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Chapter 1

Introduction

1.1 Motivation

Logic programming was invented by Kowalski ([Kow74] and Colmerauer ([CKRP73].
It was recognized at the very inception of the logic programming paradigm that it
provided a powerful and natural system for representing information and drawing
inferences from this information. But any body of information is liable to contain
conflicting information, and certain inferential mechanisms are liable to function
pathologically when reasoning with conflicting information. For instance, classi-
cal logic licenses the inference of any sentence from a logically inconsistent set of
sentences. Clearly, in any practical context this is a highly undesirable feature in
an inferential mechanism. Thus, there are good practical reasons for seeking in-
ferential mechanisms that can behave reasonably when reasoning with conflicting
information.

Thus, given a set of sentences
S = {HeartDisease, ~ HeartDisease, Insured, HeartDisease — Transplant}

where ~ p is the logical negation of p and p — ¢ is classical material implication,



classical logic licenses the inference of Insured from S, but it equally licenses the

inference of ~ Insured.

Paraconsistent logics ([Cos74], [Arr79], [Bel77b]) attempt to remedy this defect
in classical logic by preventing the licensing of any arbitrary sentence from an
inconsistent set of sentences. Thus, from the above set of sentences paraconsistent
logics would permit the inference of Insured, but would not permit the inference
of ~ Insured.

However, almost all paraconsistent logics suffer from a related problem. From
the above set of sentences S, they all (with the exception of [Lin96]) permit the
inference of the inconsistent set { HeartDisease, ~ HeartDisease}. This is an
undesirable result because if HeartDisease can be inferred then it is possible to
infer T'ransplant from S. But it would not be wise to conclude that a patient
should get a heart transplant unless there was no doubt about whether the patient

has heart disease.

Thus, it would be desirable to have a logic that goes beyond paraconsistent
logics in that not only does it not license the inference of any arbitrary sentence
from an inconsistent set of sentences, but the set of its inferences must itself be
consistent. Let us call a logic inferentially consistent if the set of inferences permit-
ted by such a logic is consistent. A goal of this thesis is to develop an inferentially

consistent logic.

Logical inconsistency among two statements is just one type of conflict among
statements. Most generally, two statements p and ¢ are in conflict if the truth of
p undermines the truth of ¢ and vice versa. This may happen because p and ¢ are

each other’s negation, i.e., they are logically inconsistent. But two statements can



conflict even if there is no logical inconsistency among them. Thus, the statement
that “John is male” and the statement that “John is female” are in conflict; but
this is because the semantics of “male” and “female” preclude any one’s being
both male and female. Clearly, this is not a case of logical inconsistency. We
may consider this an instance of a semantic conflict. There can also be evidential
conflicts among statements. Thus, the statement that “John solved the P = NP
problem” is in conflict with the statement that “John has an 1.Q. of 70.” But
this is neither a logical conflict nor a semantic conflict. Rather, the truth of the
first statement provides evidence against the truth of the second statement and
vice versa. It would be desirable for a logic which permits reasonable inferences
from a set of sentences containing possibly different types of conflicts. Thus, the
concept of an inferentially consistent logic can be generalized to the concept of an
inferentially conflict-free logic. A logic can be said to be inferentially conflict-free
with respect to specified types of conflict if the set of inferences it permits is free
of any conflicts of the specified type.

Furthermore, with certain types of conflicts, such as evidential conflicts, dif-
ferent sets of statements may be in evidential conflicts to different degrees. This
opens the possibility that one statement, p, in a conflict may conflict with another
statement, ¢, to one degree, but ¢ may conflict with p to a different degree. For
example, arguably, the statement ”John has solved the P = NP problem” un-
dermines the truth of ”John has an 1.QQ. of 70” to a much higher degree than the
degree to which the latter statement can undermine the truth of the former. As a
limiting case, p may conflict with ¢ to a certain degree but ¢ may not conflict with
p at all. Thus, we can allow non-mutuality in conflicts. Thus, the claim that “John

has a high fever now” might undermine the claim that “John has disease D,” but



the diagnosis of a disease, which is typically a matter of conjecture, is generally
not taken as undermining the observation of such a simple bodily property as its
temperature. Thus, it would be useful to develop a framework for representing
all these different types of conflicts and for reasoning with information containing

these different types of conflicts.

The main goal of this thesis then is to devise a logic for reasoning with knowl-
edge encoded in the form of normal logic programs augmented with constructs for
specifying different types of conflicts such that the logic is inferentially conflict-free

with respect to the specified types of conflicts.

1.2 Research Contributions
Here we summarize the main research contributions of this dissertation.

e We develop C4, a logic for reasoning with conflicting information (Chap-

ter 4).

— We present a construct we call contestations for specifying different

types of conflicts, including non-mutual conflicts (Subsection 4.4.1).

— We develop C4, a four-valued semantics for normal logic programs aug-
mented with a set of contestations representing different types of con-
flicts. This semantics is based on generalizing to the four-valued con-
text the concept of a well-supported model ([Fag91]) and by introducing
an ordering relation among the well-supported models. The canonical
models of P + C, where P is a normal logic program and C is a set of

contestations, are the maximal models in terms of this ordering among



the well-supported models of P + C (Section 4.4).

— We introduce two types of entailment relations: strong entailment and
weak entailment. We prove that the inferences permitted in terms of
these entailment relations are conflict-free with respect to the types of

conflicts specified in terms of C (Subsection 4.4.3).

— We prove that for any normal logic program augmented with a cer-
tain type of contestations there is at least one canonical model of the

augmented program (Section 4.4).

— We show how the four truth values of C4 and the associated ordering
between them can naturally be derived from the classical truth values T’
and F'in the context of two players assigning the classical truth values
to the same set of statements, where one player’s assignment is allowed
to dominate the other player’s assignment without outright winning

against the other player’s assignment (Section 4.2).

e We investigate C4 as a new semantics for normal logic programs (Chapter 5).

— We prove that every definite logic program has a unique C4 canonical

model (Section 5.2).

— We prove that C4 regarded as a semantics of normal logic programs
(without any contestations) has the property that every normal logic

program has at least one C4 canonical model (Section 5.2).

— We prove that the C4 semantics of normal logic programs subsumes
the stable model semantics of normal logic programs ([GL88]) . More
precisely, we show that for a normal logic program P with any two-

valued stable models, a literal [ is true in every stable model of P iff [



is weakly entailed by P under the C4 semantics (Section 5.3).

— We prove that the C4 semantics of normal logic programs subsumes
the well-founded semantics ([GRS88]) of normal logic programs. More
precisely, we show that a literal [ is true in the well-founded semantics

of P iff [ is strongly entailed by P under the C4 semantics (Section 5.4).

— We have devised a formalism to express hybrid conjunctive queries one
part of which must be answered in terms of strong entailment and an-
other part of which may be answered in terms of weak entailment (Sec-

tion 5.5).

e We develop three proof procedures. These proof procedures use a bottom-up
computation strategy and are based on making assumptions of literals and

keeping track of which literal is inferred on the basis of which assumptions.

— We provide a proof procedure for answering whether a ground query
consisting of a conjunction or a disjunction of ground literals is weakly
entailed by a finite and ground normal logic program without any con-
testations which has at least one stable model. If the program has no
stable models the procedure detects that (Section 6.3). We prove that
this proof procedure is sound and complete with respect to the C4 se-
mantics for normal logic programs (Section 6.4). We prove that the
worst-case complexity of this procedure is O(n? x 2"), where n is the
cardinality of the Herbrand base of the program (Section 6.6). We mod-
ify this proof procedure to compute all the stable models of a program

(Section 6.3).

— We provide a proof procedure for answering whether a ground query



consisting of a conjunction or a disjunction of ground literals is strongly
entailed by a finite and ground normal logic program without any con-
testations (Section 7.3). We prove that this proof procedure is sound
and complete with respect to the C4 semantics for normal logic pro-
grams (Section 7.4). We prove that the worst-case complexity of this
procedure is O(n?), where n is the cardinality of the Herbrand base
of the program (Section 7.5). We prove that this proof procedure also
computes the well-founded semantics of a normal logic program (Sec-

tion 7.4).

— We provide a proof procedure for answering a ground query to a finite
and ground normal logic program P augmented with a set of ground
contestations C. The proof procedure can answer whether the query is
strongly entailed by P + C or weakly entailed by P + C(Section 8.3).
We prove the soundness and completeness of this procedure with re-
spect to the C4 semantics for P + C (Section 8.4). We prove that the
worst-case complexity of this procedure is O(n? x 2") for both weak and
strong entailment, where n is the cardinality of the Herbrand base of

the program (Section 8.5).

e We show the connection between integrity constraints and contestations. We
use the C4 semantics for normal logic programs augmented with a set of
contestations to provide an account of propositional integrity constraint sat-
isfaction for deductive databases that may be inconsistent with their own

integrity constraints (Chapter 9).

— We propose that integrity constraints be viewed as constraints on what



can be proven from a database rather than constraints on the state of
a database. We propose a new account of integrity constraint satisfac-
tion in terms of this reinterpretation of the role of integrity constraints

(Section 9.2).

— We show how to translate a wide range of propositional integrity con-

straints into contestations (Section 9.3).

— We show that the C4 semantics for normal logic programs augmented
with a set of contestations can be used as a semantics for deductive
databases augmented with a set of propositional integrity constraints

(Section 9.4).

e We develop an approach to reasoning with normal logic programs augmented
with contestations and preferences (Chapter 10). We provide a language for
expressing preferences among statements (Section 10.2). We extend C4 to
provide two semantics for a normal logic program, LP, augmented with a
set of contestations, C, and a set of preferences, P. The first semantics is
based on using the preferences of P to induce an ordering among the well-
supported models of LP + C. The second semantics is based on the idea of
a well-supported model of LP + C satisfying the preferences of P. Although
these two semantics are based on different ways of factoring in the role of

preferences, we prove that these two semantics are equivalent (Section 10.3).

e Finally, we extend C4 to provide a semantics for extended logic programs,

which contain both a default and a non-default negation (Chapter 11).

— We develop a five-valued semantics C5 which is an extension of C4

(Section 11.3).



— We prove that every extended logic program has at least one (consistent)

canonical model under C5 (Section 11.3).

— We show how to capture part of the logical force of non-default nega-
tion in terms of contestations. If non-default negation is viewed as an
approximation of classical negation, then logical conflict in a logic pro-
gram can be represented in terms of the derivability of a literal and its
non-default negation from the program. Thus, logical conflicts as well as
non-logical conflicts can be represented in terms of contestations. This
establishes that contestations provide a flexible framework for express-
ing and reasoning with a wide variety of conflicts among statements

(Section 11.3).

— We prove that C5 is inferentially conflict-free with respect to the ap-
proximation of logical conflicts in terms of non-default negation (Sec-

tion 11.3).

— We prove that for any extended logic program P which has a consistent
answer set, a literal [ is strongly entailed by P under the answer set
semantics ([GL90]) if and only if [ is weakly entailed under C5 (Sec-

tion 11.4).

— We have shown how the five truth values of C5 and orderings associated
among these truth values can be derived from the truth values {F, U, T'}
of Kleene ([Kle50]) and the truth and knowledge orderings among these

truth values (Section 11.5).



1.3 Outline

In Chapter 2 we provide a brief description of some background work. In Chap-
ter 3 we introduce some basic logic programming terminology and describe some
well-known semantics of normal logic programs. In Chapter 4 we introduce con-
testations, a key concept of this dissertation. Contestations are a general way
of expressing conflicts among sets of statements. We introduce C4, a semantics
of normal logic programs augmented with contestations which express non-logical
conflicts. In terms of this semantics we introduce two entailment relations: strong
entailment and weak entailment. In Chapter 5 we discuss C4 as a semantics of
normal logic programs. We examine the relation between C4 as a semantics of
normal logic programs and the stable model semantics and the well-founded se-
mantics of normal logic programs. In Chapter 6 we describe a proof procedure for
determining whether a query is weakly entailed by a finite and ground normal logic
program. We prove that this procedure is sound and complete with respect to the
C4 semantics for normal logic programs. In Chapter 6 we describe a proof proce-
dure for determining whether a query is strongly entailed by a finite and ground
normal logic program. We prove that this procedure is sound and complete with
respect to the C4 semantics for normal logic programs. We also show that this
procedure computes the well-founded semantics of a normal logic program. In
Chapter 8 we describe two proof procedures. The first proof procedure is to de-
termine whether a query is weakly entailed by a finite and ground normal logic
program augmented with a set of contestations. The second proof procedure is
to determine whether a query is strongly entailed by a finite and ground normal
logic program augmented with a set of contestations. We prove that both of these

procedures are sound and complete with respect to the C4 semantics for normal
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logic programs augmented with a set of contestations. In Chapter 9 we consider
a semantics for deductive databases that may be inconsistent with a set of propo-
sitional integrity constraints. We introduce a new account of integrity constraint
satisfaction that can apply even to databases that may be inconsistent with their
own integrity constraints. We show how to express a wide variety of propositional
integrity constraints in terms of the language of contestations. In Chapter 10 we
introduce preferences among statements, which express the idea that the reasoner
prefers that a normal logic program augmented with contestations should entail
the preferred statement rather than the non-preferred statement. We show how
to reason with normal logic programs augmented with a set of contestations and
a set of preferences. In Chapter 11 we show how the C4 semantics for normal
logic programs can be extended to the C5 semantics for extended logic programs
containing both a default negation and a non-default negation. We show how we
can use the concept of contestations and of non-default negation to capture the
idea of logical conflicts. Thus, we provide a framework for reasoning with logical as
well as non-logical conflicts among statements. In Chapter 12 we state the major

conclusions of this work and state some lines of future work.
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Chapter 2

Background

2.1 Introduction

It has long been recognized that the problem of reasoning with inconsistent infor-
mation is of great practical importance in computer science ([Bel77b], [Bel77al, [Gra74],
[Gra75], [Gra78]). The problem is that using classical logic all sentences can be
inferred from an inconsistent set of sentences. One response is to prevent incon-
sistencies from arising or to remove inconsistencies. Truth maintenance ([Doy80])
and belief revision ([GR95]) fall under this type of effort, as does integrity con-
straint checking in databases. A different approach consists not in modifying the
set of sentences from which the inferences are made, but instead in modifying what
can be inferred from the set of sentences. Such logics are called paraconsistent log-
ics ([CosT4], [Arr79]). A logic is called paraconsistent if it can form the basis for
reasoning with an inconsistent set of sentences such that not all sentences can be
derived from the set using this logic. The semantical foundation of most paracon-
sistent logics is based on departing from classical logic and instead adopting some
version of multi-valued logic ([Gra75], [Bel77b], [FH85], [BS89], [KL92]. Hence in

this chapter we provide some background on multi-valued logic.
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2.2 Multi-valued Logics

In this section we describe work on three-valued and four valued logics.

The idea of multi-valued logic can be traced back to the work of the philosopher
Aristotle in the 4" century B.C. In his treatise De Interpretatione he considers the
truth status of a future contingent sentence such as “There will be a sea-battle
tomorrow.” He notes that it seems not entirely correct to call this sentence true or
false now. It seems to have some sort of a third truth status. Inspired by Aristotle’s
discussion of future contingents, the Polish logician Lukasiewicz proposed a logic
based on a third truth value ([Luk20]) and began the modern era of multi-valued
logics. However, it is Kleene’s work on three-valued logic ([Kle50]) that has had a
direct influence on computer science (see [Fit85]) for example).

Kleene proposed a third truth value u, which is supposed to mean undefined
or unknown. He proposed a strong logic and a weak logic based on this third truth
value. The main difference between the strong logic and the weak logic is that in
the weak logic a truth-functionally compound sentence is always assigned u if one
of its constituents is assigned u, regardless of the truth value assigned to the other
constituents of the compound sentence.

Negation has the same truth table in both the strong and weak logics. The

negation of T"is F', the negation of F'is T, and the negation of u is u.

The truth tables for conjunction, disjunction and implication in the strong
Kleene logic and the weak Kleene logic are given below. Note that the only dif-
ference between the two truth tables is when one of the arguments to a truth
function is u. In that case according to the weak logic the truth value returned by

the function must be u.
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Al T|u|F VI{T|u|F - | T|u]|F
T|{|T|u]|F T|T|T|T T |T|u]|F
ulfuful|F u||T|ulu u |[T|u|u
FI|F|F|F F{T|u|F F|T|T|T

Table 2.1: Conjunction, disjunction and implication in strong Kleene logic.

Table 2.2: Conjunction, disjunction and implication in weak Kleene logic.

A Kleene model of a set of sentences S is a three-valued interpretation which
assigns a designated truth value to all sentences of S. The Kleene logics can be a
paraconsistent logic only if both 7" and u are taken as designated truth values. To
see this consider the set S = {p, ~ p, ¢}. No interpretation which assigns 7" or F
to p can satisfy both p and ~ p and thus cannot be a model of S. Hence, for S to
have a model it must assign u to p and, thus, u must be regarded as a designated
truth value. Thus, on the Kleene logics there are two models of S: a model which
assigns u to both p and ¢, and a model which assigns u to p and 7" to q.

A set of sentences S entails a sentence s in the Kleene logics iff s is assigned a

designated truth value in all the three-valued models of S. Hence in our example

14



S entails p, ~ p, and ¢. Thus, the Kleene logics are not inferentially consistent

logics, although they are paraconsistent logics.

Belnap ([Bel77b]) generalizes Kleene’s three valued logics to a four valued logic.
Belnap’s four truth values are F', L, T and T. Intuitively, assigning F' (7') means
judging the sentence to be false (resp., true) in the classical logic sense of the term;
assigning | to a sentence means no information to judge the sentence as being true
or false or that the truth value of the sentence is under-determined by the available
information; assigning T to a sentence means that the truth value of the sentence
is over-determined by the available information. T is also sometimes designated by
{T, F'}, which clearly indicates that this truth value is to be assigned to a sentence
when there is information to assign it 7" and information to assign it F'. This
truth value plays a crucial role in providing a semantics for an inconsistent set of
sentences.

There are two types of orderings associated among these four truth values.
According to the truth ordering, <;, F <; T <y T and F <p L <4 T. According
to the knowledge ordering, <g, | <x T <g T and L <g F <i T. Similar truth
value orderings can be associated with Kleene’s three truth values.

Although Belnap originally specified the logical negation of T to be L and the
logical negation of L to be T, other logicians ([Fit85], [BS89]) noted that it was
more in keeping with the intuitive meaning of T and L that the logical negation
of T (L) should be T (resp., L).

This way of interpreting the logical negation of T also provides a straight-
forward semantics for logical inconsistent theories. Thus, consider the set S =
{p, ~p, q}. A Belnap-type four-valued model of this program assigns T to p and

T to q. For this to be a model, both T and 7" must be the designated truth values

15



of this logic. The only other model of S is one which assigns T to both p and q.
Hence, it follows that on this semantics S entails p, ~ p and ¢. But S does not
entail ~ ¢. Thus, although Belnap’s logic provides a paraconsistent logic, it does

not provide an inferentially consistent logic.

Recently Lin ([Lin96]) has used Belnap’s four truth values to provide an infer-
entially consistent semantics for logically inconsistent theories. He augments the
language of propositional logic with two modal operators B and B¢, which mean
believes and believes consistently, respectively. Although he does not explicitly
define the consistent entailments of a set of sentences S, it is easily seen that on
his account S consistently entails a sentence p iff S entails B¢p. The operator B¢
is defined in terms of =y and =p. Given, an assignment 7 of truth-values to the
sentences of S, Z |=p p iff T assigns either T'or {7, F'} to p and Z = p iff T assigns
either " or {T, F'} to p. Relative to a set of sentences S, p is consistently believed
iff in all the canonical models Z of S, Z =1 p and Z g p. Thus, S consistently
entails p iff in every canonical model Z of S, Z =1 p and Z Fp p.

If S={p, ~ p, q}, then S consistently entails ¢, but does not consistently

entail either p or ~ p. Lin proves that his semantics is inferentially consistent.

Lin’s semantics is based on some unusual features. A type of entailment (con-
sistent entailment) is defined, but not on the basis of a corresponding notion of
satisfaction. Furthermore, it is clear that from the point of view of consistent
entailment, the only designated truth value is 7. Yet any model of S must as-
sign {7, F'} to p and, thus, assigning {7, F'} to p must be taken as satisfying that
sentence in that model. So in Lin’s semantics the well-understood connections

between the concepts of designated truth values, satisfaction and entailment do
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not obtain.

Lin’s semantics can be extended to handle some types of non-logical conflicts.
Let us suppose that the fact that there is a non-logical conflict between p and ¢
can be specified in terms of the statement ~ (p A ¢). In any set of sentences S
containing both p and ¢, a canonical model of S must assign {7, F'} to both p and
q, if the extension of Lin’s semantics to non-logical conflicts is to be inferentially
conflict-free with regard to the conflict expressed by ~ (p A ¢). However, it follows
then that ~ (pAq) also evaluates to {7, F'} and, thus, it follows on Lin’s semantics
that the fact that p and ¢ non-logically conflict cannot be known consistently. This
seems a paradoxical result: the non-logical conflict between p and ¢ is supposed to
determine which truth values can be assigned to p and ¢, but the fact that there is
such a conflict between p and ¢ cannot be consistently known from S. This result
holds regardless of whether the statement specifying this conflict, ~ (p A q), is part
of S, or not part of S but used to determine which interpretations of S count as
canonical models of S.

Furthermore, it is not clear how Lin’s framework can be extended to reason
with non-logical conflicts of varying degrees of strength.

For all these reasons, even though Lin’s semantics does provide an inferentially
consistent semantics, there is a need for a different approach that will provide a

framework for reasoning with conflicting information.
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Chapter 3

Logic Programming Preliminaries

3.1 Basic Definition

By an atom we mean a sentence consisting of an n-ary predicate symbol followed
by n terms. A term may contain function symbols, variables, and constants. If a
term contains no variables, it is called a ground term. An atom consisting entirely
of ground terms is called a ground atom. By a literal we mean an atom or an atom
preceded by the default negation operator, not.

By a normal logic rule we mean a sentence of the following form

a<by,...,b,, not cy,..., not ¢,
with m,n > 0. Here a,by,...,by,c1,...,c, are all atoms. In the above rule
by,..., by, notcy,..., not ¢, is meant to be a conjunction. The negation symbol

not is the default negation.

Note that a,by,...,0n,c1,...,c, need not be ground atoms. In this work we
use the lower case letters to stand for both ground and non-ground literals. When
we want them to stand for ground literals we make this explicit unless this is

already clear form the context.
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A non-ground rule, i.e., a rule with a non-ground atom in it, is assumed to be

implicitly universally quantified.

A normal logic program is a set of normal logic rules.

Given a normal logic rule R =a < by,...,b,, not c¢q,..., not ¢,,
e head(R) = a,
e body(R) = {b1,...,by, not ¢i,..., not c¢,},

e posbody(R) = {by,...,bn},
e negbody(R) = {not ¢i,..., not ¢,}.
o Atoms(R) ={a,by,... by, C1,...,Cn}

Given a normal logic program P,
Atoms(P) = | J Atoms(R)
ReP
We sometimes interpret body(R), posbody(R), and negbody(R) to be a set of
literals and at other times to be a conjunction of literals. The context makes clear
which interpretation is intended. Given a set of atom {a,...,a,} we understand

not {ai,...,a,} to be a shorthand for {not ay,...,not a,}.

We take the underlying language to be fixed by the language of the program
P under discussion. By the Herbrand universe of P, we mean the set of all terms
that can be formed using the language of P. By the Herbrand base of P (denoted
by HBp), we mean the set of all the ground atoms that can be formed using the

predicates of P and the terms in the Herbrand universe of P.
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By a substitution 6 we mean a set of the form

{’Ul:tl,...,?}k:tk}

where each v; is a variable and each t; is a term. If # = () then it is called the
empty substitution. By a ground substitution we mean a substitution in which all
t; are ground terms.

Given a rule R, by Rf we mean the result of applying the substitution 6 to R.
i.e., by replacing all the occurrences of each variable v; in R by the corresponding
term in 6. By an instantiation of R we mean a Rf. We call an instantiation a
ground instantiation if it is a ground rule.

Given a rule R and a program P, by grd(R) we mean the set of all the ground
instantiations of R with respect to the terms in the Herbrand universe of P. This
need not be a finite set, but it will be a countable set. By grd(P) we mean the set
consisting of all the ground instantiations of all the rules in P with respect to the

Herbrand universe of P.

A minimal model of a normal logic program, P, is a model of P such that no
proper subset of that model is itself a model of P.

A definite logic program is a normal logic program that contains no negated
atoms in its rules. It is well known that every definite logic program has a unique
minimal model ([vEKT76]).

A two-valued Herbrand interpretation of a logic program P is a subset of H Bp,
the Herbrand base of P. Alternately, it can be understood as a mapping from

HBp to {T, F}, where T and F are the classical truth values.
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3.2 Fixpoint Theory

Let < be a binary relation on a set S which forms a partial order on the elements
of S. For any subset X of S, a € S is an upper bound of X if Vo € X,z < a, and
a € S is a lower bound of X if Vo € X,z > a. a € S is the least upper bound
(lub) of a subset X of S if a is an upper bound of X and for all upper bounds a’
of X, a < d'. The greatest lower bound (glb) can be defined in a similar way. S
is a complete lattice if lub(X) and glb(X) exist for every subset X of S. Let S be
a complete lattice. We say X C S is directed if every finite subset of X has an
upper bound in X. Given a complete lattice S, an operator T : S — S is said to
be continuos if T(lub(X)) = lub(T(X)) for every directed subset X of L. For a
lattice S, x € S is a fizpoint of T if T'(x) = x. We say that x is the least fixpoint
(ifp) of T if x is a fixpoint of T such that for all fixpoints o’ of T, x < a’. The
greatest firpoint can be defined similarly.
For an operator 7', the ordinal powers of 1" are defined as:

T10 = glb(S)

Tta = T(T7T (x—1)),if ais a successor ordinal

Tta = Wwh{T 1 8|5 < alif a is a limit ordinal

The following theorem states a well-known property of continuos operators.

Theorem 3.2.1 (/Li087])
For a continuos operator T : S — S, Ifp(T) = T 1 w, where w is the first limit

ordinal.

Van Emden and Kowalski ([vEK76]) defined an operator, Tp, of a program P

that maps Herbrand interpretations of P into Herbrand interpretations of P thus:

Tp(I) ={a € HBp | a + body € grd(P), I = body}
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where [ is a Herbrand interpretation of P.

The power set of the set of Herbrand interpretations of P (denoted by H B”)
forms a complete lattice under the C ordering and thus the above defined fix-point
theory can be utilized to study the semantics of logic programs. Furthermore,
for definite logic programs, the Tp operator is continuos over the HB”. So The-
orem 3.2.1 above applies to such programs and so we are assured that the least
fix point of 1" exists and can be computed in a countable number of steps. This
provides a way of giving an operational semantics for definite logic programs as

stated in the following theorem of Van Emden and Kowalski.

Theorem 3.2.2 (vEK76)
Let P be a definite logic program and let Mp be its unique minimal Herbrand model.

Then

Mp =1fp(Tp) =Tp tw

The above theorem cannot be applied to normal logic programs since such
programs need not have a least fix point or a unique minimal Herbrand model.

We discuss the semantics of normal logic programs in the next subsection.

3.3 Semantics of Normal Logic Programs

Normal logic programs need not have a unique minimal Herbrand model. The min-
imal model semantics for normal logic program regards the set of all the minimal

models of the program as the intended models of the program.

Example 3.3.1 Let P = {a < not b}. The minimal models of P are {a} and

{0}
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Minimal model semantics is widely regarded as unsatisfactory for normal logic
programs. Thus, in the above example it is thought that {b} should not be re-
garded as an intended model because not b should be regarded as true by default.
Interpreting the negation not as default negation means that negative information
should be regarded as true unless the program provides us a reason for thinking
otherwise.

In the rest of this subsection we introduce three well-known semantics for nor-

mal logic programs.

3.3.1 Stable Model Semantics

In this section we introduce the stable model semantics for normal logic programs.
The stable model semantics is based on the Gelfond-Lifschitz transformation

of a program ([GLS88]).

Definition 3.3.1 Let P be a ground, normal logic program. Let M be a set of

ground atoms. Then, the Gelfond-Lifschitz transformation of P is
PY ={a<by,....,by | a<by,...,by, not cy,..., notc, € P, c1,...,c, & M}
Note that PM is always a definite program.

M is a stable model of a ground, normal logic program P if, and only if, M
is the unique minimal model of the definite logic program P™. The stable model

semantics considers the stable models of a program as its intended models.

Note that this definition of stable models applies only to ground programs.
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Example 3.3.2 Let P be the ground program

p < a, not q
p < b, not r
a < not b
b< nota
C <
q<r

r<(q

Then, PPoh = {p<a; p«b; a < c<; q<r; 1< q}. The minimal model
of PiPect js {p a,c}. Hence {p,a,c} is a stable model of P.

Similarly, {p,b,c} is also a stable model of P. But, {p,a,b,c} is not a stable
model of P.

It is well known that not all normal logic programs have a two-valued stable
model. Thus, P = {p < not p} has no two-valued stable model. A related prob-
lem with the stable model semantics is the so-called “relevance problem” ([Dix95]).
Let P be a program that has at least one stable model. Assume that ¢ ¢ Atoms(P).
In this sense ¢ is not “relevant” to P. Then P U {q < not ¢} has no stable
models. That is, the addition of a rule irrelevant to P has robbed P of all its stable

models.

3.3.2 Well Founded Semantics

According to the Well Founded Semantics, each normal logic program P has pre-
cisely one well founded model (henceforth referred to as WFS(P)). However,

W FS(P) can be a partial model in that it assigns neither true nor false to some

24



atoms. We represent the well founded model of any program as a set of positive
and negative literals.

The next four definitions are from [GRS91].

The well founded semantics is based on the idea of an unfounded set.

Definition 3.3.2 Let a program P, its associated Herbrand base HBp, and a
partial interpretation I be given. We say A C HBp is an unfounded set (of P)
with respect to [ if each atom ¢ € A satisfies the following condition: For each

instantiated clause C' of P whose head is ¢, (at least) one of the following holds:

1. Some member (positive or negative) of body(C') is false in I,
2. Some member of posbody(C') occurs in A.

The union of all the unfounded sets with respect to I is itself an unfounded

set, Up(I), and is called the greatest unfounded set of P with respect to I.

Definition 3.3.3 Let Tp be the operator defined in Subsection 3.2. Let Up and

Wp be transformations between sets of literals defined as follows:
e Up(I) is the greatest unfounded set of P with respect to I as defined above.
° Wp(]) = Tp([) U not UP(I)

Definition 3.3.4 Let « range over all the countable ordinals. The sets I, and I*

containing literals in H Bp are defined as:

e For a limit ordinal «,

In=J Is

B<a
Note that 0 is a limit ordinal and I, = 0.
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e For successor ordinal a + 1,

Ia+1 - WP(Ia)

o Let
°=J1,
Now we can define the well-founded semantics of P, WFS(P), as

Definition 3.3.5 The well-founded semantics of P is the least fixed point of Wp,
or the limit I*°. Every positive literal denotes that its atom is true, every negative
literal denotes that its atom is false, and missing atoms have no truth value assigned

by the semantics.

Example 3.3.3 As in Example 3.3.2, let P be

p < a, not q
p < b, notr
a < not b
b+ nota
C
q<r
r<—q
Then, I 11 =Wp(0) =Tp(0)U not Up((0) = {c} U not {g,r}.
I12=111. Hence, WFS(P) = {¢, not r, not ¢}

3.3.3 Well Supported Model Semantics

The idea of a well supported model is a refinement of the idea of a supported model

([ABW88]). A model M of a normal logic program P is considered supported if
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and only if for every a € M there exists a rule R € P such that head(R) = a and
M = body(R). The idea of a supported model is based on the intuition that an
atom should be in a model only if there is adequate reason to include that atom
in the model. However, the above stated definition of a supported model fails to
fully capture this intuition. This can be seen by noting that {p} is a supported
model of the program {p < p}, but intuitively this program fails to provide an
adequate reason to include p in its model. The idea of well supported model was

proposed to remedy this feature of supported models.

Definition 3.3.6 ([Faug91]) A model M C HBp of a normal logic program P is a
two-valued well supported model if there exists a strict well-founded partial ordering
< on the atoms in HBp such that for any a € M, there ezists a R € grd(P) such
that M = body(R), where head(R) = a, and b < a for every b € posbody(R).

If we think of the body of a rule as providing evidence for attributing a certain
truth-value to the head of the rule, then a well-supported model can be seen as
assigning only that truth-value to any atom which can be justified in terms of
the total evidence for it (with respect to that model), where the evidence must be
independent of the truth-value assigned to that atom and must be finitely grounded
in the facts. The well-founded ordering ensures that the truth-values assigned to
an atom is not justified in terms of itself and the evidence is finitely grounded.
Thus, for instance, no well-supported model of a program would assign true to p

simply on the basis of the rule p < p.

3.3.4 Relations Among the Semantics

The stable model semantics and the well supported model semantics turn out to

be equivalent as stated in the following theorem.
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Theorem 3.3.1 ([Fag91])
M is a stable model of a normal logic program P if and only if it is a well supported

model of P.

Well founded models are represented as a set of literals whereas stable models are
represented as a set of atoms. However, a stable model can be represented as the
set of literals that are true in that model. Representing stable models as a set
of literals allows us to state the following two theorems which state the relation

between stable model semantics and well founded semantics.

Theorem 3.3.2 (/GRS91])
If a normal logic program has a well founded total model, then that model is the

unique stable model of the program.

Theorem 3.3.3 (/GRS91])
The well founded partial model of a normal logic program is a subset of every stable

model of that program.
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Chapter 4

Model theory for normal logic programs with

contestations

4.1 Introduction

In this chapter we present a formal framework for reasoning with conflicting in-
formation. Most generally, two statements p and ¢ are in conflict if the truth of p
undermines the truth of ¢ and vice versa. This may happen because p and ¢ are
each other’s negation, i.e., they are logically inconsistent. But two statements can
conflict even if there is no logical inconsistency among them. Thus, as discussed
in Chapter 1, there can be semantic or evidential conflicts between statements.
Our focus in this chapter will be on non-logical conflicts. However, the frame-
work we introduce here can be enriched to capture logical conflicts. This is done
in Chapter 11. Furthermore, in this chapter we shall not assume that all conflicts
are mutual. As discussed in Chapter 1, it can happen that accepting p as true can
undermine the truth of ¢ without accepting ¢ as true undermining p’s claim to be
true. The framework we develop in this chapter will permit us to represent both

mutual and non-mutual conflicts.
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Even when the conflict between two statements p and ¢ is mutual, the degree
to which p undermines the truth of ¢ may be different from the degree to which ¢
undermines the truth of p. The framework we develop in this chapter also allows
us to represent conflicts of different degrees of strength.

We develop this framework using C4, a new four valued logic. In the discussion

section we compare this logic to other multi-truth valued approaches.

In Section 4.2 we introduce the four truth values V = {F, CF, CT, T} and
provide a function for evaluating any closed sentence of the language of the program
given an interpretation of the program based on V. In this section we show how the
four truth values of C4 and the associated ordering between them can naturally
be derived from the classical truth values 7" and F' in the context of two players
assigning the classical truth values to the same set of statements, where one player’s
assignment is allowed to dominate the other player’s assignment without outright
winning against the other player’s assignment. In Section 4.3 we generalize the
idea of a two-valued well-supported model of a program to a four-valued well-
supported model, and we prove that every normal logic program has a four-valued
well-supported model. In Section 4.4 we introduce contestations, which is a way of
representing conflicts between statements. We define C4, a semantics for normal
logic programs augmented with contestations of different degrees of strength. And
in terms of this semantics we define two types of entailment: strong entailment and
weak entailment. In Section 4.5 we compare the C4 semantics with other multi
truth-valued semantics for reasoning with conflicting information and compare it

with some related work on argumentation.
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4.2 Truth Values and Valuation

We propose a four-valued logic with the truth values, V = {T, CT, C'F, F}. This
logic will be called C4 and is defined precisely in Definition 4.4.8 below. It is called
C4 to suggest that it is a four valued logic of conflicts and contestations. Here,
T and F' have their usual meanings, but intuitively C'F' means “false only because
successfully contested” and C'T is the negation of C'F'.

We define a one-to-one mapping between members of V and members of N' =
{1,2/3,1/3,0} thus: T maps to 1, CT maps to 2/3, CF maps to 1/3, and F' maps
to 0. We use the ordering among the members of N to induce the same ordering

between members of V. Thus, F < CF < CT < T.

We may regard the four truth values of C4 and the associated ordering between
them as arising naturally in the following fashion. Consider two players assigning
truth values to the statements of a theory. Statements can be assigned the values
T or F, and every statement of the underlying language of the theory must be
assigned a truth value. Let us say player 1 has proposed the theory and player 1
gets to finally determine what truth value to assign to each statement taking into
account the truth value he initially assigned to the statement and the truth value
player 2 assigns to the statement. The two players may disagree on the assignment
of truth values to some statements. On matters of disagreement, player 1 wants to
let player 2 dominate, but not win outright. That is, if player 1 says p is true and
player 2 says it is false, player 1 wants to relegate p to a status lower than true
(i.e., let player 2 dominate), but does not want to assign it false (i.e., let player 2
win outright). He wants the truth value assigned to p to reflect the fact that he

would regard p as true if it were not the fact that player 2 disagrees. As we shall
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see below, the truth values C'F and C'T" are designed to play this sort of role.

For any given statement the four possible combinations of truth values are
(T,T), (T,F), (F,T), (F,F), where the first component of each tuple is the value
assigned by player 1 and the second component is the value assigned by player 2.
Since (T,T) and (F, F') represent consensus, player 1 will finally assign 7' (F) to
any statement which is assigned (T, T') (resp., (F, F)). (T, F) is the value we call
CF and (F,T) is the value we call CT'. If player 2 is allowed to dominate but not
win, then F < (T,F) < T. Similarly, FF < (F,T) < T. We also hold that
(T,F) < (F,T) because player 1 allows player 2 to dominate. This produces the
total ordering

F < (I'F) < (FFT) < T

which is the ordering we have adopted in this chapter where (T, F') is called C'F
and (F,T) is called CT.

Our terminology of domination can be defined precisely. To say that player 2
dominates player 1 is to say that the composite truth values are to be ordered first
in terms of the second component of each composite (i.e., the truth value assigned
by player 2) and if they are equal in terms of the second component then they are
to be evaluated in terms of the first component. On the other hand, to say that
player 1 dominates player 2 is to say that the composite truth values are to be
ordered first in terms of the first component of each composite (i.e., the truth value
assigned by player 1) and if they are equal in terms of the first component then
they are to be evaluated in terms of the second component. To say that neither
player dominates the other player is to say that one composite truth value £; is
greater than or equal to another truth value 5 if ¢, is greater than or equal to ¢5 in

both components and otherwise if neither is greater than or equal to the other in
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both components then the two truth values are incomparable. In this case (T, F)

and (F,T) are incomparable.

T and CT are the designated values. That is, assigning 7" or C'T" to a sentence
is taken as regarding that sentence as true. F' is regarded as the default value
in the sense that unless a sentence is assigned some other value it is taken as
being assigned F'. In the context of well supported models, it is assumed that the
assignment of F' to a sentence requires no justification.

An interpretation for a normal logic program P is a mapping from H Bp, the
Herbrand base of P, to V, or equivalently to N. In the following we define a

function Z' which extends the mapping Z to the (closed) sentences of the language.

Definition 4.2.1 Let Z be an interpretation. Then I' is a mapping from the

sentences of the language to N recursively defined as:
e IfS is a ground atom then T'(S) = Z(S5).
e IfS is a closed sentence then I'(not S) =1 —7'(S)

e IfS) and Sy are (closed) sentences then

I’(Sl A\ SQ) = mZTL(II(Sl) I,( ))

)

Z'(S, Vv .Sy) = max(Z'(S),T'(Ss)
T ZfI’(Sl)Z ,(SQ)

I’(Sl<—52) = cT ZfI’(Sl) = CF andI’(Sg) = CT

F otherwise

e For any sentence p(X) with one unbound variable X,

ZT'(VXp(X)) = min{Z'(p(t)) | t € HUp}.
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e For any sentence p(X) with one unbound variable X,

Z'(3AXp(X)) = max{Z'(p(t)) | t € HUp}.

Note that if we use only the classical truth values, T' and F, then Z'(S; < S5)
reduces to the classical evaluation of implication which says that S; < S, is
evaluated as F' if and only if Sy is 7" and S; is F' and otherwise it is evaluated
as T'. Thus, our evaluation function for implication is one way of generalizing the
classical evaluation function to the multi-valued setting.

Note that on the interpretation of negation proposed above, not not p = p and,
for any interpretation Z which assigns a truth value from V to p, Z'( not p) = not Z'(p).
Furthermore, p <— ¢ is logically equivalent to not ¢ <— not p. However, p <— ¢ is
not logically equivalent to p V not ¢ in terms of the above definition of implication.
For instance, CF «— CF =T, but CFV not CF =CT.

It should also be pointed out that although in many multi-valued logics impli-
cations can be assigned only the classical truth values (7" and F'), our evaluation
function also permits C'T" to be assigned to implications. It will be seen below that
this allows there to be a model for such pathological rules as p <— not p. Thus,
a model can be assigned to any normal logic program, which permits one to draw

reasonable inferences from any normal logic program.
Given a set of literals {a1,...,a,}, we use Z'{ay, ..., a,} as shorthand for
{Z'(a1), ..., Z'(an)}

Given a rule head <+ body, by Z' (body) we mean min(Z'{S | S € body}).
When there is no possibility of confusion, in the following we use Z to mean

both the mapping from atoms to truth values (interpretation Z, properly speaking)
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as well as the evaluation function Z' which is based on the interpretation Z properly

speaking.

4.3 Model Theoretic Preliminaries

For the purposes of the model theory of logic programs, we envisage the program

P to be augmented as follows:

1. The atoms true, C'I'rue, C'False and false. It is assumed that true evaluates
to T', C'T'rue evaluates to C'T', C'False evaluates to C'F' and false evaluates

to F'in any interpretation.

2. if P contains no constants, the dummy rule p($a) + p($a), where $a is a

constant.
3. Any rule with an empty body is assumed to have true as its body.

4. For each atom in HBp, such that there is no rule in grd(P) with that atom
in the head, we add a rule with that atom as head and an atom denoting the
default truth value as the body. Since we have chosen F' as the default truth
value, this atom will be false. Thus, if we have no information regarding an

atom it will end up getting assigned the default truth value.

Augmenting the logic program in this manner allows us to state the model
theory more elegantly than if we did not augment it thus. (More specifically, it
helps with the definition of a well-supported model below.) It should be clear in the
following that the augmentation does not change the actual semantics attributed

to a logic program.
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Definition 4.3.1 We say that an interpretation I satisfies a rule R if T'(R) €

(CT, T}.

Our notion of satisfaction is one way of generalizing the classical notion which says
that a rule is satisfied by an interpretation if it is true, or equivalently, if it has a

designated truth value. In C4 the designated truth values are C'T" and T

4.3.1 Four-valued Well-Supported Models

Central to our semantics is the idea of a well-supported model ( [Fag91]), which
was defined in Chapter 3. In this subsection we show how to generalize it to
four-valued well-supported models.

Recall that the idea behind the two-valued well supported model is that a well-
supported model can be seen as assigning only that truth-value to any atom which
can be justified in terms of the total evidence for it (with respect to that model),
where the evidence must be independent of the truth-value assigned to that atom
and must be finitely grounded in the facts. The well-founded ordering ensures
that the truth-values assigned to an atom is not justified in terms of itself and the
evidence is finitely grounded. Thus, for instance, no well-supported model of a
program would assign true to p simply on the basis of the rule p < p.

It is this idea which we wish to generalize to the four-valued context. The
assignment of the default truth value is assumed to require no justification or ev-
idence. The following definition assumes that F' (or 0) is the default truth value.
The assignment of any other truth value to an atom requires a non-circular justi-
fication that is finitely grounded in the facts. An atom which has no evidence for
it must be assigned the default truth value. In this context having no evidence for

an atom means
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e having no information in support of that atom, or
e having only false information in support of that atom.

There is no information in support of an atom in case there are no rules in the
original program with that atom in the head, i.e., the only rules in the augmented
program with that atom in the head have the special atom denoting the default
truth value in the body. To say that there is only false information in support of
an atom (relative to an interpretation) is to say that the bodies of all rules with

that atom in the head evaluate to F' in that interpretation.

Definition 4.3.2 A model Z of P is a well supported model if there exists a strict
well-founded partial ordering < on the atoms in HBp such that for any atom a

in HBp such that F < Z(a), there exists a R € grd(LP) such that
1. head(R) = a, and
2. Z(a) < Z'(body(R)), and
3. F < I'(body(R)), and
4. b a for every b € posbody(R).

In the case of C4, condition 3 in the above definition can be subsumed by
condition 2 and the requirement that F' < Z(a), but we state it explicitly to
indicate that the attribution of a non-default truth value to an atom can be well
supported in terms of a rule only if the body of the rule provides evidence for that
atom.

We assume that in any such well-founded ordering the special atoms true,

CTrue and C'False are not ordered with respect to each other and are less than
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any other atom. Roughly speaking, a model is well supported if the truth value
attributed to each atom is justified in terms of some rule of which that atom is the
head. It is assumed that if the body of a rule supports the attribution of a certain
truth value to an atom, then it supports the attribution of a lesser truth value to
that atom. However, we regard it as epistemically unreasonable to attribute an

atom a lesser truth value if a higher one can be well supported.

Example 4.3.1 Let P be the ground program {a < b; b < a; ¢ < not d; d <
not d}. Then, in any well-supported model of P, a and b must be assigned F
and d must be assigned C'F. In addition, assigning CT to ¢ would result in a
well-supported model. But note that assigning C'F to ¢ would also result in a well-

supported model.

Note that when the only truth values used are 1" and F', the four-valued definition
of a well-supported model reduces to the two-valued definition of a well-supported
model.

Although not every normal program has a two-valued well-supported model
in the sense of [Fag91], every normal program has a four-valued well-supported

model.

Theorem 4.3.1 Every normal logic program has at least one four-valued well-

supported model.

Proof: We show below how to construct a well-supported interpretation.

Let P be a normal logic program. Assign 7' (resp. F') to all atoms in HBp
which would be assigned 7' (resp. F) in WFS(P), the well-founded semantics
for P (see Chapter 3 above). Assign C'F to all other atoms. We show that Z

constructed thus is a four-valued well-supported model of P.
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7 fails to be a model of P only if the head of a rule is assigned F' or C'F'. But
the head of a rule is assigned F' only if WFS(P) assigns it F' and WFS(P) is a
model of such rules and so all such rules evaluate to 7" in Z. On the other hand,
by construction, the head of a rule is assigned C'F’ only if neither that atom nor its
negation is in WFS(P). This means that some member of the body of that rule
does not evaluate to 1. Since in our construction of the model we do not assign
CT to any atom, this member of the body must evaluate to C'F' or F'. In either
case the rule evaluates to T. Hence, Z must be a model of P.

It is clear that Z is a supported model of P in the sense that for each a € HBp
there is a R € grd(P), such that head(R) = a and Z(a) < Z'(body(R)). To show
that it is well-supported we need to show that there is a well-founded ordering of
the sort required in Definition 4.3.2.

An atom is assigned T in WFS(P) if and only if that atom occurs in some
iteration of the Tp operator. This ensures that a well-founded ordering can be
constructed among those atoms that are assigned 7" by Z in terms of when they
first occur in an iteration of the Tp operator. Call it <r. Note that no atoms are
assigned C'T" by Z. We show that a well-founded ordering < can be constructed
among the atoms that are assigned CF by Z. By way of contradiction assume
otherwise. So there must be a C-minimal set S which consists of atoms that get
assigned C'F' and whose members cannot be arranged in a well-founded ordering.
But then all such atoms would belong to an unfounded set in the computation of
W FS(P). So they would all be assigned F'in W F'S(P) and would thus be assigned
F by Z. Thus a contradiction. And hence it must be possible to construct a well-
founded ordering <¢p on the atoms that get assigned C'F.

The well-founded ordering < that we require is any superset of <r U <cp
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satisfying the constraint that no atom in <7 is less than any atom in < in terms
of <. There must be a well-founded ordering satisfying this constraint because
any atom that gets assigned T (by W FS(P) and thus by Z) must have a rule with
that atom in the head such that no member of the posbody of that rule is undefined
in WFS(P) and thus assigned C'F by Z.

This shows that Z is a well-supported model of P. [

4.4 Semantics of Contestation

We write A contests b as A < b, where A is a conjunction of ground literals and

b is a ground atom.
Definition 4.4.1 Let A < b be any contestations. Then
e Contestor(A—b) =A

e Contested(A —b) =b

In this case we also call A the contestor of b and we say that b is contested by A.
If b is contested by any A then we call b a contested atom. We say that a ground
rule R is contested if head(R) is a contested atom. We say that a non-ground rule
R is contested if there is a ground substitution 6 such that head(R0) is a contested
atom. When a logic program P is augmented with a set of contestations C we
say P is constrained by C and write it as P + C. As noted above, A < b can be
understood as saying that the truth of A provides evidence against the truth of
b. But this leaves open the question of whether this means that b is false. We
can envisage contestations of different strengths. One type of contestation may

be such that the truth of A guarantees the falsity of b, whereas a weaker type of
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contestation may be understood as saying that the truth of A merely ensures that
b is not true. One can also imagine contestations where A must have the value T
in order to block b from being true, whereas others in which A must be at least
CT. Most generally A < b can be understood as saying that if A has a value of
« then b can at most have a value of 3 (a cap of f5).

Let cap be a mapping from V to V. Clearly there can be many such mappings.
In this context we call such mappings ‘cap functions’. One such cap function cap;
can be associated with a contestation A — b in the sense that if A is assigned the
truth value « then b must be assigned at most cap;(«). This idea is captured in

the following definition.

Definition 4.4.2 Let A be a conjunction of literals in HBp and b be any atom in
HBp. Let cap be a cap function associated with A — b. Then A — b is satisfied by

an interpretation T of P if, and only if, if T'(A) is a then Z'(b) is at most cap(c).

Note that A < b is trivially satisfied in Z if A evaluates to an « in Z' such that
cap(a) = T. In a situation where cap(«) =T, A < b places no restriction on the
truth value of b.

In the following we indicate the fact that a certain cap function cap; is associated

with a contestation A < b by writing the contestations as A <; b.

In the table below we define three cap functions.

If A — b is associated with cap;, then it can be understood as saying that if A
is assigned a value of at least C'I" in Z then b must be assigned a value of at most
CF if A — b is satisfied by Z. And if A is assigned any other value then A < b

places no constraints on the value of b.
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capy capy caps

T—CF T—CF Tw—CF

CT—-CF|CT—CF|CT—CT

CF—-T |CF—=CT| CF—T

F—T F—T F—T

Table 4.1: The cap;, cap, and caps functions

If A — b is associated with caps, then it can be understood as saying that if A
is assigned a value of at least CT in Z then b must be assigned a value of at most
CF and if A is assigned a value of C'F' then b must be assigned a value of at most
CT if A — b is satisfied by Z. And if A is assigned any other value then A < b

places no constraints on the value of b.

If A — b is associated with caps, then it can be understood as saying that if A
is assigned a value of 7" in Z then b must be assigned a value of at most C'F' and
if A is assigned a value of C'T" then b must be assigned a value of at most C'T if
A < b is satisfied by Z. And if A is assigned any other value then A < b places
no constraints on the value of b.

Recall that F' is the default value. We regard all cap functions cap; such that
capj(o) < T when « is F' as ill defined because assigning the default value to any
contestor should place no restriction on the truth value of the atom contested by
that contestor. All cap functions discussed in the following will be assumed to be

not ill defined in the above sense.

Example 4.4.1 Let P be the ground program {c¢ < not a;a < not b;b <«

not a;d <}. Let C = {¢ <1 d}. That is, let the cap function associated with
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C be cap; as defined above. The table below displays some of the interpretations of
P that satisfy C.

| T | F F T

L, | T | F F CT

Z; | CT |CF | CF | T

7, | CT | CF | CF | CT

Z, | CF | CT | CT | CF

Zs | CF | CT | T |CF

Z; | CF | CT |CF | T

s |F |T | T |CF

Table 4.2: An example of interpretations that satisfy a contestation

In the above example Z;, Z,, Z3, Z,, and Z; trivially satisfy ¢ < d because in
these interpretations c is assigned a truth value lower than C7T'.

In the above example Z5, Zs, and Zg are not models of P. However, as we shall
see below, they turn out to be models of P + C. Z, and Z, are not epistemically
reasonable models because they assign d a value lower than would be supported by
the evidence for d (i.e., T'). Similarly, Z7 is not an epistemically reasonable model
because ¢ is attributed a lower value than would be supported by the evidence.
On the other hand, Zs is also not an epistemically reasonable model because the
evidence for ¢ can not support the assignment of T to ¢. Both Zy and Z; satisfy
¢ <1 d, but it seems clear that the proper way to satisty ¢ < d is by assigning
C'F to d because c provides evidence against d whereas there is no evidence against

C.
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Intuitively a model of P 4 C is an epistemically reasonable model if it assigns
each atom the maximum truth value that it can be assigned taking into account
the evidence for and against that atom relative to the assignment of truth value
to the other atoms. In the following we capture the intuitive idea of epistemically

reasonable models in terms of these three steps:
e Evidence for and evidence against must be combined together

e Attribution of truth values to an atom must be justified in terms of evidence

for and against it

e An atom must be attributed the mazimal justified truth value.

4.4.1 Combining Evidence For and Against

Since we understand the truth-value of the body of a rule (with respect to an
interpretation) as providing evidence for attributing a certain truth-value to its
head and we interpret a contestation as saying that the contestor provides evidence
against the truth of the contested atom, we can combine these two ideas when
the contested atom is also the head of a rule. Thus, we can say that the evidence
provided by the body of a rule for the truth of the head of a rule must be constrained
or capped by the evidence presented against the head of the rule by the truth of

its contestors. This idea is captured below.

First we define a function cap’ which takes an atom, a contestation and an

interpretation as arguments and returns a special atom as a value.

Definition 4.4.3 Let b be an atom, not necessarily ground. Let C; be a contesta-

tion with an associated cap function cap;. Then, capj(b,C;,T) returns the special

44



atom which always evaluates to cap;(Z(Contestor(C}))) if Contested(C;) = b0, for
some substitution § which can be the empty substitution, otherwise capj(b,C;,T) re-

turns the special atom true.

Example 4.4.2 Let C; = a <—; b. Let cap; be cap, as defined above. If T assigns
T or CT to a then capi(b,C;,T) returns the special atom CFalse which always
evaluates to CF. However, if T assigns CF to a then cap}(b,C;,T) returns the

special atom CTrue which always evaluates to C'T.

We systematically abuse notation by extending the above definition of cap) to

have a set of contestations as an argument instead of a single contestation.

Definition 4.4.4 Let b be an atom and C be a set of contestations such that each
member of C has the same associated cap function cap;. Let T be an interpretation.
Then,

cap;(b,C,I) = min{cap;(b,C;,T) | C; € C}

When a logic program P is augmented with a set of contestations C, we say
P is constrained by C and write it as P + C. Each rule R in P is considered as
constrained by C. We write a rule R constrained by C as head(R) < body(R).
We call such rules ‘constrained rules’. The function Z' (Definition 4.2.1) needs to

be modified to evaluate constrained rules. We define this function below.

Definition 4.4.5 Let P be a normal logic program which is constrained by C, a
set of contestations. Let cap; be the cap function associated with C. Let T be an
interpretation of P. Then, I" is a mapping from the rules of the language to N

recursively defined as:

e If E is a literal or a conjunction or a disjunction of literals then I"(E) =

T'(E).
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e If E is a rule (head <¢ body) then

I"(FE) = I'(head < body, cap(head, C,T))

In the above definition we assume that a unit rule, that is, a rule of the form
p < is implicitly a rule of the form p < true. Thus we distinguish between the
atom p and the rule p <. The atom p would be evaluated in terms of the first
clause of the above definition, whereas the rule p <— would be evaluated in terms
of the second clause.

If a contestor of the head of a rule evaluates to at least «, then it provides
evidence against the head being any greater than cap(a). Thus, in effect, the
contestor puts an upper limit or a cap on how much evidence there can be for the
head. This idea is captured by the second part of the above definition by inserting
the special atom which always evaluates to cap;(«) in the body of the rule. This
brings out exactly how the rule is constrained by the contestations.

Note that Z" reduces to Z' when C = ().

In the following we assume that the sentences of any program are evaluated

according to Z".

In the above definition we have assumed that the contestations are homoge-
neous in the sense there is only some one cap function associated with the entire
class of contestations C. But it is possible that C may contain many different types
of contestations where each type has its own associated cap function. This allows
our formalism to represent heterogeneous contestations. Thus, suppose we can
exhaustively partition C into Cy,...,C, in terms of their different associated cap
functions. Then we can define n cap) functions where each cap}(b,C,Z) returns

the special atom which always evaluates to cap;(«) if there exists a contestation
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A —; b € C; such that Z'(A) = «, where C; is the subset of C with which cap; is

associated; otherwise cap}(b,C,T) returns the special atom true.
In case C contains heterogeneous contestations, Z” can be understood as

Z"(head < body) =Z"(head <« body,cap)(head, C,I),...,cap (head, C,T))

4.4.2 Justified Attribution of Truth-values

In this subsection we carry out the second step in defining epistemically reasonable
models.

The attribution of a truth value to an atom in a model of P + C is justified if
that attribution is well-supported in terms of the rules of P 4+ C, where these rules
are now understood as constrained rules. Thus we must extend the previously
defined concept of well-supported models of P to P+C. We do this by taking into
account the evidence contrary to each atom which is attributed a value greater
than the default truth value in determining whether the attribution of this value

is well supported.

Definition 4.4.6 Let P be a normal logic program. Let C be a set of contestations
which can be partitioned into the sets {Cy,...,Cp} with each distinct C; associated
with a distinct cap function cap;. Then model T of P+C is a well supported model
iof there exists a strict well-founded partial ordering < on the atoms in HBp such
that for any atom a in HBp such that F' < Z(a), there exists an R € grd(P) + C

such that
1. head(R) = a, and

2. I(a) < Z(body(R) A cap'(a,Ci,Z) N---N capl,(a,Cp,,T)), and
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3. b < a for every b € posbody(R).

Note that in case C = () the well-supported models of P + C become the well-
supported models of P as defined in Definition 4.3.2. As in that definition, if
the attribution of a truth-value to an atom is well-supported in a model then the
attribution of a lower truth-value to that atom is also well-supported. However,
we shall see in the next section that a well-supported model will not be regarded
as an epistemically reasonable model if it does not attribute an atom the highest
truth-value that would be well-supported in that model.

Theorem 4.3.1 above says that every normal logic program has at least one well-
supported model. However, whether P + C has a well-supported model depends
on the cap functions associated with C. It can easily be shown that if cap; is
the cap function associated with C then there can be no guarantee that P + C
has a well-supported model. The example below illustrates this point. However
Theorem 4.4.1 below says that P+ C has a well-supported model if cap, is the cap

function associated with C.

Example 4.4.3 Let P be the ground program {p < q; q <} and let C = {p <
q}. That is, let cap, be the associated cap function. If an interpretation T were to
assign T or C'T to p then T would have to assign C'F' to q to satisfy C, in which case
the assignment of T' or C'T to p would not be well-supported. On the other hand if
CF were assigned to p then C'T would have to be assigned to q in order for I to
be a model of p < q. But in that case it would not be a model of the constrained
rule q < cap(q,C,T) since capy(q,C,ZT) would evaluate to T. Similarly T cannot

assign F' to p without failing to model one of the two clauses of P+ C.

The following theorem says that every P + C has at least one well-supported

model if cap, is the cap function associated with C. Recall that the only difference
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between cap, and caps is that cap;(CF) = T and caps(CF) = CT. Thus, in
the case of the program and contestations in the above example, an interpretation
which assigns C'F' to p and C'T" to ¢ would be a well-supported model if cap, is

associated with p < ¢. This is because cap}(q,C,Z) would evaluate to CT and, in

C4, CF < CT evaluates to C'T.

Theorem 4.4.1 Let P be any normal logic program and let C be any set of con-
testations. Let capoy be the cap function associated with C. Then P+ C has at least

one well-supported model.

Proof: We show below how to construct a well-supported interpretation Z of P+C
assuming that cap, is the cap function associated with C.

Let J be an interpretation of P such that J assigns F' to any atom a such that
not a € WFS(P), the well-founded semantics for P. Let J assign T to all atoms a
such that a € WFS(P). Let J assign C'F to all other atoms in H Bp. Modify this
interpretation J so that all atoms a are assigned C'F such that B <5 a € C and
J(B) =T and J(a) = T. Call this interpretation J'. We propagate this change
in the status of a to all atoms whose presence in W FS(P) depended on a being
in WFS(P) by deleting all rules R from grd(P) such that J'(head(R)) = CF.
Let P’ be the modified program. We modify J' so that all atoms a such that
J'(a) =T but a ¢ WFS(P') are assigned C'F. Similarly all atoms a such that
J'(a) = F but not a ¢ WFS(P') are assigned C'F. Call this interpretation Z.

We show below that Z is a well-supported model of P + C.

Clearly, 7 fails to be a model of P+C only if Z fails to be a model of grd(P)+C.
7 fails to be a model of grd(P) + C only if the head of some rule is assigned F

and the body evaluates to a value greater than F' or the head is assigned C'F" and

49



the body evaluates to 7. But the head of a rule is assigned F' by Z only if the
negation of the head is in W FS(P'), in which case some literal in the body of each
rule of P’ is false in WFS(P’) and thus evaluates to F' in Z. So Z is a model of
any rule whose head is assigned F' by Z. The head of a rule a is assigned C'F' only
if neither a nor its negation is in WFS(P) or a is in W FS(P) but some contestor
of a evaluates to 7" in J or a is in W FS(P) but a is not in WEFS(P’). In the first
case no rule with a as head can have its body evaluate to 7" in J and thus not
in Z. In the second case capl(a,C, J") evaluates to CF or CT and so the body of
any such constrained rule cannot evaluate to 7" in J' and thus not in Z. In the
last case the body of any such rule contains some literal that does not belong to
WFS(P') and so evaluates to CF or CT in Z. Thus 7 is a model of grd(P) + C.

Hence, Z is a model of P + C.

It is clear that for each a € H Bp there is a a € grd(P), such that head(R) = a
and Z(a) < Z'(body(R) A caply(a,C,T)). To show that Z is well-supported we need
to additionally show there is a well-founded ordering on H Bp of the sort required
by the definition of a well-supported model. Such an ordering can be constructed

exactly as in the proof of Theorem 4.3.1. [

4.4.3 Maximally Justified

In the previous subsection we showed how to capture the idea that the attribution
of a truth-value to any atom must be justified in epistemically reasonable models.
In this section we show how to capture the idea that an epistemically reasonable
model must attribute an atom the highest truth-value that would be well-supported
in that model.

Recall that in any model Z a rule is assigned C7T" only if it attributes C'F' to
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the head and CT to the body of the rule. In some cases it is impossible to have a
well-supported model of the program which can assign C'T to the head of the rule
and at the same time have the body evaluate to CT (e.g. p < not p). But in
other cases this is possible. So we can have two models of a program where one
model assigns C'F' to the head of a rule and C'T" to the body and the other which
assigns C'I" to head of that rule and CT to the body. In the first model the rule
would evaluate to C'T" whereas in the second the rule would evaluate to 7. In such
cases the higher the value assigned to the head the higher the value assigned to
the rule. Thus we can rank the well-supported models of P 4+ C in terms of the
truth-value they assign to the rules of P + C. From the above discussion we see
that those well-supported models would be ranked higher which assign a higher
justified truth-value to the atoms. In order to capture this idea we introduce a

clausal ordering between interpretations.

Let Z; and Z, be two interpretations of P + C. Then, Z; <p,¢ Z, if, and only
if, ZV(R) < ZJ(R) for every rule R in P +C.

T, <pyc I, if, and only if, 7; <p,¢ Z, and it is not the case that Z, <p,¢ Z;.

Given a set of interpretations v, we say that an interpretation Z; is maximal

with respect to P+ C in v if there is no interpretation Z; € v such that Z; <p,¢ Z;.

When C = () the clausal ordering produces an ordering among the models
of P. It is customary in this context to introduce a pointwise ordering among
interpretations, either in terms of a truth ordering or in terms of a knowledge
ordering among atoms. Thus, we could introduce: Z; <P 7, iff for all atoms a in

HBp, I (a) <p Zy(a). But the two orderings do not produce the same result.
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Let P be the ground program {p < ¢,not r,not s; r < not s; s <«

not r,not p;q <}. Consider the following two models of P.

p q r S

7, |CF | T |CF | CT

Z, || CT | T | CF | CF

Table 4.3: Pointwise vs. clausal ordering among models.

In this case the two models are incomparable in terms of the pointwise ordering,
but Z; is strictly greater than Z, in terms of the clausal ordering.

It seems to us that we should use the clausal ordering instead of the pointwise
ordering because a model is supposed to be a model of the sentences of a theory;
it is not required to be a model of the atoms of the theory. Hence, models that
maximize the degree of truth of rules should be preferred.

In terms of the idea of maximal models in the clausal ordering we can define

the canonical models of P + C.

Definition 4.4.7 The canonical models of P+C are the clausally mazimal models

among the well-supported models of P + C.

The idea of epistemically reasonable models is fully captured in terms of the

above defined idea of canonical models.

Example 4.4.4 As in Example 4.4.1 above, let
P ={c <+ not a;a < not b;b < not a;d +}

and let

C:{Cc—>1d}
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Then the canonical models of P + C are

Z, | CT | CF | CF

Z; | CF | CT | CT | CF

7, | F T | T | CF

Table 4.4: An example of the canonical models P + C

In each of these models all the constrained rules evaluate to T and thus these
models must be mazimal in the clausal ordering. Note that the rule d <—¢ evaluates
to T in I, even though the atom d is assigned C'F because the contestor of d
evaluates to T and thus d <—¢ is evaluated as d <— C'False. Thus, we see that the

idea of epistemically reasonable models is captured in the canonical model theory.

Now we are in a position to formally define the semantics C4.

Definition 4.4.8 By C4 we mean the four truth-values with the associated order-
ing among them, the evaluation functions I' and Z", the relation of satisfaction
between interpretations and sentences, the selection function among the models
of a program implicit in the definition of a well-supported model, the clausal or-
dering among interpretations and the selection function among models implicit in

Definition 4.4.7 of canonical models.

The following theorem follows directly from Theorem 4.4.1 above.

Theorem 4.4.2 Let P be any normal logic program and let C be any set of con-

testations. Then P -+ C has at least one canonical model.
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We have defined the concept of a normal logic program P satisfying a set of
contestations C and we have defined the canonical models of P+ C. The following

theorem ties together these two concepts.
Theorem 4.4.3 FEvery canonical model of P + C satisfies C.

Proof: Let Z be a canonical model of P+C. Assume by way of contradiction that
there is a C; € C such that C; is not satisfied by Z. Let Contestor(C;) evaluate
to ain Z. Let Contested(C;) evaluate to § in Z. Let the cap function associated
with C; be cap;. Thus, if Z violates C; then 8 > cap;(«).

Any rule R € grd(P) + C such that head(R) = Contested(C;), is evaluated
by Z" as if R has cap}(head(R),C;,Z") in its body. cap(head(R),C;,I") returns
the special atom which evaluates to cap;(«). Thus, the body of any R such that
head(R) = Contested(C;) can evaluate to at most cap;(c) in Z. Hence since
we assumed that Contested(C;) evaluates to § and § > cap;(«), it follows that
head(R) evaluates to a truth-value greater than the truth-value of body(R) for
any such R. Thus, Z cannot be a well-supported model and, thus, cannot be a
canonical model of grd(P) + C. Hence, Z cannot be canonical model of P + C.

Thus, we get a contradiction. [

The converse of the above theorem does not hold. That is, it is not true that
every model of P that satisfies C is a canonical model of P+C. This was illustrated

in Examples 4.4.1 and 4.4.4.

Definition 4.4.9 P + C strongly entails a literal p under C4 if, and only if, p
evaluates to 7" in all the canonical models of P + C.
P + C weakly entails a literal p under C4 if, and only if, p evaluates to at least

C'T in all the canonical models of P + C.
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It is clear that if P 4 C strongly entails p then it weakly entails p.

Theorem 4.4.4 C4 as a semantics of normal logic programs augmented with a
set of contestations is inferentially conflict-free with regard to the conflicts specified

by the set of contestations.

Proof: Let P be a normal logic program and let C be a set of contestations. Then
we can establish that C4 is inferentially conflict free by establishing that the set
of strong and weak entailments of P + C satisfy C. This follows trivially from

Theorem 4.4.3 above. ]

In the case where C = (), the canonical models of P +C = P are simply
the clausally maximal models among the well-supported models of P. Thus, C4
provides a new semantics for normal logic programs. It is clear that the definitions
of weak and strong entailment carry over to the case when C = (). We explore this

new semantics of normal logic programs in Chapter 5.

4.5 Discussion

In this chapter we have introduced the idea of contestations, which is a way of
representing conflicts between statements. A contestation against a statement is
also taken as evidence against the statement, whereas a normal logic rule with that
statement in the head is understood as stating evidence in favor of that statement.
There can be contestations of different degrees of strength. We have introduced
C4, a semantics for normal logic programs augmented with contestations. This
semantics is based on four truth values with an associated ordering between them.

Our semantics is based on the idea of epistemically reasonable models which is
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captured in terms of the idea of well-supported models, a clausal ordering between
well-supported models and the idea of combining evidence against a statement with
the evidence for that statement. The canonical models of a normal logic program
plus a set of contestations are the well-supported models which are maximal in
the clausal ordering. Based on this model theory we have introduced two types
of entailment: strong entailment and weak entailment. We have shown that every
normal logic program augmented with contestations which are interpreted in a

certain way has at least one canonical model.

In the following we compare the truth values of C4 and the associated ordering
with other multi-valued logics in terms of the ground program P = {a <—; b <}
and the set of contestations C = {b < a}. First, classical two-valued logic cannot
provide a model for P + C. The only model of P, which assigns true to both a
and b, does not satisfy b < a. A three valued logic ([Kle50]) would provide as
a model of P + C the interpretation which assigns u to @ and 7" to b. As noted
in Chapter 2, such a logic would have to consider u as a designated truth value.
Thus, P + C would entail both a and the negation of @ in terms of a three-valued
logic. Hence, such a logic would not be inferentially conflict-free. A Belnap type
of four values ([Bel77b]) would presumably assign 7" to b and {7, F'} to a. Thus,
not a would also evaluate to {7, F'}. Depending on the rules for entailment, this
would have the consequence that P + C above would entail both a and not a or
it would entail neither. Both of these seem to us undesirable consequences. In
many contexts it would be useful to infer the negation of a successfully contested

statement. P + C should entail not a without entailing a, as in C4.

In Section 4.2 we showed how the four truth values of C4 and the ordering
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between them can naturally be derived from the classical truth values T and F'
in terms of two players assigning 7" or F' to a set of sentences, where player 2’s
assignments are allowed to dominate player 1’s assignment without winning out-
right. Instead of the two players we can also think of this in terms of evidence for a
statement and evidence contrary to the statement. Thus, evidence for a statement
plays the role of player 1 and evidence contrary to a statement plays the role of
player 2. This will make clear why in ordering the truth values we have allowed
player 2 to dominate player 1, the proponent of the theory in question. In this case
player 2’s assigning F' to a statement means a contestor of the statement can be
assigned 7" on the basis of available evidence and player 2’s assigning 7" to a state-
ment means a contestor of the negation of the statement can similarly be assigned
T. With this interpretation it can be seen that the situation in which a statement
is assigned (F,T) is to be preferred to a situation in which (7', F') is assigned to
that statement because the former situation means there is no evidence against
the statement but there is evidence against the negation of the statement whereas
the latter situation means there is evidence against the statement even if there is
evidence for the statement. Thus, the former situation is more cautious than the

latter situation.

The work presented in this chapter has some connections with the work done
on argumentation by Dung and his collaborators ([Dun93|, [DKT96]). An argu-
mentation framework is a pair (AR, attacks) where AR is a set of arguments and
attacks C AR x AR. A set S of arguments is said to be conflict-free if no two
elements of it attack each other. A conflict-free set of arguments S is admissible if
and only if for each argument B, if B attacks S then B is attacked by S. And a

preferred extension of an argumentation framework AF' is a maximal (with respect
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to set inclusion) admissible set of AF.

A contests b can be understood as saying that A attacks b (or that A is an ar-
gument against b) if A can be established. The set S of literals which evaluate to
T or C'T in a canonical model of LP 4 C, where LP is a normal logic program and
C is a set of contestations, can be interpreted as a preferred extension as defined
above. The main difference between our work and the work on argumentation de-
scribed above is that our work has the explicit semantic machinery to give a model
theory. The cap functions associated with a contestation, the rules for semantically
evaluating logic programming rules constrained by a set of contestations and the
definition of a well-supported model ensures that both a contested atom and its
contestor cannot have a designated truth value (7" or CT') in any well-supported
model of a normal logic program constrained by a set of contestations. In contrast,
there is no such semantic machinery in the work on argumentation. The idea of
one argument attacking another argument is introduced as a primitive. Therefore
there is nothing in the semantics of ‘attacks’ which ensures that in a preferred ex-
tension there cannot be mutually attacking arguments except by explicitly defining
preferred extensions so that only conflict-free sets are regarded as preferred exten-
sions. If argument A attacks argument B and the conclusion of A is p and the
conclusion of B is ¢, then what is needed is a semantic characterization of the
relation between p and ¢ which shows why establishing p disallows establishing ¢
on the basis of B. When p and ¢ are negations of each other the semantics of
negation provides this semantic characterization. But when p and ¢ are not nega-
tions of each other simply saying A attacks B provides no insight into why both p
and ¢ should not be accepted and provides no semantic machinery that precludes

accepting ¢ (on the basis of B) when p is accepted. Indeed, argumentation theory
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has only an operational semantics in terms of the fix-point of an operator. But
there is nothing in the definition of this operator or its fix-point which precludes

two mutually attacking arguments from belonging in the fix-point.

Another difference between our work and the work on argumentation theory is
that we can accommodate contestations of different degrees of strength. The work
on argumentation theory cannot accommodate this. Since it has only an opera-
tional semantics, either an argument is successfully attacked by another argument

or not. It cannot allow for different degrees of successes of attacks.

4.6 Summary

In this chapter we have introduced the idea of contestations and provided the C4
semantics for normal logic programs augmented with a set of contestations. More

specifically, the research contributions of this chapter are summarized as follows.

e We introduce the four truth values V = {F, CF, CT, T} and provide a
function for evaluating any closed sentence of the language of the program

given an interpretation of the program based on V (Section 4.2).

e We show how the four truth values of C4 and the associated ordering between
them can naturally be derived from the classical truth values 7" and F' in
the context of two players assigning the classical truth values to the same
set of statements, where one player’s assignment is allowed to dominate the
other player’s assignment without outright winning against the other player’s

assignment (Section 4.2).

e We generalize the idea of a two-valued well-supported model of a program
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to a four-valued well-supported model, and we prove that every normal logic

program has a four-valued well-supported model (Section 4.3).

We introduce contestations, which is a way of representing conflicts between
statements. A contestation B <—; a, where B is a conjunction of ground
literals and a is a ground atom, is understood as saying that if B has the
truth-value « then a has at most the truth-value cap;(a), where cap; is a
mapping from V to V. Contestations of different degrees of strength are

defined in terms of different cap functions (Subsection 4.4.1).

We have defined C4, a semantics for normal logic programs augmented with
contestations of different degrees of strength. This semantics is based on the
four truth values of V with an associated ordering between them. The seman-
tics is based on the idea of epistemically reasonable models which is captured
in terms of the idea of well-supported models, a clausal ordering between well-
supported models and the idea of combining evidence against a statement
with the evidence for that statement. The canonical models of a normal logic
program plus a set of contestations are defined as the well-supported models

which are maximal in the clausal ordering (Subsection 4.4.3).

We have shown that every normal logic program augmented with contesta-
tions which are defined in terms of a certain cap function has at least one

canonical model (Subsection 4.4.3).

Based on this model theory we have introduced two types of entailment:
strong entailment and weak entailment. And we have proven that the infer-
ences permitted in terms of these entailment relations are conflict-free with

respect to the types of conflicts specified in terms of C (Subsection 4.4.3).
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Chapter 5

C4 as a semantics of normal logic programs

5.1 Introduction

In the case where C = (), the canonical models of P+C = P are simply the clausally
maximal models among the well-supported models of P. Thus, C4 provides a new
semantics for normal logic programs. It is clear that the definitions of weak and
strong entailment carry over to the case when C = ().

In Section 5.2 we investigate C4 as a semantics of normal logic programs. We
prove that every definite logic program has a unique canonical C4 model and that
every normal logic program has at least one C4 canonical model. In Section 5.3 we
investigate the relation between the stable model semantics and C4 as semantics
of normal logic programs. We prove that a normal logic program which has any
stable models entails a literal with respect to the stable models of that program if,
and only if, that program weakly entails that literal under C4. In Section 5.4 we
investigate the relation between the well founded semantics and C4 as semantics
of normal logic programs. We prove that a normal logic program entails a literal
with respect to the well founded semantics if, and only if, that program strongly

entails that literal under C4. In Section 5.5 we show how our formalism can be
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extended to express conjunctive queries one part of which must be answered in
terms of strong entailment and another part of which may be answered in terms
of weak entailment. In Section 5.6 we compare C4 as a semantics of normal logic
programs with the stable model semantics and the well founded semantics. In

Section 5.7 we summarize the main research contributions of this chapter.

5.2 (4 as a Semantics of Normal Logic Programs

In this section we investigate the properties of C4 as a semantics of normal logic

programs.
Theorem 5.2.1 FEvery normal logic program has at least one C4 canonical model.

Proof: Follows directly from Theorem 4.3.1 in Chapter 4. [

It can also be established that every definite logic program has a unique canon-
ical model. This generalizes the theorem of Kowalski and van Emden ([vEKT76])
which says that every definite logic program has a unique minimal Herbrand model.
Our result generalizes the Kowalski and van Emden theorem because of the pres-
ence of the special atoms (true, CTrue, CFalse and false) in the bodies of some
rules, which can require the unique canonical model to assign truth values other
than 7" and F' to atoms. To prove this result we need to generalize the immediate
consequence operator, Tp, of [VEKT76] defined in Chapter 3. Our discussion here

closely follows the three-valued generalization of this operator given in [Prz90b].

Definition 5.2.1 Let P be a ground logic program, let Z be a four-valued inter-

pretation of P, and let a € HBp. Define ¥(Z) to be the interpretation given

by:
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1. U(Z)(a) =1 if there is a C € P such that head(C) = a and Z(body(C)) = 1;

2. U(I)(a) =2/3 if ¥(T)(a) # 1 and if there is a C € P such that head(C) = a
and Z(body(C)) = 2/3;

3. U(I)(a) =1/3 if ¥(Z)(a) # 1, ¥(Z)(a) # 2/3 and if there is a C € P such
that head(C) = a and Z(body(C)) =1/3;

4. ¥(Z)(a) = 0, otherwise.

In terms of the pointwise ordering (as opposed to the clausal ordering) among
interpretations introduced above, the set of Herbrand interpretations of any def-
inite logic program form a complete lattice with the bottom of the lattice being
the interpretation which assigns F' to all atoms and the top being the interpreta-
tion which assigns 1" to all atoms. Hence, we are assured by the Knaster-Tarski

theorem ([Tar55]) that the operator ¥ has a least fixed point.

Example 5.2.1 Let P = {a < b,¢; b < CTrue; ¢ < CFalse}. Let T be such
that Z assigns 0 to a, b, and ¢ and assigns the special atoms C'T'rue and CFalse
their fized values 2/3 and 1/3 respectively. Then ¥(Z) = J assigns 0 to a, 2/3 to
b and 1/3 to c. And W(J) assigns 1/3 to a, 2/3 to b and 1/3 to c. Any further

application of the ¥ operator to W(JT) yields the same result as V(T).

Lemma 5.2.1 If P is a definite logic program, then the operator ¥ has the least
fized point Mp such that W(Mp) = Mp. The interpretation Mp is the least model
of P in terms of the pointwise ordering.

The sequence ¥ 1T n, n = 0,1,...,w, of iterations of V¥ is monotonically in-
creasing with respect to the pointwise ordering among interpretations (starting with

the interpretation that assigns F to all atoms) and it has a fized point ¥ 1 w = Mp.

63



Proof: The proof is completely analogous to the proof in [vEK76] for two-valued

interpretations. u

We are now in a position to prove the theorem that every definite logic program

has a unique C4 canonical model.
Theorem 5.2.2 A definite logic program has a unique C4 canonical model.

Proof: We show that Mp, the least fix-point of ¥ for P, is the unique canonical
model of P.

We know from the above lemma that Mp is a model of P. Furthermore, it is
a well-supported model given the nature of the ¥ operator. Note that each clause
of P evaluates to T in Mp. Hence, Mp is maximal in the clausal ordering. Thus,
it is a canonical model.

Assume by way of contradiction that there is another canonical model Z of P
such that Mp # Z. Let S be the set of atoms on which Mp and Z differ. Note that
7 cannot assign any atom a value higher than Mp does if it is a well-supported
model.

Let us say that an atom first appears in an iteration of ¥ in the construction of
Mp if it has its final value (that is, the value it has in Mp), which must be greater
than F', in that iteration and has a strictly lower value in all other iterations before
that. Thus we can stratify the atoms in S in terms of which iteration of ¥ they
first appear in the construction of Mp.

Let s € S be an atom such that no atom in S first appears before s. Let C' € P
be such that head(C) = s and no member of S is a member of body(C') and body(C')
evaluates to the same truth value as Mp(s). (There must be such a C given the

bottom-up nature of constructing Mp and given that ¥ is a monotonic operator.)
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Thus, Z and Mp assign the same truth values to all members of body(C'). Hence,
C will evaluate to a lesser value in Z than in Mp. But since all clauses evaluate to
T in Mp, it follows that Z is strictly less than Mp in the clausal ordering. Thus,
a contradiction.

Hence, Mp is the unique C4 canonical model of P. |

5.3 Relation to Stable Model Semantics

In this section we prove that P entails a literal ¢ with respect to the stable models

of P if, and only if, P weakly entails ¢ (under C4).

It is well known that not all normal logic programs have a two-valued stable
model. Thus, P = {p <~ not p} has no two-valued stable model. However, this
program has a canonical model according to C4, namely, the model which assigns

CF to p.
Let Truth(Z) denote {a| a is an atom and Z(a) > CT}.

Lemma 5.3.1 below says that every stable model of a program P is Truth(Z)

for some canonical model Z (under C4) of P.

Lemma 5.3.1 Let P be grd(LP). Then, for each stable model M of P, there
exists a four-valued canonical model T of LP such that M = Truth(ZT).

Proof: Let M be a stable model of P. We show below how to construct a four-

valued canonical model Z such that M = Truth(Z).

Let Z be such that it assigns 7" to all members of M and F' to all other atoms.

Clearly, by construction M = Truth(Z). We show below that Z is a canonical
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model of P.

7 is a model of P

For any C € P, if head(C) € M, then, by construction, Z(head(C)) = T. Thus, T
models C'.

If head(C) ¢ M, then either some atom in posbody(C') is not in M or some
literal in negbody(C') is false in M. In either case, by construction, that atom or

literal evaluates to F' in Z. So, once again, Z models C.

T is well-supported

Since Z assigns only 1" or F' to atoms, Z is identical to M if M is thought of as a
two-valued mapping. Since M is a stable model of P, it is also a well-supported

model of P ([Fag91]). So T is a well-supported model of P.

7 is maximal in the clausal ordering with respect to LP

7 is maximal in the clausal ordering with respect to LP only if it is maximal in
the clausal ordering with respect to grd(LP) = P. To establish that Z is maximal
in the clausal ordering with respect to P it is enough to establish that all clauses
in P evaluate to 1" according to Z.

Clearly, all clauses such that its head is assigned 1" by Z evaluate to T'. So, all
that remains to be shown is that all clauses such that its head is assigned F' by Z
also evaluate to 7. But since we have already established that Z is a model of P,
the body of any clause whose head is assigned F' must evaluate to F'. Thus, any

such clause evaluates to 1" in Z. Hence, all clauses in P evaluate to 1" under Z.

Hence, Z is a canonical model of P and M = Truth(Z). n

Corollary 1 If a ground program P has a stable model, then P has a four-valued
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canonical model T such that each clause in P evaluates to T in I.

Proof: This was essentially proved in the proof of the previous lemma. [

Corollary 2 If a ground program P has a stable model, then every four-valued

canonical model of P is such that each clause in P evaluates to T in it.

Proof: By Corollary 1 we know that if P has a stable model then there is a
canonical model Z of P such that all clauses evaluate to T in Z. So for any model
J of P such that J(C) < T, it must be the case that J < Z. Hence J cannot
be cannonical. Thus, every cannonical model must be such that every clause of P

evaluates to 7T in it. m

Lemma 5.3.2 Let P be grd(LP). FEvery canonical four-valued model T of LP
such that each clause of P evaluates to T in T is such that Truth(Z) is a stable

model of P.

Proof: Assume that Z is a canonical model of LP such that each clause of LP
evaluates to 7" in Z. Assume, by way of contradiction, that Truth(Z) is not a
stable model of P. This implies that MM (P?™"®) £ Truth(T), where P74
is the Gelfond-Lifschitz transformation (see Definition 3.3.1 of Chapter 3) of P
with respect to Truth(Z).

This means that either there is an a € MM (P"™"®) such that a & Truth(Z),

or there is an a € Truth(Z) such that a ¢ MM (PTruth@)),

Case 1: a € MM (PT*"®D) and a ¢ Truth(Z).
PTTuth(I) ig a definite program and, hence MM (PTm*"(D) is the least fix-point

of Ty 1 n, where @ is PTmuth(Z) Thus, it is possible to stratify the members of

MM (PTruth(2)) in terms of the least n such that a member first occurs in Ty 1 n.
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Let a be of the lowest strata among those atoms in M M (PTruth(2)) which are
not in Truth(Z).

Since a € MM (PTm2)) there must be a clause in PT™"Z) of the form
a < by,..., by such that {by,...,b,} € MM(P"™Z)). But, by the assumption
that a is of the lowest strata among those atoms in MM (PTm“"(2)) which are
not in Truth(Z), it follows that {b,...,b,} C Truth(Z). Furthermore, since

PTruth(Z) - there must be a clause C' in P of the form a <«

a < by,...,b, is in
bi,..., by, not cy,..., not ¢, such that ¢; & Truth(Z), i = 1,...,n. So, each
member b; of posbody(C') is assigned at least C'T by Z (since each such b; belongs
to Truth(Z)) and each member not c¢; of negbody(C) evaluates to at least C'T
(since each ¢; is assigned at most C'F by Z). Hence, Z(body(C)) is at least CT. By
the assumption that C' evaluates to 7" in Z, it follows that Z(a) must be at least

CT. Therefore, a must be in Truth(Z). Thus, a contradiction.

Case 2: a ¢ MM (PT*"®D) and a € Truth(Z).

Let < be the well-founded ordering that makes Z well supported. Among all
the atoms x such that x ¢ MM (PTm*"(2)) and 2 € Truth(Z), let a be highest in the
<. That is, let a be such that there does not exist a b such that b ¢ M M (PTruth(Z))
and b € Truth(Z) and a < b.

Since a € Truth(Z), Z(a) is at least CT and, hence, there must be a clause C' in
P of the form a < by, ..., by, not ¢,..., not ¢, such that body(C) must evaluate
to at least C'T under Z (otherwise, Z would not be well-supported). So each b; in
posbody(C') must be assigned at least CT by Z. Thus, {by,...,b,} C Truth(Z).
Furthermore, since each not ¢; in negbody(C') must evaluate to at least C'T, each

c¢; must be assigned at most CF by Z. Thus, no ¢; is in Truth(Z).
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Hence, clearly, a < by, ..., b,, must be in PTrun(I),

By the nature of the well-founded ordering that makes Z well supported, each
of by,...,b, must be lower than a in the well-founded ordering (otherwise a
cannot be well-supported by C). By our assumption that a is the highest in
the well-founded ordering, it follows that {bi,...,b,} C MM (PTmut@D) since
{b1,...,bm} C Truth(Z). So a must belong to MM (PT™"®) Thus, a contra-

diction. -

Lemma 5.3.3 Let P be grd(LP). If P has any stable models then every canonical
model T of LP is such that Truth(Z) is a stable model of P.

Proof: Follows directly from Corollary 2 and Lemma 5.3.2. [

Theorem 5.3.1 If a ground normal logic program P has any stable models, then
M is a stable model of P if, and only if, there exists a four valued canonical model

of Z of LP such that M = Truth(ZI).

Proof: Follows directly from Lemmas 5.3.1 and 5.3.3. [

Since not all normal logic programs have stable models, an important question
is what are the necessary and sufficient conditions for a normal logic program

having a stable model. The following theorem gives an answer.

Theorem 5.3.2 A ground normal logic program has a two-valued stable model if,
and only if, every clause of the program evaluates to T in every canonical model

of the program.

Proof: The left-to-right direction is proven in Corollary 2. The right-to-left

direction is proven in Lemma 5.3.2. [

Theorem 5.3.2 above justifies the following definition.
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Definition 5.3.1 A C4 model of a normal logic program is a C-Stable model if

and only if all rules of the program evaluate to T in that model.

We show below that any well-supported C-stable model of a normal logic pro-
gram must be a canonical model of the program and if the program has a canonical

C-stable model then all its canonical models must be C-stable.

Theorem 5.3.3 Any well-supported C-stable model of a normal logic program
must be a canonical model of the program and if the program has a canonical

C-stable model then all its canonical models must be C-stable.

Proof: Let P be a normal logic program which has well-supported C-stable model
Z. Since 7 is well-supported and since every R € P evaluates to 1" in Z there cannot
be any other model of P which is strictly greater than Z in the clausal ordering.
Hence Z must be a canonical model of P.

Given that Z is a canonical C-stable model of P, it follows that any model J of
P such that J is not C-stable would be strictly less than Z in the clausal ordering.
Thus, no such J could be a canonical model of P. Hence, it follows that if P has

a canonical C-stable model, then all its canonical models must be C-stable. |

Let us say that P entails a sentence q under the stable model semantics if, and

only if, every stable model of P is also a model of q.

Theorem 5.3.4 If a ground normal logic program P has any stable models then
it entails a sentence q under the stable model semantics if, and only if, P weakly

entails ¢ under C4.
Proof: Follows directly from Theorem 5.3.1. [

Using the terminology of [Dix95], we state the following theorem.
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Theorem 5.3.5 If T and C'T are collapsed into a single true value and CF and
F are collapsed into a single false value, C4 extends the stable model semantics

both in the sense that

e For any program P, C4 classifies at least as many atoms of P as true or

false as does the stable model semantics.

e C4 is defined for a class of programs that strictly includes the class of pro-
grams for which stable model semantics is defined and for all programs of

this smaller class, the two semantics coincide.

Proof: Since C4 assigns a truth value to all atoms of P, it follows trivially that
C4 classifies at least as many atoms of P as true or false as does the stable model
semantics, if 7" and C'T" are collapsed into true and C'F and F' are collapsed into

false.

It follows from Lemma 5.3.1 that C4 is defined for a class of programs that
includes the class of programs for which stable model semantics is defined and for
all programs of this smaller class, the two semantics coincide. So to prove the
second part of the theorem all we need to do is produce a program which has no
stable models, but for which C4 has a model. The program {p +— not p} has no
stable models, but it has a model under C4, namely, the model which assigns C'F’

to p. [

Following [Prz90b], we define a four-valued stability operator I'* on normal,

logic programs.

Definition 5.3.2 Given a four-valued interpretation Z of a normal, logic program

P, let LPT be the definite program obtained by transforming every clause C by
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replacing every member of negbody(C) which evaluates to T (resp. CT; resp. C'F;
resp. F') by the special atom true (resp. Ctrue; resp. Cfalse; resp. false) which
evaluates to T (resp. CT; resp. CF; resp. F) in every interpretation. Let J be
the unique canonical model of LP*. We define J to be the value of T*(ZT).

We say that T is a four-valued stable model of P if, and only if, T*(Z) =T.

Not all normal, logic programs have a four-valued stable model. The program
{p < not p} has no four-valued stable model. However, it does have a four-valued
well-supported model in which p is assigned C'F. This shows that although the
set, of two-valued stable models of a program coincide with the set of two-valued
well-supported models ([Fag91]), this equivalence does not hold for four-valued

models.

Lemma 5.3.4 7 is a four-valued stable model of P if, and only if, for each a €
HBP;
Z(a) = max{Z(body,(a)),...,Z(body,(a))}

where bodyi(a), ..., body,(a) are the bodies of all the clauses in P which have a in
the head.

Proof:

=

If 7 is a four-valued stable model then it must be the unique canonical model of
LP%, which can be computed by iterating the ¥ operator. Given the bottom-up
nature of this computation and given the monotonicity of the ¥ operator, it must

be the case that for each a« € HBp

Z(a) = max{Z(body,(a)),...,Z(body,(a))}.
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<~

Let Z be such that for each a € HBp,
Z(a) = max{Z(body,(a)),...,Z(body,(a))}.

Let J be the unique canonical model of LP?. Given that J is the least fix-
point of the ¥ operator, it is easy to see that 7 is a well-supported model. Thus,
there is a well-founded order < on the atoms of HBp = HBjypz. Based on this
ordering we construct an inductive proof that for each a € HBp, J(a) = Z(a).

The ordering < consists of a set of chains. We take the bottom of each chain to
be in position 0, the next atom in the chain to be in position 1, and so on. Define
the rank of each atom to be highest position it has in any chain in < ([Fag91]).
Inductive proof based on the rank of an atom.

Base Case: rank =0
Only the special atoms (true, false) can be at the bottom of any chain since LPT
is a definite program. Necessarily, Z and J assign the same value to all special
atoms.

Inductive Step: Assume that Z and J agree on all atoms of rank j < n. We

show below that this is true for all atoms of rank n.
Let a be any atom of rank n. As noted in the left-to-right part above,
J(a) = max{J (bodyi(a)), ..., T (body,(a))}. Given the bottom-up computation

of J, there must be some 7, 1 < i < n, such that

J (body;(a)) = mazx{T (body,(a)), ..., T (body,(a))}

and every member of body;(a) is of lesser rank than a. But, by the inductive

assumption, Z and J agree on all members of body;(a). Hence, it follows that Z
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and J agree on a.

It follows thus that Z and J are identical. Hence, by the definition of a stable

model, 7 is a stable model of P. [

We use Lemma 5.3.4 above in the proof of the following theorem which states
precisely the relation between four-valued stable models and four-valued well-

supported models.

Theorem 5.3.6 If P has a four-valued stable model, then I is a four-valued stable
model of P if, and only if, T is a clausally mazimal four-valued well-supported model

of P.

Proof:
=
Let Z be a four-valued stable model of P. Then, by Lemma 5.3.4, for each atom a €
HBp, Z(a) = maz{Z(body;(a)),...,Z(body,(a))}. Hence, each clause evaluates to
T in Z. Hence, Z must be a clausally maximal, well-supported model of P.
=
Assume that P has a four-valued stable model 7.
Let Z be a clausally maximal four-valued well-supported model of P. Hence,

for each a € HBp,
Z(a) = max{Z(body,(a)),...,Z(body,(a))},

otherwise Z would be less than J in the clausal ordering. But then by Lemma 5.3.4,

7 must be a four-valued stable model of P. m
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5.4 Relation to Well Founded Semantics

In this subsection we show that L P entails a ground literal p under the well founded
semantics if, and only if, LP strongly entails p under C4. That is, we show that if
p is a positive atom, p € W FS(LP) if, and only if, p is assigned T in all the four-
valued canonical models of LP, and if p is a negative literal then p € WFS(LP)
if, and only if, p evaluates to F' in all the four-valued canonical models of LP.

Definition 5.4.1

T(LP)={a€ HByp |a € WFS(LP)}
F(LP)={a € HB.p | not a € WFS(LP)}
L(LP)={a€ HBrp | a ¢ T(LP) and a ¢ F(LP)}
Lemma 5.4.1 If a positive (resp., negative) literal a € WFS(LP), then a is

assigned T (resp., F') in all the four-valued canonical models of LP.

Proof: a € WFS(LP) if, and only if, a € I*°. We prove the lemma by proving
inductively that for each ordinal «, that if a positive (resp., negative) literal a € I,
then a is assigned T (resp., F') in all the four-valued canonical models of LP. Thus,

it must be true for I*°.
Base Case. a = 0. The claim is trivially true since I, = ().

Inductive Step. Assume that the claim is true for all < . We show that the

claim is also true for a.

If «v is a limit ordinal then

L= I

B<a

Since the claim is true for all 3 < « the claim is also true for Us., I5.
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If « is a successor ordinal then
I, =Wp(Ia1) =Tp(In—1) Unot Up(ly_1)
If a € I, then a € Tp(I, 1). So there must be a rule
R = a<+by,...,b,,no0t cq,...,not ¢,

such that {b1,...,b,} C I,_1 and {not ¢,...,not ¢,} C I, ;. By the inductive
hypothesis by, ..., b, are assigned T" and cy,...,c, are assigned F' in all the four
valued canonical models. So body(R) must evaluate to 7' in any canonical model
of LP and, hence, in any such model head(R) must be assigned 7'. Hence if a € I,
then a must be assigned T in all the four valued canonical models of LP.

If not a € I, then a must be in GG, the greatest unfounded set with respect to
I,_1. We show below that every member of G' gets assigned F' in every canonical
model.

It follows directly from the inductive assumption that any b € G gets assigned
F' in every canonical interpretation if every rule with b in the head evaluates to
false with respect to I,_;. Let G' be the subset of G such that members of G' do
not evaluate to false in this way. If G’ is empty, the claim that all members of G
are assigned F'in all the canonical models stands proved. Hence, assume G’ is not
empty.

For each member of G', every rule with it in the head such that the body of
the rule does not evaluate to false with respect to I,_; contains some member of
G' in the body. If any member of G' gets assigned a truth-value greater than F' in
any canonical model, then it must be well-supported in that canonical model by
some rule. But any such rule must contain some member of G’. So that member

of G' would have to be similarly well-supported by a rule containing a member of
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G'. Thus, the members of G’ would have to be well-supported in terms of each
other. But this is not possible since there cannot be any cycles in the well-founded
ordering which makes a canonical model a well-supported model. Thus, no member
of G' can be assigned a value higher than F' in any canonical model.

Hence, all members of GG, the greatest unfounded set with respect to I, ;, are
assigned F'in every canonical model. Thus, if not a € I, then «a is assigned F' in

all the canonical models. [
The following definitions are needed to prove the next lemma.

Definition 5.4.2 For any C' € LP, where LP is a ground program, Residue(C) is
the rule obtained by deleting all literals from body(C') which are true in W FS(LP).

Definition 5.4.3 Let Residue(LP) = {Residue(C) | C € LP, head(C) ¢ WFS(LP),
not head(C) ¢ WFS(LP) and no member of body(C) is false in WFS(LP)}

That is, Residue(LP) is the set of rules obtained by deleting all rules C' € LP
such that head(C) € WFEFS(LP) or not head(C) € WFS(LP) or whose body is
false in WFS(LP) and of the remaining rules, deleting all literals which are true
in WFS(LP) from the bodies of such rules. It is easy to see that Residue(LP) is

the part of LP that cannot be used in computing WFS(LP).
Example 5.4.1 Let P be as in Ezample 3.3.3. We saw in Example 3.3.3 that
WFS(P) = {c,not r,not q}. Hence, Residue(P) =

P a p<b

a<+notb b<+< nota

Let ResidueHeads(LP) be the set of heads of all rules in Residue(LP). Then,

given the nature of the Up operator in the definition of the well-founded semantics,
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it is also easy to see that a € ResidueHeads(LP) if, and only if, every member
of every rule in Residue(LP) with a in the head is also in ResidueHeads(LP).
Let Atoms(Residue(LP)) be the set of those atoms which occur in some rule in

Residue(LP). Then ResidueHeads(LP) = Atoms(Residue(LP)).
The next two lemmas are needed to prove Theorem 5.4.1.

Lemma 5.4.2 For any a € HBpp, a € Atoms(Residue(LP)) if and only if a ¢
WFS(LP) and not a ¢ WES(LP).

Proof:

=

If a ¢ WFS(LP) and not a ¢ WFS(LP), then there must be a C' € LP such
that head(C) = a, otherwise, given the nature of the Up operator, not a €
WFS(LP). But for such a C, Residue(C) € Residue(LP). Thus, head(C) =
a € Atoms(Residue(LP)).

=
If a € Atoms(Residue(LP)), then thereis a C' € Residue(LP) such that head(C) =
a. So, by definition of Residue(LP), a ¢ WFS(LP) and not a ¢ WFS(LP).

Thus, all members of Atoms(Residue(LP)) belong to L(LP) and are not as-

signed a truth value by the well-founded semantics for LP.

Lemma 5.4.3 For each a € Atoms(Residue(LP)) there exists a canonical model

Z of LP such that Z(a) = CT or I(a) = CF.

Proof: Suppose, by way of contradiction, that there is an a € Atoms(Residue(LP))

such that every canonical model assigns either 7" or F' to a.
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Let Z be any canonical model of LP. Clearly Z must assign 7" or F' to some
atoms in Atoms(Residue(LP)). We construct an interpretation J such that for
every b € Atoms(Residue(LP)), if Z(b) = T then J(b) = CT and if Z(b) = F
then J(b) = C'F , and for all other atoms in HBp, T and J assign the same
truth value.

We show below that J is a canonical model, which contradicts the assumption

that there is no such canonical model.

J is a model
Suppose by way of contradiction that J is not a model of some C' € P where
P = grd(LP).

Either head(C') € Atoms(Residue(LP)) or not.

Case 1: head(C) € Atoms(Residue(LP)).

Case la: Z(head(C)) = T or Z(head(C)) = F. In the first case J(head(C)) =
CT and in the second case J(head(C)) = CF. However, in either case J
can fail to be a model of C only if body(C) evaluates to T in J. But since
head(C) € Atoms(Residue(LP)), at least one member [ of body(C) must also be
in Atoms(Residue(LP)). If Z(I) = T then J(I) = CT. On the other hand if
Z(l) < T then J(I) < T. So in either case J(body(C)) < T. So J must be a
model of C.

Case 1b: Z(head(C)) = CT or Z(head(C)) = CF. So J(head(C)) = CT
or J(head(C)) = CF. But in either case since Z is a model of LP, clearly,
Z(body(C)) < T. So, it must be the case that J(body(C)) < T. Hence, J must
be a model of C.
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Case 2: head(C) ¢ Atoms(Residue(LP)). So, by Lemma 5.4.2, head(C) €
W FS(LP) or not head(C) € WFEFS(LP). Since 7 is a canonical model this implies
by Lemma 5.4.1 that Z(head(C)) = T or Z(head(C')) = F. By construction J as-
signs the same truth value as Z to all atoms a such that a ¢ Atoms(Residue(LP)).
So if head(C) € WFS(LP), then J(head(C)) = T and so, clearly, J is a model
of C. If not head(C) € WFS(LP) then head(C) is assigned F' by both Z and
J. However, not head(C) € WFS(LP) only if some member [ € body(C) is false
in WES(LP). Clearly, by Lemma 5.4.1, [ evaluates to F' in Z. By construction
so does J. Hence, body(C') must evaluate to F' in J. Thus, again, J must be a
model of C.

Hence, J must be a model of LP.

I<pd

For each C' € LP, either head(C) € Atoms(Residue(LP)) or head(C) ¢
Atoms(Residue(LP)).

Case 1: head(C) € Atoms(Residue(LP)). Note that for head(C) to be in
Atoms(Residue(LP)), body(Residue(C)) must be non-empty.

If Z(head(C)) =T or Z(head(C)) = CT, then J(head(C)) = CT. Since J is
a model (proved above) in either case J (body(C)) is at most CT. So J(C) is T.
Hence, in either case Z(C) <pp J(C).

If Z(head(C)) = CF, then J(head(C)) = CF. In this case Z(body(C)) is
CT or C'F or F. By the nature of construction of J, if Z(body(C)) is CT or CF,
J (body(C)) will have the same truth value. Hence, in either case Z(C') <pp J(C).
If Z(body(C)) is F', then Z(body(C')) is at most C'F. So J (C) evaluates to 7. Hence
if Z(head(C)) = CF, Z(C) <pp J(C).
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If Z(head(C)) = F, then J(head(C)) = CF. In this case Z(body(C)) = F.
Hence, J (body(C')) is at most C'F. In this case, again, J(C) =T.
So in case head(C) € Atoms(Residue(LP)), Z(C) <pp J(C).

Case 2: head(C) ¢ Atoms(Residue(LP)). In this case, by Lemma 5.4.2,
T(head(C)) = T or Z(head(C)) = F and, by construction, Z(head(C) = J (head(C)).
If Z(head(C)) =T, then Z(C) = J(C) = T. If Z(head(C)) = F = J(head(C)),
then, since both Z and J are models, Z(body(C)) = J(body(C)) = F. So, again,
I(C) = J(O).

Thus, we have shown that Z <,p J.

J is well supported.

Since Z is well-supported, there exists a well-founded ordering <7 on atoms in
HByp such that for any a € HByp such that F' < Z(a), there exists a C € LP
such that head(C) = a and Z(a) < body(C') and for any b € posbody(C), b <z a.

We construct <7 as follows. If @ <7 b then a <5 b for any a,b € HBpp.
Let S = {a € Residue(Atoms(LP)) | Z(a) = F'}. By construction, members of S
are assigned C'F in J. We let ¢ <7 d, where ¢ € S and d is any atom such that
Z(d) > CF. That is, all atoms whose truth value gets upgraded from F to C'F
in the construction of J are lesser in the ordering than all atoms which had at
least CF in Z. Let <7 denote the ordering created thus far. Furthermore since
members of S do not belong to any unfounded set with respect to W EFS(LP) there
must be a well-founded ordering among members of S. We construct one such
ordering < as follows. Let Pos(Residue(LP)) be Residue(LP) with negative

literal removed from rules of Residue(LP). Since this is a definite logic program
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the Tp operator applied to it has a least fixed point. <g is constructed by letting
b <s a where a,b € S and b occurs in an earlier iteration of the T operator than
a. Then <7 is just <7 U <.

Clearly, < 7 is a well-founded ordering. We show below that J is well-supported
in terms of < 7.

Any atom a that is assigned 7" or CT by J is well-supported in terms of the
same rule R € LP which would make the assignment of 7" or C'T" to a by Z well-
supported. Similarly, any b ¢ S that is assigned C'F' by J is well-supported in
terms of the same rule R € LP which makes the assignment of C'F" to b by Z
well-supported. Furthermore, the part of the < s ordering that is relevant to this
is exactly the same as the <7 ordering.

Every ¢ € S is assigned C'F' by J but F' by Z. We need to show that these
assignments are also well-supported. Since ¢ € Atoms(Residue(LP), clearly there
must be at least one rule R € LP such that head(R) = ¢ and body(Residue(R))
is non-empty and d < ¢ for any atom d € posbody(Residue(R)). Any atom in
body(Residue(R)) which is assigned F' by Z is assigned C'F in J and all other
members of body(Residue(R)) are assigned at least C'F in J. Furthermore, all
members of body(R) — body(Residue(R)) belong to W FS(LP) and thus evaluate
to T in Z and, hence, in J. Thus, body(R) must evaluate to at least C'F in J.
Hence, R supports the attribution of C'F' to ¢ in J. Furthermore, b <7 ¢ for all
b € posbody(R) whether b € S or b ¢ S. Hence the attribution of CF to c € S is
well-supported in 7.

Thus, J is a well-supported model of LP.

We have shown that J is a well-supported model of LP such that Z <;,p J.

But since Z is a canonical model it is not possible that Z <;p J. So it must be the
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case that Z =pp J. Hence J must be a canoncial model. Thus, a contradiction.

Theorem 5.4.1 A positive (resp., negative) literal a € W FS(LP) if, and only if,

a is assigned T' (resp., F') in all the four-valued canonical models of LP.

Proof: We have proved the left-to-right direction of the theorem in Lemma 5.4.1.
The right-to-left direction can be proven by establishing that if « ¢ WFS(LP)
and not a ¢ WEFS(LP) then there is a canonical model which assigns neither T’

nor F' to a. This follows directly from Lemma 5.4.2 and Lemma 5.4.3.

Theorem 5.4.2 LP entails a ground literal p under the well founded semantics

iof, and only if, LP strongly entails p under C4.

Proof: Follows directly from Theorem 5.4.1.

5.5 Hybrid Reasoning

Using C4 we can define a skeptical and a credulous semantics for normal logic

programs.

Definition 5.5.1 The skeptical semantics for a normal logic program P are the

set of literals strongly entailed by P under C4.

In light of Theorem 5.4.1 we can identify the skeptical semantics with the

Well-founded semantics.
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Definition 5.5.2 The credulous semantics for a normal logic program P are the

set of literals weakly entailed by P under C4.

In light of Theorem 5.3.4 we can assert that when a normal logic program P
has any stable models, then the credulous semantics of P can be identified with

the set of literals entailed by P under the stable model semantics.

The following theorem explains why the two semantics are labeled skeptical

and credulous.

Theorem 5.5.1 For any normal logic program P, the skeptical semantics of P is

a subset of its credulous semantics.

Proof: If any literal is strongly entailed by a normal logic program then it is also
weakly entailed. Thus the theorem follows directly from the definitions of skeptical

and credulous semantics. n

Reasoning using skeptical (credulous) semantics can be called skeptical (resp.,
credulous) reasoning. We call reasoning hybrid if part of the reasoning is done using
skeptical reasoning and part of the reasoning is done using credulous reasoning.
Thus, we may want to know whether from a program P we can infer 3X (p(X) A
q(X)) where we want only those instantiations ¢ of X such that P strongly entails
p(t) but weakly entails ¢(?).

We develop below a language for expressing such hybrid queries and a formalism
for performing hybrid reasoning.

By an annotated literal ([BS89]) we mean an expression of the form [ : S where
[ is a literal and S is a non-empty subset of V = {T,CT,CF,F}. We stipulate
that [ : () is not a well-formed expression of our language. In any interpretation

Z, 1 : S evaluates to T if and only if Z'(l) € S and otherwise [ : S evaluates to
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F. Thus annotated literals can have only the classical truth values. A program P
entails [ : S if and if for all canonical models Z' of P, I'(l) € S.

Since annotated literals have only the classical truth values, an annotated literal
[ : S cannot be weakly entailed. However an annotated literal [ : {CT,T} can be
entailed by a program P if and only if [ is weakly entailed by P.

A query of the form IX (p(X)Aq(X)), where we want only those instantiations
t of X such that the program strongly entails p(t) but weakly entails ¢(t), can be
expressed as

AX(p(X) : {T} A ¢(X) :{CT,T})

Thus our framework provides us a way to express hybrid queries and to engage in

hybrid reasoning.

5.6 Discussion

We contrast C4 as a semantics of normal logic programs with the stable model
semantics and the well-founded semantics. As compared to the stable model se-
mantics, C4 provides at least one intended model for any normal logic program.
Thus using C4 it becomes possible to draw reasonable inferences from any nor-
mal logic program. Although one can make a case that some programs cannot
describe the intended meaning of any reasoner and thus they should not have any
meaning, in this work we take the position that it should be possible to assign
at least one “reasonable” model to any logic program. This is a highly desirable
feature in the context of information integration where information is drawn from
different sources. In this context there is no one reasoner whose intended meaning

is being expressed by the program or the pool of information. But it is still highly
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desirable that one should be able to reason in terms of information drawn from
different sources regardless of what is contained in this pool.

A related problem with the stable model semantics is the so-called “relevance
problem” ([Dix95]). Let P be a program that has at least one stable model.
Assume that ¢ ¢ Atoms(P). In this sense ¢ is not “relevant” to P. Then P U {q <
not ¢} has no stable models. That is, the addition of a rule irrelevant to P has
robbed P of all its stable models. Since C4 provides an intended model for any
normal logic program, C4 does not face this problem. Again, in the information
integration context it is necessary to have a semantics that is resistant to the

relevance problem.

It has been widely observed that the well-founded semantics is cautious com-
pared to the stable model semantics. Thus, reasoning under the well-founded
semantics forces the reasoner to be uniformly cautious regarding all information.
One aspect of C4 wrt the well-founded semantics is that for strong entailment it is
exactly as cautious as the well-founded semantics but for weak entailment it is less
cautious than the well-founded semantics. Thus using C4 a reasoner can engage

in both kinds of reasoning.

Another aspect of C4 is that for certain types of programs it produces the
intuitively correct result, whereas both the stable model semantics and the well-

founded semantics do not. Consider the following program.

P = {q < not p; p < not p}

Understood procedurally the first rule says ¢ is provable if not p is provable.
Assuming negation as failure, this means ¢ is provable if p is not provable. Both

stable model semantics and the well-founded semantics agree in holding that p
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should not be provable from this program. Thus, ¢ should be provable. But
q is not provable from P using the stable model semantics or the well-founded

semantics. However, ¢ is weakly entailed by P under C4.

5.7 Summary

In this chapter we investigate C4 as a semantics of normal logic programs. The

main research contributions of this chapter are as follows.

e We have proven that every definite logic program has a unique C4 canonical

model (Section 5.2).

e We have proven that every normal logic program has at least one C4 canon-

ical model (Section 5.2).

e We have proven that a normal logic program which has any two-valued stable
models entails a literal with respect to the stable models of that program if,

and only if, that program weakly entails that literal under C4 (Section 5.3).

e We have proven that a normal logic program entails a literal with respect to
the well founded semantics if, and only if, that program strongly entails that

literal under C4 (Section 5.4).

e We have devised a formalism to express hybrid conjunctive queries one part
of which must be answered in terms of strong entailment and another part

of which may be answered in terms of weak entailment (Section 5.5).
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Chapter 6

Proof Procedure for Weak Entailment

6.1 Introduction

In this chapter we describe a proof procedure for determining whether a query con-
sisting of conjunctions or disjunction of ground literals to a finite, ground normal
logic program is weakly entailed by the program.

The proof procedure consists in making assumptions and computing in a bottom-
up fashion a model of the program in which the assumptions hold true. In the first
phase not query is among the assumptions. If it finds a model in which this as-
sumption holds then it returns NO to the query. Otherwise, in the second phase
the procedure attempts to find a model in which query is among the assumptions.
If it finds a model in which this assumption holds then it returns YES to the query.
Otherwise it returns the message that the program has no C-Stable models. We
prove that this procedure is sound and complete with respect to weak entailment in
the C4 semantics. In Chapter 7 this proof procedure is modified to answer whether
a query is strongly entailed by a normal logic program. In Chapter 8 this procedure

is extended to answer queries to ground normal logic programs augmented with
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contestations.

In Section 6.2 we develop the formal apparatus needed to state the proof proce-
dure. In Section 6.3 we state the algorithms of the proof procedure. In Section 6.4
we prove the soundness and completeness of this proof procedure with respect to
weak entailment in the C4 semantics. In Section 6.6 we analyze the complexity
of the proof procedure and compare it to a related proof procedure by Chen and

Warren.

6.2 Preliminaries

First we reproduce some definitions and results from Chapter 5.

Recall that a C4 model Z of a normal logic program LP is said to be C-stable
iff Z(R) = T for all rules R € LP. A well-supported C-stable model of LP is
always canonical. Also recall that if LP has any canonical C-stable models then
all its canonical models are C-stable (Theorem 5.3.3 of Chapter 5). Theorem 5.3.2

of Chapter 5 says that LP has any stable models iff it has any C-stable models.
Assume that a query, L, has been posed to a ground normal logic program P.
We define below the concept of rules relevant to answering an atomic query.

Definition 6.2.1 Let P be a ground normal logic program and let q be a query to

P. A rule R € P s relevant to answering a query q iff

e g € Atoms(R), or

e there is an atom p such that p is relevant to answering q¢ and p € Atoms(R),
where any atom p is relevant to answering q if and only if p € Atoms(R;)

where R; is relevant answering q.
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Although this definition of rules relevant to a query is defined only in terms of
atomic queries, it is still useful for the case where a query L is not atomic because
given a query L to the program P, the proof procedure starts by adding the rule
query <— L, where query is an atom that does not belong to HBp. However, if
needed we can easily extend the above definition of rules relevant to an atomic
query to the case of a non-atomic query. Let L be a query to P. Then the
rules relevant to answering L are {R € P | R is relevant to answering p where
p € Atoms(L)}.

For the sake of simplicity we assume that all the rules of P are relevant to
answering query L, otherwise we can easily compute the relevant part of P. We
also assume that for any atom a € H Bp, there is at most one rule with that a
in the head. If P contains n, n > 1, rules with a in the head, the n rules can be
combined into the one rule a < body, V ...V body,, where body,, ..., body, are
the bodies of each of the n rules which contain @ in the head. When all the rules
in P with the same atom in the head are replaced by such a combined rule, we say
that P is in disjunctive form. In the rest of this chapter we shall assume that all
programs are in disjunctive form. Furthermore, we assume that unit rules contain
true in the body, and the program is augmented by adding a rule b <— not true
for each b € HBp such that there is no rule in P with b as its head. Programs
which are augmented thus are said to be in augmented form. When a program is
in both disjunctive and augmented form, for each a € HBp, there is exactly one
rule with a as its head.

As noted above, given a query L to the program P, the proof procedure starts
by adding the rule query < L, where query is an atom that does not belong to

HBp. The proof procedure is based on the following strategy.
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e First we determine whether there exists a well-supported C-stable model Z
of PU {query < L} such that Z(not query) > CT. If there is such a model,

we return NO to the query and terminate; otherwise we go to the next step.

e Second we determine whether there exists a well-supported C-stable model
T of P U {query < L} such that Z(query) > CT. If there is such a model,
we return YES to the query and terminate; otherwise we return a message

saying “This program has no C-Stable models” and terminate.

We know that every well-supported C-stable model of a program is a canonical
model of the program. Thus, if there exists a well-supported C-stable model Z of
P U {query < L} such that Z(not query) > CT, then this must be a canonical
model of P U {query <— L} and hence P U {query <— L} cannot entail query.
But this means there must be a canonical model of P in which not L > CT, and
hence P cannot entail L. This justifies returning NO at step 1. On the other hand
if there is no such well-supported C-stable model and there is a well-supported
C-stable model such that Z(query) > CT, then it must be a canonical model.
Furthermore, in that case, every canonical model J of PU {query < L} must be
C-stable (by Theorem 5.3.3 of Chapter 5) and must be such that J (query) > CT.
But then every canonical model of P must be such that L evaluates to at least C'T’
in those models. Thus, P must entail L. This justifies returning YES at step 2.
However, if there exists no well-supported C-stable model Z of P U {query < L}
such that Z(not query) > CT and there exists no well-supported C-stable model
J such that J(query) > CT, then PU {query < L} has no well-supported C-
stable models. But then P has no well-supported C-stable models. This justifies
returning the message that “This program has no C-stable models.”

The proof procedure consists in making assumptions and in terms of these
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inferring superscripted literals. These assumptions and inferred literals are used
to reduce the input program and to infer more superscripted literals in terms of
the reduced program. The formalism of superscripted literals and the rules for

inferring such literals is described in the next subsection.

Superscripted literals

The superscript S of a literal [ is an expression consisting of a disjunction of
conjunctions of literals. The expression [° denotes that assigning a certain truth
value to [ can be justified on the basis of assigning a certain truth value to S. S
can be the empty expression.

Superscripted literals are inferred as follows. Let R be the only rule in the
program P with a in the head. If R is a < true® then a® can be inferred from
R. On the other hand if R is a + false® then not a° can be inferred from R.
In either case this permits the reduction of P by deleting R from P once a° or
not a° has been inferred.

Rules with true® or false® in the body can be obtained by the process of
matching a literal in the body of the rule with an appropriate assumed or inferred
literal. Matching is formally described in the definition below. A literal, whether
an assumption or an inference, can be matched only with atoms in the body of a
rule, never with the head of a rule. A positive inference or a negative inference or
a negative assumption can be matched with any matching atom in the body of a
rule. However, a positive assumption can be matched only with a negative literal
(or, more precisely with an atom in a negative literal), but never with a positive
literal, in the body of a rule.

Assumptions are typographically distinguished from inferences by underlining
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the assumptions.
Definition 6.2.2 Let R be the normal logic rule
a<—by,...,b,,n0t cq,...,not ¢,
Matching s defined in terms of the following rules.

1. A negative assumption not [ matches with not | € body(R) resulting in

not [

true , which replaces not [ in the body of R.

2. A negative assumption not | matches with | € body(R) resulting in false™® !

)

which replaces | in the body of R.

3. A positive assumption [ matches with not | € body(R) resulting in false

which replaces not [ in the body of R.

4. A positive inference [° matches with | € body(R) (or, not | € body(R))
resulting in true® (resp., false®), which replaces | (resp., not [°) in the

body of R.

5. A negative inference not 1° matches with | € body(R) (or, not [ € body(R))

resulting in false® (resp., true® ), which replaces | (resp., not [°) in the body

of R.

Intuitively, a literal [ in the body of a rule can be replaced by true® (false®) by
the operation of matching because under the assumption S the literal [ evaluates
to true (resp., false). This is why we do not allow a positive assumption to match
with a positive literal in the body. This ensures that a positive assumption is not
justified in terms of itself. Thus, given the rule p <— p and the assumption p, if

p were allowed to match with p in the body of p <= p, we would get p < true’.
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From this we would be able to infer p?. But since our model theory is in terms
of well-supported models, we do not want positive information to be supported or
justified in terms of itself. However, since the negation not is default negation,
the inference of negative information does not require any justification. Hence it
is all right for positive and negative assumptions to match with a negative literal

in the body of a rule.

We understand not true® to evaluate to false® and not false® to evaluate
to true®. We give below rules for evaluating expressions consisting of the super-

scripted literals true® and false® conjoined with conjunction (A) and disjunction

(V)-

A true® falset

true®® || true>N%2 | falset

false™ || false®> | false®*\52

Table 6.1: Rule for evaluating conjunction of superscripted literals.

\% true® falset
true®® || trueVoz | true®?
false™ || true falseS1VS2

Table 6.2: Rule for evaluating disjunction of superscripted literals.

true V S true

true evaluates to true”™ ¢, which we shall simplify to true. A rule a «+

true V. S

true can thus be simplified to a < true from which can be inferred a
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true N S

without any superscripts. Similarly, true evaluates to true®, falsef®se NS

evaluates to false, and false/®s¢V 5 evaluates to false®.

Example 6.2.1 Let P = {a + b,not ¢; b < not d; ¢ < not d; d + not c}. The

assumption not ¢ matches with not c in the first rule resulting in true™* ¢, which

not ¢

makes the first rule into a < b, true . not ¢ also matches with not c in the

fourth rule resulting in true™® ¢, which makes the fourth rule into d < true™®® ¢,
The assumption b does not match with any atom in either of the rules.

Since the fourth rule is the only rule with d in the head, from d < true™® ¢
we can infer d®°t €. This in turn matches with not d in the third rule resulting

in false™t €. Thus, the third rule becomes ¢ < false™* ¢. Since this is the only

not c

rule with ¢ in the head, we can infer not c and the program can be reduced by

eliminating the third rule. d™°* ¢ also matches with not d in the body of the second

not ¢ not ¢

rule resulting in false , which makes the second rule into b < false

bnot c

This permits the inference not and the elimination of the second rule. This

not ¢

inferred literal matches with b in the body of the first rule resulting in false ,

not not ¢

which turns the first rule into a < false™"* ¢, true . By the rules of evaluation

described above this rule becomes a < false™* ¢ Since this is the only rule with

not ¢ can be inferred and the program can be

a in the head, using this rule not a
further reduced by eliminating the first rule.

Thus, starting with the assumption not ¢ we can infer

{dnot c, not Cnot c,

not bnot c7 not anot c}

Analogous to the Tp operator of Van Emden and Kowalski ([vEK76]), defined in

Chapter 3, we define a T'" operator in terms of assumptions and matching.
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Definition 6.2.3 Let P be a ground normal logic program. Let I be a set of
literals, consisting of assumptions, superscripted literals, and the special atom true.
Then,

TP(I) = I U {a® | a < body € P, and matching literals in body with literals
in I results in a < true®} U {not a® | a + body € P,

and matching literals in body with literals in I results in a < falseS}

Note that although the Tp operator of Van Emden and Kowalski as applied to
normal logic programs is not monotonically increasing, the T¥ operator defined
above is monotonically increasing because for any I, I C TF(I).

Let Hp ={l|l € HBp Unot HBp} U {I° | | € HBp U not HBp}, where S is
any expression in DNF| possibly empty, consisting of literalsin H Bp Unot HBp U {¢}}.
Hp as defined above is the set of all possible assumptions and all possible infer-
ences. The power set of this set forms a complete lattice under the C ordering.
Thus, if I is a member of the power set of Hp, the iterations of T (I) must have
a least fixed point, denoted as [ fp(TF(I)).

We use these ideas in formalizing the query answering procedures described
below. First, in Section 6.3 we describe a procedure for answering a query with
respect to programs having well-supported C-stable models. For programs without
a well-supported C-stable models the procedure returns a message to that effect.
We prove the correctness of this procedure in Section 6.4. As indicated in the
introductory section this procedure is based on making assumptions and reducing
the input program in terms of these assumptions and the inferences from these
assumptions. The procedure to be described in Section 6.3 contains no rule for
choosing which assumption to make next. In Section 6.5 below we augment this

procedure with a selection rule for choosing which assumption to make next.
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6.3 Algorithms

Assume that a ground, positive query, L, has been posed to a ground program LP.
We assume that LP is in the canonical form and all the rules of LP are relevant to
answering the query. We add a new rule query <— L to LP, where query ¢ HBpp.
Let P be LP augmented with query <— L. The proof procedure is based on the

following strategy.

e First we determine whether there exists a well-supported C-stable model Z
of P such that Z(not query) > CT. If there is such a model, we return NO

to the query and terminate; otherwise we go to the next step.

e Second we determine whether there exists a well-supported C-stable model
Z of P such that Z(query) > CT. If there is such a model, we return YES
to the query and terminate; otherwise we return a message saying “This

program has no C-stable models” and terminate.

The procedure for finding a C-stable model of the normal logic program P in

which query > CT (or in which not query > CT) consists of two steps.

1. The procedure does a depth-first search through an implicit graph for a
node satisfying certain properties of consistency, verifiedness, and stability
(defined below) in which the input program has been reduced to the empty
program by making a certain sequence of assumptions and a sequence of
inferences in terms of these assumptions and a sequence of reductions of the
input program in terms of these assumptions and inferences in the manner

described in the previous section.

2. The assumptions and inferences in step 1 are then transformed into a C4

model using the procedure Trans, which is described below.

97



In the first step the procedure searches through an implicit graph. The nodes
of the graph consist of tuples of the form (P, A, Inf, H) where P’ is a subset of
the set of normal logic rules that can be formed out of the Herbrand base of the
input program P; A is a set of literals which have been so far assumed; Inf is the
set of literals that have so far been inferred; and H is the set of literals that are
assumable at this point. The starting node in generating the graph consists of P,
the input program, as P’; {true} as A; () as Inf; and, HBp Unot HBp as H.

We define an operator [' on a node which is used to generate the children of

that node in the graph. We need the following definition to define the I' operator.

Definition 6.3.1 Given a set of superscripted literals S = {Ii*, ..., "}, Atoms(S)

{Atom(ly), ..., Atom(l,)}, where Atom(a) = a and Atom(not a) = a.

Definition 6.3.2 Let N = (P, A,Inf,H). Then I'(N) = (P', A, Inf', H') where
Inf'=1fp(TT(A U Inf))— A, H = H — Atoms(Inf') — not Atoms(Inf'), and
P'=P —{R € Plhead(R)® € (Inf"— Inf) or not head(R)* € (Inf' — Inf)}

We define below the descendants of a node N using the projection operator II.
If T is a tuple then I1;(T) returns the " member of the tuple. We call II;(N) the
program part of N, IIo(/N) the assumption part of N, II3(V) the inference part of
N, and II4(N) the assumables part of N.

Definition 6.3.3 Descendants(N) =

I'(N) if I (T(N)) = 0

{(IL(I'(N)), (L(T'(N)) u{L}),
I3(I'(N)), (Ia(I'(N)) = {l,not 1})) [ I € IL(T(N))}

otherwise
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Example 6.3.1 Let P = {a < not b; b < not a;p < not pV not b}. Let
SN = (P, {not a}, 0, {b, not b, p, not p}).
In this case
TP ({not a}) = {not a, bt}
[fp(T" ({not a})) = T7(T'"({not a})) =

{not a, b™°* % not a™°* *}.

[(SN) = (P, A',Inf', H') where A" = {not a} and

P'" = {p<+ notpV false™* *}
Inf’ — {bnot a, not anot a}
H = {p,not p}

SN has two descendants which consist of the nodes obtained by augmenting A’
in I'(SN) with one of p and not p and replacing H' in I'(SN) with the empty set.
This example will be continued in Example 6.3.2 by computing the descendants

after we have defined the following properties

Before we can compute the descendants of a node, we have to define the fol-

lowing properties.

Definition 6.3.4 A literal [, is said to be dependent on a literal ly relative to a
node N iff I{ € (IIy(N) U M3(N)) and S &= ly, that is, if Iy is a member of every
disjunct of S.

Definition 6.3.5 A node N is said to be inconsistent iff there exists two literals

15, not [5” € TIy(N) UTII3(N) such that neither literal is dependent on the other.

Definition 6.3.6 A node N is said to be nonstable iff there exists a literal 1° €

[I3(N), the inferred part of N, such that | is dependent on not [ or there ezists a
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literal not [° € TI3(N) such that not [ is dependent on |. Otherwise a node is said

to be stable.

Definition 6.3.7 A positive assumption a is said to be verified relative to a node
N iff there exists a literal a® € TI3(N). A node N is said to be verified iff all the
positive assumptions in Io(N) are verified relative to N. An assumption a is said

to be unverifiable in a node N if not a® € (II(N) U II3(N)).

Example 6.3.2 Let P and SN be as in Example 6.3.1 above. A descendant of SN
in the implicit graph of P can be obtained by choosing p as the next assumption.

Let Ny be this node. Ny = (P', A',Inf', H'Y where H =0 and

P'" = {p<+ not pV false™* *}
A" = {nota, p}

]TLfI — {bnot a, not anot a}

It is easily seen that T'(Ny) contains not pP ®°t ¢ qnd thus the assumption P

is unverifiable relative to T'(Ny).

A second descendant of SN is the node obtained by making not p as the next
assumption instead of p. Let Ny be this node. Ny = (P', A',Inf', H') where

H' =0 and
P'" = {p<+ notpV false™* *}

A = {not a, not p}
Inf’ — {bnot a, not anot a}

It is easily seen that I'(Ny) contains p™°* P. Thus, ['(Ny) is unstable.

It is easy to see that the leaf nodes of the graph are nodes in which the program

part of the node, i.e., II;(N) = (). To determine whether there exists a canonical
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C-stable model of a normal logic program P in which not query > CT, the
algorithm searches for a stable, consistent, verified leaf node N which can be
reached from the starting node (P, {not query},(), HBp Unot HBp) such that
not query® € II3(N), for some, possibly empty, superscript S. We adopt a similar
strategy to determine whether there exists a canonical C-stable model of P in
which query > C'T'. In case P does not have a canonical C-stable model in which
query > CT and does not have a canonical C-stable model in which not query >
CT, we can conclude that P does not have a canonical C-stable model. In this case
the algorithm returns a message to that effect. The following algorithm implements
this strategy.
Main(LP, L)

1. P« LPU {query < L}

1. If MasterStable(P, not query) # nil then Return NO

2. else if MasterStable(P, query) # nil then Return YES

3. else Return “Program has no canonical C-Stable models”

In step 2 MasterStable(P, not query) is called to determine whether starting

from the node
(P,{not query},D, (HBp U not HBp) — {query, not query}))

a stable, consistent, verified, leaf node N can be reached in which not query €
(IIy(N) UII3(N)). If such a node cannot be reached, MasterStable returns nil

otherwise it returns the node. Thus, if such a node can be reached this means
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there exists a canonical model Z of P such that Z(not query) > CT. Similarly,
in step 3 MasterStable is invoked to determine whether there exists a canonical
C-stable model [J of P such that J(query) > CT. If MasterStable returns a value
other than nil then such a model exists and Main returns YES to the query and
terminates. Otherwise the program contains no C-stable models since in any model
Z, for any literal [, either Z(I) > CT or Z(not I) > CT. Thus, in that case Main

returns the message that the program has no canonical C-stable models.

The algorithm MasterStable creates the starting node using CreateNode and

invokes Proc, which does all the real work.
MasterStable(P, lit)

SN < CreateNode(P, lit)
Parent(SN) < nil
Proc(SN)

MasterStable creates a node SN which has [it as the starting assumption by

invoking CreateNode(P, lit) which returns

(IL(D(Ny)), {true, lit}, 5(D(Ny)), ILy(D(Ny)) — {lit, not lit}))

where Nj is the node (P, {true}, 0, (HBp U not HBp)).

Given a node N, Proc determines whether starting with NV a consistent, verified
and stable leaf node can be reached. If there is such a leaf node, Proc returns the
leaf node; otherwise Proc returns nil. Proc does a depth-first search for such a leaf

node by making recursive calls to itself.
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Proc(N)

1. If I'(N) is unstable or inconsistent or unverifiable or (II;(I'(N)) # 0
and (II4(I'(N)) = 0 or N has no unvisited descendants))
then if Parent(N) = nil then RETURN nil else Proc(Parent(N))

2. else if I ([(N)) = @ then RETURN I'(N)

3. else

4.begin

5. Create unvisited descendant N’
6. Status(N') <— wvisited

7. Parent(N') < N

8.Proc(N')

9. end

Step 1 lists the conditions under which Proc(N) backtracks to Parent(N) if
N has a parent, otherwise Proc cannot backtrack and returns nil indicating that
starting with the node N it cannot reach a consistent, stable, and verified leaf node.
Proc backtracks if the result of making all possible inferences (I'(V)) using the
assumptions and inferences of N leads to an inconsistent, unstable or unverifiable
state. It also backtracks if a leaf node is not reached (II;(I'(N)) # 0), but the
current node has no children because there are no further assumptions to make
(IT4(T'(N)) = 0) or all of the current node’s children have been previously visited
and found to lead to deadends. If Proc does not backtrack or terminate in step 1,
then this means either IT; (I'(V)) is empty or IT; (I'(IV)) is not empty and I1,(T'(NV))
is not empty and N has some unvisited descendants. If II;(I'(V)) is empty then

Proc has reached a desirable leaf node and it returns IT; (I'(V)) and terminates at
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step 2. Otherwise in step 5 to step 7 it creates and initializes N', a descendant of

N, and at step 8 recursively invokes Proc with N'.

Recall that if ['(V) is not a leaf node then the descendant of NV is
((T(N)), (Ma(D(N)) U {l}), Ts(T(N)), (My(T'(N)) — {I,not 1}))

where [ € II4(I'(N)). Thus, essentially the descendant of N is I'(N) with its
assumption part augmented with the assumption [. We assume that the algorithm
has some way, not specified here, for keeping track of which nodes have so far been
visited. This might, for instance, be a global list which is updated when the status
of a node is marked as visited and which is passed to each recursive call of Proc.
We also assume that such a list is stored in some data structure, such as a binary
search tree or a heap, which allows for an efficient search for whether a node has
already been visited.

In Proc as specified above we regard every member of II4(I'(/V)) as suitable
for generating a descendant of N as any other member. However, in Section 6.5
below we introduce a selection rule which makes only a small subset of II,(I'(IV))

suitable for generating a descendant of V.

Example 6.3.3 As in Ezample 6.3.1 and Example 6.3.2, let the input program be

LP = {a < not b; b < not a;p < not pV not b}. Let the query be a.
Main(LP, a) in the first step creates the program P by augmenting LP with

rule query < a. Then it invokes MasterStable(P, not query) which creates the

starting node SN, which is the node
(P, {not query}, 0, {a, not a, b, not b, p, not p})

MasterStable then invokes Proc(SN ), which computes I'(SN). Since T'(SN) is
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consistent, stable and verifiable, Proc creates an unuvisited descendant of SN by
selecting an unchosen assumption from I14(T'(SN)).

Let us suppose that not a s chosen as the next assumption. This results in
the node Ny = (P, {not query,not a}, 0, { b, not b, p, not p}). Proc then
makes a recursive call to itself with Ny as the input node. Proc next computes

['(No) = (P, A", Inf', H') where

P = {p + not pV false™"* *}
A" = {not query, not a}

not a not a not a
, b ¥

Inf' = {not query

H = {p, not p}

, not a

It can be easily seen that T'(Ny) is consistent, stable, and not unverifiable. So again
Proc creates an unvisited descendant Ny of Ny by selecting an unchosen assumption
from T14(T'(Ny)) = {p, not p}.

Let us suppose that p is chosen as the next assumption. FExcept for the occur-
rence of the new literal not query in the assumption part, the node Ny is essentially
the node Ny of Example 6.3.2. In that example we saw that I'(Ny) is unverifiable
and this holds in the current example as well. So Proc backtracks to Ny. The only
unuvisited descendant of Ny is the node Ny obtained by choosing not p as the next
assumption instead of p which is essentially the node Ny of Example 6.3.2. In that
example we saw that T'(Ny) is unstable, and this holds in our current example too.
So Proc backtracks all the way to SN.

Proc maught next create the node N3 obtained by adding the assumption a to
['(SN). It can be easily seen that I'(N3) is an inconsistent node containing the
assumption not query and the inference query®. Thus Proc backtracks to SN and

might next create the node Ny obtained by adding the assumption not b to I'(SN).
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In this case too it can be easily seen that I'(Ny) is inconsistent for the same reasons
as I'(N).
At this point the only unuvisited descendant of SN is the node N5 obtained by

adding the assumption b to T'(SN). T'(INs) is the node

P = {p<+ notpV false’}

A = {not query, b}

Inf'" = {not query®, 1°, not a’}

H' = {p,not p}
['(Ns) is consistent, stable, and not unverifiable. Proc can expand it by adding
either the assumption p or the assumption not p. The former option leads to the
node Ng, similar to Ny, which for the same reasons as Ny results in an unverifiable
node; the latter option leads to the node N7, similar to No, which for the same
reasons as Ny results in an unstable state. So, after visiting both these nodes, Proc
backtracks to SN. Since SN has no unvisited descendants and since Parent(SN )

is nil, Proc returns nil and thus MasterStable(P, not query) returns nil.

Main(P, a) next invokes MasterStable(P, query) which creates the starting
node SN which in this case is (P, {query}, 0, {a, not a, b, not b, p, not p}).

Since T'(SN) is verified, stable and consistent Proc next creates a descendant of
SN. Let us suppose it creates the node Ny by adding the assumption a to T'(SN).
Proc next computes T'(No) = (P', A',Inf', H') where A" = {a} and

P = {p< not pVitrue*}

A = {query, a}
Inf' = {not 0%, a®, query®}

H = {p,not p}
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Since this 1s consistent, stable and not unverifiable, Proc creates a descendant of it.
Ny has two descendants which consist of the node Ny obtained by augmenting A’
in T'(Ny) with p and the node Ny obtained by augmenting A" in T'(Ny) with not p.
In both these nodes, H' is the empty set.

Suppose Proc next visits Ny. In this case T'(Ny) is the node
(0, {query, a, not p}, {not b*, a®, query®, p™°* P *}, 0)

This is an inconsistent node because not p € Iy(I'(Nz)) and p™°t 7 v @ € II3(T'(N,)).
Note that in this case p does not depend on not p, and thus is not an unstable
node, because p can also be generated by assuming a.

Thus Proc now backtracks to Ny which next generates Ny. T'(Ny) is the node

0, {query, a, p}, {not v*, a®, query®, p°}, 0)

This is a consistent, verified and stable node and the program part of it is empty.
Hence Proc returns this node and thus MasterStable(P, a) returns this node and

hence Main returns YES to the query.

Given a leaf node N, Trans(N) transforms it into a model of the original

program P.

Trans(N)

1.ZT+0

2. Inf + IIz(N)

3. Assp < II1(N)

4. For each positive inference a € II3(N) with an empty superscript,
begin
I+ (Z UA{a—TY})
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Inf < Inf—{a®}, where S is any superscript including the empty superscript
end
5. For each negative inference not a € II3(/V) with an empty superscript,
begin
I+ (Z U {a— F})
Inf < Inf — {not a®}, where S is any superscript including the empty
superscript
end
6. While Inf contains any literal /¥ such that Z(S) has a value, do
begin while
Choose an [° € Inf such that Z(S) has a value
If [ is the atom a then Z < (Z U {a — Z(S5)})
else if [ is the negative literal not a then Z < (Z U {a +— (1 —Z(S))})
Delete [° from Inf
end while
7. Assp < Assp — {a,not a | Z(a) is defined}
8. For each positive assumption a € Assp,
I+ (Z U {ar—CT})
9. For each negative assumption not a € Assp,
I+ (T U {a—CF})
10. Inf < Inf —{a®,not a® € Inf |a € Assp or not a € Assp})
11. While Inf is not empty do
begin while
Choose an [° € Inf such that Z(S) has a value

If [ is the atom a then Z + (Z U {a — Z(5)})
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else if [ is the negative literal not a then Z < (Z U {a +— (1 —Z(5))})
Delete [ from Inf

end while

Trans(N) builds a model Z of the program P by first assigning T to all in-
ferred literals with empty superscripts (steps 4 and 5). In step 6 these values are
propagated as far as possible. In step 7 those assumptions are removed from Assp
whose truth values have already been fixed and in steps 8 and 9 the value CT is
assigned to all such assumptions. In step 11 the values of superscripts are assigned
to the atoms that have not been assigned a value in Z so far. Since a superscript
consists of a disjunction of conjunctions of assumptions, clearly all members of

II3(N) will have a truth value in 7.

Example 6.3.4 Let P be as in Example 6.3.3. As in Example 6.53.3 let T'(Ny) be

the node
0, {query, a, p}, {not b, a®, query®, p*}, 0)
Trans converts this node into Z, a C4 interpretation of P, in which Z(a) = CT,
Z(query) = CT, and Z(p) = CT (by Step 2 of Trans), and Z(b) = CF (by Step 9
of Trans).

6.4 Proofs

First, we show that if the implicit graph for a finite, ground normal logic program
contains a consistent, stable, verified leaf node then MasterStable will reach it. The
requirement that the program be ground and finite is to guarantee that Master-
Stable will terminate. Second, we show that the transformation of such a node is

a canonical C-stable model of the input program. But we cannot assume that if
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the implicit graph does not contain a stable node therefore the program has no
canonical C-stable models unless we can show that every canonical C-stable model
of the program is represented by a node in the graph. So, third, we show that all
canonical C-stable models of the program are represented by a stable, consistent

and verified node in the implicit graph of the program.

Lemma 6.4.1 If the implicit graph of a ground, finite, normal logic program con-

tains a consistent, stable, verified leaf node then MasterStable will return that node.

Proof: MasterStable does a depth-first search for a leaf node with the appropriate
properties. Since the program is ground and finite, the implicit graph for the pro-
gram contains only a finite number of nodes. But depth-first search is guaranteed
to discover any node with any specified properties if there is such a node in a finite

graph. [

Lemma 6.4.2 If the implicit graph for a normal logic program P contains a con-

sistent, verified leaf node N then Trans(N) is a well-supported model of P.

Proof: Let N be a consistent, and verified leaf node in the graph for P.
First, we show Trans(N) is a model of P. Assume by way of contradiction

that Trans(N) is not a model of P. So P must contain a rule
a < body, V---V body,,
such that
e Case 1: Trans(N)(a) = F and Trans(N)(body, V ---V body,) > F, or

e Case2: Trans(N)(a) = CT or CF and Trans(N)(body, V- --V body,,) = T.
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Case 1: Trans assigns F' to a only if IT3(N) contains not a without any superscript
or with a superscript S such that Trans(N)(S) = F. But this is possible only if
each body; € {body,, .. .,body,} evaluates to false without any superscript or has
a superscript S; such that Trans(N)(S;) = F. In this case Trans would assign
F to at least one literal in each of body,...,body,,. Thus, Trans(N)(body, V

-+-V bodyy,) > F is not possible, and, hence, Case 1 is not possible.

Case 2: If Trans(N)(body, V ---V body,) = T then there must be an
i € 1,...,m such that Trans(N)(body;) = T. So each literal a;; € body; must be
assigned 17" by T'rans(N). So each such literal must be in the inferential part of N
without any superscripts or with a superscript which evaluates to T in Trans(N).
Hence the inferential part of N would also contain a without any superscript or
with a superscript which evaluates to 7" in Trans(N). Thus, Trans would assign

T to a. Hence Case 2 is also not possible.
Thus, Trans(N) must be a model of P.

Next we show that Trans(N) is a well-supported model of P. The well-founded
ordering can be in terms of the first appearance of a positive literal in the inferential
part of a node in the path from the starting node to the leaf node N. This ordering
must be well-founded because the generation of the nodes and the inferred atoms
in each node are by process of bottom-up inference which monotonically enlarges
the inferential part of nodes. Furthermore, since the assignment of a truth value
to any literal is not greater than the truth value assigned to its superscript, the

truth value assigned to a literal must be supported. [

Lemma 6.4.3 If the implicit graph for a normal logic program P contains a stable,

consistent, verified leaf node N then Trans(N) is a well-supported C-stable model
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of P.

Proof: We have already shown that Trans(N) is a well-supported model. Assume
by way of contradiction that T'rans(N) is not C-stable. So there must be at least
one rule

R = a <+ body, V---V body,

such that Trans(N)(R) < T. Given that Trans(N) is a model of P, as proved in
the previous lemma, this means that Trans(N)(a) = CF and Trans(N)(body(R)) =
CT.

Since T'rans(N) assigns C'F to a, not a must be in the assumption or inferential
part of N. But since body(R) evaluates to CT in Trans(N), a disjunct in body(R)
must evaluate to C'T. Each literal in that disjunct must be in the assumption or
inferential part of N. Hence, a”, for some S, will also be in the inferential part of
N. Thus, N is inconsistent unless S = not a. But, since N is stable S [~ not a.
So N is inconsistent which contradicts the assumption that N is consistent.

Thus, Trans(N) is a C-stable model of P. ]

The proof procedure presupposes that if MasterStable cannot find a consistent,
verified and stable leaf node NV such that query (or, not query) is in the assumption
or inference part of N then the program contains no canonical C-stable model Z
such that Z(query) > CT (resp., Z(not query) > CT). Lemma 6.4.1 tells us that
if the implicit graph for P contains a leaf node of that sort then MasterStable will
find it. But we can have no assurance that if MasterStable does not find a leaf
node of that sort then the program has no C-stable canonical model unless we
can show that every C-stable canonical model is represented in the implicit graph.

Ideally, we would like to prove that for each C-stable canonical model Z of P there
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exists a leaf node in the implicit graph for P such that Trans(N) = Z. However,
this claim would not be true of a model Z which assigns only 7" or F' to atoms
because Trans may assign CT" or CF' to atoms. Nevertheless, we show below in
Lemma 6.4.4 that every C-stable canonical model is represented in the implicit

graph in the sense of ‘representation’ defined below in Definition 9.4.1.

Definition 6.4.1 LetZ and J be two models of a logic program P. T is congruent
with J iff T is identical with J except that every atom that is assigned T (F') in

J is assigned T or CT (resp., F or CF) in T.

Representation is defined below.

Definition 6.4.2 A model Z of a normal logic program P is represented by a node

N in the implicit graph for P if Trans(N) is congruent with Z.

A model Z and a model J which is congruent with Z will be indistinguishable
in terms of weak entailment. That is, if Z weakly entails a literal [ if and only if

J weakly entails that literal. This justifies our definition of representation above.

Lemma 6.4.4 Let P be a normal logic program. For each well-supported C-stable
model I of P there exists a leaf node N in the implicit graph for P such that

Trans(N) is congruent with T and thus N represents Z.

Proof: Since the graph is implicit, a node N exists in the graph only if there is a
path from the starting node, (P, {true}, ), (HBp U not HBp)), to N. Recall that
in the path from the starting node to a leaf node each new node (other than the
starting node) is generated by adding a new assumption to the result of applying
the I' operator to the previous node along with some housekeeping operations. Let

N be any leaf node in the graph such that the path from the starting node to N
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satisfies the following property: For any node N; in the path its child in the path
must be obtained by adding an assumption [ such that Z(l) > CT to the result of
applying the ' operator to N;. That is, the path is generated using the strategy
of making a new assumption [ only if Z(l) > CT.

We show below that a leaf node N reached by this strategy
1. is a stable, consistent and verified node, and
2. is such that Trans(N) is congruent with Z.

We prove that N is a stable, consistent, and verified node and that Trans(NV)
is congruent with Z by inductively proving that each node N; in the path to N (in-
cluding N) is consistent, stable and not unverifiable and inductively proving that,
for any literal [, if [¥ € II(N;) U II3(N;) then Z(I) > CT. The induction is done
in terms of the order in which the nodes appear in the path Ny,..., N; ..., Ny,
where Nj is the starting node, (P, {true},(),(HBp U not HBp)), and N, is N.

Base Case: i = 0. Clearly, the starting node, Ny, is stable, consistent, and not
unverifiable. Similarly, since IIy(Ny) U II3(Ny) = {true} it is trivially true that if

a literal [° € HQ(N()) U Hg(No) then I(l) >CT.

Inductive Case: Assume that the claim is true for all NV, such that k£ < i. To
show that the claim is true for NNV;.

First, we show that if a literal [ € TIo(N;) U I3(V;) then Z(1) > CT. If I° €
II5(V;) (i-e., if [ is an assumption) then by the strategy for selecting assumptions
it follows that Z(I) > CT. Suppose, therefore, that [° € II3(N;) (i.e., [¥ is an
inference). If [ € II3(Ny), where k < 4, then the claim is true by the inductive
assumption. Suppose therefore that [ ¢ I[I3(Ny), for any k& < 4. So [° must occur

in some iteration of the T operator as applied to Iy(N; ;) U TI3(N; ;). Either
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1 = a® or [° = not a”, for some atom a.

Assume that [° = a°. By the definition of the TF operator it follows that
if any atoms a such that a € TP (IIy(N;_;) U II3(N;_y)) there is a rule R =
a < body, VvV ... V body, such that each member of body;, 1 < j < m, is in
IIo(N;—1) U II3(N;_1). Thus, by the inductive assumption Z(body,;) > CT. But
since Z is C-stable, it follows that a must be C'T" or T'.

Assume instead that [° = not a°. It also follows from the definition of the T
operator that for any negative literal not a € T¥ (IIy(N;_;) U II3(N; 1)) there is
arule R =a < body; V ... Vbody, such that for each body;, 1 < j < m, there
exists a literal p; in body; such that the negation of p; is in IIy(N;_1) U II3(V;_q).
Hence, by the inductive assumption, each such p; is at most C'F in Z. Hence, each
body, evaluates to at most CF in Z. So Z(a) < CF since T is a well-supported
model. Hence Z(not a) > CT. By a similar argument it is easy to see that the
same remarks apply to any literal that belongs to any iteration of the T* operator

as apphed to HQ(Ni_l) U Hg(Ni_l).
Hence, we have shown that if [° € TI,(N;) U II3(V;) then Z(I) > CT.

Second, we show that N; is not unverifiable. Let a be a positive assumption in
N;. So Z(a) > CT. But then not a® cannot be in II3(/N;) otherwise, as we have
shown above, Z(not a) > CT. But both a and not a cannot be CT or greater in

Z. Thus, N; is not unverifiable.

Third, we show that N; is consistent. Let not a be a negative assumption in
Z. So I(not a) > CT. But then a® cannot be in II3(NN;) otherwise, as we have
shown above, Z(a) > CT. But both a and not a cannot be C'T or greater in Z.

Thus, N; is consistent.
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Fourth, we show that N; is stable. Suppose by way of contradiction that N;
is not stable. So there exists an a® € II3(N;) such that not a is in every disjunct
of S. As shown above if a® € II3(N;) then Z(a) > CT. However, since not a is
in S, not ¢ must be an assumption and hence Z(not a) > CT. But this is a

contradiction. Hence N; must be stable.

This completes the inductive step. Thus, we have shown by induction that
the leaf node NN is stable, consistent and not unverifiable, and such that if ¥ €
II,(N) U I3(N) then Z(l) > CT. It remains to be shown that N is verified.

Since IT; (V) (the program part) is empty, it follows that for any atom a € HBp,
either a or not a belongs in IIo(N) U II3(V). Since N is not unverifiable it follows
S

that for any positive assumption a in N, not a® cannot be in II3(N). Hence a

must be in II3(N). Thus N must be verified.

Any literal [ € II5(N) is assigned at least C'T" in Trans(N) and must be CT
or greater in Z. Any literal [ such that [° € II3(N) is assigned at least C'T in
Trans(N) and, as we have shown above, must be CT or greater in Z. Furthermore,
Trans(N) assigns a truth value to every atom in H Bp since, for any atom a, either
a or not a belongs in [Io(N) U II3(/V). Thus, for any atom that is assigned T’
(F) by Z, Trans(N) assigns it at least CT (resp., at most C'F) and otherwise

Trans(N) and Z are identical. Hence, Trans(N) is congruent to Z.

Theorem 6.4.1 If the implicit graph of P contains no stable consistent, verified
leaf node N such that a specified literal lit5 € Tly(N) U II3(N) then P has no

canonical C-stable model T such that Z(lit) > CT.
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Proof: The converse of the theorem follows trivially from the previous lemma. m

Lemma 6.4.5 Let P be a normal logic program. Let P' = P U {query <« L},
where query is an atom not in HBp and L is a conjunction or disjunction of
literals such that Atoms(L) C HBp. Then, for any C-stable model T of P, T' =

Z U {query — Z(L)} is C-stable canonical model of P'.

Proof: Let Z be a C-stable canonical model of P. Thus all rules of P evaluate
to T in P. So all such rules must also evaluate to 1" in Z’. Furthermore, L must
evaluate to the same truth value in both Z and Z'. Hence, the new rule in P’,

query < L must evaluate to 1" in Z'. Thus, Z' must be a C-stable model of P’. m

Now we are in a position to prove the correctness of the main algorithm.

Theorem 6.4.2 Let LP be a ground, finite, normal logic program and let L be
a query to the program. If Main(LP, L) returns “NO” then LP does not weakly
entail L, if Main(LP, L) returns “YES” then LP weakly entails query, and if
Main(LP, L) returns “Program has no canonical C-stable models” then LP has no

canonical stable models.

Proof: Assume that Main(LP, L) returns “NO.” Then MasterStable(P, not query)
must return a node N, where P = LP U {query < L}. From Lemma 6.4.1
we know that if MasterStable(P, not query) returns a node N as stable, verified
and consistent and such that not query is in IIy(N) or II3(N) then N is such
a node in the implicit graph. From Lemma 6.4.3 we know that Trans(N) is
a C-stable canonical model of P. By the nature of the Trans transformation
Trans(N)(not query) > CT. But since Trans(N) is a C-stable model of P

and it follows that every rule with query in the head must be such that its body
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must evaluate to CF or F in Trans(N). Hence, Trans(N)(L) < CT. Clearly,
the model Trans(N) — {query — Trans(N)(query)} must be a C-stable well-

supported model of the original program LP. So LP cannot entail L.

Assume that Main(LP, L) returns “YES.” Then MasterStable(P, not query)
must return nil and MasterStable(P, query) must return a node N. From Lemma 6.4.1
we know that if MasterStable(P, not query) fails to discover a leaf node with the
appropriate properties in the implicit graph then there is no such node in the graph.
From Theorem 6.4.1 we know that then there is no canonical C-stable model Z of
P such that Z(query) > C'T. Similarly we know that if MasterStable(P, query) re-
turns a node N as stable, verified and consistent and such that query is in IIy(N)
or [I3(N) then N is such a node in the implicit graph. From Lemma 6.4.3 we
know that Trans(N) is a C-stable canonical model of P. By the nature of the
Trans transformation Trans(N)(query) > CT. Furthermore, since Trans(N) is a
canonical C-stable model, so all canonical models of P must be C-stable. None of
them are such that not query > CT. So all of them are such that query > CT.
Since all such models are well-supported then in all such models L must also eval-
uate to C'T" or T'. But then in no C-stable model of the original program LP, L
can evaluate to CF or F' (by Lemma 6.4.5). Thus, in every C-stable model, and,
hence, in every canonical model, of LP, L must evaluate to CT or T. Thus, LP

weakly entails L.

Assume that Main(LP, L) returns “Program has no canonical C-stable models.”
So MasterStable(P, not query) must return nil and MasterStable(P, query) must
return nil. So from the earlier two parts of the proof we know that P has no

canonical C-stable models in which not query > C'T and none in which query >
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CT. But then LP has no canonical C-stable models in which not L > CT and
none in which L > C'T" But in any interpretation of LP either not L > CT or

L > CT. So LP has no canonical C-stable models.

6.4.1 Computing Stable Models

The algorithm of the previous section can easily be adapted to compute all the
stable models of a program. The algorithm Proc needs to be modified to keep
a list of the stable, consistent and verified nodes found so far and returning this
list instead of just returning the first stable, consistent and verified node. This

modified algorithm is invoked with the empty query.
Proc2(N, StabList)

1. If (V) is unstable or inconsistent or unverifiable or (II; (I'(V)) # 0
and (IT4(T'(N)) = 0 or N has no unvisited descendents))
then if Parent(N) = nil then RETURN StabList

else Proc2(Parent(N), StabList)

2. else if II;(I'(N)) = 0 then
2a. begin
2b. StabList <— (StabList U {['(N)})
2c. Proc2(Parent(N), StabList)

2d. end
3. else
3a.begin
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3b. Create unvisited descendent N’
3c. Status(N') < wisited

3d. Parent(N') < N

3e. Proc2(N', StabList)

3f. end

Proc2 is invoked by a driver procedure, Master2, which is stated below.
Master2(P)

SN < CreateNode(P)
Parent(SN) < nil
StabList < ()
Proc2(SN, StabList)

6.5 Selection Rule

A descendent of a non-leaf node N is generated by first computing I'(/V) and then
adding an assumption from II,(I'(V)) to IIo(I'(N)). Proc puts no restrictions on
which assumption from II,(I'(N)) is used to generate the descendent. Thus, an
assumption irrelevant or contrary to generating the desired leaf node may be made
in generating the next node. In this section we introduce a selection rule which puts
more restrictions on which assumption is made next. This will help the improved
version of Proc, called ProcSel, avoid generating many unhelpful nodes. We offer
the selection rule as a possible aid to an implementor, but do not here prove its
correctness.

Suppose that Proc is trying to find if starting with (P, {lit}, 0, (HBp U
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not HBp)— {lit,not lit}) it can reach a consistent, verifiable and stable leaf node
N. Hence, [it®, for some S, must be in the inference part of N. Thus, we can regard
the assumption /it as discharged by proving [it. Hence, in selecting the next node
ProcSel can choose an assumption which will advance the task of discharging the
assumption [zt. This will be either the assumption of a negative literal in the body
of the rule with /it in the head or the assumption of a negative literal which will
help establish a positive literal in the body of such a rule. Thus, assumptions can
be only of negative literals. But this new assumption itself needs to be discharged.
So this becomes the new sub-task. So ProcSel next makes another new assumption
which will help discharge the earlier assumption. And so on. Thus, ProcSel can
be seen as using the following selection rule: In generating the next node make an
assumption which can help with discharging the most recently made assumption
that needs to be discharged.

It is clear that [it cannot be in the inference part of a node N unless the rule
with ¢t in the head evaluates to true given the assumptions and inferences in N.
Suppose for now that each rule in the program (in its canonical form) contains

only one disjunct in the body. Thus, given the rule
lit <= by N+ ANby

we can discharge the assumption of /it by making true each of by,...,b,. We can
regard by A---Ab, as a goal list—these are the literals that must be true in the final
node N. The next literal that needs to be established is the first goal in the goal
list, i.e., by. If by is a positive literal then we resolve b; against the rule with b; in

the head and add its body to the goal list. Thus, if the program contains the rule

b1<—01,...,Cm
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then the new goal list becomes

cl/\...cm7b2/\...bn

If b; is the negative literal not a then the next assumption made is not a and
the next node is generated using that assumption. The assumption not a can be
discharged by making false the body of the rule with a in the head. Suppose we
have the rule

a<—ap N Napy

ay A\ ---Aay, can be made false by making false any of the literals aq, ..., a,,. This
can be seen as making true the disjunctive goal not a; V --- V not a,,. This is a
disjunctive goal which can be made true by making any of its disjuncts true. We
add this disjunctive goal in place of b; in the goal list. Thus, only negative literals
are assumed, but goals may be positive or negative literals. We formalize these

ideas below.

We define an ezpression recursively as follows. An expression is a literal or
the conjunction or disjunction of expressions. If an expression is a conjunction
(disjunction) then it is called a conjunctive (resp., disjunctive) expression and
each conjunct (resp., disjunct) is called a sub-expression of that expression. An
expression which is not a literal we call a non-literal expression. A goal list consists
of a conjunction of expressions. A conjunctive (disjunctive) sub-expression of the
goal list is called a conjunctive (resp., disjunctive) goal. The first literal in a
conjunction (disjunction) of expressions is recursively defined as the first conjunct
(resp., disjunct) if the first conjunct (resp., disjunct) is a literal, otherwise it is the
first literal in the first conjunct (resp., disjunct). The first literal in the goal list is

called the first goal in the goal list. The goal list can be thought of as stored in an
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appropriate data structure such as an expression tree. The leaves of such a tree
are literals. Then the first goal in the goal list is the leaf of the left-most branch
of the tree.

Suppose the starting node SN in the implicit graph is
(P, {lit}, O, (HBp Unot HBp) — {lit, not lit})
If [it is a positive literal then the program must contain the rule
lit < body; A - -+ A bodyy,
If [it is the negative literal not a then the program must contain the rule
a < bodyy N\ - -+ A body,

Suppose each body; = b;, A --- Ab;,. Then if lit is a positive literal, then the

starting goal list consists of
(b1, Ao Aby, ) V-V (by, Ao Aby,)

In this case the first goal in the goal list is b;,. However, it could happen that some
of the literals in the goal list evaluate to true (or false) in I'(SN). If b;; evaluates
to true in I'(SN) then we remove it from the goal list. If b, evaluates to false in
['(SN) then we remove all of by, ,..., by, (i.e., we remove body,,) from the goal
list. The modified goal list is associated with SN as its goal list. Thus, it could
happen that the first goal in the modified list may not be by, .

If [it is not a then the starting goal list consists of
(not by, V---Vmnot b, )A---A(not b, V---Vnotb,,)

In this case the first goal in the goal list is not by,. Again, this goal list is modified
in terms of I'(SN).
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Slightly abusing terminology, by the resolvent of lit with the rule (it < body, V
-- -V body, we mean

body, V - - -V body,

If [it is the negative literal not a, then by the negresolvent of lit with the rule

lit < body, V - -+ V body, we mean
not body; A --- A not body,

Each not body; can be simplified to not body;, V - - -V not body;,, .

A goal in the goal list is regarded as solved in a node Ny if it evaluates to true
relative to the assumptions and inferences in that node. If the goal is positive
(negative) then it is also regarded as solved if the body of the rule with the goal
(resp., negation of the goal) in the head evaluates to true (resp., false) relative
to the assumptions in the goal list associated with N;. The idea here is that we
assume that Ny is in the path from the starting node to the final node and hence
all the expressions in the goal list will evaluate to true in /N and thus the goal will
be true in the final node. A disjunctive goal is solved by solving a disjunct in the
goal and a conjunctive goal is solved by solving each conjunct in the goal. If a
goal is solved, the goal is removed from the goal list. Otherwise, a positive goal
is removed from the goal list by replacing it in the goal list with sub-list of goals
such that solving this sub-list of goals will solve the positive goal. The goal list is
regarded as solved if it is empty.

A disjunctive goal is solved by assuming one of the negative disjuncts as the
next goal in generating the next node. It can happen that there is no path from that
node to a consistent, verified and stable node. In that case we have to backtrack
and generate another as yet untried node by assuming another as yet unchosen

negative disjunct in the disjunctive goal. A conjunctive goal is solved by assuming

124



one by one as many of the negative conjuncts that need to be assumed to solve each
conjunct. Similarly, it can happen that there is no path from the node generated by
assuming a particular conjunct in the conjunctive goal. In that case the conjunctive
goal is unsolvable and in that case we have to backtrack to the disjunctive choice
point which led to this conjunctive goal and choose another negative disjunct in the
disjunctive goal. It can also happen that assuming one conjunct in a conjunctive
goal results in making another conjunct false. In that case too we have to similarly

backtrack.
The procedure ProcSel given below implements this selection strategy.
ProcSel(N)

1. If I'(N) is unstable or inconsistent or unverifiable or (II;(I'(N)) # 0
and (II,(T'(N)) = 0 or UnchosenAssumption(N) = nil)
then if Parent(N) = nil then RETURN nil else ProcSel(Parent(N))

2. else if I ([(N)) = @ then RETURN I'(N)

3. else

4.begin

5. Assumption < UnchosenAssumption(N, GoalList(N))

6. In GoalList(/V) set the status of Assumption as chosen

7. N’ < CreateDescendent(N, Assumption)

8. Status(N') < wvisited

9. Parent(N') < N

10. Set GoalList(N’) to the goal list that results from matching the

literals in GoalList(N’) with the literals in IIo(I'(N')) U II3(I'(V'))
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and removing from GoalList(N’) any disjunctive expressions that
become true and any conjunctive expressions that become false.
11. Set GoalList(N’) to the goal list that results from adding as
the first conjunct to GoalList(N’) the negresolvent of Assumption
with the appropriate rule in IIy(I'(N')).

12. ProcSel(N')

13. end

ProcSel uses the procedure UnchosenAssumption which is stated below.
UnchosenAssumption(N, GoalList) returns an assumption from the goal list as-
sociated with N if there is an unchosen assumption in the goal list, otherwise it
returns nil unless the goal list is empty in which case it returns any unchosen lit-
eral from II,(I'(V)). The use of a goal list is the main difference between Proc
and ProcSel. As in the case of Proc,step 1 lists the conditions under which Proc-
Sel backtracks. In case there are no reasons to backtrack and the program part
of I'(NV) is empty, the procedure returns I'(/V). Otherwise it creates a new node
N’ using an unchosen assumption (steps 7-9). In step 6 it marks as chosen the
occurrence of the chosen assumption in the goal list of N. Thus, if the algorithm
backtracks it will not try that assumption again at that point. In steps 10 and
11, the goal list of N’ is created and associated with N'. In step 12 ProcSel is

recursively called with N’.

Procedure UnchosenAssumption tries to find an unchosen negative goal form
the goal list as the next assumption to make. If the first goal in the goal list is
an unchosen negative literal then it returns that literal (Step 2); if the first goal is

a positive literal then it resolves the literal against the appropriate rule, replaces
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the first goal with the body of the rule in the goal list associated with the node
N and recursively calls UnchosenAssumption with N and the goal list associated
with N (Step 3). The goal list of N is modified in terms of the resolvent rather the
parameter GoalList because if later ProcSel has to backtrack from a descendent of
N to N, it is saved the task of making all the resolutions all over again. If the first
goal is a negative literal that had been chosen earlier, then the procedure does not
try that literal again and makes a recursive call to UnchosenAssumption with that
literal removed from the GoalList (Step 4). The auxiliary function Tail(GoalList)

returns GoalList with the first goal deleted.
UnchosenAssumption(N, GoalList)
1. If GoalList is empty go to step 5.

2. If first goal of GoalList is an unchosen negative literal

then RETURN [.

3. If first goal of GoallList is a positive literal [ then
begin
GoalList(N) <— Substitute(Resolvent(l), GoalList(N))
UnchosenAssumption(N, GoalList(N))

end

4. else if first goal is a chosen negative literal

then UnchosenAssumption(N, Tail(GoalList))

5. If I14(I'(IV)) has an unchosen literal then RETURN any such unchosen literal
else RETURN nil.
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ProcSel is invoked by a driver procedure, MasterSel, which is stated below.
MasterSel(P, lit)

1. SN < CreateNode(P,lit)

2. Parent(SN) < nil

3. If lit is positive then set GoalList(SN) to the resolvent of lit with the appro-
priate rule, else set GoalList(SN) to the negresolvent of it with the appropriate
rule.

4. Set GoalList(SN) to the goal list that results from matching the literals in
GoalList(SN) with the literals in II3(I'(SN)) and removing from GoalList(SN)
any disjunctive expressions that become true and any conjunctive expressions that

become false.

5. ProcSel(SN)

Example 6.5.1 Let P = {a + b,c; b < not d,not a; ¢+ not eV b;
e < not d;d < not e}. Let the query be a.

Procedure Main invokes procedure MasterSel with program P' = P U {query «+
a} and not query as the parameters. MasterSel creates the starting node SN with
not query as the initial assumption and {not a} as the initial goal list, and then
invokes procedure ProcSel with SN as its parameter.

ProcSel makes not a as the Assumption and invokes CreateDescendent. not a
is negresolved with a < b,c to produce {not bV not c} as the goal list. The
node Ny is created with {not query, not a} as the assumption part and {not bV
not ¢} as the goal list. Then procedure ProcSel is invoked recursively with Ny as
its parameter.

ProcSel makes not b as the Assumption and invokes CreateDescendent to cre-
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ate node Ny with {not a, not b} as the assumption part. The goal list {not bV
not c} is solved in terms of the assumption not b and is empty (step 10 of Proc-
Sel). At step 11 not b is negresolved with the rule b < not d, true™*®® to get
{d Vv false™*® ®} as the goal list, which can be simplified to {d}. ProcSel recursively

calls ProcSel with Ny as the parameter.

ProcSel(Ny) invokes procedure UnchosenAssumption with {d} as the goal list.
UnchosenAssumption resolves d against d <— not e to make {not e} as the goal

list, and thus returns not e as the next assumption. The assumptions
{not query, not a, not b, not e}

together result in the following inferences:

not a,7 dnot e not e7 Cnot e7 not bnot e7 not e}

{not query , not e not a

The program part and the goal list is empty at this point. So ProcSel and MasterSel

returns I'(Ny). Hence, Main returns NO to the query.

6.6 Discussion

The complexity of the proof procedure will be analyzed in terms of the operation
of matching as the unit of computation. We will do a worst-case analysis of the
number of matching operations performed as a function of the Herbrand base of
the input program.

Assume that a query L has been posed to a program P. Let the cardinality of
HBp be n.

First, we analyze in the worst-case the number of matching operations that

have to be performed in expanding any node. A node N in the implicit graph of
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a program P is expanded by computing ['(N), which is where all the matching
operations take place. To compute I'(N) the procedure computes the least fix-point
of the TP operator on the program part of V. In the worst-case the program part of
N contains a rule for each atom in HBp. (Recall that the program is in disjunctive
form.) Although each rule can in the worst-case contain at most factorial of 2n
literals in its body, clearly there can be at most 2n distinct literals in the body
of any rule since the cardinality of HBp is n. We assume that when a literal is
matched with an assumption or an inference, then all occurrences of that literal in
the body of that rule are replaced in the body by the result. Thus, in computing
the least fix-point of T the procedure needs to do at most 2n matching operations
for each rule. Since there are at most n rules, at most 2n? matching operations
are required for computing the least fix-point of the 7F operator. This means at
most 2n? matching operations are required for expanding any node. Thus, it takes

O(n?) operations in the worst case for expanding any node.

In the worst case there will be n nodes in each path from the starting node to
a leaf node. That is, in the worst case each leaf node will contain n assumptions,
either a or not a, for each a € HBp. Thus, we can count the number of leaf nodes
in the worst case by adding the number of leaf nodes containing the assumption
a and the number of leaf nodes containing the assumption not a, for any a €
HBp, since every leaf node must contain either an atom or its negation as an
assumption. Thus, we can enumerate all the leaf nodes containing an assumption
[, by enumerating all the possible sets of assumptions containing [. To count the
number of assumption sets containing a given assumption, [, imagine that we have
put the atoms in H Bp in some ordering, say lexicographical ordering, with Atom(l)

as the first in the ordering. Then we can represent all such sets by a binary tree
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containing [ as its root and the next atom in the ordering as its left child and the
negation of that atom as its right child, and so on. Such a tree will contain 2"~!
paths, where the set of assumptions along a path represents an assumption set.
Thus, there are 2™ assumption sets containing a given atom or its negation. Thus,
in the worst case the implicit graph will contain 2" leaf nodes.

By similar reasoning we can see that the graph will contain 2" ! nodes contain-
ing n — 1 assumptions, and so on. Thus, the total number of nodes in the graph

can be expressed as
T(n)=2" + 2"70 +...420 = ol 1 = O(2")

Clearly, MasterStable expands each node only once. Thus in the worst case
MasterStable will expand O(2") nodes. Hence in the worst case MasterStable
will perform O(n? x 2") matching operation. Hence, the complexity of Main in
terms of the number of matching operations performed is O(n* x 2").

This result matches well with well-known results. For instance, [MT91] and
[MMO93] have shown that determining whether an atom belongs to all the stable

models of a program is a co-NP problem.

The proof procedure of this chapter is similar to the proof procedure described
in [CW97]. They describe a procedure for finding all the stable models of a normal
logic program by assuming literals step-by step and inferring other literals on the
basis of the assumed literals and reducing the original program step-by-step in
terms of the assumed literals and inferred literals. Their procedure is restricted
to programs that have stable models, and for programs without any stable models
their procedure returns the empty set. One difference between our procedure

and the procedure in [CW97] is that we use superscripts to keep track of the
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assumptions on which an inference has been based. This feature will be seen to
be very useful in Chapter 8 when we develop a proof procedure for normal logic

programs augmented with contestations.

6.7 Summary

In this chapter we have devised a proof procedure for determining whether a query
consisting of conjunctions or disjunction of ground literals to a finite, ground nor-
mal logic program which has at least one C-stable model is weakly entailed by the
program. In case the program has no C-stable models the procedure terminates
gracefully by sending a message to that effect. The main research contributions of

this chapter are as follows.

e We have developed the formal apparatus and algorithms for computing a
canonical model of a program in which a specified literal is true by making
assumptions and inferring literals on the basis of these assumptions and the

input program.

e We have devised a procedure which utilizes this apparatus and algorithms
for determining whether a query is weakly entailed by the input program

(Section 6.3).

e We have proven the soundness and completeness of this proof procedure

(Section 6.4).

e We have modified this proof procedure to compute all the two-valued stable

models of a finite and ground normal logic program (Section 6.3).
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e We have provided a tool for optimizing the performance of the proof pro-
cedure in the form of a selection rule for determining which assumption to
make next at a given stage of constructing a canonical model of the input

program (Section 6.5).

e We have proven that the worst-case complexity of this procedure is O(n? x
2"), where n is the cardinality of the Herbrand base of the program (Sec-
tion 6.6).
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Chapter 7

Proof Procedure for Strong Entailment

7.1 Introduction

In this chapter we extend the proof procedure for weak entailment to cover strong
entailment. Since the set of strong entailments of a normal logic program has been
shown to be equivalent to the well-founded semantics (Theorem 5.4.1 of Chapter 5),
the resulting proof procedure will also be a proof procedure for the well-founded
semantics. The procedure for strong entailment is restricted to queries, which can

be a conjunction or disjunction of literals, to finite, ground normal logic programs.

In the case of weak entailment the difference between 7" and C'T' is not of any
significance in the sense that a model which assigns C'T" to a literal just as much
weakly entails that literal as a model which assigns 7" to it. In the same way the
difference between C'F' and F' is of no significance for weak entailment. But in the
case of strong entailment these differences matter because an atom p is strongly
entailed by a program P iff p is assigned 7" in all the canonical models of P and

not p is strongly entailed by P iff p is assigned F' in all the canonical models. For
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this reason, since in a well-supported model an atom which has no non-circular
support must be assigned F', and not C'F', we need to keep track of such atoms
in the case of strong entailment. In our proof procedure for weak entailment we
allowed a negative assumption to match with an atom in the body of a rule because
we were indifferent to the difference between the atom in the head of that rule being
false on the basis of an assumption and the atom being false because it had no
non-circular support. And this was because for weak entailment the difference
between assigning C'F' and assigning F' to an atom was of no significance. But
strictly speaking, given our definition of a well supported interpretation, an atom
that is false on the basis of an assumption should be assigned C'F’ if the assumption
evaluates to C'T" in that interpretation, whereas an atom that is false because it
has no non-circular support must be assigned F' in any well-supported model. For
strong entailment this difference is critical. Hence in our proof procedure for strong
entailment we will not allow a negative assumption to match a positive atom so
as to give the proof procedure a chance to discover whether the atom should be

judged false because it has no non-circular support.

For weak entailment the difference between CF and CT is important. But
for strong entailment whether a literal is assigned CF or CT in a model, it is
equally not strongly entailed in that model. We will exploit this feature of strong
entailment to simplify the proof procedure of the last chapter by eliminating the

consistency and verifiedness checks in a manner to be explained in Section 7.3.

Since strong entailment has been proven to be equivalent to the well founded
semantics, and since the well-founded semantics is defined for programs with no

stable models, and, hence, for programs with no C-stable models, our proof pro-
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cedure for strong entailment and for well-founded semantics must be designed to
work for programs without any C-stable models. This is another respect in which
the proof procedure will have to be different from the proof procedure for weak
entailment.

As in Chapter 6, we assume that the input program is in the disjunctive and

augmented form.

In Section 7.2 we redefine some of the formal apparatus of Chapter 6 to accom-
modate the above described differences between the procedure for weak entailment
and the procedure for strong entailment. In Section 7.3 we describe the algorithms
of the proof procedure for strong entailment, and in Section 7.4 we prove that
this procedure is sound and complete with respect to strong entailment in C4.
In Section 7.5 we discuss the worst-case complexity of this proof procedure. In

Section 7.6 we summarize the main research contributions of this chapter.

7.2 Preliminaries

To accommodate the above described differences between weak entailment and
strong entailment we need to redefine some of the apparatus developed for the proof
procedure for weak entailment. In this section we accomplish this redefinition. In
particular the rules for matching literals and inferring superscripted literals will
be modified as well as the definition of the T* operator, the I' operator, and the

definition of the descendants of a node.

As noted in the previous section, the new rules of matching, which will be
specified below, will not allow a negative assumption to match a positive literal

so as to give the proof procedure a chance to discover whether an atom should
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be judged false because it has no non-circular support. In case it is discovered at
a node N that an atom p has no non-circular support, the procedure should be
allowed to infer not p in the generation of the descendant of /N. This is done in
terms of the Falsify operation described later in this section.

These two features of the new proof procedure create the possibility that a
literal [* is inferred on the basis of an assumption which is later shown to be
false. This can lead to making wrong inferences unless we redefine the result of
matching a literal not a with the assumption a to be true™* ¢ instead of false®.

The example below makes this point.

Example 7.2.1 Let P be the ground program {b <— not a, not ¢; a < a; ¢ <
not c}. Suppose the query is b. Clearly, P does not strongly entail b. Suppose
the proof procedure begins by assuming not c. Then the first rule becomes b <

not a, true™® ¢

. Suppose the next assumption is a. If the result of matching a
with not a in the body of the first rule were to be false®, then the first rule would
reduce to b < false®, true™* ¢. This simplifies to b < false®, thereby throwing

out true™t ¢.

Thus, the procedure would wrongly infer not b*. Since there is
no non-circular support for a, the procedure at this step by using the Falsify
operation, which is described below, should infer not a. It would also infer ¢t ¢
on the basis of the assumption not c. In translating this set of assumptions and
inferences into an interpretation, clearly a should be assigned F. This would result
i assigning F' to not b since its superscript, a, is assigned F. Thus, b would
wrongly be assigned T'. But in no well-supported model of P can b be assigned T .

Howewver, if the result of matching not a with a were to be true™*® @ then the

not a

first rule would reduce to b < true . truem°t ¢

In this case the procedure

would infer b™°t @ not ¢ Thys the information that the reduction of the first rule
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s partially on the basis of not c is not lost. Now b would be assigned C'T' since a

would be assigned F' and not ¢ would be assigned C'T. This is the correct result.

In light of the above example, we take the result of matching not a with a to

not a

be true instead of false®.

For any atom a we understand Neg(a) to be not a and Neg(not a) to be a.

Then, matching is redefined as follows.
Definition 7.2.1 Let R be the normal logic rule
a<by,...,b,,not ¢q,...,not ¢,
Matching is defined in terms of the following rules.

1. A negative assumption not [ matches with not [ € body(R) resulting in

not [

true , which replaces not [ in the body of R.

2. A positive assumption [ matches with not | € body(R) resulting in true™* "

which replaces not [ in the body of R.

3. A positive inference 1°, where S is non-empty, matches with | € body(R)
(or not | € body(R)) resulting in true® (resp., true™*® ), which replaces |

(resp., not 1) in the body of R.

4. A negative inference not 1%, where S is non-empty, matches with | € body(R)
(or not | € body(R)) resulting in true™*® S (resp., true®), which replaces

(resp., not 1) in the body of R.

5. A positive or negative inference [, without any superscript or the empty su-
perscript, matches with | € body(R) (or Neg(l) € body(R)) resulting in true
(resp., false), which replaces  (resp., Neg(l)) in the body of R.
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The rules for inferring literals are given as follows:

a can be inferred from a < true. not a can be inferred from a < false. a® can

be inferred from a < true®.

Example 7.2.2 Let P be the ground program {b < e; ¢ < c¢,d; d < not ¢; e <
not e}. The assumption not e cannot match with e in the first rule according to the

redefined rules of matching. However, the assumption not e matches with not e in

not e not e

the fourth rule, which turns it into e <— true . From this e can be inferred.
The redefined rules of matching permit the inference e™t ¢ to match with the e in
the first rule, which turns it into b < true™® ¢, from which can be inferred b™°* ©.
The assumption not ¢ matches with not ¢ in the third rule, which makes the third

not ¢

rule into d <— true . Howewver, the redefined rules of matching do not permit

the assumption not c to match with c in the second rule.

In light of the changes in the rules for inferring literals we also need to change
the definition of the TT operator defined in the weak entailment section. We
redefine this concept in the next definition. This definition is identical to the
definition of the T operator of the previous chapter except that the rules of

matching refer to the rules of matching defined above in this chapter.

Definition 7.2.2 Let P be a ground normal logic program. Let I be a set of
literals, consisting of assumptions and superscripted literals. Then,

TP(I) = T U {a® | a+ body € P, and matching literals in body with literals
in I results in a < true®} U {not a° | a < body € P, and matching literals in
body with literals in I results in a < false}.

In this definition we assume that S can be possibly empty.
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Example 7.2.3 As in Ezample 7.2.2 above, let P = {b < ¢€; ¢ < c¢,d; d <
not ¢; e < not e}.

In this case

T'"({not ¢, not e}) = {not ¢, d***, not ¢, e™°* ¢}
Ifp(T'" ({not ¢, not e¢})) = T'""(T""({not ¢, not e})) =

{HOt c, not e, dnot c7 e1'101: e’ bnot e}.

The program reduces to {c < ¢, true™® }.

The new definition of the T'" operator requires a corresponding redefinition
of the I' operator from the section on weak entailment. The new operator will
be called I". The redefinition consists in substituting all occurrences of the T'F

operator with the T"" operator.

Definition 7.2.3 Let N = (P, A,Inf,H). Then I"(N) = (P', A, Inf', H') where
Inf'=1fp(T'"P(A U Inf))— A, H = H — Atoms(Inf’) — not Atoms(Inf"), and
P'=P —{R € Plhead(R)® € (Inf' — Inf) or not head(R)* € (Inf' — Inf)}

Example 7.2.4 Asin Ezamples 7.2.3 and 7.2.2, let P = {b < e; c + ¢,d; d <
not ¢; e < not e}. Let SN = (P, {not ¢, not e}, 0, {b, not b, d, not d}).

As seen in Example 7.2.3, the least fiz-point of the T'Y operator as applied to
{not ¢, not e}, is {not ¢, not e, dn°t ¢, enot ¢ prot ¢}

Hence I"(SN) = (P', A',Inf', H') where A" = {not ¢, not e} and

P = {c+c, true™® <}
I’I’Lf, — {dnot c’ e1'101: e7 bnot e}
H = 0
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In the proof procedure for weak entailment the main part is the procedure Proc.
The main part of the proof procedure for strong entailment will be the procedure
ProcStrong, which is based on Proc. One key difference between the two procedure
results from the fact that in the case of the procedure for strong entailment we
do not allow a negative assumption to match with a positive literal in the body
of a rule. However, as in the case of weak entailment we do not allow a positive
assumption to match with a positive literal in the body of a rule either. Thus, if
we were to use procedure Proc for strong entailment it can result in the procedure
Proc reaching a node in which the program part is not empty and there are no
more assumptions to make. At this point all the remaining rules will have only
positive atoms in the bodies (in addition to true® or false®, for some S). The
atoms in the head of these rules have no non-circular support. Thus their negation
can be inferred and the rules with these atoms in the head can be deleted from
the program part. The procedure Proc needs to be modified to take this step.
To do this we define the Falsify operation which when applied to a program P
puts the special atom false in the body of each rule of P which has only positive
atoms (including the special atoms, which may be superscripted) in its body. The
Falsify operation is applied only when there are no more assumptions left to be

made.

Definition 7.2.4 Let P be the ground program {p <— ¢; q <— not r}. Then
Falsify(P) = {p <+ q, false; q < not r}.

Note that false is inserted in the body of the first rule only.

We redefine the descendants of a node using the Falsify operation.
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Definition 7.2.5 descendants(N) =
() if L (I'(N) = 0
! . / ’ ’ N Zf Hl(F,(N)) 7é @
'(( Falsify(IL (I"(N))), Hao(I'(N)), Ia(I"(N)), HL(I"(N))))

{(IL(I"(N)), (L(I"(N)) u{l}),
3(I"(N)), (T (T(N)) = {l,mot 1})) | I € T4(I"(NV))}

otherwise

\
This key difference between the procedure Proc and ProcStrong is encoded in

the second clause of the above definition of descendants.

Example 7.2.5 As in Ezample 7.2.4 above, let P = {b < e€; ¢ + ¢,d; d +

not ¢; e < not e} and let SN = (P, {not ¢, not e}, 0, {b, not b, d, not d}).

and T4 (T'(N)) =0

Ezxample 7.2.4 above computed I"(SN) to be (P', A’,Inf', H') where A" = {not ¢, not e}

and

P = c+c, true™*t <}
Inf' = {dwotec, enote puot ey
H = 0
Since the I (T"(SN)) # 0 and T4 (T"(SN)) = 0, descendants(SN) must be
computed in terms of the second clause of the definition. Thus, the Falsify opera-
tion must be applied to c < c, true™® ¢, which turns it into ¢ < c, true™*® ¢, false.
Thus, descendants(SN) =T"(( {c + ¢, true™*® ¢, false}, {not ¢, not e}, Inf’, 0)),

where Inf' is as above in the specification of T'(SN).

As noted above, from the point of view of strong entailment the difference
between C'T" and C'F is of no significance. We will exploit this feature of strong

entailment in the proof procedure. The following apparatus is required to do this.
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We introduce a new truth value X, which can stand indifferently for either C'T’

or CF. We call X = {F, X, T} an abstraction of V = {F, CF, CT, T}. We

assume the ordering FF < X <T. We map T to 1, X to 1/2, and F to 0.

Definition 7.2.6 A mapping from the Herbrand base of a logic program P to X

15 an abstract interpretation of P.

We assume that not X = X. As in the case of C4, not 7' = F and not ' =T
Also we assume, as in the earlier chapters, that given vy, v € X, v; V vy, =
max{vy, ve} and vy A vy = min{v, vy}. Given a rule a < B, where a is a
ground atom and B is a conjunction of ground literals, then given an abstract

interpretation J, a <— B evaluates to 7" if J(a) > J(B) and F otherwise.

Definition 7.2.7 An abstract interpretation J of a normal logic program is an

abstract model of P iff every rule R € P evaluates toT" in [J .

An abstract model J of a normal logic program is an abstract well-supported
model of P iff for every atom that is assigned a value greater than F' by J there is
a rule that supports the attribution of this value in a non-circular way in exactly

the way specified for non-abstract models in Definition 4.3.2 in Chapter 4

7.3 Algorithms

Just as in computing whether a query is weakly entailed by a program we need to
consider only the relevant rules of the program, in computing whether a query is
strongly entailed by a program we need to consider only the related rules of the

program. This concept is defined below.
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Definition 7.3.1 A ground atom a is related to a ground atomic query q in a
normal logic program P if a is q or a € Atoms(body(R)), where head(R) is related

to q. A rule R is related to a query q if its head is related to q.

Although a query L can be a conjunction or disjunction of literals, the definition
of a related rule above in terms of an atomic query will still serve our purposes
because we assume that we add the rule query <— L to the program and answer
the original query by answering the query query.

In determining whether a query q is strongly entailed by a program we need
to consider only those rules in P that are related to ¢. This is different from the
case of weak entailment where we have to look at rules that are relevant to the
query in the special sense of the term as defined in the previous section. The key
difference between the two concepts is that a rule can be relevant to answering
a query if the body of the rule contains some atom that is related to the query,
even if the head of that rule is not related to answering the query; whereas a
rule is related to answering a query only if its head is related to answering a
query. Roughly speaking the difference consists in whether in determining if query
is entailed by the program we need to look at the consequences of query in the
program. For strong entailment (and thus for the well-founded semantics) the
consequences of query are irrelevant to determining whether query is entailed by
the program, whereas for weak entailment the consequences of a query can in some

cases prevent the program from weakly entailing the query.

Example 7.3.1 Let P be the ground program

{a + not b; b+ not a; p+ not p V not b}.
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Then a < mnot b and b < mnot a are related to a, whereas, additionally,

p < not p V not b is also relevant to a.

The following lemma justifies restricting the procedure to only related rules.

Lemma 7.3.1 A ground normal logic program P strongly entails a ground literal

q iff P' C P strongly entails q, where P’ consists of all rules in P related to q.

Proof:

=

We will prove that if a normal logic program P strongly entails a literal ¢ then
P' C P strongly entails ¢ by proving the converse of this claim. So assume that
P’ does not strongly entail ¢, where P’ consists of all the rules related to ¢. Thus
q ¢ WFS(P'). The well-founded semantics of a normal logic program can be
computed in a bottom-up manner in terms of the least fixed point of the operator
Wp as described in Chapter 3. In this definition of the well-founded semantics, a
literal [ belongs to WFS(P) only if [ is in some iteration § of Wp. Either [ = a
or [ = not a, for some atom a. If [ = a, then [ = a is in some iteration n of Wp
only if there is a rule R = [ < body such that each member of body is in some
iteration m < n of Wp. If | = not a, then for each rule R with a in the head
there must be some literal such that its negation is in some iteration m < n of
Wp. Thus, any rule R that can play a role in the generation of a literal [ in some
iteration of Wp must be related to [. By definition all such rules are in P’'. Thus
if g ¢ WFS(P') then ¢ ¢ WFS(P). Hence, if P' does not strongly entail ¢ then

P does not strongly entail q.

<~

Assume that P’ strongly entails ¢. Then ¢ € WFS(P'). Then clearly ¢ € WFS(P)
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since all rules in P — P’ are unrelated to ¢ and thus cannot alter the status of ¢ in

WFS(P). Thus, if ¢ € WFS(P') then ¢ € WFS(P) and P strongly entails ¢. =

In light of the above lemma, in determining strong entailment, we will assume
that the program contains only rules that are related to answering the query. It
is easy to determine this dynamically, but in the interest of keeping the proof
procedure simple we shall assume that all rules in the program are related to

answering the query.

Given a node N, ProcStrong finds a leaf node that can be reached from N.
ProcStrong does a depth-first search for such a leaf node by making recursive calls

to itself.
ProcStrong(N)
1. If I, (I"(N)) = 0 then RETURN T"(N)

2. else begin
3. Create unvisited descendent N’
4. Status(N') < wvisited
5. Parent(N') <~ N
6. ProcStrong(N')
7. end

If in step 1, it has reached a leaf node it returns I''(V) and terminates at step 1.
Otherwise in steps 3 to steps 5 it creates and initializes N', a descendent of N, and
at step 6 recursively invokes ProcStrong with N’. Note that at step 3 an unvisited
descendent is created by choosing a new assumption if there are any assumptions

left to be made; otherwise, if there are no more assumptions left, a new node is
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created by applying the Falsify operation.

MainStrong takes a finite and ground normal logic program LP and a ground
query L as arguments. It adds the rule query <— L to LP, where query is an
atom that does not occur in HByp. It creates the starting node which has the
special atom true as the starting assumption. Then it invokes ProcStrong, which
is described above. It returns YES if query is assigned 17" by the TransStrong

operation, which is described below, applied to the node returned by ProcStrong.

MainStrong(LP, L)
P <« LP U {query « L}
SN < CreateNode(P, {true})
N < ProcStrong(SN)

If TransStrong(N) assigns T to query then return YES, else return NO

Here MainStrong uses the Create/Node procedure described in the previous
chapter on proof procedure for weak entailment. The TransStrong operation,

which converts a node into an abstract interpretation, is given below.

TransStrong(N)
1. Z<+ 0
2. Inf < II3(N)
3. Assp < II1(N)
4. For each positive inference a € II3(N) with an empty superscript,
begin
I+ (T UA{a—TY})
Inf < Inf—{a®}, where S is any superscript including the empty superscript

end
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5. For each negative inference not a € II3(/N) with an empty superscript,
begin
I+ (Z U {a— F})
Inf «+ Inf — {not a°}, where S is any superscript including the empty
superscript
end
6. While Inf contains any literal [° such that Z(S) has a value, do
begin while
Choose an [° € Inf such that Z(S) has a value
If [ is the atom a then Z < (Z U {a+— Z(5)})
else if [ is the negative literal not a then Z < (Z U {a +— (1 —Z(5))})
Delete [° from Inf
end while
7. Assp < Assp — {a,not a | Z(a) is defined}
8. For each positive assumption a € Assp,
T+ (Z U {ar X})
9. For each negative assumption not a € Assp,
T+ (Z U {a— X}
10. Inf < Inf —{a®,not a® € Inf |a € Assp or not a € Assp})
11. While Inf is not empty do
begin while
Choose an [° € Inf such that Z(S) has a value
If [ is the atom a then Z < (Z U {a — Z(S5)})
else if [ is the negative literal not a then Z < (Z U {a — (1 —Z(S))})

Delete [° from Inf
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end while

TransStrong is the same procedure as Trans of previous chapter, except that
where T'rans would assign C'T" or C'F' to an atom, T'ransStrong assigns X. Thus,
given a node N, TransStrong translates that node into an abstract interpretation.

Since the starting node with which ProcStrong is invoked by MainStrong con-
tains no assumptions other than ¢rue, and since, as will be proven below in
Lemma 7.4.3, the implicit graph of every normal logic program contains at least
one leaf node, it follows that if ProcStrong is correct, it must return at least one
non-nil node. This is different from Proc where the starting node contains an as-
sumption, and, thus, there can be no guarantee that the implicit graph contains a

leaf node consistent with the starting assumption.

7.4 Proofs

In this section we prove the soundness and completeness of MainStrong with

respect to strong entailment.

To prove soundness we need to prove that if MainStrong returns YES to
a query L for a normal logic program LP, then L is strongly entailed by LP.
MainStrong returns YES to query L only if query evaluates to T in TransStrong(N),
where N is the node returned by procedure ProcStrong, which is invoked by
MainStrong. ProcStrong returns N only if N is a leaf node. Thus, to prove

soundness of MainStrong we need to prove that

e if query is assigned T by TransStrong(N), where N is any leaf node in the
implicit graph of P = LP U {query < L}, then query is strongly entailed by
P, and
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e if query is strongly entailed by P then L is strongly entailed by LP

We need to introduce the following definitions to prove that if a literal [ is
assigned T in TransStrong(N), where N is a leaf node in the implicit graph of a

normal logic program P, then [ is strongly entailed by P.

Definition 7.4.1 A literal I° € II3(N), where N is a leaf node, is assumption free
if and only if S is the empty superscript or each conjunct in some disjunct of S
15 logically equivalent to an assumption free literal or is logically equivalent to the

negation of an assumption free literal.

In this context we understand not not p to be logically equivalent to p. Al-
though we do not recognize expressions such as not not p to be well-formed
expressions in the language of normal logic programs, such expressions do occur

in superscripts, given our new rules of matching.
Example 7.4.1 Let P = {q < not p; p < p}. Consider the leaf node

(0, {not p}, {¢"°*?, not p}, 0).

not p ys assumption free because although not p was assumed,

Here the inference q
not p was also inferred without making any assumptions. Hence ¢™°* P should be
regarded assumption free since the inference not p is assumption free. In other

words, q could have been inferred without making the assumption not p.

Thus, assumption free literals can be inferred without making any assumptions.
As the above example shows, even though a literal p might have been assumed in
inferring ¥ in IV, ¥ can still be regarded as assumption free if p is itself assumption

free.
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Lemma 7.4.1 Let P be a finite and ground normal logic program, and let N be a
node returned by procedure ProcStrong for P. An atom a € HBp is assigned T
(F) in TransStrong(N) if and only if a® (resp., not a®), for some S, is assump-

tion free in N.

Proof: It is evident from steps 4, 5 and 6 of procedure TransStrong that each
assumption free literal [° is assigned T by TransStrong. It is evident from steps
7-11 of T'rans that no literal that is not assumption-free is assigned either 7" or F'

by Trans. These two observations together establish the lemma. [
Atoms that are assigned T or F' by TransStrong(IN) can be stratified as follows.

Definition 7.4.2 Let P be a normal logic program and let N be a leaf node in
the implicit graph of P. Let S be the set of atoms that are assigned T or F' by

TransStrong(N). S is stratified as follows.
e Strata 0: The special atoms true and false,

e Strata 1: Any atom a such that P contains a rule a < true or a < false
or a < not true. Any atom a that is assigned F' as a result of applying the

Falsify operation in the computation of N.
e Stratan > 1: a does not already belong to a stratum k < n and

— TransStrong(N)(a) = T and there is a rule R, s.t. head(R,) = a
and body(R,) evaluates to T in TransStrong(N) and each member of

Atoms(body(R,)) is of stratum less than n, or

— TransStrong(N)(a) = F and each rule R, which contains a in the

head is such that body(R,) contains a literal | that evaluates to F' in
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TransStrong(N) and is such that the atom in [ is of stratum less than

n.

In connection with this definition recall that all unit clauses in P are understood
as having true in the body and a rule a < false is inserted in a program only if
the program contains no rules with a in the head.

All atoms that are assigned 7" or F' belong to this stratification because by the
above lemma they are all assumption free. Thus regarding such atoms we cannot
have a situation where an atom is inferred on the basis of an assumption [ and the
atom is then used to infer [ or Atom(l). Hence, the stratification described above

is possible and includes all atoms that are assigned 1" or F' by T'rans.

Now we are in a position to prove that if a literal [ is assigned 7" in TransStrong(N),
where N is a leaf node in the implicit graph of a normal logic program P, then [

is strongly entailed by P.

Lemma 7.4.2 Let P be a finite and ground normal logic program, and let N
be a leaf node in the implicit graph of P. Then, if a literal | evaluates to T in

TransStrong(N) then [ is strongly entailed by P.

Proof: Assume that NV is a leaf node in the implicit graph of P. Assume that [
evaluates to 7" in TransStrong(N). Let S be the set of atoms in HBp that are
assigned either T" or F' by TransStrong(N). Members of S can be stratified in the
manner described above.

Assume by way of contradiction that [ is not strongly entailed by P. So there
must be a canonical model Z of P such that Z(I) < T. So there is a non-empty
S’ C S such that S consists of those members of S to which Z assigns a different

truth value than TransStrong(N). Let a be any atom in S’ such that a is in the
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lowest stratum in terms of the stratification of S. a is assigned either 7" or F' by

TransStrong(N).

Case 1: Assume that a is assigned T' by TransStrong(N). So there must be a
rule R, such that head(R,) = a and body(R,) evaluates to T in TransStrong(N).
Furthermore, all members of Atoms(body(R,)) must be of a lower stratum than a.

By assumption Z(a) < 7. Furthermore, by the assumption, that a is of the
lowest stratum among members of S’, Z must assign the same truth value to all
members of Atoms(body(R,)) as TransStrong(N). Hence, body(R,) must evaluate
to T"in Z. But since Z(head(R,)) < T, T is not a model of R,, which contradicts

the assumption that Z is a model of P.

Case 2: Assume instead that a is assigned F' by TransStrong(N). So for each
rule R, such that head(R,) = a, body(R,) must contain a literal [ that evaluates
to ' in TransStrong(N) and such that the atom in [ must be of a lower stratum
than a.

By assumption Z(a) > F because its value is different from the value assigned
to it by TransStrong(N), which assigns it F. Furthermore, by the assumption,
that a is of the lowest stratum among members of S, Z must assign the same
truth value to the [ in each Atoms(body(R,)) as TransStrong(N). Hence, each
body(R,) must evaluate to F' in Z. But since Z(head(R,)) > F, Z cannot be a
well-supported model of P. This contradicts the assumption that Z is a canonical

model of P. m

The following theorem proves the soundness of MainStrong.

Theorem 7.4.1 If the procedure MainStrong returns YES for query L and a nor-

mal logic program LP'" C LP which consists of the set of rules in LP related to L
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then LP strongly entails L.

Proof: Assume that the procedure returns YES for program LP’ and query L.
Let P' = LP"U {query < L}. So procedure ProcStrong returns a leaf node N
such that TransStrong(N)(query) = T. Thus, it follows from Lemma 7.4.2 that
query is strongly entailed by P’. Hence, P’ must strongly entail L since the only
rule with query in the head is query < L. Thus LP’ must entail L since LP' is
identical to P' except that query < L is in P’. It follows from Lemma 7.3.1 that

P strongly entails L. n

Next we prove the completeness of MainStrong. First we show that for any
finite and ground normal logic program, P, ProcStrong returns a leaf node N
which can be translated by TransStrong into an abstract well-supported model
of P. Second, we show that TransStrong(N), where N is a leaf node returned
by ProcStrong with P as the input program is equivalent to the well-founded
semantics of P, W FS(P). Since a normal logic program P entails a literal [ iff
[ € WFS(P) (Theorem 5.4.1 in Chapter 5), it follows that a normal logic program
P entails a literal [ iff | evaluates to T" in TransStrong(N). But in that case
MainStrong would return YES to the query [. This establishes completeness of

MainStrong.

The following lemma establishes that for any finite and ground normal logic

program, ProcStrong returns a leaf node.

Lemma 7.4.3 Let P be a finite and ground normal logic program. Then ProcStrong

returns at least one leaf node for P as the input program.

Proof: A node in the implicit graph of P is a leaf node if the program part of the

node is empty. By step 1 of ProcStrong any node that it returns must be a leaf
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node. So ProcStrong can fail to return a leaf node only if it fails to terminate.
But ProcStrong can fail to terminate only if at some node N, which is not a leaf
node, the program part of N contains a rule R that cannot be reduced any further
regardless of which additional assumptions are made. If body of R contains any
negative literals, then clearly those negative literals can be assumed and R can
be reduced further. On the other hand if body(R) contains no negative literal,
then after exhausting all the remaining assumptions, R can be reduced further
by applying the Falsify operation. So R can always be reduced further. Thus,

ProcStrong must terminate by returning a leaf node. [

The next lemma shows that the leaf node returned by ProcStrong for a pro-

gram P can be translated into an abstract well-supported model of P.

Lemma 7.4.4 Let P be a finite and ground normal logic program. Let N be a leaf
node in the implicit graph of P returned by ProcStrong. Then TransStrong(N)

1s an abstract well-supported model of P.

Proof: First we show that TransStrong(N) is an abstract model of P.

For any rule R € P, if body(R) evaluates to T in TransStrong(N) then each
literal / in the body must evaluate to 7" in T'ransStrong(N). But then for each such
literal [, the inference part of N must contain a literal ¥, where S is the empty
superscript or S must evaluate to 7' in TransStrong(N), or the inference part
must contain the literal Neg(l)® where S must evaluate to F' in TransStrong(N).
But then the head of R would be inferred with an empty superscript or with a
superscript that evaluates to T in TransStrong(N). So TransStrong(N) would
be an abstract model of all such rules.

For any rule R € P, if body(R) evaluates to X in TransStrong(N) then it

contains at least one literal [ which evaluates to X and no literal that evaluates to F'
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in TransStrong(N). But then for each such literal [, the inference part of N must
contain a literal [* or a literal Neg(l)®, where S evaluates to X in TransStrong(N).
But then the head of R would be inferred either with a superscript which evaluates
to X in TransStrong(N) or which evaluates to T in TransStrong(N). In either
case the head would not be assigned F' in TransStrong(N). So TransStrong(N)
would be an abstract model of all such rules.

For any rule R € P, if body(R) evaluates to F'in TransStrong(N) then trivially
TransStrong(N) is an abstract model of R.

Thus, it follows that TransStrong(N) must be an abstract model of P.

Next we show that TransStrong(N) is a well-supported model of P. The
well-founded ordering can be in terms of the first appearance of a literal in the
inferential part of a node in the path from the starting node to the leaf node N.
Here we need only consider a literal [ such that TransStrong(N) assigns at least
X to Atom(l). This ordering must be well-founded because the generation of the
nodes and the inferred literals in each node are by process of bottom-up inference
which monotonically enlarges the inferential part of nodes. Furthermore, since
the assignment of a truth value to any literal is not greater than the truth value
assigned to its superscript, the truth value assigned to a literal must be supported.

Lemma 7.4.3 and Lemma 7.4.4 together establish that for any finite and ground
normal logic program P, ProcStrong returns an abstract well-supported model of
P in the sense that it returns a leaf node N which can be translated into such a

model by TransStrong.

We have represented TransStrong(N) as a mapping from the atoms in N to
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the truth values {F, X, T'}. But TransStrong(N) can also be represented as the
set of literals which evaluate to T in TransStrong(N), with the understanding that
any other literal in N such that neither it or its negation is in TransStrong(N)
evaluates to X. We take W F'S(P) also to be represented by the set of literals that
are true in the well-founded semantics of P. The next lemma states the equivalence

of TransStrong(N) and WFS(P).

Lemma 7.4.5 Let P be a finite, ground normal logic program. Let N be the
node returned by ProcStrong operating on P. Let WES(P) be the well-founded
semantics of P. Then TransStrong(N) = WZFS(P), where both WFS(P) and

TransStrong(N) are represented as a set of literals.

Proof: It follows straightforwardly from Theorem 7.4.1 above that TransStrong(N) C
{l | P strongly entails I}. It follows from Theorem 5.4.1 of Chapter 5 that
{l | P strongly entails [} = WFS(P). Thus it follows that TransStrong(N) C
WFS(P). We show next that WFS(P) = TransStrong(N).

Assume by way of contradiction that TransStrong(N) C WFES(P). So there
must be a non-empty set of literals S C WFS(P) such that no member of S
is in TransStrong(N). The literals of WFS(P) can be stratified in terms of the
smallest iteration of the Wp operator in the definition of the well-founded semantics
in which the literal first appears. Let [ € S be such that no other literal in S occurs
in a lower level of this stratification. Either [ = a or | = not a for some atom a.

Case 1: | = a. So there must be a rule R € P such that head(R) =
a and body(R) is true in WFS(P) and every member of body(R) occurs in a
lower level of stratification than a. Clearly, since every member of body(R) oc-
curs in a lower level of stratification than a, all members of body(R) must be in

TransStrong(N). Hence, body(R) must evaluate to T in TransStrong(N). Thus,
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since TransStrong(N) is an abstract model of P, TransStrong(N) must assign
T to a. But then [ € TransStrong(NN), which contradicts the assumption that
les.

Furthermore, it is clear from the reasoning above that every atom p € S which
belongs to the lowest strata among members of S must also be in T'ransStrong(N).

Case 2: [ = not a. So for each rule R € P such that head(R) = a, body(R)
must be false in W FS(P). For each body(R), there must be a literal p in body(R)
such that p is false in WFS(P) (that is, Neg(p) € WFS(P)) and Neg(p) belongs
to a lower strata or the same strata as not a. (Recall that Neg(b) = not b and
Neg(not b) = b for any atom b.) If Neg(p) belongs to a lower strata than not a,
then by the reasoning of Case 1, Neg(p) € TransStrong(N). Hence, body(R)
would evaluate to F' in TransStrong(N).

On the other hand suppose that Neg(p) is of the same stratum as not a. Then
either p = b or p = not b, for some atom b. Thus, Neg(p) = not b or Neg(p) = b.
If p = b, and not b and not a are of the same stratum, and p occurs in the body
of a rule with a in the head, then p and a must mutually support each other and
thus must belong by virtue of this mutual support to the unfounded set computed
in that iteration of the Wp operator. But in this case the Flalsify operation
embedded in ProcStrong would produce both not a and Neg(p) as an inference
in N. Hence both these literals would belong to TransStrong(N). However, if
p = not b then Neg(p) = b. If not a and Neg(p), i.e. b, are of the same stratum,
then b is of the lowest stratum in S. Since, we have already shown that any atom
which is of the lowest stratum in S must also belong to T'ransStrong(N), it follows
that Neg(p) would be in TransStrong(N). Hence, in either case Neg(p) belongs

to TransStrong(N). And, thus, since p belongs to body(R), it would evaluate to F'
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in TransStrong(N). Hence, whether Neg(p) is of the strata or a lower strata than
not a, body(R) evaluates to F' in TransStrong(NN). Since this is true of each rule
with a in the head, it follows that not a must be a member of TransStrong(N)
since TransStrong(N) is well-supported. Hence, this contradicts the assumption
that [, that is, not a, is in S.

Thus, it follows that there cannot be a literal [ which belongs to W F.S(P) but

not to TransStrong(N). Hence TransStrong(N) = WFS(P). ]

Clearly, the above lemma shows that the procedure ProcStrong run on a
ground and finite normal logic program P computes its well-founded semantics
in the sense that it returns a node N which is translated into the well-founded

semantics of P by TransStrong .

Now we are in a position to prove the completeness of MainStrong.

Theorem 7.4.2 Let LP be a normal logic program. If the procedure MainStrong
returns NO for query L to a normal logic program LP" C LP which consists of the

set of rules in LP related to L then LP does not strongly entail L.

Proof: Let P = LP'U {query < L}.

Assume that MainStrong returns NO for query L to a normal logic program
LP'" C LP which consists of the set of rules in LP related to L. Then ProcStrong
run on P must return a node N such that query evaluates to T in T'ransStrong(N).
Since the only rule with query in the head is query < L and since TransStrong(N)
is a well-supported model of P (Lemma 7.4.4), it follows that L must evaluate to T’
in TransStrong(N). Thus, by Lemma 7.4.5, it follows that L is true in WFS(P).

Hence, P strongly entails L (by Theorem 5.4.1 of Chapter 5). Then LP' strongly
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entails L since LP’ is identical to P except that it does not contain the rule

query < L. It follows then that LP strongly entails L (by Lemma 7.3.1). ]

7.5 Discussion

The proof procedure for strong entailment exploits the feature that from the per-
spective of strong entailment there is no difference between C'F" and C'T'. In partic-
ular, the proof procedure makes no attempt to distinguish the case where a literal
is inferred on the basis of evidence that evaluates to C'F' as opposed to the case
where it is inferred on the basis of evidence that evaluates to CI'. This feature
allows the proof procedure to eliminate the verifiedness and consistency checks
made by the proof procedure for weak entailment.

A consistency check is not required because even if a node N contains an
assumption [ and an inference Neg(l)®, if S evaluates to T or F in TransStrong(N)
then [ is assigned a value in terms of the value of S; whereas if S evaluates to X
in TransStrong(N) then Neg(l) is assigned X and the assumption [ is assigned
X and this assignment is consistent because the negation of X is X. Thus, the
translation of any node is always consistent because we do not distinguish between

CT and CF.

In the chapter on weak entailment, a verifiedness check is required to ensure
that we do not assign C'T to a positive assumption a when in fact there is not
enough evidence to assign C'I" to a, even on the assumption a. This can happen
only when the evidence for a justifies assigning at most C'F'. In case the evidence
justifies assigning at most F' then a is assigned F' by both T'rans of previous chapter

and TransStrong. But since in this chapter TransStrong would assign X to a
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(instead of C'T") and X to the evidence for a (instead of C'F), it can never happen
that the assignment of X to any atom is not well-supported. Thus, a verifiedness
check is not required.

Thus, we see that not distinguishing between C'F' and CT allows us to dis-
pense with the consistency and verifiedness checks, which makes it possible for
ProcStrong to terminate without ever having to backtrack. This results in a

polynomial time worst-case complexity for MainStrong.

ProcStrong expands at most n nodes, where n is the cardinality of the Her-
brand base of the input program. As we saw in the last chapter, the worst-case
complexity of expanding any node requires O(n?) matching operations. Thus, the
worst-case complexity of answering whether a given program strongly entails a
query is O(n?), where n is the cardinality of the Herbrand base of the program.
And thus on our algorithm the worst-case complexity for answering a query with
respect to the well-founded semantics of a finite and ground program is O(n?). This
compares well with the standard results for the worst-case analysis for answering
a query with respect to the well-founded semantics. For instance, [BDK97] state
that the worst-case complexity for answering a query to a finite and ground nor-
mal logic program with respect to the well-founded semantics is O(nm), where n
is the cardinality of the Herbrand base of the program and m is the length of the

program.

7.6 Summary

In this section we summarize the main research contributions of this chapter.

e We have developed a proof procedure for answering whether a ground query
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consisting of a conjunction or a disjunction of ground literals is strongly en-
tailed by a finite and ground normal logic program without any contestations.
This proof procedure consists in constructing a well-supported model of the
input program in a bottom-up fashion by making assumptions and inferring

literals in terms of these assumptions and the input program (Section 7.3).

We have proven that this proof procedure is sound and complete with respect

to the C4 semantics for normal logic programs (Section 7.4).

We have proven that the worst-case complexity of this procedure is O(n?),

where n is the cardinality of the Herbrand base of the program (Section 7.5).

We have proven that this proof procedure also computes the well-founded

semantics of a normal logic program (Section 7.4).
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Chapter 8

Proof Procedure for Normal Logic Programs

with Contestations

8.1 Introduction

In this chapter we describe a proof procedure for determining whether a query is
weakly entailed by a normal logic program augmented with heterogeneous contes-
tations and a procedure for determining whether a query is strongly entailed by a
normal logic program augmented with heterogeneous contestations. For both proof
procedures we assume that the query is a conjunction or disjunction of ground lit-
erals and the program is a finite, ground normal logic program. We also assume
that the contestations are ground. These proof procedures will be extensions of the
proof procedures we have developed in previous chapters for normal logic programs

without contestations.

In Section 8.2 we develop the formal apparatus for stating the proof procedure.
In Section 8.3 we state the algorithms for the two proof procedures, and in Sec-
tion 8.4 we prove that these procedures are sound and complete with respect to

C4. In Section 8.6 we summarize the main research contributions of this chapter.

163



8.2 Preliminaries

Recall from Chapter 4 that P + C, where P is a logic program and C is a set of
contestations, is to be understood as the rules of P constrained by the contestations
in C. To say that a ground rule a <— body is constrained by a contestation B <—; a
is to say that the rule is really understood as being a < body, capl(a, B —; a,T),
where capl(a, B —; a,T) returns a special atom. Which special atom is returned
in this context depends on the nature of the cap function and the truth value
assigned to B in Z. Thus, it is natural to compile the contestations into the bodies
of rules in order to extend our proof procedure for normal programs into a proof
procedure for normal programs with contestations.

Before we do this we will simplify our notation. We will write cap}(a, B <; a,T)
as cap;(B, a). First we can drop the reference to Z since in the context of this proof
procedure the cap’ function is always evaluated in a certain node which translates
into a partial interpretation. Thus, an explicit reference to an interpretation is
superfluous. Secondly, cap}(B, a) tells us that the contestation is based on a cap;
function and the Contestor part of it is B and the Contested part is a, so the
contestation B —; a does not have to occur as an explicit argument to the cap]
function. Thus, in our current context the expression cap(a, B —; a,Z) can be

simplified to cap}(B,a) without any loss of information or generality.

Example 8.2.1 Let P be the ground program {a < b; b <; ¢ <}, let C = {c <3
a, b = ¢}. Thus, P+C is understood as {a < b, cap}(c,a); b <; ¢ < cap|(b,c)}.

Let T be an interpretation of P+ C which assigns T to b and CF to c. In this
interpretation caply(c,a) returns CTrue because caps(CF) = CT and cap(b,c)
returns C' False because cap, (1) = CF. Hence, relative to this assignment of truth

values to b and ¢, P+C can be understood as {a < b, CTrue; b <—; ¢ < CFalse}.
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Our proof procedure is restricted to P + C which have C-stable models. This
restriction will apply both to the proof procedure for strong entailment as well as
the proof procedure for weak entailment. Recall that a model of P + C is said to
have a C-stable model if all the constrained rules of P + C evaluate to 7" in that
model. It is easy to see that even if P has C-stable models, P 4+ C may have no

C-stable models, as the following example illustrates.

Example 8.2.2 Let P = {p < q; q <}. Let C = {p <9 q}. P has the unique
C-stable model which assigns T to both p and q. However, P + C has the unique
well-supported model which assigns C'F to p and CT to q, which is not a C-stable

model.

The contestations are compiled into the programs as follows. Assume that the
rules are in the disjunctive form. For each rule a < body, V ---V body,, and for
each contestation By <1 a, By <5 a,...,B, <, a, we transform the rule into

the rule

a < bOdyla Cap,l(Blaa)7 cap'z(Bg,a),...,cap%(Bn,a)V---\/
body,,, capy(Bi,a), caply(Bs,a),...,cap.,(B,,a).

In the above rule each B; is a conjunction of literals.
Example 8.2.3 Let P be the ground program
{a <~ bV not ¢; b+ not d,not e; d < true;e < ¢; c< not b; f « true}.
Let C = {d Anot f < a; e =9 a;¢c—3d}. Then P+C is

a < b, capy(d Anot f, a), capy(e, a) V not c,cap|(d Anot f, a), caph(e, a);
b < not d,not e¢; d < true, capj(c, d);

e<c c<notb [+« true
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Compiling contestations this way into the bodies of rules allows us to extend
naturally the proof procedures developed for logic programs without contestations.
This is because when contestations are compiled into the rules of a logic program
by means of cap functions, the body of the rule is augmented with functions that
return special atoms. So in essence a rule with contestations compiled into it will
be just like any other logic program rule except that it will have some special atoms
in the body. However, which special atom will be in the body of a compiled rule
depends on the context consisting of the assumptions and inferences in which a
cap function is evaluated. A special atom is different from any atom only in that
it evaluates to a certain fixed truth value in every interpretation. Hence, a logic
program with contestations compiled in the rules is identical to a logic program
some of whose atoms have fixed truth values; however, which logic program it is
identical to depends on the context in which the cap functions are evaluated.

In the following we won’t strictly observe the distinction between cap; returning
a special atom and cap) returning the truth value to which that special atom
evaluates. Recall that a cap; function takes a truth value as an argument and
returns a truth value. A cap} function takes a conjunction of literals and an atom
as arguments and which truth value it returns depends on the underlying cap;
function. However, in the interest of notational simplicity we will write cap as

cap;. The context should make it clear which function is intended.

Definition 8.2.1 A literal | is known in a node N in the implicit graph of a
program P if either | or the negation of [ is in the assumption part or the inference
part of N. More precisely, | is known in N if and only if either I' € II3(N) or
I'S € II3(N), where S is a possibly empty superscript and I' is | or the negation of

[. In this context the negation of a negative literal, not a, is understood to be the
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atom a.
A cap expression cap;(B,a) is known in a node N if all the literals in B are

known in that node.

A normal logic program P with a set of contestations C compiled into it can have
an implicit graph for it in exactly the same manner as for normal logic programs
without contestations. Given a node N in the implicit graph, from a rule of the
form a < true®, cap;(B;,p) in I1;(N), the literal a® * ¢i(BiP) can be inferred if all

members of B; are known in V.

Example 8.2.4 Let P+C be{a + bV not ¢; b < capi(d, b); ¢ + capy(e, ¢); d +
true; e < true}.

From the last two rules we can infer {d™¢, e™¢}. Thus, d and e are known.
So we can infer b (&Y gnd ccarsle ©) - Thus, P+ C can be reduced to the rule

a <+ bVmnot c.

Note that the above rule of inference does not check whether cap;(B;, p) is true

§ A capi(Bi:p)  Thus, when the assumptions and inferences in a node

before inferring a
are translated into truth values we have no guarantee that a will be assigned C'T" or
T. This raises the issue of what should be the result of matching a® * €@P:(Bi:) with
not a in the body of a rule. If we were to follow the matching rules of Chapter 6,
the result would be false® » <Pi(Bi-P)  But this can lead to wrong results in a case

where both S and cap;(B;, p) evaluate to one of the designated truth values, CT

or 1. The example below makes this point.

Example 8.2.5 Let P+C be as in Fxample 8.2.4 above. We saw in that example

that by the rules for inferring superscripted literals we can infer

{dtrue etrue bcapl(d, b) Ccap4(e, c)}
) ) ’
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and P + C can be reduced to {a < bV not c}.

Matching b1 Y with b in the body of the rule a < bV not ¢ results in
true (& 8 - Byt if matching c¢“4( ) with not ¢ in the body of that rule were to
result in falsec®?s(& ) then the rule would become a < true®i(d by fglsecarale €)
In general, true®* V false®® evaluates to true®', and so the body of the rule a <
bV not ¢ would be simplified to a +— true @ *) from which a4 ®) would
be inferred. But this would not produce a model of P + C when the inferences
are translated into a C4 model. Clearly, d and e should be assigned T'. Thus,
capy(d, b) should evaluate to CF and capy(e, ¢) should evaluate to F. Hence, b
should be assigned C'F' and ¢ would be assigned F. So a would be assigned C'F
because capy(d, b) evaluates to CF and because we have inferred acopi(ds b) - Byt
clearly this is incorrect because if ¢ 1s assigned F' then a should be assigned T

As in Chapter 7, this problem can be avoided if matching c¢“®*(€ ©) with not ¢
results in true™®t < ) instead of false®Ps(& ©) . Now the body of the rule becomes
trueci(d, b)Anot capale, ) Thys  geapr(d, bAnot capale, ©) y,0yld be inferred instead of
acPi(d b) I this case a would be correctly assigned T when the inferences are

translated into a C4 model.

In light of the above example, as in Chapter 7, we revise the rules of match-
ing as follows. A superscripted literal a®, where S can contain cap expressions,
matches with a in the body of a rule resulting in true® and matches with not a
in the body resulting in true™® ®. When S is empty we shall regard it as implic-
itly consisting of the special atom true. Thus, the result of matchings can only
produce true®i, for some superscript S; which can be the negation of a disjunction
of conjunctions. So by the rule of inference stated above, only the superscipted

atoms can be inferred. But this does not mean that when the inferences are trans-
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lated into an interpretation all atoms will be assigned C'T" or T'. If a superscript
evaluates to C'F' or F' the superscripted atom will be assigned one of these truth
values. Thus, the inference of a superscripted atom in a node may turn out to be
the inference of an (unsuperscripted) negative literal when the node is translated

into a C4 interpretation.

The above described changes in the rules for matching and for inferring super-
scripted literals as well as the presence of cap expressions in the bodies of rules
requires us to revise the definition of the T operator given in Chapter 6 and

Chapter 7.

Definition 8.2.2 Let P be a ground normal logic program and let C be a set of
contestations. Let T be a set of literals consisting of assumptions and superscripted

literals. Assume that the rules of P + C are written as
a < bh;"'abln;cl;"'acmv'"kan"';bknacla"'acm
where ¢1, - -+, ¢y are all cap expressions. Then,

TP(Z) =T U {a®|a <+ body € P+C and matching literals in body with literals
in T results in a < true®}

where body is of the form by,,---,by, ,c1,-- -, ¢y V- Vb, - bg,C1,0+, Cm
and S =S, A NS, Nax N~ ANep VNV Sgy Ao = NSk, Aex A=+ A ey, and
where each of ¢1,---, ¢y are known in I and matching each b;, with literals in T

results in trueSi.

Using this definition of the T7¢ operator, we can define the least fixed point of
the TTC¢ operator (Ifp(TF°)) in a manner completely analogous to that definition

in Chapter 6.
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Example 8.2.6 As in Example 8.2.3 above let P+ C be

a < b,capi(d Anot f, a), capy(e, a) V not ¢, cap;(d Anot f, a), caps(e, a)
b < not d,not e

d « true, caps(c, d)

e ¢

c<not b

f <« true

Let T = {true, not b}. Then

TPC(I) =7 U {ftrue7 Cnot b}‘

TPC(TPC (I)) — TPC(I) U {enot b, dcapg(c, d)}.

TPC(TPC (TPC(I))) — TPC(TPC(I)) U {bnot caps(c, d) A b}
Lp(TPE(D) = TH(TTE(TT(TT(D)))) = TH(TP(TP4(T)) v

{anot capz(c, d)AbAcapi(dAnot f, a)Acapa(e, a) V bAcapi(dAnot f, a)Acapa(e, a)}

Using this definition of T7¢ and [fp(TT°) we can define the I' operator and
Descendants of a node N in a manner completely analogous to those definitions

in Chapter 6.

The algorithm for weak entailment will be exactly same as the algorithm for
weak entailment without contestations. However, in checking for consistency, sta-
bility and verifiedness of a node we cannot as in the case of logic programs without
contestations rely on a purely syntactic test. In that case if the node contained p®
and not p is part of every disjunct in p° then the node can be regarded as unstable,
and if a node contained p°* and not p*? then the node can be regarded as incon-
sistent so long as not p is not part of every disjunct in S;. But in the case of logic

programs with contestations we cannot assume that all superscripts will evaluate
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to C'T or T'. What truth value a superscript will evaluate to depends on what the
cap functions in the superscript evaluate to, and there is no way of determining
this purely syntactically. Hence, the consistency, stability and verifiedness tests
have to be done by translating each node into an interpretation, which may be a
partial interpretation. The translation algorithm, Trans, of Chapter 6 can be used
for this purpose as it can handle partial interpretations. However, that algorithm
was written with the assumption that the node to be translated is a consistent and
verified node. Hence the algorithm has to be modified to detect unstable, incon-
sistent or non-verifiable nodes. The algorithm T'ransCon, given below, is designed
to do that. But first we need to redefine the concepts of consistency, verifiedness
and stability as earlier these concepts were defined purely syntactically.

Recall that given the new rules for inferring literals in a node, all inferences
are of superscripted positive literals. However, an assumption can be a positive or

a negative literal.

Definition 8.2.3 A node N is unstable if and only if the inference part of N
contains a literal a® such that S = not a and TransCon(N)(S) evaluates to at

least C'T'.

Definition 8.2.4 A node N is inconsistent if and only if the assumption part of
N contains the negative assumption not a and the inference part contains a® such

that TransCon(N)(S) evaluates to at least CT and S = not a.

The requirement that S = not a is to distinguish inconsistency from unstability

in a node.

Definition 8.2.5 A positive assumption a is said to be verified relative to a node

N if and only if there exists a literal a® in the inference part of N such that
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TransCon(N)(S) evaluates to at least CT. A node N is said to be verified if all
its positive assumptions are verified relative to N. A positive assumption a is said
to be unverifiable in a node N if and only if there exists a literal a® in the inference

part of N such that TransCon(N)(S) evaluates to at most CF.

8.3 Algorithms

The above definitions suggest straightforward tests for determining whether a node
is consistent, stable, and not unverifiable by translating the node into a partial
interpretation. The algorithm for translating a node into a partial interpretation
is given below. The tests for stability, consistency and verifiability are built into
the TransCon algorithm. The algorithm uses the idea of a superscript expression

stmplifying to true or to not true, which is defined below.

Definition 8.3.1 An expression S; A --- A S, simplifies to true if each S;, i €
{1,...,n}, is the expression true. An expression Sy V ---V S, simplifies to true if
any S; simplifies to true. An expression Sy A --- A S, simplifies to not true if at
least one S;, i € {1,...,n}, is the expression not true. An expression SyV---V S,

simplifies to not true if each S; simplifies to not true.

TransCon(N)
1.Z+0
2. Inf + II4(N)
3. Assp < II1(N)
4. For each inference a® € II3(N) s.t. S simplifies to true

begin
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I+ (Z UA{a—TY})
Delete a° from Inf
end
5. For each inference a® € TI3(N) s.t. S simplifies to not true
begin
I+ (Z U {a— F})
Delete a° from Inf
end
6. While Inf contains any literal a® such that Z(S) has a value, do
begin while
Choose an a® € Inf such that Z(S) has a value
T+ (Z U {a—Z(5)})
Delete a® from Inf
end while
7. For each positive assumption a s.t. Z(a) is defined
if Z(a) = F then RETURN “Node not verifiable” and TERMINATE
else Assp < Assp — {a}
8. For each negative assumption not a s.t. Z(a) is defined
if Z(a) = T then RETURN “Node not consistent” and TERMINATE
else Assp < Assp — {not a}
**Comment: Up to this point Z assigns only T or F' to atoms.**
9. For each positive assumption a € Assp,
I+ (Z U {ar—CT})
10. For each negative assumption not a € Assp,

T+ (T U {a—CF})
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11. While Inf is not empty do
begin while
Choose an a® € Inf such that Z(S) is defined
If Z(a) is defined **Comment: a or not a has been assumed™*
then if Z(S) < Z(a) then RETURN “Node not verifiable”
and TERMINATE
else if Z(S) € {CT,T} and Z(a) € {C'F, F} then RETURN “Node not
consistent or not stable” and TERMINATE
else Z + (Z U {a—Z(5)})
Delete a® from Inf

end while

Example 8.3.1 Let P+ C be as in Example 8.2.3. In Fxample 8.2.6 we see that
for this P+C starting with the assumption {true, not b} we arrive at the inference

set which is given by [ fp(TTC({true, not b}). This is the set

{ftrue7 oot b7 enot b7 dcapg,(c, d)7 prot caps(c, d)Ab

Y

qnot caps(c, d)AbAcapi(dAnot f, a)Acapa(e, a) V bAcapi(dAnot f, a)Acapa(e, a)}

TransCon would translate the node containing this assumption set and this
inference set as follows:
f =T (by step 4)
b CF (by step 10)
c— CT and e — CT (by step 11)
caps(c, d) evaluates to CT, so d — CT (by step 11)
not caps(c, d) A b evaluates to C'F, hence the initial assignment of CF to b is
stable and consistent.

cap,(d A not f, a) A capy(e, a)} evaluates to CF and so not caps(c, d) ANb A
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cap,(d Anot f, a) A capa(e, a) V bAcapi(d Anot f, a) A caps(e, a) evaluates
to CF, and thus a — CF.

As in the case of the weak entailment proof procedure for logic programs, we
will assume that all the rules in P+ C are relevant to the query posed to the proof
procedure. The definition of a rule relevant to a query that was given in Chapter 6
needs to be modified to take contestations into account. Before we do that we need
to modify the definition of Atoms(R) to take into account rules with cap functions

in their bodies. This is done in the next definition.

Definition 8.3.2 Let R be the rule a < by, ..., b,,cap;(B,a). Then Atoms(R) =
{a,by,...,b,} U Atoms(B).

Now we are in a position to redefine the idea of a rule relevant to a query.

Definition 8.3.3 A rule R € P+ C is relevant to answering a query [, where [ is

an atom, iff

e | € Atoms(R), or

e there is an atom p such that p is relevant to answering | and p € Atoms(R),
where any atom p s relevant to answering any atom | if and only if p €

Atoms(R;) where R; is relevant to answering .

Although a query L can be a conjunction or disjunction of literals, the definition
of a relevant rule above in terms of an atomic query will still serve our purpose
because we assume that we add the rule query <— L to the program and answer

the original query L by answering the query query.

The procedure Proc stated below is the same procedure as the weak entailment

proof procedure for logic programs without contestations. We assume that the
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checks for consistency, stability and verifiedness are made using the TransCon

procedure given above.
Proc(N)

1. If (V) is unstable or inconsistent or unverifiable or (II; (I'(IV)) # 0
and (IT4(T'(N)) = 0 or N has no unvisited descendants))
then if Parent(N) = nil then RETURN nil else Proc(Parent(N))

2. else if I1; (I'(V)) = ¢ then RETURN I'(N)

3. else

4.begin

5. Create unvisited descendant N’
6. Status(N') <— wvisited

7. Parent(N') < N

8.Proc(N')

9. end

The procedure Proc is invoked by the procedure MasterStable, which is the
same procedure as the procedure of that name in Chapter 6.
The algorithm MasterStable creates the starting node using CreateNode and

invokes Proc, which does all the real work.
MasterStable(P, lit)

SN < CreateNode(P, lit)
Parent(SN) < nil
Proc(SN)
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As in the chapter on the weak entailment proof procedure for logic programs
without contestations, the procedure MasterStable is invoked by the procedure
MainCW. In this procedure we assume that the contestations are compiled into

the program.
MainCW(P, C, L)

1. PC < P with C compiled into it.

2. PC <+ PC U {query«+ L}

3. If MasterStable(PC, not query) # nil then Return NO

4. else if MasterStable(PC, query) # nil then Return YES

D. else Return “Program has no canonical C-Stable models”

Example 8.3.2 Let P + C be as in Example 8.2.53. Let query be a V not b.
Procedure MainCW begins by adding the rule query <~ a V not b to P +
C. It next executes MasterStable(PC,not query), which returns nil. So next
MasterStable(PC, query) is executed which returns a stable, consistent and ver-
ified node containing the assumptions {query, not b} and the inference set con-

sisting of

{querymt b V not caps(c, d)AbAcapi(dAnot f, a)Acapz(e, a) V bAcapi(dAnot f, a)Acapa(e, a)
)

ftrue’ cnot b pnot b’ dcap;;(c, d)7 pnot capz(c, d)Ab

Y ’

qrot caps(c, d)AbAcapi(dAnot f, a)Acapa(e, a) V bAcapi(dAnot f, a)Acapa(e, a)} Thus. MainCW
. ’

returns YES to the original query.
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Strong Entailment

The proof procedure for strong entailment will be very similar to the proof pro-
cedure of the previous section. Unfortunately, this proof procedure cannot be as
simple as the strong entailment proof procedure of Chapter 7 for normal logic
programs without contestations. That proof procedure depended on a translation
algorithm, T'ransStrong, which assigned 1" or F' only to those inferences in a leaf
node which could be inferred independently of any assumptions. This ensured that
TransStrong assigns 1" or F' to only those atoms that would be assigned 71" or F
in every well-supported model. Thus, the strong entailments of the program can
be determined just in terms of the model constructed by TransStrong. However,
in the case of logic programs with contestations an atom may be inferred on the
basis of its contestor having a certain truth value, and it may have that truth value
on the basis of an assumption. Thus, the translation algorithm may be forced to
assign 1" or F' to an atom which is not assumption free. Thus, the model computed
by the translation algorithm can assign 7" or F' to an atom, which may have a dif-
ferent truth value in other well-supported models of the program. Furthermore,
the simplicity of the proof procedure of Chapter 7 depended on abstracting away
the difference between C'F' and C'T'. But in the case of contestations we cannot
abstract away the difference between C'F' and C'T because the underlying cap func-
tion on which the contestation is based may return different values for C'F' and

CT. The following example illustrates these points.

Example 8.3.3 Let P be the ground program {a <; b < not ¢; ¢ < not b}. Let

C = {b <>y a}. Then given the assumption not b we can infer
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{cnot b) bnot not b, acapl(b,a)}

Clearly, in any translation algorithm the value assigned to a should depend on
the value assigned to b. But the value assigned to b depends on not b being an
assumption. For instance, TransCon would assign CF to b and would thus assign
T to a. Thus, the assignment of T to a cannot be independent of any assumptions.
Furthermore, the value assigned to a would have to be different, given the definition
of the cap, function, if b had been assigned C'T'. This illustrates that in this context

we cannot abstract away from the difference between C'F and C'T.

The strong entailment proof procedure for logic programs with contestations
will first look for a canonical model in which query is F' or C'F'. It will return NO
if it finds such a model, else it looks for a model in which query is C'T. If it finds
such a model then it returns NO, else it looks for a model in which query is T'. If
it finds such a model then it returns YES, else it returns the message “Program
has no C-stable models.”

The procedure looks for a model in which query is F' or C'F' by running pro-
cedure MasterStable(P',not query), where P is the original program P with the
contestations in C compiled into the rules of P. The procedure looks for a model
in which query is CT by running procedure MasterStableC(P’, query), which is
the same as the procedure MasterStable except that instead of invoking the pro-
cedure Proc it invokes procedure ProcCheck defined below, which is the same as
the procedure Proc with an additional check which checks each node N; to see if
in TransCon(N;) query is T. If N; has this property then ProcCheck backtracks.

This ensures that if ProcCheck returns a node N, then in the model TransCon(N)
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query is CT. The main procedure then looks for a model in which query is T by
running MasterStable(P’', query). If a node N is returned by MasterStable at
this point, we can infer that in TransCon(N) query must be T as we have already

ruled out the possibility of a canonical model in which query is C'T.
Procedure MainCS(P,C, L)

1. PC < P with C compiled into it

2. PC <+ PC U {query < L}

3. If MasterStable(PC, not query) # nil then Return NO

4. else if MasterStableC(PC, query) # nil then Return NO

5. else if MasterStable(PC, query) # nil then Return YES

6. else Return “Program has no canonical C-Stable models”

Procedure MainC'S uses procedure MasterStableC' which creates the starting
node and invokes procedure ProcCheck. Procedures MasterStable and ProcC heck
are described below.

MasterStableC(P, lit)

1. SN < CreateNode(P, lit)
2. Parent(SN) < nil
3. ProcCheck(SN)
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Procedure MasterStableC uses procedure ProcCheck which is described be-

low.
ProcCheck(N)

1. If (V) is unstable or inconsistent or unverifiable or (IT; (I'(V)) # 0
and (IT4(T'(N)) = 0 or N has no unvisited descendants)) or
TransCon(I'(N))(query) =T
then if Parent(N) = nil then RETURN nil else Proc(Parent(N))
2. else if IT, (I'(V)) = @ then RETURN I'(N)

3. else

4.begin

5. Create unvisited descendant N’

6. Status(N') < wvisited

7. Parent(N') <~ N

8.Proc(N')

9. end

Example 8.3.4 Let P+C be as in Example 8.2.53. As in Example 8.3.2, let query
be a V not b. But now we are trying to determine whether the query is strongly
entailed by P+C. Procedure MainC'S begin by adding the rule query < a V not b
to P+ C. It next executes MasterStable(PC,not query), which returns nil. So
next MasterStableC(PC, query) is executed which returns a stable, consistent
and verified node containing the assumptions {query, not b} and the inference set
consisting of

not b V not caps(c, d)AbAcapi(dAnot f, a)Acapz(e, a) V bAcapi(dAnot f, a)Acapa(e, a)

{query :

ftrue) chot b pnot b) dcapg,(c, d), prot caps(c, d)Ab

? Y
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qrot caps(c, d)AbAcapi(dAnot f, a)Acapa(e, a) V bAcapi(dAnot f, a)Acapz(e, a)} From E'xample 8.9.1

we know that TransCon assigns C'F' to both a and b. Thus, query is assigned C'T.

Hence, MainC'S returns NO to the original query.

8.4 Proofs

In this section we prove the correctness of the weak entailment proof procedure and
the strong entailment proof procedure for logic programs with contestations. Given
the close similarity of the weak entailment proof procedure for logic programs with
contestations and logic programs without contestations, the proof of correctness of
the weak entailment proof procedure will be very similar to the proofs of correctness
of the weak proof procedure for logic programs without contestations. Many of
the lemmas and theorems that appeared in those proofs will also appear here.
Some of the proofs of these lemmas and theorems will have to be slightly modified
because in this chapter we use slightly different rules of matching and for inferring
superscripted literals.

First we prove the correctness of the weak entailment proof procedure for logic
programs with contestations and then we prove the correctness of the strong en-

tailment proof procedure for logic programs with contestations.

Let P be a ground, finite, normal logic program and let C be a set of ground
contestations. First, we show that if the implicit graph of P + C contains a con-
sistent, stable, verified leaf node then MasterStable will reach it. Second, we show
that the transformation of such a node is a canonical C-stable model of P + C.
Third, we show that all canonical C-stable models of P 4+ C are represented, as

defined in Chapter 4, by a stable, consistent and verified node in the implicit graph.
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Lemma 8.4.1 Let P be a ground, finite, normal logic program and let C be a set
of ground contestations. If the implicit graph of P+C contains a consistent, stable,

verified leaf node then MasterStable will return that node.

Proof: P + C is a finite grounded program. Thus, the implicit graph of P + C
contains only a finite number of nodes. MasterStable does a depth-first search
for a leaf node with the appropriate properties. But for a finite graph depth-first
search is guaranteed to discover any node with any specified properties if there is
such a node in the graph, provided the depth-first search procedure has the correct
mechanisms for detecting the specified properties. In our case MasterStable invokes
Proc to do the depth-first search, and Proc invokes TransCon to test for instability,
inconsistency, and nonverifiability. Since the tests used to determine whether a
node has these properties are directly based on the definition of these concepts,
obviously TransCon is a correct mechanism for detecting these properties. Hence,
if the implicit graph of P + C contains a consistent, stable, verified leaf node then

MasterStable will return that node. n

Lemma 8.4.2 Let P be a ground, finite, normal logic program and let C be a set of
ground contestations. If the implicit graph for P+C contains a consistent, verified

leaf node N then TransCon(N) is a well-supported model of P+ C.

Proof: Let N be a consistent, and verified leaf node in the graph for P 4 C.

First, we show TransCon(N) is a model of P 4+ C. Assume by way of con-
tradiction that TransCon(N) is not a model of P+ C. So P 4 C must contain a
rule

a < body, V---V body,,

such that
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e Case 1: TransCon(N)(a) = F and TransCon(N)(body, V---V body,,) >

F or
e Case 2: TransCon(N)(a) = CT or CF and TransCon(N)(body, V
-V bodyy,) = T.

Case 1: TransCon assigns F to a only if II3(N) contains a™°® ¢, But this

not true when matched

is possible only if each of body, ..., body,, evaluates to true
with the assumptions and inferences of N and when all the cap functions in the
bodies are evaluated. In this case Trans would assign F' to at least one literal in

each of body, ..., body,. Thus, TransCon(N)(body, V ---V bodyy) > F is not

possible, and, hence, Case 1 is not possible.

Case 2: If TransCon(N)(body, V ---V body,) = T then there must be an
i € 1,...,m such that TransCon(N)(body;) = T. So each literal b;; € body;
must be assigned T' by TransCon(N). So for each such literal b;;, if it is a cap
function then it must evaluate to true and if it is not a cap function then there
must be a literal bgue in the inferential part of N. Hence the inferential part of N

true

would also contain a"™"¢. Thus, TransCon would assign T to a. Hence Case 2 is

also not possible.

Thus, TransCon(N) must be a model of P+ C.

Next we show that T'ransCon(N) is a well-supported model of P4C. The well-
founded ordering on the atoms of P+C can be in terms of the earliest node V; in the
path from the starting node to the leaf node N in which an atom in the inferential
part of N; is first assigned a value greater than £’ by TransCon. This ordering

must be well-founded because the generation of the nodes and the inferred atoms
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in each node are by process of bottom-up inference which monotonically enlarges
the inferential part of nodes. Furthermore, since the assignment of a truth value
to any literal is not greater than the truth value assigned to its superscript, the

truth value assigned to a literal must be supported. |

Lemma 8.4.3 Let P be a ground normal logic program and C be a set of contes-
tations. If the implicit graph for P + C contains a stable, consistent, verified leaf

node N then TransCon(N) is a well-supported C-stable model of P+ C.

Proof: Assume that N is a stable, consistent, and verified leaf node. We have
already shown that TransCon(N) is a well-supported model. Since N is stable,
the inferential part of N contains no literal a® such that S = not a and S evaluates
to at least CT in TransCon(N). Thus, for every literal a® TransCon would assign
a the truth value of S. Let S be the disjunction S; V---V S,. So there must be a
rule Rin P+C

R = a <+ body, V---V body,

such that the assumption and inferences of N are matched with the literals in the

body of R the result is
Sn

a  true’ V---V true

Clearly then each body; would evaluate to the truth value that S; evaluates to in

TransCon(N). Thus, body(R) would evaluate to the maximum of
{TransCon(Sy),...,TransCon(Sy,)}.

But this is what S would evaluate to. Since a is given the truth value S evaluates

to, a and body(R) would have the same truth value in TransCon(N). Thus, every
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R in P + C would evaluate to 7. Hence TransCon(N) is C-stable. ]

As in the weak entailment proof procedure for logic programs without contesta-
tions, the proof procedure in this chapter presupposes that if MasterStable cannot
find a consistent, verified and stable leaf node N such that query (or, not query)
is in the assumption or inference part of N then the program contains no canon-
ical C-stable model Z such that Z(query) > CT (resp., Z(not query) > CT).
Lemma 8.4.1 tells us that if the implicit graph for P contains a leaf node of that
sort then MasterStable will find it. But we can have no assurance that if Mas-
terStable does not find a leaf node of that sort then the program has no C-stable
canonical model unless we can show that every C-stable canonical model is repre-
sented in the implicit graph. Ideally, we would like to prove that for each C-stable
canonical model Z of P + C there exists a leaf node N in the implicit graph for
P + C such that TransCon(N) = Z. However, this claim would not be true of a
model Z which assigns only 7" or F' to atoms because TransCon also assigns CT
or C'F' to atoms. Nevertheless, we show below in Lemma 8.4.4 that every C-stable
canonical model is represented in the implicit graph in the sense of ‘representation’

defined in Definition 9.4.1 in Chapter 6.

Lemma 8.4.4 Let P be a normal logic program and let C be a set of contestations.
For each well-supported C-stable model T of P + C there exists a leaf node N in
the implicit graph for P+ C such that TransCon(N) is congruent with T and thus

N represents L.

Proof: Since the graph is implicit, a node N exists in the graph only if there is a
path from the starting node, (P, {true},), (HBp U not HBp)), to N. Recall that

in the path from the starting node to a leaf node each new node is generated by
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adding a new assumption to the result of applying the I'" operator to the previous
node and by performing some housekeeping operations. Let N be any leaf node in
the graph such that the path from the starting node to /N satisfies the following
property: For any node N; in the path, if its child in the path is obtained by adding
an assumption [ to the result of applying the I operator to N;, then [ must be
such that Z(I) > CT. That is, the path is generated using the strategy of making
a new assumption [ only if Z(l) > CT unless, of course, there are no assumptions
left to be made, in which case the new node is generated by applying the Falsify
operation to the program part of NV;.

We show below that a leaf node N reached by this strategy

1. is a stable, consistent and verified node, and

2. is such that TransCon(N) is congruent with Z.

We prove that N is a stable, consistent and verified node and that TransCon(N)
is congruent with Z by inductively proving that each node N; in the path to N
(including N) is consistent,stable and not unverifiable, and inductively proving
that, for any atom a, if a® € [Ix(N;) U I3(N;) and TransCon(N;)(S) > CT
iff Z(a) > CT. Thus, N must be verified as well as being consistent and stable
and N must represent Z. The induction is done in terms of the order in which
the nodes appear in the path Ny,..., N;, ..., N,, where Nj is the starting node,
(P, {true},0,(HBp U not HBp)), and N, is N.

Base Case: i = 0. Clearly, the starting node, Ny, is stable, consistent and not
unverifiable. Similarly, since IIy(Ny) U II3(Ny) = {true} it is trivially true that if

an atom a® € II(Ny) U TI3(Np) then Z(a) > CT iff TransCon(Ny)(S) > CT.

Inductive Case: Assume that the claim is true for all N, such that £ < 7. To
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show that the claim is true for ;.

First, we show that if an atom a® € Tly(N;) U [I3(N;) then TransCon(N;)(S) >
CT it Z(I) > CT. If a € I11(1V;) (i.e., if a is an assumption) then by the strategy
for selecting assumptions it follows that Z(a) > CT and since a is understood to
have the superscript true, the claim follows trivially.

Suppose, therefore, that a® € II3(V;) (i.e., a® is an inference). If a® € II3(Ny),
where k£ < i, then the claim is true by the inductive assumption. Suppose therefore
that a® ¢ II3(Ny), for any k& < i. So a® must occur in some iteration of the 7"
operator as applied to IIo(N;—;) U II3(N;—1). Let S =S,V ---VS,.

Either TransCon(N;)(S) > CT or not. If TransCon(N;)(S) > CT then there
is a disjunct S in S such that TransCon(N;)(Sk) > CT. So P + C must contain
a rule

a < body, V - - -V bodyy V - - -V body,

such that evaluating the cap functions in body, and matching the literals in bodyy
with the assumptions and inferences of N;_; results in true®*. So corresponding
to each a; in Atoms(bodyy) there must be a literal afkj in an earlier iteration of
T'P(T1y(N; 1) U TI3(N; ;)) and each such Sk, must evaluate to at least C'T' in
TransCon(N;). Thus, by the inductive assumption Z(a;) > CT for all such a;.

Thus, Z(bodyy) > CT. Since 7 is C-stable, it follows therefore that Z(a) > CT.

If it is not the case that TransCon(N;)(S) > CT, then TransCon(N;)(S) < CF.
In that case each disjunct Sy in S is such that TransCon(N;)(Sx) < CF. So at
least one member Sy, of each Sy must evaluate to C'F or less in TransCon(NN;)

and at least one literal l,f]_ from each body, must be in an earlier iteration of

T'P(y(N;—y) U 3(N;_1)). Thus, by the inductive assumption Z(I) < CF. So
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Z(bodyy) < C'F for all k from 1 to n. Since Z is well-supported, then Z(a) < CF.

By a similar argument it is easy to see that the same remarks apply to any literal

that belongs to any iteration of the T operator as applied to Iy(N;_1) U I3(N;_1).

Hence, we have shown that if ® € [Iy(N;) U I3(N;) then TransCon(N)(S) >
OT iff T(a) > CT.

Second, we show that NN; is not unverifiable. Let a be a positive assumption
in N;. So Z(a) > CT. But then if a® is in [I3(2V;) then S cannot evaluate to less
than CT in TransCon(NN;) otherwise, as we have shown above, Z(a) < C'F. But

a cannot both be greater and lesser than C'T" in Z. Thus, N; is not unverifiable.

Third, we show that N; is consistent. Let not a be a negative assumption in
Z. So Z(not a) > CT. Assume by way of contradiction that a® € II3(N;) and
TransCon(N;)(S) > CT and S [~ not a. But then, as we have shown by the
inductive proof above, Z(a) > CT. But both a and not a cannot be C'T" or greater

in Z. Thus, N; is consistent.

Fourth, we show that N; is stable. Suppose by way of contradiction that
N; is not stable. So there exists an a® € II3(V;) such that S | not a and
TransCon(N;)(S) > CT. By the inductive proof above in that case Z(a) > CT.
However, if S = not a then not a is in S, and so not @ must be an assumption

and hence Z(not a) > C'T. But this is a contradiction. Hence N; must be stable.

This completes the inductive step. Thus, we have shown by induction that
the leaf node N is stable, consistent and not unverifiable, and such that if a® €
[I,(N) U II3(N) and TransCon(N)(S) > CT ifft Z(a) > CT. It remains to be

shown that IV is verified.
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We know that N is not unverifiable. This means that for any positive assump-
tion a, there is no inference a® in N such that TransCon(N)(S) < CF. But since
II;(N) (the program part) is empty, it follows that for any atom a € HBp, a°,
where S is some superscript, belongs in II3(N). Either TransCon(N)(S) < CF
or TransCon(N)(S) > CT. But as remarked above it cannot be the case that
TransCon(N)(S) < CF if @ is an assumption and ¢ is in II3(N). So in that case
TransCon(N)(S) > CT. So each positive assumption is verified in N and thus N

is verified.

We show that N represents Z. Since N is stable, consistent and verified, for
any a® € II3(N), TransCon(N)(a) = TransCon(N)(S). As shown in the in-
ductive proof above, Transcon(N)(S) > CT iff Z(a) > CT. This implies that
TranCon(N)(a) > CT iff Z(a) > CT. Which implies that TranCon(N)(a) < CF

iff Z(a) < CF. So TransCon(N) is congruent to Z, and thus N represents Z.

Now we are in a position to prove the correctness of the main algorithm.

Theorem 8.4.1 Let P be a normal logic program, C be a set of contestations, and
let L be a query to P+ C. If MainCW(P, C, L) returns “NO” then P + C does
not weakly entail L, if MainCW(P, C, L) returns “YES” then P +C weakly entails
L, and if MainCW(P, C, L) returns “Program has no canonical C-stable models”

then P+ C has no canonical stable models.

The proof of the above theorem is entirely analogous to the proof of the cor-
responding theorem about the correctness of the weak entailment proof procedure

for logic programs without contestations (Theorem 6.4.2).

Next we prove the correctness of the strong entailment proof procedure for
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normal logic programs with contestations.

Theorem 8.4.2 Let P be a normal logic program, C be a set of contestations, and
let L be a query to P+ C. If MainCS(P, C, L) returns “NO” then P +C does not
strongly entail L, if MainCS(P, C, L) returns “YES” then P + C strongly entails
L, and if MainCS(P, C, L) returns “Program has no canonical C-stable models”

then P+ C has no canonical stable models.

Proof: Assume MainCS(P, C, L) returns “NO”. This implies that either
MasterStable(PC, not query) # nil or MasterStableC(PC, query) # nil. If
the former then Proc has returned a stable, consistent and verified node N such
that TransCon(N)(query) < CF, and by Lemma 8.4.1 we know that the implicit
graph of P + C contains such a node. Since TransCon(N) is a model of P + C,
clearly TransCon(N)(L) < CF. But since TransCon(N) is a canonical model of
P +C (by Lemma 8.4.3), it follows that P + C cannot strongly entail L.

On the other hand if it is the case that MasterStable(PC, not query) re-
turns nil and MasterStableC'(PC, query) returns a non-nil node, then we know
that ProcCheck has returned a stable, consistent and verified node N such that
TransCon(N)(query) = CT. By reasoning similar to the proof of Lemma 8.4.1
we know that the implicit graph of P 4+ C must contain such a node. This is
because procedure ProcCheck is just like procedure Proc except that it contains
an additional check to determine for any node N, which need not be a leaf node,
whether TransCon(N)(query) = T. Thus, if procedure Proc correctly returns
a node with specified properties then by similar reasoning procedure ProcCheck
also operates correctly. Thus, we can assume that if ProcCheck has returned a

stable, consistent and verified node N such that TransCon(N)(query) = CT then
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the implicit graph of P + C contains such a node. Since TransCon(N) is a model
of P+C, clearly TransCon(N)(L) = CT. But since TransCon(N) is a canonical
model of P + C (by Lemma 8.4.3), it follows that P + C cannot strongly entail L
since L is less than T in a canonical model.

Assume instead that MainCS(P, C, L) returns "YES”. This implies that
MasterStable(PC, query) returns a non-nil node at step 5 of MainCS. MainCS
reaches step 5 only if at step 3 it fails to find a consistent, verified and stable node
N such that TransCon(N)(query) < CF and such that at step 4 it fails to find a
stable, consistent and verified node N such that TransCon(N)(query) = CT. As
proven in the first part of this proof this means that the implicit graph of P+C con-
tains no consistent, verified and stable node N such that TransCon(N)(query) <
CF or in which TransCon(N)(query) = CT. By the converse of Lemma 8.4.4,
it follows therefore that P 4 C contains no C-stable models in which query is F
or CF or C'T. Thus either P + C has no C-stable models or query is T in all its
C-stable models. But since at step 5 MasterStable(PC, query) returns a stable,
consistent and verified node N, it follows from Lemma 8.4.3 that TransCon(N)
is a C-stable model of P + C. Hence, query must evaluate to T in all the C-stable
models of P 4+ C. But since all such models are well-supported, it follows that L
must be T in all the C-stable models of P +C. However, if P+ C has any C-stable
models, then all its canonical models are C-stable. Thus it follows that P + C
strongly entails L.

Assume instead that MainC'S returns ”Program has no C-stable models”. This
implies that at steps 3, 4, and 5 the program failed to find consistent, verified, and
a stable node N such that TransCon(query) is F or CF or C'T or T. This means

that P + C has no C-stable models in which query has one of these truth values.
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But since these are all the possible truth values, it follows that P + C has no

C-stable models. =

8.5 Discussion

In this chapter we have described two proof procedures. The first proof procedure
is for answering whether a query is weakly entailed by a finite and ground normal
logic program augmented with a set of ground contestations. The second proof
procedure is for answering whether a query is strongly entailed by a finite and
ground normal logic program augmented with a set of ground contestations. We
have proven that these proof procedures for sound and complete with respect to
the C4 semantics for normal logic programs augmented with contestations. These
proof procedures are restricted to programs augmented with contestations which
have at least one well-supported C-stable model. For a program augmented with
contestations which lacks a well-supported C-stable model, the proof procedures
terminate by sending a message saying that the augmented program lacks a C-
stable model.

As in Chapter 6, we will analyze the worst case complexity of the proof pro-
cedures in terms of the number of matching operations. Note that determining
whether a cap function is known does not require the proof procedure to perform
any matching operations. Recall that a cap function such as cap;(B, a) is consid-
ered known in a node when each literal in B or its negation occurs in the inference
or the assumption part of that node. Thus, contestations compiled into rules do
not require any additional matching operations for expanding a node. Hence, the
worst-case complexity for answering whether a query is weakly entailed by a finite

and ground normal logic programs with contestations is exactly the same as for
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finite and ground normal logic programs without any contestations. In Chapter 6
we determined that this complexity is O(n? x 2"), where n is the cardinality of the
Herbrand base of the input program.

The worst-case complexity for the procedure for determining whether a query is
strongly entailed by finite and ground normal logic program augmented with con-
testations will be exactly be the same as the proof procedure for weak entailment
since the strong entailment procedure consists in running three times essentially
the same procedure as is the case of weak entailment. Thus, the worst case cost
of answering whether a query is strongly entailed by a program augmented with
contestations is much more expensive than answering whether the same query
is strongly entailed by a program without contestations, which we determined in

Chapter 7 to be O(n?).

8.6 Summary

In this chapter we have provided a proof procedure for answering ground queries,
which can be a disjunction or conjunction of literals, to a ground and finite normal
logic program augmented with a set of heterogeneous ground contestations. The

research contributions of this chapter are summarized in this section.

e We introduce a way of compiling contestations into the bodies of the rules

of a program.

e We have developed the formal apparatus and algorithms for computing a
canonical model of a program with contestations compiled into it in which a
specified literal is true by making assumptions and inferring literals on the

basis of these assumptions and the input program (Section 8.3).
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e We have devised a procedure which utilizes this apparatus and algorithms for
determining whether a ground query is weakly entailed or strongly entailed

by the input program (Section 8.3).

e We have proved the soundness and completeness of this procedure with re-
spect to the C4 semantics for normal logic programs augmented with con-

testations (Section 8.4).

e We have proved that the worst-case complexity of this procedure is O(n? x
2™) for both weak and strong entailment, where n is the cardinality of the

Herbrand base of the program (Section 8.5).
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Chapter 9

Integrity Constraints and Contestations

9.1 Introduction

In this chapter we use our semantics of logic programs with contestations to de-
velop a semantics for deductive databases that violate their integrity constraints.
Standardly, databases are supposed to satisfy their integrity constraints. Viola-
tion of an integrity constraint by a database is regarded as a system failure. The
mechanism for ensuring that a database satisfies its integrity constraints is a layer
of software in the database management system (DBMS) that blocks updates to
the database that would result in the violation of any constraints. This layer of
software is commonly called the transaction manager of the DBMS. This model of
transaction management is carried over to the multi-database setting ([BGMS92]).
The global transaction manager is granted the authority to block global updates
which would violate global constraints as well as local updates which would violate
global constraints.

However, there are contexts in which the transaction manager may not have
this authority ([AKWS95]). Thus, there can be loosely coupled multi-database

systems in which the global transaction manager does not have the authority to
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block a local transaction at one of the participating databases which would result
in the violation of the global integrity constraints without any violation of the local
constraints. In this case the global database state (the naive union of all the local
database states) would violate the global integrity constraints. Furthermore, in
integrating information from different sources an agent or a mediator may have the
capacity to draw information from different sources without having any transaction
management facilities. Thus, in this context the information in the integrator
may conflict with the integrator’s integrity constraints. That is, the state of the
integrator’s database may violate the integrity constraints. But in this case the
integrator should be able to reason using the information at hand even though
the information contains conflicts. This again creates a need for a semantics of
databases that violate their integrity constraints.
Thus, it is necessary to reconsider the relation of integrity constraints to databases.

If in the sorts of contexts described above integrity constraints do not play the role
of constraining the state of the database, then what role can they play? We pro-
pose that integrity constraints be viewed as constraints on what can be inferred
from the database as opposed to constraints on the state of the database. We
propose that even if the state of a database violates its integrity constraints, nev-
ertheless we can constrain what can be inferred from the database so that the
inferred information always satisfies the integrity constraints. Ensuring that the
state of the database satisfies the constraints is just one way of ensuring that what
can be inferred from the database satisfies the constraints. We show below how
C4 can be used to give an account of integrity constraint satisfaction in which the
information inferred from the database can satisfy the constraints even when the

state of the database does not.
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In Section 9.2 we describe an entailment relation such that the set of entailments
of a database in terms of this entailment relation satisfies the integrity constraints.
In Section 9.3 we show how to represent a wide range of integrity constraints
in terms of contestations. Thus, a deductive database with integrity constraints
can be viewed as a logic program augmented with contesations. In Section 9.4
we show how the semantics we have developed in Chapter 4 for normal logic
programs augmented with contestations can provide a semantics for deductive
databases augmented with a wide range of integrity constraints. In terms of this
semantics we define the entailment relation described in Section 9.2 and prove that
the entailment relation thus defined can provide a satisfactory account of integrity
constraint satisfaction in which the information inferred from the database can
satisfy the constraints even when the state of the database does not. In Section 9.5
we discuss the merits of our approach and compare it to related work. In Section 9.6

we summarize the main research contributions of this chapter.

9.2 Preliminaries

A deductive database (DB) consists of two parts: a set of facts and a set of
rules. The set of facts in a database is called the eztensional database (EDB)
and the set of rules in a database is called the intensional database (IDB). Rules
in deductive databases allow implicit facts to be derived. Thus, the extensional
and the intensional parts of the DB together explicitly and implicitly specify all
the information contained in the DB. The facts are always ground atoms. If the
rules of a DB contain no negative literal in the bodies, then the DB is called a
Horn database if the head of the rule has at most one atom. Furthermore, Horn

databases that contain no function symbols in the facts or the rules are called
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Datalog databases. In this chapter we assume that databases are function-free,
but the rules may contain negative literals in the bodies. Thus, the databases we

consider in this chapter are function-free normal logic programs.

In addition to the information explicitly and implicitly contained in the DB,
it is common for databases to have integrity constraints (/C's). The role of IC's is
to further specify what information is contained in the DB. This is done not by
adding further facts or rules which can be used to specify more information, but
by further characterizing the information already specified in the DB. This can
be done by specifying the relation between certain predicates, or by specifying the
range of values that a certain variable can take, or by specifying which combinations
of information cannot occur together or must occur together, or what cannot count
as legitimate information from the point of view of the database. Some examples of
integrity constraints associated with a company’s database might be “All managers
must be employees,” or “Salary cannot be less than 0,” or “No employee can be
a contractor.” Thus, integrity constraints delimit or constrain the possible ways
in which the information in the database can be interpreted. This has led some
writers to view IC's as specifying the semantics of the database. However, the term
“semantics” is also used to describe the model theory of the facts and the rules
in the database, which determines what information can be correctly viewed as
implicitly contained in the database. Thus, in the context of deductive databases
it is unwise to characterize I1C's as specifying the semantics of the database as it
obscures the difference between the issue of what information is implicitly (and
explicitly) contained in the database and the issue of how that information is to
be interpreted.

Clearly, it is desirable for a DB to satisfy its integrity constraints since the
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IC's are meant to confer meaningfulness on the information contained in the DB.

This raises the issue of what it means for a DB to satisfy IC's.

Traditionally, it is the state of the DB that is supposed to satisfy the IC's.
In the case of relational databases it is relatively easy to specify what counts as
the state of a database: it is the set of tuples contained in all the tables in the
database. Because some of the information in a deductive database is contained
implicitly, which is to be made explicit by making all possible inferences from the
extensional and intensional parts of the database, specifying what counts as the

state of a deductive database is a more complex matter. We do that below.

The extensional and intensional part of a DB together constitute a normal
logic program. We associate a specific semantics SEM to DB, where SEM can
be any semantics for normal logic programs such as the stable model semantics, or
the well-founded semantics, or C4. Let =gy be the entailment relation defined
in terms of the chosen semantics SEM. In terms of |=gmar we define the state of

a deductive database as follows.

Definition 9.2.1 Let DB be a deductive database and let SEM be its chosen
semantics. Then the state of DB, relative to SEM, is CONTsgy(DB) which is
defined as CONTsgy(DB) = {l | DB Espm l}, where 1 is a literal.

Thus, CONTspn(DB) is the set of literals that can be inferred from the database
relative to a chosen semantics SEM. The state of DB has to be specified relative
to a chosen semantics, and since different semantics for normal logic programs are
not equivalent in terms of the consequences they legitimize from a program, it
follows that the state of DB can vary depending on the chosen semantics. This

does not happen in the case of Datalog databases because such databases are
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essentially definite logic programs and the different semantics for definite logic
programs coincide in terms of the set of consequences they legitimize.

Following the traditional perspective, deductive database theorists have also
held that it must be state of the database that satisfies its integrity constraints.
There are two well-known theories of integrity constraint satisfaction in the deduc-
tive database literature. The entailment theory of integrity constraint satisfaction
([Rei84]) holds that a database DB satisfies an integrity constraint /C' just in case
DB E IC. The consistency theory of integrity constraint satisfaction ([Kow78])
holds that a database D B satisfies an integrity constraint /C' just in case DBU IC

is consistent.

Example 9.2.1 Let DB = {a < not b; b < not a}. Let IC = {not a}.
Let SEM be stable model semantics. Then on the entailment theory of integrity
constraint satisfaction DB does not satisfy IC. However, on the consistency theory

of integrity constraint satisfaction DB satisfies IC'.

It is clear that if a D B satisfies its /C's on the entailment theory then it satisfies
those IC's on the consistency theory. But the converse does not hold. Hence, the
demands that a set of I/C's make on a DB are more stringent on the entailment
theory than on the consistency theory of IC' satisfaction. In the rest of this chapter
we assume the entailment theory of integrity constraint satisfaction.

In the sorts of contexts described in the introductory section of this chapter
the state of a database may violate its integrity constraints. Nevertheless we want
the integrity constraints to play a role in interpreting the information contained
in the database since we recognize that integrity constraints can encode valuable
information about the domain of the database. In this chapter we seek an account

of integrity constraint satisfaction that views such constraints not on the state
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of the database but on what can be inferred from the database. But since any
inferential powers of a database must be sound with respect to an entailment
relation, we must formulate an entailment relation that supports such a revised

account of integrity constraint satisfaction.

Formally speaking, what is required is an entailment relation g such that the
set of consequences of DB, relative to a set of IC, in terms of |, are guaranteed
to satisfy IC. Let CONS;c(DB) = {l | DB R [}, where [ is a literal. Then the
requirement that the information inferred from a database DB, with the associated
integrity constraints IC', should satisfy /C' can be reformulated as the requirement
that CONS;c(DB) should satisfy IC. Since CONS;c(DB) is a set of literals
we can say that CONS;c(DB) satisfies IC if it entails IC in the sense that each
member of IC' is true in CONS;c(DB). Note that the entailment relation R is
so defined that the set of such entailments of a DB must satisfy IC', but this is
not a requirement on the entailment relation FEggys, and thus not a requirement
on CONTsppy(DB), for any choice of SEM. Clearly, any semantics on which
is based must be inferentially conflict-free with respect to the types of conflicts

expressed by integrity constraints.

Example 9.2.2 Let DB = {p, q}. Let IC = {not p V not q}. Then
CONTsgy(DB) = {p, q} on any reasonable choice of SEM. Thus, the state of
DB does not satisfy IC. However if a set of inferences from DB are to satisfy IC
then either p ¢ CONS;c(DB) or ¢ € CONS;c(DB). So the entailment relation
R must be such that either DB & p or DB & q.

Let us call any entailment relation non-reflexive if it is such that p € S but

S does not entail p. The above example shows that = must be a non-reflexive
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entailment relation.

Since R is an entailment relation, it must be based on a model theory. In the
following we propose C4 for normal logic programs with contestations as such a
model theory. But this requires that integrity constraints should be represented in
the language of contestations. We show how to do that in the next section. We
restrict our account to ground constraints, and hence to the propositional case.

However, the database need not be ground.

9.3 Representing integrity constraints

An integrity constraint such as:
No one is both a male and a female

is represented in deductive databases as <— male(X), female(X) with the intended
meaning that male(X) and female(X) cannot be simultaneously true of the same
entity. However, since we are considering only propositional constraints, this con-
straint must be instantiated with respect to a specific entity. Thus, regarding some
individual Pat the constraint says that both male(Pat) and female(Pat) cannot
be true at the same time. So the constraint can naturally be divided into two

parts:
e If male(Pat) is true then female(Pat) cannot be true, and
o If female(Pat) is true them male(Pat) cannot be true.

This suggests that the constraint can be represented by the set of contestations

{male(Pat) < female(Pat); female(Pat) <1 male(Pat)}. More generally, we
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can represent a denial integrity constraint <— aq, ..., a,, where each a; is a ground

atom, by the following set of contestations:

{a1 AN N1 N Qg /\---/\an<—>2ai|i€{1,...,n}}

As a limiting case when n = 1, i.e., when the constraint is <— a;, we represent
this as true <1 a;, where true is a special atom that always evaluates to 7" in all

interpretations.

So far we have represented constraints containing only atoms. But of course
constraints can also contain negative literals. Thus, there can be a constraint
< p, not ¢q. This constraint can be represented as not ¢ < p. However, it would
be incorrect to represent this constraint by p <—; mnot ¢ because contestations
with a negative literal in the right hand side should be regarded as ill-formed.
For a model to satisfy p <1 not ¢, the truth of p in that model must block the
truth of not ¢ in that model, which means that ¢ must be true. But of course
a contestation cannot by itself make some atom true in a model-at most, it can
provide a cap on the truth value assigned to that atom in that model. That is, in
a well-supported model an atom can be assigned true only if there is evidence for
that atom which supports assigning it true— evidence against the negation of that
atom cannot be construed as evidence for that atom. For this reason we regard
a contestation of the form p <, not ¢ as ill-formed. Hence we suggest that a

constraint of the form <— p, not ¢ should be represented by the single contestation

not ¢ <—; p.
More generally, we can represent constraints of the form < [y, ..., [,, where at
least one l;, i € {1,...,n}, is a positive literal, as follows. For the sake of simplicity

of representation assume that all the positive and negative literals in the constraint
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are grouped separately with the negative literals starting at 7. Then < [1,...,[,

can be represented by the following set of contestations:
{LAN-ANGANGa NNy =1l | je{l,...,n}}
This representation can be shown to be correct by the following lemma.

Lemma 9.3.1 Let M be a set of C4 interpretations. Let ICy be the ground
constraint < ly, ..., l,, where at least one l;, i € {1,...,n}, is a positive literal. Let
all the positive and negative literals in IC be grouped separately with the negative
literals starting at ©. Then for any T € M, ICY evaluates to at least CT in T if

and only if T satisfies each contestation in
C = {ll/\"'/\lj_l/\lj_H/\"'/\ln “—1 lj |]€ {1,,2}}

Proof: =

Let Z be any member of M. Assume that < [, ..., [, evaluates to at least C'T'
in Z. So there exists an [y, k € {1,...,n}, such that Z(l;) < CF. If i <k <n
then [ is a negative literal, which occurs in the left hand side of every contestation
in C, and thus the left hand side of each member of C is at most C'F in Z. In
this case every member of C is trivially satisfied in Z. On the other hand, if
1 < k <i—1 (that is, I} is a positive literal), then C contains one contestation
with [ on its right-hand side and the other members of C have [ on the left-hand
side. The contestations with [ on the left hand side are trivially satisfied in Z
because the left-hand side of each such contestation evaluates to at most C'F' in
Z. The contestation with [, on the right-hand side is also satisfied in Z because its
right-hand side is at most C'F.

=

Assume that each member of C is satisfied in Z. Assume, by way of contradiction,
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that < [1,...,l, does not evaluate to at least C'T"in Z. So each literalin {ly,...,[,}
must evaluate to at least C'T" in Z. But this means, for instance, [, A---Al, <1 [1
cannot be satisfied by Z. This contradicts the assumption that every member of

C is satisfied in Z. Thus, < [4,...,[, must evaluate to at least C'T" in Z. [

This representation of integrity constraints can be generalized to non-denial
integrity constraints such as p — ¢, where both p and ¢ are atoms. We understand
— to be material implication. We understand the constraint as saying that p — ¢
should be entailed by the database. This means that in any canonical model of
the database p should be true only if ¢ is true. So the constraint p — ¢ can
be represented by the contestation not ¢ <, p because the contestation can be
satisfied by any model if and only if in that model if not ¢ is at least CT (and
thus ¢ is at most C'F) then p is at most C'F. So in any canonical model of the
database p is true (T" or CT) only if ¢ is true (T or CT).

Following this line of thinking a constraint of the form pA ¢ — r can be under-
stood as not  —; pA ¢. Although it is easy to give a semantics for contestations
with a conjunction as the contested part, such contestations cause problems for the
proof procedure given for normal logic programs with contestations. However, we
can represent such contestations by the set {pA not r < ¢; ¢A not r —; p}. It
is easy to see that any C4 interpretation satisfies the contestation not r <1 pA ¢
if and only if it also satisfies the set {p A not r —; ¢; ¢ A not r —; p}.

More generally, a constraint of the form a; A -+ A a, — a,41, where all the q;

are atoms, can be represented by

{a; N---Na;j 1 Naggr AN---ANa, A not a1 =1 a; | i€ {1,...,n}}
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Generalizing this even further, a constraint of the form a; A---A a, = byV---V b,
where all the literals are atoms, can be understood as not b;A---A not b,, <1 a1 A

-++A a,. Asseen above, this can be represented by the following set of contestation:
{ar A-+-Naj—y Naggr A+ Nayg A not by A---A not b, — a;|i€{l,...,n}}

The following lemma demonstrates the correctness of this representation of the

above sorts of constraints.

Lemma 9.3.2 Let M be a set of C4 interpretations. Let ICy be the ground
constraint a; N\ --- N\ a, —> by V---V b, where all the literals are atoms. Then
for any T € M, ICy evaluates to at least C'T in I if and only if T satisfies each

contestation in
C ={a1 A --Aaj_1 Najg1 A+ -ANayA not byA---Anot b, <1 a; i€ {l,...,n}}

Proof: =

Let Z be any member of M. Assume that IC; evaluates to at least C'T" in Z.
Either a4 A--- A a, is at least C'I"in Z or it is at most CF in Z. If a1 A --- A a,
is at least CT in Z, then by V ---V b, is at least C'T" in Z. So there exists a
j € {1,...,m} such that b; is at least C'I" and so not b, is at most C'F" in Z. But
since not b; occurs in the left-hand side of every member of C, it follows that in
this case the left-hand side of every member of C evaluates to at most C'F', and
thus every member of C is trivially satisfied in Z.

On the other hand if the left-hand side of IC; is at most C'F' then there exits
an a;, ¢ € {1,...,n}, such that a; is at most CF in Z. One member of C will
have a; in its right-hand side and the other members of C have a; on the left-hand

side. The contestations with a; on the left hand side are trivially satisfied in Z
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because the left-hand side of each such contestation evaluates to at most C'F in 7.
The contestation with a; on the right-hand side is also satisfied in Z because its

right-hand side is at most C'F.

=

Assume that each member of C is satisfied in Z. Assume, by way of contradic-
tion, that IC; does not evaluate to at least C'I" in Z. So the left-hand side of 1C4
must evaluate to at least C'I" and the right-hand side of IC; must evaluate to at

most C'F' in Z. But this means, for instance

asN---ANa, Anot by A---A not b,, —; a;

cannot be satisfied by Z. This contradicts the assumption that every member of

C is satisfied in Z. Thus, IC; must evaluate to at least C'T" in Z. |

A constraint of the form not p — not r can be represented by the contestation
not p < r. Clearly, if r is blocked from being true in a model in which not p is
true, then not p — not r is true in that model. More generally, a constraint of the

form [; A---Al, — not p can be represented by the contestation Iy A---Al, <1 p.

The following lemma proves the correctness of this representation of such con-

straints.

Lemma 9.3.3 Let M be a set of C4 interpretations. Let ICy be the ground
constraint Iy A -+ ANl, — not p. Then for anyZ € M, IC; evaluates to at least

CT in T if and only of T satisfies [y A --- Nl, <1 p.

Proof: =
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Let Z be any member of M. Assume that IC; evaluates to at least C'T" in Z.
Then either [; A- - -Al, evaluates to at most C'F' in 7 in which case the contestation
is trivially satisfied by Z, or [y A - -+ A [, and not p evaluates to at least C'I" and p

evaluates to at most C'F'. In the latter case too the contestation is satisfied by Z.

=

Assume that Z satisfies [y A -+ A l, <1 p. Either [; A --- A [, evaluates to at
least C'T" or it evaluates to at most C'F' in Z. In the former case p must be C'F' in
7 and so IC)] must be true in Z. In the latter case IC] is true in Z regardless of

the truth value of p. [

So far we have represented conditional constraints in which the right-hand side
is a negative literal and conditional constraints in which the left-hand side consists
entirely of positive literals. Can we represent conditional constraints in which
the left-hand side contains negative literals and the right-hand side is a positive
literal? As will be discussed below, we cannot represent in terms of contestations
a conditional constraint in which the left-hand side consists entirely of negative
literals and the right-hand side is a positive literal. However, it is possible to
represent a constraint of the form not p, ¢ — r as not p A not r —; ¢.
This says that in any model if both p and r fail to be true then ¢ cannot be
true, which captures the intuition behind the constraint not p, ¢ — r. But note
that this representation of the constraint in terms of the contestation is possible
only because the constraint contains an atom in its left-hand side which can be a
contested atom in the corresponding contestation. More generally, a constraint of
the form not a; A---A not a,, A by---A b, — ¢, where cis an atom and each b;,

1 < j < n,is an atom, can be represented by the following set of contestations:
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{not a;A---Anot a, A by---Abj_1AbjsiA---Ab,Anotec—y bj|j€{l,...,n}}

The following establishes the correctness of this representation.

Lemma 9.3.4 Let M be a set of C4 interpretations. Let ICy be the ground
constraint not a; A--- A not a,, A by---A b, = ¢, where c is an atom and each
bj, 1 < j < n,isan atom. Then for any T € M, IC, evaluates to at least CT

wn I if and only of I satisfies each contestation in
{not a;A-- ‘A not ay A by Abj_1AbjA-AbyAnotc—y b |j€{l,...,n}}

Proof: =

Let Z be any member of M. Assume that IC; evaluates to at least C'T" in
Z. Either c evaluates to at least CT" or at most C'F' in Z. In the former case
since not ¢ is on the left-hand side of each member of C, it follows that the left-
hand side of each contestation in C evaluates to at most C'F' in Z, and, thus, each
contestation is trivially satisfied in Z. On the other hand, if ¢ is at most C'F', then
the left-hand side of IC'; must be at most C'F'. So at least literal in the left-hand
side of IC| must be at most C'F. If it is a negative literal then, since every negative
literal in the left-hand side of 1C'; occurs in the left-hand side of every contestation
in C, the left-hand side of every contestation must be at most C'F' and thus every
contestation must be trivially satisfied in Z. On the other hand, if a positive literal
b; in the left-hand side of /(' is at most C'F’ then every contestation with b; in
the left-hand side is trivially satisfied in Z. And the only contestation in C with b;

in the right-hand side is also satisfied in Z since b; is C'F in Z.

<«
Assume that each member of C is satisfied in Z. Assume, by way of contra-

diction, that ICY does not evaluate to at least CT in Z. So the left-hand side of
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IC'y must evaluate to at least C'T" and the right-hand side of 7C'} must evaluate to at
most C'F in Z. But this means, for instance, not a;A- - -A not a,, A by - - ‘A b,A not ¢ < by
cannot be satisfied by Z since both the left-hand side and the right-hand side of
this contestation evaluates to at least C'T" in Z. Thus, a contradiction. Hence, IC

must evaluate to at least CT in 7. m

Summarizing the discussion so far, the following types of ground constraints

can be represented in terms of contestations:

1. < Iy AN---Al,, where at least one literal is positive. This can be represented

by the following set of contestations
{ll/\"'/\lj_l/\lj_H/\"'/\ln “—1 lj |]€ {1,,n}}
2. a1 N---N a, = by V---V b,, where all the literals are atoms. This can be
represented by the following set of contestations
{ay A---Na;—1 Najig1 A---Na, Anot byA---Anotb,, — a;|i€{l,...,n}}
3. [y A---Al, — not p. This can be represented by the contestation [y A--- A
ln 1 D

4. not a; A---A not a, A by---A b, = ¢, where each b;, 1 < 7 < n,and ¢

are atoms. This can be represented by the following set of contestations:

{not a1 A---Anot a, A by - -Abj_1Abj A AbyAnotc— bj|je{l,...,n}}

Are there any constraints expressible in the language of propositional logic
that cannot be represented in terms of contestations? Most generally, from our
perspective we cannot allow constraints that require that some positive informa-

tion be provable. A constraint cannot guarantee the provability of something; at
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most, it guarantees the non-provability of something. Constraints are regarded as
constraints on what can be inferred from a database. Something can be inferred
from a database only if there is evidence for it in the database. A mere demand
in the form of a constraint that some thing be provable does not make it provable.
However, a demand that some literal not be provable from the database can be
satisfied by blocking the inference of that literal. For this reason we hold that
constraints of the form a; V --- V a,, where each a; is an atom, should not be
permitted. They cannot be expressed in terms of contestations.

For the same reason we cannot allow a constraint of the form [y A---Al, —
ap V---V a,, where each [; is a negative literal and a; is a positive literal. Since
— is material implication, this can be thought of as equivalent to a disjunction of
positive literals. However, as we have seen before, a constraint cannot guarantee
the truth (or provability) of any atom, but only the falsity (or non-provability) of
an atom.

Similarly, a denial constraint of the form < [y,..., [, where each [; is a negative
literal should be regarded as ill-formed from our perspective. This constraint is

essentially equivalent to a disjunction of positive literals.

The above discussion of representing integrity constraints in terms of contes-
tations shows that a large class of integrity constraints expressed in the language
of propositional logic can be represented in terms of contestations. However, the
language of contestations allows us to formulate constraints that do not corre-
spond to any constraint that can be expressed in propositional logic (or predicate
logic). Thus, suppose a bank wants the constraint that someone should be judged
credit worthy only if there is no question of the individual being a loan defaulter.

The policy is so strict that if evidence has been presented that an individual is
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a loan defaulter, then even if the evidence has been successfully contested, but
not decisively refuted, the bank will not deem the individual credit worthy. This
can be done by defining a cap function caps such that caps(v) = CF, where
v € {T, CT, CF}, and caps(F) = T. In terms of caps, we can express the
contestation LoanDe faulter —5 CreditWorthy. This contestation is satisfied
by a model of the database only if in that model LoanDe faulter is at least C'F
then CreditWorthy is at most C'F. Note that this is not the same as the con-
straint LoanDe faulter — not CreditW orthy, which can be satisfied even if in a
canonical model of the database LoanDe faulter is C'F and CreditWorthy is T'.

Furthermore, since we allow heterogeneous contestations that allow evidence
of different degrees of strength to count as evidence against some statement, rep-

resenting constraints in terms of contestations permits us even more flexibility.

9.4 Semantics for integrity constraints

In this section we provide a formal semantics for databases with integrity con-

straints such that the state of the database may violate those constraints.

Definition 9.4.1 A ground integrity constraint is of the allowed type if it is of the

following type
1. < [y N+ Nlp, where at least one literal is positive.
2. a1 N+ N ap = by V---V by, where all the literals are atoms
3. 4N+ ANl, = not p

4. not ag A+ A not a, A by---A b, — ¢, where each b;, 1 < 7 < n, andc

are atoms
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Furthermore, all contestations with an atom on the right-hand side are considered

of the allowed type.

Since we have broadened the idea of integrity constraints to include contes-
tations, in representing a set of integrity constraints in terms of contestations a

contestation which is a member of that set is regarded as representing itself.

The following theorem says that our representation of integrity constraints of
the allowed type in terms of contestations is correct. Thus, it merely summarizes

the results of Lemma 9.3.1, Lemma 9.3.2, Lemma 9.3.3, and Lemma 9.3.4.

Theorem 9.4.1 Let IC be a set of constraints of the allowed type. Let C be the
representation of the constraints in I1C' in terms of contestations. Let I be any C4

interpretation. Then IC is true in I if and only if T satisfies every contestation

in C.

Proof: This follows straightforwardly from Lemma 9.3.1, Lemma 9.3.2, Lemma 9.3.3,

and Lemma 9.3.4. n

Definition 9.4.2 Let DB be a deductive database in the form of a normal logic
program and let IC' be a set of integrity constraints of the allowed type on DB.
We define the canonical models of DB U IC to be the C4 canonical models of

DB +C, where C is the set of contestations representing 1C'.

In terms of this definition of the canonical models of DB U IC, we can easily

define the entailment relation = as follows.

Definition 9.4.3 Let DB be a deductive database in the form of a normal logic

program and let IC be a set of integrity constraints of the allowed type on DB.
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Then, DB k= I, with respect to IC, if and only if DB +C ¢4 |, where C represents
I1C.

Example 9.4.1 Let DB = {p < a; p < b; a; b; q}. Let IC = {« a,b}.
In this situation neither a nor b should be inferable from the database, but a V b
should be inferable and thus p should be inferable.

IC is represented by C = {a <1 b; b —y a}. The canonical models of DB+C

are

|| T |CF|T

L ||CF|T | T

Table 9.1: Models of a database that is inconsistent with its integrity constraints.

Since p is T in both the canonical models of DB + C, DB k= p. However,
DB ¥ a and DB % b. Clearly, CONS;c(DB) = {p, ¢} and, thus, < a,b is
true in CONSic(DB). Thus, in our sense of integrity constraint satisfaction, this
integrity constraint is satisfied by DB even though the state of DB does not satisfy
IC.

Note that although a,b € DB, DB ¥ a and DB & b. Thus, the entailment

relation R is non-reflexive.

The following theorem demonstrates that this is the correct definition of k.
Recall that the only formal requirement imposed on e | was that CON S;¢(DB),
which was defined to be the set {l | DB ke [}, should satisfy IC' in the sense that
each member of IC' should be true in CONS;c(DB).
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Theorem 9.4.2 Let DB be a deductive database in the form of a normal logic
program and let IC be a set of integrity constraints of the allowed type on DB.
Then CONS;c(DB) satisfies IC.

Proof: Recall that CONS;c(DB) = {l | DB Rk [} where [ is a literal. By
definition DB = [ if and only if DB + C }=c4 [, where C is the representation of
IC. From Theorem 4.4.3 in Chapter 4 we know that all the C4 canonical models
of P+C, for any normal logic program P and any set of contestations C, satisfy all
members of C. Thus, all C4 canonical models of DB + C must satisfy all members
of C. Hence, the intersection of all these models must also satisfy C. But then by
Theorem 9.4.1 above IC must be true in the intersection of all these models. But
the intersection of all these models can be understood as the set {l | DB+C ¢4 |,

which is just CONS;¢(DB). Thus CONS;¢(DB) satisfies IC. ]

It is clear that the above theorem also establishes that the C4 semantics for a
database with its associated integrity constraints is inferentially conflict-free with
regard to the types of conflicts expressed in terms of integrity constraints of the

type discussed in this chapter.

9.5 Discussion

In Chapter 6 we describe a sound and complete procedure for answering queries
to finite and ground normal logic programs augmented with a set of ground con-
testations. Clearly, this procedure then can be a sound and complete procedure
for answering queries to a finite and ground normal logic databases augmented
with a set of ground integrity constraints. To use the procedure all we have to

do is represent the integrity constraints in terms of contestations in the manner
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described in this chapter.

Our approach to integrity constraint satisfaction has several useful features.
First, it gives a role for integrity constraints even when the state of the database
violates the constraints. For instance, the knowledge encoded in the constraints
can still be used for semantic query optimization ([CGM90]). Second, our approach
makes it possible to return meaningful answers to queries to a database even when
the state of the database violates its integrity constraints. Thus, in Example 9.4.1
above, the answer to the query a would be NO, but an answer to the query p would
be YES. Thus, our approach allows a database to return NO to a query even when
the information is in the state of the database, if the information is involved in
the violation of an integrity constraint. This makes the query answering procedure
non-reflexive. Third, our approach allows for lazy updates. Thus, on the standard
approach a database that contains the atom a and has a constraint < a, b, would
reject an update that tries to insert b in the database. However, our approach
would permit this insertion, but it would have the effect that a can no longer
be derived from the database and neither can b be derived. Thus, in effect, our
approach allows the DBMS to perform a lazy deletion and a lazy insertion. This
has the feature that if later a were withdrawn from the database, then b can be
derived. Thus, the update b is not lost. In this respect our approach differs from
work in belief revision ([GR95]). In belief revision an update that conflicts with
existing information in the database is allowed to eliminate that conflicting piece
of information. Thus, the database is always kept consistent. As noted above, our
approach allows for lazy updates.

Yet another feature of our approach is that it does consistency checking on

a need only basis. On the standard approach consistency checking is done with
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each update. However, some of this updated information may never be involved
in answering any queries. From our perspective then the effort expended on con-
sistency checking of this information is wasted. However, if consistency checking
is done only for the information that is involved in answering queries, then consis-
tency checking is done on a need only basis. If there are many more updates than

queries to the database, this can result in a significant gain.

Although there are several approaches to reasoning with databases which vio-
late their integrity constraints, as far as we know none of them have suggested a
redefinition of what it means for integrity constraints to be satisfied by a database.

In [ABC99] an approach to answering queries to possibly inconsistent databases
is described in terms of a query rewriting which is based on the notion of residues
([CGM90]). They describe a semantics for such databases in terms of the set
of minimal modifications to an inconsistent databases which would result in a
consistent version of the database. They prove the query procedure is sound and
complete with respect to this semantics. However, their work seems to be restricted
to databases without rules. Furthermore, this approach allows an inconsistent
database to be modified into a consistent one by inserting new information. Thus,
if a database with the constraint p — ¢ does not entail ¢ and it has p inserted in
it, then this approach allows ¢ to be inserted as well. This seems to us wrong. A
constraint should not by itself generate new information.

[AKWS95] introduced the idea of flexible relation, a non-1NF relation that
contains tuples with sets of values with the set standing for one of its values. So
if there is a constraint that says there cannot be two tuples in a relation instance
that differ only on that value and if a relation instance were to contain two such

tuples, then these tuples can be combined into one tuple where in the relevant

218



field there is a set containing the conflicting values. In effect, then the set can
be considered a disjunction of the conflicting values. [AKWS95] is restricted to
primary key functional dependencies, but this approach is generalized to other key
functional dependencies in [Dun96]. These approaches rely on the construction of
a single disjunctive instance and the deletion of conflicting tuples. [BKM91] also
adopts this approach. In essence, this is also the approach utilized in [PMS95]
and [PM96]. Our current approach is different in that conflicting information
is not deleted or modified in any way. Instead, the inference procedure or the
query answering procedure incorporates mechanisms that block the inference of
conflicting information. Thus, there is no need to make any modifications to the

database in the event of conflicts.

9.6 Summary

In this chapter we have provided an account of propositional integrity constraint
satisfaction for function-free deductive databases that may be inconsistent with
their own integrity constraints in terms of the C4 semantics for normal logic pro-
grams augmented with a set of contestations. The specific research contributions

of this chapter are as follows.

e We propose that integrity constraints be viewed as constraints on what can
be proven from a database rather than constraints on the state of a database.
We propose a new account of integrity constraint satisfaction in terms of this
reinterpretation of the role of integrity constraints. More specifically, we
have defined an entailment relation j= such that the set of entailments of the

database in terms of this entailment relation satisfy the integrity constraints.
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We have redefined the concept of integrity constraint satisfaction so that
it is not the state of the database that must satisfy the constraints, but
instead the set of inferences in terms of & which must satisfy the constraints

(Section 9.2).

We show how to translate a wide range of propositional integrity constraints
in terms of contestations and prove that this translation is correct (Sec-

tion 9.3).

We show that the C4 semantics for normal logic programs augmented with
a set of contestations can be used as a semantics for deductive databases

augmented with a set of propositional integrity constraints (Section 9.4).
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Chapter 10

Extending C4: Semantics of Preferences

10.1 Introduction

To solve a problem one may need to draw on the knowledge of several different
experts. It can happen that some of the claims of one or more experts may be in
conflict with the claims of other experts. We assume that the knowledge of experts
can be encoded in the form of normal logic programs. Such normal logic programs
can also be considered as databases. Thus, pooling together the knowledge of
different experts can be regarded as combining databases. Conflicts among state-
ments can be represented in the form of contestations. In the previous chapters
we have developed a semantics and a proof procedure for normal logic programs
augmented with contestations.

In this chapter we introduce preferences among statements as a way of reducing
conflicts among statements. We envisage these preferences as provided by a user
of the combined database or by the integrator of the different pools of information.
These statements of preference are intended to express arbitrary preferences of a
given user.

Consider a motivating example. Suppose the personnel officer of a large com-
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pany has to determine whether there are any medical reasons for not hiring a
certain applicant for a high stress job. It is the standard practice of the com-
pany to consult both a cardiologist who examines the applicant and the patient’s
personal physician. The cardiologist’s report says, among other things, that the
applicant suffers from a certain heart irregularity that leads to a heart attack un-
der great stress, and therefore the applicant may well suffer a heart attack due
to the stress of the job. It also says that the applicant’s diet, if continued over
a long period of time, will worsen the heart irregularity. The personal physician
testifies that over the many years that the applicant has been his patient he has
remained very healthy even in times of great stress. And the patient’s generally
robust health and healthy habits will enable him to handle very stressful situations
in spite of his heart irregularity. The physician further adds that the applicant has
been following a diet over the years prescribed by the physician which will reduce
the heart irregularity. The physician notes that indeed the heart irregularity has
somewhat diminished over the years. The rest of the physician’s report is not in
conflict with the cardiologist’s report.

Clearly, these two reports are in conflict. Furthermore, they are in conflict over
two points: 1) whether the patient’s heart irregularity will make him unable to
handle great stress, and 2) the effect of his diet on his heart irregularity. In making
his decision the personnel manager of the company may prefer one statement over
another in case they conflict. Thus, in our example, the personnel manager can
give preference to the physician’s claim (z) that the applicant can handle the stress
of the job over the cardiologist’s claim (y) that the stress of the job will cause a
heart attack in the applicant. The personnel manager may give preference to the

claim x of the physician because he thinks it is more reliable, or because it is the
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company’s policy to give an applicant the benefit of the doubt in these matters,
or because the personnel manager favors the applicant, or whatever. That is, in
our formal treatment of preferences, we shall not make any assumptions about the
user’s reasons for preferring one statement to another.

To say that the manager prefers x over y does not mean that x will be finally
be accepted by the manager, but only that in the conflict between z and y, x is
chosen over y. It could happen that z is in conflict with some other statement,
z, in the combined database which is preferred over x and, thus, £ may not end
up being accepted. Or it could happen that there is not enough evidence for the
claim z, so regardless of the preference it cannot be accepted.

The preferences of an ideally rational agent are transitive. But real agents (or
users) are not always this rational in their preference structures ([TK81]). So we
shall not assume that the user-supplied preferences are transitive. But, if for a
given user they happen to be transitive, our approach applies to such preferences

without any modification.

In Section 10.2 we develop the formal preliminaries for stating semantics of
normal logic programs augmented with a set of contestations and a set of prefer-
ences. In Section 10.3 we state two semantics of normal logic programs augmented
with a set of contestations and a set of preferences and prove their equivalence.
In Section 10.4 we discuss related work. In Section 10.5 we summarize the main

research contributions of this chapter.

10.2 Preliminaries

We write z is preferred to y as x > y.
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The preference x > y; A ys A -+ A Y, where x and each y; are atoms, is
understood to mean that z is preferred to the conjunction of y;. The preference
x>y V--Vyn, where z and each y; are atoms, is understood to mean that x is
preferred to each y; and that x is preferred to the conjunction of atoms in any subset
of {y1,...,Ym}. Let Y = {y1,v2,...,ym}. Then we understand = > Y to mean
=1y Ve Vyn. Let X = {1, x9,...,2,} be sets of atoms. Then the preference

X > Y is understood as an abbreviation of {z; > Y,zy > Y,... 2, > Y}.

We call a set of preference {z > Yi,2 > Y5, ...,z = Y} additive if they imply
x =Y U...UY,,. In general, we assume that preferences are not additive. This is
because, in general, it is not the case that if a statement (or a choice) is preferred to
several other statements (or choices) taken individually that statement (or choice)

is preferred to those other statements (or choices) taken jointly.

Intuitively, we understand a reasoner’s preference x > y over a logic program
LP and a set of contestations C to mean that the reasoner prefers LP +C to entail
x over entailing y. Thus, other things being equal, the preference should result in
LP + C entailing x if it entails y. The semantics of preferences given below are

guided by this intuition.

We suggest two different ways of explicating the idea that x > y should mean

that the reasoner prefers LP 4 C to entail x over entailing y.

e Preference Ordering. Let P be a set of preferences. We use the preferences
in P to induce an ordering among the models and choose only the maximal

members of this ordering as candidates for the canonical models of LP+C+7P.

e Satisfaction. Analogous to the idea of the satisfaction of a clause or a
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contestation by an interpretation, we develop the concept of the satisfaction
of a preference P € P by an interpretation, and choose only those models
which satisfy all the preferences as candidates for the canonical models of

LP+C+P.

Recall that given a four-valued interpretation Z, by Truth(Z) we mean {a | a
is an atom and Z(a) > CT}
We need the following definitions to formalize the above stated ways of under-

standing preferences.

Definition 10.2.1 Let Z be a well-supported model of LP+C and let Y be a set of
ground atoms. Then, Depz(Y') denotes all the members of Truth(Z) which become
unsupported in any mapping L' such that the only difference between T and I’ is

that T' assigns at most CF to members of Y.

Intuitively, Depz(Y) are those atoms whose status as members of Truth(Z) de-

pends on the status of Y in Z.

Definition 10.2.2 Let T be a well-supported model of LP + C and let Y be a set

of ground atoms. Then,
Effectz(Y) = Y U Depz(Y)

Thus, by Effectz(Y) we mean all those atoms that will be demoted from the

status of the Truth in Z if Y is demoted from the status of Truth.

We say that Z = a if Z(a) > CT. Clearly, T = a if, and only if, a € Truth(Z).
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10.3 Semantics of Preferences

Preference Ordering Semantics

When LP + C is augmented with a preference, P = x > Y, where x and all
members of Y belong to HBpp, we take this preference as inducing an ordering
among the models of LP 4+ C. Other things being equal, the well-supported models
of LP which satisfy all the members of C in which x is at least C'T" are preferred
over the well-supported models of LP which satisfy all members of C in which any
member of YV is at least C'I". The following definitions are needed to formalize this

idea.

Definition 10.3.1 Let P be the preference x > Y. Let LP be a normal logic
program and let C be a set of contestations. Let I, and Z, be two models of LP+C.
We say that Iy Cp Iy if

1. T, x and Iy = x, and
2. T, E vy for somey €Y, and
3. Truth(Z,) — Ef fect7,(Y) C Truth(Zy).

Conditions 1 and 2 together say that x > Y makes Z, preferred to Z; if Z; [~
x but Z; = y whereas 7, = x so long as other things are equal. Condition 3
captures this qualification. Other things are not equal if there is a z such that
independently of Y it prevents Z; from entailing x. If there were such a z it
cannot belong to Truth(Z,) since Z, does entail z, but such a z would belong to
Truth(Z,) — Ef fectz,(Y). Thus, Condition 3 says that there is no z such that

z € Truth(Z,) — Ef fectz,(Y) but z € Truth(Z,). That is, other things are equal.
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We say that Z; Cp Z, if there is a P € P such that Z; Cp Z, .

Given a set of interpretations v of LP+C, we say that Z; is a preferred member
of v with respect to a set of preferences P if and only if there is no interpretation
Z, in v such that Z; Cp Z,.

7, is a model of LP + C + P if it is a preferred member, with respect to P, of

the set of models of LP 4+ C.

Definition 10.3.2 Let LP be a normal logic program, let C be a set of contesta-
tions and let P be a set of preferences. Then according to the preference semantics
the canonical models of LP + C + P are the clausally mazimal members among
the preferred members, with respect to P, of the set of well-supported models of
LP+C.

Satisfaction Semantics of Preferences

A preference z > Y can be understood as making a demand of a model Z that
other things being equal if Z entails any member of Y then it should entail x. Other
things are not equal with respect to x > Y if some factor independent of ¥ makes

it impossible for Z to entail x.

Definition 10.3.3 Let LP be a normal logic program and let C be a set of con-

testations. Let x =Y be a preference. An interpretation I, satisfies x > Y if
1.7, Ex, or
2. ForallyeY, T £y, or
3. There is no well-supported model Z, of LP + C such that

o 7, =z, and
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o (Truth(Z,) — Ef fectr,Y) C Truth(Z,)

As in the definition of Preference Ordering Semantics, Condition 3 captures
the qualification that other things are equal.

7 satisfies a set of preferences P if, and only if, it satisfies all members of P.

Definition 10.3.4 Let LP be a normal logic program, let C be a set of contesta-
tions, and let P be a set of preferences. Then according to the satisfaction semantics
the canonical models of LP + C + P are the clausally maximal models among all

the well-supported model of LP + C which satisfy all the preferences in P.

The following theorem shows that the two semantics of preferences are equiv-

alent.

Theorem 10.3.1 A well-supported model Z of LP+C satisfies a set of preferences

P if, and only if,  is a preferred model, with respect to P, of LP +C.

Proof:

=

Assume that Z; is a well-supported model of LP + C which satisfies all the prefer-
ences in P. Assume by way of contradiction that Z; is not a preferred model. So
there must be another well-supported model Z, of LP 4+ C and a preference x > Y

such that Z; C,.y Zy . That is, it must be the case that
1. 7, ¢ and 7, = x, and
2. 7; E y for some y € Y, and
3. Truth(Z,) — Ef fectr,(Y) C Truth(Z,).

However, 7, satisfies z > Y. So it must be the case that
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1. 7, Ex, or
2. Forally e Y, 7, F y, or
3. There is no well-supported model Z, of LP + C such that

e 7, =z, and
o (Truth(Zy) — Ef fectr,(Y)) C Truth(Z,)
If 7, satisfies > Y by clause 1 of the definition of satisfaction then the first
condition for its being the case that Z; C,.y Z, is violated.
If 7, satisfies x > Y by clause 2 of the definition of satisfaction then the second
condition for its being the case that Z; C,.y Z, is violated.

If 7, satisfies x > Y by clause 3 of the definition of satisfaction then the third

condition for its being the case that Z; C,.y Z, is violated.

=
Assume that Z; is a preferred model of LP+C+P. Assume by way of contradiction
that Z; does not satisfy all the preferences. Let x > Y be one such preference.

This implies that
1. 7, }£ z, and
2. Forsome y € Y, 7 =y, and
3. There is a well-supported model Z, of LP + C such that

e 7, =z, and

o (Truth(Zy) — Ef fectr,(Y)) C Truth(Z,)
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It is apparent that such a Z; and Z, must satisfy all the conditions for it being the
case that Z; T,y Zs.
But this contradicts the assumption that Z; is a preferred model. Thus Z; must

satisfy all the preferences. [

Example 10.3.1 Let LP = {a <—;b <} and let C = {a <> b; b <> a}. Further-
more, let P = {a > b}. Then the well-supported models of LP + C are I, which
assigns T to a and C'F to b, and Iy which assigns C'F to a and T to b. But the

only preferred model and, thus, the only canonical model of LP + C + P s 1.

The following defintion extends the definitions of strong and weak entailment

to the case of LP 4+ C + P.

Definition 10.3.5 LP + C + P strongly entails a literal p under C4 if, and only
if, p evaluates to T in all the canonical models of LP +C + P.
LP + C + P weakly entails a literal p under C4 if, and only if, p evaluates to

at least C'T in all the canonical models of LP +C + P.

10.4 Discussion

In this chapter we have provided two equivalent semantics for normal logic pro-
grams augmented with a set of contestations and a set of preferences. We do not
present a procedure for answering queries to normal logic programs augmented
with contestations and preferences. Our results in this chapter are rather limited.
In [PM96] we showed that there exists at least one canonical model for definite
logic programs augmented with denial integrity constraints and preferences having

a non-cyclic structure. For the class of general logic programs and contestations
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which need not represent denial constraints, it is not the case that such programs
must have at least one canonical model when they are augmented with preferences,
regardless of what restrictions one puts on the structure of the preferences. The

following example illustrates this point.

Example 10.4.1 Let LP = {a < not b; b <+ not ¢; ¢ + not d;d < not a}.
Let C=0 and P ={b > a, ¢ > d}. LP +C has the following four well-supported

models b > a is not satisfied by Z; and Iy and ¢ > d 1s not satisfied by Iy and

| T | F T

L, | F T | F T

Z; | CT | CF | CT | CF

Z, | CF | CT | CT | CF

Table 10.1: A logic program augmented with contestations and preferences that

has no canonical models.

Zy. Thus, LP + C + P has no well-supported models even though P has only two

preferences without any apparent relation between them.

In terms of our work on preferences among arbitrary statements, we can ex-
press preferences among theories. Thus, 7} > 75, understood to mean T} =
{a1,as, ..., a,} has preference over Ty, can be expressed as {a; > Ty, a3 > Ts, ..., a,
T}

Our framework can also be used to express preferences among theories in terms
of topics. Thus, let T} >; T5 mean that theory 77 is to be preferred over theory 75

on topic ¢. In our framework this can be expressed as, {a; > {b1,b2,...,b;}, a2 >
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{b1,bg, ..., b5}, ... ak > {b1,ba, ..., b;}}, where {ay,as,...,a;} are the statements
in the Herbrand base of T} on topic ¢ and {b1, bs, ..., b;} are the statements in the
Herbrand base of 15 on topic t.

In the following we discuss related work. [BKM91] gives methods of combining
theories each of which satisfies a set of integrity constraints, where the naive union
of the theories fails to satisfy the integrity constraints. They do not however con-
sider adding preferences among arbitrary statements or even preferences among
theories. [BKMS92] gives methods for combining first order theories with prefer-
ences among theories. [FUVS83] present an account of updates with preferences
among sets of statements. However, none of these papers consider the problem of

combining databases with preferences among arbitrary statements.

Ryan’s work on Ordered Theory Presentations [Rya91, Rya92a, Rya92b| gives a
semantics for first order sentences with arbitrary preferences among statements. It
is based on the idea of ordering all possible interpretations of the sets of sentences
in terms of which interpretations most nearly satisfy the set of sentences and satisty
the preferences. Interpretations maximal in the ordering are taken to be the models
of the set of sentences with the preferences. Clearly, Ryan’s approach is closely
related to what we have called Preference Ordering Semantics. Our approach is
different than Ryan’s in several respects. First, Ryan’s preferences are required
to be transitive; we do not require preferences to be transitive. Second, in our
system preferences are not additive. That is, if @ > b and a > ¢, then it does
not follow that a > {b,c}. Third, Ryan’s treatment of preferences restricts itself
to preferences among sentences in the theory, but does not consider preferences
among any two sentences in the Herbrand base, regardless of whether they are

part of the theory. But our approach allows this.
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In [PMS95] we gave several equivalent semantics for logic programs consisting
entirely of ground atoms augmented with a set of denial integrity constraints and
a set of preferences. This work was extended in [PM96] in which we developed two
equivalent non-cautious semantics and a cautious semantics for definite logic pro-
grams augmented with a set of denial integrity constraints and a set of preferences.
The work presented in this chapter generalizes this work to the class of general
logic programs augmented with a set of contestations and a set of preferences. As
noted above, some of the key results of [PMS95] and [PM96] cannot be extended
to this more general class of programs and constraints.

An alternative approach to combining multiple databases has been developed
by Subrahmanian [Sub94] who develops a language for expressing supervisory
databases. Intuitively, a supervisory database contains conflict resolution infor-
mation. What [Sub94| lacks is an explicit articulation of what preference means,

and this is provided by our semantics of preferences.

10.5 Summary

The main research contributions of this chapter are summarized as follows.

e We provide a language for expressing preferences among statements.

e We extend C4 to provide two semantics for a normal logic program, LP,

augmented with a set of contestations, C, and a set of preferences, P.

— The first semantics is based on using the preferences of P to induce an

ordering among the well-supported models of LP + C.

— The second semantics is based on the idea of a well-supported model of

LP + C satisfying the preferences of P.
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e Although these two semantics are based on different ways of factoring in the

role of preferences, we prove that these two semantics are equivalent.
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Chapter 11

Extended Logic Programs

11.1 Introduction

The case for logic programs with two types of negation, one which may be called
default negation and the other which may be called non-default has been made by

several authors ([GL90], [KS90]). A bus driver may use the rule :
Cross railway tracks if train is not coming.
As [GL90] note it would be folly if this rule were interpreted to mean
Cross railway tracks if you cannot prove that a train is coming

This interpretation is based on interpreting ‘not’ as default negation.

Rather, the rule is intended to mean
Cross railway tracks if you can prove that a train is not coming
This interpretation is based on interpreting ‘not’ as non-default negation.

On the other hand, the use of ‘not’ should be understood as default negation

in a rule such as
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Continue driving if a stop request has not been made

Thus there can be use for logic programs containing the use of default as well
as non-default negation.

There can be different types of non-default negation such as classical, strong,
and explicit negation. They differ in terms of how closely and in what respects they
approximate classical negation. [AP92a] contains a systematic study of several
types of non-default negation.

Various semantics have been proposed for logic programs containing default and
non-default negations ([GL90], [AP92a], [Prz90a], [DRI1]|, [ADP93]). Although
these semantics have employed different versions of non-default negation, these se-
mantics have not always been based on clearly identifying the semantic differences
between default negation and their chosen version of non-default negation. These
semantic differences can be displayed most clearly by associating non-default nega-
tion with a mapping from tuples of truth values to truth values and associating
a different such mapping with default negation, where these mappings completely
characterize the semantics of each type of negation. This also allows us to treat
both kinds of negation as logical operators.

In this chapter we extend C4 to C5, a five-valued semantic framework. In terms
of C5 we propose a family of semantics for logic programs containing both default
and non-default negation. Using C5 we give a semantic account of the difference
between default and non-default negation by associating a different mapping with

each type of negation.

In Section 11.2 we introduce the five truth values of C5 and several types of
ordering between them. We define the functions for evaluating arbitrary extended

logic programming sentences in terms of a mapping from atomic sentences to these
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truth values. In Section 11.3 we develop the C5 semantics for extended logic pro-
grams. In Section 11.4 we compare the C5 semantics with the answer set semantics
for extended logic programs ([GL90]). We prove that an extended logic program
LP with a consistent answer set entails a literal p with respect to the answer sets
of LP if, and only if, LP weakly entails p (under C5). In Section 11.5 we show
how the five truth values of C5 and the three types of ordering between them
can be derived from the more basic set of truth values {7, U, F'} and the standard
truth and information ordering among them. In Section 11.6 we summarize the

main research contributions of this chapter.

11.2 Preliminaries

We extend the language of normal logic programs by adding a new negation symbol

By an objective literal we mean either an atom a or —a. We call —a the non-
default negation of a. By a default literal we mean an expression of the form not [,
where [ is an objective literal. We call not [ the default negation of [. We stipulate
that —not [ is not a well-formed expression of our language.

An extended rule R is of the form
[+ ay,...,a,,not by,...,not b,

where [, each a; and each b; are objective literals. An extended logic program is a
set of such rules.
By EHByp, the extended Herbrand base of LP, we mean {—a | a € HBpp} U

HByp, where HByp is the Herbrand base of LP.

Given the extended rule R above
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1. body(R) ={ai,...,an,,n0t by,...,not b,}

2. objbody(R) = {l € body(R) | | is an objective literal}
3. posbody(R) = {a € objbody(R) | a is an atom}

4. negbody(R) = {not by, ...,not b,}

We understand ——l to mean [. That is, we ignore the double negation. The
function Atom(l), where [ is a literal, returns the atom that occurs in [. Thus If
[ is an atom then Atom(l) returns [. Otherwise if [ is of the form —a, or =—a, or

not a, or not —a, then Atom(l) returns the atom a.

We extend C4 to C5. Let V = {T,CT,CF,F,U}. The new truth value U
intuitively means unknown. We introduce a truth ordering, <;, and an information
ordering, <;, among the members of). According to the truth ordering F' <; U <,
T and F <; CF <y CT <; T. Thus, in the truth ordering U and C'F' and U
and C'T" are incomparable. According to the information ordering U is lower than
the other members of V which are themselves incomparable with each other in the
information ordering.

In terms of the truth ordering and information ordering, we construct a sup-
ported ordering, <. Given vy, vy € V, 1) <, 1 iff v <; 1y or v, <; vy if 11y
and vy are incomparable in terms of <;. Thus the supported ordering gives us
U<, F <, CF <, CT <, T. We use the supported ordering to induce an or-
dering among the models of an extended logic program, whereas we use the truth
ordering to define the truth values of nonatomic sentences.

In the discussion section of this chapter we explain how we derive the truth

values of V and the truth and information orderings among the members of V in
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terms of a more basic set of truth values {7, U, F'} and the truth and information

ordering among them.

As in C4, T and CT are regarded as the designated true values. Whereas in
C4 the default truth value is F', in C5 the default truth value is U in the sense
that any atom in the Herbrand base of a program which is not the head of a clause,

or whose non-default negation is not the head of a clause, is assigned U.

In our semantics — denotes the mapping NEG and not denotes the mapping

NOT. We state the mappings in terms of the following truth-tables.

NEG |T|CT|CF | F

CF|CT | T

Table 11.1: The NEG function

Note that on this interpretation of non-default negation, NEG(NEG(v)) = v

for any v € V, and for any interpretation Z, Z(—p) = NEG(Z(p)).

NOT | T | CT | CF

FICF|CT|T

Table 11.2: The NOT function

The differences between these two mappings clearly bring out the differences
between — and not . It can be seen that NEG and NOT coincide on all truth-
values except U, the default truth-value. It is precisely because NOT (U) evaluates

to T that we call not default negation.
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In our semantics A denotes the mapping AND and V denotes the mapping

OR. These mappings are given below, where we assume that vy, 15 € V.

min(vy,ve) if vy, vy #U

AND(Vl, 1/2) =
U otherwise
max(vy,ve) if v, v #U
OR(Vl, VQ) = Vy if VvV = U

V1 otherwise
An interpretation for an extended logic programming LP is a mapping from
H Bpp, the Herbrand base of LP, to V. In the following we define the function Z’,

which extends this mapping to the (closed) sentences of the language.

Definition 11.2.1 Let Z be an interpretation. Then I' is a mapping from the

sentences of the language to V recursively defined as:
e If S is a ground atom then Z'(S) = Z(95).

o If S is a closed sentence then

T'(~S) = NOT(Z'(S))
T'(not S) = NEG(Z(S))

e IfS) and Sy are (closed) sentences then

T(S1ASy) = AND(T'(S1),Z'(S:))
T'(S1VSy) = OR(Z'(S),Z'(S,))

I T(S1) > T(S:)

if T'(Sy) and I'(Sy) are not comparable
I’(Sl(—SQ) _ f ( 1) ( 2) 14
CT ifZ'(S1) =CF and T'(S3) = CT

F otherwise
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e For any sentence p(X) with one unbound variable X,

T'(VXp(X)) = min{Z' (p(t)) | t € HUp}.

e For any sentence p(X) with one unbound variable X,

T'(3Xp(X)) = mazx{Z'(p(t)) | t € HUp}.

11.3 Model Theory

For the purposes of the model theory of logic programs, we envisage the extended

logic program LP to be augmented as follows:
e As in the case of C4, we add

1. The special atoms true, CTrue, C'False, false. It is assumed that true
(resp. CTrue, CFalse, and false) evaluates to T (resp., CT, C'F, and

F) in any interpretation.

2. if LP contains no constants, the dummy clause p($a) < p($a), where

$a is a constant.

3. Any clause with an empty body is assumed to have true as its body.
e Additionally for C5 we add

1. The special atom unknown which is assumed to evaluate to U in any

interpretation.

2. For each literal [ in EHBpp, such that there is no clause in grd(LP)
with [ in the head or with Atom(() in the head, we add a clause with

Atom(l) as head and unknown as body.
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Augmenting the logic program in this manner allows us to state the model theory
more elegantly than if we did not augment it thus. (More specifically, it helps with
the definition of a well-supported model below.) It should be clear in the following
that the augmentation makes no difference to the actual semantics attributed to a

logic program.

As in the case of C4, we say that an interpretation Z satisfies a ground clause
CitZ'(C) € {T,CT}. Recall that T and CT are the designated truth values.

As usual an interpretation is a model of LP if it satisfies all the rules of LP.

Given an interpretation of LP, which is a mapping from the atoms of HBp
to V, the truth value of all the ground objective literals is determined by NEG
and the truth values of all the ground default literals is determined by NOT. This
fact and the fact that for any interpretation Z, if NEG(Z(p)) then NOT(Z(p))
ensures that every interpretation of any extended logic program satisfies the so-
called coherence principle

—-p — not p.

Note that unlike in [AP92a] the coherence principle does not have to be enforced
by adding any special sentences to a program.
Furthermore, since NEG is a one-to-one and onto mapping it follows that for

any objective literal [ every interpretation I obeys the following structural principle
Z(l) = NEG(Z(-1))

The above structural principle implies that the truth values of a literal de-
termine the truth value of its non-default negation and vice versa. This implies

that
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e The truth value assigned to =/ by an interpretation can justify assigning [
a higher truth value than would be justified in terms of rules with [ in the
head. Thus, the definition of a well supported model has to be extended to
allow that the truth value of -l can indirectly support the assignment of a

certain truth value to [. This is accomplished in the next sub-section.

e The truth value assigned to -l can force [ to be assigned a [ower truth value
than would be justified in terms of rules with [ in the head. This is analogous
to a contestation of an atom forcing the atom to have a lower truth value than
would be justified in terms of rules with [ in the head. This property of non-
default negation can be captured by extending the apparatus of contestations
to non-default negation. This is accomplished in the sub-section following

the next subsection.

Well-Supported Interpretations

Central to C4 is the idea of a well-supported interpretation as expounded in Chap-
ter 4. We recall below the intuition behind the idea of well-supported interpreta-
tions and extend it to Cb.

If we think of the body of a sentence as providing evidence for attributing a
certain truth-value to the head of the sentence, then a well-supported interpretation
can be seen as assigning only that truth-value to any atom which can be justified
in terms of the total evidence for it (with respect to that interpretation), where
the evidence must be independent of the truth-value assigned to that atom and
must be finitely grounded in the facts. The well-founded ordering ensures that
the truth-values assigned to an atom is not justified in terms of itself and the

evidence is finitely grounded. Thus, for instance, no well-supported interpretation
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of a program would assign true to p simply on the basis of the sentence p < p.

It is this idea which we wish to generalize. However, in the case of extended
logic programs we can have the evidence for the ground literal p provide indirect
evidence for the ground literal —p and vice versa. In many cases this is quite

legitimate. Thus, consider the ground program:

Pl: —p<q; q <« true; p < unknown

Here we are clearly justified in assigning 7" to —p and thus indirectly justified
in assigning F' to p even though the only sentence with p in the head has unknown
in the body.

Contrast this with the ground program {p < unknown; —p < unknown}.
Here assigning anything other than U to p or to —p is unjustified. So the interpre-
tation which assigns F' to p and 1" to —p should be unsupported even though the
assignment of T to —p is indirectly supported by the assignment of F' to p, and
vice versa.

Thus, in our generalization of the definition of well-supported interpretation
we should allow for indirect support to a literal (by its negation), but we should
not allow a literal and its negation to indirectly support each other.

As in C4, the attribution of a non-default truth value to a non-default literal
must be based on evidence for that literal. In C4 the default truth value is F' and
so in C4 F' can be assigned to any non-default literal on the basis of no evidence
for that non-default literal. But in C5 the default truth value is U and hence the
attribution of F' to a non-default literal must be based on evidence. Recall that
having no evidence for a non-default literal means either having no information in
support of that literal or having only false information in support of that literal.

Recall that we treat all information in support of a non-default literal [ as false

244



(relative to an interpretation) in case the body of each rule with [ or Atom(l) in the
head evaluates to F'in that interpretation. Thus, in that case [ cannot be assigned

any non-default truth value in C5, not even F', by a well-supported interpretation.

Definition 11.3.1 An interpretation Z of an extended logic program LP is well
supported if there exists a strict well-founded partial ordering < on the atoms in
HByp such that for any literal | in EHBpp such that U <y T'(l), there exists an

R € grd(LP) such that
e head(R) =1 and T'(l) <; Z'(body(R)), or
e head(R) = -l and T'(—l) <, I'(body(R)), and
o F <;T'(body(R)), and

o b < Atom(l) for every b € Atoms(objbody(R)).

In this case we say that the truth value of | is supported by R in . We say
that the truth value of [ is directly supported in L if the truth value of [ is supported
by a R such that head(R) = l. Otherwise, we say the truth value of | is indirectly

supported in L by —l.

Thus the assignment of any truth value other than the default one (U) to an
objective literal requires a non-circular, finite justification, but the assignment can
be justified in terms of a rule whose body is assigned a higher truth value (in the
supported ordering) than the literal. Note that although an interpretation is a
mapping from atoms to truth values and although the well-founded ordering is
over the atoms in H By p, the ‘assignment’of a truth value to each objective literal

must be justified. This is required in order to ensure that the assignment of truth
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vlaues to an objective literal and its negation do not justify each other. We assume
that the special atoms (true, Ctrue, etc.) are not ordered with respect to each
other and are less than any other atoms in the ordering.

This definition is a five-valued generalization of the definition of a four-valued
well-supported interpretation in Chapter 4.

Note that if Z is a well-supported interpretation of LP then the truth value
of every literal in the FH By p is either directly or indirectly well-supported in Z.
Furthermore, for any literal [ and its negation, if the truth value of one of them is
indirectly supported in Z then the truth value of other must be directly supported.
However, the truth value of both can be directly well-supported in Z as in the

ground program

P2: {p <« true; —p < true}

It should be noted that in the program P2 the assignment of 7" to p and the
assignment of 7" to =p would both be directly supported by the program; however,
this does not describe any interpretation of the program. Since an interpretation is
a mapping from the atomsin HBpp to the truth values, assigning 7" to p perforce

assigns F' to —p.

Negation as Contestation

The previous section introduced the idea of well-supported interpretations of ex-
tended logic programs. Now we consider the issue of when a well-supported inter-
pretation is a model of an extended logic program.

Consider the following ground program.

P3: {-b< ¢ c+; b}
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An interpretation which assigns 7" to b and ¢ is a well-supported interpretation, but
is it a model of P37 If the evaluation Z' is used to evaluate the first clause, then
it evaluates to F' and thus this interpretation cannot be a model of P3. Indeed,
it can be easily seen that if 7' is used to evaluate the clauses of P3, then P3 has
no models. Note that in P3 there is direct evidence for assigning T to both b and
—=b, but assigning 7' to one of these literals puts a restriction on the truth value
that can be assigned to the other literal. Thus, to come up with a suitable model
theory for extended logic programs we need to revise the evaluation function Z' to
take into account the restriction that the assignment of a truth value to a literal
places on the assignment of a truth value to its non-default negation. We do this

below using the apparatus of contestations developed in the previous chapters.

Chapter 4 introduced the idea of contestations. A contestation A — b says
that A provides evidence against b. Chapter 4 provides a semantics for a normal
logic program LP constrained by a set of contestations C. Each rule in LP is
evaluated under these constraints. Thus, suppose we have the ground program {
b < ¢ ¢ <; a <} and the contestation a < b and an interpretation Z which
assigns 17" to a and T to ¢. So although relative to that interpretation there is
enough evidence for assigning 1" to b, the evidence provided by a against b puts a
cap on how much overall evidence can be said to exist for b.

In a similar fashion the assignment of a certain truth value to [ can put a cap on
the truth value that can be assigned to —/. Consider the program P3. Consider the
interpretation which assigns 7' to b and c¢. Although relative to that interpretation
there is enough evidence to assign 1" to —b, the evidence provided by b against —b
puts a cap on how much overall evidence there can be said to exist for —b.

This aspect of non-default negation can be captured in terms of the apparatus

247



of contestations in the following manner.
First, the extended logic program LP is augmented with the following special

set of contestations

C. = {p—=- w} U {-p—=_.p}

for each p € HByp.

Associated with each such contestation is the following cap function:

NEG(T'(-l)) ifa#U
cap-(a) =

T ifa=U

Corresponding to Definition 4.4.3 of Chapter 4, we define a function cap’ which
takes an objective literal, a contestation and an interpretation as arguments and

returns a special atom as a value.

Definition 11.3.2 Let [ be an objective literal, not necessarily ground, C; be a con-
testation with the associated cap function cap-. Then, cap’ (1,C;,T) returns the spe-
cial atom which always evaluates to cap-(Z(Contestor(C;))) if Contested(C;) = 16,
for some substitution 6 which can be the empty substitution, otherwise cap’ (l,C;,T)

returns the spectal atom true.

Note that C_ contains only contestations of the form [ —_ =[. Hence in
the above definition if Contested(C;) = 16, for some substitution 8, Contestor(C;)

must be —[f. In light of this, the above cap’ function can be simplified as

NEG(Z'(—19)) if Contested(C;) =16 and Z'(—1f) # U
cap! (1,C;,T) =

T otherwise

Recall that in a well-supported model the assignment of a truth value to a

literal [ can be either directly supported in terms of a sentence with [ in the head
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or indirectly supported in terms of the truth value of —[. If an interpretation Z
assigns a truth-value v € V to [ then, by the structural principle, the truth value
of =l must be NEG(v). But if the assignment of v to [ is directly supported in Z
then we can think of it as providing evidence against —/ and thus providing a cap
on what truth-value can be assigned to —/. On the other hand, if the assignment of
v to [ is indirectly supported then it provides no independent evidence against —l
and thus cannot be seen as providing a cap on what truth value can be assigned to
—l. Rather, the situation is reversed. It is the assignment of NEG(v) to —[ that
provides evidence against [. This is because if the assignment of v is indirectly
supported then the assignment of NEG(v) to =l is directly supported. It could
happen that the assignment of v to [ and the assignment of NEG(v) to -l are
both directly supported in Z (as in the program P2 above) and in this case we
view them as providing evidence against each other.

This motivates the following modification of Z'.

Definition 11.3.3 Given a well-supported interpretation I of an extended logic
program LP, I" is a function for evaluating any closed sentence in the language
of LP. T" is just like ' for all operators except <.

If S1 and S2 are (closed) sentences and 0 is any substitution, then I (S1 < S2)6
is just I'(S1 < S2)0 if ~S10 is not directly supported in I; otherwise I (S1 <

S52)0 is T'((S1 < S2)0, cap’ (516,C-,T)).

I" provides a way of taking into account the justified reductions of the as-
signment of a truth value to the head of a sentence in evaluating the truth value
of that sentence. Note that the definition of Z"" makes reference to the notion of
well-supportedness, which is defined using Z' for evaluating the sentences of the

program. Thus, in determining whether an interpretation is well-supported we
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make use of Z' rather than Z", otherwise our definition would be circular.

Thus, a well-supported interpretation Z is a model of an extended logic program
LP if and only if all the rules of LP evaluate to either C'I" or T under Z". Such

models are the well-supported models of LP.

Semantics of Extended Logic Programs

The clausal ordering among interpretations defined in Chapter 4 assumed the Z"”
function for evaluating the sentences of a program relative to an interpretation.
We define below a form of clausal ordering among well-supported models using Z"

for evaluating sentences.

Definition 11.3.4 Let Z; and Z, be two well-supported models of LP. Then,
T, <74 T, if, and only if, T, (C) <, Zo(C) for every sentence C in LP where the

sentences are evaluated using " .

We call this ordering the mclausal ordering among well-supported models.
As before, we say that an interpretation Z; is maximal with respect to LP in a

set of interpretations v if there is no interpretation Z; € v such that Z; <78* Z;.

Definition 11.3.5 The canonical models of an extended logic program LP under
C5 are the mazimal models in terms of the mclausal ordering among the well-

supported models.

Example 11.3.1 Let LP be the following program from [DR91].

Cy: —fly(xr) < not bird(x)
Cy: fly(x) <« bat(x)

Cs: bat(tom) <
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We give below the well-supported models of the program and the evaluation of each

sentence in a well-supported model using I" .

fly(tom) | bird(tom) | bat(tom) || C; | Cy | Cs
7, | T U T T |T T
Z, | CT U T T |T T
Zs | CF U CT T |T | T
Z, | F U CT T |T | T

Table 11.3: The C5 well-supported models of an extended logic program.

Note that C'y and Cy evaluate to T in these interpretations because in the
evaluation of those rules we view the program as being implicitly augmented with
C. ={fly(tom) —_ = fly(tom), = fly(tom) —_ fly(tom}.

All of these interpretations are the well-supported models of the program and

all of them are canonical.

Similar to the skeptical and credulous versions of C4, we can define skeptical
and credulous versions of C5. A skeptical version of C5 identifies the meaning
of an extended logic program LP with the literals that evaluate to 7" in all the
canonical models of LP under C5, whereas a credulous version of C5 identifies the
meaning of an extended logic program LP with the literals that evaluate to C'T

under C5.

The following theorem establishes that the C5 semantics is inferentially conflict-
free with respect to the types of conflicts that can be expressed in terms of the
— operator. Recall that in Chapter 1 we had noted that almost all paraconsis-

tent logics permit the inference of logically inconsistent sentences. To the extent
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that —p and p, for any sentence p, expresses a logical inconsistency, the following

theorem establishes that C5 is inferentially free of logical inconsistencies.

Theorem 11.3.1 The C5 semantics for extended logic programs is inferentially

consistent.

Proof: To prove this we need to prove that for any extended logic program P and
any ground atom p, P does not entail both p and —p under the C5 semantics. This
follows from the fact that in no C5 interpretation can both p and —p evaluate to
at least C'T', since a C5 interpretation is a mapping from atoms to truth values.

11.4 Relation to Answer Set Semantics

In this section we introduce the answer set semantics of Gelfond and Lifschitz for
extended logic programs ([GL90]). We prove that an extended logic program LP
with a consistent answer set entails a literal p with respect to the answer sets of

LP if, and only if, LP weakly entails p (under C5).

The answer set semantics is a generalization of the stable model semantics
introduced in Chapter 3. Gelfond and Lifschitz define an answer set in two steps:
the generalized Gelfond-Lifschitz transformation of a program and the « operator.

These are explained below.

Definition 11.4.1 Let P be a ground, extended logic program. Let M be a set of
ground objective literals. Then, the generalized Gelfond-Lifschitz transformation

([GL90]) of P is

PY ={a+by,....,b |a¢by,....,bp,not c,...,n0t ¢, €P, ci,...,c, € M}
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Note that PM contains no default literals.

Given an extended logic program rule R = a < by,...,bg,not ¢{,...,not ¢,

and a set of ground objective literals M, let

R a<+by,....b ifcy,....,cn €M

a+ false otherwise

Let o be an operator such that for a program P containing no occurrence of default

literals, a(P) is S C EHBp where S is the smallest set such that
1. for any rule a < by,...,b,, in PM ifb;,...,b, € Sthena € S
2. if S contains [ and —l for any literal [, then S = EH Bp

M is an answer set of P if and only if M = a(PM).

Example 11.4.1 Let P be

cross_track < —train_approaching, not stop_request
—stop 4= mnot stop_request
stop <— stop_request
—

—train_approaching

Let M = {cross_track, —train_approaching, —stop}. Then PM is

cross_track < —train_approaching
—stop
stop <— stop_request
—

—train_approaching

a(PM) = {cross_track, —train_approaching, —stop}. Thus, M = o(P™) and M

1s an answer set of P.
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When P is a normal logic program, the answer set semantics reduces to the
stable model semantics. In this case PM is a definite program, «(P") is the
unique minimal model of the program and if M = «(PM), then M has to be a set
of atoms.([GL90)).

Gelfond and Lifschitz show how an extended logic program P can be reduced
to a normal logic program P* by replacing each rule of R by its positive form. The

positive form of

ly (—ll,...,lm,not lm+1,...,n0t ln
is a rule of the form
I« U, ... 0 not I}, ... ,not [}

where [ is [; if [; is an atom, otherwise if /; is a negative objective literal then [;-

is the new atom (I;)’. They prove that

Theorem 11.4.1 [GL90]
M is a consistent answer set of an extended logic program P if and only if M7 is

an answer set of P*

The following lemma uses the above theorem to set up a connection between
answer sets and two-valued well-supported models. We use this lemma in the proof

Lemma 11.4.3 below.

Lemma 11.4.1 M is a consistent answer set of an extended logic program P if

and only if M is a two-valued well-supported model of P+

Proof: Since P" is a normal logic program, M is also a stable model of P*. By

Theorem 3.3.1 in Chapter 3, M* must also be a two-valued well-supported model

of PT. =
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Definition 11.4.2 Given an interpretation Z, let ETruth(Z) denote {l| | is an

objective literal and Z(l) > CT'}.

The following lemma shows that ETruth(Z) is always consistent for any inter-

pretation Z.

Lemma 11.4.2 For any interpretation Z, ETruth(Z) is a consistent set, i.e., it

is not the case that both a and —a belongs to ETruth(Z) for any atom a.

Proof: Since 7 is a mapping from atoms to truth values, Z(—a) > CT if and only

if Z(a) < CT. Hence ETruth(Z) must be consistent. n

Lemma 11.4.3 below says that every consistent answer set of an extended

program P is ETruth(Z) for some canonical model Z (under C5) of P.

Lemma 11.4.3 Let LP be an extended logic program and let P be grd(LP). Then,
for each consistent answer set M of P, there exists a five-valued canonical model

T of LP such that M = ETruth(Z).

Proof: Let M be a consistent answer set of P. We show below how to construct

a five-valued canonical model Z such that M = ETruth(Z).

Let Z be such that it assigns 1" to all members of M and F' to the atoms
of all the negative literals in M and U to all other atoms in HByp. Clearly, by
construction M = ETruth(Z). We show below that Z is a five-valued canonical
model of P.

T is well-supported

Since M is a consistent answer set of P, it follows that M™ is a two-valued well-
supported model of P* (by Lemma 11.4.1 above). So there must be well-founded

ordering < by which M™* is well-supported. For each [’ that occurs in this
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ordering, [; is an atom if [ = [; and otherwise if [} is [, then [; is a negative
objective literal. We derive a well-founded ordering < from < by substituting
Atom(l;) for each [ such that [; = I!. We show that Z is a well-supported model
in terms of this ordering of the atoms in H Bp.

Since the only non-default truth values assigned to any atom by Z are T" and
F', we need only show that Z is well-supported regarding these truth values.

If Z assigns T to an atom a then a € M. So there must be a rule RM € P such
that head(R™) = a and body(R™) C M. Thus, by construction, Z(body(RM))
must evaluate to 1. Hence, there must be a rule R € P such that R = a «
body(RM),not ci,...,not ¢,, such that c,...,c, € M. So T assigns U to each
of ¢1,...,¢,. Thus, body(R) must evaluate to T in Z. Hence the attribution of T’
to a by Z is directly supported through R. Furthermore, the attribution of 71" to
a must be well-supported since if @ € M then a € M. M* can be understood
as attributing 7" to a. It is easy to see that since the attribution of 7" to a by
M is well-supported in terms of <™, the attribution of 7' to a by Z must be

well-supported in terms of <.

If Z assigns F to an atom a then —a € M. So there must be a rule R € PM
such that head(R™) = —a and body(RM™) C M. By reasoning similar to the
previous case it follows that body(R) must evaluate to 7" in Z. Hence the attribution
of F' to a by Z is indirectly supported through R. Furthermore, the attribution
of F' to a must be well-supported since if —a € M then (—a) € M*. M™* can be
understood as attributing 7" to (—a)'. It is easy to see that since the attribution
of T to (—a)" by M+ is well-supported in terms of <, the evaluation of T' to —a

by Z must be well-supported in terms of <. Thus, the attribution of F' to a by Z
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must be indirectly well-supported in terms of <.

7 is a model of P

Assume by way of contradiction that Z is not a model of P. Since Z does not
attribute C'F' or C'T' to any atoms, Z fails to be a model of P only if there is a
R € P such that Z"(R) is F or U.

There can be no R € P such that Z"(R) = U since an R is assigned U only if
the truth values of head(R) and body(R) are incomparable. But, since Z assigns
only T, F' and U, head(R) and body(R) cannot have incomparable values.

So assume Z" (R) evaluates to F'. So either body(R) evaluates to " and head(R)
evaluates to F' or U, or body(R) evaluates to U and head(R) evaluates to F.
But body(R) evaluates to T only if body(R™) C M. In that case head(R) =
head(RM) € M and so head(R) would be T"in Z" and thus Z"(R) = T'. Hence we
need consider only the case where head(R) evaluates to F' and body(R) evaluates
to U.

Either head(R) = a or head(R) = —a for some atom a. If head(R) = a and
a is assigned F', then, by the way Z is constructed, —a € M. So there must be a
rule R, € P such that head(R;) = —a and Z(—a) = T. Since Z is well-supported
as shown above, the attribution of 7" to —a must be directly supported in Z. So by
the evaluation rule Z", in evaluating any rule with @ in the head, the expression
cap-(a,C-,Z) must be inserted in the body of any rule which has a as its head.
This cap expression evaluates to F' in Z. So body(R) must evaluate to F' in T
according to the AND function. So Z"(R) =T.

If head(R) = —a and —a is assigned F', then, by the way Z is constructed,
a € M. So there must be a rule R, € P such that head(R;,) = a and Z(a) = T.

Since Z is well-supported as shown above, the attribution of 7" to a must be directly
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supported in Z. So by the evaluation rule Z", in evaluating any rule with —a in
the head, the expression cap_(—a,C-,Z) must be inserted in the body of any rule
which has —a as its head. This cap expression evaluates to F' in Z. So body(R)
must evaluate to F' in 7 according to the AND function. So again Z"(R) = T.
Hence, given the way Z has been constructed, there cannot be any rules in P
such that they evaluate to F' or U using the evaluation function Z"’. Thus, Z must

be a model of P.

7 is maximal in the mclausal ordering with respect to LP

7 is maximal in the mclausal ordering with respect to LP only if it is maximal
in the mclausal ordering with respect to grd(LP) = P. To establish that Z is
maximal in the clausal ordering with respect to P it is enough to establish that all
rules in P evaluate to 1" according to Z".

Clearly, all rules such that its head is assigned T by Z evaluate to 7. So, all
that remains to be shown is that all rules such that its head is assigned F' or U by
7 also evaluate to T'. But since we have already established that Z is a model of
P, the body of any rule whose head is assigned F' must evaluate to F'. Thus, any
such rule evaluates to T in Z. Similarly, since Z is a model of P, any rule whose
head is assigned U in Z cannot have its body evaluate to 7. So any such rule must
also evaluate to 7.

Hence, all rules in P evaluate to T" under Z.

Hence, 7 is a canonical model of P and M = ETruth(Z). n

Corollary 3 If a ground program P has a consistent answer set, then P has a

five-valued canonical model I such that each rule in P evaluates to T in ZT.

Proof: This was essentially proved in the proof of the previous lemma. [
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Corollary 4 If a ground program P has a consistent answer set, then every five-

valued canonical model of P is such that each rule in P evaluates to T in it.

Proof: By Corollary 3 we know that if P has a consistent answer set then there is
a canonical model Z of P such that all rules evaluate to 7" in Z. So for any model
J of P such that for any rule R, J(R) < T, it must be the case that J < Z.
Hence J cannot be canonical. Thus, every canonical model must be such that

every rule of P evaluates to 1" in it. [

Lemma 11.4.4 Let P be grd(LP). Every canonical five-valued model T of LP
such that each rule of P evaluates to T in T is such that ETruth(Z) is an answer

set of P.

Proof: Assume that Z is a canonical model of LP such that each rule of P
evaluates to T in Z.

We prove the lemma in three steps.

1. We show that if each rule of P evaluates to T in Z, then a(PPTmuth(@) is a

consistent set.

2. We show that if a( PET™***(2)) is consistent then every member of a( PETTuth(2))

is also a member of ETruth(Z).
3. We show that every member of ETruth(Z) is also a member of a( PETTuth(2)),

Step 1: Assume by way of contradiction that o(PFT™*"(2)) is an inconsistent

PETTuth(1)) and rules R, and Ry in

set. So there must be literals [ and =/ in of

PETruth(I) guch that

e head(Ry) =1
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e head(Ry) = -l
e body(R;) C a(PETTuth(I))
e body(Ry) C a(PETTuth(Z)),
Thus, there must be rules R and R), in P such that
e head(R,) =1 = head(R)
e head(Ry) = -l = head(R))
e body(R,) = objbody(R))
e body(Ry) = objbody(RY).

Hence all the default literals and the non-default literals in body(R)) and
body(R)) must evaluate to at least C'T" in Z. However, both [ and =l cannot
evaluate to at least C7" in Z by Lemma 11.4.2. Hence, both R| and R} cannot
evaluate to 17" in Z, which contradicts the assumption that all rules of P evaluate
to T in Z. Thus, a(PET™"D) must be a consistent set if all rules of P evaluate

to1" in Z.

Step 2: We show that if a(PET™h(2)) is a consistent set, then every member
of a(PPI™uth@D) is a member of Etruth(Z).

PETTuth(I)) ig a consistent set under the

From Step 1 we know that S = «af
assumption that all rules in P evaluate to 1" in Z. Clearly, S is a consistent answer
set of PTmut(D)  Thus, by Theorem 11.4.1, ST is an answer set of (PFTTwh(Z))+,
We show below that for any objective literal [, if [T € ST then [ € Etruth(ZT).
Since [T € ST if and only if | € S = a(PFT"#@)  this establishes that every

member of a(P¥Tmu(@D) is a member of Etruth(Z).
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(PETruthD)+ is a definite logic program and, thus, St = a((PFTmuth(Z))+) is the
unique minimal model of (PET™@)*  Thus, by Theorem 3.2.2 (the van Emden-
Kowlaski Theorem), S* is the least fix-point of Ty 1 n, where @ is (PFTuth(D))+,
Thus, it is possible to stratify the members of S* in terms of the least n such that
a member first occurs in Ty 1T n.

In the following let us call an objective literal [ the original form of [T. Recall
that [T is called the positive form of .

Let [T be of the lowest strata among those objective literals in S* such that
their original form is not in ETruth(Z).

Since [T € S*, there must be a rule in (PPT™MIN* of the form [T <
(b1)", ..., (b) T such that {(by)",...,(byn)"} € ST. But, by the assumption that
[T is of the lowest strata among those literals in S* whose original forms are
not in ETruth(Z), it follows that {by,...,b,,} C Truth(Z). Furthermore, since
It < (b)F, ..., (by)" is in (PPTTh(Z))+  there must be a rule R in P of the form
[+ by,...,bp,n0t ¢q,...,n0t ¢, such that ¢; ¢ ETruth(Z),i=1,...,n. So, each
member b; of objbody(R) is assigned at least CT by Z (since each such b; belongs
to ETruth(Z)) and each member not ¢; of negbody(R) evaluates to at least C'T
(since each ¢; is assigned at most C'F by Z). Hence, Z(body(R)) is at least CT.
By the assumption that R evaluates to T in Z, it follows that Z(I) must be at
least C'T. Therefore, [ must be in ETruth(Z). Thus, for every objective literal [,
if I* € S*, then [ € Etruth(Z). And, hence, every member of S = a(PPTruth(2))

is a member of ETruth(T).

Step 3: Assume by way of contradiction that there is a € ETruth(Z) and
a ¢ a(PETruth(I))‘

Let < be the well-founded ordering that makes Z well supported. Among all
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the atoms x such that ¢ a(PFT™(2)) and z € ETruth(Z), let a be highest
in terms of <. That is, let a be such that there does not exist a b such that
b ¢ a(PETTh(I)) and b € ETruth(Z) and a < b.

Since a € ETruth(Z), Z(a) is at least C'T and, hence, there must be a rule R in
P of the form a < by,...,b,,not ¢, ..., not ¢, such that body(R) must evaluate
to at least C'T under Z (otherwise, Z would not be well-supported). So each b; in
objbody(R) must be assigned at least C'T' by Z. Thus, {by,...,b,} C ETruth(Z).
Furthermore, since each not ¢; in body(R) must evaluate to at least CT, each c¢;
must be assigned at most CF by Z. Thus, no ¢; is in ETruth(Z).

Hence, clearly, a < by, ..., b, must be in PETTuth(I),

By the nature of the well-founded ordering that makes Z well supported, each of
bi, ..., b, must be lower than a in the well-founded ordering (otherwise a cannot
be well-supported by R). By our assumption that a is the highest in the well-
founded ordering, it follows that {b,...,b,} C a(PFTT@)) since {by,..., by} C
ETruth(Z). So a must belong to a(PET™h(Z)), Thus, a contradiction. Hence,

every member of ETruth(Z) must be a member of q PETTWh(I),

Steps 1 and 2 together show that if each rule of P evaluates to T in Z, then
every member of o( PETT#(1) is also a member of ETruth(Z). This together with

Step 3 proves the lemma. n

Lemma 11.4.5 Let P be grd(LP). If P has a consistent answer set then every

canonical model T of LP is such that ETruth(T) is an answer set of P.
Proof: Follows directly from Corollary 4 and Lemma 11.4.4. [

Theorem 11.4.2 If a ground extended logic program P has a consistent answer

set, then M s an answer set of P if, and only if, there exists a five valued canonical
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model of T of P such that M = ETruth(Z).

Proof: Follows directly from Lemmas 11.4.3 and 11.4.5. [

Since not all extended logic programs have consistent answer sets, an important
question is what are the necessary and sufficient conditions for an extended logic

program having a consistent answer set. The following theorem gives an answer.

Theorem 11.4.3 A ground extended logic program has a consistent answer set if,
and only if, every rule of the program evaluates to T in every canonical model of

the program.

Proof: The left-to-right direction is proven in Corollary 4. The right-to-left

direction is proven in Lemma 11.4.4. [

Let us say that P entails a sentence ¢ under the answer set semantics if, and

only if, ¢ is a member of every answer set of P.

Theorem 11.4.4 If a ground extended logic program P has any consistent answer
sets then it entails a sentence q under the answer set semantics if, and only if, P

weakly entails q under C5.

Proof: Follows directly from Theorem 11.4.2. [

11.5 Discussion

As in the case of C4, the truth values of C5 and the orderings among them can
be seen as composed out of a more basic set of truth values and the orderings

between them. In the case of C4 the basic set of truth values is {7, F'} with only a
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truth ordering among them, whereas in the case of C5 the basic set of truth values
is {T,U, F'}, which are themselves ordered along both the truth and information
dimension thus: F <, U <; T and U <; F,T. As in the case of C4, we imagine
two players assigning one of the basic truth values to a set of sentence. Player 1
has the final say in which truth value is assigned to a sentence. This gives rise to
the following tuples of truth values, where the first member of each tuple is the
truth value assigned by player 1 and the second member is the truth value assigned
by player 2: (T, T), (T,U), (T, F), (U,T), (UU), (U F), (F,T), (F,U), (F,F).

As in case of C4, player 1 determines what truth value to assign to a sentence
taking into account the truth values assigned by both players. In doing this player
1 adopts the policy that in case either player assigns a definite truth value (7 or F)
to a sentence and the other player assigns U, then the definite assignment should
be allowed to win, but otherwise if both players assign a definite truth value then
the assignment by player 2 should dominate the assignment by player 1 without
winning outright. Call this ‘the assignment policy’. This assignment policy means
player 1 will finally assign 7' to a sentence in case of (T,U) or (U,T) and F in
case of (U, F) or (F,U). It also means that (T, F) and (F,T) are not simplified
to F and T respectively ( which would be allowing the assignment by player 2 to
win outright), but are instead are retained with the ordering (T, F) <, (F,T),
which reflects the idea that the assignment by player 2 dominates the assignment
by player 1. As in C4, (T, F) is represented by C'F and (F,T) is represented by
CT. If there is consensus in the truth values assigned to a sentence, player 1 will
finally assign that truth value to the sentence. This gives us the truth values of
C5.

In deriving the ordering among the truth values of C5 we use the truth and
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information orderings in the basic set, {7, U, F'}, as well as the assignment policy
adopted by player 1. Given the truth ordering among the values of the basic set,
clearly, the ordering F' <; U <; T" among the truth values of C5is justified. Also,
as in C4, (T, F) <, (F,T) since we allow player 2 to dominate player 1. That is,
CF <, CT. It is obvious also that F' <, CF and CT <, T.

How should (U,U) be ranked with respect to (T, F') and (F,T)? Note that
commonly U, which is regarded as the unknown truth value, is considered less
than 7" and greater than F' in the truth ordering because even if more information
were provided about a sentence that is now regarded as unknown, that sentence
will never be assigned a value greater than 7" and less than F'. Using this reasoning
we hold that (U,U) is incomparable in the truth ordering with respect to (T, F')
and (F,T) because if more information were provided to both players regarding a
sentence that they now regard as unknown in truth value, then in the worst case
they both might regard it as false and in the best case they both might regard it
as true. Thus, we have no way of locating (U, U) with respect to (T, F) and (F,T)
in the truth ordering. That is, U is incomparable with respect to C'T" and C'F'.

Putting all this together we get the following truth ordering among the values
of Co: F<, U<;T,F<,CF <, CT <;T.

The information ordering among the truth values of C5 is straight forward.
Clearly U <; T,CT,CF,F. And, furthermore, T,CT,CF, F are incomparable

among themselves in terms of the information ordering.

In Chapter 5 we showed that C4 subsumes and extends the stable model se-
mantics for those normal logic programs which have any stable models. The answer

set, semantics generalizes the stable model semantics and C5 generalizes C4. It
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is satisfying therefore that the results regarding the relation between stable model
semantics for normal logic programs and the C4 semantics for this class of pro-
grams holds in the more generalized setting of answer set semantics for extended
logic programs and the C5 semantics for this class of programs.

The answer set semantics inherits the problems of stable model semantics dis-
cussed in Chapter 5: there are no answer sets for some extended logic programs
and the addition of an “irrelevant” clause to a program which has an answer set
can result in a program which has no answer sets. The C5 semantics for extended
logic programs overcomes both these problems.

The answer set semantics also has the drawback that certain programs, the
“inconsistent” programs, have only the trivial answer set which consists of all the
objective literals in the extended Herbrand base of the program. This is clearly
a drawback of the answer set semantics in that no meaningful inferences can be
drawn from such programs on the basis of the answer set semantics. The C5

semantics for extended logic programs does not suffer from this drawback.

In Chapter 5 we have also shown that C4 subsumes the well-founded seman-
tics ([GRS91]). It would therefore be desirable to show that C5 subsumes well-
founded semantics for extended logic programs. However, there is no agreement
on what would count as the well-founded semantics for extended logic programs
( [DRI1], [AP92b], [ADP93], [Sak92]). Hence we have not attempted to show that
C5 semantics for extended logic programs subsumes well-founded semantics for

extended logic programs.

Based on the idea of well-supported models and a five valued logic, C5, we

have characterized the semantic difference between default negation and what we

266



call non-default negation in terms of the associated mappings. This is in contrast
to the practice among some authors ([GL90], for instance) of characterizing the
difference between the two types of negation in terms of the difference between the
treatment of sentences containing default negation and the treatment of sentences
containing non-default negation in the procedure for determining the semantics of
a program containing both types of negation. Rather, what we have done is first
give the semantics of the two types of negation and on the basis of this, and the

semantics of the other operators, given the semantics of a logic program.

The apparatus of this chapter can be extended in a straight-forward manner to
develop a semantics for extended logic programs with heterogeneous contestations.
The various cap functions will have to be redefined in terms of the truth values
of C5. In evaluating the truth value of a rule constrained by contestations, the
evaluation function Z" should be used. This semantics otherwise will be analogous

to the semantics of normal logic programs with contestations.

We have not developed a proof procedure for extended logic programs. This

will be done in future work.

11.6 Summary

In this chapter we have developed the C5 semantics for extended logic programs,
which contain both a default and a non-default negation. The specific research

contributions of this chapter are summarized below.

e We have developed a five-valued semantics C5 which is an extension of C4

(Section 11.3).
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e We have proven that every extended logic program has at least one (consis-

tent) canonical model under C5 (Section 11.3).

e We have shown how to capture part of the logical force of non-default nega-
tion in terms of contestations. If non-default negation is viewed as an ap-
proximation of classical negation, then logical conflict in a logic program can
be represented in terms of the derivability of a literal and its non-default
negation from the program. Thus, logical conflicts as well as non-logical con-
flicts can be represented in terms of contestations. Thus we have established
that contestations provide a flexible framework for expressing and reasoning

with a wide variety of conflicts among statements (Section 11.3).

e We have proven that C5 is inferentially conflict-free with respect to the
approximation of logical conflicts in terms of non-default negation (Sec-

tion 11.3).

e We have proven that for any extended logic program P which has a consistent
answer set, a literal [ is strongly entailed by P under the answer set semantics

([GL90]) if and only if [ is weakly entailed under C5 (Section 11.4).

e We have shown how the five truth values of C5 and orderings associated
among these truth values can be derived from the truth values {F,U, T} of
Kleene ([Kle50]) and the truth and knowledge orderings among these truth
values in the context of two players assigning these truth values to the same
set, of statements, where one player’s assignment is allowed to dominate the

other person’s assignment without winning outright (Section 11.5).
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Chapter 12

Conclusions and Future Work

In this chapter we summarize the research described in this thesis and outline the
direction of the future development of the research accomplishments described in

this thesis.

12.1 Summary

In this dissertation we have presented a framework for expressing different types
of conflicts among statements and for reasoning with information containing these
types of conflicts. The conflicts are expressed using a construct called contesta-
tions. Contestations are symbolically expressed as A <; b, where A is a conjunc-
tion or a disjunction of ground literals and b is a ground atom. The contestation
A <—; b says that if A attains a certain truth value, vy, then b can attain at most
a certain other truth value, vy, which depends on the truth value v; and the truth
function cap; on which —; is based. Different types of contestations can be based
on different cap functions (Chapter 4).

We have provided a semantics, C4, for normal logic programs augmented with

a set, of contestations. These contestations can be heterogeneous in the sense that
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they are based on different cap functions. C4 is based on a set of truth values,
{F, CF, CT, T}, and the ordering FF < CF < CT < T among these truth
values; the idea of a well-supported model, which is intended to capture the idea
of an evidentially reasonable model; a clausal ordering among the well-supported
models; and the idea of canonical models as the models that are maximal in this
ordering among the well-supported models. In terms of this semantics, we define a
strong entailment relation and a weak entailment relation. The strong entailments
of P+C, where P is a normal logic program and C is a set of contestations, are the
literals which are 7" in all the canonical models of P 4+ C. The weak entailments
of P + C are those literals which are at at least C'T" in all the canonical models
of P+ C. We have shown that the C4 semantics is inferentially conflict-free with
respect to the types of conflicts that can be represented in terms of contestations
(Chapter 4).

We have shown that for any normal logic program without contestations, the
C4 semantics provides at least one well-supported model. Although it is a highly
desirable that for any normal logic program, P, and any set of contestations, C,
C4 provides at least one well-supported model for P + C, this claim was shown to
be false. However, we show that C4 provides at least one well-supported model
for any normal logic program augmented with a set of contestations based on any
truth function cap; such that cap;(CF) = CT (Chapter 4).

In Chapter 5 we have investigated the properties of C4 as a semantics of normal
logic programs (without contestations). We have proven that every definite logic
program has a unique C4 canonical model and we have proven that every normal
logic program has at least one C4 canonical model (Section 5.2). We have proven

that the C4 semantics of normal logic programs subsumes both the stable model
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semantics and the well-founded semantics. C4 can provide models for programs
for which there are no stable models. Furthermore, for any program which has
a stable model, a literal [ is true in all the stable models of the program if and
only if [ is weakly entailed by the program under C4 (Section 5.3). We have also
proven that [ is true in the well-founded semantics of a normal logic program if
and only if [ is strongly entailed by the program under C4 (Section 5.4). We also
provide a framework for hybrid reasoning in which part of a query is to be answered
under weak entailment and the remaining under strong entailment. Since strong
entailment is more cautious that weak entailment this provides a way of being
cautious regarding part of a query and non-cautious regarding the rest of the
query (Section 5.5).

In Chapter 6 we have developed a bottom-up assumption based proof procedure
for answering whether a ground query, consisting of a conjunction or a disjunction
of literals, is weakly entailed by a finite and ground normal logic program. This
proof procedure is restricted to programs having C-stable canonical models, and for
programs without any C-stable canonical models the proof procedure terminates
gracefully by informing the user about this (Section 6.3). We have proven that
this proof procedure is sound and complete with respect to the C4 semantics for
normal logic programs (Section 6.4). We have computed the worst case complexity
of the weak entailment proof procedure to be O(n?x 2"), where n is the cardinality
of the Herbrand base of the program (Section 6.6).

We have also developed a bottom-up assumption based proof procedure for
answering whether a ground query, consisting of a conjunction or a disjunction
of literals, is strongly entailed by a finite and ground normal logic program (Sec-

tion 7.3). This proof procedure works for all finite and ground normal logic pro-
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grams. We have proven that this procedures is sound and complete with respect
to the C4 semantics for normal logic programs (Section 7.4). We have computed
the worst case complexity of the strong entailment proof procedure to be O(n?),
where n is the cardinality of the Herbrand base of the input program (Section 7.5).

In Chapter 8 we have extended the proof procedures of Chapter 6 and Chapter 7
to a proof procedure for answering whether a ground query is weakly or strongly
entailed by a finite and ground normal logic program augmented with a heteroge-
neous set of ground contestations. These proof procedures are also restricted to
programs with a C-stable canonical models (Section 8.3). We have proven that
these proof procedures are sound and complete with respect to the C4 semantics
for normal logic programs augmented with contestations (Section 8.4). We have
computed the complexity of both the weak and strong entailment proof procedures
to be O(n? x 2") (Section 8.5).

In Chapter 9 we have shown C4 can be used to reason with a deductive database
that is inconsistent with its own integrity constraints. We have shown how to cap-
ture a wide variety of propositional integrity constraints for a deductive database
in terms of contestations. This enables us to use C4 as a semantics for deductive
databases that are inconsistent with their own integrity constraints. This account
is restricted to propositional integrity constraints since in this dissertation we have
only considered propositonal contestations. We have also introduced a new theory
of integrity constraint satisfaction according to which a database satisfies its in-
tegrity constraints only if the integrity constraints are true in what can be inferred
from it in. Thus, integrity constraints on a database are best viewed as constraints
on what can be inferred from the database rather than on the state of the database.

In Chapter 10 we have shown how to extend the C4 semantics for a normal logic
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program, L P, augmented with contestations, C, by adding a set of preferences, P,
among statements. The first semantics is based on using the preferences of P
to induce an ordering among the well-supported models of LP + C. The second
semantics is based on the idea of a well-supported model of LP + C satisfying
the preferences of P. Although these two semantics are based on different ways
of factoring in the role of preferences, we proved that these two semantics are
equivalent.

In Chapter 11 we have extended C4 to C5, which is based on an additional
truth value U and three types of ordering between the five truth values of Cb5.
We used C5 to provide a semantics for extended logic programs, which contain
both a default and a non-default negation. We proved that every extended logic
program has a well-supported model. We prove that the C5 semantics for extended
logic programs subsumes the answer set semantics for extended logic programs in
the sense that for any extended logic program which has a consistent answer set
semantics, a sentence is true in all the answer sets of a program if and only if it
is weakly entailed by the program under C5. We have shown that to the extent
that non-default negation approximates classical negation, to that extent C5 can
be viewed as a framework for reasoning with logical conflicts. Thus, C5 provides
a framework for reasoning with logical as well as non-logical conflicts. We have
shown that the C5 for extended logic programs is inferentially conflict-free in the
sense that no extended logic program entails, weakly or strongly, p and —p for any

atom p.
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12.2 Future Research

The C4 semantics for normal logic programs augmented with a set of contestations
is restricted to ground contestations. It would be useful to extend this account
to non-ground contestations. This would allow us to represent non-propositional
integrity constraints in terms of contestations. Thus, our method of reasoning with
deductive databases that are inconsistent with their own integrity constraints can
be extended to a wider set of integrity constraints.

The prooof procedures described in this work are all restricted to finite and
ground programs. These proof procedures need to be extended to non-ground
programs. Furthermore, all the proof procedures except for the strong entailment
proof procedure for normal logic programs without any contestations are restricted
to programs (possibly augmented with contesations) having C-stable canonical
models. It would be desirable to extend these procedures to programs having no
canonical C-stable models.

This work is restricted to normal logic programs. It would be useful to extend

this work to a wider class of programs, such as disjunctive logic programs.
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