role ofplayer 2. This will make 
lear why in ordering the truth values we have allowedplayer 2 to dominate player 1, the proponent of the theory in question. In this 
aseplayer 2's assigning F to a statement means a 
ontestor of the statement 
an beassigned T on the basis of available eviden
e and player 2's assigning T to a state-ment means a 
ontestor of the negation of the statement 
an similarly be assignedT . With this interpretation it 
an be seen that the situation in whi
h a statementis assigned hF; T i is to be preferred to a situation in whi
h hT; F i is assigned tothat statement be
ause the former situation means there is no eviden
e againstthe statement but there is eviden
e against the negation of the statement whereasthe latter situation means there is eviden
e against the statement even if there iseviden
e for the statement. Thus, the former situation is more 
autious than thelatter situation.The work presented in this 
hapter has some 
onne
tions with the work doneon argumentation by Dung and his 
ollaborators ([Dun93℄, [DKT96℄). An argu-mentation framework is a pair hAR; atta
ksi where AR is a set of arguments andatta
ks � AR � AR. A set S of arguments is said to be 
on
i
t-free if no twoelements of it atta
k ea
h other. A 
on
i
t-free set of arguments S is admissible ifand only if for ea
h argument B, if B atta
ks S then B is atta
ked by S. And apreferred extension of an argumentation framework AF is a maximal (with respe
t57



to set in
lusion) admissible set of AF .A 
ontests b 
an be understood as saying that A atta
ks b (or that A is an ar-gument against b) if A 
an be established. The set S of literals whi
h evaluate toT or CT in a 
anoni
al model of LP +C, where LP is a normal logi
 program andC is a set of 
ontestations, 
an be interpreted as a preferred extension as de�nedabove. The main di�eren
e between our work and the work on argumentation de-s
ribed above is that our work has the expli
it semanti
 ma
hinery to give a modeltheory. The 
ap fun
tions asso
iated with a 
ontestation, the rules for semanti
allyevaluating logi
 programming rules 
onstrained by a set of 
ontestations and thede�nition of a well-supported model ensures that both a 
ontested atom and its
ontestor 
annot have a designated truth value (T or CT ) in any well-supportedmodel of a normal logi
 program 
onstrained by a set of 
ontestations. In 
ontrast,there is no su
h semanti
 ma
hinery in the work on argumentation. The idea ofone argument atta
king another argument is introdu
ed as a primitive. Thereforethere is nothing in the semanti
s of `atta
ks' whi
h ensures that in a preferred ex-tension there 
annot be mutually atta
king arguments ex
ept by expli
itly de�ningpreferred extensions so that only 
on
i
t-free sets are regarded as preferred exten-sions. If argument A atta
ks argument B and the 
on
lusion of A is p and the
on
lusion of B is q, then what is needed is a semanti
 
hara
terization of therelation between p and q whi
h shows why establishing p disallows establishing qon the basis of B. When p and q are negations of ea
h other the semanti
s ofnegation provides this semanti
 
hara
terization. But when p and q are not nega-tions of ea
h other simply saying A atta
ks B provides no insight into why both pand q should not be a

epted and provides no semanti
 ma
hinery that pre
ludesa

epting q (on the basis of B) when p is a

epted. Indeed, argumentation theory
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has only an operational semanti
s in terms of the �x-point of an operator. Butthere is nothing in the de�nition of this operator or its �x-point whi
h pre
ludestwo mutually atta
king arguments from belonging in the �x-point.Another di�eren
e between our work and the work on argumentation theory isthat we 
an a

ommodate 
ontestations of di�erent degrees of strength. The workon argumentation theory 
annot a

ommodate this. Sin
e it has only an opera-tional semanti
s, either an argument is su

essfully atta
ked by another argumentor not. It 
annot allow for di�erent degrees of su

esses of atta
ks.4.6 SummaryIn this 
hapter we have introdu
ed the idea of 
ontestations and provided the C4semanti
s for normal logi
 programs augmented with a set of 
ontestations. Morespe
i�
ally, the resear
h 
ontributions of this 
hapter are summarized as follows.� We introdu
e the four truth values V = fF; CF; CT; Tg and provide afun
tion for evaluating any 
losed senten
e of the language of the programgiven an interpretation of the program based on V (Se
tion 4.2).� We show how the four truth values ofC4 and the asso
iated ordering betweenthem 
an naturally be derived from the 
lassi
al truth values T and F inthe 
ontext of two players assigning the 
lassi
al truth values to the sameset of statements, where one player's assignment is allowed to dominate theother player's assignment without outright winning against the other player'sassignment (Se
tion 4.2).� We generalize the idea of a two-valued well-supported model of a program59



to a four-valued well-supported model, and we prove that every normal logi
program has a four-valued well-supported model (Se
tion 4.3).� We introdu
e 
ontestations, whi
h is a way of representing 
on
i
ts betweenstatements. A 
ontestation B ,!i a, where B is a 
onjun
tion of groundliterals and a is a ground atom, is understood as saying that if B has thetruth-value � then a has at most the truth-value 
api(�), where 
api is amapping from V to V. Contestations of di�erent degrees of strength arede�ned in terms of di�erent 
ap fun
tions (Subse
tion 4.4.1).� We have de�ned C4, a semanti
s for normal logi
 programs augmented with
ontestations of di�erent degrees of strength. This semanti
s is based on thefour truth values of V with an asso
iated ordering between them. The seman-ti
s is based on the idea of epistemi
ally reasonable models whi
h is 
apturedin terms of the idea of well-supported models, a 
lausal ordering between well-supported models and the idea of 
ombining eviden
e against a statementwith the eviden
e for that statement. The 
anoni
al models of a normal logi
program plus a set of 
ontestations are de�ned as the well-supported modelswhi
h are maximal in the 
lausal ordering (Subse
tion 4.4.3).� We have shown that every normal logi
 program augmented with 
ontesta-tions whi
h are de�ned in terms of a 
ertain 
ap fun
tion has at least one
anoni
al model (Subse
tion 4.4.3).� Based on this model theory we have introdu
ed two types of entailment:strong entailment and weak entailment. And we have proven that the infer-en
es permitted in terms of these entailment relations are 
on
i
t-free withrespe
t to the types of 
on
i
ts spe
i�ed in terms of C (Subse
tion 4.4.3).60



Chapter 5C4 as a semanti
s of normal logi
 programs
5.1 Introdu
tionIn the 
ase where C = ;, the 
anoni
al models of P+C = P are simply the 
lausallymaximal models among the well-supported models of P . Thus, C4 provides a newsemanti
s for normal logi
 programs. It is 
lear that the de�nitions of weak andstrong entailment 
arry over to the 
ase when C = ;.In Se
tion 5.2 we investigate C4 as a semanti
s of normal logi
 programs. Weprove that every de�nite logi
 program has a unique 
anoni
al C4 model and thatevery normal logi
 program has at least one C4 
anoni
al model. In Se
tion 5.3 weinvestigate the relation between the stable model semanti
s and C4 as semanti
sof normal logi
 programs. We prove that a normal logi
 program whi
h has anystable models entails a literal with respe
t to the stable models of that program if,and only if, that program weakly entails that literal under C4. In Se
tion 5.4 weinvestigate the relation between the well founded semanti
s and C4 as semanti
sof normal logi
 programs. We prove that a normal logi
 program entails a literalwith respe
t to the well founded semanti
s if, and only if, that program stronglyentails that literal under C4. In Se
tion 5.5 we show how our formalism 
an be61



extended to express 
onjun
tive queries one part of whi
h must be answered interms of strong entailment and another part of whi
h may be answered in termsof weak entailment. In Se
tion 5.6 we 
ompare C4 as a semanti
s of normal logi
programs with the stable model semanti
s and the well founded semanti
s. InSe
tion 5.7 we summarize the main resear
h 
ontributions of this 
hapter.5.2 C4 as a Semanti
s of Normal Logi
 ProgramsIn this se
tion we investigate the properties of C4 as a semanti
s of normal logi
programs.Theorem 5.2.1 Every normal logi
 program has at least one C4 
anoni
al model.Proof: Follows dire
tly from Theorem 4.3.1 in Chapter 4.It 
an also be established that every de�nite logi
 program has a unique 
anon-i
al model. This generalizes the theorem of Kowalski and van Emden ([vEK76℄)whi
h says that every de�nite logi
 program has a unique minimal Herbrand model.Our result generalizes the Kowalski and van Emden theorem be
ause of the pres-en
e of the spe
ial atoms (true, CTrue, CFalse and false) in the bodies of somerules, whi
h 
an require the unique 
anoni
al model to assign truth values otherthan T and F to atoms. To prove this result we need to generalize the immediate
onsequen
e operator, TP , of [vEK76℄ de�ned in Chapter 3. Our dis
ussion here
losely follows the three-valued generalization of this operator given in [Prz90b℄.De�nition 5.2.1 Let P be a ground logi
 program, let I be a four-valued inter-pretation of P , and let a 2 HBP . De�ne 	(I) to be the interpretation givenby: 62



1. 	(I)(a) = 1 if there is a C 2 P su
h that head(C) = a and I(body(C)) = 1;2. 	(I)(a) = 2=3 if 	(I)(a) 6= 1 and if there is a C 2 P su
h that head(C) = aand I(body(C)) = 2=3;3. 	(I)(a) = 1=3 if 	(I)(a) 6= 1, 	(I)(a) 6= 2=3 and if there is a C 2 P su
hthat head(C) = a and I(body(C)) = 1=3;4. 	(I)(a) = 0, otherwise.In terms of the pointwise ordering (as opposed to the 
lausal ordering) amonginterpretations introdu
ed above, the set of Herbrand interpretations of any def-inite logi
 program form a 
omplete latti
e with the bottom of the latti
e beingthe interpretation whi
h assigns F to all atoms and the top being the interpreta-tion whi
h assigns T to all atoms. Hen
e, we are assured by the Knaster-Tarskitheorem ([Tar55℄) that the operator 	 has a least �xed point.Example 5.2.1 Let P = fa  b; 
; b  CTrue; 
  CFalseg. Let I be su
hthat I assigns 0 to a; b; and 
 and assigns the spe
ial atoms CTrue and CFalsetheir �xed values 2=3 and 1=3 respe
tively. Then 	(I) = J assigns 0 to a, 2=3 tob and 1=3 to 
. And 	(J ) assigns 1=3 to a, 2=3 to b and 1=3 to 
. Any furtherappli
ation of the 	 operator to 	(J ) yields the same result as 	(J ).Lemma 5.2.1 If P is a de�nite logi
 program, then the operator 	 has the least�xed point MP su
h that 	(MP ) =MP . The interpretation MP is the least modelof P in terms of the pointwise ordering.The sequen
e 	 " n, n = 0; 1; : : : ; !, of iterations of 	 is monotoni
ally in-
reasing with respe
t to the pointwise ordering among interpretations (starting withthe interpretation that assigns F to all atoms) and it has a �xed point 	 " ! = MP :63



Proof: The proof is 
ompletely analogous to the proof in [vEK76℄ for two-valuedinterpretations.We are now in a position to prove the theorem that every de�nite logi
 programhas a unique C4 
anoni
al model.Theorem 5.2.2 A de�nite logi
 program has a unique C4 
anoni
al model.Proof: We show that MP , the least �x-point of 	 for P , is the unique 
anoni
almodel of P .We know from the above lemma that MP is a model of P . Furthermore, it isa well-supported model given the nature of the 	 operator. Note that ea
h 
lauseof P evaluates to T in MP . Hen
e, MP is maximal in the 
lausal ordering. Thus,it is a 
anoni
al model.Assume by way of 
ontradi
tion that there is another 
anoni
al model I of Psu
h thatMP 6= I. Let S be the set of atoms on whi
h MP and I di�er. Note thatI 
annot assign any atom a value higher than MP does if it is a well-supportedmodel.Let us say that an atom �rst appears in an iteration of 	 in the 
onstru
tion ofMP if it has its �nal value (that is, the value it has in MP ), whi
h must be greaterthan F , in that iteration and has a stri
tly lower value in all other iterations beforethat. Thus we 
an stratify the atoms in S in terms of whi
h iteration of 	 they�rst appear in the 
onstru
tion of MP .Let s 2 S be an atom su
h that no atom in S �rst appears before s. Let C 2 Pbe su
h that head(C) = s and no member of S is a member of body(C) and body(C)evaluates to the same truth value as MP (s). (There must be su
h a C given thebottom-up nature of 
onstru
ting MP and given that 	 is a monotoni
 operator.)
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Thus, I and MP assign the same truth values to all members of body(C). Hen
e,C will evaluate to a lesser value in I than in MP . But sin
e all 
lauses evaluate toT in MP , it follows that I is stri
tly less than MP in the 
lausal ordering. Thus,a 
ontradi
tion.Hen
e, MP is the unique C4 
anoni
al model of P .5.3 Relation to Stable Model Semanti
sIn this se
tion we prove that P entails a literal q with respe
t to the stable modelsof P if, and only if, P weakly entails q (under C4).It is well known that not all normal logi
 programs have a two-valued stablemodel. Thus, P = fp  not pg has no two-valued stable model. However, thisprogram has a 
anoni
al model a

ording to C4, namely, the model whi
h assignsCF to p.Let Truth(I) denote faj a is an atom and I(a) � CTg.Lemma 5.3.1 below says that every stable model of a program P is Truth(I)for some 
anoni
al model I (under C4) of P .Lemma 5.3.1 Let P be grd(LP ). Then, for ea
h stable model M of P , thereexists a four-valued 
anoni
al model I of LP su
h that M = Truth(I).Proof: Let M be a stable model of P . We show below how to 
onstru
t a four-valued 
anoni
al model I su
h that M = Truth(I).Let I be su
h that it assigns T to all members of M and F to all other atoms.Clearly, by 
onstru
tion M = Truth(I). We show below that I is a 
anoni
al
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model of P .I is a model of PFor any C 2 P , if head(C) 2M , then, by 
onstru
tion, I(head(C)) = T . Thus, Imodels C.If head(C) 62 M , then either some atom in posbody(C) is not in M or someliteral in negbody(C) is false in M . In either 
ase, by 
onstru
tion, that atom orliteral evaluates to F in I. So, on
e again, I models C.I is well-supportedSin
e I assigns only T or F to atoms, I is identi
al to M if M is thought of as atwo-valued mapping. Sin
e M is a stable model of P , it is also a well-supportedmodel of P ([Fag91℄). So I is a well-supported model of P .I is maximal in the 
lausal ordering with respe
t to LPI is maximal in the 
lausal ordering with respe
t to LP only if it is maximal inthe 
lausal ordering with respe
t to grd(LP ) = P . To establish that I is maximalin the 
lausal ordering with respe
t to P it is enough to establish that all 
lausesin P evaluate to T a

ording to I.Clearly, all 
lauses su
h that its head is assigned T by I evaluate to T . So, allthat remains to be shown is that all 
lauses su
h that its head is assigned F by Ialso evaluate to T . But sin
e we have already established that I is a model of P ,the body of any 
lause whose head is assigned F must evaluate to F . Thus, anysu
h 
lause evaluates to T in I. Hen
e, all 
lauses in P evaluate to T under I.Hen
e, I is a 
anoni
al model of P and M = Truth(I).Corollary 1 If a ground program P has a stable model, then P has a four-valued
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anoni
al model I su
h that ea
h 
lause in P evaluates to T in I.Proof: This was essentially proved in the proof of the previous lemma.Corollary 2 If a ground program P has a stable model, then every four-valued
anoni
al model of P is su
h that ea
h 
lause in P evaluates to T in it.Proof: By Corollary 1 we know that if P has a stable model then there is a
anoni
al model I of P su
h that all 
lauses evaluate to T in I. So for any modelJ of P su
h that J (C) < T , it must be the 
ase that J < I. Hen
e J 
annotbe 
annoni
al. Thus, every 
annoni
al model must be su
h that every 
lause of Pevaluates to T in it.Lemma 5.3.2 Let P be grd(LP ). Every 
anoni
al four-valued model I of LPsu
h that ea
h 
lause of P evaluates to T in I is su
h that Truth(I) is a stablemodel of P .Proof: Assume that I is a 
anoni
al model of LP su
h that ea
h 
lause of LPevaluates to T in I. Assume, by way of 
ontradi
tion, that Truth(I) is not astable model of P . This implies that MM(P Truth(I)) 6= Truth(I), where P Truth(I)is the Gelfond-Lifs
hitz transformation (see De�nition 3.3.1 of Chapter 3) of Pwith respe
t to Truth(I).This means that either there is an a 2MM(P Truth(I)) su
h that a 62 Truth(I),or there is an a 2 Truth(I) su
h that a 62MM(P Truth(I)).Case 1: a 2MM(P Truth(I)) and a 62 Truth(I).P Truth(I) is a de�nite program and, hen
e MM(P Truth(I)) is the least �x-pointof TQ " n, where Q is P Truth(I). Thus, it is possible to stratify the members ofMM(P Truth(I)) in terms of the least n su
h that a member �rst o

urs in TQ " n.67



Let a be of the lowest strata among those atoms in MM(P Truth(I)) whi
h arenot in Truth(I).Sin
e a 2 MM(P Truth(I)), there must be a 
lause in P Truth(I) of the forma  b1; : : : ; bm su
h that fb1; : : : ; bmg � MM(P Truth(I)). But, by the assumptionthat a is of the lowest strata among those atoms in MM(P Truth(I)) whi
h arenot in Truth(I), it follows that fb1; : : : ; bmg � Truth(I). Furthermore, sin
ea  b1; : : : ; bm is in P Truth(I), there must be a 
lause C in P of the form a  b1; : : : ; bm; not 
1; : : : ; not 
n su
h that 
i 62 Truth(I), i = 1; : : : ; n. So, ea
hmember bi of posbody(C) is assigned at least CT by I (sin
e ea
h su
h bi belongsto Truth(I)) and ea
h member not 
j of negbody(C) evaluates to at least CT(sin
e ea
h 
j is assigned at most CF by I). Hen
e, I(body(C)) is at least CT . Bythe assumption that C evaluates to T in I, it follows that I(a) must be at leastCT . Therefore, a must be in Truth(I). Thus, a 
ontradi
tion.Case 2: a 62MM(P Truth(I)) and a 2 Truth(I).Let � be the well-founded ordering that makes I well supported. Among allthe atoms x su
h that x 62MM(P Truth(I)) and x 2 Truth(I), let a be highest in the�. That is, let a be su
h that there does not exist a b su
h that b 62MM(P Truth(I))and b 2 Truth(I) and a� b.Sin
e a 2 Truth(I), I(a) is at least CT and, hen
e, there must be a 
lause C inP of the form a b1; : : : ; bm; not 
1; : : : ; not 
n su
h that body(C) must evaluateto at least CT under I (otherwise, I would not be well-supported). So ea
h bi inposbody(C) must be assigned at least CT by I. Thus, fb1; : : : ; bmg � Truth(I).Furthermore, sin
e ea
h not 
j in negbody(C) must evaluate to at least CT , ea
h
j must be assigned at most CF by I. Thus, no 
j is in Truth(I).68



Hen
e, 
learly, a b1; : : : ; bm must be in P Truth(I).By the nature of the well-founded ordering that makes I well supported, ea
hof b1; : : : ; bm must be lower than a in the well-founded ordering (otherwise a
annot be well-supported by C). By our assumption that a is the highest inthe well-founded ordering, it follows that fb1; : : : ; bmg � MM(P Truth(I)) sin
efb1; : : : ; bmg � Truth(I). So a must belong to MM(P Truth(I)). Thus, a 
ontra-di
tion.Lemma 5.3.3 Let P be grd(LP ). If P has any stable models then every 
anoni
almodel I of LP is su
h that Truth(I) is a stable model of P .Proof: Follows dire
tly from Corollary 2 and Lemma 5.3.2.Theorem 5.3.1 If a ground normal logi
 program P has any stable models, thenM is a stable model of P if, and only if, there exists a four valued 
anoni
al modelof I of LP su
h that M = Truth(I).Proof: Follows dire
tly from Lemmas 5.3.1 and 5.3.3.Sin
e not all normal logi
 programs have stable models, an important questionis what are the ne
essary and suÆ
ient 
onditions for a normal logi
 programhaving a stable model. The following theorem gives an answer.Theorem 5.3.2 A ground normal logi
 program has a two-valued stable model if,and only if, every 
lause of the program evaluates to T in every 
anoni
al modelof the program.Proof: The left-to-right dire
tion is proven in Corollary 2. The right-to-leftdire
tion is proven in Lemma 5.3.2.Theorem 5.3.2 above justi�es the following de�nition.69



De�nition 5.3.1 A C4 model of a normal logi
 program is a C-Stable model ifand only if all rules of the program evaluate to T in that model.We show below that any well-supported C-stable model of a normal logi
 pro-gram must be a 
anoni
al model of the program and if the program has a 
anoni
alC-stable model then all its 
anoni
al models must be C-stable.Theorem 5.3.3 Any well-supported C-stable model of a normal logi
 programmust be a 
anoni
al model of the program and if the program has a 
anoni
alC-stable model then all its 
anoni
al models must be C-stable.Proof: Let P be a normal logi
 program whi
h has well-supported C-stable modelI. Sin
e I is well-supported and sin
e every R 2 P evaluates to T in I there 
annotbe any other model of P whi
h is stri
tly greater than I in the 
lausal ordering.Hen
e I must be a 
anoni
al model of P .Given that I is a 
anoni
al C-stable model of P , it follows that any model J ofP su
h that J is not C-stable would be stri
tly less than I in the 
lausal ordering.Thus, no su
h J 
ould be a 
anoni
al model of P . Hen
e, it follows that if P hasa 
anoni
al C-stable model, then all its 
anoni
al models must be C-stable.Let us say that P entails a senten
e q under the stable model semanti
s if, andonly if, every stable model of P is also a model of q.Theorem 5.3.4 If a ground normal logi
 program P has any stable models thenit entails a senten
e q under the stable model semanti
s if, and only if, P weaklyentails q under C4.Proof: Follows dire
tly from Theorem 5.3.1.Using the terminology of [Dix95℄, we state the following theorem.70



Theorem 5.3.5 If T and CT are 
ollapsed into a single true value and CF andF are 
ollapsed into a single false value, C4 extends the stable model semanti
sboth in the sense that� For any program P , C4 
lassi�es at least as many atoms of P as true orfalse as does the stable model semanti
s.� C4 is de�ned for a 
lass of programs that stri
tly in
ludes the 
lass of pro-grams for whi
h stable model semanti
s is de�ned and for all programs ofthis smaller 
lass, the two semanti
s 
oin
ide.Proof: Sin
e C4 assigns a truth value to all atoms of P , it follows trivially thatC4 
lassi�es at least as many atoms of P as true or false as does the stable modelsemanti
s, if T and CT are 
ollapsed into true and CF and F are 
ollapsed intofalse.It follows from Lemma 5.3.1 that C4 is de�ned for a 
lass of programs thatin
ludes the 
lass of programs for whi
h stable model semanti
s is de�ned and forall programs of this smaller 
lass, the two semanti
s 
oin
ide. So to prove these
ond part of the theorem all we need to do is produ
e a program whi
h has nostable models, but for whi
h C4 has a model. The program fp not pg has nostable models, but it has a model under C4, namely, the model whi
h assigns CFto p.Following [Prz90b℄, we de�ne a four-valued stability operator �? on normal,logi
 programs.De�nition 5.3.2 Given a four-valued interpretation I of a normal, logi
 programP , let LP I be the de�nite program obtained by transforming every 
lause C by71



repla
ing every member of negbody(C) whi
h evaluates to T (resp. CT ; resp. CF ;resp. F ) by the spe
ial atom true (resp. Ctrue; resp. Cfalse; resp. false) whi
hevaluates to T (resp. CT ; resp. CF ; resp. F ) in every interpretation. Let J bethe unique 
anoni
al model of LP I. We de�ne J to be the value of �?(I).We say that I is a four-valued stable model of P if, and only if, �?(I) = I.Not all normal, logi
 programs have a four-valued stable model. The programfp not pg has no four-valued stable model. However, it does have a four-valuedwell-supported model in whi
h p is assigned CF . This shows that although theset of two-valued stable models of a program 
oin
ide with the set of two-valuedwell-supported models ([Fag91℄), this equivalen
e does not hold for four-valuedmodels.Lemma 5.3.4 I is a four-valued stable model of P if, and only if, for ea
h a 2HBP , I(a) = maxfI(body1(a)); : : : ; I(bodyn(a))gwhere body1(a); : : : ; bodyn(a) are the bodies of all the 
lauses in P whi
h have a inthe head.Proof:)If I is a four-valued stable model then it must be the unique 
anoni
al model ofLP I, whi
h 
an be 
omputed by iterating the 	 operator. Given the bottom-upnature of this 
omputation and given the monotoni
ity of the 	 operator, it mustbe the 
ase that for ea
h a 2 HBPI(a) = maxfI(body1(a)); : : : ; I(bodyn(a))g:72



(Let I be su
h that for ea
h a 2 HBP ,I(a) = maxfI(body1(a)); : : : ; I(bodyn(a))g:Let J be the unique 
anoni
al model of LP I. Given that J is the least �x-point of the 	 operator, it is easy to see that J is a well-supported model. Thus,there is a well-founded order � on the atoms of HBP = HBLPI . Based on thisordering we 
onstru
t an indu
tive proof that for ea
h a 2 HBP , J (a) = I(a).The ordering� 
onsists of a set of 
hains. We take the bottom of ea
h 
hain tobe in position 0, the next atom in the 
hain to be in position 1, and so on. De�nethe rank of ea
h atom to be highest position it has in any 
hain in � ([Fag91℄).Indu
tive proof based on the rank of an atom.Base Case: rank = 0Only the spe
ial atoms (true, false) 
an be at the bottom of any 
hain sin
e LP Iis a de�nite program. Ne
essarily, I and J assign the same value to all spe
ialatoms.Indu
tive Step: Assume that I and J agree on all atoms of rank j < n. Weshow below that this is true for all atoms of rank n.Let a be any atom of rank n. As noted in the left-to-right part above,J (a) = maxfJ (body1(a)); : : : ;J (bodyn(a))g. Given the bottom-up 
omputationof J , there must be some i, 1 � i � n, su
h thatJ (bodyi(a)) = maxfJ (body1(a)); : : : ;J (bodyn(a))gand every member of bodyi(a) is of lesser rank than a. But, by the indu
tiveassumption, I and J agree on all members of bodyi(a). Hen
e, it follows that I
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and J agree on a.It follows thus that I and J are identi
al. Hen
e, by the de�nition of a stablemodel, I is a stable model of P .We use Lemma 5.3.4 above in the proof of the following theorem whi
h statespre
isely the relation between four-valued stable models and four-valued well-supported models.Theorem 5.3.6 If P has a four-valued stable model, then I is a four-valued stablemodel of P if, and only if, I is a 
lausally maximal four-valued well-supported modelof P .Proof:)Let I be a four-valued stable model of P . Then, by Lemma 5.3.4, for ea
h atom a 2HBP , I(a) = maxfI(body1(a)); : : : ; I(bodyn(a))g. Hen
e, ea
h 
lause evaluates toT in I. Hen
e, I must be a 
lausally maximal, well-supported model of P .(Assume that P has a four-valued stable model J .Let I be a 
lausally maximal four-valued well-supported model of P . Hen
e,for ea
h a 2 HBP , I(a) = maxfI(body1(a)); : : : ; I(bodyn(a))g;otherwise I would be less than J in the 
lausal ordering. But then by Lemma 5.3.4,I must be a four-valued stable model of P .
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5.4 Relation to Well Founded Semanti
sIn this subse
tion we show that LP entails a ground literal p under the well foundedsemanti
s if, and only if, LP strongly entails p under C4. That is, we show that ifp is a positive atom, p 2 WFS(LP ) if, and only if, p is assigned T in all the four-valued 
anoni
al models of LP , and if p is a negative literal then p 2 WFS(LP )if, and only if, p evaluates to F in all the four-valued 
anoni
al models of LP .De�nition 5.4.1 T (LP ) = fa 2 HBLP j a 2 WFS(LP )gF(LP ) = fa 2 HBLP j not a 2 WFS(LP )g?(LP ) = fa 2 HBLP j a 62 T (LP ) and a 62 F(LP )gLemma 5.4.1 If a positive (resp., negative) literal a 2 WFS(LP ), then a isassigned T (resp., F ) in all the four-valued 
anoni
al models of LP .Proof: a 2 WFS(LP ) if, and only if, a 2 I1. We prove the lemma by provingindu
tively that for ea
h ordinal �, that if a positive (resp., negative) literal a 2 I�then a is assigned T (resp., F ) in all the four-valued 
anoni
al models of LP . Thus,it must be true for I1.Base Case. � = 0. The 
laim is trivially true sin
e I0 = ;.Indu
tive Step. Assume that the 
laim is true for all � < �. We show that the
laim is also true for �.If � is a limit ordinal then I� = [�<� I�Sin
e the 
laim is true for all � < � the 
laim is also true for S�<� I�.
75



If � is a su

essor ordinal thenI� = WP (I��1) = TP (I��1) [ not UP (I��1)If a 2 I� then a 2 TP (I��1). So there must be a ruleR = a b1; : : : ; bm;not 
1; : : : ;not 
nsu
h that fb1; : : : ; bmg � I��1 and fnot 
1; : : : ;not 
ng � I��1. By the indu
tivehypothesis b1; : : : ; bm are assigned T and 
1; : : : ; 
n are assigned F in all the fourvalued 
anoni
al models. So body(R) must evaluate to T in any 
anoni
al modelof LP and, hen
e, in any su
h model head(R) must be assigned T . Hen
e if a 2 I�then a must be assigned T in all the four valued 
anoni
al models of LP .If not a 2 I� then a must be in G, the greatest unfounded set with respe
t toI��1. We show below that every member of G gets assigned F in every 
anoni
almodel.It follows dire
tly from the indu
tive assumption that any b 2 G gets assignedF in every 
anoni
al interpretation if every rule with b in the head evaluates tofalse with respe
t to I��1. Let G0 be the subset of G su
h that members of G0 donot evaluate to false in this way. If G0 is empty, the 
laim that all members of Gare assigned F in all the 
anoni
al models stands proved. Hen
e, assume G0 is notempty.For ea
h member of G0, every rule with it in the head su
h that the body ofthe rule does not evaluate to false with respe
t to I��1 
ontains some member ofG0 in the body. If any member of G0 gets assigned a truth-value greater than F inany 
anoni
al model, then it must be well-supported in that 
anoni
al model bysome rule. But any su
h rule must 
ontain some member of G0. So that memberof G0 would have to be similarly well-supported by a rule 
ontaining a member of76



G0. Thus, the members of G0 would have to be well-supported in terms of ea
hother. But this is not possible sin
e there 
annot be any 
y
les in the well-foundedordering whi
h makes a 
anoni
al model a well-supported model. Thus, no memberof G0 
an be assigned a value higher than F in any 
anoni
al model.Hen
e, all members of G, the greatest unfounded set with respe
t to I��1, areassigned F in every 
anoni
al model. Thus, if not a 2 I� then a is assigned F inall the 
anoni
al models.The following de�nitions are needed to prove the next lemma.De�nition 5.4.2 For any C 2 LP , where LP is a ground program, Residue(C) isthe rule obtained by deleting all literals from body(C) whi
h are true inWFS(LP ).De�nition 5.4.3 LetResidue(LP ) = fResidue(C) j C 2 LP; head(C) 62 WFS(LP );not head(C) 62 WFS(LP ) and no member of body(C) is false in WFS(LP )gThat is, Residue(LP ) is the set of rules obtained by deleting all rules C 2 LPsu
h that head(C) 2 WFS(LP ) or not head(C) 2 WFS(LP ) or whose body isfalse in WFS(LP ) and of the remaining rules, deleting all literals whi
h are truein WFS(LP ) from the bodies of su
h rules. It is easy to see that Residue(LP ) isthe part of LP that 
annot be used in 
omputing WFS(LP ).Example 5.4.1 Let P be as in Example 3.3.3. We saw in Example 3.3.3 thatWFS(P ) = f
;not r;not qg. Hen
e, Residue(P ) =p a p ba not b b not aLet ResidueHeads(LP ) be the set of heads of all rules in Residue(LP ). Then,given the nature of the UP operator in the de�nition of the well-founded semanti
s,77



it is also easy to see that a 2 ResidueHeads(LP ) if, and only if, every memberof every rule in Residue(LP ) with a in the head is also in ResidueHeads(LP ).Let Atoms(Residue(LP )) be the set of those atoms whi
h o

ur in some rule inResidue(LP ). Then ResidueHeads(LP ) = Atoms(Residue(LP )).The next two lemmas are needed to prove Theorem 5.4.1.Lemma 5.4.2 For any a 2 HBLP , a 2 Atoms(Residue(LP )) if and only if a 62WFS(LP ) and not a 62 WFS(LP ).Proof:(If a 62 WFS(LP ) and not a 62 WFS(LP ), then there must be a C 2 LP su
hthat head(C) = a, otherwise, given the nature of the UP operator, not a 2WFS(LP ). But for su
h a C, Residue(C) 2 Residue(LP ). Thus, head(C) =a 2 Atoms(Residue(LP )).)If a 2 Atoms(Residue(LP )), then there is aC 2 Residue(LP ) su
h that head(C) =a. So, by de�nition of Residue(LP ), a 62 WFS(LP ) and not a 62 WFS(LP ).Thus, all members of Atoms(Residue(LP )) belong to ?(LP ) and are not as-signed a truth value by the well-founded semanti
s for LP .Lemma 5.4.3 For ea
h a 2 Atoms(Residue(LP )) there exists a 
anoni
al modelI of LP su
h that I(a) = CT or I(a) = CF .Proof: Suppose, by way of 
ontradi
tion, that there is an a 2 Atoms(Residue(LP ))su
h that every 
anoni
al model assigns either T or F to a.78



Let I be any 
anoni
al model of LP . Clearly I must assign T or F to someatoms in Atoms(Residue(LP )). We 
onstru
t an interpretation J su
h that forevery b 2 Atoms(Residue(LP )), if I(b) = T then J (b) = CT and if I(b) = Fthen J (b) = CF , and for all other atoms in HBLP , I and J assign the sametruth value.We show below that J is a 
anoni
al model, whi
h 
ontradi
ts the assumptionthat there is no su
h 
anoni
al model.J is a modelSuppose by way of 
ontradi
tion that J is not a model of some C 2 P whereP = grd(LP ).Either head(C) 2 Atoms(Residue(LP )) or not.Case 1: head(C) 2 Atoms(Residue(LP )).Case 1a: I(head(C)) = T or I(head(C)) = F . In the �rst 
ase J (head(C)) =CT and in the se
ond 
ase J (head(C)) = CF . However, in either 
ase J
an fail to be a model of C only if body(C) evaluates to T in J . But sin
ehead(C) 2 Atoms(Residue(LP )), at least one member l of body(C) must also bein Atoms(Residue(LP )). If I(l) = T then J (l) = CT . On the other hand ifI(l) < T then J (l) < T . So in either 
ase J (body(C)) < T . So J must be amodel of C.Case 1b: I(head(C)) = CT or I(head(C)) = CF . So J (head(C)) = CTor J (head(C)) = CF . But in either 
ase sin
e I is a model of LP , 
learly,I(body(C)) < T . So, it must be the 
ase that J (body(C)) < T . Hen
e, J mustbe a model of C.
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Case 2: head(C) 62 Atoms(Residue(LP )). So, by Lemma 5.4.2, head(C) 2WFS(LP ) or not head(C) 2 WFS(LP ). Sin
e I is a 
anoni
al model this impliesby Lemma 5.4.1 that I(head(C)) = T or I(head(C)) = F . By 
onstru
tion J as-signs the same truth value as I to all atoms a su
h that a 62 Atoms(Residue(LP )).So if head(C) 2 WFS(LP ), then J (head(C)) = T and so, 
learly, J is a modelof C. If not head(C) 2 WFS(LP ) then head(C) is assigned F by both I andJ . However, not head(C) 2 WFS(LP ) only if some member l 2 body(C) is falsein WFS(LP ). Clearly, by Lemma 5.4.1, l evaluates to F in I. By 
onstru
tionso does J . Hen
e, body(C) must evaluate to F in J . Thus, again, J must be amodel of C.Hen
e, J must be a model of LP .I �LP JFor ea
h C 2 LP , either head(C) 2 Atoms(Residue(LP )) or head(C) 62Atoms(Residue(LP )).Case 1: head(C) 2 Atoms(Residue(LP )). Note that for head(C) to be inAtoms(Residue(LP )), body(Residue(C)) must be non-empty.If I(head(C)) = T or I(head(C)) = CT , then J (head(C)) = CT . Sin
e J isa model (proved above) in either 
ase J (body(C)) is at most CT . So J (C) is T .Hen
e, in either 
ase I(C) �LP J (C).If I(head(C)) = CF , then J (head(C)) = CF . In this 
ase I(body(C)) isCT or CF or F . By the nature of 
onstru
tion of J , if I(body(C)) is CT or CF ,J (body(C)) will have the same truth value. Hen
e, in either 
ase I(C) �LP J (C).If I(body(C)) is F , then I(body(C)) is at most CF . So J (C) evaluates to T . Hen
eif I(head(C)) = CF , I(C) �LP J (C). 80



If I(head(C)) = F , then J (head(C)) = CF . In this 
ase I(body(C)) = F .Hen
e, J (body(C)) is at most CF . In this 
ase, again, J (C) = T .So in 
ase head(C) 2 Atoms(Residue(LP )), I(C) �LP J (C).Case 2: head(C) 62 Atoms(Residue(LP )). In this 
ase, by Lemma 5.4.2,I(head(C)) = T or I(head(C)) = F and, by 
onstru
tion, I(head(C) = J (head(C)).If I(head(C)) = T , then I(C) = J (C) = T . If I(head(C)) = F = J (head(C)),then, sin
e both I and J are models, I(body(C)) = J (body(C)) = F . So, again,I(C) = J (C).Thus, we have shown that I �LP J .J is well supported.Sin
e I is well-supported, there exists a well-founded ordering�I on atoms inHBLP su
h that for any a 2 HBLP su
h that F < I(a), there exists a C 2 LPsu
h that head(C) = a and I(a) � body(C) and for any b 2 posbody(C), b�I a.We 
onstru
t �J as follows. If a �I b then a �J b for any a; b 2 HBLP .Let S = fa 2 Residue(Atoms(LP )) j I(a) = Fg. By 
onstru
tion, members of Sare assigned CF in J . We let 
 �J d, where 
 2 S and d is any atom su
h thatI(d) � CF . That is, all atoms whose truth value gets upgraded from F to CFin the 
onstru
tion of J are lesser in the ordering than all atoms whi
h had atleast CF in I. Let �J 0 denote the ordering 
reated thus far. Furthermore sin
emembers of S do not belong to any unfounded set with respe
t toWFS(LP ) theremust be a well-founded ordering among members of S. We 
onstru
t one su
hordering �S as follows. Let Pos(Residue(LP )) be Residue(LP ) with negativeliteral removed from rules of Residue(LP ). Sin
e this is a de�nite logi
 program
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the TP operator applied to it has a least �xed point. �S is 
onstru
ted by lettingb�S a where a; b 2 S and b o

urs in an earlier iteration of the TP operator thana. Then �J is just �J 0 [ �S.Clearly,�J is a well-founded ordering. We show below that J is well-supportedin terms of �J .Any atom a that is assigned T or CT by J is well-supported in terms of thesame rule R 2 LP whi
h would make the assignment of T or CT to a by I well-supported. Similarly, any b 62 S that is assigned CF by J is well-supported interms of the same rule R 2 LP whi
h makes the assignment of CF to b by Iwell-supported. Furthermore, the part of the �J ordering that is relevant to thisis exa
tly the same as the �I ordering.Every 
 2 S is assigned CF by J but F by I. We need to show that theseassignments are also well-supported. Sin
e 
 2 Atoms(Residue(LP ), 
learly theremust be at least one rule R 2 LP su
h that head(R) = 
 and body(Residue(R))is non-empty and d �J 
 for any atom d 2 posbody(Residue(R)). Any atom inbody(Residue(R)) whi
h is assigned F by I is assigned CF in J and all othermembers of body(Residue(R)) are assigned at least CF in J . Furthermore, allmembers of body(R)� body(Residue(R)) belong to WFS(LP ) and thus evaluateto T in I and, hen
e, in J . Thus, body(R) must evaluate to at least CF in J .Hen
e, R supports the attribution of CF to 
 in J . Furthermore, b �J 
 for allb 2 posbody(R) whether b 2 S or b 62 S. Hen
e the attribution of CF to 
 2 S iswell-supported in J .Thus, J is a well-supported model of LP .We have shown that J is a well-supported model of LP su
h that I �LP J .But sin
e I is a 
anoni
al model it is not possible that I <LP J . So it must be the
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ase that I =LP J . Hen
e J must be a 
anon
ial model. Thus, a 
ontradi
tion.
Theorem 5.4.1 A positive (resp., negative) literal a 2 WFS(LP ) if, and only if,a is assigned T (resp., F ) in all the four-valued 
anoni
al models of LP .Proof: We have proved the left-to-right dire
tion of the theorem in Lemma 5.4.1.The right-to-left dire
tion 
an be proven by establishing that if a 62 WFS(LP )and not a 62 WFS(LP ) then there is a 
anoni
al model whi
h assigns neither Tnor F to a. This follows dire
tly from Lemma 5.4.2 and Lemma 5.4.3.
Theorem 5.4.2 LP entails a ground literal p under the well founded semanti
sif, and only if, LP strongly entails p under C4.Proof: Follows dire
tly from Theorem 5.4.1.
5.5 Hybrid ReasoningUsing C4 we 
an de�ne a skepti
al and a 
redulous semanti
s for normal logi
programs.De�nition 5.5.1 The skepti
al semanti
s for a normal logi
 program P are theset of literals strongly entailed by P under C4.In light of Theorem 5.4.1 we 
an identify the skepti
al semanti
s with theWell-founded semanti
s.
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De�nition 5.5.2 The 
redulous semanti
s for a normal logi
 program P are theset of literals weakly entailed by P under C4.In light of Theorem 5.3.4 we 
an assert that when a normal logi
 program Phas any stable models, then the 
redulous semanti
s of P 
an be identi�ed withthe set of literals entailed by P under the stable model semanti
s.The following theorem explains why the two semanti
s are labeled skepti
aland 
redulous.Theorem 5.5.1 For any normal logi
 program P , the skepti
al semanti
s of P isa subset of its 
redulous semanti
s.Proof: If any literal is strongly entailed by a normal logi
 program then it is alsoweakly entailed. Thus the theorem follows dire
tly from the de�nitions of skepti
aland 
redulous semanti
s.Reasoning using skepti
al (
redulous) semanti
s 
an be 
alled skepti
al (resp.,
redulous) reasoning. We 
all reasoning hybrid if part of the reasoning is done usingskepti
al reasoning and part of the reasoning is done using 
redulous reasoning.Thus, we may want to know whether from a program P we 
an infer 9X(p(X) ^q(X)) where we want only those instantiations t of X su
h that P strongly entailsp(t) but weakly entails q(t).We develop below a language for expressing su
h hybrid queries and a formalismfor performing hybrid reasoning.By an annotated literal ([BS89℄) we mean an expression of the form l : S wherel is a literal and S is a non-empty subset of V = fT; CT; CF; Fg. We stipulatethat l : ; is not a well-formed expression of our language. In any interpretationI, l : S evaluates to T if and only if I 0(l) 2 S and otherwise l : S evaluates to84



F . Thus annotated literals 
an have only the 
lassi
al truth values. A program Pentails l : S if and if for all 
anoni
al models I 0 of P , I 0(l) 2 S.Sin
e annotated literals have only the 
lassi
al truth values, an annotated literall : S 
annot be weakly entailed. However an annotated literal l : fCT; Tg 
an beentailed by a program P if and only if l is weakly entailed by P .A query of the form 9X(p(X)^q(X)), where we want only those instantiationst of X su
h that the program strongly entails p(t) but weakly entails q(t), 
an beexpressed as 9X(p(X) : fTg ^ q(X) : fCT; Tg)Thus our framework provides us a way to express hybrid queries and to engage inhybrid reasoning.5.6 Dis
ussionWe 
ontrast C4 as a semanti
s of normal logi
 programs with the stable modelsemanti
s and the well-founded semanti
s. As 
ompared to the stable model se-manti
s, C4 provides at least one intended model for any normal logi
 program.Thus using C4 it be
omes possible to draw reasonable inferen
es from any nor-mal logi
 program. Although one 
an make a 
ase that some programs 
annotdes
ribe the intended meaning of any reasoner and thus they should not have anymeaning, in this work we take the position that it should be possible to assignat least one \reasonable" model to any logi
 program. This is a highly desirablefeature in the 
ontext of information integration where information is drawn fromdi�erent sour
es. In this 
ontext there is no one reasoner whose intended meaningis being expressed by the program or the pool of information. But it is still highly
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desirable that one should be able to reason in terms of information drawn fromdi�erent sour
es regardless of what is 
ontained in this pool.A related problem with the stable model semanti
s is the so-
alled \relevan
eproblem" ([Dix95℄). Let P be a program that has at least one stable model.Assume that q 62 Atoms(P ). In this sense q is not \relevant" to P . Then P [ fq  not qg has no stable models. That is, the addition of a rule irrelevant to P hasrobbed P of all its stable models. Sin
e C4 provides an intended model for anynormal logi
 program, C4 does not fa
e this problem. Again, in the informationintegration 
ontext it is ne
essary to have a semanti
s that is resistant to therelevan
e problem.It has been widely observed that the well-founded semanti
s is 
autious 
om-pared to the stable model semanti
s. Thus, reasoning under the well-foundedsemanti
s for
es the reasoner to be uniformly 
autious regarding all information.One aspe
t of C4 wrt the well-founded semanti
s is that for strong entailment it isexa
tly as 
autious as the well-founded semanti
s but for weak entailment it is less
autious than the well-founded semanti
s. Thus using C4 a reasoner 
an engagein both kinds of reasoning.Another aspe
t of C4 is that for 
ertain types of programs it produ
es theintuitively 
orre
t result, whereas both the stable model semanti
s and the well-founded semanti
s do not. Consider the following program.P = fq  not p; p not pgUnderstood pro
edurally the �rst rule says q is provable if not p is provable.Assuming negation as failure, this means q is provable if p is not provable. Bothstable model semanti
s and the well-founded semanti
s agree in holding that p86



should not be provable from this program. Thus, q should be provable. Butq is not provable from P using the stable model semanti
s or the well-foundedsemanti
s. However, q is weakly entailed by P under C4.5.7 SummaryIn this 
hapter we investigate C4 as a semanti
s of normal logi
 programs. Themain resear
h 
ontributions of this 
hapter are as follows.� We have proven that every de�nite logi
 program has a unique C4 
anoni
almodel (Se
tion 5.2).� We have proven that every normal logi
 program has at least one C4 
anon-i
al model (Se
tion 5.2).� We have proven that a normal logi
 program whi
h has any two-valued stablemodels entails a literal with respe
t to the stable models of that program if,and only if, that program weakly entails that literal under C4 (Se
tion 5.3).� We have proven that a normal logi
 program entails a literal with respe
t tothe well founded semanti
s if, and only if, that program strongly entails thatliteral under C4 (Se
tion 5.4).� We have devised a formalism to express hybrid 
onjun
tive queries one partof whi
h must be answered in terms of strong entailment and another partof whi
h may be answered in terms of weak entailment (Se
tion 5.5).
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Chapter 6Proof Pro
edure for Weak Entailment
6.1 Introdu
tionIn this 
hapter we des
ribe a proof pro
edure for determining whether a query 
on-sisting of 
onjun
tions or disjun
tion of ground literals to a �nite, ground normallogi
 program is weakly entailed by the program.The proof pro
edure 
onsists in making assumptions and 
omputing in a bottom-up fashion a model of the program in whi
h the assumptions hold true. In the �rstphase not query is among the assumptions. If it �nds a model in whi
h this as-sumption holds then it returns NO to the query. Otherwise, in the se
ond phasethe pro
edure attempts to �nd a model in whi
h query is among the assumptions.If it �nds a model in whi
h this assumption holds then it returns YES to the query.Otherwise it returns the message that the program has no C-Stable models. Weprove that this pro
edure is sound and 
omplete with respe
t to weak entailment inthe C4 semanti
s. In Chapter 7 this proof pro
edure is modi�ed to answer whethera query is strongly entailed by a normal logi
 program. In Chapter 8 this pro
edureis extended to answer queries to ground normal logi
 programs augmented with
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ontestations.In Se
tion 6.2 we develop the formal apparatus needed to state the proof pro
e-dure. In Se
tion 6.3 we state the algorithms of the proof pro
edure. In Se
tion 6.4we prove the soundness and 
ompleteness of this proof pro
edure with respe
t toweak entailment in the C4 semanti
s. In Se
tion 6.6 we analyze the 
omplexityof the proof pro
edure and 
ompare it to a related proof pro
edure by Chen andWarren.6.2 PreliminariesFirst we reprodu
e some de�nitions and results from Chapter 5.Re
all that a C4 model I of a normal logi
 program LP is said to be C-stablei� I(R) = T for all rules R 2 LP . A well-supported C-stable model of LP isalways 
anoni
al. Also re
all that if LP has any 
anoni
al C-stable models thenall its 
anoni
al models are C-stable (Theorem 5.3.3 of Chapter 5). Theorem 5.3.2of Chapter 5 says that LP has any stable models i� it has any C-stable models.Assume that a query, L, has been posed to a ground normal logi
 program P .We de�ne below the 
on
ept of rules relevant to answering an atomi
 query.De�nition 6.2.1 Let P be a ground normal logi
 program and let q be a query toP . A rule R 2 P is relevant to answering a query q i�� q 2 Atoms(R), or� there is an atom p su
h that p is relevant to answering q and p 2 Atoms(R),where any atom p is relevant to answering q if and only if p 2 Atoms(Ri)where Ri is relevant answering q. 89



Although this de�nition of rules relevant to a query is de�ned only in terms ofatomi
 queries, it is still useful for the 
ase where a query L is not atomi
 be
ausegiven a query L to the program P , the proof pro
edure starts by adding the rulequery  L, where query is an atom that does not belong to HBP . However, ifneeded we 
an easily extend the above de�nition of rules relevant to an atomi
query to the 
ase of a non-atomi
 query. Let L be a query to P . Then therules relevant to answering L are fR 2 P j R is relevant to answering p wherep 2 Atoms(L)g.For the sake of simpli
ity we assume that all the rules of P are relevant toanswering query L, otherwise we 
an easily 
ompute the relevant part of P . Wealso assume that for any atom a 2 HBP , there is at most one rule with that ain the head. If P 
ontains n, n � 1, rules with a in the head, the n rules 
an be
ombined into the one rule a  body1 _ : : : _ bodyn, where body1; : : : ; bodyn arethe bodies of ea
h of the n rules whi
h 
ontain a in the head. When all the rulesin P with the same atom in the head are repla
ed by su
h a 
ombined rule, we saythat P is in disjun
tive form. In the rest of this 
hapter we shall assume that allprograms are in disjun
tive form. Furthermore, we assume that unit rules 
ontaintrue in the body, and the program is augmented by adding a rule b  not truefor ea
h b 2 HBP su
h that there is no rule in P with b as its head. Programswhi
h are augmented thus are said to be in augmented form. When a program isin both disjun
tive and augmented form, for ea
h a 2 HBP , there is exa
tly onerule with a as its head.As noted above, given a query L to the program P , the proof pro
edure startsby adding the rule query  L, where query is an atom that does not belong toHBP . The proof pro
edure is based on the following strategy.
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� First we determine whether there exists a well-supported C-stable model Iof P [ fquery Lg su
h that I(not query) � CT . If there is su
h a model,we return NO to the query and terminate; otherwise we go to the next step.� Se
ond we determine whether there exists a well-supported C-stable modelI of P [ fquery  Lg su
h that I(query) � CT . If there is su
h a model,we return YES to the query and terminate; otherwise we return a messagesaying \This program has no C-Stable models" and terminate.We know that every well-supported C-stable model of a program is a 
anoni
almodel of the program. Thus, if there exists a well-supported C-stable model I ofP [ fquery  Lg su
h that I(not query) � CT , then this must be a 
anoni
almodel of P [ fquery  Lg and hen
e P [ fquery  Lg 
annot entail query.But this means there must be a 
anoni
al model of P in whi
h not L � CT , andhen
e P 
annot entail L. This justi�es returning NO at step 1. On the other handif there is no su
h well-supported C-stable model and there is a well-supportedC-stable model su
h that I(query) � CT , then it must be a 
anoni
al model.Furthermore, in that 
ase, every 
anoni
al model J of P [ fquery  Lg must beC-stable (by Theorem 5.3.3 of Chapter 5) and must be su
h that J (query) � CT .But then every 
anoni
al model of P must be su
h that L evaluates to at least CTin those models. Thus, P must entail L. This justi�es returning YES at step 2.However, if there exists no well-supported C-stable model I of P [ fquery  Lgsu
h that I(not query) � CT and there exists no well-supported C-stable modelJ su
h that J (query) � CT , then P [ fquery  Lg has no well-supported C-stable models. But then P has no well-supported C-stable models. This justi�esreturning the message that \This program has no C-stable models."The proof pro
edure 
onsists in making assumptions and in terms of these91



inferring supers
ripted literals. These assumptions and inferred literals are usedto redu
e the input program and to infer more supers
ripted literals in terms ofthe redu
ed program. The formalism of supers
ripted literals and the rules forinferring su
h literals is des
ribed in the next subse
tion.Supers
ripted literalsThe supers
ript S of a literal l is an expression 
onsisting of a disjun
tion of
onjun
tions of literals. The expression lS denotes that assigning a 
ertain truthvalue to l 
an be justi�ed on the basis of assigning a 
ertain truth value to S. S
an be the empty expression.Supers
ripted literals are inferred as follows. Let R be the only rule in theprogram P with a in the head. If R is a  trueS then aS 
an be inferred fromR. On the other hand if R is a  falseS then not aS 
an be inferred from R.In either 
ase this permits the redu
tion of P by deleting R from P on
e aS ornot aS has been inferred.Rules with trueS or falseS in the body 
an be obtained by the pro
ess ofmat
hing a literal in the body of the rule with an appropriate assumed or inferredliteral. Mat
hing is formally des
ribed in the de�nition below. A literal, whetheran assumption or an inferen
e, 
an be mat
hed only with atoms in the body of arule, never with the head of a rule. A positive inferen
e or a negative inferen
e ora negative assumption 
an be mat
hed with any mat
hing atom in the body of arule. However, a positive assumption 
an be mat
hed only with a negative literal(or, more pre
isely with an atom in a negative literal), but never with a positiveliteral, in the body of a rule.Assumptions are typographi
ally distinguished from inferen
es by underlining
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the assumptions.De�nition 6.2.2 Let R be the normal logi
 rulea b1; : : : ; bn;not 
1; : : : ;not 
mMat
hing is de�ned in terms of the following rules.1. A negative assumption not l mat
hes with not l 2 body(R) resulting intruenot l, whi
h repla
es not l in the body of R.2. A negative assumption not l mat
hes with l 2 body(R) resulting in falsenot l,whi
h repla
es l in the body of R.3. A positive assumption l mat
hes with not l 2 body(R) resulting in falselwhi
h repla
es not l in the body of R.4. A positive inferen
e lS mat
hes with l 2 body(R) (or, not l 2 body(R))resulting in trueS (resp., falseS), whi
h repla
es l (resp., not lS) in thebody of R.5. A negative inferen
e not lS mat
hes with l 2 body(R) (or, not l 2 body(R))resulting in falseS (resp., trueS), whi
h repla
es l (resp., not lS) in the bodyof R.Intuitively, a literal l in the body of a rule 
an be repla
ed by trueS (falseS) bythe operation of mat
hing be
ause under the assumption S the literal l evaluatesto true (resp., false). This is why we do not allow a positive assumption to mat
hwith a positive literal in the body. This ensures that a positive assumption is notjusti�ed in terms of itself. Thus, given the rule p  p and the assumption p, ifp were allowed to mat
h with p in the body of p  p, we would get p  truep.93



From this we would be able to infer pp. But sin
e our model theory is in termsof well-supported models, we do not want positive information to be supported orjusti�ed in terms of itself. However, sin
e the negation not is default negation,the inferen
e of negative information does not require any justi�
ation. Hen
e itis all right for positive and negative assumptions to mat
h with a negative literalin the body of a rule.We understand not trueS to evaluate to falseS and not falseS to evaluateto trueS. We give below rules for evaluating expressions 
onsisting of the super-s
ripted literals trueS and falseS 
onjoined with 
onjun
tion (^) and disjun
tion(_). ^ trueS1 falseS1trueS2 trueS1^S2 falseS1falseS2 falseS2 falseS1^S2Table 6.1: Rule for evaluating 
onjun
tion of supers
ripted literals._ trueS1 falseS1trueS2 trueS1_S2 trueS2falseS2 trueS1 falseS1_S2Table 6.2: Rule for evaluating disjun
tion of supers
ripted literals.truetrue _ S evaluates to truetrue, whi
h we shall simplify to true. A rule a  truetrue _ S 
an thus be simpli�ed to a  true from whi
h 
an be inferred a
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without any supers
ripts. Similarly, truetrue ^ S evaluates to trueS, falsefalse ^ Sevaluates to false, and falsefalse _ S evaluates to falseS.Example 6.2.1 Let P = fa b;not 
; b not d; 
 not d; d not 
g: Theassumption not 
 mat
hes with not 
 in the �rst rule resulting in truenot 
, whi
hmakes the �rst rule into a  b; truenot 
. not 
 also mat
hes with not 
 in thefourth rule resulting in truenot 
, whi
h makes the fourth rule into d truenot 
.The assumption b does not mat
h with any atom in either of the rules.Sin
e the fourth rule is the only rule with d in the head, from d  truenot 
we 
an infer dnot 
. This in turn mat
hes with not d in the third rule resultingin falsenot 
. Thus, the third rule be
omes 
  falsenot 
. Sin
e this is the onlyrule with 
 in the head, we 
an infer not 
not 
 and the program 
an be redu
ed byeliminating the third rule. dnot 
 also mat
hes with not d in the body of the se
ondrule resulting in falsenot 
, whi
h makes the se
ond rule into b  falsenot 
.This permits the inferen
e not bnot 
 and the elimination of the se
ond rule. Thisinferred literal mat
hes with b in the body of the �rst rule resulting in falsenot 
,whi
h turns the �rst rule into a falsenot 
; truenot 
. By the rules of evaluationdes
ribed above this rule be
omes a  falsenot 
 Sin
e this is the only rule witha in the head, using this rule not anot 
 
an be inferred and the program 
an befurther redu
ed by eliminating the �rst rule.Thus, starting with the assumption not 
 we 
an inferfdnot 
; not 
not 
;not bnot 
; not anot 
gAnalogous to the TP operator of Van Emden and Kowalski ([vEK76℄), de�ned inChapter 3, we de�ne a T P operator in terms of assumptions and mat
hing.
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De�nition 6.2.3 Let P be a ground normal logi
 program. Let I be a set ofliterals, 
onsisting of assumptions, supers
ripted literals, and the spe
ial atom true.Then,T P (I) = I [ faS j a body 2 P; and mat
hing literals in body with literalsin I results in a trueSg [ fnot aS j a body 2 P;and mat
hing literals in body with literals in I results in a falseSgNote that although the TP operator of Van Emden and Kowalski as applied tonormal logi
 programs is not monotoni
ally in
reasing, the T P operator de�nedabove is monotoni
ally in
reasing be
ause for any I, I � T P (I).LetHP = fl j l 2 HBP [ notHBPg [ flS j l 2 HBP [ notHBPg, where S isany expression in DNF, possibly empty, 
onsisting of literals inHBP [ notHBP [ f�gg.HP as de�ned above is the set of all possible assumptions and all possible infer-en
es. The power set of this set forms a 
omplete latti
e under the � ordering.Thus, if I is a member of the power set of HP , the iterations of T P (I) must havea least �xed point, denoted as lfp(T P (I)).We use these ideas in formalizing the query answering pro
edures des
ribedbelow. First, in Se
tion 6.3 we des
ribe a pro
edure for answering a query withrespe
t to programs having well-supported C-stable models. For programs withouta well-supported C-stable models the pro
edure returns a message to that e�e
t.We prove the 
orre
tness of this pro
edure in Se
tion 6.4. As indi
ated in theintrodu
tory se
tion this pro
edure is based on making assumptions and redu
ingthe input program in terms of these assumptions and the inferen
es from theseassumptions. The pro
edure to be des
ribed in Se
tion 6.3 
ontains no rule for
hoosing whi
h assumption to make next. In Se
tion 6.5 below we augment thispro
edure with a sele
tion rule for 
hoosing whi
h assumption to make next.96



6.3 AlgorithmsAssume that a ground, positive query, L, has been posed to a ground program LP .We assume that LP is in the 
anoni
al form and all the rules of LP are relevant toanswering the query. We add a new rule query  L to LP , where query 62 HBLP .Let P be LP augmented with query  L. The proof pro
edure is based on thefollowing strategy.� First we determine whether there exists a well-supported C-stable model Iof P su
h that I(not query) � CT . If there is su
h a model, we return NOto the query and terminate; otherwise we go to the next step.� Se
ond we determine whether there exists a well-supported C-stable modelI of P su
h that I(query) � CT . If there is su
h a model, we return YESto the query and terminate; otherwise we return a message saying \Thisprogram has no C-stable models" and terminate.The pro
edure for �nding a C-stable model of the normal logi
 program P inwhi
h query � CT (or in whi
h not query � CT ) 
onsists of two steps.1. The pro
edure does a depth-�rst sear
h through an impli
it graph for anode satisfying 
ertain properties of 
onsisten
y, veri�edness, and stability(de�ned below) in whi
h the input program has been redu
ed to the emptyprogram by making a 
ertain sequen
e of assumptions and a sequen
e ofinferen
es in terms of these assumptions and a sequen
e of redu
tions of theinput program in terms of these assumptions and inferen
es in the mannerdes
ribed in the previous se
tion.2. The assumptions and inferen
es in step 1 are then transformed into a C4model using the pro
edure Trans, whi
h is des
ribed below.97



In the �rst step the pro
edure sear
hes through an impli
it graph. The nodesof the graph 
onsist of tuples of the form hP 0; A; Inf;Hi where P 0 is a subset ofthe set of normal logi
 rules that 
an be formed out of the Herbrand base of theinput program P ; A is a set of literals whi
h have been so far assumed; Inf is theset of literals that have so far been inferred; and H is the set of literals that areassumable at this point. The starting node in generating the graph 
onsists of P ,the input program, as P 0; ftrueg as A; ; as Inf ; and, HBP [ not HBP as H.We de�ne an operator � on a node whi
h is used to generate the 
hildren ofthat node in the graph. We need the following de�nition to de�ne the � operator.De�nition 6.3.1 Given a set of supers
ripted literals S = fls11 ; : : : ; lsnn g, Atoms(S) =fAtom(l1); : : : ; Atom(ln)g, where Atom(a) = a and Atom(not a) = a.De�nition 6.3.2 Let N = hP;A; Inf;Hi. Then �(N) = hP 0; A; Inf 0; H 0i whereInf 0 = lfp(T P (A [ Inf))�A, H 0 = H �Atoms(Inf 0)� not Atoms(Inf 0), andP 0 = P � fR 2 P jhead(R)S 2 (Inf 0 � Inf) or not head(R)S 2 (Inf 0 � Inf)gWe de�ne below the des
endants of a node N using the proje
tion operator �.If T is a tuple then �i(T ) returns the ith member of the tuple. We 
all �1(N) theprogram part of N , �2(N) the assumption part of N , �3(N) the inferen
e part ofN , and �4(N) the assumables part of N .De�nition 6.3.3 Des
endants(N) =8>>>>>><>>>>>>: �(N) if �1(�(N)) = ;fh�1(�(N)); (�2(�(N)) [ flg);�3(�(N)); (�4(�(N))� fl;not lg)i j l 2 �4(�(N))g otherwise
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Example 6.3.1 Let P = fa  not b; b  not a; p  not p _ not bg. LetSN = hP; fnot ag; ;; fb; not b; p; not pgi.In this 
ase T P (fnot ag) = fnot a; bnot aglfp(T P (fnot ag)) = T P (T P (fnot ag)) =fnot a; bnot a; not anot ag:�(SN) = hP 0; A0; Inf 0; H 0i where A0 = fnot ag andP 0 = fp not p _ falsenot agInf 0 = fbnot a; not anot agH 0 = fp;not pgSN has two des
endants whi
h 
onsist of the nodes obtained by augmenting A0in �(SN) with one of p and not p and repla
ing H 0 in �(SN) with the empty set.This example will be 
ontinued in Example 6.3.2 by 
omputing the des
endantsafter we have de�ned the following propertiesBefore we 
an 
ompute the des
endants of a node, we have to de�ne the fol-lowing properties.De�nition 6.3.4 A literal l1 is said to be dependent on a literal l2 relative to anode N i� lS1 2 (�2(N) [ �3(N)) and S j= l2, that is, if l2 is a member of everydisjun
t of S.De�nition 6.3.5 A node N is said to be in
onsistent i� there exists two literalslS1 ; not lS2 2 �2(N) [�3(N) su
h that neither literal is dependent on the other.De�nition 6.3.6 A node N is said to be nonstable i� there exists a literal lS 2�3(N), the inferred part of N , su
h that l is dependent on not l or there exists a99



literal not lS 2 �3(N) su
h that not l is dependent on l. Otherwise a node is saidto be stable.De�nition 6.3.7 A positive assumption a is said to be veri�ed relative to a nodeN i� there exists a literal aS 2 �3(N). A node N is said to be veri�ed i� all thepositive assumptions in �2(N) are veri�ed relative to N . An assumption a is saidto be unveri�able in a node N if not aS 2 (�2(N) [ �3(N)).Example 6.3.2 Let P and SN be as in Example 6.3.1 above. A des
endant of SNin the impli
it graph of P 
an be obtained by 
hoosing p as the next assumption.Let N1 be this node. N1 = hP 0; A0; Inf 0; H 0i where H 0 = ; andP 0 = fp not p _ falsenot agA0 = fnot a; pgInf 0 = fbnot a; not anot agIt is easily seen that �(N1) 
ontains not pp^ not a and thus the assumption pis unveri�able relative to �(N1).A se
ond des
endant of SN is the node obtained by making not p as the nextassumption instead of p. Let N2 be this node. N2 = hP 0; A0; Inf 0; H 0i whereH 0 = ; and P 0 = fp not p _ falsenot agA0 = fnot a; not pgInf 0 = fbnot a; not anot agIt is easily seen that �(N2) 
ontains pnot p. Thus, �(N2) is unstable.It is easy to see that the leaf nodes of the graph are nodes in whi
h the programpart of the node, i.e., �1(N) = ;. To determine whether there exists a 
anoni
al100



C-stable model of a normal logi
 program P in whi
h not query � CT , thealgorithm sear
hes for a stable, 
onsistent, veri�ed leaf node N whi
h 
an berea
hed from the starting node hP; fnot queryg; ;; HBP [ not HBP i su
h thatnot queryS 2 �3(N), for some, possibly empty, supers
ript S. We adopt a similarstrategy to determine whether there exists a 
anoni
al C-stable model of P inwhi
h query � CT . In 
ase P does not have a 
anoni
al C-stable model in whi
hquery � CT and does not have a 
anoni
al C-stable model in whi
h not query �CT , we 
an 
on
lude that P does not have a 
anoni
al C-stable model. In this 
asethe algorithm returns a message to that e�e
t. The following algorithm implementsthis strategy.Main(LP , L)1. P  LP [ fquery Lg1. If MasterStable(P , not query) 6= nil then Return NO2. else if MasterStable(P , query) 6= nil then Return YES3. else Return \Program has no 
anoni
al C-Stable models"In step 2 MasterStable(P , not query) is 
alled to determine whether startingfrom the nodehP; fnot queryg; ;; ((HBP [ not HBP )� fquery;not queryg)ia stable, 
onsistent, veri�ed, leaf node N 
an be rea
hed in whi
h not query 2(�2(N) [ �3(N)). If su
h a node 
annot be rea
hed, MasterStable returns nilotherwise it returns the node. Thus, if su
h a node 
an be rea
hed this means101



there exists a 
anoni
al model I of P su
h that I(not query) � CT . Similarly,in step 3 MasterStable is invoked to determine whether there exists a 
anoni
alC-stable model J of P su
h that J (query) � CT . If MasterStable returns a valueother than nil then su
h a model exists and Main returns YES to the query andterminates. Otherwise the program 
ontains no C-stable models sin
e in any modelI, for any literal l, either I(l) � CT or I(not l) � CT . Thus, in that 
ase Mainreturns the message that the program has no 
anoni
al C-stable models.The algorithm MasterStable 
reates the starting node using CreateNode andinvokes Pro
, whi
h does all the real work.MasterStable(P , lit)SN  CreateNode(P , lit)Parent(SN)  nilPro
(SN)MasterStable 
reates a node SN whi
h has lit as the starting assumption byinvoking CreateNode(P , lit) whi
h returnsh�1(�(N0)); ftrue; litg; �3(�(N0)); �4(�(N0))� flit;not litg)iwhere N0 is the node hP; ftrueg; ;; (HBP [ not HBP )i.Given a node N , Pro
 determines whether starting with N a 
onsistent, veri�edand stable leaf node 
an be rea
hed. If there is su
h a leaf node, Pro
 returns theleaf node; otherwise Pro
 returns nil. Pro
 does a depth-�rst sear
h for su
h a leafnode by making re
ursive 
alls to itself.
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Pro
(N)1. If �(N) is unstable or in
onsistent or unveri�able or (�1(�(N)) 6= ;and (�4(�(N)) = ; or N has no unvisited des
endants))then if Parent(N) = nil then RETURN nil else Pro
(Parent(N))2. else if �1(�(N)) = ; then RETURN �(N)3. else4.begin5. Create unvisited des
endant N 06. Status(N 0) visited7. Parent(N 0) N8.Pro
(N 0)9. endStep 1 lists the 
onditions under whi
h Pro
(N) ba
ktra
ks to Parent(N) ifN has a parent, otherwise Pro
 
annot ba
ktra
k and returns nil indi
ating thatstarting with the node N it 
annot rea
h a 
onsistent, stable, and veri�ed leaf node.Pro
 ba
ktra
ks if the result of making all possible inferen
es (�(N)) using theassumptions and inferen
es of N leads to an in
onsistent, unstable or unveri�ablestate. It also ba
ktra
ks if a leaf node is not rea
hed (�1(�(N)) 6= ;), but the
urrent node has no 
hildren be
ause there are no further assumptions to make(�4(�(N)) = ;) or all of the 
urrent node's 
hildren have been previously visitedand found to lead to deadends. If Pro
 does not ba
ktra
k or terminate in step 1,then this means either �1(�(N)) is empty or �1(�(N)) is not empty and �4(�(N))is not empty and N has some unvisited des
endants. If �1(�(N)) is empty thenPro
 has rea
hed a desirable leaf node and it returns �1(�(N)) and terminates at103



step 2. Otherwise in step 5 to step 7 it 
reates and initializes N 0, a des
endant ofN , and at step 8 re
ursively invokes Pro
 with N 0.Re
all that if �(N) is not a leaf node then the des
endant of N ish�1(�(N)); (�2(�(N)) [ flg); �3(�(N)); (�4(�(N))� fl;not lg)iwhere l 2 �4(�(N)). Thus, essentially the des
endant of N is �(N) with itsassumption part augmented with the assumption l. We assume that the algorithmhas some way, not spe
i�ed here, for keeping tra
k of whi
h nodes have so far beenvisited. This might, for instan
e, be a global list whi
h is updated when the statusof a node is marked as visited and whi
h is passed to ea
h re
ursive 
all of Pro
.We also assume that su
h a list is stored in some data stru
ture, su
h as a binarysear
h tree or a heap, whi
h allows for an eÆ
ient sear
h for whether a node hasalready been visited.In Pro
 as spe
i�ed above we regard every member of �4(�(N)) as suitablefor generating a des
endant of N as any other member. However, in Se
tion 6.5below we introdu
e a sele
tion rule whi
h makes only a small subset of �4(�(N))suitable for generating a des
endant of N .Example 6.3.3 As in Example 6.3.1 and Example 6.3.2, let the input program beLP = fa not b; b not a; p not p _ not bg. Let the query be a.Main(LP; a) in the �rst step 
reates the program P by augmenting LP withrule query  a. Then it invokes MasterStable(P; not query) whi
h 
reates thestarting node SN , whi
h is the nodehP; fnot queryg; ;; fa; not a; b; not b; p; not pgiMasterStable then invokes Pro
(SN), whi
h 
omputes �(SN). Sin
e �(SN) is104




onsistent, stable and veri�able, Pro
 
reates an unvisited des
endant of SN bysele
ting an un
hosen assumption from �4(�(SN)).Let us suppose that not a is 
hosen as the next assumption. This results inthe node N0 = hP; fnot query;not ag; ;; f b; not b; p; not pgi. Pro
 thenmakes a re
ursive 
all to itself with N0 as the input node. Pro
 next 
omputes�(N0) = hP 0; A0; Inf 0; H 0i whereP 0 = fp not p _ falsenot agA0 = fnot query; not agInf 0 = fnot querynot a; bnot a; not anot agH 0 = fp;not pgIt 
an be easily seen that �(N0) is 
onsistent, stable, and not unveri�able. So againPro
 
reates an unvisited des
endant N1 of N0 by sele
ting an un
hosen assumptionfrom �4(�(N0)) = fp;not pg.Let us suppose that p is 
hosen as the next assumption. Ex
ept for the o

ur-ren
e of the new literal not query in the assumption part, the node N1 is essentiallythe node N1 of Example 6.3.2. In that example we saw that �(N1) is unveri�ableand this holds in the 
urrent example as well. So Pro
 ba
ktra
ks to N). The onlyunvisited des
endant of N0 is the node N2 obtained by 
hoosing not p as the nextassumption instead of p whi
h is essentially the node N2 of Example 6.3.2. In thatexample we saw that �(N2) is unstable, and this holds in our 
urrent example too.So Pro
 ba
ktra
ks all the way to SN .Pro
 might next 
reate the node N3 obtained by adding the assumption a to�(SN). It 
an be easily seen that �(N3) is an in
onsistent node 
ontaining theassumption not query and the inferen
e querya. Thus Pro
 ba
ktra
ks to SN andmight next 
reate the node N4 obtained by adding the assumption not b to �(SN).105



In this 
ase too it 
an be easily seen that �(N4) is in
onsistent for the same reasonsas �(N3).At this point the only unvisited des
endant of SN is the node N5 obtained byadding the assumption b to �(SN). �(N5) is the nodeP 0 = fp not p _ falsebgA0 = fnot query; bgInf 0 = fnot queryb; bb; not abgH 0 = fp;not pg�(N5) is 
onsistent, stable, and not unveri�able. Pro
 
an expand it by addingeither the assumption p or the assumption not p. The former option leads to thenode N6, similar to N1, whi
h for the same reasons as N1 results in an unveri�ablenode; the latter option leads to the node N7, similar to N2, whi
h for the samereasons as N2 results in an unstable state. So, after visiting both these nodes, Pro
ba
ktra
ks to SN . Sin
e SN has no unvisited des
endants and sin
e Parent(SN)is nil, Pro
 returns nil and thus MasterStable(P; not query) returns nil.Main(P; a) next invokes MasterStable(P; query) whi
h 
reates the startingnode SN whi
h in this 
ase is hP; fqueryg; ;; fa; not a; b; not b; p; not pgi.Sin
e �(SN) is veri�ed, stable and 
onsistent Pro
 next 
reates a des
endant ofSN . Let us suppose it 
reates the node N0 by adding the assumption a to �(SN).Pro
 next 
omputes �(N0) = hP 0; A0; Inf 0; H 0i where A0 = fag andP 0 = fp not p _ trueagA0 = fquery; agInf 0 = fnot ba; aa; queryagH 0 = fp;not pg
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Sin
e this is 
onsistent, stable and not unveri�able, Pro
 
reates a des
endant of it.N0 has two des
endants whi
h 
onsist of the node N1 obtained by augmenting A0in �(N0) with p and the node N2 obtained by augmenting A0 in �(N0) with not p.In both these nodes, H 0 is the empty set.Suppose Pro
 next visits N2. In this 
ase �(N2) is the nodeh;; fquery; a; not pg; fnot ba; aa; querya; pnot p _ ag; ;iThis is an in
onsistent node be
ause not p 2 �2(�(N2)) and pnot p _ a 2 �3(�(N2)).Note that in this 
ase p does not depend on not p, and thus is not an unstablenode, be
ause p 
an also be generated by assuming a.Thus Pro
 now ba
ktra
ks to N0 whi
h next generates N1. �(N1) is the nodeh;; fquery; a; pg; fnot ba; aa; querya; pag; ;iThis is a 
onsistent, veri�ed and stable node and the program part of it is empty.Hen
e Pro
 returns this node and thus MasterStable(P; a) returns this node andhen
e Main returns YES to the query.Given a leaf node N , Trans(N) transforms it into a model of the originalprogram P .Trans(N)1. I  ;2. Inf  �3(N)3. Assp �2(N)4. For ea
h positive inferen
e a 2 �3(N) with an empty supers
ript,beginI  (I [ fa 7! Tg) 107



Inf  Inf�faSg, where S is any supers
ript in
luding the empty supers
riptend5. For ea
h negative inferen
e not a 2 �3(N) with an empty supers
ript,beginI  (I [ fa 7! Fg)Inf  Inf � fnot aSg, where S is any supers
ript in
luding the emptysupers
riptend6. While Inf 
ontains any literal lS su
h that I(S) has a value, dobegin whileChoose an lS 2 Inf su
h that I(S) has a valueIf l is the atom a then I  (I [ fa 7! I(S)g)else if l is the negative literal not a then I  (I [ fa 7! (1� I(S))g)Delete lS from Infend while7. Assp Assp� fa;not a j I(a) is de�nedg8. For ea
h positive assumption a 2 Assp,I  (I [ fa 7! CTg)9. For ea
h negative assumption not a 2 Assp,I  (I [ fa 7! CFg)10. Inf  Inf � faS;not aS 2 Inf j a 2 Assp or not a 2 Asspg)11. While Inf is not empty dobegin whileChoose an lS 2 Inf su
h that I(S) has a valueIf l is the atom a then I  (I [ fa 7! I(S)g)
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else if l is the negative literal not a then I  (I [ fa 7! (1� I(S))g)Delete lS from Infend whileTrans(N) builds a model I of the program P by �rst assigning T to all in-ferred literals with empty supers
ripts (steps 4 and 5). In step 6 these values arepropagated as far as possible. In step 7 those assumptions are removed from Asspwhose truth values have already been �xed and in steps 8 and 9 the value CT isassigned to all su
h assumptions. In step 11 the values of supers
ripts are assignedto the atoms that have not been assigned a value in I so far. Sin
e a supers
ript
onsists of a disjun
tion of 
onjun
tions of assumptions, 
learly all members of�3(N) will have a truth value in I.Example 6.3.4 Let P be as in Example 6.3.3. As in Example 6.3.3 let �(N1) bethe node h;; fquery; a; pg; fnot ba; aa; querya; pag; ;iTrans 
onverts this node into I, a C4 interpretation of P , in whi
h I(a) = CT ,I(query) = CT , and I(p) = CT (by Step 2 of Trans), and I(b) = CF (by Step 9of Trans).6.4 ProofsFirst, we show that if the impli
it graph for a �nite, ground normal logi
 program
ontains a 
onsistent, stable, veri�ed leaf node thenMasterStable will rea
h it. Therequirement that the program be ground and �nite is to guarantee that Master-Stable will terminate. Se
ond, we show that the transformation of su
h a node isa 
anoni
al C-stable model of the input program. But we 
annot assume that if109



the impli
it graph does not 
ontain a stable node therefore the program has no
anoni
al C-stable models unless we 
an show that every 
anoni
al C-stable modelof the program is represented by a node in the graph. So, third, we show that all
anoni
al C-stable models of the program are represented by a stable, 
onsistentand veri�ed node in the impli
it graph of the program.Lemma 6.4.1 If the impli
it graph of a ground, �nite, normal logi
 program 
on-tains a 
onsistent, stable, veri�ed leaf node then MasterStable will return that node.Proof: MasterStable does a depth-�rst sear
h for a leaf node with the appropriateproperties. Sin
e the program is ground and �nite, the impli
it graph for the pro-gram 
ontains only a �nite number of nodes. But depth-�rst sear
h is guaranteedto dis
over any node with any spe
i�ed properties if there is su
h a node in a �nitegraph.Lemma 6.4.2 If the impli
it graph for a normal logi
 program P 
ontains a 
on-sistent, veri�ed leaf node N then Trans(N) is a well-supported model of P .Proof: Let N be a 
onsistent, and veri�ed leaf node in the graph for P .First, we show Trans(N) is a model of P . Assume by way of 
ontradi
tionthat Trans(N) is not a model of P . So P must 
ontain a rulea body1 _ � � � _ bodymsu
h that� Case 1: Trans(N)(a) = F and Trans(N)(body1 _ � � � _ bodym) > F , or� Case 2: Trans(N)(a) = CT or CF and Trans(N)(body1 _� � �_ bodym) = T .
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Case 1: Trans assigns F to a only if �3(N) 
ontains not a without any supers
riptor with a supers
ript S su
h that Trans(N)(S) = F . But this is possible only ifea
h bodyi 2 fbody1; : : : ; bodymg evaluates to false without any supers
ript or hasa supers
ript Si su
h that Trans(N)(Si) = F . In this 
ase Trans would assignF to at least one literal in ea
h of body1; : : : ; bodym. Thus, Trans(N)(body1 _� � � _ bodym) > F is not possible, and, hen
e, Case 1 is not possible.Case 2: If Trans(N)(body1 _ � � � _ bodym) = T then there must be ani 2 1; : : : ; m su
h that Trans(N)(bodyi) = T . So ea
h literal aij 2 bodyi must beassigned T by Trans(N). So ea
h su
h literal must be in the inferential part of Nwithout any supers
ripts or with a supers
ript whi
h evaluates to T in Trans(N).Hen
e the inferential part of N would also 
ontain a without any supers
ript orwith a supers
ript whi
h evaluates to T in Trans(N). Thus, Trans would assignT to a. Hen
e Case 2 is also not possible.Thus, Trans(N) must be a model of P .Next we show that Trans(N) is a well-supported model of P . The well-foundedordering 
an be in terms of the �rst appearan
e of a positive literal in the inferentialpart of a node in the path from the starting node to the leaf node N . This orderingmust be well-founded be
ause the generation of the nodes and the inferred atomsin ea
h node are by pro
ess of bottom-up inferen
e whi
h monotoni
ally enlargesthe inferential part of nodes. Furthermore, sin
e the assignment of a truth valueto any literal is not greater than the truth value assigned to its supers
ript, thetruth value assigned to a literal must be supported.Lemma 6.4.3 If the impli
it graph for a normal logi
 program P 
ontains a stable,
onsistent, veri�ed leaf node N then Trans(N) is a well-supported C-stable model111



of P .Proof: We have already shown that Trans(N) is a well-supported model. Assumeby way of 
ontradi
tion that Trans(N) is not C-stable. So there must be at leastone rule R = a body1 _ � � � _ bodynsu
h that Trans(N)(R) < T . Given that Trans(N) is a model of P , as proved inthe previous lemma, this means that Trans(N)(a) = CF and Trans(N)(body(R)) =CT .Sin
e Trans(N) assigns CF to a, not amust be in the assumption or inferentialpart of N . But sin
e body(R) evaluates to CT in Trans(N), a disjun
t in body(R)must evaluate to CT . Ea
h literal in that disjun
t must be in the assumption orinferential part of N . Hen
e, aS, for some S, will also be in the inferential part ofN . Thus, N is in
onsistent unless S j= not a. But, sin
e N is stable S 6j= not a.So N is in
onsistent whi
h 
ontradi
ts the assumption that N is 
onsistent.Thus, Trans(N) is a C-stable model of P .The proof pro
edure presupposes that if MasterStable 
annot �nd a 
onsistent,veri�ed and stable leaf node N su
h that query (or, not query) is in the assumptionor inferen
e part of N then the program 
ontains no 
anoni
al C-stable model Isu
h that I(query) � CT (resp., I(not query) � CT ). Lemma 6.4.1 tells us thatif the impli
it graph for P 
ontains a leaf node of that sort then MasterStable will�nd it. But we 
an have no assuran
e that if MasterStable does not �nd a leafnode of that sort then the program has no C-stable 
anoni
al model unless we
an show that every C-stable 
anoni
al model is represented in the impli
it graph.Ideally, we would like to prove that for ea
h C-stable 
anoni
al model I of P there
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exists a leaf node in the impli
it graph for P su
h that Trans(N) = I. However,this 
laim would not be true of a model I whi
h assigns only T or F to atomsbe
ause Trans may assign CT or CF to atoms. Nevertheless, we show below inLemma 6.4.4 that every C-stable 
anoni
al model is represented in the impli
itgraph in the sense of `representation' de�ned below in De�nition 9.4.1.De�nition 6.4.1 Let I and J be two models of a logi
 program P . I is 
ongruentwith J i� I is identi
al with J ex
ept that every atom that is assigned T (F ) inJ is assigned T or CT (resp., F or CF ) in I.Representation is de�ned below.De�nition 6.4.2 A model I of a normal logi
 program P is represented by a nodeN in the impli
it graph for P if Trans(N) is 
ongruent with I.A model I and a model J whi
h is 
ongruent with I will be indistinguishablein terms of weak entailment. That is, if I weakly entails a literal l if and only ifJ weakly entails that literal. This justi�es our de�nition of representation above.Lemma 6.4.4 Let P be a normal logi
 program. For ea
h well-supported C-stablemodel I of P there exists a leaf node N in the impli
it graph for P su
h thatTrans(N) is 
ongruent with I and thus N represents I.Proof: Sin
e the graph is impli
it, a node N exists in the graph only if there is apath from the starting node, hP; ftrueg; ;; (HBP [ not HBP )i, to N . Re
all thatin the path from the starting node to a leaf node ea
h new node (other than thestarting node) is generated by adding a new assumption to the result of applyingthe � operator to the previous node along with some housekeeping operations. LetN be any leaf node in the graph su
h that the path from the starting node to N113



satis�es the following property: For any node Ni in the path its 
hild in the pathmust be obtained by adding an assumption l su
h that I(l) � CT to the result ofapplying the � operator to Ni. That is, the path is generated using the strategyof making a new assumption l only if I(l) � CT .We show below that a leaf node N rea
hed by this strategy1. is a stable, 
onsistent and veri�ed node, and2. is su
h that Trans(N) is 
ongruent with I.We prove that N is a stable, 
onsistent, and veri�ed node and that Trans(N)is 
ongruent with I by indu
tively proving that ea
h node Ni in the path to N (in-
luding N) is 
onsistent, stable and not unveri�able and indu
tively proving that,for any literal l, if lS 2 �2(Ni) [ �3(Ni) then I(l) � CT . The indu
tion is donein terms of the order in whi
h the nodes appear in the path N0; : : : ; Ni; : : : ; Nn,where N0 is the starting node, hP; ftrueg; ;; (HBP [ not HBP )i, and Nn is N .Base Case: i = 0. Clearly, the starting node, N0, is stable, 
onsistent, and notunveri�able. Similarly, sin
e �2(N0) [ �3(N0) = ftrueg it is trivially true that ifa literal lS 2 �2(N0) [ �3(N0) then I(l) � CT .Indu
tive Case: Assume that the 
laim is true for all Nk su
h that k < i. Toshow that the 
laim is true for Ni.First, we show that if a literal l 2 �2(Ni) [ �3(Ni) then I(l) � CT . If lS 2�2(Ni) (i.e., if l is an assumption) then by the strategy for sele
ting assumptionsit follows that I(l) � CT . Suppose, therefore, that lS 2 �3(Ni) (i.e., lS is aninferen
e). If lS 2 �3(Nk), where k < i, then the 
laim is true by the indu
tiveassumption. Suppose therefore that lS 62 �3(Nk), for any k < i. So lS must o

urin some iteration of the T P operator as applied to �2(Ni�1) [ �3(Ni�1). Either114



lS = aS or lS = not aS, for some atom a.Assume that lS = aS. By the de�nition of the T P operator it follows thatif any atoms a su
h that a 2 T P (�2(Ni�1) [ �3(Ni�1)) there is a rule R =a  body1 _ : : : _ bodym su
h that ea
h member of bodyj, 1 � j � m, is in�2(Ni�1) [ �3(Ni�1). Thus, by the indu
tive assumption I(bodyj) � CT . Butsin
e I is C-stable, it follows that a must be CT or T .Assume instead that lS = not aS. It also follows from the de�nition of the T Poperator that for any negative literal not a 2 T P (�2(Ni�1) [ �3(Ni�1)) there isa rule R = a body1 _ : : : _ bodym su
h that for ea
h bodyj, 1 � j � m, thereexists a literal pj in bodyj su
h that the negation of pj is in �2(Ni�1) [ �3(Ni�1).Hen
e, by the indu
tive assumption, ea
h su
h pj is at most CF in I. Hen
e, ea
hbodyj evaluates to at most CF in I. So I(a) � CF sin
e I is a well-supportedmodel. Hen
e I(not a) � CT . By a similar argument it is easy to see that thesame remarks apply to any literal that belongs to any iteration of the T P operatoras applied to �2(Ni�1) [ �3(Ni�1).Hen
e, we have shown that if lS 2 �2(Ni) [ �3(Ni) then I(l) � CT .Se
ond, we show that Ni is not unveri�able. Let a be a positive assumption inNi. So I(a) � CT . But then not aS 
annot be in �3(Ni) otherwise, as we haveshown above, I(not a) � CT . But both a and not a 
annot be CT or greater inI. Thus, Ni is not unveri�able.Third, we show that Ni is 
onsistent. Let not a be a negative assumption inI. So I(not a) � CT . But then aS 
annot be in �3(Ni) otherwise, as we haveshown above, I(a) � CT . But both a and not a 
annot be CT or greater in I.Thus, Ni is 
onsistent.
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Fourth, we show that Ni is stable. Suppose by way of 
ontradi
tion that Niis not stable. So there exists an aS 2 �3(Ni) su
h that not a is in every disjun
tof S. As shown above if aS 2 �3(Ni) then I(a) � CT . However, sin
e not a isin S, not a must be an assumption and hen
e I(not a) � CT . But this is a
ontradi
tion. Hen
e Ni must be stable.This 
ompletes the indu
tive step. Thus, we have shown by indu
tion thatthe leaf node N is stable, 
onsistent and not unveri�able, and su
h that if lS 2�2(N) [ �3(N) then I(l) � CT . It remains to be shown that N is veri�ed.Sin
e �1(N) (the program part) is empty, it follows that for any atom a 2 HBP ,either a or not a belongs in �2(N) [ �3(N). Sin
e N is not unveri�able it followsthat for any positive assumption a in N , not aS 
annot be in �3(N). Hen
e aSmust be in �3(N). Thus N must be veri�ed.Any literal l 2 �2(N) is assigned at least CT in Trans(N) and must be CTor greater in I. Any literal l su
h that lS 2 �3(N) is assigned at least CT inTrans(N) and, as we have shown above, must be CT or greater in I. Furthermore,Trans(N) assigns a truth value to every atom in HBP sin
e, for any atom a, eithera or not a belongs in �2(N) [ �3(N). Thus, for any atom that is assigned T(F ) by I, Trans(N) assigns it at least CT (resp., at most CF ) and otherwiseTrans(N) and I are identi
al. Hen
e, Trans(N) is 
ongruent to I.
Theorem 6.4.1 If the impli
it graph of P 
ontains no stable 
onsistent, veri�edleaf node N su
h that a spe
i�ed literal litS 2 �2(N) [ �3(N) then P has no
anoni
al C-stable model I su
h that I(lit) � CT .
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Proof: The 
onverse of the theorem follows trivially from the previous lemma.Lemma 6.4.5 Let P be a normal logi
 program. Let P 0 = P [ fquery  Lg,where query is an atom not in HBP and L is a 
onjun
tion or disjun
tion ofliterals su
h that Atoms(L) � HBP . Then, for any C-stable model I of P , I 0 =I [ fquery 7! I(L)g is C-stable 
anoni
al model of P 0.Proof: Let I be a C-stable 
anoni
al model of P . Thus all rules of P evaluateto T in P . So all su
h rules must also evaluate to T in I 0. Furthermore, L mustevaluate to the same truth value in both I and I 0. Hen
e, the new rule in P 0,query  L must evaluate to T in I 0. Thus, I 0 must be a C-stable model of P 0.Now we are in a position to prove the 
orre
tness of the main algorithm.Theorem 6.4.2 Let LP be a ground, �nite, normal logi
 program and let L bea query to the program. If Main(LP, L) returns \NO" then LP does not weaklyentail L, if Main(LP, L) returns \YES" then LP weakly entails query, and ifMain(LP, L) returns \Program has no 
anoni
al C-stable models" then LP has no
anoni
al stable models.Proof: Assume thatMain(LP, L) returns \NO." ThenMasterStable(P, not query)must return a node N , where P = LP [ fquery  Lg. From Lemma 6.4.1we know that if MasterStable(P, not query) returns a node N as stable, veri�edand 
onsistent and su
h that not query is in �2(N) or �3(N) then N is su
ha node in the impli
it graph. From Lemma 6.4.3 we know that Trans(N) isa C-stable 
anoni
al model of P . By the nature of the Trans transformationTrans(N)(not query) � CT . But sin
e Trans(N) is a C-stable model of Pand it follows that every rule with query in the head must be su
h that its body117



must evaluate to CF or F in Trans(N). Hen
e, Trans(N)(L) < CT . Clearly,the model Trans(N) � fquery 7! Trans(N)(query)g must be a C-stable well-supported model of the original program LP . So LP 
annot entail L.Assume that Main(LP, L) returns \YES." Then MasterStable(P, not query)must return nil andMasterStable(P, query) must return a nodeN . From Lemma 6.4.1we know that if MasterStable(P, not query) fails to dis
over a leaf node with theappropriate properties in the impli
it graph then there is no su
h node in the graph.From Theorem 6.4.1 we know that then there is no 
anoni
al C-stable model I ofP su
h that I(query) � CT . Similarly we know that if MasterStable(P, query) re-turns a node N as stable, veri�ed and 
onsistent and su
h that query is in �2(N)or �3(N) then N is su
h a node in the impli
it graph. From Lemma 6.4.3 weknow that Trans(N) is a C-stable 
anoni
al model of P . By the nature of theTrans transformation Trans(N)(query) � CT . Furthermore, sin
e Trans(N) is a
anoni
al C-stable model, so all 
anoni
al models of P must be C-stable. None ofthem are su
h that not query � CT . So all of them are su
h that query � CT .Sin
e all su
h models are well-supported then in all su
h models L must also eval-uate to CT or T . But then in no C-stable model of the original program LP , L
an evaluate to CF or F (by Lemma 6.4.5). Thus, in every C-stable model, and,hen
e, in every 
anoni
al model, of LP , L must evaluate to CT or T . Thus, LPweakly entails L.Assume thatMain(LP, L) returns \Program has no 
anoni
al C-stable models."So MasterStable(P, not query) must return nil and MasterStable(P, query) mustreturn nil. So from the earlier two parts of the proof we know that P has no
anoni
al C-stable models in whi
h not query � CT and none in whi
h query �
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CT . But then LP has no 
anoni
al C-stable models in whi
h not L � CT andnone in whi
h L � CT But in any interpretation of LP either not L � CT orL � CT . So LP has no 
anoni
al C-stable models.
6.4.1 Computing Stable ModelsThe algorithm of the previous se
tion 
an easily be adapted to 
ompute all thestable models of a program. The algorithm Pro
 needs to be modi�ed to keepa list of the stable, 
onsistent and veri�ed nodes found so far and returning thislist instead of just returning the �rst stable, 
onsistent and veri�ed node. Thismodi�ed algorithm is invoked with the empty query.Pro
2(N; StabList)1. If �(N) is unstable or in
onsistent or unveri�able or (�1(�(N)) 6= ;and (�4(�(N)) = ; or N has no unvisited des
endents))then if Parent(N) = nil then RETURN StabListelse Pro
2(Parent(N); StabList)2. else if �1(�(N)) = ; then2a. begin2b. StabList (StabList [ f�(N)g)2
. Pro
2(Parent(N); StabList)2d. end3. else3a.begin
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3b. Create unvisited des
endent N 03
. Status(N 0) visited3d. Parent(N 0) N3e. Pro
2(N 0; StabList)3f. endPro
2 is invoked by a driver pro
edure, Master2, whi
h is stated below.Master2(P )SN  CreateNode(P )Parent(SN) nilStabList ;Pro
2(SN; StabList)6.5 Sele
tion RuleA des
endent of a non-leaf node N is generated by �rst 
omputing �(N) and thenadding an assumption from �4(�(N)) to �2(�(N)). Pro
 puts no restri
tions onwhi
h assumption from �4(�(N)) is used to generate the des
endent. Thus, anassumption irrelevant or 
ontrary to generating the desired leaf node may be madein generating the next node. In this se
tion we introdu
e a sele
tion rule whi
h putsmore restri
tions on whi
h assumption is made next. This will help the improvedversion of Pro
, 
alled Pro
Sel, avoid generating many unhelpful nodes. We o�erthe sele
tion rule as a possible aid to an implementor, but do not here prove its
orre
tness.Suppose that Pro
 is trying to �nd if starting with hP; flitg; ;; (HBP [
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not HBP )�flit;not litgi it 
an rea
h a 
onsistent, veri�able and stable leaf nodeN . Hen
e, litS , for some S, must be in the inferen
e part ofN . Thus, we 
an regardthe assumption lit as dis
harged by proving lit. Hen
e, in sele
ting the next nodePro
Sel 
an 
hoose an assumption whi
h will advan
e the task of dis
harging theassumption lit. This will be either the assumption of a negative literal in the bodyof the rule with lit in the head or the assumption of a negative literal whi
h willhelp establish a positive literal in the body of su
h a rule. Thus, assumptions 
anbe only of negative literals. But this new assumption itself needs to be dis
harged.So this be
omes the new sub-task. So Pro
Sel next makes another new assumptionwhi
h will help dis
harge the earlier assumption. And so on. Thus, Pro
Sel 
anbe seen as using the following sele
tion rule: In generating the next node make anassumption whi
h 
an help with dis
harging the most re
ently made assumptionthat needs to be dis
harged.It is 
lear that lit 
annot be in the inferen
e part of a node N unless the rulewith lit in the head evaluates to true given the assumptions and inferen
es in N .Suppose for now that ea
h rule in the program (in its 
anoni
al form) 
ontainsonly one disjun
t in the body. Thus, given the rulelit b1 ^ � � � ^ bnwe 
an dis
harge the assumption of lit by making true ea
h of b1; : : : ; bn. We 
anregard b1^� � �^ bn as a goal list{these are the literals that must be true in the �nalnode N . The next literal that needs to be established is the �rst goal in the goallist, i.e., b1. If b1 is a positive literal then we resolve b1 against the rule with b1 inthe head and add its body to the goal list. Thus, if the program 
ontains the ruleb1  
1; : : : ; 
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then the new goal list be
omes
1 ^ � � � 
m; b2 ^ � � � bnIf b1 is the negative literal not a then the next assumption made is not a andthe next node is generated using that assumption. The assumption not a 
an bedis
harged by making false the body of the rule with a in the head. Suppose wehave the rule a a1 ^ � � � ^ ama1 ^ � � �^ am 
an be made false by making false any of the literals a1; : : : ; am. This
an be seen as making true the disjun
tive goal not a1 _ � � � _ not am. This is adisjun
tive goal whi
h 
an be made true by making any of its disjun
ts true. Weadd this disjun
tive goal in pla
e of b1 in the goal list. Thus, only negative literalsare assumed, but goals may be positive or negative literals. We formalize theseideas below.We de�ne an expression re
ursively as follows. An expression is a literal orthe 
onjun
tion or disjun
tion of expressions. If an expression is a 
onjun
tion(disjun
tion) then it is 
alled a 
onjun
tive (resp., disjun
tive) expression andea
h 
onjun
t (resp., disjun
t) is 
alled a sub-expression of that expression. Anexpression whi
h is not a literal we 
all a non-literal expression. A goal list 
onsistsof a 
onjun
tion of expressions. A 
onjun
tive (disjun
tive) sub-expression of thegoal list is 
alled a 
onjun
tive (resp., disjun
tive) goal. The �rst literal in a
onjun
tion (disjun
tion) of expressions is re
ursively de�ned as the �rst 
onjun
t(resp., disjun
t) if the �rst 
onjun
t (resp., disjun
t) is a literal, otherwise it is the�rst literal in the �rst 
onjun
t (resp., disjun
t). The �rst literal in the goal list is
alled the �rst goal in the goal list. The goal list 
an be thought of as stored in an122



appropriate data stru
ture su
h as an expression tree. The leaves of su
h a treeare literals. Then the �rst goal in the goal list is the leaf of the left-most bran
hof the tree.Suppose the starting node SN in the impli
it graph ishP; flitg; ;; (HBP [ not HBP )� flit; not litgiIf lit is a positive literal then the program must 
ontain the rulelit body1 ^ � � � ^ bodynIf lit is the negative literal not a then the program must 
ontain the rulea body1 ^ � � � ^ bodynSuppose ea
h bodyi = bi1 ^ � � � ^ bin . Then if lit is a positive literal, then thestarting goal list 
onsists of(b11 ^ � � � ^ b1n) _ � � � _ (bn1 ^ � � � ^ bnn)In this 
ase the �rst goal in the goal list is b11 . However, it 
ould happen that someof the literals in the goal list evaluate to true (or false) in �(SN). If bij evaluatesto true in �(SN) then we remove it from the goal list. If bmn evaluates to false in�(SN) then we remove all of bm1 ; : : : ; bmn (i.e., we remove bodym) from the goallist. The modi�ed goal list is asso
iated with SN as its goal list. Thus, it 
ouldhappen that the �rst goal in the modi�ed list may not be b11 .If lit is not a then the starting goal list 
onsists of(not b11 _ � � � _ not b1n) ^ � � � ^ (not bn1 _ � � � _ not bnn)In this 
ase the �rst goal in the goal list is not b11 . Again, this goal list is modi�edin terms of �(SN). 123



Slightly abusing terminology, by the resolvent of lit with the rule lit body1_� � � _ bodyn we mean body1 _ � � � _ bodynIf lit is the negative literal not a, then by the negresolvent of lit with the rulelit body1 _ � � � _ bodyn we meannot body1 ^ � � � ^ not bodynEa
h not bodyi 
an be simpli�ed to not bodyi1 _ � � � _ not bodyin .A goal in the goal list is regarded as solved in a node Nk if it evaluates to truerelative to the assumptions and inferen
es in that node. If the goal is positive(negative) then it is also regarded as solved if the body of the rule with the goal(resp., negation of the goal) in the head evaluates to true (resp., false) relativeto the assumptions in the goal list asso
iated with Nk. The idea here is that weassume that Nk is in the path from the starting node to the �nal node and hen
eall the expressions in the goal list will evaluate to true in N and thus the goal willbe true in the �nal node. A disjun
tive goal is solved by solving a disjun
t in thegoal and a 
onjun
tive goal is solved by solving ea
h 
onjun
t in the goal. If agoal is solved, the goal is removed from the goal list. Otherwise, a positive goalis removed from the goal list by repla
ing it in the goal list with sub-list of goalssu
h that solving this sub-list of goals will solve the positive goal. The goal list isregarded as solved if it is empty.A disjun
tive goal is solved by assuming one of the negative disjun
ts as thenext goal in generating the next node. It 
an happen that there is no path from thatnode to a 
onsistent, veri�ed and stable node. In that 
ase we have to ba
ktra
kand generate another as yet untried node by assuming another as yet un
hosennegative disjun
t in the disjun
tive goal. A 
onjun
tive goal is solved by assuming124



one by one as many of the negative 
onjun
ts that need to be assumed to solve ea
h
onjun
t. Similarly, it 
an happen that there is no path from the node generated byassuming a parti
ular 
onjun
t in the 
onjun
tive goal. In that 
ase the 
onjun
tivegoal is unsolvable and in that 
ase we have to ba
ktra
k to the disjun
tive 
hoi
epoint whi
h led to this 
onjun
tive goal and 
hoose another negative disjun
t in thedisjun
tive goal. It 
an also happen that assuming one 
onjun
t in a 
onjun
tivegoal results in making another 
onjun
t false. In that 
ase too we have to similarlyba
ktra
k.The pro
edure Pro
Sel given below implements this sele
tion strategy.Pro
Sel(N)1. If �(N) is unstable or in
onsistent or unveri�able or (�1(�(N)) 6= ;and (�4(�(N)) = ; or Un
hosenAssumption(N) = nil)then if Parent(N) = nil then RETURN nil else Pro
Sel(Parent(N))2. else if �1(�(N)) = ; then RETURN �(N)3. else4.begin5. Assumption  Un
hosenAssumption(N; GoalList(N))6. In GoalList(N) set the status of Assumption as 
hosen7. N 0  CreateDes
endent(N;Assumption)8. Status(N 0) visited9. Parent(N 0) N10. Set GoalList(N') to the goal list that results from mat
hing theliterals in GoalList(N') with the literals in �2(�(N 0)) [ �3(�(N 0))
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and removing from GoalList(N') any disjun
tive expressions thatbe
ome true and any 
onjun
tive expressions that be
ome false.11. Set GoalList(N') to the goal list that results from adding asthe �rst 
onjun
t to GoalList(N') the negresolvent of Assumptionwith the appropriate rule in �2(�(N 0)).12. Pro
Sel(N 0)13. endPro
Sel uses the pro
edure Un
hosenAssumption whi
h is stated below.Un
hosenAssumption(N; GoalList) returns an assumption from the goal list as-so
iated with N if there is an un
hosen assumption in the goal list, otherwise itreturns nil unless the goal list is empty in whi
h 
ase it returns any un
hosen lit-eral from �4(�(N)). The use of a goal list is the main di�eren
e between Pro
and Pro
Sel. As in the 
ase of Pro
,step 1 lists the 
onditions under whi
h Pro
-Sel ba
ktra
ks. In 
ase there are no reasons to ba
ktra
k and the program partof �(N) is empty, the pro
edure returns �(N). Otherwise it 
reates a new nodeN 0 using an un
hosen assumption (steps 7-9). In step 6 it marks as 
hosen theo

urren
e of the 
hosen assumption in the goal list of N . Thus, if the algorithmba
ktra
ks it will not try that assumption again at that point. In steps 10 and11, the goal list of N 0 is 
reated and asso
iated with N 0. In step 12 Pro
Sel isre
ursively 
alled with N 0.Pro
edure Un
hosenAssumption tries to �nd an un
hosen negative goal formthe goal list as the next assumption to make. If the �rst goal in the goal list isan un
hosen negative literal then it returns that literal (Step 2); if the �rst goal isa positive literal then it resolves the literal against the appropriate rule, repla
es
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the �rst goal with the body of the rule in the goal list asso
iated with the nodeN and re
ursively 
alls Un
hosenAssumption with N and the goal list asso
iatedwith N (Step 3). The goal list of N is modi�ed in terms of the resolvent rather theparameter GoalList be
ause if later Pro
Sel has to ba
ktra
k from a des
endent ofN to N , it is saved the task of making all the resolutions all over again. If the �rstgoal is a negative literal that had been 
hosen earlier, then the pro
edure does nottry that literal again and makes a re
ursive 
all to Un
hosenAssumption with thatliteral removed from the GoalList (Step 4). The auxiliary fun
tion Tail(GoalList)returns GoalList with the �rst goal deleted.Un
hosenAssumption(N; GoalList)1. If GoalList is empty go to step 5.2. If �rst goal of GoalList is an un
hosen negative literal lthen RETURN l.3. If �rst goal of GoalList is a positive literal l thenbeginGoalList(N) Substitute(Resolvent(l), GoalList(N))Un
hosenAssumption(N; GoalList(N))end4. else if �rst goal is a 
hosen negative literalthen Un
hosenAssumption(N; Tail(GoalList))5. If �4(�(N)) has an un
hosen literal then RETURN any su
h un
hosen literalelse RETURN nil.
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Pro
Sel is invoked by a driver pro
edure, MasterSel, whi
h is stated below.MasterSel(P, lit)1. SN  CreateNode(P; lit)2. Parent(SN) nil3. If lit is positive then set GoalList(SN) to the resolvent of lit with the appro-priate rule, else set GoalList(SN) to the negresolvent of lit with the appropriaterule.4. Set GoalList(SN) to the goal list that results from mat
hing the literals inGoalList(SN) with the literals in �3(�(SN)) and removing from GoalList(SN)any disjun
tive expressions that be
ome true and any 
onjun
tive expressions thatbe
ome false.5. Pro
Sel(SN)Example 6.5.1 Let P = fa b; 
; b not d;not a; 
 not e _ b;e not d; d not eg. Let the query be a.Pro
edure Main invokes pro
edure MasterSel with program P 0 = P [ fquery ag and not query as the parameters. MasterSel 
reates the starting node SN withnot query as the initial assumption and fnot ag as the initial goal list, and theninvokes pro
edure Pro
Sel with SN as its parameter.Pro
Sel makes not a as the Assumption and invokes CreateDes
endent. not ais negresolved with a  b; 
 to produ
e fnot b _ not 
g as the goal list. Thenode N0 is 
reated with fnot query; not ag as the assumption part and fnot b _not 
g as the goal list. Then pro
edure Pro
Sel is invoked re
ursively with N0 asits parameter.Pro
Sel makes not b as the Assumption and invokes CreateDes
endent to 
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ate node N1 with fnot a; not bg as the assumption part. The goal list fnot b _not 
g is solved in terms of the assumption not b and is empty (step 10 of Pro
-Sel). At step 11 not b is negresolved with the rule b  not d; truenot a to getfd _ falsenot ag as the goal list, whi
h 
an be simpli�ed to fdg. Pro
Sel re
ursively
alls Pro
Sel with N1 as the parameter.Pro
Sel(N1) invokes pro
edure Un
hosenAssumption with fdg as the goal list.Un
hosenAssumption resolves d against d  not e to make fnot eg as the goallist, and thus returns not e as the next assumption. The assumptionsfnot query; not a; not b; not egtogether result in the following inferen
es:fnot querynot a; dnot e; not enot e; 
not e; not bnot e; not anot egThe program part and the goal list is empty at this point. So Pro
Sel and MasterSelreturns �(N1). Hen
e, Main returns NO to the query.6.6 Dis
ussionThe 
omplexity of the proof pro
edure will be analyzed in terms of the operationof mat
hing as the unit of 
omputation. We will do a worst-
ase analysis of thenumber of mat
hing operations performed as a fun
tion of the Herbrand base ofthe input program.Assume that a query L has been posed to a program P . Let the 
ardinality ofHBP be n.First, we analyze in the worst-
ase the number of mat
hing operations thathave to be performed in expanding any node. A node N in the impli
it graph of129



a program P is expanded by 
omputing �(N), whi
h is where all the mat
hingoperations take pla
e. To 
ompute �(N) the pro
edure 
omputes the least �x-pointof the T P operator on the program part ofN . In the worst-
ase the program part ofN 
ontains a rule for ea
h atom in HBP . (Re
all that the program is in disjun
tiveform.) Although ea
h rule 
an in the worst-
ase 
ontain at most fa
torial of 2nliterals in its body, 
learly there 
an be at most 2n distin
t literals in the bodyof any rule sin
e the 
ardinality of HBP is n. We assume that when a literal ismat
hed with an assumption or an inferen
e, then all o

urren
es of that literal inthe body of that rule are repla
ed in the body by the result. Thus, in 
omputingthe least �x-point of T P the pro
edure needs to do at most 2n mat
hing operationsfor ea
h rule. Sin
e there are at most n rules, at most 2n2 mat
hing operationsare required for 
omputing the least �x-point of the T P operator. This means atmost 2n2 mat
hing operations are required for expanding any node. Thus, it takesO(n2) operations in the worst 
ase for expanding any node.In the worst 
ase there will be n nodes in ea
h path from the starting node toa leaf node. That is, in the worst 
ase ea
h leaf node will 
ontain n assumptions,either a or not a, for ea
h a 2 HBP . Thus, we 
an 
ount the number of leaf nodesin the worst 
ase by adding the number of leaf nodes 
ontaining the assumptiona and the number of leaf nodes 
ontaining the assumption not a, for any a 2HBP , sin
e every leaf node must 
ontain either an atom or its negation as anassumption. Thus, we 
an enumerate all the leaf nodes 
ontaining an assumptionl, by enumerating all the possible sets of assumptions 
ontaining l. To 
ount thenumber of assumption sets 
ontaining a given assumption, l, imagine that we haveput the atoms inHBP in some ordering, say lexi
ographi
al ordering, with Atom(l)as the �rst in the ordering. Then we 
an represent all su
h sets by a binary tree130




ontaining l as its root and the next atom in the ordering as its left 
hild and thenegation of that atom as its right 
hild, and so on. Su
h a tree will 
ontain 2n�1paths, where the set of assumptions along a path represents an assumption set.Thus, there are 2n assumption sets 
ontaining a given atom or its negation. Thus,in the worst 
ase the impli
it graph will 
ontain 2n leaf nodes.By similar reasoning we 
an see that the graph will 
ontain 2n�1 nodes 
ontain-ing n � 1 assumptions, and so on. Thus, the total number of nodes in the graph
an be expressed asT (n) = 2n + 2n�1 + � � �+ 20 = 2n+1 � 1 = O(2n)Clearly, MasterStable expands ea
h node only on
e. Thus in the worst 
aseMasterStable will expand O(2n) nodes. Hen
e in the worst 
ase MasterStablewill perform O(n2 � 2n) mat
hing operation. Hen
e, the 
omplexity of Main interms of the number of mat
hing operations performed is O(n2 � 2n).This result mat
hes well with well-known results. For instan
e, [MT91℄ and[MM93℄ have shown that determining whether an atom belongs to all the stablemodels of a program is a 
o-NP problem.The proof pro
edure of this 
hapter is similar to the proof pro
edure des
ribedin [CW97℄. They des
ribe a pro
edure for �nding all the stable models of a normallogi
 program by assuming literals step-by step and inferring other literals on thebasis of the assumed literals and redu
ing the original program step-by-step interms of the assumed literals and inferred literals. Their pro
edure is restri
tedto programs that have stable models, and for programs without any stable modelstheir pro
edure returns the empty set. One di�eren
e between our pro
edureand the pro
edure in [CW97℄ is that we use supers
ripts to keep tra
k of the131



assumptions on whi
h an inferen
e has been based. This feature will be seen tobe very useful in Chapter 8 when we develop a proof pro
edure for normal logi
programs augmented with 
ontestations.6.7 SummaryIn this 
hapter we have devised a proof pro
edure for determining whether a query
onsisting of 
onjun
tions or disjun
tion of ground literals to a �nite, ground nor-mal logi
 program whi
h has at least one C-stable model is weakly entailed by theprogram. In 
ase the program has no C-stable models the pro
edure terminatesgra
efully by sending a message to that e�e
t. The main resear
h 
ontributions ofthis 
hapter are as follows.� We have developed the formal apparatus and algorithms for 
omputing a
anoni
al model of a program in whi
h a spe
i�ed literal is true by makingassumptions and inferring literals on the basis of these assumptions and theinput program.� We have devised a pro
edure whi
h utilizes this apparatus and algorithmsfor determining whether a query is weakly entailed by the input program(Se
tion 6.3).� We have proven the soundness and 
ompleteness of this proof pro
edure(Se
tion 6.4).� We have modi�ed this proof pro
edure to 
ompute all the two-valued stablemodels of a �nite and ground normal logi
 program (Se
tion 6.3).
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� We have provided a tool for optimizing the performan
e of the proof pro-
edure in the form of a sele
tion rule for determining whi
h assumption tomake next at a given stage of 
onstru
ting a 
anoni
al model of the inputprogram (Se
tion 6.5).� We have proven that the worst-
ase 
omplexity of this pro
edure is O(n2 �2n), where n is the 
ardinality of the Herbrand base of the program (Se
-tion 6.6).
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Chapter 7Proof Pro
edure for Strong Entailment
7.1 Introdu
tionIn this 
hapter we extend the proof pro
edure for weak entailment to 
over strongentailment. Sin
e the set of strong entailments of a normal logi
 program has beenshown to be equivalent to the well-founded semanti
s (Theorem 5.4.1 of Chapter 5),the resulting proof pro
edure will also be a proof pro
edure for the well-foundedsemanti
s. The pro
edure for strong entailment is restri
ted to queries, whi
h 
anbe a 
onjun
tion or disjun
tion of literals, to �nite, ground normal logi
 programs.In the 
ase of weak entailment the di�eren
e between T and CT is not of anysigni�
an
e in the sense that a model whi
h assigns CT to a literal just as mu
hweakly entails that literal as a model whi
h assigns T to it. In the same way thedi�eren
e between CF and F is of no signi�
an
e for weak entailment. But in the
ase of strong entailment these di�eren
es matter be
ause an atom p is stronglyentailed by a program P i� p is assigned T in all the 
anoni
al models of P andnot p is strongly entailed by P i� p is assigned F in all the 
anoni
al models. For
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this reason, sin
e in a well-supported model an atom whi
h has no non-
ir
ularsupport must be assigned F , and not CF , we need to keep tra
k of su
h atomsin the 
ase of strong entailment. In our proof pro
edure for weak entailment weallowed a negative assumption to mat
h with an atom in the body of a rule be
ausewe were indi�erent to the di�eren
e between the atom in the head of that rule beingfalse on the basis of an assumption and the atom being false be
ause it had nonon-
ir
ular support. And this was be
ause for weak entailment the di�eren
ebetween assigning CF and assigning F to an atom was of no signi�
an
e. Butstri
tly speaking, given our de�nition of a well supported interpretation, an atomthat is false on the basis of an assumption should be assigned CF if the assumptionevaluates to CT in that interpretation, whereas an atom that is false be
ause ithas no non-
ir
ular support must be assigned F in any well-supported model. Forstrong entailment this di�eren
e is 
riti
al. Hen
e in our proof pro
edure for strongentailment we will not allow a negative assumption to mat
h a positive atom soas to give the proof pro
edure a 
han
e to dis
over whether the atom should bejudged false be
ause it has no non-
ir
ular support.For weak entailment the di�eren
e between CF and CT is important. Butfor strong entailment whether a literal is assigned CF or CT in a model, it isequally not strongly entailed in that model. We will exploit this feature of strongentailment to simplify the proof pro
edure of the last 
hapter by eliminating the
onsisten
y and veri�edness 
he
ks in a manner to be explained in Se
tion 7.3.Sin
e strong entailment has been proven to be equivalent to the well foundedsemanti
s, and sin
e the well-founded semanti
s is de�ned for programs with nostable models, and, hen
e, for programs with no C-stable models, our proof pro-
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edure for strong entailment and for well-founded semanti
s must be designed towork for programs without any C-stable models. This is another respe
t in whi
hthe proof pro
edure will have to be di�erent from the proof pro
edure for weakentailment.As in Chapter 6, we assume that the input program is in the disjun
tive andaugmented form.In Se
tion 7.2 we rede�ne some of the formal apparatus of Chapter 6 to a

om-modate the above des
ribed di�eren
es between the pro
edure for weak entailmentand the pro
edure for strong entailment. In Se
tion 7.3 we des
ribe the algorithmsof the proof pro
edure for strong entailment, and in Se
tion 7.4 we prove thatthis pro
edure is sound and 
omplete with respe
t to strong entailment in C4.In Se
tion 7.5 we dis
uss the worst-
ase 
omplexity of this proof pro
edure. InSe
tion 7.6 we summarize the main resear
h 
ontributions of this 
hapter.7.2 PreliminariesTo a

ommodate the above des
ribed di�eren
es between weak entailment andstrong entailment we need to rede�ne some of the apparatus developed for the proofpro
edure for weak entailment. In this se
tion we a

omplish this rede�nition. Inparti
ular the rules for mat
hing literals and inferring supers
ripted literals willbe modi�ed as well as the de�nition of the T P operator, the � operator, and thede�nition of the des
endants of a node.As noted in the previous se
tion, the new rules of mat
hing, whi
h will bespe
i�ed below, will not allow a negative assumption to mat
h a positive literalso as to give the proof pro
edure a 
han
e to dis
over whether an atom should136



be judged false be
ause it has no non-
ir
ular support. In 
ase it is dis
overed ata node N that an atom p has no non-
ir
ular support, the pro
edure should beallowed to infer not p in the generation of the des
endant of N . This is done interms of the Falsify operation des
ribed later in this se
tion.These two features of the new proof pro
edure 
reate the possibility that aliteral la is inferred on the basis of an assumption whi
h is later shown to befalse. This 
an lead to making wrong inferen
es unless we rede�ne the result ofmat
hing a literal not a with the assumption a to be truenot a instead of falsea.The example below makes this point.Example 7.2.1 Let P be the ground program fb  not a; not 
; a  a; 
  not 
g. Suppose the query is b. Clearly, P does not strongly entail b. Supposethe proof pro
edure begins by assuming not 
. Then the �rst rule be
omes b  not a; truenot 
. Suppose the next assumption is a. If the result of mat
hing awith not a in the body of the �rst rule were to be falsea, then the �rst rule wouldredu
e to b  falsea; truenot 
. This simpli�es to b  falsea, thereby throwingout truenot 
. Thus, the pro
edure would wrongly infer not ba. Sin
e there isno non-
ir
ular support for a, the pro
edure at this step by using the Falsifyoperation, whi
h is des
ribed below, should infer not a. It would also infer 
not 
on the basis of the assumption not 
. In translating this set of assumptions andinferen
es into an interpretation, 
learly a should be assigned F . This would resultin assigning F to not b sin
e its supers
ript, a, is assigned F . Thus, b wouldwrongly be assigned T . But in no well-supported model of P 
an b be assigned T .However, if the result of mat
hing not a with a were to be truenot a then the�rst rule would redu
e to b  truenot a; truenot 
. In this 
ase the pro
edurewould infer bnot a^not 
. Thus, the information that the redu
tion of the �rst rule137



is partially on the basis of not 
 is not lost. Now b would be assigned CT sin
e awould be assigned F and not 
 would be assigned CT . This is the 
orre
t result.In light of the above example, we take the result of mat
hing not a with a tobe truenot a instead of falsea.For any atom a we understand Neg(a) to be not a and Neg(not a) to be a.Then, mat
hing is rede�ned as follows.De�nition 7.2.1 Let R be the normal logi
 rulea b1; : : : ; bn;not 
1; : : : ;not 
mMat
hing is de�ned in terms of the following rules.1. A negative assumption not l mat
hes with not l 2 body(R) resulting intruenot l, whi
h repla
es not l in the body of R.2. A positive assumption l mat
hes with not l 2 body(R) resulting in truenot lwhi
h repla
es not l in the body of R.3. A positive inferen
e lS, where S is non-empty, mat
hes with l 2 body(R)(or not l 2 body(R)) resulting in trueS (resp., truenot S), whi
h repla
es l(resp., not l) in the body of R.4. A negative inferen
e not lS, where S is non-empty, mat
hes with l 2 body(R)(or not l 2 body(R)) resulting in truenot S (resp., trueS), whi
h repla
es l(resp., not l) in the body of R.5. A positive or negative inferen
e l, without any supers
ript or the empty su-pers
ript, mat
hes with l 2 body(R) (or Neg(l) 2 body(R)) resulting in true(resp., false), whi
h repla
es l (resp., Neg(l)) in the body of R.138



The rules for inferring literals are given as follows:a 
an be inferred from a true. not a 
an be inferred from a false. aS 
anbe inferred from a trueS.Example 7.2.2 Let P be the ground program fb e; 
 
; d; d not 
; e not eg: The assumption not e 
annot mat
h with e in the �rst rule a

ording to therede�ned rules of mat
hing. However, the assumption not e mat
hes with not e inthe fourth rule, whi
h turns it into e truenot e. From this enot e 
an be inferred.The rede�ned rules of mat
hing permit the inferen
e enot e to mat
h with the e inthe �rst rule, whi
h turns it into b truenot e, from whi
h 
an be inferred bnot e.The assumption not 
 mat
hes with not 
 in the third rule, whi
h makes the thirdrule into d  truenot 
. However, the rede�ned rules of mat
hing do not permitthe assumption not 
 to mat
h with 
 in the se
ond rule.In light of the 
hanges in the rules for inferring literals we also need to 
hangethe de�nition of the T P operator de�ned in the weak entailment se
tion. Werede�ne this 
on
ept in the next de�nition. This de�nition is identi
al to thede�nition of the T P operator of the previous 
hapter ex
ept that the rules ofmat
hing refer to the rules of mat
hing de�ned above in this 
hapter.De�nition 7.2.2 Let P be a ground normal logi
 program. Let I be a set ofliterals, 
onsisting of assumptions and supers
ripted literals. Then,T 0P (I) = I [ faS j a body 2 P; and mat
hing literals in body with literalsin I results in a  trueSg [ fnot aS j a body 2 P; and mat
hing literals inbody with literals in I results in a falseg.In this de�nition we assume that S 
an be possibly empty.
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Example 7.2.3 As in Example 7.2.2 above, let P = fb  e; 
  
; d; d  not 
; e not eg:In this 
aseT 0P (fnot 
; not eg) = fnot 
; dnot 
; not e; enot eglfp(T 0P (fnot 
; not eg)) = T 0P (T 0P (fnot 
; not eg)) =fnot 
; not e; dnot 
; enot e; bnot eg:The program redu
es to f
 
; truenot 
g.The new de�nition of the T 0P operator requires a 
orresponding rede�nitionof the � operator from the se
tion on weak entailment. The new operator willbe 
alled �0. The rede�nition 
onsists in substituting all o

urren
es of the T Poperator with the T 0P operator.De�nition 7.2.3 Let N = hP;A; Inf;Hi. Then �0(N) = hP 0; A; Inf 0; H 0i whereInf 0 = lfp(T 0P (A [ Inf))�A, H 0 = H �Atoms(Inf 0)�not Atoms(Inf 0), andP 0 = P � fR 2 P jhead(R)S 2 (Inf 0 � Inf) or not head(R)S 2 (Inf 0 � Inf)gExample 7.2.4 As in Examples 7.2.3 and 7.2.2, let P = fb e; 
 
; d; d not 
; e not eg: Let SN = hP; fnot 
; not eg; ;; fb; not b; d; not dgi.As seen in Example 7.2.3, the least �x-point of the T 0P operator as applied tofnot 
; not eg, is fnot 
; not e; dnot 
; enot e; bnot eg.Hen
e �0(SN) = hP 0; A0; Inf 0; H 0i where A0 = fnot 
; not eg andP 0 = f
 
; truenot 
gInf 0 = fdnot 
; enot e; bnot egH 0 = ;
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In the proof pro
edure for weak entailment the main part is the pro
edure Pro
.The main part of the proof pro
edure for strong entailment will be the pro
edurePro
Strong, whi
h is based on Pro
. One key di�eren
e between the two pro
edureresults from the fa
t that in the 
ase of the pro
edure for strong entailment wedo not allow a negative assumption to mat
h with a positive literal in the bodyof a rule. However, as in the 
ase of weak entailment we do not allow a positiveassumption to mat
h with a positive literal in the body of a rule either. Thus, ifwe were to use pro
edure Pro
 for strong entailment it 
an result in the pro
edurePro
 rea
hing a node in whi
h the program part is not empty and there are nomore assumptions to make. At this point all the remaining rules will have onlypositive atoms in the bodies (in addition to trueS or falseS, for some S). Theatoms in the head of these rules have no non-
ir
ular support. Thus their negation
an be inferred and the rules with these atoms in the head 
an be deleted fromthe program part. The pro
edure Pro
 needs to be modi�ed to take this step.To do this we de�ne the Falsify operation whi
h when applied to a program Pputs the spe
ial atom false in the body of ea
h rule of P whi
h has only positiveatoms (in
luding the spe
ial atoms, whi
h may be supers
ripted) in its body. TheFalsify operation is applied only when there are no more assumptions left to bemade.De�nition 7.2.4 Let P be the ground program fp q; q  not rg. ThenFalsify(P ) = fp q; false; q  not rg:Note that false is inserted in the body of the �rst rule only.We rede�ne the des
endants of a node using the Falsify operation.
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De�nition 7.2.5 des
endants(N) =8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
�0(N) if �1(�0(N)) = ;�0(h Falsify(�1(�0(N))); �2(�0(N)); �3(�0(N)); �4(�0(N))i) if �1(�0(N)) 6= ;and �4(�0(N)) = ;fh�1(�0(N)); (�2(�0(N)) [ flg);�3(�0(N)); (�4(�0(N))� fl;not lg)i j l 2 �4(�0(N))g otherwiseThis key di�eren
e between the pro
edure Pro
 and Pro
Strong is en
oded inthe se
ond 
lause of the above de�nition of des
endants.Example 7.2.5 As in Example 7.2.4 above, let P = fb  e; 
  
; d; d  not 
; e not eg and let SN = hP; fnot 
; not eg; ;; fb; not b; d; not dgi.Example 7.2.4 above 
omputed �0(SN) to be hP 0; A0; Inf 0; H 0i where A0 = fnot 
; not egand P 0 = f
 
; truenot 
gInf 0 = fdnot 
; enot e; bnot egH 0 = ;Sin
e the �1(�0(SN)) 6= ; and �4(�0(SN)) = ;, des
endants(SN) must be
omputed in terms of the se
ond 
lause of the de�nition. Thus, the Falsify opera-tion must be applied to 
 
; truenot 
, whi
h turns it into 
 
; truenot 
; false.Thus, des
endants(SN) = �0(h f
 
; truenot 
; falseg; fnot 
; not eg; Inf 0; ;i),where Inf 0 is as above in the spe
i�
ation of �0(SN).As noted above, from the point of view of strong entailment the di�eren
ebetween CT and CF is of no signi�
an
e. We will exploit this feature of strongentailment in the proof pro
edure. The following apparatus is required to do this.
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We introdu
e a new truth value X, whi
h 
an stand indi�erently for either CTor CF . We 
all X = fF; X; Tg an abstra
tion of V = fF; CF; CT; Tg. Weassume the ordering F < X < T . We map T to 1, X to 1/2, and F to 0.De�nition 7.2.6 A mapping from the Herbrand base of a logi
 program P to Xis an abstra
t interpretation of P .We assume that not X = X. As in the 
ase of C4, not T = F and not F = T .Also we assume, as in the earlier 
hapters, that given v1; v2 2 X , v1 _ v2 =maxfv1; v2g and v1 ^ v2 = minfv1; v2g. Given a rule a  B, where a is aground atom and B is a 
onjun
tion of ground literals, then given an abstra
tinterpretation J , a B evaluates to T if J (a) � J (B) and F otherwise.De�nition 7.2.7 An abstra
t interpretation J of a normal logi
 program is anabstra
t model of P i� every rule R 2 P evaluates to T in J .An abstra
t model J of a normal logi
 program is an abstra
t well-supportedmodel of P i� for every atom that is assigned a value greater than F by J there isa rule that supports the attribution of this value in a non-
ir
ular way in exa
tlythe way spe
i�ed for non-abstra
t models in De�nition 4.3.2 in Chapter 47.3 AlgorithmsJust as in 
omputing whether a query is weakly entailed by a program we need to
onsider only the relevant rules of the program, in 
omputing whether a query isstrongly entailed by a program we need to 
onsider only the related rules of theprogram. This 
on
ept is de�ned below.
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De�nition 7.3.1 A ground atom a is related to a ground atomi
 query q in anormal logi
 program P if a is q or a 2 Atoms(body(R)), where head(R) is relatedto q. A rule R is related to a query q if its head is related to q.Although a query L 
an be a 
onjun
tion or disjun
tion of literals, the de�nitionof a related rule above in terms of an atomi
 query will still serve our purposesbe
ause we assume that we add the rule query  L to the program and answerthe original query by answering the query query.In determining whether a query q is strongly entailed by a program we needto 
onsider only those rules in P that are related to q. This is di�erent from the
ase of weak entailment where we have to look at rules that are relevant to thequery in the spe
ial sense of the term as de�ned in the previous se
tion. The keydi�eren
e between the two 
on
epts is that a rule 
an be relevant to answeringa query if the body of the rule 
ontains some atom that is related to the query,even if the head of that rule is not related to answering the query; whereas arule is related to answering a query only if its head is related to answering aquery. Roughly speaking the di�eren
e 
onsists in whether in determining if queryis entailed by the program we need to look at the 
onsequen
es of query in theprogram. For strong entailment (and thus for the well-founded semanti
s) the
onsequen
es of query are irrelevant to determining whether query is entailed bythe program, whereas for weak entailment the 
onsequen
es of a query 
an in some
ases prevent the program from weakly entailing the query.Example 7.3.1 Let P be the ground programfa not b; b not a; p not p _ not bg:
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Then a  not b and b  not a are related to a, whereas, additionally,p not p _ not b is also relevant to a.The following lemma justi�es restri
ting the pro
edure to only related rules.Lemma 7.3.1 A ground normal logi
 program P strongly entails a ground literalq i� P 0 � P strongly entails q, where P 0 
onsists of all rules in P related to q.Proof:)We will prove that if a normal logi
 program P strongly entails a literal q thenP 0 � P strongly entails q by proving the 
onverse of this 
laim. So assume thatP 0 does not strongly entail q, where P 0 
onsists of all the rules related to q. Thusq 62 WFS(P 0). The well-founded semanti
s of a normal logi
 program 
an be
omputed in a bottom-up manner in terms of the least �xed point of the operatorWP as des
ribed in Chapter 3. In this de�nition of the well-founded semanti
s, aliteral l belongs to WFS(P ) only if l is in some iteration � of WP . Either l = aor l = not a, for some atom a. If l = a, then l = a is in some iteration n of WPonly if there is a rule R = l  body su
h that ea
h member of body is in someiteration m < n of WP . If l = not a, then for ea
h rule R with a in the headthere must be some literal su
h that its negation is in some iteration m < n ofWP . Thus, any rule R that 
an play a role in the generation of a literal l in someiteration of WP must be related to l. By de�nition all su
h rules are in P 0. Thusif q 62 WFS(P 0) then q 62 WFS(P ). Hen
e, if P 0 does not strongly entail q thenP does not strongly entail q.(Assume that P 0 strongly entails q. Then q 2 WFS(P 0). Then 
learly q 2 WFS(P )145



sin
e all rules in P �P 0 are unrelated to q and thus 
annot alter the status of q inWFS(P ). Thus, if q 2 WFS(P 0) then q 2 WFS(P ) and P strongly entails q.In light of the above lemma, in determining strong entailment, we will assumethat the program 
ontains only rules that are related to answering the query. Itis easy to determine this dynami
ally, but in the interest of keeping the proofpro
edure simple we shall assume that all rules in the program are related toanswering the query.Given a node N , Pro
Strong �nds a leaf node that 
an be rea
hed from N .Pro
Strong does a depth-�rst sear
h for su
h a leaf node by making re
ursive 
allsto itself.Pro
Strong(N)1. If �1(�0(N)) = ; then RETURN �0(N)2. else begin3. Create unvisited des
endent N 04. Status(N 0) visited5. Parent(N 0) N6. Pro
Strong(N 0)7. endIf in step 1, it has rea
hed a leaf node it returns �0(N) and terminates at step 1.Otherwise in steps 3 to steps 5 it 
reates and initializes N 0, a des
endent of N , andat step 6 re
ursively invokes Pro
Strong with N 0. Note that at step 3 an unvisiteddes
endent is 
reated by 
hoosing a new assumption if there are any assumptionsleft to be made; otherwise, if there are no more assumptions left, a new node is146




reated by applying the Falsify operation.MainStrong takes a �nite and ground normal logi
 program LP and a groundquery L as arguments. It adds the rule query  L to LP , where query is anatom that does not o

ur in HBLP . It 
reates the starting node whi
h has thespe
ial atom true as the starting assumption. Then it invokes Pro
Strong, whi
his des
ribed above. It returns YES if query is assigned T by the TransStrongoperation, whi
h is des
ribed below, applied to the node returned by Pro
Strong.MainStrong(LP; L)P  LP [ fquery  LgSN  CreateNode(P; ftrueg)N  Pro
Strong(SN)If TransStrong(N) assigns T to query then return YES, else return NOHere MainStrong uses the CreateNode pro
edure des
ribed in the previous
hapter on proof pro
edure for weak entailment. The TransStrong operation,whi
h 
onverts a node into an abstra
t interpretation, is given below.TransStrong(N)1. I  ;2. Inf  �3(N)3. Assp �2(N)4. For ea
h positive inferen
e a 2 �3(N) with an empty supers
ript,beginI  (I [ fa 7! Tg)Inf  Inf�faSg, where S is any supers
ript in
luding the empty supers
riptend 147



5. For ea
h negative inferen
e not a 2 �3(N) with an empty supers
ript,beginI  (I [ fa 7! Fg)Inf  Inf � fnot aSg, where S is any supers
ript in
luding the emptysupers
riptend6. While Inf 
ontains any literal lS su
h that I(S) has a value, dobegin whileChoose an lS 2 Inf su
h that I(S) has a valueIf l is the atom a then I  (I [ fa 7! I(S)g)else if l is the negative literal not a then I  (I [ fa 7! (1� I(S))g)Delete lS from Infend while7. Assp Assp� fa;not a j I(a) is de�nedg8. For ea
h positive assumption a 2 Assp,I  (I [ fa 7! Xg)9. For ea
h negative assumption not a 2 Assp,I  (I [ fa 7! Xg)10. Inf  Inf � faS;not aS 2 Inf j a 2 Assp or not a 2 Asspg)11. While Inf is not empty dobegin whileChoose an lS 2 Inf su
h that I(S) has a valueIf l is the atom a then I  (I [ fa 7! I(S)g)else if l is the negative literal not a then I  (I [ fa 7! (1� I(S))g)Delete lS from Inf
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end whileTransStrong is the same pro
edure as Trans of previous 
hapter, ex
ept thatwhere Trans would assign CT or CF to an atom, TransStrong assigns X. Thus,given a node N , TransStrong translates that node into an abstra
t interpretation.Sin
e the starting node with whi
h Pro
Strong is invoked by MainStrong 
on-tains no assumptions other than true, and sin
e, as will be proven below inLemma 7.4.3, the impli
it graph of every normal logi
 program 
ontains at leastone leaf node, it follows that if Pro
Strong is 
orre
t, it must return at least onenon-nil node. This is di�erent from Pro
 where the starting node 
ontains an as-sumption, and, thus, there 
an be no guarantee that the impli
it graph 
ontains aleaf node 
onsistent with the starting assumption.7.4 ProofsIn this se
tion we prove the soundness and 
ompleteness of MainStrong withrespe
t to strong entailment.To prove soundness we need to prove that if MainStrong returns YES toa query L for a normal logi
 program LP , then L is strongly entailed by LP .MainStrong returns YES to query L only if query evaluates to T in TransStrong(N),where N is the node returned by pro
edure Pro
Strong, whi
h is invoked byMainStrong. Pro
Strong returns N only if N is a leaf node. Thus, to provesoundness of MainStrong we need to prove that� if query is assigned T by TransStrong(N), where N is any leaf node in theimpli
it graph of P = LP [fquery  Lg, then query is strongly entailed byP , and 149



� if query is strongly entailed by P then L is strongly entailed by LPWe need to introdu
e the following de�nitions to prove that if a literal l isassigned T in TransStrong(N), where N is a leaf node in the impli
it graph of anormal logi
 program P , then l is strongly entailed by P .De�nition 7.4.1 A literal lS 2 �3(N), where N is a leaf node, is assumption freeif and only if S is the empty supers
ript or ea
h 
onjun
t in some disjun
t of Sis logi
ally equivalent to an assumption free literal or is logi
ally equivalent to thenegation of an assumption free literal.In this 
ontext we understand not not p to be logi
ally equivalent to p. Al-though we do not re
ognize expressions su
h as not not p to be well-formedexpressions in the language of normal logi
 programs, su
h expressions do o

urin supers
ripts, given our new rules of mat
hing.Example 7.4.1 Let P = fq  not p; p pg. Consider the leaf nodeh;; fnot pg; fqnot p; not pg; ;i:Here the inferen
e qnot p is assumption free be
ause although not p was assumed,not p was also inferred without making any assumptions. Hen
e qnot p should beregarded assumption free sin
e the inferen
e not p is assumption free. In otherwords, q 
ould have been inferred without making the assumption not p.Thus, assumption free literals 
an be inferred without making any assumptions.As the above example shows, even though a literal p might have been assumed ininferring lS in N , lS 
an still be regarded as assumption free if p is itself assumptionfree. 150



Lemma 7.4.1 Let P be a �nite and ground normal logi
 program, and let N be anode returned by pro
edure Pro
Strong for P . An atom a 2 HBP is assigned T(F ) in TransStrong(N) if and only if aS (resp., not aS), for some S, is assump-tion free in N .Proof: It is evident from steps 4, 5 and 6 of pro
edure TransStrong that ea
hassumption free literal lS is assigned T by TransStrong. It is evident from steps7-11 of Trans that no literal that is not assumption-free is assigned either T or Fby Trans. These two observations together establish the lemma.Atoms that are assigned T or F by TransStrong(N) 
an be strati�ed as follows.De�nition 7.4.2 Let P be a normal logi
 program and let N be a leaf node inthe impli
it graph of P . Let S be the set of atoms that are assigned T or F byTransStrong(N). S is strati�ed as follows.� Strata 0: The spe
ial atoms true and false,� Strata 1: Any atom a su
h that P 
ontains a rule a true or a falseor a not true. Any atom a that is assigned F as a result of applying theFalsify operation in the 
omputation of N .� Strata n > 1: a does not already belong to a stratum k < n and{ TransStrong(N)(a) = T and there is a rule Ra s.t. head(Ra) = aand body(Ra) evaluates to T in TransStrong(N) and ea
h member ofAtoms(body(Ra)) is of stratum less than n, or{ TransStrong(N)(a) = F and ea
h rule Ra whi
h 
ontains a in thehead is su
h that body(Ra) 
ontains a literal l that evaluates to F in
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TransStrong(N) and is su
h that the atom in l is of stratum less thann.In 
onne
tion with this de�nition re
all that all unit 
lauses in P are understoodas having true in the body and a rule a false is inserted in a program only ifthe program 
ontains no rules with a in the head.All atoms that are assigned T or F belong to this strati�
ation be
ause by theabove lemma they are all assumption free. Thus regarding su
h atoms we 
annothave a situation where an atom is inferred on the basis of an assumption l and theatom is then used to infer l or Atom(l). Hen
e, the strati�
ation des
ribed aboveis possible and in
ludes all atoms that are assigned T or F by Trans.Now we are in a position to prove that if a literal l is assigned T in TransStrong(N),where N is a leaf node in the impli
it graph of a normal logi
 program P , then lis strongly entailed by P .Lemma 7.4.2 Let P be a �nite and ground normal logi
 program, and let Nbe a leaf node in the impli
it graph of P . Then, if a literal l evaluates to T inTransStrong(N) then l is strongly entailed by P .Proof: Assume that N is a leaf node in the impli
it graph of P . Assume that levaluates to T in TransStrong(N). Let S be the set of atoms in HBP that areassigned either T or F by TransStrong(N). Members of S 
an be strati�ed in themanner des
ribed above.Assume by way of 
ontradi
tion that l is not strongly entailed by P . So theremust be a 
anoni
al model I of P su
h that I(l) < T . So there is a non-emptyS 0 � S su
h that S 0 
onsists of those members of S to whi
h I assigns a di�erenttruth value than TransStrong(N). Let a be any atom in S 0 su
h that a is in the152



lowest stratum in terms of the strati�
ation of S. a is assigned either T or F byTransStrong(N).Case 1: Assume that a is assigned T by TransStrong(N). So there must be arule Ra su
h that head(Ra) = a and body(Ra) evaluates to T in TransStrong(N).Furthermore, all members of Atoms(body(Ra)) must be of a lower stratum than a.By assumption I(a) < T . Furthermore, by the assumption, that a is of thelowest stratum among members of S 0, I must assign the same truth value to allmembers of Atoms(body(Ra)) as TransStrong(N). Hen
e, body(Ra) must evaluateto T in I. But sin
e I(head(Ra)) < T , I is not a model of Ra, whi
h 
ontradi
tsthe assumption that I is a model of P .Case 2: Assume instead that a is assigned F by TransStrong(N). So for ea
hrule Ra su
h that head(Ra) = a, body(Ra) must 
ontain a literal l that evaluatesto F in TransStrong(N) and su
h that the atom in l must be of a lower stratumthan a.By assumption I(a) > F be
ause its value is di�erent from the value assignedto it by TransStrong(N), whi
h assigns it F . Furthermore, by the assumption,that a is of the lowest stratum among members of S 0, I must assign the sametruth value to the l in ea
h Atoms(body(Ra)) as TransStrong(N). Hen
e, ea
hbody(Ra) must evaluate to F in I. But sin
e I(head(Ra)) > F , I 
annot be awell-supported model of P . This 
ontradi
ts the assumption that I is a 
anoni
almodel of P .The following theorem proves the soundness of MainStrong.Theorem 7.4.1 If the pro
edure MainStrong returns YES for query L and a nor-mal logi
 program LP 0 � LP whi
h 
onsists of the set of rules in LP related to L153



then LP strongly entails L.Proof: Assume that the pro
edure returns YES for program LP 0 and query L.Let P 0 = LP 0 [ fquery  Lg. So pro
edure Pro
Strong returns a leaf node Nsu
h that TransStrong(N)(query) = T . Thus, it follows from Lemma 7.4.2 thatquery is strongly entailed by P 0. Hen
e, P 0 must strongly entail L sin
e the onlyrule with query in the head is query  L. Thus LP 0 must entail L sin
e LP 0 isidenti
al to P 0 ex
ept that query  L is in P 0. It follows from Lemma 7.3.1 thatP strongly entails L.Next we prove the 
ompleteness of MainStrong. First we show that for any�nite and ground normal logi
 program, P , Pro
Strong returns a leaf node Nwhi
h 
an be translated by TransStrong into an abstra
t well-supported modelof P . Se
ond, we show that TransStrong(N), where N is a leaf node returnedby Pro
Strong with P as the input program is equivalent to the well-foundedsemanti
s of P , WFS(P ). Sin
e a normal logi
 program P entails a literal l i�l 2 WFS(P ) (Theorem 5.4.1 in Chapter 5), it follows that a normal logi
 programP entails a literal l i� l evaluates to T in TransStrong(N). But in that 
aseMainStrong would return YES to the query l. This establishes 
ompleteness ofMainStrong.The following lemma establishes that for any �nite and ground normal logi
program, Pro
Strong returns a leaf node.Lemma 7.4.3 Let P be a �nite and ground normal logi
 program. Then Pro
Strongreturns at least one leaf node for P as the input program.Proof: A node in the impli
it graph of P is a leaf node if the program part of thenode is empty. By step 1 of Pro
Strong any node that it returns must be a leaf154



node. So Pro
Strong 
an fail to return a leaf node only if it fails to terminate.But Pro
Strong 
an fail to terminate only if at some node N , whi
h is not a leafnode, the program part of N 
ontains a rule R that 
annot be redu
ed any furtherregardless of whi
h additional assumptions are made. If body of R 
ontains anynegative literals, then 
learly those negative literals 
an be assumed and R 
anbe redu
ed further. On the other hand if body(R) 
ontains no negative literal,then after exhausting all the remaining assumptions, R 
an be redu
ed furtherby applying the Falsify operation. So R 
an always be redu
ed further. Thus,Pro
Strong must terminate by returning a leaf node.The next lemma shows that the leaf node returned by Pro
Strong for a pro-gram P 
an be translated into an abstra
t well-supported model of P .Lemma 7.4.4 Let P be a �nite and ground normal logi
 program. Let N be a leafnode in the impli
it graph of P returned by Pro
Strong. Then TransStrong(N)is an abstra
t well-supported model of P .Proof: First we show that TransStrong(N) is an abstra
t model of P .For any rule R 2 P , if body(R) evaluates to T in TransStrong(N) then ea
hliteral l in the body must evaluate to T in TransStrong(N). But then for ea
h su
hliteral l, the inferen
e part of N must 
ontain a literal lS, where S is the emptysupers
ript or S must evaluate to T in TransStrong(N), or the inferen
e partmust 
ontain the literal Neg(l)S where S must evaluate to F in TransStrong(N).But then the head of R would be inferred with an empty supers
ript or with asupers
ript that evaluates to T in TransStrong(N). So TransStrong(N) wouldbe an abstra
t model of all su
h rules.For any rule R 2 P , if body(R) evaluates to X in TransStrong(N) then it
ontains at least one literal l whi
h evaluates toX and no literal that evaluates to F155



in TransStrong(N). But then for ea
h su
h literal l, the inferen
e part of N must
ontain a literal lS or a literalNeg(l)S, where S evaluates toX in TransStrong(N).But then the head of R would be inferred either with a supers
ript whi
h evaluatesto X in TransStrong(N) or whi
h evaluates to T in TransStrong(N). In either
ase the head would not be assigned F in TransStrong(N). So TransStrong(N)would be an abstra
t model of all su
h rules.For any rule R 2 P , if body(R) evaluates to F in TransStrong(N) then triviallyTransStrong(N) is an abstra
t model of R.Thus, it follows that TransStrong(N) must be an abstra
t model of P .Next we show that TransStrong(N) is a well-supported model of P . Thewell-founded ordering 
an be in terms of the �rst appearan
e of a literal in theinferential part of a node in the path from the starting node to the leaf node N .Here we need only 
onsider a literal l su
h that TransStrong(N) assigns at leastX to Atom(l). This ordering must be well-founded be
ause the generation of thenodes and the inferred literals in ea
h node are by pro
ess of bottom-up inferen
ewhi
h monotoni
ally enlarges the inferential part of nodes. Furthermore, sin
ethe assignment of a truth value to any literal is not greater than the truth valueassigned to its supers
ript, the truth value assigned to a literal must be supported.Lemma 7.4.3 and Lemma 7.4.4 together establish that for any �nite and groundnormal logi
 program P , Pro
Strong returns an abstra
t well-supported model ofP in the sense that it returns a leaf node N whi
h 
an be translated into su
h amodel by TransStrong.We have represented TransStrong(N) as a mapping from the atoms in N to
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the truth values fF; X; Tg. But TransStrong(N) 
an also be represented as theset of literals whi
h evaluate to T in TransStrong(N), with the understanding thatany other literal in N su
h that neither it or its negation is in TransStrong(N)evaluates to X. We take WFS(P ) also to be represented by the set of literals thatare true in the well-founded semanti
s of P . The next lemma states the equivalen
eof TransStrong(N) and WFS(P ).Lemma 7.4.5 Let P be a �nite, ground normal logi
 program. Let N be thenode returned by Pro
Strong operating on P . Let WFS(P ) be the well-foundedsemanti
s of P . Then TransStrong(N) = WFS(P ), where both WFS(P ) andTransStrong(N) are represented as a set of literals.Proof: It follows straightforwardly from Theorem 7.4.1 above that TransStrong(N) �fl j P strongly entails lg. It follows from Theorem 5.4.1 of Chapter 5 thatfl j P strongly entails lg = WFS(P ). Thus it follows that TransStrong(N) �WFS(P ). We show next that WFS(P ) = TransStrong(N).Assume by way of 
ontradi
tion that TransStrong(N) � WFS(P ). So theremust be a non-empty set of literals S � WFS(P ) su
h that no member of Sis in TransStrong(N). The literals of WFS(P ) 
an be strati�ed in terms of thesmallest iteration of theWP operator in the de�nition of the well-founded semanti
sin whi
h the literal �rst appears. Let l 2 S be su
h that no other literal in S o

ursin a lower level of this strati�
ation. Either l = a or l = not a for some atom a.Case 1: l = a. So there must be a rule R 2 P su
h that head(R) =a and body(R) is true in WFS(P ) and every member of body(R) o

urs in alower level of strati�
ation than a. Clearly, sin
e every member of body(R) o
-
urs in a lower level of strati�
ation than a, all members of body(R) must be inTransStrong(N). Hen
e, body(R) must evaluate to T in TransStrong(N). Thus,157



sin
e TransStrong(N) is an abstra
t model of P , TransStrong(N) must assignT to a. But then l 2 TransStrong(N), whi
h 
ontradi
ts the assumption thatl 2 S.Furthermore, it is 
lear from the reasoning above that every atom p 2 S whi
hbelongs to the lowest strata among members of S must also be in TransStrong(N).Case 2: l = not a. So for ea
h rule R 2 P su
h that head(R) = a, body(R)must be false in WFS(P ). For ea
h body(R), there must be a literal p in body(R)su
h that p is false in WFS(P ) (that is, Neg(p) 2 WFS(P )) and Neg(p) belongsto a lower strata or the same strata as not a. (Re
all that Neg(b) = not b andNeg(not b) = b for any atom b.) If Neg(p) belongs to a lower strata than not a,then by the reasoning of Case 1, Neg(p) 2 TransStrong(N). Hen
e, body(R)would evaluate to F in TransStrong(N).On the other hand suppose that Neg(p) is of the same stratum as not a. Theneither p = b or p = not b, for some atom b. Thus, Neg(p) = not b or Neg(p) = b.If p = b, and not b and not a are of the same stratum, and p o

urs in the bodyof a rule with a in the head, then p and a must mutually support ea
h other andthus must belong by virtue of this mutual support to the unfounded set 
omputedin that iteration of the WP operator. But in this 
ase the Falsify operationembedded in Pro
Strong would produ
e both not a and Neg(p) as an inferen
ein N . Hen
e both these literals would belong to TransStrong(N). However, ifp = not b then Neg(p) = b. If not a and Neg(p), i.e. b, are of the same stratum,then b is of the lowest stratum in S. Sin
e, we have already shown that any atomwhi
h is of the lowest stratum in S must also belong to TransStrong(N), it followsthat Neg(p) would be in TransStrong(N). Hen
e, in either 
ase Neg(p) belongsto TransStrong(N). And, thus, sin
e p belongs to body(R), it would evaluate to F
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in TransStrong(N). Hen
e, whether Neg(p) is of the strata or a lower strata thannot a, body(R) evaluates to F in TransStrong(N). Sin
e this is true of ea
h rulewith a in the head, it follows that not a must be a member of TransStrong(N)sin
e TransStrong(N) is well-supported. Hen
e, this 
ontradi
ts the assumptionthat l, that is, not a, is in S.Thus, it follows that there 
annot be a literal l whi
h belongs to WFS(P ) butnot to TransStrong(N). Hen
e TransStrong(N) = WFS(P ).Clearly, the above lemma shows that the pro
edure Pro
Strong run on aground and �nite normal logi
 program P 
omputes its well-founded semanti
sin the sense that it returns a node N whi
h is translated into the well-foundedsemanti
s of P by TransStrong .Now we are in a position to prove the 
ompleteness of MainStrong.Theorem 7.4.2 Let LP be a normal logi
 program. If the pro
edure MainStrongreturns NO for query L to a normal logi
 program LP 0 � LP whi
h 
onsists of theset of rules in LP related to L then LP does not strongly entail L.Proof: Let P = LP 0 [ fquery  Lg.Assume that MainStrong returns NO for query L to a normal logi
 programLP 0 � LP whi
h 
onsists of the set of rules in LP related to L. Then Pro
Strongrun on P must return a nodeN su
h that query evaluates to T in TransStrong(N).Sin
e the only rule with query in the head is query  L and sin
e TransStrong(N)is a well-supported model of P (Lemma 7.4.4), it follows that L must evaluate to Tin TransStrong(N). Thus, by Lemma 7.4.5, it follows that L is true in WFS(P ).Hen
e, P strongly entails L (by Theorem 5.4.1 of Chapter 5). Then LP 0 strongly
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entails L sin
e LP 0 is identi
al to P ex
ept that it does not 
ontain the rulequery  L. It follows then that LP strongly entails L (by Lemma 7.3.1).7.5 Dis
ussionThe proof pro
edure for strong entailment exploits the feature that from the per-spe
tive of strong entailment there is no di�eren
e between CF and CT . In parti
-ular, the proof pro
edure makes no attempt to distinguish the 
ase where a literalis inferred on the basis of eviden
e that evaluates to CF as opposed to the 
asewhere it is inferred on the basis of eviden
e that evaluates to CT . This featureallows the proof pro
edure to eliminate the veri�edness and 
onsisten
y 
he
ksmade by the proof pro
edure for weak entailment.A 
onsisten
y 
he
k is not required be
ause even if a node N 
ontains anassumption l and an inferen
eNeg(l)S, if S evaluates to T or F in TransStrong(N)then l is assigned a value in terms of the value of S; whereas if S evaluates to Xin TransStrong(N) then Neg(l) is assigned X and the assumption l is assignedX and this assignment is 
onsistent be
ause the negation of X is X. Thus, thetranslation of any node is always 
onsistent be
ause we do not distinguish betweenCT and CF .In the 
hapter on weak entailment, a veri�edness 
he
k is required to ensurethat we do not assign CT to a positive assumption a when in fa
t there is notenough eviden
e to assign CT to a, even on the assumption a. This 
an happenonly when the eviden
e for a justi�es assigning at most CF . In 
ase the eviden
ejusti�es assigning at most F then a is assigned F by both Trans of previous 
hapterand TransStrong. But sin
e in this 
hapter TransStrong would assign X to a
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(instead of CT ) and X to the eviden
e for a (instead of CF ), it 
an never happenthat the assignment of X to any atom is not well-supported. Thus, a veri�edness
he
k is not required.Thus, we see that not distinguishing between CF and CT allows us to dis-pense with the 
onsisten
y and veri�edness 
he
ks, whi
h makes it possible forPro
Strong to terminate without ever having to ba
ktra
k. This results in apolynomial time worst-
ase 
omplexity for MainStrong.Pro
Strong expands at most n nodes, where n is the 
ardinality of the Her-brand base of the input program. As we saw in the last 
hapter, the worst-
ase
omplexity of expanding any node requires O(n2) mat
hing operations. Thus, theworst-
ase 
omplexity of answering whether a given program strongly entails aquery is O(n3), where n is the 
ardinality of the Herbrand base of the program.And thus on our algorithm the worst-
ase 
omplexity for answering a query withrespe
t to the well-founded semanti
s of a �nite and ground program is O(n3). This
ompares well with the standard results for the worst-
ase analysis for answeringa query with respe
t to the well-founded semanti
s. For instan
e, [BDK97℄ statethat the worst-
ase 
omplexity for answering a query to a �nite and ground nor-mal logi
 program with respe
t to the well-founded semanti
s is O(nm), where nis the 
ardinality of the Herbrand base of the program and m is the length of theprogram.7.6 SummaryIn this se
tion we summarize the main resear
h 
ontributions of this 
hapter.� We have developed a proof pro
edure for answering whether a ground query161




onsisting of a 
onjun
tion or a disjun
tion of ground literals is strongly en-tailed by a �nite and ground normal logi
 program without any 
ontestations.This proof pro
edure 
onsists in 
onstru
ting a well-supported model of theinput program in a bottom-up fashion by making assumptions and inferringliterals in terms of these assumptions and the input program (Se
tion 7.3).� We have proven that this proof pro
edure is sound and 
omplete with respe
tto the C4 semanti
s for normal logi
 programs (Se
tion 7.4).� We have proven that the worst-
ase 
omplexity of this pro
edure is O(n3),where n is the 
ardinality of the Herbrand base of the program (Se
tion 7.5).� We have proven that this proof pro
edure also 
omputes the well-foundedsemanti
s of a normal logi
 program (Se
tion 7.4).

162



Chapter 8Proof Pro
edure for Normal Logi
 Programswith Contestations
8.1 Introdu
tionIn this 
hapter we des
ribe a proof pro
edure for determining whether a query isweakly entailed by a normal logi
 program augmented with heterogeneous 
ontes-tations and a pro
edure for determining whether a query is strongly entailed by anormal logi
 program augmented with heterogeneous 
ontestations. For both proofpro
edures we assume that the query is a 
onjun
tion or disjun
tion of ground lit-erals and the program is a �nite, ground normal logi
 program. We also assumethat the 
ontestations are ground. These proof pro
edures will be extensions of theproof pro
edures we have developed in previous 
hapters for normal logi
 programswithout 
ontestations.In Se
tion 8.2 we develop the formal apparatus for stating the proof pro
edure.In Se
tion 8.3 we state the algorithms for the two proof pro
edures, and in Se
-tion 8.4 we prove that these pro
edures are sound and 
omplete with respe
t toC4. In Se
tion 8.6 we summarize the main resear
h 
ontributions of this 
hapter.163



8.2 PreliminariesRe
all from Chapter 4 that P + C, where P is a logi
 program and C is a set of
ontestations, is to be understood as the rules of P 
onstrained by the 
ontestationsin C. To say that a ground rule a body is 
onstrained by a 
ontestation B ,!i ais to say that the rule is really understood as being a body; 
ap0i(a; B ,!i a; I),where 
ap0i(a; B ,!i a; I) returns a spe
ial atom. Whi
h spe
ial atom is returnedin this 
ontext depends on the nature of the 
ap fun
tion and the truth valueassigned to B in I. Thus, it is natural to 
ompile the 
ontestations into the bodiesof rules in order to extend our proof pro
edure for normal programs into a proofpro
edure for normal programs with 
ontestations.Before we do this we will simplify our notation. We will write 
ap0i(a; B ,!i a; I)as 
ap0i(B; a). First we 
an drop the referen
e to I sin
e in the 
ontext of this proofpro
edure the 
ap0 fun
tion is always evaluated in a 
ertain node whi
h translatesinto a partial interpretation. Thus, an expli
it referen
e to an interpretation issuper
uous. Se
ondly, 
ap0i(B; a) tells us that the 
ontestation is based on a 
apifun
tion and the Contestor part of it is B and the Contested part is a, so the
ontestation B ,!i a does not have to o

ur as an expli
it argument to the 
ap0ifun
tion. Thus, in our 
urrent 
ontext the expression 
ap0i(a; B ,!i a; I) 
an besimpli�ed to 
ap0i(B; a) without any loss of information or generality.Example 8.2.1 Let P be the ground program fa b; b ; 
 g, let C = f
 ,!3a; b ,!1 
g. Thus, P+C is understood as fa b; 
ap03(
; a); b ; 
 
ap01(b; 
)g.Let I be an interpretation of P + C whi
h assigns T to b and CF to 
. In thisinterpretation 
ap03(
; a) returns CTrue be
ause 
ap3(CF ) = CT and 
ap01(b; 
)returns CFalse be
ause 
ap1(T ) = CF . Hen
e, relative to this assignment of truthvalues to b and 
, P+C 
an be understood as fa b; CTrue; b ; 
 CFalseg.164



Our proof pro
edure is restri
ted to P + C whi
h have C-stable models. Thisrestri
tion will apply both to the proof pro
edure for strong entailment as well asthe proof pro
edure for weak entailment. Re
all that a model of P + C is said tohave a C-stable model if all the 
onstrained rules of P + C evaluate to T in thatmodel. It is easy to see that even if P has C-stable models, P + C may have noC-stable models, as the following example illustrates.Example 8.2.2 Let P = fp  q; q  g. Let C = fp ,!2 qg. P has the uniqueC-stable model whi
h assigns T to both p and q. However, P + C has the uniquewell-supported model whi
h assigns CF to p and CT to q, whi
h is not a C-stablemodel.The 
ontestations are 
ompiled into the programs as follows. Assume that therules are in the disjun
tive form. For ea
h rule a  body1 _ � � � _ bodym and forea
h 
ontestation B1 ,!1 a; B2 ,!2 a; : : : ; Bn ,!n a, we transform the rule intothe rule a body1; 
ap01(B1; a); 
ap02(B2; a); : : : ; 
ap0n(Bn; a) _ � � � _bodym; 
ap01(B1; a); 
ap02(B2; a); : : : ; 
ap0n(Bn; a):In the above rule ea
h Bi is a 
onjun
tion of literals.Example 8.2.3 Let P be the ground programfa b _ not 
; b not d;not e; d true; e 
; 
 not b; f  trueg:Let C = fd ^ not f ,!1 a; e ,!2 a; 
 ,!3 dg. Then P + C isa b; 
ap01(d ^ not f; a); 
ap02(e; a) _ not 
; 
ap01(d ^ not f; a); 
ap02(e; a);b not d;not e; d true; 
ap03(
; d);e 
; 
 not b; f  true 165



Compiling 
ontestations this way into the bodies of rules allows us to extendnaturally the proof pro
edures developed for logi
 programs without 
ontestations.This is be
ause when 
ontestations are 
ompiled into the rules of a logi
 programby means of 
ap fun
tions, the body of the rule is augmented with fun
tions thatreturn spe
ial atoms. So in essen
e a rule with 
ontestations 
ompiled into it willbe just like any other logi
 program rule ex
ept that it will have some spe
ial atomsin the body. However, whi
h spe
ial atom will be in the body of a 
ompiled ruledepends on the 
ontext 
onsisting of the assumptions and inferen
es in whi
h a
ap fun
tion is evaluated. A spe
ial atom is di�erent from any atom only in thatit evaluates to a 
ertain �xed truth value in every interpretation. Hen
e, a logi
program with 
ontestations 
ompiled in the rules is identi
al to a logi
 programsome of whose atoms have �xed truth values; however, whi
h logi
 program it isidenti
al to depends on the 
ontext in whi
h the 
ap fun
tions are evaluated.In the following we won't stri
tly observe the distin
tion between 
ap0i returninga spe
ial atom and 
ap0i returning the truth value to whi
h that spe
ial atomevaluates. Re
all that a 
api fun
tion takes a truth value as an argument andreturns a truth value. A 
ap0i fun
tion takes a 
onjun
tion of literals and an atomas arguments and whi
h truth value it returns depends on the underlying 
apifun
tion. However, in the interest of notational simpli
ity we will write 
ap0i as
api. The 
ontext should make it 
lear whi
h fun
tion is intended.De�nition 8.2.1 A literal l is known in a node N in the impli
it graph of aprogram P if either l or the negation of l is in the assumption part or the inferen
epart of N . More pre
isely, l is known in N if and only if either l0 2 �2(N) orl0S 2 �3(N), where S is a possibly empty supers
ript and l0 is l or the negation ofl. In this 
ontext the negation of a negative literal, not a, is understood to be the166



atom a.A 
ap expression 
api(B; a) is known in a node N if all the literals in B areknown in that node.A normal logi
 program P with a set of 
ontestations C 
ompiled into it 
an havean impli
it graph for it in exa
tly the same manner as for normal logi
 programswithout 
ontestations. Given a node N in the impli
it graph, from a rule of theform a trueS; 
api(Bi; p) in �1(N), the literal aS ^ 
api(Bi;p) 
an be inferred if allmembers of Bi are known in N .Example 8.2.4 Let P+C be fa b _ not 
; b 
ap1(d; b); 
 
ap4(e; 
); d true; e trueg.From the last two rules we 
an infer fdtrue; etrueg. Thus, d and e are known.So we 
an infer b
ap1(d; b) and 

ap4(e; 
). Thus, P + C 
an be redu
ed to the rulea b _ not 
.Note that the above rule of inferen
e does not 
he
k whether 
api(Bi; p) is truebefore inferring aS ^ 
api(Bi;p). Thus, when the assumptions and inferen
es in a nodeare translated into truth values we have no guarantee that a will be assigned CT orT . This raises the issue of what should be the result of mat
hing aS ^ 
api(Bi;p) withnot a in the body of a rule. If we were to follow the mat
hing rules of Chapter 6,the result would be falseS ^ 
api(Bi;p). But this 
an lead to wrong results in a 
asewhere both S and 
api(Bi; p) evaluate to one of the designated truth values, CTor T . The example below makes this point.Example 8.2.5 Let P +C be as in Example 8.2.4 above. We saw in that examplethat by the rules for inferring supers
ripted literals we 
an inferfdtrue; etrue; b
ap1(d; b); 

ap4(e; 
)g167



and P + C 
an be redu
ed to fa b _ not 
g.Mat
hing b
ap1(d; b) with b in the body of the rule a  b _ not 
 results intrue
ap1(d; b). But if mat
hing 

ap4(e; 
) with not 
 in the body of that rule were toresult in false
ap4(e; 
), then the rule would be
ome a true
ap1(d; b)_false
ap4(e; 
).In general, trueS1 _ falseS2 evaluates to trueS1, and so the body of the rule a  b _ not 
 would be simpli�ed to a  true
ap1(d; b) from whi
h a
ap1(d; b) wouldbe inferred. But this would not produ
e a model of P + C when the inferen
esare translated into a C4 model. Clearly, d and e should be assigned T . Thus,
ap1(d; b) should evaluate to CF and 
ap4(e; 
) should evaluate to F . Hen
e, bshould be assigned CF and 
 would be assigned F . So a would be assigned CFbe
ause 
ap1(d; b) evaluates to CF and be
ause we have inferred a
ap1(d; b). But
learly this is in
orre
t be
ause if 
 is assigned F then a should be assigned T .As in Chapter 7, this problem 
an be avoided if mat
hing 

ap4(e; 
) with not 
results in truenot 
ap4(e; 
) instead of false
ap4(e; 
). Now the body of the rule be
omestrue
ap1(d; b)^not 
ap4(e; 
). Thus, a
ap1(d; b)^not 
ap4(e; 
) would be inferred instead ofa
ap1(d; b). In this 
ase a would be 
orre
tly assigned T when the inferen
es aretranslated into a C4 model.In light of the above example, as in Chapter 7, we revise the rules of mat
h-ing as follows. A supers
ripted literal aS, where S 
an 
ontain 
ap expressions,mat
hes with a in the body of a rule resulting in trueS and mat
hes with not ain the body resulting in truenot S. When S is empty we shall regard it as impli
-itly 
onsisting of the spe
ial atom true. Thus, the result of mat
hings 
an onlyprodu
e trueSi, for some supers
ript Si whi
h 
an be the negation of a disjun
tionof 
onjun
tions. So by the rule of inferen
e stated above, only the supers
iptedatoms 
an be inferred. But this does not mean that when the inferen
es are trans-168



lated into an interpretation all atoms will be assigned CT or T . If a supers
riptevaluates to CF or F the supers
ripted atom will be assigned one of these truthvalues. Thus, the inferen
e of a supers
ripted atom in a node may turn out to bethe inferen
e of an (unsupers
ripted) negative literal when the node is translatedinto a C4 interpretation.The above des
ribed 
hanges in the rules for mat
hing and for inferring super-s
ripted literals as well as the presen
e of 
ap expressions in the bodies of rulesrequires us to revise the de�nition of the T P operator given in Chapter 6 andChapter 7.De�nition 8.2.2 Let P be a ground normal logi
 program and let C be a set of
ontestations. Let I be a set of literals 
onsisting of assumptions and supers
riptedliterals. Assume that the rules of P + C are written asa b11 ; � � � ; b1n ; 
1; � � � ; 
m _ � � � _ bk1 ; � � � ; bkn ; 
1; � � � ; 
mwhere 
1; � � � ; 
m are all 
ap expressions. Then,T PC(I) = I [ faS j a body 2 P+C and mat
hing literals in body with literalsin I results in a trueSgwhere body is of the form b11 ; � � � ; b1n ; 
1; � � � ; 
m _ � � � _ bk1 ; � � � ; bkn; 
1; � � � ; 
mand S = S11 ^ � � � ^ S1n ^ 
1 ^ � � � ^ 
m _ � � � _ Sk1 ^ � � � ^ Skn ^ 
1 ^ � � � ^ 
m andwhere ea
h of 
1; � � � ; 
m are known in I and mat
hing ea
h bik with literals in Iresults in trueSik .Using this de�nition of the T PC operator, we 
an de�ne the least �xed point ofthe T PC operator (lfp(T PC)) in a manner 
ompletely analogous to that de�nitionin Chapter 6. 169



Example 8.2.6 As in Example 8.2.3 above let P + C bea b; 
ap1(d ^ not f; a); 
ap2(e; a) _ not 
; 
ap1(d ^ not f; a); 
ap2(e; a)b not d;not ed true; 
ap3(
; d)e 

 not bf  trueLet I = ftrue; not bg. ThenT PC(I) = I [ ff true; 
not bg:T PC(T PC(I)) = T PC(I) [ fenot b; d
ap3(
; d)g:T PC(T PC(T PC(I))) = T PC(T PC(I)) [ fbnot 
ap3(
; d) ^ bglfp(T PC(I)) = T PC(T PC(T PC(T PC(I)))) = T PC(T PC(T PC(I))) [fanot 
ap3(
; d)^b^
ap1(d^not f; a)^
ap2(e; a) _ b^
ap1(d^not f; a)^
ap2(e; a)gUsing this de�nition of T PC and lfp(T PC) we 
an de�ne the � operator andDes
endants of a node N in a manner 
ompletely analogous to those de�nitionsin Chapter 6.The algorithm for weak entailment will be exa
tly same as the algorithm forweak entailment without 
ontestations. However, in 
he
king for 
onsisten
y, sta-bility and veri�edness of a node we 
annot as in the 
ase of logi
 programs without
ontestations rely on a purely synta
ti
 test. In that 
ase if the node 
ontained pSand not p is part of every disjun
t in pS then the node 
an be regarded as unstable,and if a node 
ontained pS1 and not pS2 then the node 
an be regarded as in
on-sistent so long as not p is not part of every disjun
t in S1. But in the 
ase of logi
programs with 
ontestations we 
annot assume that all supers
ripts will evaluate170



to CT or T . What truth value a supers
ript will evaluate to depends on what the
ap fun
tions in the supers
ript evaluate to, and there is no way of determiningthis purely synta
ti
ally. Hen
e, the 
onsisten
y, stability and veri�edness testshave to be done by translating ea
h node into an interpretation, whi
h may be apartial interpretation. The translation algorithm, Trans, of Chapter 6 
an be usedfor this purpose as it 
an handle partial interpretations. However, that algorithmwas written with the assumption that the node to be translated is a 
onsistent andveri�ed node. Hen
e the algorithm has to be modi�ed to dete
t unstable, in
on-sistent or non-veri�able nodes. The algorithm TransCon, given below, is designedto do that. But �rst we need to rede�ne the 
on
epts of 
onsisten
y, veri�ednessand stability as earlier these 
on
epts were de�ned purely synta
ti
ally.Re
all that given the new rules for inferring literals in a node, all inferen
esare of supers
ripted positive literals. However, an assumption 
an be a positive ora negative literal.De�nition 8.2.3 A node N is unstable if and only if the inferen
e part of N
ontains a literal aS su
h that S j= not a and TransCon(N)(S) evaluates to atleast CT .De�nition 8.2.4 A node N is in
onsistent if and only if the assumption part ofN 
ontains the negative assumption not a and the inferen
e part 
ontains aS su
hthat TransCon(N)(S) evaluates to at least CT and S 6j= not a.The requirement that S 6j= not a is to distinguish in
onsisten
y from unstabilityin a node.De�nition 8.2.5 A positive assumption a is said to be veri�ed relative to a nodeN if and only if there exists a literal aS in the inferen
e part of N su
h that171



TransCon(N)(S) evaluates to at least CT . A node N is said to be veri�ed if allits positive assumptions are veri�ed relative to N . A positive assumption a is saidto be unveri�able in a node N if and only if there exists a literal aS in the inferen
epart of N su
h that TransCon(N)(S) evaluates to at most CF .8.3 AlgorithmsThe above de�nitions suggest straightforward tests for determining whether a nodeis 
onsistent, stable, and not unveri�able by translating the node into a partialinterpretation. The algorithm for translating a node into a partial interpretationis given below. The tests for stability, 
onsisten
y and veri�ability are built intothe TransCon algorithm. The algorithm uses the idea of a supers
ript expressionsimplifying to true or to not true, whi
h is de�ned below.De�nition 8.3.1 An expression S1 ^ � � � ^ Sn simpli�es to true if ea
h Si, i 2f1; : : : ; ng, is the expression true. An expression S1 _ � � � _ Sn simpli�es to true ifany Si simpli�es to true. An expression S1 ^ � � � ^ Sn simpli�es to not true if atleast one Si, i 2 f1; : : : ; ng, is the expression not true. An expression S1_� � �_Snsimpli�es to not true if ea
h Si simpli�es to not true.TransCon(N)1. I  ;2. Inf  �3(N)3. Assp �2(N)4. For ea
h inferen
e aS 2 �3(N) s.t. S simpli�es to truebegin
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I  (I [ fa 7! Tg)Delete aS from Infend5. For ea
h inferen
e aS 2 �3(N) s.t. S simpli�es to not truebeginI  (I [ fa 7! Fg)Delete aS from Infend6. While Inf 
ontains any literal aS su
h that I(S) has a value, dobegin whileChoose an aS 2 Inf su
h that I(S) has a valueI  (I [ fa 7! I(S)g)Delete aS from Infend while7. For ea
h positive assumption a s.t. I(a) is de�nedif I(a) = F then RETURN \Node not veri�able" and TERMINATEelse Assp Assp� fag8. For ea
h negative assumption not a s.t. I(a) is de�nedif I(a) = T then RETURN \Node not 
onsistent" and TERMINATEelse Assp Assp� fnot ag**Comment: Up to this point I assigns only T or F to atoms.**9. For ea
h positive assumption a 2 Assp,I  (I [ fa 7! CTg)10. For ea
h negative assumption not a 2 Assp,I  (I [ fa 7! CFg)
173



11. While Inf is not empty dobegin whileChoose an aS 2 Inf su
h that I(S) is de�nedIf I(a) is de�ned **Comment: a or not a has been assumed**then if I(S) < I(a) then RETURN \Node not veri�able"and TERMINATEelse if I(S) 2 fCT; Tg and I(a) 2 fCF; Fg then RETURN \Node not
onsistent or not stable" and TERMINATEelse I  (I [ fa 7! I(S)g)Delete aS from Infend whileExample 8.3.1 Let P + C be as in Example 8.2.3. In Example 8.2.6 we see thatfor this P+C starting with the assumption ftrue; not bg we arrive at the inferen
eset whi
h is given by lfp(T PC(ftrue; not bg). This is the setff true; 
not b; enot b; d
ap3(
; d); bnot 
ap3(
; d)^b;anot 
ap3(
; d)^b^
ap1(d^not f; a)^
ap2(e; a) _ b^
ap1(d^not f; a)^
ap2(e; a)gTransCon would translate the node 
ontaining this assumption set and thisinferen
e set as follows:f 7! T (by step 4)b 7! CF (by step 10)
 7! CT and e 7! CT (by step 11)
ap3(
; d) evaluates to CT , so d 7! CT (by step 11)not 
ap3(
; d) ^ b evaluates to CF , hen
e the initial assignment of CF to b isstable and 
onsistent.
ap1(d ^ not f; a) ^ 
ap2(e; a)g evaluates to CF and so not 
ap3(
; d) ^ b ^174




ap1(d ^ not f; a) ^ 
ap2(e; a) _ b ^ 
ap1(d ^ not f; a) ^ 
ap2(e; a) evaluatesto CF , and thus a 7! CF .As in the 
ase of the weak entailment proof pro
edure for logi
 programs, wewill assume that all the rules in P +C are relevant to the query posed to the proofpro
edure. The de�nition of a rule relevant to a query that was given in Chapter 6needs to be modi�ed to take 
ontestations into a

ount. Before we do that we needto modify the de�nition of Atoms(R) to take into a

ount rules with 
ap fun
tionsin their bodies. This is done in the next de�nition.De�nition 8.3.2 Let R be the rule a b1; : : : ; bn; 
api(B; a). Then Atoms(R) =fa; b1; : : : ; bng [ Atoms(B):Now we are in a position to rede�ne the idea of a rule relevant to a query.De�nition 8.3.3 A rule R 2 P + C is relevant to answering a query l, where l isan atom, i�� l 2 Atoms(R), or� there is an atom p su
h that p is relevant to answering l and p 2 Atoms(R),where any atom p is relevant to answering any atom l if and only if p 2Atoms(Ri) where Ri is relevant to answering l.Although a query L 
an be a 
onjun
tion or disjun
tion of literals, the de�nitionof a relevant rule above in terms of an atomi
 query will still serve our purposebe
ause we assume that we add the rule query  L to the program and answerthe original query L by answering the query query.The pro
edure Pro
 stated below is the same pro
edure as the weak entailmentproof pro
edure for logi
 programs without 
ontestations. We assume that the175




he
ks for 
onsisten
y, stability and veri�edness are made using the TransConpro
edure given above.Pro
(N)1. If �(N) is unstable or in
onsistent or unveri�able or (�1(�(N)) 6= ;and (�4(�(N)) = ; or N has no unvisited des
endants))then if Parent(N) = nil then RETURN nil else Pro
(Parent(N))2. else if �1(�(N)) = ; then RETURN �(N)3. else4.begin5. Create unvisited des
endant N 06. Status(N 0) visited7. Parent(N 0) N8.Pro
(N 0)9. endThe pro
edure Pro
 is invoked by the pro
edure MasterStable, whi
h is thesame pro
edure as the pro
edure of that name in Chapter 6.The algorithm MasterStable 
reates the starting node using CreateNode andinvokes Pro
, whi
h does all the real work.MasterStable(P , lit)SN  CreateNode(P , lit)Parent(SN)  nilPro
(SN)
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As in the 
hapter on the weak entailment proof pro
edure for logi
 programswithout 
ontestations, the pro
edure MasterStable is invoked by the pro
edureMainCW. In this pro
edure we assume that the 
ontestations are 
ompiled intothe program.MainCW(P , C, L)1. PC  P with C 
ompiled into it.2. PC  PC [ fquery  Lg3. If MasterStable(PC, not query) 6= nil then Return NO4. else if MasterStable(PC, query) 6= nil then Return YES5. else Return \Program has no 
anoni
al C-Stable models"Example 8.3.2 Let P + C be as in Example 8.2.3. Let query be a _ not b.Pro
edure MainCW begins by adding the rule query  a _ not b to P +C. It next exe
utes MasterStable(PC;not query), whi
h returns nil. So nextMasterStable(PC; query) is exe
uted whi
h returns a stable, 
onsistent and ver-i�ed node 
ontaining the assumptions fquery; not bg and the inferen
e set 
on-sisting offquerynot b _ not 
ap3(
; d)^b^
ap1(d^not f; a)^
ap2(e; a) _ b^
ap1(d^not f; a)^
ap2(e; a);f true; 
not b; enot b; d
ap3(
; d); bnot 
ap3(
; d)^b;anot 
ap3(
; d)^b^
ap1(d^not f; a)^
ap2(e; a) _ b^
ap1(d^not f; a)^
ap2(e; a)g. Thus,MainCWreturns YES to the original query. 177



Strong EntailmentThe proof pro
edure for strong entailment will be very similar to the proof pro-
edure of the previous se
tion. Unfortunately, this proof pro
edure 
annot be assimple as the strong entailment proof pro
edure of Chapter 7 for normal logi
programs without 
ontestations. That proof pro
edure depended on a translationalgorithm, TransStrong, whi
h assigned T or F only to those inferen
es in a leafnode whi
h 
ould be inferred independently of any assumptions. This ensured thatTransStrong assigns T or F to only those atoms that would be assigned T or Fin every well-supported model. Thus, the strong entailments of the program 
anbe determined just in terms of the model 
onstru
ted by TransStrong. However,in the 
ase of logi
 programs with 
ontestations an atom may be inferred on thebasis of its 
ontestor having a 
ertain truth value, and it may have that truth valueon the basis of an assumption. Thus, the translation algorithm may be for
ed toassign T or F to an atom whi
h is not assumption free. Thus, the model 
omputedby the translation algorithm 
an assign T or F to an atom, whi
h may have a dif-ferent truth value in other well-supported models of the program. Furthermore,the simpli
ity of the proof pro
edure of Chapter 7 depended on abstra
ting awaythe di�eren
e between CF and CT . But in the 
ase of 
ontestations we 
annotabstra
t away the di�eren
e between CF and CT be
ause the underlying 
ap fun
-tion on whi
h the 
ontestation is based may return di�erent values for CF andCT . The following example illustrates these points.Example 8.3.3 Let P be the ground program fa ; b not 
; 
 not bg. LetC = fb ,!1 ag. Then given the assumption not b we 
an infer178



f
not b; bnot not b; a
ap1(b;a)gClearly, in any translation algorithm the value assigned to a should depend onthe value assigned to b. But the value assigned to b depends on not b being anassumption. For instan
e, TransCon would assign CF to b and would thus assignT to a. Thus, the assignment of T to a 
annot be independent of any assumptions.Furthermore, the value assigned to a would have to be di�erent, given the de�nitionof the 
ap1 fun
tion, if b had been assigned CT . This illustrates that in this 
ontextwe 
annot abstra
t away from the di�eren
e between CF and CT .The strong entailment proof pro
edure for logi
 programs with 
ontestationswill �rst look for a 
anoni
al model in whi
h query is F or CF . It will return NOif it �nds su
h a model, else it looks for a model in whi
h query is CT . If it �ndssu
h a model then it returns NO, else it looks for a model in whi
h query is T . Ifit �nds su
h a model then it returns YES, else it returns the message \Programhas no C-stable models."The pro
edure looks for a model in whi
h query is F or CF by running pro-
edure MasterStable(P 0;not query), where P is the original program P with the
ontestations in C 
ompiled into the rules of P . The pro
edure looks for a modelin whi
h query is CT by running pro
edure MasterStableC(P 0; query), whi
h isthe same as the pro
edure MasterStable ex
ept that instead of invoking the pro-
edure Pro
 it invokes pro
edure Pro
Che
k de�ned below, whi
h is the same asthe pro
edure Pro
 with an additional 
he
k whi
h 
he
ks ea
h node Ni to see ifin TransCon(Ni) query is T . If Ni has this property then Pro
Che
k ba
ktra
ks.This ensures that if Pro
Che
k returns a node N , then in the model TransCon(N)179



query is CT . The main pro
edure then looks for a model in whi
h query is T byrunning MasterStable(P 0; query). If a node N is returned by MasterStable atthis point, we 
an infer that in TransCon(N) query must be T as we have alreadyruled out the possibility of a 
anoni
al model in whi
h query is CT .Pro
edure MainCS(P; C; L)1. PC  P with C 
ompiled into it2. PC  PC [ fquery  Lg3. If MasterStable(PC, not query) 6= nil then Return NO4. else if MasterStableC(PC, query) 6= nil then Return NO5. else if MasterStable(PC, query) 6= nil then Return YES6. else Return \Program has no 
anoni
al C-Stable models"Pro
edure MainCS uses pro
edure MasterStableC whi
h 
reates the startingnode and invokes pro
edure Pro
Che
k. Pro
eduresMasterStable and Pro
Che
kare des
ribed below.MasterStableC(P , lit)1. SN  CreateNode(P , lit)2. Parent(SN)  nil3. Pro
Che
k(SN)
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Pro
edure MasterStableC uses pro
edure Pro
Che
k whi
h is des
ribed be-low.Pro
Che
k(N)1. If �(N) is unstable or in
onsistent or unveri�able or (�1(�(N)) 6= ;and (�4(�(N)) = ; or N has no unvisited des
endants)) orTransCon(�(N))(query) = Tthen if Parent(N) = nil then RETURN nil else Pro
(Parent(N))2. else if �1(�(N)) = ; then RETURN �(N)3. else4.begin5. Create unvisited des
endant N 06. Status(N 0) visited7. Parent(N 0) N8.Pro
(N 0)9. endExample 8.3.4 Let P +C be as in Example 8.2.3. As in Example 8.3.2, let querybe a _ not b. But now we are trying to determine whether the query is stronglyentailed by P+C. Pro
edureMainCS begin by adding the rule query  a _ not bto P + C. It next exe
utes MasterStable(PC;not query), whi
h returns nil. Sonext MasterStableC(PC; query) is exe
uted whi
h returns a stable, 
onsistentand veri�ed node 
ontaining the assumptions fquery; not bg and the inferen
e set
onsisting offquerynot b _ not 
ap3(
; d)^b^
ap1(d^not f; a)^
ap2(e; a) _ b^
ap1(d^not f; a)^
ap2(e; a);f true; 
not b; enot b; d
ap3(
; d); bnot 
ap3(
; d)^b;181



anot 
ap3(
; d)^b^
ap1(d^not f; a)^
ap2(e; a) _ b^
ap1(d^not f; a)^
ap2(e; a)g. From Example 8.3.1we know that TransCon assigns CF to both a and b. Thus, query is assigned CT .Hen
e, MainCS returns NO to the original query.8.4 ProofsIn this se
tion we prove the 
orre
tness of the weak entailment proof pro
edure andthe strong entailment proof pro
edure for logi
 programs with 
ontestations. Giventhe 
lose similarity of the weak entailment proof pro
edure for logi
 programs with
ontestations and logi
 programs without 
ontestations, the proof of 
orre
tness ofthe weak entailment proof pro
edure will be very similar to the proofs of 
orre
tnessof the weak proof pro
edure for logi
 programs without 
ontestations. Many ofthe lemmas and theorems that appeared in those proofs will also appear here.Some of the proofs of these lemmas and theorems will have to be slightly modi�edbe
ause in this 
hapter we use slightly di�erent rules of mat
hing and for inferringsupers
ripted literals.First we prove the 
orre
tness of the weak entailment proof pro
edure for logi
programs with 
ontestations and then we prove the 
orre
tness of the strong en-tailment proof pro
edure for logi
 programs with 
ontestations.Let P be a ground, �nite, normal logi
 program and let C be a set of ground
ontestations. First, we show that if the impli
it graph of P + C 
ontains a 
on-sistent, stable, veri�ed leaf node then MasterStable will rea
h it. Se
ond, we showthat the transformation of su
h a node is a 
anoni
al C-stable model of P + C.Third, we show that all 
anoni
al C-stable models of P + C are represented, asde�ned in Chapter 4, by a stable, 
onsistent and veri�ed node in the impli
it graph.
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Lemma 8.4.1 Let P be a ground, �nite, normal logi
 program and let C be a setof ground 
ontestations. If the impli
it graph of P+C 
ontains a 
onsistent, stable,veri�ed leaf node then MasterStable will return that node.Proof: P + C is a �nite grounded program. Thus, the impli
it graph of P + C
ontains only a �nite number of nodes. MasterStable does a depth-�rst sear
hfor a leaf node with the appropriate properties. But for a �nite graph depth-�rstsear
h is guaranteed to dis
over any node with any spe
i�ed properties if there issu
h a node in the graph, provided the depth-�rst sear
h pro
edure has the 
orre
tme
hanisms for dete
ting the spe
i�ed properties. In our 
aseMasterStable invokesPro
 to do the depth-�rst sear
h, and Pro
 invokes TransCon to test for instability,in
onsisten
y, and nonveri�ability. Sin
e the tests used to determine whether anode has these properties are dire
tly based on the de�nition of these 
on
epts,obviously TransCon is a 
orre
t me
hanism for dete
ting these properties. Hen
e,if the impli
it graph of P + C 
ontains a 
onsistent, stable, veri�ed leaf node thenMasterStable will return that node.Lemma 8.4.2 Let P be a ground, �nite, normal logi
 program and let C be a set ofground 
ontestations. If the impli
it graph for P +C 
ontains a 
onsistent, veri�edleaf node N then TransCon(N) is a well-supported model of P + C.Proof: Let N be a 
onsistent, and veri�ed leaf node in the graph for P + C.First, we show TransCon(N) is a model of P + C. Assume by way of 
on-tradi
tion that TransCon(N) is not a model of P + C. So P + C must 
ontain arule a body1 _ � � � _ bodymsu
h that 183



� Case 1: TransCon(N)(a) = F and TransCon(N)(body1 _ � � � _ bodym) >F , or� Case 2: TransCon(N)(a) = CT or CF and TransCon(N)(body1 _� � � _ bodym) = T .Case 1: TransCon assigns F to a only if �3(N) 
ontains anot true. But thisis possible only if ea
h of body1; : : : ; bodym evaluates to truenot true when mat
hedwith the assumptions and inferen
es of N and when all the 
ap fun
tions in thebodies are evaluated. In this 
ase Trans would assign F to at least one literal inea
h of body1; : : : ; bodym. Thus, TransCon(N)(body1 _ � � � _ bodym) > F is notpossible, and, hen
e, Case 1 is not possible.Case 2: If TransCon(N)(body1 _ � � � _ bodym) = T then there must be ani 2 1; : : : ; m su
h that TransCon(N)(bodyi) = T . So ea
h literal bij 2 bodyimust be assigned T by TransCon(N). So for ea
h su
h literal bij , if it is a 
apfun
tion then it must evaluate to true and if it is not a 
ap fun
tion then theremust be a literal btrueij in the inferential part of N . Hen
e the inferential part of Nwould also 
ontain atrue. Thus, TransCon would assign T to a. Hen
e Case 2 isalso not possible.Thus, TransCon(N) must be a model of P + C.Next we show that TransCon(N) is a well-supported model of P+C. The well-founded ordering on the atoms of P+C 
an be in terms of the earliest nodeNi in thepath from the starting node to the leaf node N in whi
h an atom in the inferentialpart of Ni is �rst assigned a value greater than F by TransCon. This orderingmust be well-founded be
ause the generation of the nodes and the inferred atoms
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in ea
h node are by pro
ess of bottom-up inferen
e whi
h monotoni
ally enlargesthe inferential part of nodes. Furthermore, sin
e the assignment of a truth valueto any literal is not greater than the truth value assigned to its supers
ript, thetruth value assigned to a literal must be supported.Lemma 8.4.3 Let P be a ground normal logi
 program and C be a set of 
ontes-tations. If the impli
it graph for P + C 
ontains a stable, 
onsistent, veri�ed leafnode N then TransCon(N) is a well-supported C-stable model of P + C.Proof: Assume that N is a stable, 
onsistent, and veri�ed leaf node. We havealready shown that TransCon(N) is a well-supported model. Sin
e N is stable,the inferential part of N 
ontains no literal aS su
h that S j= not a and S evaluatesto at least CT in TransCon(N). Thus, for every literal aS TransCon would assigna the truth value of S. Let S be the disjun
tion S1 _ � � � _ Sn. So there must be arule R in P + C R = a body1 _ � � � _ bodynsu
h that the assumption and inferen
es of N are mat
hed with the literals in thebody of R the result is a trueS1 _ � � � _ trueSn:Clearly then ea
h bodyi would evaluate to the truth value that Si evaluates to inTransCon(N). Thus, body(R) would evaluate to the maximum offTransCon(S1); : : : ; T ransCon(Sn)g:But this is what S would evaluate to. Sin
e a is given the truth value S evaluatesto, a and body(R) would have the same truth value in TransCon(N). Thus, every
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R in P + C would evaluate to T . Hen
e TransCon(N) is C-stable.As in the weak entailment proof pro
edure for logi
 programs without 
ontesta-tions, the proof pro
edure in this 
hapter presupposes that if MasterStable 
annot�nd a 
onsistent, veri�ed and stable leaf node N su
h that query (or, not query)is in the assumption or inferen
e part of N then the program 
ontains no 
anon-i
al C-stable model I su
h that I(query) � CT (resp., I(not query) � CT ).Lemma 8.4.1 tells us that if the impli
it graph for P 
ontains a leaf node of thatsort then MasterStable will �nd it. But we 
an have no assuran
e that if Mas-terStable does not �nd a leaf node of that sort then the program has no C-stable
anoni
al model unless we 
an show that every C-stable 
anoni
al model is repre-sented in the impli
it graph. Ideally, we would like to prove that for ea
h C-stable
anoni
al model I of P + C there exists a leaf node N in the impli
it graph forP + C su
h that TransCon(N) = I. However, this 
laim would not be true of amodel I whi
h assigns only T or F to atoms be
ause TransCon also assigns CTor CF to atoms. Nevertheless, we show below in Lemma 8.4.4 that every C-stable
anoni
al model is represented in the impli
it graph in the sense of `representation'de�ned in De�nition 9.4.1 in Chapter 6.Lemma 8.4.4 Let P be a normal logi
 program and let C be a set of 
ontestations.For ea
h well-supported C-stable model I of P + C there exists a leaf node N inthe impli
it graph for P + C su
h that TransCon(N) is 
ongruent with I and thusN represents I.Proof: Sin
e the graph is impli
it, a node N exists in the graph only if there is apath from the starting node, hP; ftrueg; ;; (HBP [ not HBP )i, to N . Re
all thatin the path from the starting node to a leaf node ea
h new node is generated by186



adding a new assumption to the result of applying the �0 operator to the previousnode and by performing some housekeeping operations. Let N be any leaf node inthe graph su
h that the path from the starting node to N satis�es the followingproperty: For any node Ni in the path, if its 
hild in the path is obtained by addingan assumption l to the result of applying the �0 operator to Ni, then l must besu
h that I(l) � CT . That is, the path is generated using the strategy of makinga new assumption l only if I(l) � CT unless, of 
ourse, there are no assumptionsleft to be made, in whi
h 
ase the new node is generated by applying the Falsifyoperation to the program part of Ni.We show below that a leaf node N rea
hed by this strategy1. is a stable, 
onsistent and veri�ed node, and2. is su
h that TransCon(N) is 
ongruent with I.We prove thatN is a stable, 
onsistent and veri�ed node and that TransCon(N)is 
ongruent with I by indu
tively proving that ea
h node Ni in the path to N(in
luding N) is 
onsistent,stable and not unveri�able, and indu
tively provingthat, for any atom a, if aS 2 �2(Ni) [ �3(Ni) and TransCon(Ni)(S) � CTi� I(a) � CT . Thus, N must be veri�ed as well as being 
onsistent and stableand N must represent I. The indu
tion is done in terms of the order in whi
hthe nodes appear in the path N0; : : : ; Ni; : : : ; Nn, where N0 is the starting node,hP; ftrueg; ;; (HBP [ not HBP )i, and Nn is N .Base Case: i = 0. Clearly, the starting node, N0, is stable, 
onsistent and notunveri�able. Similarly, sin
e �2(N0) [ �3(N0) = ftrueg it is trivially true that ifan atom aS 2 �2(N0) [ �3(N0) then I(a) � CT i� TransCon(N0)(S) � CT .Indu
tive Case: Assume that the 
laim is true for all Nk su
h that k < i. To187



show that the 
laim is true for Ni.First, we show that if an atom aS 2 �2(Ni) [ �3(Ni) then TransCon(Ni)(S) �CT i� I(l) � CT . If a 2 �2(Ni) (i.e., if a is an assumption) then by the strategyfor sele
ting assumptions it follows that I(a) � CT and sin
e a is understood tohave the supers
ript true, the 
laim follows trivially.Suppose, therefore, that aS 2 �3(Ni) (i.e., aS is an inferen
e). If aS 2 �3(Nk),where k < i, then the 
laim is true by the indu
tive assumption. Suppose thereforethat aS 62 �3(Nk), for any k < i. So aS must o

ur in some iteration of the T 0Poperator as applied to �2(Ni�1) [ �3(Ni�1). Let S = S1 _ � � � _ Sn.Either TransCon(Ni)(S) � CT or not. If TransCon(Ni)(S) � CT then thereis a disjun
t Sk in S su
h that TransCon(Ni)(Sk) � CT . So P + C must 
ontaina rule a body1 _ � � � _ bodyk _ � � � _ bodynsu
h that evaluating the 
ap fun
tions in bodyk and mat
hing the literals in bodykwith the assumptions and inferen
es of Ni�1 results in trueSk . So 
orrespondingto ea
h aj in Atoms(bodyk) there must be a literal aSkjj in an earlier iteration ofT 0P (�2(Ni�1) [ �3(Ni�1)) and ea
h su
h Skj must evaluate to at least CT inTransCon(Ni). Thus, by the indu
tive assumption I(aj) � CT for all su
h aj.Thus, I(bodyk) � CT . Sin
e I is C-stable, it follows therefore that I(a) � CT .If it is not the 
ase that TransCon(Ni)(S) � CT , then TransCon(Ni)(S) � CF .In that 
ase ea
h disjun
t Sk in S is su
h that TransCon(Ni)(Sk) � CF . So atleast one member Skj of ea
h Sk must evaluate to CF or less in TransCon(Ni)and at least one literal lSkj from ea
h bodyk must be in an earlier iteration ofT 0P (�2(Ni�1) [ �3(Ni�1)). Thus, by the indu
tive assumption I(l) � CF . So
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I(bodyk) � CF for all k from 1 to n. Sin
e I is well-supported, then I(a) � CF .By a similar argument it is easy to see that the same remarks apply to any literalthat belongs to any iteration of the T P operator as applied to �2(Ni�1) [ �3(Ni�1).Hen
e, we have shown that if aS 2 �2(Ni) [ �3(Ni) then TransCon(N)(S) �CT i� I(a) � CT .Se
ond, we show that Ni is not unveri�able. Let a be a positive assumptionin Ni. So I(a) � CT . But then if aS is in �3(Ni) then S 
annot evaluate to lessthan CT in TransCon(Ni) otherwise, as we have shown above, I(a) � CF . Buta 
annot both be greater and lesser than CT in I. Thus, Ni is not unveri�able.Third, we show that Ni is 
onsistent. Let not a be a negative assumption inI. So I(not a) � CT . Assume by way of 
ontradi
tion that aS 2 �3(Ni) andTransCon(Ni)(S) � CT and S 6j= not a. But then, as we have shown by theindu
tive proof above, I(a) � CT . But both a and not a 
annot be CT or greaterin I. Thus, Ni is 
onsistent.Fourth, we show that Ni is stable. Suppose by way of 
ontradi
tion thatNi is not stable. So there exists an aS 2 �3(Ni) su
h that S j= not a andTransCon(Ni)(S) � CT . By the indu
tive proof above in that 
ase I(a) � CT .However, if S j= not a then not a is in S, and so not a must be an assumptionand hen
e I(not a) � CT . But this is a 
ontradi
tion. Hen
e Ni must be stable.This 
ompletes the indu
tive step. Thus, we have shown by indu
tion thatthe leaf node N is stable, 
onsistent and not unveri�able, and su
h that if aS 2�2(N) [ �3(N) and TransCon(N)(S) � CT i� I(a) � CT . It remains to beshown that N is veri�ed. 189



We know that N is not unveri�able. This means that for any positive assump-tion a, there is no inferen
e aS in N su
h that TransCon(N)(S) � CF . But sin
e�1(N) (the program part) is empty, it follows that for any atom a 2 HBP , aS,where S is some supers
ript, belongs in �3(N). Either TransCon(N)(S) � CFor TransCon(N)(S) � CT . But as remarked above it 
annot be the 
ase thatTransCon(N)(S) � CF if a is an assumption and aS is in �3(N). So in that 
aseTransCon(N)(S) � CT . So ea
h positive assumption is veri�ed in N and thus Nis veri�ed.We show that N represents I. Sin
e N is stable, 
onsistent and veri�ed, forany aS 2 �3(N), TransCon(N)(a) = TransCon(N)(S). As shown in the in-du
tive proof above, Trans
on(N)(S) � CT i� I(a) � CT . This implies thatTranCon(N)(a) � CT i� I(a) � CT . Whi
h implies that TranCon(N)(a) � CFi� I(a) � CF . So TransCon(N) is 
ongruent to I, and thus N represents I.Now we are in a position to prove the 
orre
tness of the main algorithm.Theorem 8.4.1 Let P be a normal logi
 program, C be a set of 
ontestations, andlet L be a query to P + C. If MainCW(P, C, L) returns \NO" then P + C doesnot weakly entail L, if MainCW(P, C, L) returns \YES" then P +C weakly entailsL, and if MainCW(P, C, L) returns \Program has no 
anoni
al C-stable models"then P + C has no 
anoni
al stable models.The proof of the above theorem is entirely analogous to the proof of the 
or-responding theorem about the 
orre
tness of the weak entailment proof pro
edurefor logi
 programs without 
ontestations (Theorem 6.4.2).Next we prove the 
orre
tness of the strong entailment proof pro
edure for190



normal logi
 programs with 
ontestations.Theorem 8.4.2 Let P be a normal logi
 program, C be a set of 
ontestations, andlet L be a query to P + C. If MainCS(P, C, L) returns \NO" then P + C does notstrongly entail L, if MainCS(P, C, L) returns \YES" then P + C strongly entailsL, and if MainCS(P, C, L) returns \Program has no 
anoni
al C-stable models"then P + C has no 
anoni
al stable models.Proof: Assume MainCS(P, C, L) returns \NO". This implies that eitherMasterStable(PC; not query) 6= nil or MasterStableC(PC; query) 6= nil. Ifthe former then Pro
 has returned a stable, 
onsistent and veri�ed node N su
hthat TransCon(N)(query) � CF , and by Lemma 8.4.1 we know that the impli
itgraph of P + C 
ontains su
h a node. Sin
e TransCon(N) is a model of P + C,
learly TransCon(N)(L) � CF . But sin
e TransCon(N) is a 
anoni
al model ofP + C (by Lemma 8.4.3), it follows that P + C 
annot strongly entail L.On the other hand if it is the 
ase that MasterStable(PC; not query) re-turns nil and MasterStableC(PC; query) returns a non-nil node, then we knowthat Pro
Che
k has returned a stable, 
onsistent and veri�ed node N su
h thatTransCon(N)(query) = CT . By reasoning similar to the proof of Lemma 8.4.1we know that the impli
it graph of P + C must 
ontain su
h a node. This isbe
ause pro
edure Pro
Che
k is just like pro
edure Pro
 ex
ept that it 
ontainsan additional 
he
k to determine for any node N , whi
h need not be a leaf node,whether TransCon(N)(query) = T . Thus, if pro
edure Pro
 
orre
tly returnsa node with spe
i�ed properties then by similar reasoning pro
edure Pro
Che
kalso operates 
orre
tly. Thus, we 
an assume that if Pro
Che
k has returned astable, 
onsistent and veri�ed node N su
h that TransCon(N)(query) = CT then191



the impli
it graph of P + C 
ontains su
h a node. Sin
e TransCon(N) is a modelof P + C, 
learly TransCon(N)(L) = CT . But sin
e TransCon(N) is a 
anoni
almodel of P + C (by Lemma 8.4.3), it follows that P + C 
annot strongly entail Lsin
e L is less than T in a 
anoni
al model.Assume instead that MainCS(P, C, L) returns "YES". This implies thatMasterStable(PC, query) returns a non-nil node at step 5 of MainCS. MainCSrea
hes step 5 only if at step 3 it fails to �nd a 
onsistent, veri�ed and stable nodeN su
h that TransCon(N)(query) � CF and su
h that at step 4 it fails to �nd astable, 
onsistent and veri�ed node N su
h that TransCon(N)(query) = CT . Asproven in the �rst part of this proof this means that the impli
it graph of P+C 
on-tains no 
onsistent, veri�ed and stable node N su
h that TransCon(N)(query) �CF or in whi
h TransCon(N)(query) = CT . By the 
onverse of Lemma 8.4.4,it follows therefore that P + C 
ontains no C-stable models in whi
h query is For CF or CT . Thus either P + C has no C-stable models or query is T in all itsC-stable models. But sin
e at step 5 MasterStable(PC, query) returns a stable,
onsistent and veri�ed node N , it follows from Lemma 8.4.3 that TransCon(N)is a C-stable model of P + C. Hen
e, query must evaluate to T in all the C-stablemodels of P + C. But sin
e all su
h models are well-supported, it follows that Lmust be T in all the C-stable models of P +C. However, if P +C has any C-stablemodels, then all its 
anoni
al models are C-stable. Thus it follows that P + Cstrongly entails L.Assume instead thatMainCS returns "Program has no C-stable models". Thisimplies that at steps 3, 4, and 5 the program failed to �nd 
onsistent, veri�ed, anda stable node N su
h that TransCon(query) is F or CF or CT or T . This meansthat P + C has no C-stable models in whi
h query has one of these truth values.
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But sin
e these are all the possible truth values, it follows that P + C has noC-stable models.8.5 Dis
ussionIn this 
hapter we have des
ribed two proof pro
edures. The �rst proof pro
edureis for answering whether a query is weakly entailed by a �nite and ground normallogi
 program augmented with a set of ground 
ontestations. The se
ond proofpro
edure is for answering whether a query is strongly entailed by a �nite andground normal logi
 program augmented with a set of ground 
ontestations. Wehave proven that these proof pro
edures for sound and 
omplete with respe
t tothe C4 semanti
s for normal logi
 programs augmented with 
ontestations. Theseproof pro
edures are restri
ted to programs augmented with 
ontestations whi
hhave at least one well-supported C-stable model. For a program augmented with
ontestations whi
h la
ks a well-supported C-stable model, the proof pro
eduresterminate by sending a message saying that the augmented program la
ks a C-stable model.As in Chapter 6, we will analyze the worst 
ase 
omplexity of the proof pro-
edures in terms of the number of mat
hing operations. Note that determiningwhether a 
ap fun
tion is known does not require the proof pro
edure to performany mat
hing operations. Re
all that a 
ap fun
tion su
h as 
api(B; a) is 
onsid-ered known in a node when ea
h literal in B or its negation o

urs in the inferen
eor the assumption part of that node. Thus, 
ontestations 
ompiled into rules donot require any additional mat
hing operations for expanding a node. Hen
e, theworst-
ase 
omplexity for answering whether a query is weakly entailed by a �niteand ground normal logi
 programs with 
ontestations is exa
tly the same as for193



�nite and ground normal logi
 programs without any 
ontestations. In Chapter 6we determined that this 
omplexity is O(n2�2n), where n is the 
ardinality of theHerbrand base of the input program.The worst-
ase 
omplexity for the pro
edure for determining whether a query isstrongly entailed by �nite and ground normal logi
 program augmented with 
on-testations will be exa
tly be the same as the proof pro
edure for weak entailmentsin
e the strong entailment pro
edure 
onsists in running three times essentiallythe same pro
edure as is the 
ase of weak entailment. Thus, the worst 
ase 
ostof answering whether a query is strongly entailed by a program augmented with
ontestations is mu
h more expensive than answering whether the same queryis strongly entailed by a program without 
ontestations, whi
h we determined inChapter 7 to be O(n3).8.6 SummaryIn this 
hapter we have provided a proof pro
edure for answering ground queries,whi
h 
an be a disjun
tion or 
onjun
tion of literals, to a ground and �nite normallogi
 program augmented with a set of heterogeneous ground 
ontestations. Theresear
h 
ontributions of this 
hapter are summarized in this se
tion.� We introdu
e a way of 
ompiling 
ontestations into the bodies of the rulesof a program.� We have developed the formal apparatus and algorithms for 
omputing a
anoni
al model of a program with 
ontestations 
ompiled into it in whi
h aspe
i�ed literal is true by making assumptions and inferring literals on thebasis of these assumptions and the input program (Se
tion 8.3).194



� We have devised a pro
edure whi
h utilizes this apparatus and algorithms fordetermining whether a ground query is weakly entailed or strongly entailedby the input program (Se
tion 8.3).� We have proved the soundness and 
ompleteness of this pro
edure with re-spe
t to the C4 semanti
s for normal logi
 programs augmented with 
on-testations (Se
tion 8.4).� We have proved that the worst-
ase 
omplexity of this pro
edure is O(n2 �2n) for both weak and strong entailment, where n is the 
ardinality of theHerbrand base of the program (Se
tion 8.5).
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Chapter 9Integrity Constraints and Contestations
9.1 Introdu
tionIn this 
hapter we use our semanti
s of logi
 programs with 
ontestations to de-velop a semanti
s for dedu
tive databases that violate their integrity 
onstraints.Standardly, databases are supposed to satisfy their integrity 
onstraints. Viola-tion of an integrity 
onstraint by a database is regarded as a system failure. Theme
hanism for ensuring that a database satis�es its integrity 
onstraints is a layerof software in the database management system (DBMS) that blo
ks updates tothe database that would result in the violation of any 
onstraints. This layer ofsoftware is 
ommonly 
alled the transa
tion manager of the DBMS. This model oftransa
tion management is 
arried over to the multi-database setting ([BGMS92℄).The global transa
tion manager is granted the authority to blo
k global updateswhi
h would violate global 
onstraints as well as lo
al updates whi
h would violateglobal 
onstraints.However, there are 
ontexts in whi
h the transa
tion manager may not havethis authority ([AKWS95℄). Thus, there 
an be loosely 
oupled multi-databasesystems in whi
h the global transa
tion manager does not have the authority to196



blo
k a lo
al transa
tion at one of the parti
ipating databases whi
h would resultin the violation of the global integrity 
onstraints without any violation of the lo
al
onstraints. In this 
ase the global database state (the naive union of all the lo
aldatabase states) would violate the global integrity 
onstraints. Furthermore, inintegrating information from di�erent sour
es an agent or a mediator may have the
apa
ity to draw information from di�erent sour
es without having any transa
tionmanagement fa
ilities. Thus, in this 
ontext the information in the integratormay 
on
i
t with the integrator's integrity 
onstraints. That is, the state of theintegrator's database may violate the integrity 
onstraints. But in this 
ase theintegrator should be able to reason using the information at hand even thoughthe information 
ontains 
on
i
ts. This again 
reates a need for a semanti
s ofdatabases that violate their integrity 
onstraints.Thus, it is ne
essary to re
onsider the relation of integrity 
onstraints to databases.If in the sorts of 
ontexts des
ribed above integrity 
onstraints do not play the roleof 
onstraining the state of the database, then what role 
an they play? We pro-pose that integrity 
onstraints be viewed as 
onstraints on what 
an be inferredfrom the database as opposed to 
onstraints on the state of the database. Wepropose that even if the state of a database violates its integrity 
onstraints, nev-ertheless we 
an 
onstrain what 
an be inferred from the database so that theinferred information always satis�es the integrity 
onstraints. Ensuring that thestate of the database satis�es the 
onstraints is just one way of ensuring that what
an be inferred from the database satis�es the 
onstraints. We show below howC4 
an be used to give an a

ount of integrity 
onstraint satisfa
tion in whi
h theinformation inferred from the database 
an satisfy the 
onstraints even when thestate of the database does not.
197



In Se
tion 9.2 we des
ribe an entailment relation su
h that the set of entailmentsof a database in terms of this entailment relation satis�es the integrity 
onstraints.In Se
tion 9.3 we show how to represent a wide range of integrity 
onstraintsin terms of 
ontestations. Thus, a dedu
tive database with integrity 
onstraints
an be viewed as a logi
 program augmented with 
ontesations. In Se
tion 9.4we show how the semanti
s we have developed in Chapter 4 for normal logi
programs augmented with 
ontestations 
an provide a semanti
s for dedu
tivedatabases augmented with a wide range of integrity 
onstraints. In terms of thissemanti
s we de�ne the entailment relation des
ribed in Se
tion 9.2 and prove thatthe entailment relation thus de�ned 
an provide a satisfa
tory a

ount of integrity
onstraint satisfa
tion in whi
h the information inferred from the database 
ansatisfy the 
onstraints even when the state of the database does not. In Se
tion 9.5we dis
uss the merits of our approa
h and 
ompare it to related work. In Se
tion 9.6we summarize the main resear
h 
ontributions of this 
hapter.9.2 PreliminariesA dedu
tive database (DB) 
onsists of two parts: a set of fa
ts and a set ofrules. The set of fa
ts in a database is 
alled the extensional database (EDB)and the set of rules in a database is 
alled the intensional database (IDB). Rulesin dedu
tive databases allow impli
it fa
ts to be derived. Thus, the extensionaland the intensional parts of the DB together expli
itly and impli
itly spe
ify allthe information 
ontained in the DB. The fa
ts are always ground atoms. If therules of a DB 
ontain no negative literal in the bodies, then the DB is 
alled aHorn database if the head of the rule has at most one atom. Furthermore, Horndatabases that 
ontain no fun
tion symbols in the fa
ts or the rules are 
alled198



Datalog databases. In this 
hapter we assume that databases are fun
tion-free,but the rules may 
ontain negative literals in the bodies. Thus, the databases we
onsider in this 
hapter are fun
tion-free normal logi
 programs.In addition to the information expli
itly and impli
itly 
ontained in the DB,it is 
ommon for databases to have integrity 
onstraints (ICs). The role of ICs isto further spe
ify what information is 
ontained in the DB. This is done not byadding further fa
ts or rules whi
h 
an be used to spe
ify more information, butby further 
hara
terizing the information already spe
i�ed in the DB. This 
anbe done by spe
ifying the relation between 
ertain predi
ates, or by spe
ifying therange of values that a 
ertain variable 
an take, or by spe
ifying whi
h 
ombinationsof information 
annot o

ur together or must o

ur together, or what 
annot 
ountas legitimate information from the point of view of the database. Some examples ofintegrity 
onstraints asso
iated with a 
ompany's database might be \All managersmust be employees," or \Salary 
annot be less than 0," or \No employee 
an bea 
ontra
tor." Thus, integrity 
onstraints delimit or 
onstrain the possible waysin whi
h the information in the database 
an be interpreted. This has led somewriters to view ICs as spe
ifying the semanti
s of the database. However, the term\semanti
s" is also used to des
ribe the model theory of the fa
ts and the rulesin the database, whi
h determines what information 
an be 
orre
tly viewed asimpli
itly 
ontained in the database. Thus, in the 
ontext of dedu
tive databasesit is unwise to 
hara
terize ICs as spe
ifying the semanti
s of the database as itobs
ures the di�eren
e between the issue of what information is impli
itly (andexpli
itly) 
ontained in the database and the issue of how that information is tobe interpreted.Clearly, it is desirable for a DB to satisfy its integrity 
onstraints sin
e the199



ICs are meant to 
onfer meaningfulness on the information 
ontained in the DB.This raises the issue of what it means for a DB to satisfy ICs.Traditionally, it is the state of the DB that is supposed to satisfy the ICs.In the 
ase of relational databases it is relatively easy to spe
ify what 
ounts asthe state of a database: it is the set of tuples 
ontained in all the tables in thedatabase. Be
ause some of the information in a dedu
tive database is 
ontainedimpli
itly, whi
h is to be made expli
it by making all possible inferen
es from theextensional and intensional parts of the database, spe
ifying what 
ounts as thestate of a dedu
tive database is a more 
omplex matter. We do that below.The extensional and intensional part of a DB together 
onstitute a normallogi
 program. We asso
iate a spe
i�
 semanti
s SEM to DB, where SEM 
anbe any semanti
s for normal logi
 programs su
h as the stable model semanti
s, orthe well-founded semanti
s, or C4. Let j=SEM be the entailment relation de�nedin terms of the 
hosen semanti
s SEM . In terms of j=SEM we de�ne the state ofa dedu
tive database as follows.De�nition 9.2.1 Let DB be a dedu
tive database and let SEM be its 
hosensemanti
s. Then the state of DB, relative to SEM , is CONTSEM(DB) whi
h isde�ned as CONTSEM(DB) = fl j DB j=SEM lg, where l is a literal.Thus, CONTSEM(DB) is the set of literals that 
an be inferred from the databaserelative to a 
hosen semanti
s SEM . The state of DB has to be spe
i�ed relativeto a 
hosen semanti
s, and sin
e di�erent semanti
s for normal logi
 programs arenot equivalent in terms of the 
onsequen
es they legitimize from a program, itfollows that the state of DB 
an vary depending on the 
hosen semanti
s. Thisdoes not happen in the 
ase of Datalog databases be
ause su
h databases are200



essentially de�nite logi
 programs and the di�erent semanti
s for de�nite logi
programs 
oin
ide in terms of the set of 
onsequen
es they legitimize.Following the traditional perspe
tive, dedu
tive database theorists have alsoheld that it must be state of the database that satis�es its integrity 
onstraints.There are two well-known theories of integrity 
onstraint satisfa
tion in the dedu
-tive database literature. The entailment theory of integrity 
onstraint satisfa
tion([Rei84℄) holds that a database DB satis�es an integrity 
onstraint IC just in 
aseDB j= IC. The 
onsisten
y theory of integrity 
onstraint satisfa
tion ([Kow78℄)holds that a database DB satis�es an integrity 
onstraint IC just in 
ase DB[ ICis 
onsistent.Example 9.2.1 Let DB = fa  not b; b  not ag. Let IC = fnot ag.Let SEM be stable model semanti
s. Then on the entailment theory of integrity
onstraint satisfa
tion DB does not satisfy IC. However, on the 
onsisten
y theoryof integrity 
onstraint satisfa
tion DB satis�es IC.It is 
lear that if a DB satis�es its ICs on the entailment theory then it satis�esthose ICs on the 
onsisten
y theory. But the 
onverse does not hold. Hen
e, thedemands that a set of ICs make on a DB are more stringent on the entailmenttheory than on the 
onsisten
y theory of IC satisfa
tion. In the rest of this 
hapterwe assume the entailment theory of integrity 
onstraint satisfa
tion.In the sorts of 
ontexts des
ribed in the introdu
tory se
tion of this 
hapterthe state of a database may violate its integrity 
onstraints. Nevertheless we wantthe integrity 
onstraints to play a role in interpreting the information 
ontainedin the database sin
e we re
ognize that integrity 
onstraints 
an en
ode valuableinformation about the domain of the database. In this 
hapter we seek an a

ountof integrity 
onstraint satisfa
tion that views su
h 
onstraints not on the state201



of the database but on what 
an be inferred from the database. But sin
e anyinferential powers of a database must be sound with respe
t to an entailmentrelation, we must formulate an entailment relation that supports su
h a reviseda

ount of integrity 
onstraint satisfa
tion.Formally speaking, what is required is an entailment relation j� su
h that theset of 
onsequen
es of DB, relative to a set of IC, in terms of j�, are guaranteedto satisfy IC. Let CONSIC(DB) = fl j DB j� lg, where l is a literal. Then therequirement that the information inferred from a database DB, with the asso
iatedintegrity 
onstraints IC, should satisfy IC 
an be reformulated as the requirementthat CONSIC(DB) should satisfy IC. Sin
e CONSIC(DB) is a set of literalswe 
an say that CONSIC(DB) satis�es IC if it entails IC in the sense that ea
hmember of IC is true in CONSIC(DB). Note that the entailment relation j� isso de�ned that the set of su
h entailments of a DB must satisfy IC, but this isnot a requirement on the entailment relation j=SEM , and thus not a requirementon CONTSEM(DB), for any 
hoi
e of SEM . Clearly, any semanti
s on whi
h j�is based must be inferentially 
on
i
t-free with respe
t to the types of 
on
i
tsexpressed by integrity 
onstraints.Example 9.2.2 Let DB = fp; qg. Let IC = fnot p _ not qg. ThenCONTSEM(DB) = fp; qg on any reasonable 
hoi
e of SEM . Thus, the state ofDB does not satisfy IC. However if a set of inferen
es from DB are to satisfy ICthen either p 62 CONSIC(DB) or q 62 CONSIC(DB). So the entailment relationj� must be su
h that either DB 6j� p or DB 6j� q.Let us 
all any entailment relation non-re
exive if it is su
h that p 2 S butS does not entail p. The above example shows that j� must be a non-re
exive202



entailment relation.Sin
e j� is an entailment relation, it must be based on a model theory. In thefollowing we propose C4 for normal logi
 programs with 
ontestations as su
h amodel theory. But this requires that integrity 
onstraints should be represented inthe language of 
ontestations. We show how to do that in the next se
tion. Werestri
t our a

ount to ground 
onstraints, and hen
e to the propositional 
ase.However, the database need not be ground.9.3 Representing integrity 
onstraintsAn integrity 
onstraint su
h as:No one is both a male and a femaleis represented in dedu
tive databases as male(X); female(X) with the intendedmeaning that male(X) and female(X) 
annot be simultaneously true of the sameentity. However, sin
e we are 
onsidering only propositional 
onstraints, this 
on-straint must be instantiated with respe
t to a spe
i�
 entity. Thus, regarding someindividual Pat the 
onstraint says that both male(Pat) and female(Pat) 
annotbe true at the same time. So the 
onstraint 
an naturally be divided into twoparts:� If male(Pat) is true then female(Pat) 
annot be true, and� If female(Pat) is true them male(Pat) 
annot be true.This suggests that the 
onstraint 
an be represented by the set of 
ontestationsfmale(Pat) ,!1 female(Pat); female(Pat) ,!1 male(Pat)g. More generally, we
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an represent a denial integrity 
onstraint  a1; : : : ; an, where ea
h ai is a groundatom, by the following set of 
ontestations:fa1 ^ � � � ^ ai�1 ^ ai+1 ^ � � � ^ an ,!2 ai j i 2 f1; : : : ; nggAs a limiting 
ase when n = 1, i.e., when the 
onstraint is  a1, we representthis as true ,!1 a1, where true is a spe
ial atom that always evaluates to T in allinterpretations.So far we have represented 
onstraints 
ontaining only atoms. But of 
ourse
onstraints 
an also 
ontain negative literals. Thus, there 
an be a 
onstraint p; not q. This 
onstraint 
an be represented as not q ,!1 p. However, it wouldbe in
orre
t to represent this 
onstraint by p ,!1 not q be
ause 
ontestationswith a negative literal in the right hand side should be regarded as ill-formed.For a model to satisfy p ,!1 not q, the truth of p in that model must blo
k thetruth of not q in that model, whi
h means that q must be true. But of 
oursea 
ontestation 
annot by itself make some atom true in a model{at most, it 
anprovide a 
ap on the truth value assigned to that atom in that model. That is, ina well-supported model an atom 
an be assigned true only if there is eviden
e forthat atom whi
h supports assigning it true{ eviden
e against the negation of thatatom 
annot be 
onstrued as eviden
e for that atom. For this reason we regarda 
ontestation of the form p ,!1 not q as ill-formed. Hen
e we suggest that a
onstraint of the form p; not q should be represented by the single 
ontestationnot q ,!1 p.More generally, we 
an represent 
onstraints of the form l1; : : : ; ln, where atleast one li, i 2 f1; : : : ; ng, is a positive literal, as follows. For the sake of simpli
ityof representation assume that all the positive and negative literals in the 
onstraint204



are grouped separately with the negative literals starting at i. Then  l1; : : : ; ln
an be represented by the following set of 
ontestations:fl1 ^ � � � ^ lj�1 ^ lj+1 ^ � � � ^ ln ,!1 lj j j 2 f1; : : : ; nggThis representation 
an be shown to be 
orre
t by the following lemma.Lemma 9.3.1 Let M be a set of C4 interpretations. Let IC1 be the ground
onstraint l1; : : : ; ln, where at least one li, i 2 f1; : : : ; ng, is a positive literal. Letall the positive and negative literals in IC1 be grouped separately with the negativeliterals starting at i. Then for any I 2 M, IC1 evaluates to at least CT in I ifand only if I satis�es ea
h 
ontestation inC = fl1 ^ � � � ^ lj�1 ^ lj+1 ^ � � � ^ ln ,!1 lj j j 2 f1; : : : ; iggProof: )Let I be any member ofM. Assume that l1; : : : ; ln evaluates to at least CTin I. So there exists an lk, k 2 f1; : : : ; ng, su
h that I(lk) � CF . If i � k � nthen lk is a negative literal, whi
h o

urs in the left hand side of every 
ontestationin C, and thus the left hand side of ea
h member of C is at most CF in I. Inthis 
ase every member of C is trivially satis�ed in I. On the other hand, if1 � k � i � 1 (that is, lk is a positive literal), then C 
ontains one 
ontestationwith lk on its right-hand side and the other members of C have lk on the left-handside. The 
ontestations with lk on the left hand side are trivially satis�ed in Ibe
ause the left-hand side of ea
h su
h 
ontestation evaluates to at most CF inI. The 
ontestation with lk on the right-hand side is also satis�ed in I be
ause itsright-hand side is at most CF .(Assume that ea
h member of C is satis�ed in I. Assume, by way of 
ontradi
tion,205



that l1; : : : ; ln does not evaluate to at least CT in I. So ea
h literal in fl1; : : : ; lngmust evaluate to at least CT in I. But this means, for instan
e, l2 ^ � � � ^ ln ,!1 l1
annot be satis�ed by I. This 
ontradi
ts the assumption that every member ofC is satis�ed in I. Thus,  l1; : : : ; ln must evaluate to at least CT in I.This representation of integrity 
onstraints 
an be generalized to non-denialintegrity 
onstraints su
h as p! q, where both p and q are atoms. We understand! to be material impli
ation. We understand the 
onstraint as saying that p! qshould be entailed by the database. This means that in any 
anoni
al model ofthe database p should be true only if q is true. So the 
onstraint p ! q 
anbe represented by the 
ontestation not q ,!1 p be
ause the 
ontestation 
an besatis�ed by any model if and only if in that model if not q is at least CT (andthus q is at most CF ) then p is at most CF . So in any 
anoni
al model of thedatabase p is true (T or CT ) only if q is true (T or CT ).Following this line of thinking a 
onstraint of the form p^ q ! r 
an be under-stood as not r ,!1 p^ q. Although it is easy to give a semanti
s for 
ontestationswith a 
onjun
tion as the 
ontested part, su
h 
ontestations 
ause problems for theproof pro
edure given for normal logi
 programs with 
ontestations. However, we
an represent su
h 
ontestations by the set fp^ not r ,!1 q; q^ not r ,!1 pg. Itis easy to see that any C4 interpretation satis�es the 
ontestation not r ,!1 p^ qif and only if it also satis�es the set fp ^ not r ,!1 q; q ^ not r ,!1 pg.More generally, a 
onstraint of the form a1 ^ � � � ^ an ! an+1, where all the aiare atoms, 
an be represented byfa1 ^ � � � ^ ai�1 ^ ai+1 ^ � � � ^ an ^ not an+1 ,!1 ai j i 2 f1; : : : ; ngg
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Generalizing this even further, a 
onstraint of the form a1^� � �^ an ! b1_� � �_ bm,where all the literals are atoms, 
an be understood as not b1^� � �^ not bm ,!1 a1^� � �^ an. As seen above, this 
an be represented by the following set of 
ontestation:fa1 ^ � � �^ai�1 ^ai+1 ^ � � � ^an ^ not b1 ^ � � �^ not bm ,!1 ai j i 2 f1; : : : ; nggThe following lemma demonstrates the 
orre
tness of this representation of theabove sorts of 
onstraints.Lemma 9.3.2 Let M be a set of C4 interpretations. Let IC1 be the ground
onstraint a1 ^ � � � ^ an ! b1 _ � � � _ bm, where all the literals are atoms. Thenfor any I 2 M, IC1 evaluates to at least CT in I if and only if I satis�es ea
h
ontestation inC = fa1 ^� � �^ai�1 ^ai+1 ^� � �^an^ not b1^� � �^ not bm ,!1 ai j i 2 f1; : : : ; nggProof: )Let I be any member ofM. Assume that IC1 evaluates to at least CT in I.Either a1 ^ � � � ^ an is at least CT in I or it is at most CF in I. If a1 ^ � � � ^ anis at least CT in I, then b1 _ � � � _ bm is at least CT in I. So there exists aj 2 f1; : : : ; mg su
h that bj is at least CT and so not bj is at most CF in I. Butsin
e not bj o

urs in the left-hand side of every member of C, it follows that inthis 
ase the left-hand side of every member of C evaluates to at most CF , andthus every member of C is trivially satis�ed in I.On the other hand if the left-hand side of IC1 is at most CF then there exitsan ai, i 2 f1; : : : ; ng, su
h that ai is at most CF in I. One member of C willhave ai in its right-hand side and the other members of C have ai on the left-handside. The 
ontestations with ai on the left hand side are trivially satis�ed in I207



be
ause the left-hand side of ea
h su
h 
ontestation evaluates to at most CF in I.The 
ontestation with ai on the right-hand side is also satis�ed in I be
ause itsright-hand side is at most CF .(Assume that ea
h member of C is satis�ed in I. Assume, by way of 
ontradi
-tion, that IC1 does not evaluate to at least CT in I. So the left-hand side of IC1must evaluate to at least CT and the right-hand side of IC1 must evaluate to atmost CF in I. But this means, for instan
ea2 ^ � � � ^ an ^ not b1 ^ � � � ^ not bm ,!1 a1
annot be satis�ed by I. This 
ontradi
ts the assumption that every member ofC is satis�ed in I. Thus, IC1 must evaluate to at least CT in I.A 
onstraint of the form not p! not r 
an be represented by the 
ontestationnot p ,!1 r. Clearly, if r is blo
ked from being true in a model in whi
h not p istrue, then not p! not r is true in that model. More generally, a 
onstraint of theform l1^� � �^ ln ! not p 
an be represented by the 
ontestation l1^� � �^ ln ,!1 p.The following lemma proves the 
orre
tness of this representation of su
h 
on-straints.Lemma 9.3.3 Let M be a set of C4 interpretations. Let IC1 be the ground
onstraint l1 ^ � � � ^ ln ! not p. Then for any I 2 M, IC1 evaluates to at leastCT in I if and only of I satis�es l1 ^ � � � ^ ln ,!1 p.Proof: )
208



Let I be any member ofM. Assume that IC1 evaluates to at least CT in I.Then either l1^� � �^ ln evaluates to at most CF in I in whi
h 
ase the 
ontestationis trivially satis�ed by I, or l1 ^ � � � ^ ln and not p evaluates to at least CT and pevaluates to at most CF . In the latter 
ase too the 
ontestation is satis�ed by I.(Assume that I satis�es l1 ^ � � � ^ ln ,!1 p. Either l1 ^ � � � ^ ln evaluates to atleast CT or it evaluates to at most CF in I. In the former 
ase p must be CF inI and so IC1 must be true in I. In the latter 
ase IC1 is true in I regardless ofthe truth value of p.So far we have represented 
onditional 
onstraints in whi
h the right-hand sideis a negative literal and 
onditional 
onstraints in whi
h the left-hand side 
onsistsentirely of positive literals. Can we represent 
onditional 
onstraints in whi
hthe left-hand side 
ontains negative literals and the right-hand side is a positiveliteral? As will be dis
ussed below, we 
annot represent in terms of 
ontestationsa 
onditional 
onstraint in whi
h the left-hand side 
onsists entirely of negativeliterals and the right-hand side is a positive literal. However, it is possible torepresent a 
onstraint of the form not p; q ! r as not p ^ not r ,!1 q.This says that in any model if both p and r fail to be true then q 
annot betrue, whi
h 
aptures the intuition behind the 
onstraint not p; q ! r. But notethat this representation of the 
onstraint in terms of the 
ontestation is possibleonly be
ause the 
onstraint 
ontains an atom in its left-hand side whi
h 
an be a
ontested atom in the 
orresponding 
ontestation. More generally, a 
onstraint ofthe form not a1^ � � �^ not am ^ b1 � � �^ bn ! 
, where 
 is an atom and ea
h bj,1 � j � n, is an atom, 
an be represented by the following set of 
ontestations:
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fnot a1^� � �^ not am^ b1 � � �^ bj�1^ bj+1^� � �^ bn^ not 
 ,!1 bj j j 2 f1; : : : ; nggThe following establishes the 
orre
tness of this representation.Lemma 9.3.4 Let M be a set of C4 interpretations. Let IC1 be the ground
onstraint not a1 ^ � � � ^ not am ^ b1 � � � ^ bn ! 
, where 
 is an atom and ea
hbj, 1 � j � n, is an atom. Then for any I 2 M, IC1 evaluates to at least CTin I if and only of I satis�es ea
h 
ontestation infnot a1^� � �^ not am^ b1 � � �^ bj�1^ bj+1^� � �^ bn^ not 
 ,!1 bj j j 2 f1; : : : ; nggProof: )Let I be any member of M. Assume that IC1 evaluates to at least CT inI. Either 
 evaluates to at least CT or at most CF in I. In the former 
asesin
e not 
 is on the left-hand side of ea
h member of C, it follows that the left-hand side of ea
h 
ontestation in C evaluates to at most CF in I, and, thus, ea
h
ontestation is trivially satis�ed in I. On the other hand, if 
 is at most CF , thenthe left-hand side of IC1 must be at most CF . So at least literal in the left-handside of IC1 must be at most CF . If it is a negative literal then, sin
e every negativeliteral in the left-hand side of IC1 o

urs in the left-hand side of every 
ontestationin C, the left-hand side of every 
ontestation must be at most CF and thus every
ontestation must be trivially satis�ed in I. On the other hand, if a positive literalbj in the left-hand side of IC1 is at most CF then every 
ontestation with bj inthe left-hand side is trivially satis�ed in I. And the only 
ontestation in C with bjin the right-hand side is also satis�ed in I sin
e bj is CF in I.(Assume that ea
h member of C is satis�ed in I. Assume, by way of 
ontra-di
tion, that IC1 does not evaluate to at least CT in I. So the left-hand side of210



IC1 must evaluate to at least CT and the right-hand side of IC1 must evaluate to atmost CF in I. But this means, for instan
e, not a1^� � �^ not am^ b2 � � �^ bn^ not 
 ,!1 b1
annot be satis�ed by I sin
e both the left-hand side and the right-hand side ofthis 
ontestation evaluates to at least CT in I. Thus, a 
ontradi
tion. Hen
e, IC1must evaluate to at least CT in I.Summarizing the dis
ussion so far, the following types of ground 
onstraints
an be represented in terms of 
ontestations:1.  l1 ^ � � � ^ ln, where at least one literal is positive. This 
an be representedby the following set of 
ontestationsfl1 ^ � � � ^ lj�1 ^ lj+1 ^ � � � ^ ln ,!1 lj j j 2 f1; : : : ; ngg2. a1 ^ � � � ^ an ! b1 _ � � � _ bm, where all the literals are atoms. This 
an berepresented by the following set of 
ontestationsfa1 ^� � �^ai�1 ^ai+1 ^� � �^an^ not b1^� � �^ not bm ,!1 ai j i 2 f1; : : : ; ngg3. l1 ^ � � � ^ ln ! not p. This 
an be represented by the 
ontestation l1 ^ � � � ^ln ,!1 p.4. not a1 ^ � � � ^ not am ^ b1 � � � ^ bn ! 
, where ea
h bj, 1 � j � n, and 
are atoms. This 
an be represented by the following set of 
ontestations:fnot a1^� � �^ not am^ b1 � � �^ bj�1^ bj+1^� � �^ bn^ not 
 ,!1 bj j j 2 f1; : : : ; nggAre there any 
onstraints expressible in the language of propositional logi
that 
annot be represented in terms of 
ontestations? Most generally, from ourperspe
tive we 
annot allow 
onstraints that require that some positive informa-tion be provable. A 
onstraint 
annot guarantee the provability of something; at211



most, it guarantees the non-provability of something. Constraints are regarded as
onstraints on what 
an be inferred from a database. Something 
an be inferredfrom a database only if there is eviden
e for it in the database. A mere demandin the form of a 
onstraint that some thing be provable does not make it provable.However, a demand that some literal not be provable from the database 
an besatis�ed by blo
king the inferen
e of that literal. For this reason we hold that
onstraints of the form a1 _ � � � _ an, where ea
h ai is an atom, should not bepermitted. They 
annot be expressed in terms of 
ontestations.For the same reason we 
annot allow a 
onstraint of the form l1 ^ � � � ^ ln !a1 _ � � � _ am, where ea
h li is a negative literal and aj is a positive literal. Sin
e! is material impli
ation, this 
an be thought of as equivalent to a disjun
tion ofpositive literals. However, as we have seen before, a 
onstraint 
annot guaranteethe truth (or provability) of any atom, but only the falsity (or non-provability) ofan atom.Similarly, a denial 
onstraint of the form l1; : : : ; ln where ea
h li is a negativeliteral should be regarded as ill-formed from our perspe
tive. This 
onstraint isessentially equivalent to a disjun
tion of positive literals.The above dis
ussion of representing integrity 
onstraints in terms of 
ontes-tations shows that a large 
lass of integrity 
onstraints expressed in the languageof propositional logi
 
an be represented in terms of 
ontestations. However, thelanguage of 
ontestations allows us to formulate 
onstraints that do not 
orre-spond to any 
onstraint that 
an be expressed in propositional logi
 (or predi
atelogi
). Thus, suppose a bank wants the 
onstraint that someone should be judged
redit worthy only if there is no question of the individual being a loan defaulter.The poli
y is so stri
t that if eviden
e has been presented that an individual is212



a loan defaulter, then even if the eviden
e has been su

essfully 
ontested, butnot de
isively refuted, the bank will not deem the individual 
redit worthy. This
an be done by de�ning a 
ap fun
tion 
ap5 su
h that 
ap5(v) = CF , wherev 2 fT; CT; CFg, and 
ap5(F ) = T . In terms of 
ap5, we 
an express the
ontestation LoanDefaulter ,!5 CreditWorthy. This 
ontestation is satis�edby a model of the database only if in that model LoanDefaulter is at least CFthen CreditWorthy is at most CF . Note that this is not the same as the 
on-straint LoanDefaulter ! not CreditWorthy, whi
h 
an be satis�ed even if in a
anoni
al model of the database LoanDefaulter is CF and CreditWorthy is T .Furthermore, sin
e we allow heterogeneous 
ontestations that allow eviden
eof di�erent degrees of strength to 
ount as eviden
e against some statement, rep-resenting 
onstraints in terms of 
ontestations permits us even more 
exibility.9.4 Semanti
s for integrity 
onstraintsIn this se
tion we provide a formal semanti
s for databases with integrity 
on-straints su
h that the state of the database may violate those 
onstraints.De�nition 9.4.1 A ground integrity 
onstraint is of the allowed type if it is of thefollowing type1.  l1 ^ � � � ^ ln, where at least one literal is positive.2. a1 ^ � � � ^ an ! b1 _ � � � _ bm, where all the literals are atoms3. l1 ^ � � � ^ ln ! not p4. not a1 ^ � � � ^ not am ^ b1 � � � ^ bn ! 
, where ea
h bj, 1 � j � n, and 
are atoms 213



Furthermore, all 
ontestations with an atom on the right-hand side are 
onsideredof the allowed type.Sin
e we have broadened the idea of integrity 
onstraints to in
lude 
ontes-tations, in representing a set of integrity 
onstraints in terms of 
ontestations a
ontestation whi
h is a member of that set is regarded as representing itself.The following theorem says that our representation of integrity 
onstraints ofthe allowed type in terms of 
ontestations is 
orre
t. Thus, it merely summarizesthe results of Lemma 9.3.1, Lemma 9.3.2, Lemma 9.3.3, and Lemma 9.3.4.Theorem 9.4.1 Let IC be a set of 
onstraints of the allowed type. Let C be therepresentation of the 
onstraints in IC in terms of 
ontestations. Let I be any C4interpretation. Then IC is true in I if and only if I satis�es every 
ontestationin C.Proof: This follows straightforwardly from Lemma 9.3.1, Lemma 9.3.2, Lemma 9.3.3,and Lemma 9.3.4.De�nition 9.4.2 Let DB be a dedu
tive database in the form of a normal logi
program and let IC be a set of integrity 
onstraints of the allowed type on DB.We de�ne the 
anoni
al models of DB [ IC to be the C4 
anoni
al models ofDB + C, where C is the set of 
ontestations representing IC.In terms of this de�nition of the 
anoni
al models of DB [ IC, we 
an easilyde�ne the entailment relation j� as follows.De�nition 9.4.3 Let DB be a dedu
tive database in the form of a normal logi
program and let IC be a set of integrity 
onstraints of the allowed type on DB.214



Then, DB j� l, with respe
t to IC, if and only if DB +C j=C4 l, where C representsIC.Example 9.4.1 Let DB = fp  a; p  b; a; b; qg. Let IC = f a; bg.In this situation neither a nor b should be inferable from the database, but a _ bshould be inferable and thus p should be inferable.IC is represented by C = fa ,!1 b; b ,!1 ag. The 
anoni
al models of DB+Care a b p qI1 T CF T TI2 CF T T TTable 9.1: Models of a database that is in
onsistent with its integrity 
onstraints.Sin
e p is T in both the 
anoni
al models of DB + C, DB j� p. However,DB 6j� a and DB 6j� b. Clearly, CONSIC(DB) = fp; qg and, thus,  a; b istrue in CONSIC(DB). Thus, in our sense of integrity 
onstraint satisfa
tion, thisintegrity 
onstraint is satis�ed by DB even though the state of DB does not satisfyIC.Note that although a; b 2 DB, DB 6j� a and DB 6j� b. Thus, the entailmentrelation j� is non-re
exive.The following theorem demonstrates that this is the 
orre
t de�nition of j�.Re
all that the only formal requirement imposed on j� l was that CONSIC(DB),whi
h was de�ned to be the set fl j DB j� lg, should satisfy IC in the sense thatea
h member of IC should be true in CONSIC(DB).
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Theorem 9.4.2 Let DB be a dedu
tive database in the form of a normal logi
program and let IC be a set of integrity 
onstraints of the allowed type on DB.Then CONSIC(DB) satis�es IC.Proof: Re
all that CONSIC(DB) = fl j DB j� lg where l is a literal. Byde�nition DB j� l if and only if DB + C j=C4 l, where C is the representation ofIC. From Theorem 4.4.3 in Chapter 4 we know that all the C4 
anoni
al modelsof P +C, for any normal logi
 program P and any set of 
ontestations C, satisfy allmembers of C. Thus, all C4 
anoni
al models of DB+C must satisfy all membersof C. Hen
e, the interse
tion of all these models must also satisfy C. But then byTheorem 9.4.1 above IC must be true in the interse
tion of all these models. Butthe interse
tion of all these models 
an be understood as the set fl j DB+C j=C4 l,whi
h is just CONSIC(DB). Thus CONSIC(DB) satis�es IC.It is 
lear that the above theorem also establishes that the C4 semanti
s for adatabase with its asso
iated integrity 
onstraints is inferentially 
on
i
t-free withregard to the types of 
on
i
ts expressed in terms of integrity 
onstraints of thetype dis
ussed in this 
hapter.9.5 Dis
ussionIn Chapter 6 we des
ribe a sound and 
omplete pro
edure for answering queriesto �nite and ground normal logi
 programs augmented with a set of ground 
on-testations. Clearly, this pro
edure then 
an be a sound and 
omplete pro
edurefor answering queries to a �nite and ground normal logi
 databases augmentedwith a set of ground integrity 
onstraints. To use the pro
edure all we have todo is represent the integrity 
onstraints in terms of 
ontestations in the manner216



des
ribed in this 
hapter.Our approa
h to integrity 
onstraint satisfa
tion has several useful features.First, it gives a role for integrity 
onstraints even when the state of the databaseviolates the 
onstraints. For instan
e, the knowledge en
oded in the 
onstraints
an still be used for semanti
 query optimization ([CGM90℄). Se
ond, our approa
hmakes it possible to return meaningful answers to queries to a database even whenthe state of the database violates its integrity 
onstraints. Thus, in Example 9.4.1above, the answer to the query a would be NO, but an answer to the query p wouldbe YES. Thus, our approa
h allows a database to return NO to a query even whenthe information is in the state of the database, if the information is involved inthe violation of an integrity 
onstraint. This makes the query answering pro
edurenon-re
exive. Third, our approa
h allows for lazy updates. Thus, on the standardapproa
h a database that 
ontains the atom a and has a 
onstraint  a; b, wouldreje
t an update that tries to insert b in the database. However, our approa
hwould permit this insertion, but it would have the e�e
t that a 
an no longerbe derived from the database and neither 
an b be derived. Thus, in e�e
t, ourapproa
h allows the DBMS to perform a lazy deletion and a lazy insertion. Thishas the feature that if later a were withdrawn from the database, then b 
an bederived. Thus, the update b is not lost. In this respe
t our approa
h di�ers fromwork in belief revision ([GR95℄). In belief revision an update that 
on
i
ts withexisting information in the database is allowed to eliminate that 
on
i
ting pie
eof information. Thus, the database is always kept 
onsistent. As noted above, ourapproa
h allows for lazy updates.Yet another feature of our approa
h is that it does 
onsisten
y 
he
king ona need only basis. On the standard approa
h 
onsisten
y 
he
king is done with217



ea
h update. However, some of this updated information may never be involvedin answering any queries. From our perspe
tive then the e�ort expended on 
on-sisten
y 
he
king of this information is wasted. However, if 
onsisten
y 
he
kingis done only for the information that is involved in answering queries, then 
onsis-ten
y 
he
king is done on a need only basis. If there are many more updates thanqueries to the database, this 
an result in a signi�
ant gain.Although there are several approa
hes to reasoning with databases whi
h vio-late their integrity 
onstraints, as far as we know none of them have suggested arede�nition of what it means for integrity 
onstraints to be satis�ed by a database.In [ABC99℄ an approa
h to answering queries to possibly in
onsistent databasesis des
ribed in terms of a query rewriting whi
h is based on the notion of residues([CGM90℄). They des
ribe a semanti
s for su
h databases in terms of the setof minimal modi�
ations to an in
onsistent databases whi
h would result in a
onsistent version of the database. They prove the query pro
edure is sound and
omplete with respe
t to this semanti
s. However, their work seems to be restri
tedto databases without rules. Furthermore, this approa
h allows an in
onsistentdatabase to be modi�ed into a 
onsistent one by inserting new information. Thus,if a database with the 
onstraint p ! q does not entail q and it has p inserted init, then this approa
h allows q to be inserted as well. This seems to us wrong. A
onstraint should not by itself generate new information.[AKWS95℄ introdu
ed the idea of 
exible relation, a non-1NF relation that
ontains tuples with sets of values with the set standing for one of its values. Soif there is a 
onstraint that says there 
annot be two tuples in a relation instan
ethat di�er only on that value and if a relation instan
e were to 
ontain two su
htuples, then these tuples 
an be 
ombined into one tuple where in the relevant218



�eld there is a set 
ontaining the 
on
i
ting values. In e�e
t, then the set 
anbe 
onsidered a disjun
tion of the 
on
i
ting values. [AKWS95℄ is restri
ted toprimary key fun
tional dependen
ies, but this approa
h is generalized to other keyfun
tional dependen
ies in [Dun96℄. These approa
hes rely on the 
onstru
tion ofa single disjun
tive instan
e and the deletion of 
on
i
ting tuples. [BKM91℄ alsoadopts this approa
h. In essen
e, this is also the approa
h utilized in [PMS95℄and [PM96℄. Our 
urrent approa
h is di�erent in that 
on
i
ting informationis not deleted or modi�ed in any way. Instead, the inferen
e pro
edure or thequery answering pro
edure in
orporates me
hanisms that blo
k the inferen
e of
on
i
ting information. Thus, there is no need to make any modi�
ations to thedatabase in the event of 
on
i
ts.9.6 SummaryIn this 
hapter we have provided an a

ount of propositional integrity 
onstraintsatisfa
tion for fun
tion-free dedu
tive databases that may be in
onsistent withtheir own integrity 
onstraints in terms of the C4 semanti
s for normal logi
 pro-grams augmented with a set of 
ontestations. The spe
i�
 resear
h 
ontributionsof this 
hapter are as follows.� We propose that integrity 
onstraints be viewed as 
onstraints on what 
anbe proven from a database rather than 
onstraints on the state of a database.We propose a new a

ount of integrity 
onstraint satisfa
tion in terms of thisreinterpretation of the role of integrity 
onstraints. More spe
i�
ally, wehave de�ned an entailment relation j� su
h that the set of entailments of thedatabase in terms of this entailment relation satisfy the integrity 
onstraints.
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We have rede�ned the 
on
ept of integrity 
onstraint satisfa
tion so thatit is not the state of the database that must satisfy the 
onstraints, butinstead the set of inferen
es in terms of j� whi
h must satisfy the 
onstraints(Se
tion 9.2).� We show how to translate a wide range of propositional integrity 
onstraintsin terms of 
ontestations and prove that this translation is 
orre
t (Se
-tion 9.3).� We show that the C4 semanti
s for normal logi
 programs augmented witha set of 
ontestations 
an be used as a semanti
s for dedu
tive databasesaugmented with a set of propositional integrity 
onstraints (Se
tion 9.4).
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Chapter 10Extending C4: Semanti
s of Preferen
es
10.1 Introdu
tionTo solve a problem one may need to draw on the knowledge of several di�erentexperts. It 
an happen that some of the 
laims of one or more experts may be in
on
i
t with the 
laims of other experts. We assume that the knowledge of experts
an be en
oded in the form of normal logi
 programs. Su
h normal logi
 programs
an also be 
onsidered as databases. Thus, pooling together the knowledge ofdi�erent experts 
an be regarded as 
ombining databases. Con
i
ts among state-ments 
an be represented in the form of 
ontestations. In the previous 
hapterswe have developed a semanti
s and a proof pro
edure for normal logi
 programsaugmented with 
ontestations.In this 
hapter we introdu
e preferen
es among statements as a way of redu
ing
on
i
ts among statements. We envisage these preferen
es as provided by a userof the 
ombined database or by the integrator of the di�erent pools of information.These statements of preferen
e are intended to express arbitrary preferen
es of agiven user.Consider a motivating example. Suppose the personnel oÆ
er of a large 
om-221



pany has to determine whether there are any medi
al reasons for not hiring a
ertain appli
ant for a high stress job. It is the standard pra
ti
e of the 
om-pany to 
onsult both a 
ardiologist who examines the appli
ant and the patient'spersonal physi
ian. The 
ardiologist's report says, among other things, that theappli
ant su�ers from a 
ertain heart irregularity that leads to a heart atta
k un-der great stress, and therefore the appli
ant may well su�er a heart atta
k dueto the stress of the job. It also says that the appli
ant's diet, if 
ontinued overa long period of time, will worsen the heart irregularity. The personal physi
iantesti�es that over the many years that the appli
ant has been his patient he hasremained very healthy even in times of great stress. And the patient's generallyrobust health and healthy habits will enable him to handle very stressful situationsin spite of his heart irregularity. The physi
ian further adds that the appli
ant hasbeen following a diet over the years pres
ribed by the physi
ian whi
h will redu
ethe heart irregularity. The physi
ian notes that indeed the heart irregularity hassomewhat diminished over the years. The rest of the physi
ian's report is not in
on
i
t with the 
ardiologist's report.Clearly, these two reports are in 
on
i
t. Furthermore, they are in 
on
i
t overtwo points: 1) whether the patient's heart irregularity will make him unable tohandle great stress, and 2) the e�e
t of his diet on his heart irregularity. In makinghis de
ision the personnel manager of the 
ompany may prefer one statement overanother in 
ase they 
on
i
t. Thus, in our example, the personnel manager 
angive preferen
e to the physi
ian's 
laim (x) that the appli
ant 
an handle the stressof the job over the 
ardiologist's 
laim (y) that the stress of the job will 
ause aheart atta
k in the appli
ant. The personnel manager may give preferen
e to the
laim x of the physi
ian be
ause he thinks it is more reliable, or be
ause it is the
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ompany's poli
y to give an appli
ant the bene�t of the doubt in these matters,or be
ause the personnel manager favors the appli
ant, or whatever. That is, inour formal treatment of preferen
es, we shall not make any assumptions about theuser's reasons for preferring one statement to another.To say that the manager prefers x over y does not mean that x will be �nallybe a

epted by the manager, but only that in the 
on
i
t between x and y, x is
hosen over y. It 
ould happen that x is in 
on
i
t with some other statement,z, in the 
ombined database whi
h is preferred over x and, thus, x may not endup being a

epted. Or it 
ould happen that there is not enough eviden
e for the
laim x, so regardless of the preferen
e it 
annot be a

epted.The preferen
es of an ideally rational agent are transitive. But real agents (orusers) are not always this rational in their preferen
e stru
tures ([TK81℄). So weshall not assume that the user-supplied preferen
es are transitive. But, if for agiven user they happen to be transitive, our approa
h applies to su
h preferen
eswithout any modi�
ation.In Se
tion 10.2 we develop the formal preliminaries for stating semanti
s ofnormal logi
 programs augmented with a set of 
ontestations and a set of prefer-en
es. In Se
tion 10.3 we state two semanti
s of normal logi
 programs augmentedwith a set of 
ontestations and a set of preferen
es and prove their equivalen
e.In Se
tion 10.4 we dis
uss related work. In Se
tion 10.5 we summarize the mainresear
h 
ontributions of this 
hapter.10.2 PreliminariesWe write x is preferred to y as x � y.
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The preferen
e x � y1 ^ y2 ^ � � � ^ ym, where x and ea
h yi are atoms, isunderstood to mean that x is preferred to the 
onjun
tion of yi. The preferen
ex � y1 _ � � � _ ym, where x and ea
h yi are atoms, is understood to mean that x ispreferred to ea
h yi and that x is preferred to the 
onjun
tion of atoms in any subsetof fy1; : : : ; ymg. Let Y = fy1; y2; : : : ; ymg. Then we understand x � Y to meanx � y1 _ � � � _ ym. Let X = fx1; x2; : : : ; xng be sets of atoms. Then the preferen
eX � Y is understood as an abbreviation of fx1 � Y; x2 � Y; : : : ; xn � Y g.We 
all a set of preferen
e fx � Y1; x � Y2; : : : ; x � Ymg additive if they implyx � Y1 [ : : :[Ym. In general, we assume that preferen
es are not additive. This isbe
ause, in general, it is not the 
ase that if a statement (or a 
hoi
e) is preferred toseveral other statements (or 
hoi
es) taken individually that statement (or 
hoi
e)is preferred to those other statements (or 
hoi
es) taken jointly.Intuitively, we understand a reasoner's preferen
e x � y over a logi
 programLP and a set of 
ontestations C to mean that the reasoner prefers LP +C to entailx over entailing y. Thus, other things being equal, the preferen
e should result inLP + C entailing x if it entails y. The semanti
s of preferen
es given below areguided by this intuition.We suggest two di�erent ways of expli
ating the idea that x � y should meanthat the reasoner prefers LP + C to entail x over entailing y.� Preferen
e Ordering. Let P be a set of preferen
es. We use the preferen
esin P to indu
e an ordering among the models and 
hoose only the maximalmembers of this ordering as 
andidates for the 
anoni
al models of LP+C+P.� Satisfa
tion. Analogous to the idea of the satisfa
tion of a 
lause or a
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ontestation by an interpretation, we develop the 
on
ept of the satisfa
tionof a preferen
e P 2 P by an interpretation, and 
hoose only those modelswhi
h satisfy all the preferen
es as 
andidates for the 
anoni
al models ofLP + C + P.Re
all that given a four-valued interpretation I, by Truth(I) we mean fa j ais an atom and I(a) � CTgWe need the following de�nitions to formalize the above stated ways of under-standing preferen
es.De�nition 10.2.1 Let I be a well-supported model of LP +C and let Y be a set ofground atoms. Then, DepI(Y ) denotes all the members of Truth(I) whi
h be
omeunsupported in any mapping I 0 su
h that the only di�eren
e between I and I 0 isthat I 0 assigns at most CF to members of Y .Intuitively, DepI(Y ) are those atoms whose status as members of Truth(I) de-pends on the status of Y in I.De�nition 10.2.2 Let I be a well-supported model of LP + C and let Y be a setof ground atoms. Then, Effe
tI(Y ) = Y [DepI(Y )Thus, by Effe
tI(Y ) we mean all those atoms that will be demoted from thestatus of the Truth in I if Y is demoted from the status of Truth.We say that I j= a if I(a) � CT . Clearly, I j= a if, and only if, a 2 Truth(I).
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10.3 Semanti
s of Preferen
esPreferen
e Ordering Semanti
sWhen LP + C is augmented with a preferen
e, P = x � Y , where x and allmembers of Y belong to HBLP , we take this preferen
e as indu
ing an orderingamong the models of LP + C. Other things being equal, the well-supported modelsof LP whi
h satisfy all the members of C in whi
h x is at least CT are preferredover the well-supported models of LP whi
h satisfy all members of C in whi
h anymember of Y is at least CT . The following de�nitions are needed to formalize thisidea.De�nition 10.3.1 Let P be the preferen
e x � Y . Let LP be a normal logi
program and let C be a set of 
ontestations. Let I1 and I2 be two models of LP +C.We say that I1 vP I2 if1. I1 6j= x and I2 j= x, and2. I1 j= y for some y 2 Y , and3. Truth(I1)� Effe
tI1(Y ) � Truth(I2).Conditions 1 and 2 together say that x � Y makes I2 preferred to I1 if I1 6j=x but I1 j= y whereas I2 j= x so long as other things are equal. Condition 3
aptures this quali�
ation. Other things are not equal if there is a z su
h thatindependently of Y it prevents I1 from entailing x. If there were su
h a z it
annot belong to Truth(I2) sin
e I2 does entail x, but su
h a z would belong toTruth(I1) � Effe
tI1(Y ). Thus, Condition 3 says that there is no z su
h thatz 2 Truth(I1)� Effe
tI1(Y ) but z 62 Truth(I2): That is, other things are equal.
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We say that I1 vP I2 if there is a P 2 P su
h that I1 vP I2 .Given a set of interpretations � of LP +C, we say that I1 is a preferred memberof � with respe
t to a set of preferen
es P if and only if there is no interpretationI2 in � su
h that I1 vP I2.I1 is a model of LP + C + P if it is a preferred member, with respe
t to P, ofthe set of models of LP + C.De�nition 10.3.2 Let LP be a normal logi
 program, let C be a set of 
ontesta-tions and let P be a set of preferen
es. Then a

ording to the preferen
e semanti
sthe 
anoni
al models of LP + C + P are the 
lausally maximal members amongthe preferred members, with respe
t to P, of the set of well-supported models ofLP + C.Satisfa
tion Semanti
s of Preferen
esA preferen
e x � Y 
an be understood as making a demand of a model I thatother things being equal if I entails any member of Y then it should entail x. Otherthings are not equal with respe
t to x � Y if some fa
tor independent of Y makesit impossible for I to entail x.De�nition 10.3.3 Let LP be a normal logi
 program and let C be a set of 
on-testations. Let x � Y be a preferen
e. An interpretation I1 satis�es x � Y if1. I1 j= x, or2. For all y 2 Y , I1 6j= y, or3. There is no well-supported model I2 of LP + C su
h that� I2 j= x, and 227



� (Truth(I1)� Effe
tI1Y ) � Truth(I2)As in the de�nition of Preferen
e Ordering Semanti
s, Condition 3 
apturesthe quali�
ation that other things are equal.I satis�es a set of preferen
es P if, and only if, it satis�es all members of P.De�nition 10.3.4 Let LP be a normal logi
 program, let C be a set of 
ontesta-tions, and let P be a set of preferen
es. Then a

ording to the satisfa
tion semanti
sthe 
anoni
al models of LP + C + P are the 
lausally maximal models among allthe well-supported model of LP + C whi
h satisfy all the preferen
es in P.The following theorem shows that the two semanti
s of preferen
es are equiv-alent.Theorem 10.3.1 A well-supported model I of LP+C satis�es a set of preferen
esP if, and only if, I is a preferred model, with respe
t to P, of LP + C.Proof:)Assume that I1 is a well-supported model of LP + C whi
h satis�es all the prefer-en
es in P. Assume by way of 
ontradi
tion that I1 is not a preferred model. Sothere must be another well-supported model I2 of LP + C and a preferen
e x � Ysu
h that I1 vx�Y I2 . That is, it must be the 
ase that1. I1 6j= x and I2 j= x, and2. I1 j= y for some y 2 Y , and3. Truth(I1)� Effe
tI1(Y ) � Truth(I2).However, I1 satis�es x � Y . So it must be the 
ase that228



1. I1 j= x, or2. For all y 2 Y , I1 6j= y, or3. There is no well-supported model I2 of LP + C su
h that� I2 j= x, and� (Truth(I1)� Effe
tI1(Y )) � Truth(I2)If I1 satis�es x � Y by 
lause 1 of the de�nition of satisfa
tion then the �rst
ondition for its being the 
ase that I1 vx�Y I2 is violated.If I1 satis�es x � Y by 
lause 2 of the de�nition of satisfa
tion then the se
ond
ondition for its being the 
ase that I1 vx�Y I2 is violated.If I1 satis�es x � Y by 
lause 3 of the de�nition of satisfa
tion then the third
ondition for its being the 
ase that I1 vx�Y I2 is violated.(Assume that I1 is a preferred model of LP+C+P. Assume by way of 
ontradi
tionthat I1 does not satisfy all the preferen
es. Let x � Y be one su
h preferen
e.This implies that1. I1 6j= x, and2. For some y 2 Y , I1 j= y, and3. There is a well-supported model I2 of LP + C su
h that� I2 j= x, and� (Truth(I1)� Effe
tI1(Y )) � Truth(I2)
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It is apparent that su
h a I1 and I2 must satisfy all the 
onditions for it being the
ase that I1 vx�Y I2.But this 
ontradi
ts the assumption that I1 is a preferred model. Thus I1 mustsatisfy all the preferen
es.Example 10.3.1 Let LP = fa ; b g and let C = fa ,!1 b; b ,!1 ag. Further-more, let P = fa � bg. Then the well-supported models of LP + C are I1 whi
hassigns T to a and CF to b, and I2 whi
h assigns CF to a and T to b. But theonly preferred model and, thus, the only 
anoni
al model of LP + C + P is I1.The following de�ntion extends the de�nitions of strong and weak entailmentto the 
ase of LP + C + P.De�nition 10.3.5 LP + C + P strongly entails a literal p under C4 if, and onlyif, p evaluates to T in all the 
anoni
al models of LP + C + P.LP + C + P weakly entails a literal p under C4 if, and only if, p evaluates toat least CT in all the 
anoni
al models of LP + C + P.10.4 Dis
ussionIn this 
hapter we have provided two equivalent semanti
s for normal logi
 pro-grams augmented with a set of 
ontestations and a set of preferen
es. We do notpresent a pro
edure for answering queries to normal logi
 programs augmentedwith 
ontestations and preferen
es. Our results in this 
hapter are rather limited.In [PM96℄ we showed that there exists at least one 
anoni
al model for de�nitelogi
 programs augmented with denial integrity 
onstraints and preferen
es havinga non-
y
li
 stru
ture. For the 
lass of general logi
 programs and 
ontestations
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whi
h need not represent denial 
onstraints, it is not the 
ase that su
h programsmust have at least one 
anoni
al model when they are augmented with preferen
es,regardless of what restri
tions one puts on the stru
ture of the preferen
es. Thefollowing example illustrates this point.Example 10.4.1 Let LP = fa not b; b not 
; 
 not d; d not ag.Let C = ; and P = fb � a; 
 � dg. LP + C has the following four well-supportedmodels b � a is not satis�ed by I1 and I3 and 
 � d is not satis�ed by I2 anda b 
 dI1 T F T FI2 F T F TI3 CT CF CT CFI4 CF CT CT CFTable 10.1: A logi
 program augmented with 
ontestations and preferen
es thathas no 
anoni
al models.I4. Thus, LP + C + P has no well-supported models even though P has only twopreferen
es without any apparent relation between them.In terms of our work on preferen
es among arbitrary statements, we 
an ex-press preferen
es among theories. Thus, T1 > T2, understood to mean T1 =fa1; a2; : : : ; ang has preferen
e over T2, 
an be expressed as fa1 > T2; a2 > T2; : : : ; an >T2g.Our framework 
an also be used to express preferen
es among theories in termsof topi
s. Thus, let T1 >t T2 mean that theory T1 is to be preferred over theory T2on topi
 t. In our framework this 
an be expressed as, fa1 > fb1; b2; : : : ; bjg; a2 >231



fb1; b2; : : : ; bjg; : : : ; ak > fb1; b2; : : : ; bjgg, where fa1; a2; : : : ; akg are the statementsin the Herbrand base of T1 on topi
 t and fb1; b2; : : : ; bjg are the statements in theHerbrand base of T2 on topi
 t.In the following we dis
uss related work. [BKM91℄ gives methods of 
ombiningtheories ea
h of whi
h satis�es a set of integrity 
onstraints, where the naive unionof the theories fails to satisfy the integrity 
onstraints. They do not however 
on-sider adding preferen
es among arbitrary statements or even preferen
es amongtheories. [BKMS92℄ gives methods for 
ombining �rst order theories with prefer-en
es among theories. [FUV83℄ present an a

ount of updates with preferen
esamong sets of statements. However, none of these papers 
onsider the problem of
ombining databases with preferen
es among arbitrary statements.Ryan's work on Ordered Theory Presentations [Rya91, Rya92a, Rya92b℄ gives asemanti
s for �rst order senten
es with arbitrary preferen
es among statements. Itis based on the idea of ordering all possible interpretations of the sets of senten
esin terms of whi
h interpretations most nearly satisfy the set of senten
es and satisfythe preferen
es. Interpretations maximal in the ordering are taken to be the modelsof the set of senten
es with the preferen
es. Clearly, Ryan's approa
h is 
loselyrelated to what we have 
alled Preferen
e Ordering Semanti
s. Our approa
h isdi�erent than Ryan's in several respe
ts. First, Ryan's preferen
es are requiredto be transitive; we do not require preferen
es to be transitive. Se
ond, in oursystem preferen
es are not additive. That is, if a > b and a > 
, then it doesnot follow that a > fb; 
g. Third, Ryan's treatment of preferen
es restri
ts itselfto preferen
es among senten
es in the theory, but does not 
onsider preferen
esamong any two senten
es in the Herbrand base, regardless of whether they arepart of the theory. But our approa
h allows this.232



In [PMS95℄ we gave several equivalent semanti
s for logi
 programs 
onsistingentirely of ground atoms augmented with a set of denial integrity 
onstraints anda set of preferen
es. This work was extended in [PM96℄ in whi
h we developed twoequivalent non-
autious semanti
s and a 
autious semanti
s for de�nite logi
 pro-grams augmented with a set of denial integrity 
onstraints and a set of preferen
es.The work presented in this 
hapter generalizes this work to the 
lass of generallogi
 programs augmented with a set of 
ontestations and a set of preferen
es. Asnoted above, some of the key results of [PMS95℄ and [PM96℄ 
annot be extendedto this more general 
lass of programs and 
onstraints.An alternative approa
h to 
ombining multiple databases has been developedby Subrahmanian [Sub94℄ who develops a language for expressing supervisorydatabases. Intuitively, a supervisory database 
ontains 
on
i
t resolution infor-mation. What [Sub94℄ la
ks is an expli
it arti
ulation of what preferen
e means,and this is provided by our semanti
s of preferen
es.10.5 SummaryThe main resear
h 
ontributions of this 
hapter are summarized as follows.� We provide a language for expressing preferen
es among statements.� We extend C4 to provide two semanti
s for a normal logi
 program, LP ,augmented with a set of 
ontestations, C, and a set of preferen
es, P.{ The �rst semanti
s is based on using the preferen
es of P to indu
e anordering among the well-supported models of LP + C.{ The se
ond semanti
s is based on the idea of a well-supported model ofLP + C satisfying the preferen
es of P.233



� Although these two semanti
s are based on di�erent ways of fa
toring in therole of preferen
es, we prove that these two semanti
s are equivalent.
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Chapter 11Extended Logi
 Programs
11.1 Introdu
tionThe 
ase for logi
 programs with two types of negation, one whi
h may be 
alleddefault negation and the other whi
h may be 
alled non-default has been made byseveral authors ([GL90℄, [KS90℄). A bus driver may use the rule :Cross railway tra
ks if train is not 
oming.As [GL90℄ note it would be folly if this rule were interpreted to meanCross railway tra
ks if you 
annot prove that a train is 
omingThis interpretation is based on interpreting `not' as default negation.Rather, the rule is intended to meanCross railway tra
ks if you 
an prove that a train is not 
omingThis interpretation is based on interpreting `not' as non-default negation.On the other hand, the use of `not' should be understood as default negationin a rule su
h as 235



Continue driving if a stop request has not been madeThus there 
an be use for logi
 programs 
ontaining the use of default as wellas non-default negation.There 
an be di�erent types of non-default negation su
h as 
lassi
al, strong,and expli
it negation. They di�er in terms of how 
losely and in what respe
ts theyapproximate 
lassi
al negation. [AP92a℄ 
ontains a systemati
 study of severaltypes of non-default negation.Various semanti
s have been proposed for logi
 programs 
ontaining default andnon-default negations ([GL90℄, [AP92a℄, [Prz90a℄, [DR91℄, [ADP93℄). Althoughthese semanti
s have employed di�erent versions of non-default negation, these se-manti
s have not always been based on 
learly identifying the semanti
 di�eren
esbetween default negation and their 
hosen version of non-default negation. Thesesemanti
 di�eren
es 
an be displayed most 
learly by asso
iating non-default nega-tion with a mapping from tuples of truth values to truth values and asso
iatinga di�erent su
h mapping with default negation, where these mappings 
ompletely
hara
terize the semanti
s of ea
h type of negation. This also allows us to treatboth kinds of negation as logi
al operators.In this 
hapter we extendC4 toC5, a �ve-valued semanti
 framework. In termsof C5 we propose a family of semanti
s for logi
 programs 
ontaining both defaultand non-default negation. Using C5 we give a semanti
 a

ount of the di�eren
ebetween default and non-default negation by asso
iating a di�erent mapping withea
h type of negation.In Se
tion 11.2 we introdu
e the �ve truth values of C5 and several types ofordering between them. We de�ne the fun
tions for evaluating arbitrary extendedlogi
 programming senten
es in terms of a mapping from atomi
 senten
es to these236



truth values. In Se
tion 11.3 we develop the C5 semanti
s for extended logi
 pro-grams. In Se
tion 11.4 we 
ompare the C5 semanti
s with the answer set semanti
sfor extended logi
 programs ([GL90℄). We prove that an extended logi
 programLP with a 
onsistent answer set entails a literal p with respe
t to the answer setsof LP if, and only if, LP weakly entails p (under C5). In Se
tion 11.5 we showhow the �ve truth values of C5 and the three types of ordering between them
an be derived from the more basi
 set of truth values fT; U; Fg and the standardtruth and information ordering among them. In Se
tion 11.6 we summarize themain resear
h 
ontributions of this 
hapter.11.2 PreliminariesWe extend the language of normal logi
 programs by adding a new negation symbol:. By an obje
tive literal we mean either an atom a or :a. We 
all :a the non-default negation of a. By a default literal we mean an expression of the form not l,where l is an obje
tive literal. We 
all not l the default negation of l. We stipulatethat :not l is not a well-formed expression of our language.An extended rule R is of the forml  a1; : : : ; am;not b1; : : : ;not bnwhere l, ea
h ai and ea
h bj are obje
tive literals. An extended logi
 program is aset of su
h rules.By EHBLP , the extended Herbrand base of LP , we mean f:a j a 2 HBLPg [HBLP , where HBLP is the Herbrand base of LP .Given the extended rule R above 237



1. body(R) = fa1; : : : ; am;not b1; : : : ;not bng2. objbody(R) = fl 2 body(R) j l is an obje
tive literalg3. posbody(R) = fa 2 objbody(R) j a is an atomg4. negbody(R) = fnot b1; : : : ;not bngWe understand ::l to mean l. That is, we ignore the double negation. Thefun
tion Atom(l), where l is a literal, returns the atom that o

urs in l. Thus Ifl is an atom then Atom(l) returns l. Otherwise if l is of the form :a, or ::a, ornot a, or not :a, then Atom(l) returns the atom a.We extend C4 to C5. Let V = fT; CT; CF; F; Ug. The new truth value Uintuitively means unknown. We introdu
e a truth ordering, <t, and an informationordering, <i, among the members ofV. A

ording to the truth ordering F <t U <tT and F <t CF <t CT <t T . Thus, in the truth ordering U and CF and Uand CT are in
omparable. A

ording to the information ordering U is lower thanthe other members of V whi
h are themselves in
omparable with ea
h other in theinformation ordering.In terms of the truth ordering and information ordering, we 
onstru
t a sup-ported ordering, <s. Given �1; �2 2 V, �1 <s �2 i� �1 <i �2 or �1 <t �2 if �1and �2 are in
omparable in terms of <i. Thus the supported ordering gives usU <s F <s CF <s CT <s T . We use the supported ordering to indu
e an or-dering among the models of an extended logi
 program, whereas we use the truthordering to de�ne the truth values of nonatomi
 senten
es.In the dis
ussion se
tion of this 
hapter we explain how we derive the truthvalues of V and the truth and information orderings among the members of V in
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terms of a more basi
 set of truth values fT; U; Fg and the truth and informationordering among them.As in C4, T and CT are regarded as the designated true values. Whereas inC4 the default truth value is F , in C5 the default truth value is U in the sensethat any atom in the Herbrand base of a program whi
h is not the head of a 
lause,or whose non-default negation is not the head of a 
lause, is assigned U .In our semanti
s : denotes the mapping NEG and not denotes the mappingNOT. We state the mappings in terms of the following truth-tables.NEG T CT CF F UF CF CT T UTable 11.1: The NEG fun
tionNote that on this interpretation of non-default negation, NEG(NEG(v)) = vfor any v 2 V, and for any interpretation I, I(:p) = NEG(I(p)).NOT T CT CF F UF CF CT T TTable 11.2: The NOT fun
tionThe di�eren
es between these two mappings 
learly bring out the di�eren
esbetween : and not . It 
an be seen that NEG and NOT 
oin
ide on all truth-values ex
ept U , the default truth-value. It is pre
isely be
auseNOT(U) evaluatesto T that we 
all not default negation.239



In our semanti
s ^ denotes the mapping AND and _ denotes the mappingOR. These mappings are given below, where we assume that �1; �2 2 V.AND(�1; �2) = 8>><>>: min(�1; �2) if �1; �2 6= UU otherwise
OR(�1; �2) = 8>>>>>><>>>>>>: max(�1; �2) if �1; �2 6= U�2 if �1 = U�1 otherwiseAn interpretation for an extended logi
 programming LP is a mapping fromHBLP , the Herbrand base of LP , to V. In the following we de�ne the fun
tion I 0,whi
h extends this mapping to the (
losed) senten
es of the language.De�nition 11.2.1 Let I be an interpretation. Then I 0 is a mapping from thesenten
es of the language to V re
ursively de�ned as:� If S is a ground atom then I 0(S) = I(S).� If S is a 
losed senten
e thenI 0(:S) = NOT(I 0(S))I 0(not S) = NEG(I 0(S))� If S1 and S2 are (
losed) senten
es thenI 0(S1 ^ S2) = AND(I 0(S1); I 0(S2))I 0(S1 _ S2) = OR(I 0(S1); I 0(S2))I 0(S1  S2) = 8>>>>>>>>>><>>>>>>>>>>:

T if I 0(S1) �t I 0(S2)U if I 0(S1) and I 0(S2) are not 
omparableCT if I 0(S1) = CF and I 0(S2) = CTF otherwise240



� For any senten
e p(X) with one unbound variable X,I 0(8Xp(X)) = minfI 0(p(t)) j t 2 HUPg:� For any senten
e p(X) with one unbound variable X,I 0(9Xp(X)) = maxfI 0(p(t)) j t 2 HUPg:11.3 Model TheoryFor the purposes of the model theory of logi
 programs, we envisage the extendedlogi
 program LP to be augmented as follows:� As in the 
ase of C4, we add1. The spe
ial atoms true, CTrue, CFalse, false. It is assumed that true(resp. CTrue, CFalse, and false) evaluates to T (resp., CT , CF , andF ) in any interpretation.2. if LP 
ontains no 
onstants, the dummy 
lause p($a)  p($a), where$a is a 
onstant.3. Any 
lause with an empty body is assumed to have true as its body.� Additionally for C5 we add1. The spe
ial atom unknown whi
h is assumed to evaluate to U in anyinterpretation.2. For ea
h literal l in EHBLP , su
h that there is no 
lause in grd(LP )with l in the head or with Atom(l) in the head, we add a 
lause withAtom(l) as head and unknown as body.241



Augmenting the logi
 program in this manner allows us to state the model theorymore elegantly than if we did not augment it thus. (More spe
i�
ally, it helps withthe de�nition of a well-supported model below.) It should be 
lear in the followingthat the augmentation makes no di�eren
e to the a
tual semanti
s attributed to alogi
 program.As in the 
ase of C4, we say that an interpretation I satis�es a ground 
lauseC if I 0(C) 2 fT; CTg. Re
all that T and CT are the designated truth values.As usual an interpretation is a model of LP if it satis�es all the rules of LP .Given an interpretation of LP , whi
h is a mapping from the atoms of HBLPto V, the truth value of all the ground obje
tive literals is determined by NEGand the truth values of all the ground default literals is determined by NOT. Thisfa
t and the fa
t that for any interpretation I, if NEG(I(p)) then NOT(I(p))ensures that every interpretation of any extended logi
 program satis�es the so-
alled 
oheren
e prin
iple :p ! not p:Note that unlike in [AP92a℄ the 
oheren
e prin
iple does not have to be enfor
edby adding any spe
ial senten
es to a program.Furthermore, sin
e NEG is a one-to-one and onto mapping it follows that forany obje
tive literal l every interpretation I obeys the following stru
tural prin
ipleI(l) = NEG(I(:l))The above stru
tural prin
iple implies that the truth values of a literal de-termine the truth value of its non-default negation and vi
e versa. This impliesthat
242



� The truth value assigned to :l by an interpretation 
an justify assigning la higher truth value than would be justi�ed in terms of rules with l in thehead. Thus, the de�nition of a well supported model has to be extended toallow that the truth value of :l 
an indire
tly support the assignment of a
ertain truth value to l. This is a

omplished in the next sub-se
tion.� The truth value assigned to :l 
an for
e l to be assigned a lower truth valuethan would be justi�ed in terms of rules with l in the head. This is analogousto a 
ontestation of an atom for
ing the atom to have a lower truth value thanwould be justi�ed in terms of rules with l in the head. This property of non-default negation 
an be 
aptured by extending the apparatus of 
ontestationsto non-default negation. This is a

omplished in the sub-se
tion followingthe next subse
tion.Well-Supported InterpretationsCentral to C4 is the idea of a well-supported interpretation as expounded in Chap-ter 4. We re
all below the intuition behind the idea of well-supported interpreta-tions and extend it to C5.If we think of the body of a senten
e as providing eviden
e for attributing a
ertain truth-value to the head of the senten
e, then a well-supported interpretation
an be seen as assigning only that truth-value to any atom whi
h 
an be justi�edin terms of the total eviden
e for it (with respe
t to that interpretation), wherethe eviden
e must be independent of the truth-value assigned to that atom andmust be �nitely grounded in the fa
ts. The well-founded ordering ensures thatthe truth-values assigned to an atom is not justi�ed in terms of itself and theeviden
e is �nitely grounded. Thus, for instan
e, no well-supported interpretation243



of a program would assign true to p simply on the basis of the senten
e p p.It is this idea whi
h we wish to generalize. However, in the 
ase of extendedlogi
 programs we 
an have the eviden
e for the ground literal p provide indire
teviden
e for the ground literal :p and vi
e versa. In many 
ases this is quitelegitimate. Thus, 
onsider the ground program:P1 : :p q; q  true; p unknownHere we are 
learly justi�ed in assigning T to :p and thus indire
tly justi�edin assigning F to p even though the only senten
e with p in the head has unknownin the body.Contrast this with the ground program fp  unknown; :p  unknowng.Here assigning anything other than U to p or to :p is unjusti�ed. So the interpre-tation whi
h assigns F to p and T to :p should be unsupported even though theassignment of T to :p is indire
tly supported by the assignment of F to p, andvi
e versa.Thus, in our generalization of the de�nition of well-supported interpretationwe should allow for indire
t support to a literal (by its negation), but we shouldnot allow a literal and its negation to indire
tly support ea
h other.As in C4, the attribution of a non-default truth value to a non-default literalmust be based on eviden
e for that literal. In C4 the default truth value is F andso in C4 F 
an be assigned to any non-default literal on the basis of no eviden
efor that non-default literal. But in C5 the default truth value is U and hen
e theattribution of F to a non-default literal must be based on eviden
e. Re
all thathaving no eviden
e for a non-default literal means either having no information insupport of that literal or having only false information in support of that literal.Re
all that we treat all information in support of a non-default literal l as false244



(relative to an interpretation) in 
ase the body of ea
h rule with l or Atom(l) in thehead evaluates to F in that interpretation. Thus, in that 
ase l 
annot be assignedany non-default truth value in C5, not even F , by a well-supported interpretation.De�nition 11.3.1 An interpretation I of an extended logi
 program LP is wellsupported if there exists a stri
t well-founded partial ordering � on the atoms inHBLP su
h that for any literal l in EHBLP su
h that U <s I 0(l), there exists anR 2 grd(LP ) su
h that� head(R) = l and I 0(l) �s I 0(body(R)), or� head(R) = :l and I 0(:l) �s I 0(body(R)), and� F <s I 0(body(R)), and� b� Atom(l) for every b 2 Atoms(objbody(R)).In this 
ase we say that the truth value of l is supported by R in I. We saythat the truth value of l is dire
tly supported in I if the truth value of l is supportedby a R su
h that head(R) = l. Otherwise, we say the truth value of l is indire
tlysupported in I by :l.Thus the assignment of any truth value other than the default one (U) to anobje
tive literal requires a non-
ir
ular, �nite justi�
ation, but the assignment 
anbe justi�ed in terms of a rule whose body is assigned a higher truth value (in thesupported ordering) than the literal. Note that although an interpretation is amapping from atoms to truth values and although the well-founded ordering isover the atoms in HBLP , the `assignment'of a truth value to ea
h obje
tive literalmust be justi�ed. This is required in order to ensure that the assignment of truth245



vlaues to an obje
tive literal and its negation do not justify ea
h other. We assumethat the spe
ial atoms (true, Ctrue, et
.) are not ordered with respe
t to ea
hother and are less than any other atoms in the ordering.This de�nition is a �ve-valued generalization of the de�nition of a four-valuedwell-supported interpretation in Chapter 4.Note that if I is a well-supported interpretation of LP then the truth valueof every literal in the EHBLP is either dire
tly or indire
tly well-supported in I.Furthermore, for any literal l and its negation, if the truth value of one of them isindire
tly supported in I then the truth value of other must be dire
tly supported.However, the truth value of both 
an be dire
tly well-supported in I as in theground program P2 : fp true; :p truegIt should be noted that in the program P2 the assignment of T to p and theassignment of T to :p would both be dire
tly supported by the program; however,this does not des
ribe any interpretation of the program. Sin
e an interpretation isa mapping from the atoms in HBLP to the truth values, assigning T to p perfor
eassigns F to :p.Negation as ContestationThe previous se
tion introdu
ed the idea of well-supported interpretations of ex-tended logi
 programs. Now we 
onsider the issue of when a well-supported inter-pretation is a model of an extended logi
 program.Consider the following ground program.P3 : f:b 
; 
 ; b g
246



An interpretation whi
h assigns T to b and 
 is a well-supported interpretation, butis it a model of P3? If the evaluation I 0 is used to evaluate the �rst 
lause, thenit evaluates to F and thus this interpretation 
annot be a model of P3. Indeed,it 
an be easily seen that if I 0 is used to evaluate the 
lauses of P3, then P3 hasno models. Note that in P3 there is dire
t eviden
e for assigning T to both b and:b, but assigning T to one of these literals puts a restri
tion on the truth valuethat 
an be assigned to the other literal. Thus, to 
ome up with a suitable modeltheory for extended logi
 programs we need to revise the evaluation fun
tion I 0 totake into a

ount the restri
tion that the assignment of a truth value to a literalpla
es on the assignment of a truth value to its non-default negation. We do thisbelow using the apparatus of 
ontestations developed in the previous 
hapters.Chapter 4 introdu
ed the idea of 
ontestations. A 
ontestation A ,! b saysthat A provides eviden
e against b. Chapter 4 provides a semanti
s for a normallogi
 program LP 
onstrained by a set of 
ontestations C. Ea
h rule in LP isevaluated under these 
onstraints. Thus, suppose we have the ground program fb  
; 
  ; a  g and the 
ontestation a ,! b and an interpretation I whi
hassigns T to a and T to 
. So although relative to that interpretation there isenough eviden
e for assigning T to b, the eviden
e provided by a against b puts a
ap on how mu
h overall eviden
e 
an be said to exist for b.In a similar fashion the assignment of a 
ertain truth value to l 
an put a 
ap onthe truth value that 
an be assigned to :l. Consider the program P3. Consider theinterpretation whi
h assigns T to b and 
. Although relative to that interpretationthere is enough eviden
e to assign T to :b, the eviden
e provided by b against :bputs a 
ap on how mu
h overall eviden
e there 
an be said to exist for :b.This aspe
t of non-default negation 
an be 
aptured in terms of the apparatus247



of 
ontestations in the following manner.First, the extended logi
 program LP is augmented with the following spe
ialset of 
ontestations C: = fp ,!: :pg [ f:p ,!: pgfor ea
h p 2 HBLP .Asso
iated with ea
h su
h 
ontestation is the following 
ap fun
tion:
ap:(�) = 8>><>>: NEG(I 0(:l)) if � 6= UT if � = UCorresponding to De�nition 4.4.3 of Chapter 4, we de�ne a fun
tion 
ap0 whi
htakes an obje
tive literal, a 
ontestation and an interpretation as arguments andreturns a spe
ial atom as a value.De�nition 11.3.2 Let l be an obje
tive literal, not ne
essarily ground, Cj be a 
on-testation with the asso
iated 
ap fun
tion 
ap:. Then, 
ap0:(l; Cj; I) returns the spe-
ial atom whi
h always evaluates to 
ap:(I(Contestor(Cj))) if Contested(Cj) = l�,for some substitution � whi
h 
an be the empty substitution, otherwise 
ap0:(l; Cj; I)returns the spe
ial atom true.Note that C: 
ontains only 
ontestations of the form l ,!: :l. Hen
e inthe above de�nition if Contested(Cj) = l�, for some substitution �, Contestor(Cj)must be :l�. In light of this, the above 
ap0 fun
tion 
an be simpli�ed as
ap0:(l; Cj; I) = 8>><>>: NEG(I 0(:l�)) if Contested(Cj) = l� and I 0(:l�) 6= UT otherwiseRe
all that in a well-supported model the assignment of a truth value to aliteral l 
an be either dire
tly supported in terms of a senten
e with l in the head248



or indire
tly supported in terms of the truth value of :l. If an interpretation Iassigns a truth-value v 2 V to l then, by the stru
tural prin
iple, the truth valueof :l must be NEG(v). But if the assignment of v to l is dire
tly supported in Ithen we 
an think of it as providing eviden
e against :l and thus providing a 
apon what truth-value 
an be assigned to :l. On the other hand, if the assignment ofv to l is indire
tly supported then it provides no independent eviden
e against :land thus 
annot be seen as providing a 
ap on what truth value 
an be assigned to:l. Rather, the situation is reversed. It is the assignment of NEG(v) to :l thatprovides eviden
e against l. This is be
ause if the assignment of v is indire
tlysupported then the assignment of NEG(v) to :l is dire
tly supported. It 
ouldhappen that the assignment of v to l and the assignment of NEG(v) to :l areboth dire
tly supported in I (as in the program P2 above) and in this 
ase weview them as providing eviden
e against ea
h other.This motivates the following modi�
ation of I 0.De�nition 11.3.3 Given a well-supported interpretation I of an extended logi
program LP , I 000 is a fun
tion for evaluating any 
losed senten
e in the languageof LP . I 000 is just like I 0 for all operators ex
ept  .If S1 and S2 are (
losed) senten
es and � is any substitution, then I 000(S1 S2)�is just I 0(S1  S2)� if :S1� is not dire
tly supported in I; otherwise I 000(S1  S2)� is I 0((S1 S2)�; 
ap0:(S1�; C:; I)).I 000 provides a way of taking into a

ount the justi�ed redu
tions of the as-signment of a truth value to the head of a senten
e in evaluating the truth valueof that senten
e. Note that the de�nition of I 000 makes referen
e to the notion ofwell-supportedness, whi
h is de�ned using I 0 for evaluating the senten
es of theprogram. Thus, in determining whether an interpretation is well-supported we249



make use of I 0 rather than I 000, otherwise our de�nition would be 
ir
ular.Thus, a well-supported interpretation I is a model of an extended logi
 programLP if and only if all the rules of LP evaluate to either CT or T under I 000. Su
hmodels are the well-supported models of LP .Semanti
s of Extended Logi
 ProgramsThe 
lausal ordering among interpretations de�ned in Chapter 4 assumed the I 00fun
tion for evaluating the senten
es of a program relative to an interpretation.We de�ne below a form of 
lausal ordering among well-supported models using I 000for evaluating senten
es.De�nition 11.3.4 Let I1 and I2 be two well-supported models of LP . Then,I1 �modLP I2 if, and only if, I1(C) �s I2(C) for every senten
e C in LP where thesenten
es are evaluated using I 000.We 
all this ordering the m
lausal ordering among well-supported models.As before, we say that an interpretation Ii is maximal with respe
t to LP in aset of interpretations � if there is no interpretation Ij 2 � su
h that Ii <modLP Ij.De�nition 11.3.5 The 
anoni
al models of an extended logi
 program LP underC5 are the maximal models in terms of the m
lausal ordering among the well-supported models.Example 11.3.1 Let LP be the following program from [DR91℄.C1 : :fly(x)  not bird(x)C2 : fly(x)  bat(x)C3 : bat(tom)  250



We give below the well-supported models of the program and the evaluation of ea
hsenten
e in a well-supported model using I 000.
y(tom) bird(tom) bat(tom) C1 C2 C3I1 T U T T T TI2 CT U T T T TI3 CF U CT T T TI4 F U CT T T TTable 11.3: The C5 well-supported models of an extended logi
 program.Note that C1 and C2 evaluate to T in these interpretations be
ause in theevaluation of those rules we view the program as being impli
itly augmented withC: = ffly(tom) ,!: : fly(tom); : fly(tom) ,!: fly(tomg.All of these interpretations are the well-supported models of the program andall of them are 
anoni
al.Similar to the skepti
al and 
redulous versions of C4, we 
an de�ne skepti
aland 
redulous versions of C5. A skepti
al version of C5 identi�es the meaningof an extended logi
 program LP with the literals that evaluate to T in all the
anoni
al models of LP under C5, whereas a 
redulous version of C5 identi�es themeaning of an extended logi
 program LP with the literals that evaluate to CTunder C5.The following theorem establishes that theC5 semanti
s is inferentially 
on
i
t-free with respe
t to the types of 
on
i
ts that 
an be expressed in terms of the: operator. Re
all that in Chapter 1 we had noted that almost all para
onsis-tent logi
s permit the inferen
e of logi
ally in
onsistent senten
es. To the extent251



that :p and p, for any senten
e p, expresses a logi
al in
onsisten
y, the followingtheorem establishes that C5 is inferentially free of logi
al in
onsisten
ies.Theorem 11.3.1 The C5 semanti
s for extended logi
 programs is inferentially
onsistent.Proof: To prove this we need to prove that for any extended logi
 program P andany ground atom p, P does not entail both p and :p under the C5 semanti
s. Thisfollows from the fa
t that in no C5 interpretation 
an both p and :p evaluate toat least CT , sin
e a C5 interpretation is a mapping from atoms to truth values.
11.4 Relation to Answer Set Semanti
sIn this se
tion we introdu
e the answer set semanti
s of Gelfond and Lifs
hitz forextended logi
 programs ([GL90℄). We prove that an extended logi
 program LPwith a 
onsistent answer set entails a literal p with respe
t to the answer sets ofLP if, and only if, LP weakly entails p (under C5).The answer set semanti
s is a generalization of the stable model semanti
sintrodu
ed in Chapter 3. Gelfond and Lifs
hitz de�ne an answer set in two steps:the generalized Gelfond-Lifs
hitz transformation of a program and the � operator.These are explained below.De�nition 11.4.1 Let P be a ground, extended logi
 program. Let M be a set ofground obje
tive literals. Then, the generalized Gelfond-Lifs
hitz transformation([GL90℄) of P isPM = fa b1; : : : ; bk j a b1; : : : ; bk;not 
1; : : : ;not 
n 2 P; 
1; : : : ; 
n 62Mg252



Note that PM 
ontains no default literals.Given an extended logi
 program rule R = a  b1; : : : ; bk;not 
1; : : : ;not 
nand a set of ground obje
tive literals M , letRM = 8>><>>: a b1; : : : ; bk if 
1; : : : ; 
n 62Ma false otherwiseLet � be an operator su
h that for a program P 
ontaining no o

urren
e of defaultliterals, �(P ) is S � EHBP where S is the smallest set su
h that1. for any rule a b1; : : : ; bm in PM , if b1; : : : ; bm 2 S then a 2 S2. if S 
ontains l and :l for any literal l, then S = EHBPM is an answer set of P if and only if M = �(PM).Example 11.4.1 Let P be
ross tra
k  :train approa
hing; not stop request:stop  not stop requeststop  stop request:train approa
hing  Let M = f
ross tra
k; :train approa
hing;:stopg. Then PM is
ross tra
k  :train approa
hing:stop  stop  stop request:train approa
hing  �(PM) = f
ross tra
k; :train approa
hing;:stopg. Thus, M = �(PM) and Mis an answer set of P . 253



When P is a normal logi
 program, the answer set semanti
s redu
es to thestable model semanti
s. In this 
ase PM is a de�nite program, �(PM) is theunique minimal model of the program and if M = �(PM), then M has to be a setof atoms.([GL90℄).Gelfond and Lifs
hitz show how an extended logi
 program P 
an be redu
edto a normal logi
 program P+ by repla
ing ea
h rule of R by its positive form. Thepositive form of l0  l1; : : : ; lm;not lm+1; : : : ;not lnis a rule of the form l+0  l+1 ; : : : ; l+m;not l+m+1; : : : ;not l+nwhere l+i is li if li is an atom, otherwise if li is a negative obje
tive literal then l+iis the new atom (li)0. They prove thatTheorem 11.4.1 [GL90℄M is a 
onsistent answer set of an extended logi
 program P if and only if M+ isan answer set of P+The following lemma uses the above theorem to set up a 
onne
tion betweenanswer sets and two-valued well-supported models. We use this lemma in the proofLemma 11.4.3 below.Lemma 11.4.1 M is a 
onsistent answer set of an extended logi
 program P ifand only if M+ is a two-valued well-supported model of P+Proof: Sin
e P+ is a normal logi
 program, M+ is also a stable model of P+. ByTheorem 3.3.1 in Chapter 3, M+ must also be a two-valued well-supported modelof P+. 254



De�nition 11.4.2 Given an interpretation I, let ETruth(I) denote flj l is anobje
tive literal and I(l) � CTg.The following lemma shows that ETruth(I) is always 
onsistent for any inter-pretation I.Lemma 11.4.2 For any interpretation I, ETruth(I) is a 
onsistent set, i.e., itis not the 
ase that both a and :a belongs to ETruth(I) for any atom a.Proof: Sin
e I is a mapping from atoms to truth values, I(:a) � CT if and onlyif I(a) < CT . Hen
e ETruth(I) must be 
onsistent.Lemma 11.4.3 below says that every 
onsistent answer set of an extendedprogram P is ETruth(I) for some 
anoni
al model I (under C5) of P .Lemma 11.4.3 Let LP be an extended logi
 program and let P be grd(LP ). Then,for ea
h 
onsistent answer set M of P , there exists a �ve-valued 
anoni
al modelI of LP su
h that M = ETruth(I).Proof: Let M be a 
onsistent answer set of P . We show below how to 
onstru
ta �ve-valued 
anoni
al model I su
h that M = ETruth(I).Let I be su
h that it assigns T to all members of M and F to the atomsof all the negative literals in M and U to all other atoms in HBLP . Clearly, by
onstru
tion M = ETruth(I). We show below that I is a �ve-valued 
anoni
almodel of P .I is well-supportedSin
e M is a 
onsistent answer set of P , it follows that M+ is a two-valued well-supported model of P+ (by Lemma 11.4.1 above). So there must be well-foundedordering �+ by whi
h M+ is well-supported. For ea
h l+i that o

urs in this255



ordering, li is an atom if l+i = li and otherwise if l+i is l0i, then li is a negativeobje
tive literal. We derive a well-founded ordering � from �+ by substitutingAtom(li) for ea
h l+i su
h that l+i = l0i. We show that I is a well-supported modelin terms of this ordering of the atoms in HBP .Sin
e the only non-default truth values assigned to any atom by I are T andF , we need only show that I is well-supported regarding these truth values.If I assigns T to an atom a then a 2M . So there must be a rule RM 2 PM su
hthat head(RM) = a and body(RM) � M . Thus, by 
onstru
tion, I(body(RM))must evaluate to T . Hen
e, there must be a rule R 2 P su
h that R = a  body(RM);not 
1; : : : ;not 
n, su
h that 
1; : : : ; 
n 62 M . So I assigns U to ea
hof 
1; : : : ; 
n. Thus, body(R) must evaluate to T in I. Hen
e the attribution of Tto a by I is dire
tly supported through R. Furthermore, the attribution of T toa must be well-supported sin
e if a 2 M then a 2 M+. M+ 
an be understoodas attributing T to a. It is easy to see that sin
e the attribution of T to a byM+ is well-supported in terms of �+, the attribution of T to a by I must bewell-supported in terms of �.If I assigns F to an atom a then :a 2 M . So there must be a rule RM 2 PMsu
h that head(RM) = :a and body(RM) � M . By reasoning similar to theprevious 
ase it follows that body(R) must evaluate to T in I. Hen
e the attributionof F to a by I is indire
tly supported through R. Furthermore, the attributionof F to a must be well-supported sin
e if :a 2 M then (:a)0 2 M+. M+ 
an beunderstood as attributing T to (:a)0. It is easy to see that sin
e the attributionof T to (:a)0 by M+ is well-supported in terms of �+, the evaluation of T to :aby I must be well-supported in terms of �. Thus, the attribution of F to a by I
256



must be indire
tly well-supported in terms of �.I is a model of PAssume by way of 
ontradi
tion that I is not a model of P . Sin
e I does notattribute CF or CT to any atoms, I fails to be a model of P only if there is aR 2 P su
h that I 000(R) is F or U .There 
an be no R 2 P su
h that I 000(R) = U sin
e an R is assigned U only ifthe truth values of head(R) and body(R) are in
omparable. But, sin
e I assignsonly T , F and U , head(R) and body(R) 
annot have in
omparable values.So assume I 000(R) evaluates to F . So either body(R) evaluates to T and head(R)evaluates to F or U , or body(R) evaluates to U and head(R) evaluates to F .But body(R) evaluates to T only if body(RM) � M . In that 
ase head(R) =head(RM) 2M and so head(R) would be T in I 000 and thus I 000(R) = T . Hen
e weneed 
onsider only the 
ase where head(R) evaluates to F and body(R) evaluatesto U .Either head(R) = a or head(R) = :a for some atom a. If head(R) = a anda is assigned F , then, by the way I is 
onstru
ted, :a 2 M . So there must be arule R1 2 P su
h that head(R1) = :a and I(:a) = T . Sin
e I is well-supportedas shown above, the attribution of T to :a must be dire
tly supported in I. So bythe evaluation rule I 000, in evaluating any rule with a in the head, the expression
ap:(a; C:; I) must be inserted in the body of any rule whi
h has a as its head.This 
ap expression evaluates to F in I. So body(R) must evaluate to F in Ia

ording to the AND fun
tion. So I 000(R) = T .If head(R) = :a and :a is assigned F , then, by the way I is 
onstru
ted,a 2 M . So there must be a rule R1 2 P su
h that head(R1) = a and I(a) = T .Sin
e I is well-supported as shown above, the attribution of T to a must be dire
tly257



supported in I. So by the evaluation rule I 000, in evaluating any rule with :a inthe head, the expression 
ap:(:a; C:; I) must be inserted in the body of any rulewhi
h has :a as its head. This 
ap expression evaluates to F in I. So body(R)must evaluate to F in I a

ording to the AND fun
tion. So again I 000(R) = T .Hen
e, given the way I has been 
onstru
ted, there 
annot be any rules in Psu
h that they evaluate to F or U using the evaluation fun
tion I 000. Thus, I mustbe a model of P .I is maximal in the m
lausal ordering with respe
t to LPI is maximal in the m
lausal ordering with respe
t to LP only if it is maximalin the m
lausal ordering with respe
t to grd(LP ) = P . To establish that I ismaximal in the 
lausal ordering with respe
t to P it is enough to establish that allrules in P evaluate to T a

ording to I 000.Clearly, all rules su
h that its head is assigned T by I evaluate to T . So, allthat remains to be shown is that all rules su
h that its head is assigned F or U byI also evaluate to T . But sin
e we have already established that I is a model ofP , the body of any rule whose head is assigned F must evaluate to F . Thus, anysu
h rule evaluates to T in I. Similarly, sin
e I is a model of P , any rule whosehead is assigned U in I 
annot have its body evaluate to T . So any su
h rule mustalso evaluate to T .Hen
e, all rules in P evaluate to T under I.Hen
e, I is a 
anoni
al model of P and M = ETruth(I).Corollary 3 If a ground program P has a 
onsistent answer set, then P has a�ve-valued 
anoni
al model I su
h that ea
h rule in P evaluates to T in I.Proof: This was essentially proved in the proof of the previous lemma.258



Corollary 4 If a ground program P has a 
onsistent answer set, then every �ve-valued 
anoni
al model of P is su
h that ea
h rule in P evaluates to T in it.Proof: By Corollary 3 we know that if P has a 
onsistent answer set then there isa 
anoni
al model I of P su
h that all rules evaluate to T in I. So for any modelJ of P su
h that for any rule R, J (R) < T , it must be the 
ase that J < I.Hen
e J 
annot be 
anoni
al. Thus, every 
anoni
al model must be su
h thatevery rule of P evaluates to T in it.Lemma 11.4.4 Let P be grd(LP ). Every 
anoni
al �ve-valued model I of LPsu
h that ea
h rule of P evaluates to T in I is su
h that ETruth(I) is an answerset of P .Proof: Assume that I is a 
anoni
al model of LP su
h that ea
h rule of Pevaluates to T in I.We prove the lemma in three steps.1. We show that if ea
h rule of P evaluates to T in I, then �(PETruth(I)) is a
onsistent set.2. We show that if �(PETruth(I)) is 
onsistent then every member of �(PETruth(I))is also a member of ETruth(I).3. We show that every member of ETruth(I) is also a member of �(PETruth(I)).Step 1: Assume by way of 
ontradi
tion that �(PETruth(I)) is an in
onsistentset. So there must be literals l and :l in �(PETruth(I)) and rules R1 and R2 inPETruth(I) su
h that� head(R1) = l 259



� head(R2) = :l� body(R1) � �(PETruth(I))� body(R2) � �(PETruth(I)).Thus, there must be rules R01 and R02 in P su
h that� head(R1) = l = head(R01)� head(R2) = :l = head(R02)� body(R1) = objbody(R01)� body(R2) = objbody(R02).Hen
e all the default literals and the non-default literals in body(R01) andbody(R02) must evaluate to at least CT in I. However, both l and :l 
annotevaluate to at least CT in I by Lemma 11.4.2. Hen
e, both R01 and R02 
annotevaluate to T in I, whi
h 
ontradi
ts the assumption that all rules of P evaluateto T in I. Thus, �(PETruth(I)) must be a 
onsistent set if all rules of P evaluateto T in I.Step 2: We show that if �(PETruth(I)) is a 
onsistent set, then every memberof �(PETruth(I)) is a member of Etruth(I).From Step 1 we know that S = �(PETruth(I)) is a 
onsistent set under theassumption that all rules in P evaluate to T in I. Clearly, S is a 
onsistent answerset of PETruth(I). Thus, by Theorem 11.4.1, S+ is an answer set of (PETruth(I))+.We show below that for any obje
tive literal l, if l+ 2 S+ then l 2 Etruth(I).Sin
e l+ 2 S+ if and only if l 2 S = �(PETruth(I)), this establishes that everymember of �(PETruth(I)) is a member of Etruth(I).260



(PETruth(I))+ is a de�nite logi
 program and, thus, S+ = �((PETruth(I))+) is theunique minimal model of (PETruth(I))+. Thus, by Theorem 3.2.2 (the van Emden-Kowlaski Theorem), S+ is the least �x-point of TQ " n, where Q is (PETruth(I))+.Thus, it is possible to stratify the members of S+ in terms of the least n su
h thata member �rst o

urs in TQ " n.In the following let us 
all an obje
tive literal l the original form of l+. Re
allthat l+ is 
alled the positive form of l.Let l+ be of the lowest strata among those obje
tive literals in S+ su
h thattheir original form is not in ETruth(I).Sin
e l+ 2 S+, there must be a rule in (PETruth(I))+ of the form l+  (b1)+; : : : ; (bm)+ su
h that f(b1)+; : : : ; (bm)+g � S+. But, by the assumption thatl+ is of the lowest strata among those literals in S+ whose original forms arenot in ETruth(I), it follows that fb1; : : : ; bmg � Truth(I). Furthermore, sin
el+  (b1)+; : : : ; (bm)+ is in (PETruth(I))+, there must be a rule R in P of the forml  b1; : : : ; bm;not 
1; : : : ;not 
n su
h that 
i 62 ETruth(I), i = 1; : : : ; n. So, ea
hmember bi of objbody(R) is assigned at least CT by I (sin
e ea
h su
h bi belongsto ETruth(I)) and ea
h member not 
j of negbody(R) evaluates to at least CT(sin
e ea
h 
j is assigned at most CF by I). Hen
e, I(body(R)) is at least CT .By the assumption that R evaluates to T in I, it follows that I(l) must be atleast CT . Therefore, l must be in ETruth(I). Thus, for every obje
tive literal l,if l+ 2 S+, then l 2 Etruth(I). And, hen
e, every member of S = �(PETruth(I))is a member of ETruth(I).Step 3: Assume by way of 
ontradi
tion that there is a 2 ETruth(I) anda 62 �(PETruth(I)).Let � be the well-founded ordering that makes I well supported. Among all261



the atoms x su
h that x 62 �(PETruth(I)) and x 2 ETruth(I), let a be highestin terms of �. That is, let a be su
h that there does not exist a b su
h thatb 62 �(PETruth(I)) and b 2 ETruth(I) and a� b.Sin
e a 2 ETruth(I), I(a) is at least CT and, hen
e, there must be a rule R inP of the form a b1; : : : ; bm;not 
1; : : : ;not 
n su
h that body(R) must evaluateto at least CT under I (otherwise, I would not be well-supported). So ea
h bi inobjbody(R) must be assigned at least CT by I. Thus, fb1; : : : ; bmg � ETruth(I).Furthermore, sin
e ea
h not 
j in body(R) must evaluate to at least CT , ea
h 
jmust be assigned at most CF by I. Thus, no 
j is in ETruth(I).Hen
e, 
learly, a b1; : : : ; bm must be in PETruth(I).By the nature of the well-founded ordering that makes I well supported, ea
h ofb1; : : : ; bm must be lower than a in the well-founded ordering (otherwise a 
annotbe well-supported by R). By our assumption that a is the highest in the well-founded ordering, it follows that fb1; : : : ; bmg � �(PETruth(I)) sin
e fb1; : : : ; bmg �ETruth(I). So a must belong to �(PETruth(I)). Thus, a 
ontradi
tion. Hen
e,every member of ETruth(I) must be a member of �(PETruth(I)).Steps 1 and 2 together show that if ea
h rule of P evaluates to T in I, thenevery member of �(PETruth(I)) is also a member of ETruth(I). This together withStep 3 proves the lemma.Lemma 11.4.5 Let P be grd(LP ). If P has a 
onsistent answer set then every
anoni
al model I of LP is su
h that ETruth(I) is an answer set of P .Proof: Follows dire
tly from Corollary 4 and Lemma 11.4.4.Theorem 11.4.2 If a ground extended logi
 program P has a 
onsistent answerset, then M is an answer set of P if, and only if, there exists a �ve valued 
anoni
al262



model of I of P su
h that M = ETruth(I).Proof: Follows dire
tly from Lemmas 11.4.3 and 11.4.5.Sin
e not all extended logi
 programs have 
onsistent answer sets, an importantquestion is what are the ne
essary and suÆ
ient 
onditions for an extended logi
program having a 
onsistent answer set. The following theorem gives an answer.Theorem 11.4.3 A ground extended logi
 program has a 
onsistent answer set if,and only if, every rule of the program evaluates to T in every 
anoni
al model ofthe program.Proof: The left-to-right dire
tion is proven in Corollary 4. The right-to-leftdire
tion is proven in Lemma 11.4.4.Let us say that P entails a senten
e q under the answer set semanti
s if, andonly if, q is a member of every answer set of P .Theorem 11.4.4 If a ground extended logi
 program P has any 
onsistent answersets then it entails a senten
e q under the answer set semanti
s if, and only if, Pweakly entails q under C5.Proof: Follows dire
tly from Theorem 11.4.2.
11.5 Dis
ussionAs in the 
ase of C4, the truth values of C5 and the orderings among them 
anbe seen as 
omposed out of a more basi
 set of truth values and the orderingsbetween them. In the 
ase of C4 the basi
 set of truth values is fT; Fg with only a263



truth ordering among them, whereas in the 
ase of C5 the basi
 set of truth valuesis fT; U; Fg, whi
h are themselves ordered along both the truth and informationdimension thus: F <t U <t T and U <i F; T . As in the 
ase of C4, we imaginetwo players assigning one of the basi
 truth values to a set of senten
e. Player 1has the �nal say in whi
h truth value is assigned to a senten
e. This gives rise tothe following tuples of truth values, where the �rst member of ea
h tuple is thetruth value assigned by player 1 and the se
ond member is the truth value assignedby player 2: hT; T i; hT; Ui; hT; F i; hU; T i; hU; Ui; hU; F i; hF; T i; hF; Ui; hF; F i.As in 
ase of C4, player 1 determines what truth value to assign to a senten
etaking into a

ount the truth values assigned by both players. In doing this player1 adopts the poli
y that in 
ase either player assigns a de�nite truth value (T or F )to a senten
e and the other player assigns U , then the de�nite assignment shouldbe allowed to win, but otherwise if both players assign a de�nite truth value thenthe assignment by player 2 should dominate the assignment by player 1 withoutwinning outright. Call this `the assignment poli
y'. This assignment poli
y meansplayer 1 will �nally assign T to a senten
e in 
ase of hT; Ui or hU; T i and F in
ase of hU; F i or hF; Ui. It also means that hT; F i and hF; T i are not simpli�edto F and T respe
tively ( whi
h would be allowing the assignment by player 2 towin outright), but are instead are retained with the ordering hT; F i <t hF; T i,whi
h re
e
ts the idea that the assignment by player 2 dominates the assignmentby player 1. As in C4, hT; F i is represented by CF and hF; T i is represented byCT . If there is 
onsensus in the truth values assigned to a senten
e, player 1 will�nally assign that truth value to the senten
e. This gives us the truth values ofC5.In deriving the ordering among the truth values of C5 we use the truth and
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information orderings in the basi
 set, fT; U; Fg, as well as the assignment poli
yadopted by player 1. Given the truth ordering among the values of the basi
 set,
learly, the ordering F <t U <t T among the truth values of C5is justi�ed. Also,as in C4, hT; F i <t hF; T i sin
e we allow player 2 to dominate player 1. That is,CF <t CT . It is obvious also that F <t CF and CT <t T .How should hU; Ui be ranked with respe
t to hT; F i and hF; T i? Note that
ommonly U , whi
h is regarded as the unknown truth value, is 
onsidered lessthan T and greater than F in the truth ordering be
ause even if more informationwere provided about a senten
e that is now regarded as unknown, that senten
ewill never be assigned a value greater than T and less than F . Using this reasoningwe hold that hU; Ui is in
omparable in the truth ordering with respe
t to hT; F iand hF; T i be
ause if more information were provided to both players regarding asenten
e that they now regard as unknown in truth value, then in the worst 
asethey both might regard it as false and in the best 
ase they both might regard itas true. Thus, we have no way of lo
ating hU; Ui with respe
t to hT; F i and hF; T iin the truth ordering. That is, U is in
omparable with respe
t to CT and CF .Putting all this together we get the following truth ordering among the valuesof C5: F <t U <t T , F <t CF <t CT <t T .The information ordering among the truth values of C5 is straight forward.Clearly U <i T; CT; CF; F . And, furthermore, T; CT; CF; F are in
omparableamong themselves in terms of the information ordering.In Chapter 5 we showed that C4 subsumes and extends the stable model se-manti
s for those normal logi
 programs whi
h have any stable models. The answerset semanti
s generalizes the stable model semanti
s and C5 generalizes C4. It
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is satisfying therefore that the results regarding the relation between stable modelsemanti
s for normal logi
 programs and the C4 semanti
s for this 
lass of pro-grams holds in the more generalized setting of answer set semanti
s for extendedlogi
 programs and the C5 semanti
s for this 
lass of programs.The answer set semanti
s inherits the problems of stable model semanti
s dis-
ussed in Chapter 5: there are no answer sets for some extended logi
 programsand the addition of an \irrelevant" 
lause to a program whi
h has an answer set
an result in a program whi
h has no answer sets. The C5 semanti
s for extendedlogi
 programs over
omes both these problems.The answer set semanti
s also has the drawba
k that 
ertain programs, the\in
onsistent" programs, have only the trivial answer set whi
h 
onsists of all theobje
tive literals in the extended Herbrand base of the program. This is 
learlya drawba
k of the answer set semanti
s in that no meaningful inferen
es 
an bedrawn from su
h programs on the basis of the answer set semanti
s. The C5semanti
s for extended logi
 programs does not su�er from this drawba
k.In Chapter 5 we have also shown that C4 subsumes the well-founded seman-ti
s ([GRS91℄). It would therefore be desirable to show that C5 subsumes well-founded semanti
s for extended logi
 programs. However, there is no agreementon what would 
ount as the well-founded semanti
s for extended logi
 programs( [DR91℄, [AP92b℄, [ADP93℄, [Sak92℄). Hen
e we have not attempted to show thatC5 semanti
s for extended logi
 programs subsumes well-founded semanti
s forextended logi
 programs.Based on the idea of well-supported models and a �ve valued logi
, C5, wehave 
hara
terized the semanti
 di�eren
e between default negation and what we
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all non-default negation in terms of the asso
iated mappings. This is in 
ontrastto the pra
ti
e among some authors ([GL90℄, for instan
e) of 
hara
terizing thedi�eren
e between the two types of negation in terms of the di�eren
e between thetreatment of senten
es 
ontaining default negation and the treatment of senten
es
ontaining non-default negation in the pro
edure for determining the semanti
s ofa program 
ontaining both types of negation. Rather, what we have done is �rstgive the semanti
s of the two types of negation and on the basis of this, and thesemanti
s of the other operators, given the semanti
s of a logi
 program.The apparatus of this 
hapter 
an be extended in a straight-forward manner todevelop a semanti
s for extended logi
 programs with heterogeneous 
ontestations.The various 
ap fun
tions will have to be rede�ned in terms of the truth valuesof C5. In evaluating the truth value of a rule 
onstrained by 
ontestations, theevaluation fun
tion I 000 should be used. This semanti
s otherwise will be analogousto the semanti
s of normal logi
 programs with 
ontestations.We have not developed a proof pro
edure for extended logi
 programs. Thiswill be done in future work.11.6 SummaryIn this 
hapter we have developed the C5 semanti
s for extended logi
 programs,whi
h 
ontain both a default and a non-default negation. The spe
i�
 resear
h
ontributions of this 
hapter are summarized below.� We have developed a �ve-valued semanti
s C5 whi
h is an extension of C4(Se
tion 11.3).
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� We have proven that every extended logi
 program has at least one (
onsis-tent) 
anoni
al model under C5 (Se
tion 11.3).� We have shown how to 
apture part of the logi
al for
e of non-default nega-tion in terms of 
ontestations. If non-default negation is viewed as an ap-proximation of 
lassi
al negation, then logi
al 
on
i
t in a logi
 program 
anbe represented in terms of the derivability of a literal and its non-defaultnegation from the program. Thus, logi
al 
on
i
ts as well as non-logi
al 
on-
i
ts 
an be represented in terms of 
ontestations. Thus we have establishedthat 
ontestations provide a 
exible framework for expressing and reasoningwith a wide variety of 
on
i
ts among statements (Se
tion 11.3).� We have proven that C5 is inferentially 
on
i
t-free with respe
t to theapproximation of logi
al 
on
i
ts in terms of non-default negation (Se
-tion 11.3).� We have proven that for any extended logi
 program P whi
h has a 
onsistentanswer set, a literal l is strongly entailed by P under the answer set semanti
s([GL90℄) if and only if l is weakly entailed under C5 (Se
tion 11.4).� We have shown how the �ve truth values of C5 and orderings asso
iatedamong these truth values 
an be derived from the truth values fF; U; Tg ofKleene ([Kle50℄) and the truth and knowledge orderings among these truthvalues in the 
ontext of two players assigning these truth values to the sameset of statements, where one player's assignment is allowed to dominate theother person's assignment without winning outright (Se
tion 11.5).
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Chapter 12Con
lusions and Future Work
In this 
hapter we summarize the resear
h des
ribed in this thesis and outline thedire
tion of the future development of the resear
h a

omplishments des
ribed inthis thesis.12.1 SummaryIn this dissertation we have presented a framework for expressing di�erent typesof 
on
i
ts among statements and for reasoning with information 
ontaining thesetypes of 
on
i
ts. The 
on
i
ts are expressed using a 
onstru
t 
alled 
ontesta-tions. Contestations are symboli
ally expressed as A ,!i b, where A is a 
onjun
-tion or a disjun
tion of ground literals and b is a ground atom. The 
ontestationA ,!i b says that if A attains a 
ertain truth value, v1, then b 
an attain at mosta 
ertain other truth value, v2, whi
h depends on the truth value v1 and the truthfun
tion 
api on whi
h ,!i is based. Di�erent types of 
ontestations 
an be basedon di�erent 
ap fun
tions (Chapter 4).We have provided a semanti
s, C4, for normal logi
 programs augmented witha set of 
ontestations. These 
ontestations 
an be heterogeneous in the sense that
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they are based on di�erent 
ap fun
tions. C4 is based on a set of truth values,fF; CF; CT; Tg, and the ordering F < CF < CT < T among these truthvalues; the idea of a well-supported model, whi
h is intended to 
apture the ideaof an evidentially reasonable model; a 
lausal ordering among the well-supportedmodels; and the idea of 
anoni
al models as the models that are maximal in thisordering among the well-supported models. In terms of this semanti
s, we de�ne astrong entailment relation and a weak entailment relation. The strong entailmentsof P +C, where P is a normal logi
 program and C is a set of 
ontestations, are theliterals whi
h are T in all the 
anoni
al models of P + C. The weak entailmentsof P + C are those literals whi
h are at at least CT in all the 
anoni
al modelsof P + C. We have shown that the C4 semanti
s is inferentially 
on
i
t-free withrespe
t to the types of 
on
i
ts that 
an be represented in terms of 
ontestations(Chapter 4).We have shown that for any normal logi
 program without 
ontestations, theC4 semanti
s provides at least one well-supported model. Although it is a highlydesirable that for any normal logi
 program, P , and any set of 
ontestations, C,C4 provides at least one well-supported model for P + C, this 
laim was shown tobe false. However, we show that C4 provides at least one well-supported modelfor any normal logi
 program augmented with a set of 
ontestations based on anytruth fun
tion 
api su
h that 
api(CF ) = CT (Chapter 4).In Chapter 5 we have investigated the properties ofC4 as a semanti
s of normallogi
 programs (without 
ontestations). We have proven that every de�nite logi
program has a unique C4 
anoni
al model and we have proven that every normallogi
 program has at least one C4 
anoni
al model (Se
tion 5.2). We have proventhat the C4 semanti
s of normal logi
 programs subsumes both the stable model
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semanti
s and the well-founded semanti
s. C4 
an provide models for programsfor whi
h there are no stable models. Furthermore, for any program whi
h hasa stable model, a literal l is true in all the stable models of the program if andonly if l is weakly entailed by the program under C4 (Se
tion 5.3). We have alsoproven that l is true in the well-founded semanti
s of a normal logi
 program ifand only if l is strongly entailed by the program under C4 (Se
tion 5.4). We alsoprovide a framework for hybrid reasoning in whi
h part of a query is to be answeredunder weak entailment and the remaining under strong entailment. Sin
e strongentailment is more 
autious that weak entailment this provides a way of being
autious regarding part of a query and non-
autious regarding the rest of thequery (Se
tion 5.5).In Chapter 6 we have developed a bottom-up assumption based proof pro
edurefor answering whether a ground query, 
onsisting of a 
onjun
tion or a disjun
tionof literals, is weakly entailed by a �nite and ground normal logi
 program. Thisproof pro
edure is restri
ted to programs having C-stable 
anoni
al models, and forprograms without any C-stable 
anoni
al models the proof pro
edure terminatesgra
efully by informing the user about this (Se
tion 6.3). We have proven thatthis proof pro
edure is sound and 
omplete with respe
t to the C4 semanti
s fornormal logi
 programs (Se
tion 6.4). We have 
omputed the worst 
ase 
omplexityof the weak entailment proof pro
edure to be O(n2�2n), where n is the 
ardinalityof the Herbrand base of the program (Se
tion 6.6).We have also developed a bottom-up assumption based proof pro
edure foranswering whether a ground query, 
onsisting of a 
onjun
tion or a disjun
tionof literals, is strongly entailed by a �nite and ground normal logi
 program (Se
-tion 7.3). This proof pro
edure works for all �nite and ground normal logi
 pro-
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grams. We have proven that this pro
edures is sound and 
omplete with respe
tto the C4 semanti
s for normal logi
 programs (Se
tion 7.4). We have 
omputedthe worst 
ase 
omplexity of the strong entailment proof pro
edure to be O(n3),where n is the 
ardinality of the Herbrand base of the input program (Se
tion 7.5).In Chapter 8 we have extended the proof pro
edures of Chapter 6 and Chapter 7to a proof pro
edure for answering whether a ground query is weakly or stronglyentailed by a �nite and ground normal logi
 program augmented with a heteroge-neous set of ground 
ontestations. These proof pro
edures are also restri
ted toprograms with a C-stable 
anoni
al models (Se
tion 8.3). We have proven thatthese proof pro
edures are sound and 
omplete with respe
t to the C4 semanti
sfor normal logi
 programs augmented with 
ontestations (Se
tion 8.4). We have
omputed the 
omplexity of both the weak and strong entailment proof pro
eduresto be O(n2 � 2n) (Se
tion 8.5).In Chapter 9 we have shownC4 
an be used to reason with a dedu
tive databasethat is in
onsistent with its own integrity 
onstraints. We have shown how to 
ap-ture a wide variety of propositional integrity 
onstraints for a dedu
tive databasein terms of 
ontestations. This enables us to use C4 as a semanti
s for dedu
tivedatabases that are in
onsistent with their own integrity 
onstraints. This a

ountis restri
ted to propositional integrity 
onstraints sin
e in this dissertation we haveonly 
onsidered propositonal 
ontestations. We have also introdu
ed a new theoryof integrity 
onstraint satisfa
tion a

ording to whi
h a database satis�es its in-tegrity 
onstraints only if the integrity 
onstraints are true in what 
an be inferredfrom it in. Thus, integrity 
onstraints on a database are best viewed as 
onstraintson what 
an be inferred from the database rather than on the state of the database.In Chapter 10 we have shown how to extend theC4 semanti
s for a normal logi
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program, LP , augmented with 
ontestations, C, by adding a set of preferen
es, P,among statements. The �rst semanti
s is based on using the preferen
es of Pto indu
e an ordering among the well-supported models of LP + C. The se
ondsemanti
s is based on the idea of a well-supported model of LP + C satisfyingthe preferen
es of P. Although these two semanti
s are based on di�erent waysof fa
toring in the role of preferen
es, we proved that these two semanti
s areequivalent.In Chapter 11 we have extended C4 to C5, whi
h is based on an additionaltruth value U and three types of ordering between the �ve truth values of C5.We used C5 to provide a semanti
s for extended logi
 programs, whi
h 
ontainboth a default and a non-default negation. We proved that every extended logi
program has a well-supported model. We prove that theC5 semanti
s for extendedlogi
 programs subsumes the answer set semanti
s for extended logi
 programs inthe sense that for any extended logi
 program whi
h has a 
onsistent answer setsemanti
s, a senten
e is true in all the answer sets of a program if and only if itis weakly entailed by the program under C5. We have shown that to the extentthat non-default negation approximates 
lassi
al negation, to that extent C5 
anbe viewed as a framework for reasoning with logi
al 
on
i
ts. Thus, C5 providesa framework for reasoning with logi
al as well as non-logi
al 
on
i
ts. We haveshown that the C5 for extended logi
 programs is inferentially 
on
i
t-free in thesense that no extended logi
 program entails, weakly or strongly, p and :p for anyatom p.
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12.2 Future Resear
hThe C4 semanti
s for normal logi
 programs augmented with a set of 
ontestationsis restri
ted to ground 
ontestations. It would be useful to extend this a

ountto non-ground 
ontestations. This would allow us to represent non-propositionalintegrity 
onstraints in terms of 
ontestations. Thus, our method of reasoning withdedu
tive databases that are in
onsistent with their own integrity 
onstraints 
anbe extended to a wider set of integrity 
onstraints.The prooof pro
edures des
ribed in this work are all restri
ted to �nite andground programs. These proof pro
edures need to be extended to non-groundprograms. Furthermore, all the proof pro
edures ex
ept for the strong entailmentproof pro
edure for normal logi
 programs without any 
ontestations are restri
tedto programs (possibly augmented with 
ontesations) having C-stable 
anoni
almodels. It would be desirable to extend these pro
edures to programs having no
anoni
al C-stable models.This work is restri
ted to normal logi
 programs. It would be useful to extendthis work to a wider 
lass of programs, su
h as disjun
tive logi
 programs.
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