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Abstract

The structured singular value (SSV or p) is known to be an effective tool for assessing
robust performance of linear time-invariant models subject to structured uncertainty. Yet all a
single p analysis provides is a bound £ on the uncertainty under which stability as well as H,
performance level of k/3 are guaranteed, where k is preselectable. In this paper, we introduce
a related quantity, denoted by » which provides answers for the following questions: (i) given
B, determine the smallest & with the property that, for any uncertainty bounded by 3, an H
performance level of « is guaranteed; (ii) conversely, given o, determine the largest 8 with
the property that, again, for any uncertainty bounded by 5, an H., performance level of « is
guaranteed. Properties of this quantity are established and approaches to its computation are

investigated. Both unstructured uncertainty and structured uncertainty are considered.
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tured uncertainty.
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0. Notation

I Identity matrix of size k X k

Ok, xk, Zero matrix of size k1 X ko

Ok Okxk

IP|lcc  Hoo norm of stable transfer matrix P

a(A) Largest singular value of matrix A

A(A) Largest eigenvalue of Hermitian matrix A

A(A,B) sup{X € R:det(A — AB) = 0}, for Hermitian A, B (\(4, B) may be + o)
p(4) Spectral radius of square matrix A

p(A,B) sup{|A|:det(A - AB) =0,A € C}, (p(A, B) may be + o)

zH Hermitian transpose of vector 2
Ilz|| Euclidean norm of vector z

AH Hermitian transpose of matrix A
A >0  Matrix A is positive semi-definite
0B Unit sphere in C"

R* Set of nonnegative real numbers

1. Introduction

Consider a linear time-invariant model affected by uncertainty. It is by now well known (see,
e.g., [4]) that in many cases of interest such a system can be represented in “feedback” form as
in Fig. 1 (A(s) and P(s) are both square systems). Here A represents the uncertainty and is
typically block diagonal, each block corresponding to uncertainty affecting a specific subsystem.
Both parametric and dynamic uncertainties can be accounted for. While the former give rise to
real scalar blocks in A, the latter are often represented by H.,-norm bounded linear time-invariant
transfer functions. Under the assumption that the nominal model is internally stable, the overall
system will be internally stable for all A of size (Hoo-norm) no more than 1, A having the specified
structure, if and only if

sup ju( Py (jow)) < 1

where p is Doyle’s structured singular value (SSV) for the given structure [3] (Small g Theorem [4];
see also [11]). The SSV framework also permits to assess robust performance [4]. Namely, referring
again to Fig. 1, suppose one desires to know whether the worst-case H,, performance is satisfactory,
i.e., whether, for any structured A of size no more than 1, the H,-norm of the transfer function
F,(P,A) from exogenous (e.g., disturbance) signal u to error signal e is small, say, no larger than
1. It turns out that this will be the case if and only if the system of Fig. 2 is internally stable for

all A of size no more than 1, A having the specified structure, and for all § of size no more than 1;



equivalently, if and only if
sup fi( P(jw)) < 1

where i is the structured singular value corresponding to the “augmented structure”. Straight-
forward scaling then yields the following, given any 3 > 0: The system of Fig. 1 is stable for all
structured A of size § or less, and the worst-case performance under such uncertainty is no more
than 1/8, if and only if

sup A(P(jw)) < 1/8.

Thus an SSV analysis can answer the question

(Q1) what is the largest 8, if any, such that, whenever the uncertainty has size 3 or less, (i) the

system is stable and (ii) the worst-case H, performance is better than 1/8 ?

While this does provide some kind of “stability-and-performance margin”, it may well happen
that a good estimate of the actual uncertainty bound is available. In this case, assuming that
the uncertainty bound has been normalized, a question of interest is whether the system is stable
whenever the uncertainty has size less than 1, and if so, what is the worst case performance for this

same uncertainty size. In other words:

(Q2) what is the smallest a, if any, such that, whenever the uncertainty has size 1 or less, (i) the

system is stable and (ii) the worst-case H,, performance is better than a ?

Yet another question of possible interest is whether with no uncertainty, a given performance level,
say 1, is achieved, and if so, how much uncertainty can be tolerated if this performance level is to

H 1
be preserved, i.e.,

(Q3) what is the largest 8, if any, for which, whenever the uncertainty has size 3 or less, (i) the

system is stable, and (ii) the worst-case H,, performance is better than 1.

The following approach to answering (Q2), via an (infinite) sequence of SSV analyses, comes to
mind. Note that for any o > 0, stability of the system in Fig. 1 is equivalent to stability of the
system in Fig. 3, with P(s) given by
Pa(s) _ aPll(s) (,YPIQ(.S) ’
P21(S) P22(8)
and that the transfer function from » to e is identical for both systems. It follows that the sys-
tem of Fig. 1 is stable whenever ||All < 1 (i.e., whenever ||(1/a@)Al|s < 1/a), with worst-case

performance better than «, if and only if

sup A(P(jw)) < . (1.1)

! This question was suggested to us by Carl Nett.



Thus the answer to (Q2) is given by &, the infimum of those « satisfying (1.1). This suggests the
fixed point iteration

a;41 = sup f(P*(jw)), ao>0.
A similar idea applies for (Q3) with P,(s) replaced by

Pu(s) P12(S) ]
OéPQl(«S) OéP22(S)

.

’

Po(s) = [

simply note that the system of Fig. 1 is equivalent to that of Fig. 4 and that its robust performance
can be characterized via Fig. 5. It follows as a byproduct of the results obtained in this paper that

these iterations do converge to the sought quantities.

The purpose of this paper is to introduce a quantity closely related to the structured singular
value, but providing an answer to (Q2) (resp. (Q3)) in a single analysis. For simplicity of exposition,
we first consider the case of two-block structures (performance block and single uncertainty block).
Questions (Q2) and (Q3) are considered jointly. To facilitate this, the representation given on
Fig. 6 (obtained by renumbering the blocks of P(s)) will be used in connection with (Q3). In
Section 2 below we define the new function v of a matrix and state theorems (related to the Small
¢ Theorem) that show its relation to (Q2) and (Q3). In Section 3, we discuss elementary properties
of v and in Section 4 we elucidate its correspondence with g. In Section 5, we indicate how, for
a complex matrix M, v(M) can be efficiently computed. Finally, in Section 6, we state without
proof extensions of the results of Sections 2 to 5 to the case of structured uncertainty. Some simple
proofs are left out or given in the appendix. Throughout the paper, scalar functions, including
value functions of optimization problems, take values in the extended real line R U {oo}.

2. A Measure of Robust Performance

Thus, for a complex n X n matrix M, consider the multiindex K = (ki, k), k1 and k; positive
integers, with k; + k2 = n. K are to be referred to as block structure; for the systems of Figs. 1
and 6, k; and k, are to be taken as the dimensions of blocks number 1 and 2 respectively. Below,

we make use of the notation

D = {block diag (dl,,Is,): d > 0},

U = {block diag (U1, Us),U; : k; X ki, unitary},

P block diag (Ix,,Op,), P2 = block diag (Og,, Ix,) ,

Q1 block row (I, , Ok, xk,), @2 = block row (O, xky» Iky ),

Il

and M is partitioned according to

M M
M= [ 11 12] ,
Mo M



with M;; . k; X k‘j.

Recall [3] that, for the given block structure, the structured singular value u(M) of a complex
matrix M is equal to zero if there is no A € A" such that det(/ + AM) = 0 and

-1
w(M) = <£ne1%{a(A) tdet(f + AM) = O})
otherwise, where X’ is a subspace of C"*" given by
X = {block diag(A1,As) : A € CH¥F i = 1,2} .

Consider now the related quantity v(M ), equal to zero if there is no A € Y such that det(I+AM) =
0 and given by

-1
V(M) = (533{5@2) : det(I + AM) = o})

(possibly oo) otherwise, where Y is given by
Y = {block diag(Ay,Ay): A; € CH*% i =1,2,5(A) < 1}.

Note that, in the formula for (M), the size of A; is not minimized but merely kept below 1,
reflecting the fact that the required uncertainty (resp. performance) bound on block 1 for (Q2)
(resp. (Q3)) is fixed (equal to 1).

The following results, to be compared to the Small  Theorem [4], follow. Here k; and ko are

the dimensions of Py1(s) and Py,(s) respectively, F,,(P,A) is the transfer function from u to e on
Fig. 1 and Fy(P, A) the transfer function from u to e on Fig. 6.

Theorem 2.1. Suppose P € H, is internally stable and let o > 0. Then the system depicted in
Fig. 1 is well formed and internally stable for all A € H, ||Al|eo < 1, and || Fu (P, A)ljeo < @ for all
such A if and only if sup ¥(P(jw)) < a. O

Theorem 2.2. Suppose P € H, is internally stable and let 8 > 0. Then the system depicted in
Fig. 6 is well formed and internally stable for all A € He, ||Alleo < 8, and || Fo(P, A)||eo < 1 for
all such A if and only if sup »(P(jw)) < 1/8. O

Thus (Q2) and (Q3) can each be answered by means of a single “v” analysis.

3. Properties of v

First, the discussion of Section 2 suggests that ¥ may be related to i in some recursive way. This

is indeed the case as stated in Proposition 3.1 below.

Proposition 3.1.



(a) Suppose v(M) < oo. Then

v(MYIy, O _
u([ 0 Ikle) =v(M). (3.1)

(b) Suppose pu(M) > o(Mj1). Then
-1
v ([“ ()L 0 ] M) = u(M) . (3.2)

O

The properties of v listed in Proposition 3.2 below are to be compared to similar properties of u

given in [3].
Proposition 3.2.

(a) ¥(M) < oo if and only if (M) < 1.

(b) v(aM) > |alp(M) for any |e| > 1. (3.3)
(c) v(aM) < |a|y(M) for any |a] < 1. (3.4)
(d) »(DMDY) = p(M) for any D € D. (3.5)
(e) v(UM) = v(MU) = v(M) for any U € U. (3.6)

O

Lower and upper bounds for v(M) can be readily obtained in terms of the largest singular
values of the subblocks of M. This is shown in Proposition 3.3 below. The following two lemmas

are used in proving it.
Lemma 3.1. (see, e.g., [2]) u(M) > max{5(M11),5(Ma2), /o(M12)a(Ma1)}. ]
Lemma 3.2. (see, e.g., [8])
G(My1) T(Miz)
KA < e ([ a(My1) T(My) D
(M) + 7(Ma2) + V(@(Mi1) — 5(M32))? + 45(M12)T( M)

2
O
Proposition 3.3. Suppose that (M) < 1. Then the following inequalities hold.
G(Myp)T(M.
max{o(Mz;), T(My2)o(Mz)} < v(M) < (M) + T(M12)7(Ma) (3.7)

1 —3(Miy)



Proof. Let v = v(M) and m;; = 3(M;;), 1,7 = 1,2. In view of (3.1) and Lemma 3.1, we have

v > max{vmqy, Moz, /VM12Mma1 }

which implies that v > mgp and v > myzmg;. Thus the first inequality in (3.7) holds. In view of

(3.1) again and Lemma 3.2, we have

< Ymu + maog + /(vmy1 — ma2)? + dvmigma

: (3.8)

Then using the facts that my; < 1 and v > myy, it is straightforward to show that (3.8) reduces to

the second inequality in (3.7). o
We will employ the following lemma in proving Proposition 3.4.
Lemma 3.3.
= : : > . ) =
w(M) gé??{o | PiMz|| > 0||Pell, ¢ = 1,2}

= %6152%{92 |PiMz|| = 0||Piz||, i = 1,2} .

Proof. The former was obtained in [7]. Next

p(M) = max{||Mz||: [|EMz|| = || Ma] - [|Pell, ¢ = 1,2}
< . 2 — 3 ] —
< alcrelzg)lg{O | PiMe|| = 6||Pizll,i = 1,2}
>0
< max{0:||P;Me|| > 0| Pial|,i = 1,2} = u(M)
50
where the first equality was obtained in [5]. This proves the second claim. O

Proposition 3.4. Suppose that ¥(M) < co. Then the following statements are true.

(a) Suppose that M has rank one. Write M = uv¥ for some u,v € C*. Then

| Pl Pavl
v(iM) = . (3.9)
M) = TPl Ryl
(b)
V(M) = mas {0 |PuMe] = [Pl | P2l = 6]| Pyl (3.10)
>0
= max {0 [|PMe]| > | Pl 1Mo > 0 Paal} (3.11)
>0

(¢) V(M) = rggg{(p(UM — P1, Ps).



(d) v(-) is continuous at M.
Proof.
(a) Let A = diag{A;, Az} € Y, u; = Q;u and v; = Q;v, i = 1,2. Then
det(I + AM) = det(I + Awv™) = 1+ v Au =1+ vF Ayuy + vf Aguy . (3.12)
It is straightforward to check that the smallest Ay, which makes (3.12) equal zero for some
Ay with (A1) < 1, satisfies
1 = Jlualll|vs ]| = T(A2)[Jug]l]vafl = 0 .

In view of the definition of v(-), (3.9) holds.

(b) We prove the first claim. The second claim can be proved similarly. We first show that the
right hand side of (3.10) is well defined, i.e., that the feasible set is nonempty. In view of
Lemma 3.3 and (3.1), we have

V(M) = max (01 v(M)|[PiMz] = 0] Pial, [[PoMz] =01 Ppall) . (3.13)
>0

Thus, there exists z such that (z,v(M)) is feasible for (3.13). If »(M) > 0, it follows that
(z,v(M)) is feasible for (3.10). If v(M)=0, a feasible point for (3.10) can be constructed
by considering a sequence {My} — M, with v(M;) > 0, letting «; be a maximizer for the
problem of the form (3.10) for My, and extracting converging subsequences from {v(My)}
and {zx} (in view of Proposition 3.3, v(M}) is eventually bounded). Now let v; denote the
right hand side in (3.10). We first show v(M) < v;. If »(M) = 0, the result holds trivially.
Otherwise, it follows from feasibility of (z,v(M)) for some z. To show that v(M) > vy, we
let (z,6) be feasible for (3.10) and prove that »(3M) > 6. If § = 0 this holds trivially. Thus
assume @ > 0. Then there exists A = diag(A;, A2) € Y such that 7(A;) = 1, 5(Ag) = 873,
and det(! + AM) = 0. The claim then follows from the definition of v(M).

(c) (8,z) € RT x €" is feasible in (3.10) if and only if, for any ¢ € IR, there exist unitary matrices
U, € €%k and U, € CF%*2 such that

U1 Mz = G

UQQQM.’E = 06j¢Q2.’I}
which happens if and only if, for any ¢ € R, there exists U € U such that

(UM — Py)z = 0¢'% Pya.
Therefore, (c) follows directly from (3.10) and the definition of p(-, ).

(d) Follows directly from (c). O



4. Computing v via u

In Section 1 above it was suggested that (Q2) and (Q3) could be tackled via an infinite sequence

of u analyses. How v can indeed be obtained from p is made precise here. Define the function

f:R—-R
al, 0
e=e([° 1 ]1)

It can be easily checked (see, e.g., [9]) that the function f(«) is continuous and nondecreasing.

Proposition 4.1.
(a) B8 > v(M) implies that f(8) < 8.

(b) 0 < B < v(M) < oo implies that f(5) > 8.

O
Theorem 4.1. Let {a)} be the sequence generated by the fixed point iteration
apyr = flag), k=1,2,...
with ag any positive number. Then klim ar = v(M).
—00
Proof. Follows directly from Proposition 4.1 and the continuity of f. O

5. Direct Computation of v

The key question is now whether v(M) can be easily computed. For the case under consideration,

efficient algorithms are known for the computation of the structured singular value p(M), based
on the formulas ([4,5])

M) = inf 5(DMD™? 1

#(M) = inf 5(DMD™) (5.1)

(M) = max{6: ||P;Mz| =0|Pazl|, i=1,2}.
g

In particular, the optimization problem in (5.1) has no local minima that are not global and robust

algorithms are available for its solution. Practical value of v(M) is obviously contingent on the
availability of a comparably efficient computational algorithm. We show below that v(M) is the
optimal value of certain quasi-convex optimization problem.? For A, B Hermitian, with A(A) > 0
and B > 0, define

n(A, B) = sup{y € R : X(4 — vB) > 0}.

2Theorem 5.2 as well as the present formulation of Theorem 5.1 were prompted by S.P. Boyd’s observation that
the result in [7] can be expressed in terms of a quasi-convex optimization problem involving a certain generalized

eigenvalue problem.



The following is easily proven.

Proposition 5.1. Given A, B Hermitian, with X(4) > 0 and B > 0, the following statements
hold.

(a) n(4,B) > 0.
(b) For any t € R, n(A, B) < t if and only if X(4 —tB) < 0.
(c) If X(A, B) is finite and A(A—A(A, B)B) = 0, then n(4, B) = X4, B); otherwise, 5(4, B) = .

0

Thus 7(A, B) can be computed by solving a generalized eigenvalue problem. Now, let G(d) =
MH(dPy + P,)M — dP;. For any d > 0, z P,G(d)Pse > 0 for any z, and thus X(G(d)) > 0. Thus,
in view of Proposition 5.1 (a), n{(G(d), P;) > 0 for any d > 0.
Theorem 5.1. v(M) = (iir;g\/n(G(di,Pzi.
Proof. From (3.10), we have, for any d > 0,

v(M) = sup {8:27(MEPM ~ P)e 20, oM (MTPM - 9 Py)e > 0} (5.2)

r€OB
>0

INA

sup {0 127 (G(d) - 62 Py)z > 0}
i

= sup {0 : MG(d) - 62P) > 0}
6>0
= (G(d), P)
Therefore, v(M) < i‘;{,‘/"(G(d)»Pﬁ- If v(M) = oo, the proof is complete. Suppose now that
»(M) < co. For 6 > 0, consider the numerical range

(L'H(MleM e P])x
oy {101 T o)

Let ¢ > v(M). Then, in view of (5.2), the intersection of W(t) and the (closed) first quadrant in
IR? must be empty. Since the numerical range is convex [12], there exists d; > 0 such that, for any
z€ W(t), [d; 1)z < 0, i.e.,

eH(MHP,M —~ Py)z

1] [mH(MHPzM - t2P2)33] = (Gl - h)s <0

for all # € dB. Therefore, \(G(dy)—t*P,) < 0, i.e., in view of Proposition 5.1(b), 7(G(dy), F2) < t2.
Thus 51;2«77( G(d), P;) < t. Hence (iir;g V1(G(d), P;) < (M), and the proof is complete. O
Theorem 5.2. The function n(G’(dS, P;) is quasi-convex in d € R,

10



Proof. For d > 0, let g(d) = n(G(d), P;). We show the claim by contradiction. Suppose g(ad;+(1-
a)dy) > max{g(di), g(d2)} for some dy,dz > 0 and @ € (0,1). Let ¢ be such that g(ad; +(1-a)d,) >
t > max{g(di),g(dz)}. Let g,(d) := A(G(d) — tP;). In view of Proposition 5.1 (b), we have
g:(d1) < 0, gi(d2) < 0 and gi(ady + (1 — @)d2) > 0. This contradicts the fact that g, is convex

(composition of an affine function and a convex function). a

Quasi-convex optimization problems can be solved, e.g., by a cutting-plane method (see, e.g., [1]
and the references therein). It was also recently shown that optimization problems such as that of

Theorem 5.1 can be solved in polynomial time by an interior path method [10].

6. Structured Uncertainty

The results presented in Sections 2 to 5 can be extended to the case, considered in Section 1, where
the uncertainty is structured, i.e., A(s) in Fig. 1 or Fig. 6 is constrained to be block-diagonal with
blocks of specified dimensions. It may happen that for some uncertainty blocks, the true bound
on uncertainty size is known, while for other, one seeks to determine how large a bound would
be acceptable. Similarly, there can be a fixed desired performance level, or one may seek as good
a performance as possible. Without loss of generality, assume that, for some ¢, blocks number
1 thus £ have size bounded by 1 (this includes the performance block if the performance level is
prescribed) and it is desired to determined the maximum acceptable size for blocks £+ 1 and above
(this includes the performance block if as good as possible performance is desired). Thus consider

the pair of multiindexes K = (ky, ..., k¢; keg1,-.., kn) and the corresponding families of matrices
D = {block diag (dilx,,...s dm-11lt,,_,, Ix, ) : d; > 0},

U {block diag (U1,..., Un),U; : k; X k;, unitary},
P; = block diag (Oky,..-, Oki_yy Triy Oiprsevvs Oky), 1=1,..,m

let M be partitioned as
M11 e Mlm

. M M
M= : : :[Mll MlZl,
21 22
Mp1 ... Mpm
£ m
with M;; : ki X kj, My : k; X kg, where k; = Z:lki, ko = .~%1 ki; and let Py =

block diag (Ikl’okz)’ Py = block diag (Okl’Ikz)' In the multiblock case, we define v(M) to
be zero if there is no A € Y such that det( + AM) = 0 and to be given by

A€+1 ~1
v(M) = (IAneiI)B{E :det(I+AM):0})
Am

11



(possibly 0co) otherwise, where ) is given by
Y = {block diag (Ar,...,Am): Ay € TR i= 1, ma(A) <1, i=1,..., e}

Theorems 2.1 and 2.2 are easily extended to this case (Fig. 6 is used if the performance level is
prescribed, and Fig. 1 is used otherwise). Propositions 3.1 and 3.2 hold with all subscripts replaced
by their boldface counterparts and @(My;) replaced by p(My1), where p is taken with respect to
the obvious structure. Propositions 3.3 and 3.4 are replaced by the following. In Proposition 6.1,
for any D € D, welet MP = DM D! and, for i,j = 1,2, we let Mi{jJ = (MD)ij.

Proposition 6.1. v(M) > u(M22). Suppose that there exists D € D such that 3(ME}) < 1.

Then D b
G(Mys)o(M3z1)

V(M) < T(Mp) + = a(MB)

Proposition 6.2. Suppose that ¥(M) < oo. Then the following statements are true.

(a) Suppose that M has rank one. Write M = uv for some u,v € €*. Then

5 Pl
V(M) == +[ .
L= % 1Bl P

(b)

v(M) = S%I;B {0:||PMz|| = ||Pz| ,i=1,...,L,||P;Mz| = 0| P;z|,j = £+ 1,...,m}
"0
= sup {0 :||P;Mz|| > || Pl ,i=1,...,4||PjMz|| > 0| Pjz||,j = £+ 1,...,m}
z€
6>0

(¢) (M) = max p(UM — Py, Pp).
(d) v(-) is continuous at M.

0
Proposition 4.1 holds in the structured uncertainty case and so does Theorem 4.1 with the

definition of f suitably adapted. Finally, Theorems 5.1 and 5.2 are generalized as follows.

Theorem 6.1. Define

m—1 [4 m—1
h(dl3-'-adm—1) =7 (MH (Z dz})z'i'Pm) M_Zdif)i’ Z dsz+Pm)

=1 =1 =041

12



Then v(M) < 150 _1_111f . Vh(dy,...,dm_1). Furthermore, the equality holds if m < 3. 0

Theorem 6.2. The function h(dy,...,dn—1) defined in Theorem 6.1 is (jointly) quasi-convex in
d;,i=1,...,m— 1 over the first orthant. |

Finally, extension of the results of this paper to the case of mixed parametric uncertainty and
unmodeled dynamics (as is done in [7] in the context of the structured singular value) does not

present any conceptual difficulties.

Appendix. Proofs of Propositions 3.1, 3.2 and 4.1
The following lemma is used in proving Propositions 3.1 and 4.1.

Lemma A. Suppose (M) > 0. Let A = block diag{A, A2} € X be such that 7(A) = u~1(M)
and det(] + AM) = 0. Suppose that 7(Az) < p~1(M). Then det(I + block diag{A;, O, } M) = 0.
Proof. Consider the polynomial p(s) = det( + block diag{Ay,sA;}M). We have p(1) = 0 by
assumptions. Now suppose p(s) # 0. Since the roots of a polynomial are continuous with respect
to its coefficients, it holds that there exist @ < 1 and z € C such that o(zA;) < p~'(M) and
det(I + block diag{aAy,2A;}M) = 0. In view of the definition of u(-), this contradicts the fact
that 7(A) = p~1(M). Therefore, p(s) = 0 and, in particular, p(0) = 0. ]
Proof of Proposition 3.1.

(a) Let v = v(M) and let p, be the left hand side of (3.1). We show that u, > v and v > p,.
The former holds trivially if v = 0. Thus, assume v > 0. In view of the definition of v(-),
there exists A = diag{A1,A;} € Y such that (A;) = v~! and

I/’lAl 0 viy 0
det(I + AM)=det | [ ! M)=0.
(I + AM) (+[ ) A2HO .

1A 0
Since @ ([V 0 ! A ]) = v~1, in view of the definition of u(-), we have u, > v. Again,
2

v > py, holds trivially if p, = 0. Thus, assume g, > 0. Let A = diag{A;,A,;} € X be such
that @(A;) = 7(A;) = p? and

(vl 0 Ay 0
det [T+ A|"R M)=det {1477 | M)=0.
0 Iy, 0 Ay
Since p, > v, we have diag{VAl,Az} € Y and, in view of the definition of v(-),

vz (E(A2))_l = Hv -

(b) Let u = pu(M) and v, be the left hand side of (3.2). We show that v, > p and g > v,. Let
A = diag{A;,A;} € X be such that (A1) =7(Aq) = p~! and

. B wAy 0 p i, 0 _
det(I+AM)__det<I+{ 0 Az][ 0 I, M]=0.
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Since E(pAl) = 1, in view of the definition of v(-), we have v, > p. Again, p > v, holds
trivially if v, = 0. Thus, assume v, > 0. Let A = diag{A;, Az} € Y be such that 5(A;) =

1/;1 and
0 AL 0
1 M) =det| 1+ M| =0.
0 I 0 A,

, o i _([#r A 0
Since v, > p and (A1) < 1, in view of the definition of u(-), we have @ 0 A =
2

p~ 1. Therefore, either 3(A;) = 1 or v, = u. Suppose G(A;) =1 and v, > p. Then, in view

det (I + A

of Lemma A, we have

“1A; 0
det(I + ™ Ay Myy) = det (I+[“ 0 ! O]M):

which implies (My1) > u, a contradiction. 0

Proof of Proposition 3.2
(a) »(M) = oo if and only if there exists A = diag{A1,0} € Y such that
det(I + AM) =det(I + Ay My;)=0.
Since Ay is arbitrary with 3(A;) < 1, this happens if and only if 7(M;) > 1.

(b) From (a), ¥(M) = oo implies v(aM) = oo for any |a| > 1. Therefore, the inequality in (3.3)
holds if ¥(M) = oo. Thus, assume (M) < oo. Let A = diag{Ay, Az} € ) be such that
(Az) = v1(M) and

det(I + AM) = det(I + (e 'A)(aM)) =0 .
Since a™1A € Y and T(a"1A3) = (|a|v(M))7L, in view of the definition of v(-),
v(iaM) > (G(a"tA2))™! = |a|u(M) .

(c) It is obvious that v(0) = 0 and, therefore, the inequality in (3.4) holds if @ = 0. Thus, assume
a # 0. From (b), ¥(M) = v(a"taM) > |a| v(aM), ie., v(aM) < |a|v(M).

(d) The equality in (3.5) holds since, for any A € Y, D € D, the following holds

det(I + ADMD™) = det(I + D"'ADM) = det(I + AM) .

(e) The equality in (3.6) holds since, for any A = diag{Aq, Az} € Y, U = diag{U;, Uz} € U, we
have #(A;U;) = 5(U;A;) = 6(4;), 1= 1,2, and

det(I + A(UM)) = det(I + (AUYM) = det(I + A(MU)) = det(I + (UA)M) .

14



Proof of Proposition 4.1

(a) We show that the condition f(3) > § implies v(M) > 3. The claims follows trivially if § = 0.
Thus assume f(8) > B > 0. In view of the definition of p(-), there exists A = diag{A;, A} €
X such that 3(A) = 3(Az) = f~1(B) and

det(I + Adiag{BIx,, I, } M) = det(I + diag{BA;, A} M) =0 .
Since 5(8A;) < 1, in view of the definition of v(-), we have v(M) > (3(Az))~! = f(8) > 8.

(b) Let 0 < 8 < ¥(M) < 00. In view of the definition of v(+), there exists A = diag{A1, A2} €Y
such that 7(A) = (v(M))~! and

det(I + AM) = det(T + diag{8~ A1, As}diag{BIk, , [t, }M) = 0 .

Since 7(871A1) < A7 and T(Az) = (W(M))™! < 871, we have f(B) > B. However, in
view of Lemma A, f(8) = 8 (= (1/5(87*A;))) would imply that (M) = oo, which is a

contradiction. a
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