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This dissertation proposes statistical methods to formulate, estimate and ap-

ply complex transportation models. Two main problems are part of the analyses

conducted and presented in this dissertation.

The first method solves an econometric problem and is concerned with the joint

estimation of models that contain both discrete and continuous decision variables.

The use of ordered models along with a regression is proposed and their effective-

ness is evaluated with respect to unordered models. Procedure to calculate and

optimize the log-likelihood functions of both discrete-continuous approaches are de-

rived, and difficulties associated with the estimation of unordered models explained.

Numerical approximation methods based on the Genz algortithm are implemented in

order to solve the multidimensional integral associated with the unordered modeling

structure. The problems deriving from the lack of smoothness of the probit model

around the maximum of the log-likelihood function, which makes the optimization



and the calculation of standard deviations very difficult, are carefully analyzed. A

methodology to perform out-of-sample validation in the context of a joint model

is proposed. Comprehensive numerical experiments have been conducted on both

simulated and real data. In particular, the discrete-continuous models are estimated

and applied to vehicle ownership and use models on data extracted from the 2009

National Household Travel Survey.

The second part of this work offers a comprehensive statistical analysis of

free-flow speed distribution; the method is applied to data collected on a sample of

roads in Italy. A linear mixed model that includes speed quantiles in its predictors

is estimated. Results show that there is no road effect in the analysis of free-flow

speeds, which is particularly important for model transferability. A very general

framework to predict random effects with few observations and incomplete access

to model covariates is formulated and applied to predict the distribution of free-

flow speed quantiles. The speed distribution of most road sections is successfully

predicted; jack-knife estimates are calculated and used to explain why some sections

are poorly predicted.

Eventually, this work contributes to the literature in transportation model-

ing by proposing econometric model formulations for discrete-continuous variables,

more efficient methods for the calculation of multivariate normal probabilities, and

random effects models for free-flow speed estimation that takes into account the

survey design. All methods are rigorously validated on both real and simulated

data.
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Chapter 1: Introduction

Transport modeling requires a multidisciplinary approach. In particular, ad-

vanced research in this field entails a deep mastery of the theoretical and mathemat-

ical bases of the methodologies used in connection with the transportation models,

such as optimization methods, mathematical statistics, stochastic processes, dy-

namic models and so on. All this knowledge is needed to advance the state of the

art and to enrich the toolkit available for eventual practical applications [CJM12].

This is especially true for demand modeling based on discrete choice analysis. This

branch of the transportation discipline has seen enormous progress in recent years;

examples of significant advances include estimation with simulation [Tra09]; dy-

namics in choice modeling [CXB16]; integrated models for discrete and continuous

decision variables [Bha15]; optimization methods for log-likelihood estimation and

Bayesian estimation [RAM05]. It is often a real challenge for students in transporta-

tion programs to understand all the techniques that have supported such changes

and to be prepared to make significant contributions in transportation science.

In this context, I came to a transportation program with a Bachelor degree

in Mathematics. Since then I have developed and implemented in ready to use

software a number of statistical methods for different transportation applications
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with special emphasis on discrete choice models. Although the models presented

were motivated by a practical need, the methods that I’m proposing are general and

can be applied in different context and on a variety of data. Actually, I’m more

motivated by the properties of the models than by the results produced and their

implication for policy analysis. Given the diversity of the problems in hands, in this

dissertation I have organized my contributions by chapters.

Chapter 2 presents a general framework for continuous and discrete choice vari-

ables. Models of this type are required when multiple decisions of different natures

are made simultaneously. Joint estimations have the advantage to be statistically

efficient and to allow testing the effects of the covariates on all the model outcomes.

The model is based on multinomial Probit and regression, where a full variance

covariance matrix captures the correlation among the discrete and the continuous

parts. This class of models does not have closed mathematical form for the choice

probabilities and the underlying optimization problem is usually solved with simula-

tions. Monte-Carlo (MC) based simulations presents a number of major challenges

in this case and therefore in this thesis more sophisticated algorithms for the ap-

proximation of integrals that involve multivariate normal distributions are proposed.

In this Chapter evidences on the advantages offered by the Genz based method for

the estimation of discrete continuous problems are explained and numerical results

offered.

In Chapter 3, the methods developed on the previous Chapter are applied to

the problem of vehicle ownership, type/vintage and use. The analysis is performed

on data extracted from the 2009 National Household Travel Survey [UDoT09] and on

2



an auxiliary dataset derived from the Consumer Report. The discrete-continuous

Probit model is estimated both with MC simulations and with the Genz based

algorithm. Moreover, a comparison across the unordered model and ordered dis-

crete continuous Probit model is presented. Ordered structure are in general pre-

ferred to unordered Probit for the saving in computational costs deriving from the

closed mathematical form of the choice probabilities. The results show that discrete-

continuous unordered Probit are superior to ordered structures in terms of goodness

of fit, but produce comparable results when applied to predict behavioral changes.

Ordered and unordered discrete-continuous models are validated using holdout

samples in Chapter 4. Probit based discrete-continuous models have been recently

proposed in the transportation literature and have been applied to a number of real

case studies. However, it is not clear if the estimation of more complex model for-

mulations produces better forecasts and if the conditioning on continuous variables

helps to reproduce the market shares of the discrete alternatives. To this scope

experiments on simulated data, for which the true coefficients and the true correla-

tion elements are known to the analyst, have been generated and used to calculate

market share on out of samples with both low and high correlation schemes. Results

on the car ownership and use problem estimated on both 2001 and 2009 NHTS are

presented and discussed.

In Chapter 5, a random effect model is proposed to estimate free-flow speed

on two-lane rural highways. The data used for the analysis were collected in the

Northwest of Italy using video cameras and a laser speed gun. The model structure

adopted separates the estimate of the central tendency of speeds from the typical

3



deviations of individual speeds. Hence, in the model the same set of variables can

be used to determine the mean value and the standard deviation of the speed distri-

bution; the desired speed percentile is then calculated by considering the associated

standard normal random variable (Z). Random effects (RE) were included in the

model to account for the variability in time and space of the data that contains

repeated measurements for the same road/section/direction and to remove the de-

pendency between any estimation errors from individual observations. Fixed effect

(FE) models are also calibrated for comparison purposes and the Bayesian informa-

tion criterion (BIC) is used for variable selection and applied to both the FE and

RE models.

The last Chapter of this dissertation is devoted to the transferability of Ran-

dom Effect models in the context of free-flow speed estimation. This problem is

twofold. First, it is necessary to estimate the RE for the road sections where the

model is going to be transferred. Second, the speed quantiles used as predictors

for the general model are not available in the new road sections under analysis. A

method that correlates the RE of the new sections to the RE of the original model is

proposed; results show that the method converges when a relatively low number of

observations is collected for the out of sample sections. An analysis based on jack-

knife technique is also proposed to analyze cases where high errors are computed

when transferring the model.
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Chapter 2: Discrete-Continuous Probit model

2.1 Introduction

In many disciplines it is common to work with mixed data collected from mea-

surements of multiple outcomes. These outcomes are often measured on different

scales and their underlying variables can be discrete, ordinal or continuous [TPH13].

In the transportation field, a number of problems are characterized by several deci-

sion variables that are not from the same family. For example, in the problem of car

ownership both discrete and continuous dependent variables should be taken into

account for model formulation. The number of cars in the household can be modeled

as a discrete variable or an ordinal variable; the vehicle type is a discrete variable;

while the annual mileage or the mileage traveled with each vehicle in the household

are continuous variables [LTC14]. In trip generation and activity scheduling, the

number of trips is an ordinal variable, the type of activity is a discrete variable and

the time allocated to each activity is a continuous variable [PB13]. Models for joint

analysis of decision variable of the same type are based on classical multivariate

statistics for continuous outcomes and on tree structures (or nested logit models)

for sequential decision making over discrete alternatives [BBA01]. Methods for the

analysis of variables of different types exist but their development and application
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is new especially in transportation demand modeling. One simple approach con-

sists of the analysis of each outcome separately, ignoring the correlation between

the different outcomes. The separate analysis produces loss in the efficiency of the

covariates and makes it impossible to test the effect of the covariates on all the

outcomes to be modeled [TPH13]. Recently, models have been proposed to jointly

handle mixed types of dependent variables, including multiple nominal variables,

multiple ordinal variables, and multiple count variables, as well as multiple contin-

uous variables [LTC14] [Bha15] [BAS+14].

In this Chapter, we propose multivariate econometric models for decision prob-

lems involving both discrete and continuous choices. The approach is based on

multinomial probit and regression; it accommodates general covariance structures

for the utilities of the discrete alternatives and for the linear regression of the con-

tinuous outcome. We also propose a Maximum Likelihood Estimation procedure

based on the Genz [Gen92] algorithm to overcome the difficulties deriving from the

optimization of probit based functions.

2.2 Literature review

2.2.1 Estimation methods for discrete-continuous Probit

Discrete-continuous probit probabilities do not have a closed-form expression

and must be approximated numerically. Non-simulation and simulation procedures

have been proposed for multinomial probit and more recently for integrated discrete-
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continuous probit based models. Both procedures have proved to be effective in

certain circumstances [Tra09]; however, there is no consensus on a general method

that can be applied to all types of problems. Early applications use quadrature

methods to approximate the integral by a weighted function of specially chosen

evaluation points [Gew96]. Quadrature are suggested for low dimensional integrals

(max. four or five), which limits the application to discrete problems involving a

relatively high number of alternatives. Daganzo introduced another non-simulation

procedure based on the Clark algorithm [DBS77]. This algorithm is based on the

concept that the maximum of several normally distributed variables is itself ap-

proximately normally distributed. Unfortunately, the approximation can be highly

inaccurate in some situations, and the degree of accuracy is difficult to assess in any

given setting [HSD82].

More recently, simulation methods have been widely applied to approximate

non closed form choice probabilities. Hajivassiliou et al. [HMR96] provides a com-

prehensive summary of the various simulators that have been proposed for probit

models. Three simulators are of particular interest for probits of any form: accep-

treject [MM81], smoothed acceptreject [McF89], and Geweke-Hajivassiliou-Keane

(GHK) simulator [Gek89] [Ker91], [HM98]. Among them, the GHK simulator is

the one that produced the best results in our experiments. However we have not

been able to adapt it to the models presented in this dissertation. Bhat [Bha11]

argued that the computational cost of maximum simulated log-likelihood (MSL)

to ensure good asymptotic MSL estimator properties can be prohibitive and that

MSL is practically infeasible as the number of dimensions of integration rises. He
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introduced a maximum approximate composite marginal likelihood (MACML) esti-

mation approach and applied it to MNP models using simple optimization software

for likelihood estimation.

According to Bhat, the MACML estimation of MNP-based models involves

only univariate and bivariate cumulative normal distribution function evaluations,

regardless of the number of alternatives or the number of choice occasions per indi-

vidual or the nature of social/spatial dependence structures. From application on

both simulated and real data Bhat and his coauthors derive that substantial compu-

tational efficiency relative to the MSL inference approach can be obtained [Bha11].

2.3 Methodology

In the integrated model, the discrete problem concerns the forecast of the

probability of a choice across a finite number of alternatives using a set of predictors.

Suppose there are k alternatives, plus a base alternative U0, the utility for each

alternative consists of one deterministic part and one unobserved part (error term):

U0 = ε0

U1 = XT
1 β1+ ε1

. . .

Uk = XT
k βk+ εk

where, Uj is the utility associated to each alternative j; Xj are the explanatory

variables associated with the decision maker and the alternative. βj is the corre-

sponding parameter to be estimated. We say that XT
j βj = Vj is the deterministic

part of the utility.
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It is common in discrete-choice modeling to refer to both Uj and Vj as the

utility. In this document we avoid this confusion and refer to Vj as the deterministic

part of the utility.

Another source of confusion is that some of the βj parameters may share

elements together in order to increase modeling flexibility. For example if we want

to model two transportation mode, say driving to work or take the bus, and we

want to incorporate their price in the utility functions, both predictors could have

the same coefficient. This issue is resolved by building a single extended design

matrix that generates all utilities for all observations. The details regarding the

construction of this design matrix are beyond the scope of this document and can

be found at jm.dynddns.us/files/specUtility.pdf.

2.3.1 Choice probability

In an unordered structure, the household is assumed to be rational and to

choose the alternative that maximizes its utility. In this case, we adopt multinomial

probit model for the the discrete decisions and therefore the error terms follow

a multivariate normal distribution with full, unrestricted covariance matrix. The

choice probability can be expressed as follow:

P (Y = y|X, β, Σ) =

∫
Rk+1

I
(
Vy + εy > Vj + εj ∀j 6= y

)
φ(ε)dε (2.1)

where:
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X = (X1, . . . , Xk)

β = (β1, . . . , βk)

ε = (ε0, . . . , εk)

Σ = covariance of ε, upon which φ depends

The indicator function I(·) ensures that the observed choice is indeed the one

with the biggest utility. The subscript y indicates the predictors and coefficients

of the chosen alternative and the subscript j indicate the other alternatives. The

integral correspond to the expectation of the event ”Uy is the biggest utility”, which

is the choice probability.

2.3.2 Difference of error terms

Since only differences in utility matter, the choice probability can be equiva-

lently expressed as a k-dimensional integral over the differences between the errors.

Suppose we calculate the differences with respect to alternative y, the alternative

for which we are calculating the probability. Then we define for all indexes j 6= y:

ε̃j–y = εj – εy

ε̃–y = (ε̃0y, . . . , ε̃ky)

Ṽy–j = Vy – Vj

Ṽy– = (Ṽy–0, . . . , Ṽy–k)

The subscript in qa–b should read ”a minus b” because to compute the result,

we calculate qa minus qb. The probit is normalized using the procedure proposed

by Train [Tra09] to ensure that all parameters are identified. For more details on
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the normalization in the context of discrete-continuous models we refer to Liu et

al. [LTC14].

A consequence of this normalization argument is that the matrix Σ is over-

parametrized for the probit model since, as we shall see, the covariance Σ–y of ε̃–y is

sufficient to express the choice probability. With a few transformations we obtain:

Vy + εy > Vj + εj∀j 6= y

⇔Vy – Vj > εj – εy∀j 6= y

⇔Ṽy– > ε̃–y

(2.2)

This allows to express explicitly the choice probability in terms of Ṽy–,ε̃–y and

the multivariate normal cumulative distribution function, as seen in equation 2.3

P
(
Y = y|X, β, Σ–y

)
=

∫
Rk+1

I
(
Vy + εy > Vj + εj ∀j 6= y

)
φ(ε)dε

=

∫ Ṽy–0

–∞
. . .

∫ Ṽy–k

–∞
1 · φ(ε̃–y)dε̃–y

= Φ(Ṽy–)

(2.3)

2.3.3 Error terms reparametrization

We have seen how to compute P(Y = y) using Ṽy– and Σ–y, however this is

not enough to compute the choice probability of another alternative y′. The key to

compute the choice probability of any alternative y′ is to set up a matrix M that

transforms ε̃–y into ε̃–y′ . For illustration purposes we will work in the case where
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k = 0 and we start with Σ–0. In this context we can easily compute P(Y = 0). In

order to compute P(Y = 1, 2, 3) we define the following matrices:

M0,1 =

–1 0 0
–1 1 0
–1 0 1

 (2.4)

M0,2 =

0 –1 0
1 –1 0
0 –1 1

 (2.5)

M0,3 =

0 0 –1
1 0 –1
0 1 –1

 (2.6)

The purpose of My,y′ is that it can change error terms taken with respect to

the yth alternative into error terms taken with respect to the y′th alternative:

M0,1ε̃–0 =

–1 0 0
–1 1 0
–1 0 1

ε1 – ε0
ε2 – ε0
ε3 – ε0

 =

ε0 – ε1
ε2 – ε1
ε3 – ε1

 (2.7)

And similarly for the other alternative. The matrices My,y′ define affine trans-

formation of a random vector. We have that, generally, if a ∼ N(µ, Σ) then:

b = Ma + c ∼ N(Mµ+ c, MΣMT) (2.8)

We use this result directly to compute any choice probability. Recall that all

that was required to compute P(Y = y) was the covariance matrix Σ–y. We apply

the affine transformation to compute Σ–y′ for all y′ and we can compute all choice

probabilities.

In our case the original base for error term differences was 0, and we assume

that ε̃–0 follow a normal with mean zero and covariance Σ–0. It follows that ε̃–j has

mean zero and covariance Σ–j = M0,jΣ–0MT
0,j. This is enough to parametrize the

probit model using only Σ–0 for the variance of the error terms.
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However any Σ–j could be used. It may be of modeling interest to use a specific

alternative as the basis for error differences, primarily to ease the interpretation, even

if the choice of the alternative used for a basis does not affect the model itself. The

only challenge will be to construct the transformation matrices. In general we can

build a matrix Mi,j like this:

• start with a (k – 1)-dimensional identity matrix

• insert a row vector of 0 after row i – I(i > j)

• insert a column vector of –1 after column j – I(j > i)

For example for k = 5, M2,4 is built like this:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

→


1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1

→


1 0 0 –1 0
0 1 0 –1 0
0 0 0 –1 0
0 0 1 –1 0
0 0 0 –1 1

 (2.9)

We easily verify that:

M2,4ε̃–2 =


1 0 0 –1 0
0 1 0 –1 0
0 0 0 –1 0
0 0 1 –1 0
0 0 0 –1 1



ε0 – ε2
ε1 – ε2
ε3 – ε2
ε4 – ε2
ε5 – ε2

 =


ε0 – ε4
ε1 – ε4
ε2 – ε4
ε3 – ε4
ε5 – ε4

 = ε̃–4 (2.10)

2.4 Regression

Regression is adopted to model the continuous part of the model. In a regres-

sion, the dependent variable Yreg is assumed to be a linear combination of a vector

of predictors Xreg plus some error term:

Yr = Xrβr + εr, εr ∼ N(0,σ2
r ) (2.11)
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Given βr , Xr and σ2
r , the likelihood of observing Yr is given, by design, by

the normal density function φ:

P (Yr|βr, Xr,σr) = φ
(

Yr|XT
r βr,σ

2
r

)
(2.12)

In order to jointly capture the correlation between the discrete and continuous

parts, we allow the error term of the regression to be correlated with the error term

differences in the probit. Therefore, the specifications of the observable part of

the utilities and of the regression remain the same, but the error terms follow an

”incremental” normal distribution:

(
ε̃0–y, . . . , ε̃k–y, εr

)
∼ N (0, Σk+1) (2.13)

At this point we assume that we are always working with differences with

respect to alternative y = 0. Therefore we will be estimating Σ–0, and Σk+1 will

include it as a submatrix:

(ε̃–0, . . . , ε̃k–0, εr) ∼ N (0, Σk+1) (2.14)

A more intuitive way to partition the error term is given by:

 ε̃–0

εr

 ∼ N


 0

0

 ,

 Σ–0 Σ–0,r

Σr,–0 σ2
r


 (2.15)

This is equivalent to say that ε̃–y and εreg are two normally distributed stan-
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dalone entities who are also are jointly normally distributed with covariance Σr,–0.

The probability of observing Y and Yr is the product of the probability of ob-

serving Yr (P(Yr)) and the probability of observing Y given Yr (P(Y|Yr)). It is

important to point out that P(Yr) is not a probability but a density, however these

two concepts are not treated differently when performing statistical inference using

maximum-likelihood estimation. Densities refer to the probability of observing a

random variable in an Infinitesimal interval. If f is the continuous density of the

random variable X then:

P(x –
δ

2
< X < x +

δ

2
) ≈ δf(x) (2.16)

We also remark that is is generally true that:

P(A, B) = P(A)P(B|A) = P(B)P(A|B) (2.17)

The probability P
(
Yreg

)
is simply given by the normal density as previously

stated. We are left with the challenge of computing the probability of the conditional

probit. We have the following general result for jointly normal vectors:

 A

B

 ∼ N


 µa

µb

,

 ,

 Σaa Σab

Σba Σbb


 (2.18)

We have that if we observe B = b, then A|B = b is normally distributed with the
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following parameters:

µa|b = µa + ΣabΣ–1
bb(b – µb)

Σa|b = Σaa – ΣabΣ–1
bbΣba

(2.19)

We apply this directly by substituting the estimated residual from the regres-

sion εr for b:

ε̃y|εreg ∼ N

(
Σy,reg

σreg2
εreg, Σy – Σy,regσ

–2
regΣreg,y

)
(2.20)

2.5 Log-likelihood function

We can write the log-likelihood function of the discrete-continuous model as:

LL(β, βr, Σk+1|Y, Yr, X, Xr) =
∑

i

log(φ(Yr,i|XT
r,iβr,σ

2
r )Φ(Ṽyi–,i|Σ–yi) (2.21)

where:

Yr,i : Yr for the ith observation

Xr,i : Xr

Ṽyi–,i : Ṽy– for the ith observation (depends on the choice yi)

Σ–yi : Σ–y for the ith observation (depends on the choice yi)

The estimation of Φ is discussed in section 2.6. At this point we have achieved

to reduce the problem to the computation of the multivariate normal CDF function.
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2.6 Estimation with numerical computation

In this Section we introduce numerical methods for the computation of the

multivariate normal CDF. In particular, we adopt the transformation proposed by

Genz [Gen92], which simplifies the problem and transforms [TPH13] into a mathe-

matical form that allows efficient calculation using standard numerical multiple inte-

gration algorithms. The use of numerical computation is expected to be faster than

Monte Carlo simulation, to produce more precise estimation of the log-likelihood

function and a more stable estimation of the Hessian, which is needed to calculate

the information matrix.

2.6.1 Genz’s algorithm

2.6.1.1 Transformations

Genz suggests an algorithm for the calculation of multivariate normal proba-

bilities:

X ∼ N(0, Σ) (2.22)

The algorithm estimates P(a < X < b), which can be used to compute the

cumulative distribution if we set a = 0. We start with the definition of P(a < X < b):

F(a, b) = P(a < N < b) =

∫ b1

a1

. . .

∫ bk

ak

1√
|Σ|(2π)k

e
–1
2 θ

TΣ–1θdθ (2.23)

The first transformation that we apply is Cy = θ, where C is the Cholesky
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factor of Σ such that CCT = Σ. To perform the substitution we need the Jacobian

matrix J of the transformation. The (i, j) element of J is given by derivative the ith

element of Cy with respect to yj:

Ji,j =
∂(Cy)i

∂yj
=
∂(Ci,1y1 + Ci,2y2 + · · ·+ Ci,kyk)

∂yj
= Ci,j (2.24)

This gives us J = C. We also observe that:

√
|Σ| =

√
|CCT| =

√
|C||CT| =

√
|C|2 = |C| (2.25)

since the determinant of a diagonal matrix is the product of its elements and

both C and CT are diagonal matrices with the same diagonal elements. We also

observe that the transformation allows us to factorize the integrand:

θTΣ–1θ = (Cy)T(CCT)–1(Cy) = (yTCT)(C–TC–1)(Cy)

= yT(CTC–T)(C–1C)y = yTy

(2.26)

such that

e
–1
2 θ

TΣ–1θ = e
–1
2 yTy = e– 1

2y21e– 1
2y22 . . . e– 1

2y2k (2.27)

The integration bounds are also transformed but become more complicated.

We originally had a < θ < b. For the ith bound we have:
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ai < θi = (Cy)i < bi

ai <
∑k

j=1 Cijyj < bi

ai <
∑i–1

j=1 Cijyj + Ciiyi < bi

(ai –
∑i–1

j=1 Cijyj)/Cii = a′i < yi < (bi –
∑i–1

j=1 Cijyj)/Cii = b′i

a′i < yi < b′i

We can change the indexes of the summation because the elements above the

diagonal in C are 0. Also the bound in the ith integral depends on y1, . . . , yi–1 even

if the notation does not show it explicitly. After the first variable substitution the

integral becomes:

F(a, b) =

∫ b′
1

a′1

. . .

∫ b′
k

a′k

1

|C|
√

(2π)k
e
–1
2 yTy|C|dy

=
1√

(2π)k

∫ b′
1

a′1

e– 1
2y21

∫ b′
2

a′2

e– 1
2y22 . . .

∫ b′
k

a′k

e– 1
2y2kdy

=

∫ b′
1

a′1

φ(y1)

∫ b′
2

a′2

φ(y2) . . .

∫ b′
k

a′k

φ(yk)dy

(2.28)

where φ is the standard normal density function.

The second transformation requires the following result about the derivative of

a function inverse. If f an invertible function with inverse f–1, and that the derivative

of f in the neighborhood of x is non-zero, then f–1 is guaranteed to be differentiable

in the neighborhood of x and its derivative is given by:

(
f–1
)′

(x) =
1

f ′(f–1(a))
(2.29)
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We use this observation to suggest the following independent substitutions:

yi = Φ–1(zi) (2.30)

Then the derivative of the variable change is:

(Φ–1)′(zi) =
1

φ(Φ–1(zi))
(2.31)

We can say that the determinant of the Jacobian of the substitution is given by

the product of these derivatives since the substitution is performed independently:

|J| =
k∏

i=1

1

φ(Φ–1(zi))
(2.32)

We obtain the following integral to solve:

F(a, b) =

∫ b′′
1

a′′1

φ(Φ–1(z1))

∫ b′′
2

a′′2

φ(Φ–1(z2)) . . .

∫ b′′
k

a′′k

φ(Φ–1(zk))
k∏

i=1

1

φ(Φ–1(zi))
dz

=

∫ b′′
1

a′′1

φ(Φ–1(z1))
1

φ(Φ–1(z1))
. . .

∫ b′′
k

a′′k

φ(Φ–1(zk))
1

φ(Φ–1(zk))
dz

=

∫ b′′
1

a′′1

. . .

∫ b′′
k

a′′k

dz

(2.33)

with:

a′′i = Φ((ai –
i–1∑
j=1

CijΦ
–1(zj))/Cii) (2.34)
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b′′i = Φ((bi –
i–1∑
j=1

CijΦ
–1(zj))/Cii) (2.35)

The third transformation turns the integral into a so-called constant limit

form. The transformation in essentially a linear map between the bounds of the

integration space into the the [0, 1]k hypercube:

zi = a′′i + wi(b
′′
i – a′′i ) (2.36)

The derivative of the substitution is given by:

∂(a′′i + wi(b
′′
i – a′′i ))

∂wi
= b′′i – a′′i (2.37)

Therefore, the final substitution is given by:

F(a, b) = (b′′′1 – a′′′1 )

∫ 1

0
(b′′′2 – a′′′2 ) . . .

∫ 1

0
(b′′′k – a′′′k )

∫ 1

0
dw (2.38)

At this point we rename a′′′i into di and b′′′i into ei, and these quantities are

given by:

di = Φ((ai –
i–1∑
j=1

CijΦ
–1(dj + wj(ej – dj))/Cii) (2.39)

ei = Φ((bi –
i–1∑
j=1

CijΦ
–1(dj + wj(ej – dj))/Cii) (2.40)

21



The integral we will apply our algorithm to is:

F(a, b) = (e1 – d1)

∫ 1

0
(e2 – d2) . . .

∫ 1

0
(ek – dk)

∫ 1

0
dw (2.41)

2.6.1.2 The algorithm

We estimate F(a, b) using Genz’s algorithm [Gen92]:

Data: Σ, a, b, ε,α and Nmax

Result: P̂(a < N(0, Σ) < b)
set N← 0;
set Intsum← 0;
set Varsum← 0;
compute C the Cholesky factor of Σ;
do

generate w1, . . . , wk–1 from a uniform distribution;

di ← Φ((ai –
∑i–1

j=1 CijΦ
–1(dj + wj(ej – dj))/Cii) i = 1, ..., n;

ei ← Φ((bi –
∑i–1

j=1 CijΦ
–1(dj + wj(ej – dj))/Cii) i = 1, ..., n;

f i ← (ei – di)f i–1 i = 1, ..., n;
N← N + 1;
δ ← (fk – Intsum)/N;
Intsum← Intsum + δ;

Varsum← N–2
N Varsum + δ2;

Error← α
√

Varsum;

while Error < ε or N = Nmax;
Algorithm 1: Genz’s algorithm

2.6.2 Acceptance-rejection algorithm

The competing alternative is to use the traditional acceptance-rejection algo-

rithm to compute normal probabilities. We take draws from the normal distribution

and estimate the normal probability by the mean of draws that are below the upper
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bound of the integral:

P̂(N(0, Σ) < x) =
B∑

b=1

I(wi < x) (2.42)

where wi is a draw from the N(0, Σ) distribution.

2.6.3 Comparison of acceptance-rejection and Genz

Figure 2.1: Comparison of Genz and simulation for one observation
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Figure 2.1 shows the difference between Genz and simulation estimation for

a single probability. We can see that both methods are centered around the same

value and that Genz has much less volatility. These values have been computed

with the same number of random draws, but the draws are different for each point

on the figure.

Figure 2.2 is the same as figure 2.1, but with the same random stream for

all points. Genz’s estimation is smooth but simulation estimation is choppy. The
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Figure 2.2: Comparison of Genz and simulation with Common Random Stream
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distance between the two curves is due to simulation bias. Indeed, using one common

stream reduces the noise in the estimation but also sets its vertical location on the

figure.

2.6.3.1 Example

We generate the following sample to illustrate the differences between the two

methods.

U1 = X1β1 + X4β4 + ε1

U2 = X2β1 + X5β5 + ε2

U3 = X3β1 + X6β6 + ε3

where:

• (β1, β4, β5, β6) = (–1, 1, 1, 1)

• chol(cov(ε2 – ε1, ε3 – ε1)) =

 1 0

0.5 0.866
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• the predictors Xi are generated with a standard normal

• we have nobs = 500 observations

• for simulations, we use B = 500 simulations

To analyze the smoothness of the methods, we take five points where we are

inspecting the log-likelihood functions. We take the maximum as found by Genz’s

algorithm, the real value of the parameters, zero for the coefficients and identity for

the covariance matrix, and two ”random” points. The value of the points can be

seen in table 2.1.

Table 2.1: Five points to inspect log-likelihood functions
parameter max (p1) real (p2) zero (p3) random 1 (p4) random 2 (p5)

β1 -0.994 -1.000 0 0.5 -2
β4 1.065 1.000 0 0.5 -2
β5 0.924 1.000 0 -2.0 -2
β6 0.872 1.000 0 -2.0 2

L2,1 0.357 0.500 0 1.0 2
L2,2 0.691 0.866 1 1.0 2

The computation of gradients is essential to the numerical estimation of param-

eter estimates. To estimate them, we take these five points and compute the centered

differences derivatives for values of δ between 0.1 and 0.001, for both method. The

results can be seen in table 2.2,2.3,2.4,2.5 and 2.6. The are several things to notice.

First, Genz’s method is relatively robust to a large value of δ for all five points.

This looks promising because we would like to use such a large value with simulation

and hope to get meaningful derivatives.

Second, simulation produces very unreliable gradients in the vicinity of the

maximum likelihood, as seen in tables 2.2 and 2.3. This is troublesome because it
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is the area where good precision would be most useful, in particular to estimate

standard deviations.

Third, gradients are surprisingly stable at point p3, p4 and to some extent p5

as seen in tables 2.4, 2.5 and 2.6. We believe that this is what explains why the

solvers typically find estimates close to the max, but that lack accuracy: they have

good enough derivatives to reach the vicinity of the maximum and stall as soon as

they reach there. The exact behavior is sample dependent.

Table 2.2: Gradient for p1

parameter method
δ

0.1 0.05 0.01 0.005 0.001
B1 sim -3.595 -3.216 -14.097 -19.542 -4.94
B4 sim -6.342 -9.648 -17.259 -4.482 19.41
B5 sim -3.123 -4.764 -7.439 -11.612 -27.403
B6 sim -2.133 2.799 3.235 -8.325 32.072
L2,1 sim 0.414 3.824 10.725 11.889 -23.02
L2,2 sim 4.846 11.601 29.215 -5.219 -32.202
B1 Genz 1.275 1.617 1.727 1.73 1.731
B4 Genz -0.546 -0.653 -0.687 -0.688 -0.688
B5 Genz -0.615 -0.682 -0.703 -0.703 -0.704
B6 Genz 0.624 0.539 0.512 0.511 0.511
L2,1 Genz -1.903 -1.842 -1.823 -1.822 -1.822
L2,2 Genz 1.087 0.339 0.103 0.096 0.093

It is convenient to look at the shape of the log-likelihood with respect to each

parameter.

Figures 2.3 and 2.4 illustrates why it is difficult to optimize the simulated log-

likelihood functions at the max. The subplot for L22 is the most striking as it looks

like a step function.

Figure 2.5 shows why it is not too difficult for the solver to iterate around zero

since the function is mostly smooth and close to the better approximation produced
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Table 2.3: Gradient for p2

parameter method
δ

0.1 0.05 0.01 0.005 0.001
B1 sim -14.801 -12.118 -8.175 -15.88 16.878
B4 sim 19.051 21.538 29.854 27.422 18.472
B5 sim -8.753 -8.941 -12.339 -15.623 -19.969
B6 sim -11.592 -12.07 -9.55 -4.245 -8.963
L2,1 sim -13.517 -17.82 -8.545 -6.31 -3.909
L2,2 sim -17.746 -19.455 -22.365 -20.646 -18.965

B1 Genz -14.202 -13.883 -13.781 -13.778 -13.777
B4 Genz 17.86 17.765 17.735 17.734 17.733
B5 Genz -7.557 -7.615 -7.633 -7.634 -7.634
B6 Genz -13.956 -14.014 -14.033 -14.033 -14.034
L2,1 Genz -11.9 -11.923 -11.93 -11.93 -11.93
L2,2 Genz -12.697 -13.12 -13.254 -13.259 -13.26

by Genz.

Figures 2.6 and 2.7 show mostly discrepancies between the two estimates when

we are far from optimal values. These differences are caused by very small default

probability values used when the acceptance-rejection algorithm produces zero ac-

ceptances.

We generate 375 samples and estimate the coefficients with both methods. It

is difficult to assess convergence for each and every sample but it is useful to look at

the distribution of the estimates. Table 2.7 shows the mean and standard deviation

of all six parameter estimates, for both methods. Genz outperforms simulation in

both bias and variance.

Figure 2.8 plots the simulation estimates against the Genz estimates for all six

parameters. The horizontal and vertical lines correspond to the true parameters,

such that we expect the scatter plots to be distributed equally on both sides of

the lines. This is absolutely not the case for the simulation estimates, as they are
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Table 2.4: Gradient for p3

parameter method
δ

0.1 0.05 0.01 0.005 0.001
B1 sim -482.603 -478.965 -484.43 -497.348 -508.8
B4 sim 235.703 237.392 240.335 230.301 223.882
B5 sim 116.676 122.454 130.476 123.521 152.201
B6 sim 124.229 124.229 129.231 145.062 153.882
L2,1 sim 41.057 42.894 33.322 40.799 26.654
L2,2 sim -0.203 0.331 -0.407 3.69 -2.594

B1 Genz -477.343 -476.17 -475.794 -475.782 -475.779
B4 Genz 232.18 231.907 231.82 231.817 231.816
B5 Genz 117.246 117.13 117.093 117.092 117.091
B6 Genz 118.392 118.288 118.254 118.253 118.253
L2,1 Genz 37.357 37.351 37.348 37.348 37.348
L2,2 Genz -0.138 -0.194 -0.211 -0.212 -0.212

systematically located on only one side of the horizontal line. Genz estimates, as

seen in table 2.7, are centered around the vertical line.

The last thing that we are checking is the computation of standard deviations,

using the Hessian matrix estimated at the maximum. Tables 2.8 and 2.9 report

estimated standard deviations for ten samples. Not surprisingly, Genz produces

valid estimates for the standard deviation for all ten samples. Simulation generates

either ”NaN” (corresponding to negative variance estimates) or extremely low values

that do not compare at all with the actual standard deviations that we computed

from the sample of estimates.
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Table 2.5: Gradient for p4

parameter method
δ

0.1 0.05 0.01 0.005 0.001
B1 sim -63630.125 -49573.247 -462.302 -421.832 -353.12
B4 sim 10661.369 14185.278 35248.158 70337.149 16.018
B5 sim 45804.555 14195.608 35258.397 196.565 323.937
B6 sim 28211.412 28211.698 70319.588 140507.71 114.084
L2,1 sim -3453.588 7066.678 35182.926 70280.602 27.259
L2,2 sim 116260.976 91673.341 70605.627 140924.867 419.104

B1 Genz -1355.695 -1355.331 -1355.215 -1355.211 -1355.21
B4 Genz 119.558 119.461 119.43 119.429 119.429
B5 Genz 1241.001 1240.998 1240.998 1240.998 1240.998
B6 Genz 812.548 812.548 812.548 812.548 812.548
L2,1 Genz -701.884 -702.625 -702.869 -702.876 -702.879
L2,2 Genz 3283.488 3238.467 3224.271 3223.829 3223.688

Table 2.6: Gradient for p5

parameter method
δ

0.1 0.05 0.01 0.005 0.001
B1 sim -7091.145 -71.023 -103.992 -117.655 -189.794
B4 sim 14157.719 7140.723 154.233 139.789 123.474
B5 sim 7134.73 7116.737 118.627 112.184 163.104
B6 sim -3502.577 -7014.763 15.261 28.761 15.875
L2,1 sim -3503.259 3.608 3.604 -2.549 -9.236
L2,2 sim 7076.781 7081.78 27.708 14.396 -7.037

B1 Genz -2867.129 244.117 244.155 244.158 244.105
B4 Genz 709.739 709.638 709.607 709.626 709.315
B5 Genz -2301.384 -5405.096 819.638 819.612 819.549
B6 Genz 3107.24 -6.911 -6.909 -6.921 -7.024
L2,1 Genz -388.526 -389.334 -386.44 -386.277 -386.196
L2,2 Genz -2752.692 -5874.956 380.991 380.968 380.979

Table 2.7: 375 samples with sim. and Genz estimation
parameter real mean-Sim sd-Sim mean-Genz sd-Genz
β1 -1.000 -1.384 0.173 -1.024 0.130
β4 1.000 1.391 0.210 1.018 0.139
β5 1.000 1.408 0.237 1.021 0.152
β6 1.000 1.415 0.262 1.016 0.146
L2,1 0.500 0.611 0.388 0.491 0.145
L2,2 0.866 1.308 0.692 0.863 0.164
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Figure 2.3: Log-likelihood at p1
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Table 2.8: Standard Errors with Simulation
names \ sample real 1 2 3 4 5 6 7 8 9 10
β1 0.182 0.003 0.011 0.006 NaN 0.011 0.000 NaN 0.000 0.000 0.001
β4 0.216 0.007 0.004 NaN 0.005 0.011 0.004 NaN 0.000 0.000 0.010
β5 0.245 0.008 0.007 0.005 NaN 0.008 NaN NaN 0.000 NaN 0.008
β6 0.190 0.030 NaN NaN 0.007 0.012 NaN NaN 0.007 0.007 0.001
L2,1 0.348 0.014 0.009 0.008 0.007 0.007 NaN NaN 0.005 0.011 NaN
L2,2 0.256 0.010 NaN 0.016 NaN 0.024 0.004 NaN 0.005 0.019 NaN

Table 2.9: Standard Errors with Genz
names \ sample real 1 2 3 4 5 6 7 8 9 10
β1 0.116 0.119 0.107 0.103 0.084 0.144 0.093 0.118 0.102 0.148 0.145
β4 0.138 0.152 0.114 0.120 0.095 0.140 0.101 0.129 0.108 0.163 0.156
β5 0.139 0.140 0.148 0.111 0.107 0.153 0.114 0.138 0.115 0.168 0.152
β6 0.132 0.159 0.132 0.124 0.107 0.165 0.112 0.135 0.120 0.164 0.167
L2,1 0.145 0.195 0.132 0.129 0.100 0.143 0.100 0.134 0.110 0.170 0.201
L2,2 0.139 0.178 0.149 0.127 0.114 0.168 0.111 0.153 0.120 0.180 0.191
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Figure 2.4: Log-likelihood at p2
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Figure 2.5: Log-likelihood at p3
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Figure 2.6: Log-likelihood at p4
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Figure 2.7: Log-likelihood at p5
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Figure 2.8: Comparison of Genz and simulation estimates
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Chapter 3: Ordered and Unordered Discrete-Continuous Probit model

with application to vehicle ownership and use

3.1 Introduction

Recently, the advance in the estimation of complex econometric models has

allowed analysts to develop comprehensive model systems that jointly analyze multi-

ple choice dimensions. These integrated structures are motivated by the assumption

that the different decisions are taken at the same time and are therefore correlated.

These modeling frameworks often contain dependent variables that do not belong

to the same family (i.e. discrete and continuous variables). This is the case of

integrated model for vehicle ownership, where discrete decisions (number of cars,

their type and vintage) are naturally linked to continuous decisions (vehicle miles

traveled).

In this Chapter we formulate an unordered discrete continuous probit model

and we apply it to data on car ownership and use. The unordered discrete-continuous

model, is based on multinomial probit and linear regression with unrestricted variance-

covariance correlation matrix between the discrete (vehicle holding) and the contin-

uous (vehicle usage) parts. The ordered discrete-continuous structure has a similar
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structure with the exception of an ordered probit for the vehicle holding sub-model.

The paper also explores the use of numerical approximations methods [Gen92] to

overcome problems related to the simulations of probit likelihood functions; notably,

the high computational costs, and the instability of the Hessian estimation. The

analysis is performed on data extracted from the 2009 National Household Travel

Survey [UDoT09]. A summary of this work has recently been published in a peer-

reviewed journal [CLT16].

This comparative exercise is motivated by the fact that ordered discrete-

continuous models are relatively easier to estimate when compared to unordered

model structure due to their closed mathematical form. However, the assumption

that vehicle ownership decisions are measured by a single latent variable might af-

fect the goodness of fit of the model and its performance in model application and

policy analysis.

3.2 Literature review

Vehicle ownership plays an important role in transportation and land use plan-

ning. It is one of the key determinants of people’s travel behavior, as it greatly

impacts people’s mode choice [SW09], frequency of trips [SK12], destination choice,

trip timing, activity duration and trip chaining [RCM09]. Vehicle ownership models

are also used by policy makers to identify factors that affect vehicle miles traveled

(VMT), and therefore address the problems related to traffic congestion, gas con-

sumption and air pollution [DG97], [HKT01]. In this context, ordered probit models
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are in general preferred to unordered probit for the saving in computational costs

deriving from the closed mathematical form of the choice probabilities.

The earliest generation of discrete-continuous models on vehicle ownership

decisions were derived from conditional indirect utility function [Tra86] [HBSM92]

[dJ89b] [dJ89a] [dJ91], which is based on micro-economic theory. Originally devel-

oped by Dubin and McFadden [DM84], and Hanemann [Han84], the basic concept is

that the households choose the combination of vehicle ownership and vehicle usage

that gives the highest utility. Roy’s identity is applied to estimate vehicle usage and

the relationship between the two modeling stages.

Multiple discrete-continuous extreme value (MDCEV) models, developed by

Bhat [Bha05] and further applied in Bhat and Sen [BS06] and Bhat et al. [BSE09]

are utility-based econometric models that jointly estimate the holding of multiple

vehicle types and the miles for each vehicle type. The choice and dependent vari-

able in this model is the mileage for each vehicle type category. Utility for each

household is maximized subject to a total mileage budget. Fang [Fan80] devel-

oped a BMOPT (Bayesian Multivariate Ordered Probit and Tobit) model, which

is composed of a multivariate ordered probit model for the discrete choices and a

multivariate Tobit model for the continuous choice. Liu et al. [LTC14] proposed

a joint discrete-continuous model to estimate household choices on vehicle holding,

type and usage. The discrete components are respectively, multinomial probit for

vehicle holding and multinomial logit for the vehicle type sub-models. The joint

discrete-continuous model is estimated with unrestricted correlation between the

discrete and continuous parts.
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Two types of discrete choice modeling structures have been used in the house-

hold vehicle ownership studies: ordered-response mechanism and unordered-response

mechanism. The ordered-response mechanism assumes that household vehicle own-

ership is represented as an ordinal variable and the choice is determined by a sin-

gle latent variable which represents the propensity of the household vehicle own-

ership decisions. Examples of the application of ordered-response mechanism are

Kitamura [Kit87], Golob and Van Wissen [GV89], Golob [Gol90], Kitamura and

Bunch [KB92], Bhat and Koppelman [BK93], Kitamura et al. [KGYW99], Hanly

and Dargay [HD00], Chu [Chu02], Kim and Kim [KK04] and Cao et al. [CMH07].

The unordered-response mechanism is based on the hypothesis that household ve-

hicle ownership is represented as a nominal variable. It follows the random utility

maximization (RUM) principle which assumes that the household makes the vehicle

ownership decisions that provides the highest utility among all the possible choices.

Examples of the studies with unordered-response mechanism are Mannering and

Winston [MW85], Train [Tra86], Bunch and Kitamura [BK90], Purvis [Pur94], Ryan

and Han [RH99], Whelan [Whe07]. The reader is referred to Table 3.1 for a more

comprehensive description of a sample of these papers.

In the context of the comparison of the ordered and unordered mechanisms,

there are several papers that explicitly investigate the empirical performance of the

two structures in modeling vehicle ownership decisions. Bhat and Pulugurta [BP98]

compared the multinomial logit (MNL) model and the ordered logit (ORL) model on

four datasets from Boston, Bay area, Puget Sound area and the Netherlands. The

two mechanisms were evaluated by comparing elasticity effects, measure of fit and
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predictive performance. The results showed that the MNL model is able to capture

elasticity patterns across alternatives, while the ORL is more rigid in elasticity

effects. The conclusion from this study is that the appropriate choice mechanism

for vehicle ownership modeling is the unordered-response structure. Potoglou and

Susilo [PK08] compared the multinomial logit, ordered logit and ordered probit

models for car ownership by using data from Baltimore, the Netherlands and Japan.

Their results clearly demonstrate the superiority of the MNL to the ordered ORL and

ORP. In a study aiming at estimating population heterogeneity in the context of car

ownership, Anowar et al. [AYEMM14] propose the application of latent class versions

of ordered (ordered logit) and unordered response (multinomial logit) models. The

latent class models offer superior data fit compared to their traditional counterparts.

In summary, those studies provided strong evidence that the appropriate mechanism

is the unordered response mechanism for the vehicle ownership models. However, it

is important to stress that the ordered and unordered models have been compared for

vehicle holding models only and other applications may lead to different conclusions.

3.3 Ordered discrete-continuous model formulation

The ordered response structure uses latent variables to represent the vehicle

ownership propensity of the household, thus it is not consistent with utility maxi-

mization theory. Suppose two latent variables Yd and Yr represent the preference

levels for vehicle holding and vehicle usage (annual miles traveled). The ordered
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Table 3.1: Summary of vehicle ownership, type and usage models
Reference Data Source

(Year)

Sample Size Choices Examined Model

[Tra86] US (1978) 1095 household vehicle quantity, class/vintage, usage MNL and Regression

[MW85] US (1978-1980) 3842 households quantity choice, type choice, utilization

model

Nested Logit and OLS

regression

[HBSM92] Sydney (1981-

1985)

1444, 1295, 1251,

1197

static vehicle choice and type-mix

choice, Static vehicle use, dynamic ve-

hicle choice and use

Nested Logit and

3SLS regression

[KB92] Dutch National

Mobility Panel

Data set

Panel, 605 HH,

(1984-1987)

vehicle quantity Ordered Probit

[dJ96] Dutch National

Mobility Panel

Data set (Oct,

1992; Oct 1993)

Panel, 3241 re-

spondents

vehicle holding duration, vehicle type

choice, annual kilometrage and fuel ef-

ficiency

Hazard function,

Nested logit, Regres-

sion

[BP98] US (1991, 1990,

1991), Dutch

(1987)

3665, 3500, 1822,

1807

vehicle quantity (0, 1, 2, 3, 4) MNL and Ordered

logit

[KGYW99]

California (1993) Panel (First

wave), 4747

households

1) vehicle holding model, and n. of ve-

hicle per HH member and per driver, 2)

vehicle type choice, 3) vehicle use

Ordered probit model,

Tobit model; MNL;

OLS regression

[DG97] UK, Family Ex-

penditure Survey

(1982-1993)

panel, cohort,

7200 households

vehicle quantity dynamic cohort

(panel)

[BS06] San Francisco

(2000)

3500 households vehicle type holding and usage MDCEV (multiple

discrete-continuous

extreme value model)

[Whe07] UK, (1971-1996)

and NTS (1991)

unknown vehicle quantity (0, 1, 2, 3+) Hierarchical logit

model with saturation

level

[Fan80] NHTS (2001, CA) 2299 households vehicle choice and usage (BMOPT and

MDCEV)

BMOPT (Bayesian

Multivariate Ordered

Probit and Tobit) and

MDCEV

[PK08] NHTS (2001, Bal-

timore), Dutch

National Mobility

Survey (2005),

Osaka Metropoli-

tan Trip survey

(2000)

3496, 28436,

12632

vehicle quantity MNL and Ordered

logit and Ordered

Probit

[BPPL13] NHTS (2009) 1480 residential and work location, vehicle

ownership and tour characteristics

MDCP (multiple

discrete-continuous

probit)

[LTC14] NHTS (2009) 1420 Vehicle quantity, vehicle type and vin-

tage, AVMT

Unordered discrete-

continuous probit

discrete-continuous model can be written as:

yd = XT
d βd + εd

yr = XT
r βr + εr

(3.1)

where Xd and Xr are explanatory variables for the discrete choice and con-

tinuous choice,βd and βr are the coefficients to be estimated and εd and εr are the
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error terms.

The number of vehicles (Y) held by the household is determined by the value

of latent variable yd, which is discretized by a number of cutoff points γ1, ..., γk–1.

The value of Y is determined by which cutpoints enclose yd:

yd < 0 ⇒ Y = 0
0 < yd < γ1 ⇒ Y = 1
γ1 < yd < γ2 ⇒ Y = 2
. . .
γk–2 < yd < γk–1 ⇒ Y = k – 1
γk–1 < yd ⇒ Y = k

Like in the unordered version, in order to jointly to capture the correlation

between the discrete and continuous parts the error terms are correlated. Thus, the

error terms follow a bivariate normal distribution:

(εd, εr) ∼ N (0, Σ) (3.2)

Σ =

 1 ρσr

ρσr σ2
r

 (3.3)

Therefore, the model is composed of an ordered probit model and a regression

with unrestricted correlation between the error terms.

The estimation scheme is the same than in the unordered model, with a simpler

conditioning. The joint probability is separated like this:

P(Y, Yr) = P(Yr)P(Y|Yr = yr) (3.4)

The effect on conditioning. is to be able to estimate εr. For a bivariate normal
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distribution, εd|εr follows a normal distribution with the following parameters:

µεd|εr = ρ
εr
σ

σ2
εd|εr = 1 – ρ2

(3.5)

It is interesting to note that the conditional variance σ2
εd|εr

does not depend

on the observed value εr. The effect of conditioning. on the variance is to uniformly

decrease it.

3.4 Data description

Table 3.2: Descriptive Statistics - NHTS 2009
Variables

by Number of cars Statistics for all vehicle holding cases
0 1 2 3 4 min max median mean s.d.

Vehicle ownership 7.28% 26.72% 43.49% 17.03% 5.48% 0 4 2 1.87 0.96
Hhld. Income level 6.47 10.98 14.55 15.29 15.99 1 18 16 13.21 5.30
Num. of adult 1.31 1.40 1.99 2.21 2.76 1 5 2 1.86 0.66
Num. of workers 0.53 0.69 1.16 1.44 1.63 0 4 1 1.06 0.83
Num. of drivers 0.75 1.26 1.98 2.32 2.83 0 5 2 1.80 0.77
Owned house 0.45 0.75 0.91 0.97 0.98 0 1 1 0.85 0.36
Urban area 0.94 0.84 0.75 0.60 0.56 0 1 1 0.75 0.43
Urban size 4.94 4.25 3.60 2.95 2.55 1 6 5 3.70 2.29
Use of PT 0.26 0.08 0.06 0.05 0.06 0 1 0 0.08 0.27
Age of hhld head 59.13 60.51 53.12 52.16 53.00 18 95 54 55.36 14.91
Female hhld head 0.78 0.64 0.52 0.55 0.44 0 1 1 0.57 0.49
Educ. of hhld head 2.78 3.40 3.67 3.52 3.33 1 5 4 3.49 1.21
Housing unit per sq mile 7233 3637 1341 797 626 50 30000 750 2252 4220
Percent renter-occupied 50 32 22 18 17 0 95 20 26 21
Population per sq mile 12153 6931 3408 2363 1888 50 30000 3000 4725 6333
Workers per sq mile 2870 1899 1042 640 453 25 5000 350 1303 1660
VMT 0 10361 23890 35781 48728 0 91329 19097 21554 16381

The primary data source used in this study is the 2009 National House-

hold Travel Survey [UDoT09]. The analysis is restricted to the Washington D.C.

metropolitan area, for which 1,420 observations are available. Household character-

istics, land-use variables and information on each household vehicle, are the main

variables extracted from the original dataset. Table 3.2 lists the basic statistics

relative to the household sample. For the Washington D.C. metropolitan area, the

average vehicle ownership per household is 1.87. The percentage of the household
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without a car is 7.28%, mainly low-income households; while most households hold

2 cars (43.49%). The number of cars in the household is highly associated with

the number of adults and the number of drivers in the family. More than half of

the households who do not have a car do not own a house. The land use variables,

such as dummy of urban area, urban size, population density and housing density,

greatly influence the household car ownership decisions. The households with more

cars are generally located in less dense or more rural area. In the Washington D.C.

metropolitan area, the average age of the household head is around 55 years old,

which is somehow an indication of the aging society happening in western countries.

Households with zero or one car have older household head. The average education

level in this area is college/bachelors degree; however, households without a car have

much lower education level. The average annual mileage traveled by a household is

around 20,000 miles per year. The mileage traveled increases accordingly with the

household car ownership.

3.5 Empirical results

In this Section results from model estimation (see table 3.3) are presented.

We estimated four models: unordered discrete continuous probit model with Monte

Carlo simulation (Model 1); unordered discrete continuous probit model with nu-

merical computation in order to test the performance of the Genz approximation

(Model 2); ordered discrete continuous probit model (Model 3) having the same for-

mulation of Model 1 and 2 with the exception of the logsum, and unordered discrete
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continuous probit model estimated using Genz method and without logsum (Model

4) to compare the fit of the model with Model 2.

The utility functions for the unordered model are the following:

U0 = 0

Uj = ascj + βinc · income + βgen · female + βurb · urban-size + βden · density

(j = 1, . . . , 4)

(3.6)

The latent variable for the ordered model is:

Y = β0 + βinc · income + βgen · female + βurb · urban-size + βden · density (3.7)

Even if the coefficients (for example βinc) have the same name between the

two specifications, it is implicit that they are different, since they do not belong in

the same model. ”asc” refers to Alternative Specific Constants.

The empirical equation for the regression is:

Yreg = βr0 + βrinc · income + βrhome · own-home + βrden · density + βrcost · driving-cost (3.8)

Where the superscript r indicates that even if the coefficients may have the

same name as their discrete counterpart, they are distinct from them.

3.5.1 Coefficients estimation

Different types of coefficients enter the final specification of the models in table

3.3. In particular a logsum coefficient is estimated in the unordered structure. The

logsum represents a feedback variable from the class/vintage models and reflects

the utility derived by the household from its choice of class and vintage for each
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car in the household. In this case four different type/vintage models have been

estimated respectively for household owning 1, 2, 3 and 4 vehicles and therefore

four logsum values have been calculated. For more details on the specification of

the type/vintage model the reader is referred to Liu et al [LTC14]. The logsum

coefficient is constrained to be equal for all the alternatives as in Train [Tra86];

other specifications containing logsum coefficients specific of the alternatives have

been tested but results did not improve significantly the fit of the model. The

logsum coefficient is positive, significant and less than one; which is similar to what

obtained by Train [Tra86]. It should be noted that it was not possible to estimate

the logsum variable in the ordered probit model. This represents a further limitation

of the ordered probit model as the logsum variable significantly improves the fit of

the model as it can be seen for the comparison of the final log-likelihood value of

Models 2 and 4.

Most of the estimated coefficients have the expected sign and are significant.

Positive coefficients of household income, in both the discrete and continuous parts

of the model, indicate that households with higher income have higher tendency to

own more vehicles and drive more. In the unordered models, the magnitude increases

as the number of vehicles in the household increases. Similar results can be found

in Bhat and Pulugurta [BP98] and Potoglu and Susilo [PK08]. The coefficients of

number of drivers in the household are very significant, indicating that this factor has

high effects on how many cars a household owns. This coefficient is positive in the

ordered structure, and also positive in the unordered structure with an exception for

the one-car households. The negative coefficient for one-car household alternative
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indicates that, the more drivers in the household, the less likely they own only one

car. Similarly, households with female household head are less likely to own more

vehicles.

Urban size is an indicator of the urbanization level in the area of the house-

hold location, in which the lower value represents urban areas and the higher value

represents rural areas. Residential density is an indication of the built environment

around the household location. The coefficients of these two variables are signifi-

cantly negative (with the exception of the one-car household alternative) and have

higher magnitude as the households own more cars in the unordered structure. In

both modeling structures (ordered and unordered probit models) households located

in highly residential areas are more likely to own fewer cars and to drive less; house-

holds located in a more rural area have higher probability of having more cars and

drive more.

The driving cost (measured in dollars per mile) results to be significant and

negative, indicating that higher driving cost induces the households to drive less.

3.5.2 Covariance matrix estimation

The covariance matrices of the four models are reported in tables 3.4, 3.5, 3.6

and 3.7. In the unordered discrete-continuous models, the bottom line of the matrix

explains the correlation between the mileage traveled and the utility differences

of the vehicle holding alternatives with respect to the alternative of owning zero

car. In mathematical terms, the estimation of the correlation factors modifies the
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values of differences in utility and reduces the variance of those differences, which

ultimately contributes to a better forecasting of both the discrete and the continuous

components of the model. Generally, the correlation between annual VMT and

vehicle holding levels (with respect to zero-car alternative) increases from the one-car

alternative to the three-car alternative, and then declines for the four car alternative,

probably because in this case very few observations are available in the sample.

These results are consistent across Model 1 and Model 2; while in Model 4 the

correlation terms are all positive and follow a consistent increasing trend with the

number of alternatives.

In the ordered discrete-continuous models, the correlation between the number

of vehicles and mileage traveled is positive and equal to 0.5, which means that the

demand of vehicle usage increases the propensity of owning more cars.

3.5.3 Goodness of fit

By comparing the measures of fit of the unordered probit with numerical com-

putation (Model 2) and the one obtained with the Monte-Carlo simulation (Model

1) with 1000 MC draws, it should be noted that the approximation method has a

better fit and that the Hessian is more stable, which facilitates the computation of

coefficients’ t-statistics. However, in this case the values of the standard errors were

obtained with Bootstrap techniques for both Model 1 and 2.

The log-likelihood values from the ordered (Model 3) and unordered models

(Model 4), both calibrated without the logsum variable) cannot be directly com-
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pared because of the different model structure, number of parameters and number

of observations. Therefore, the adjusted R2 is calculated as follows:

R2 = 1 –
LL(β̂) – npar

LL(0)
(3.9)

where LL(β̂) is the value of the log-likelihood function at convergence,LL(0)

is the value of the log-likelihood function at 0 (β = 0), and npar is the number of

parameters estimated in the model.

A non-nested test has been also conducted for the ordered and unordered

models. This test determines if the adjusted R2 of two non-nested models are

significantly different. The same method is used as in Bhat and Pulugurta [BP98]:

“If the difference in the adjusted R2 is τ , then the probability that this differ-

ence could have occurred by chance, in the asymptotic limit, is bounded by:

Φ(–(–2τLL(0) + (npar,2 – npar,1))0.5) (3.10)

in the asymptotic limit. A small value of the probability of chance occurrence

indicates that the difference is statistically significant and that the model with the

higher value of adjusted likelihood ratio index is to be preferred. ”

The values of the adjusted R2 and those obtained with the non-nested test for

the four models are reported in table 3.3. We observe that the unordered discrete-

continuous models have higher goodness of fit. The unordered models have higher

log-likelihood and adjusted R2; the non-nested test attests that the unordered mod-
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els significantly improve the model fit when compared to the ordered models.

Table 3.3: Estimation Results
Variable

Model 1 Model 2 Model 3 Model 4
Estimate s.e. Estimate s.e. Estimate s.e. Estimate s.e.

Dependent variable: Number of cars
Logsum 0.388 0.012 0.515 0.018
Constant 0.363 0.111
1 car 2.863 0.237 -2.948 0.217 1.368 0.096
2 cars -8.700 0.098 -21.889 0.284 -4.432 1.039
3 cars -14.404 0.188 -28.931 0.257 -4.918 0.113
4 cars -21.385 0.201 -35.658 0.245 -11.288 0.114
Income 0.086 0.006
1 car -0.051 0.011 -0.101 0.020 0.151 0.010
2 cars 0.056 0.006 0.692 0.072 0.395 0.029
3 cars 0.105 0.010 0.745 0.077 0.429 0.028
4 cars 0.111 0.012 0.693 0.074 0.327 0.026
num. of drivers 0.608 0.057
1 car -0.010 0.007 -0.304 0.236 -0.048 0.027
2 cars 3.223 0.079 9.236 0.214 2.111 0.215
3 cars 4.041 0.102 10.167 0.190 1.742 0.086
4 cars 4.432 0.092 10.120 0.165 3.314 0.142
gender (female) -0.235 0.063
1 car -0.129 0.551 -0.063 0.249 -0.054 0.068
2 cars -0.874 0.054 -3.434 0.213 -0.732 0.245
3 cars -0.928 0.073 -3.605 0.211 -0.854 0.281
4 cars -0.885 0.059 -3.667 0.194 -2.208 0.360
urban size -0.032 0.013
1 car 0.077 0.035 -0.109 0.058 -0.013 0.028
2 cars -0.120 0.074 -0.270 0.178 0.103 0.277
3 cars -0.199 0.093 -0.354 0.186 -0.038 0.018
4 cars -0.201 0.084 -0.406 0.183 -0.368 0.063
res. Density -0.103 0.010
1 car 0.041 0.005 0.101 0.015 -0.168 0.017
2 cars -0.223 0.034 -1.112 0.159 -0.472 0.036
3 cars -0.442 0.054 -1.298 0.181 -0.740 0.070
4 cars -0.484 0.064 -1.262 0.170 -0.599 0.183
α1 1.580
α2 3.149
α3 4.201

Dependent variable: VMT (10k)
Constant 1.130 0.102 1.385 0.116 1.473 0.105 1.456 0.068
Income 0.129 0.005 0.128 0.007 0.132 0.006 0.127 0.066
own home 0.671 0.277 0.328 0.098 0.258 0.072 0.296 0.060
gender (female) -0.056 0.034 -0.095 0.061 -0.080 0.059 -0.035 0.013
res. density -0.113 0.008 -0.118 0.009 -0.120 0.011 -0.117 0.006
driving cost ($ per mile) -5.103 0.283 -4.670 0.285 -5.133 0.238 -4.967 0.098
Log-likelihood at zero -9583.87 -9583.87 -9583.87 -9583.87
Log-likelihood at convergence -3349.81 -3288.93 -3607.75 -3472.51
Number of parameters 25 25 10 24
Number of observations 1420 1420 1420 1420

Adjusted R2 0.648 0.654 0.623 0.635
Likelihood ratio test 367.16 > χ25,0.01 -
Non-nested test result - Φ(15.98) = 1.34 e-56

Model 1: unordered discrete continuous probit model with simulation
Model 2: unordered discrete continuous probit model with numerical computation
Model 3: ordered discrete continuous probit model
Model 4: unordered discrete continuous probit model without logsum

3.5.4 Results from model application

The models 2 and 3 have been applied to test policy scenarios; the variables

of interest are income, density and driving cost. The scenarios considered are listed

in table 3.8.

Results in table 3.3 show the effects of those variables on vehicle holding and
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Table 3.4: Covariance Matrix, Model 1, Unordered Monte Carlo
1 car 2 cars 3 cars 4 cars VMT

1 car 2.00 1.14 1.31 1.30 0.27
2 cars 1.14 1.63 0.37 0.76 0.10
3 cars 1.31 0.37 2.37 1.68 0.67
4 cars 1.30 0.76 1.68 1.36 0.46
VMT -0.27 0.10 0.67 0.46 1.23

Table 3.5: Covariance Matrix, Model 2, Genz
1 car 2 cars 3 cars 4 cars VMT

1 car 2.00 10.34 10.24 10.57 0.73
2 cars 10.34 58.26 61.44 61.57 4.46
3 cars 10.24 61.44 68.64 67.11 5.21
4 cars 10.57 61.57 67.11 66.34 5.00
VMT -0.73 4.46 5.21 5.00 1.25

mileage traveled. It appears that results related to vehicle holding are consistent

between the ordered and the unordered structures. The effects are very limited in

all the cases considered, but in general slightly higher for the ordered model.

Increases in income and density result into slightly more households with 0

and 1 car, and fewer households with 2, 3, and 4+ cars. With reference to income,

we calculate that a 10 percent increase in income will result into higher vehicle

ownership of about 1.5% and 4.0% according respectively to the unordered and

ordered model. These values are lower than those provided by Litman [Lit13], who

indicate an average elasticity of vehicle ownership to income of 1.0, but close to the

0.4 calculated by Goodwin et al. [GDH04].

The effect of built environment variables (i.e. density) on vehicle ownership

has been studied recently by different authors in transportation and economics and

it is interesting to compare our results with those obtained in previous studies. In

particular, Fang [Fan80] found from a model calibrated on 2001 data and relative
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Table 3.6: Covariance Matrix, Model 3, Ordered DC
#cars VMT

#cars 1.00 0.50
VMT 0.50 1.56

Table 3.7: Covariance Matrix, Model 2, Genz (no logsum)
1 car 2 cars 3 cars 4 cars VMT

1 car 2.00 3.31 3.95 3.43 1.48
2 cars 3.31 12.89 5.69 4.64 2.38
3 cars 3.95 5.69 11.67 12.19 3.43
4 cars 3.43 4.64 12.19 36.93 4.56
VMT 1.48 2.38 3.43 4.56 1.24

to California that a 50 percent increase in density causes a reduction of 1.2 percent

in truck holdings, a larger truck VMT reduction (about 8 percent) and a small car

VMT change (- 1.32 percent). Bento et al. [BCMV05] calculate a density elasticity

of 0.1. These values compares pretty well with what found in our study which gives

a reduction of 1.5 percent in vehicle holdings, a reduction of 5.6 percent in vehicle

use and an elasticity of VMT to density equal to 0.11.

Driving cost change has almost no effects on vehicle holding decisions but has a

significant effect on car travel demand. Our model predicts that 50 percent increase

in fuel cost produces a reduction of 17.7 percent in VMT for the unordered model and

about 20 percent for the ordered model. The elasticity of vehicle travel with respect

to fuel prices is 0.35 for the unordered model and 0.4 for the ordered model. These

values are higher than the average values of 0.3 provided in the literature [Lit13]

and found in a number of other studies (TRACE, [TRA99], but close to the value

of 0.34 calculated using data from 1968 to 2008 by Li et al. [LLM11].
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Table 3.8: Sensitivity Scenarios
variable income density driving cost

% change

-10 -50 -50
-5 -25 -25
5 25 25
10 50 50

3.6 Conclusions

The proposed unordered modeling structure is able to account for full cor-

relation among simultaneous decisions and among the discrete alternatives. This

approach overcomes the limitation of existing models by eliminating the hypothe-

ses of fixed budget for the continuous variable and of independence from irrelevant

alternatives. The use of numerical methods for the computation of the multivariate

normal probabilities has been introduced for the first time in an econometric context

and successfully applied to estimate model formulations that include both discrete

and continuous dependent variables. This approach is a valid alternative to Monte

Carlo simulation, especially in cases when the problem can be modeled just with

nominal variables. We have also estimated an ordered response model; although pre-

vious literature has shown that ordinal variable vehicle ownership models are inferior

to the nominal variable approach in the context of joint discrete-continuous models

they might represent an attractive option due to their closed form mathematical

formulation.

Empirical results although consistent with previous literature provide a num-

ber of interesting insights for policy analysis. The unordered discrete-continuous

model always performs better in terms of goodness of fit statistics when compared
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to ordered discrete-continuous models. However, the two structures have very sim-

ilar elasticity values, with the ordered model showing slightly higher elasticities in

the discrete part with respect to income and density, and to fuel cost in the contin-

uous part. By using data from 2009 a relatively high elasticity value for fuel cost

(about 0.36) is derived, which might be due to the high fuel cost experienced by

drivers at that time and to the economic crisis that affected the United States after

2008. We have also experienced difficulty in estimating the logsum variable in the

ordered model. Although we do not fully know the reasons for this problem, the

impossibility of accounting for the utility deriving from the choice of vehicle type

and vintage represents another important limitation of the model based on ordered

probit in the context of vehicle ownership modeling.

The proposed models are highly flexible and can be transferred to other in-

tegrated decisions that are relevant in transportation and related disciplines (i.e.

number of daily activities and time dedicated to each activity, mode choice and

departure time; types of car owned and mileage traveled for each type).
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Table 3.9: Application Results
Corresponding change

Change in residential density Change in driving cost
0car 1 car 2 cars 3 cars 4 cars Average veh. ownership miles

Actual 7.22% 22.59% 46.82% 17.92% 5.45% 1.92 22,490
Unordered DC
Income -10% 7.20% 24.52% 45.93% 16.92% 5.44% 1.89 -1.51% 20,829 -7.39%
Income -5% 7.22% 23.49% 46.39% 17.46% 5.45% 1.90 -0.71% 21,666 -3.67%
Income +5% 7.22% 21.75% 47.18% 18.39% 5.46% 1.93 -0.70% 23,310 3.65%
Income +10% 7.25% 20.70% 47.71% 18.88% 5.47% 1.95 1.48% 24,151 7.38%
Density -50% 7.24% 20.10% 47.99% 19.20% 5.46% 1.96 1.96% 23,730 5.51%
Density -25% 7.25% 21.38% 47.42% 18.49% 5.46% 1.94 0.91% 23,080 2.62%
Density +25% 7.12% 23.79% 46.21% 17.43% 5.45% 1.90 -0.77% 21,850 -2.85%
Density +50% 6.97% 24.91% 45.82% 16.86% 5.45% 1.89 -1.51% 21,231 -5.60%
Fuel cost -50% 7.22% 22.58% 46.86% 17.89% 5.45% 1.92 -0.01% 26,479 17.74%
Fuel cost -25% 7.23% 22.54% 46.81% 17.95% 5.47% 1.92 -0.05% 24,501 8.94%
Fuel cost +25% 7.23% 22.56% 46.74% 18.02% 5.45% 1.92 0.05% 20,489 -8.90%
Fuel cost +50% 7.22% 22.54% 46.84% 17.94% 5.46% 1.92 0.05% 18,501 -17.74%

Ordered DC
Income -10% 7.66% 27.50% 44.10% 15.98% 4.76% 1.83 -4.23% 20,802 -7.76%
Income -5% 7.36% 26.23% 44.04% 17.01% 5.36% 1.87 -2.08% 21,708 -3.74%
Income +5% 6.77% 24.09% 43.58% 18.83% 6.73% 1.95 2.06% 23,426 3.87%
Income +10% 6.50% 23.21% 43.02% 19.78% 7.50% 1.99 4.09% 24,333 7.90%
Density -50% 5.03% 24.53% 45.05% 18.88% 6.51% 1.97 3.44% 23,857 5.78%
Density -25% 6.00% 24.92% 44.39% 18.40% 6.29% 1.94 1.74% 23,214 2.94%
Density +25% 8.11% 25.37% 43.28% 17.43% 5.80% 1.87 -1.73% 21,904 -2.87%
Density +50% 9.07% 25.49% 42.78% 17.02% 5.64% 1.85 -3.18% 21,278 -5.65%
Fuel cost -50% 7.02% 25.22% 43.85% 17.89% 6.02% 1.91 -0.04% 27,030 19.85%
Fuel cost -25% 7.01% 25.23% 43.85% 17.87% 6.04% 1.91 -0.03% 24,801 9.97%
Fuel cost +25% 7.03% 25.29% 43.78% 17.87% 6.03% 1.91 -0.08% 20,322 -9,89%
Fuel cost +50% 7.05% 25.23% 43.83% 17.94% 5.96% 1.91 -0.11% 18,087 -19.80%
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Chapter 4: Validation of Discrete-Continuous Models

4.1 Introduction

In this chapter, ordered discrete-continuous (ODC) and unordered discrete-

continuous (UDC) models are validated using both simulated and real data. In

both cases, validation is carried out on holdout samples. The real data is relative

to the car ownership and use problem and are calibrated on the 2009 NHTS data.

4.2 Simulated data: ordered discrete-continuous (ODC) model

4.2.1 ODC Data generation

For this simulated case, we generate 2,000 observations and we assume that

each synthetic individual has a choice across 4 discrete alternatives. By design, the

dependent variables are marginally distributed according respectively to an ordered

probit and a regression model. We are using 10 predictors X1 through X10, all

assumed to follow a standard normal distribution. Two datasets are generated.

The first assumes that low correlation exists between the error terms of the discrete

and the continuous models (ρ = 0.1); while the second assumes high correlation

between the error terms (ρ = 0.9). For both cases, the predictors of the ordered
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probit are const, X1, X2, X3, X4 and X5 with coefficients (1, 1, –1, 0.5, 0.5, 2); while

the predictors of the regression are const, X6, X7, X8, X9 and X10 with coefficients

(–1, 1, 1, 1, 2, –2). The model intercepts are denoted by const and the variance of the

regression is σ2 = 25. The models differ only in the correlation value. The cutpoints

of the ordered probit are set to Γ = (1, 2), such that the differences between them

are α = (1, 1). The model is estimated on 1,600 observations and applied to the

remaining 400 observations in the sample.

4.2.2 ODC validation results: low correlation

Results relative to the validation of the ordered discrete-continuous model

with low correlation (ρ = 0.1) are presented in figures 4.1 through 4.6. Table 4.1

summarizes the predicted probability of the observed choice in the validation sample

for the following cases: 1) joint ordered discrete-continuous model; 2) ordered probit

model and regression; 3) ordered probit only. Not surprisingly all summary statistics

are within a narrow range and the joint model does approximately as good as the

separate models and the ordered probit model alone. The log-likelihood in the

validation sample is approximately the same for all the three models considered.

Figure 4.1 shows how the three models compare with market shares in terms of

predictions. In all cases, bigger market shares are associated with bigger predicted

probabilities. The circles (joint model), triangles (separate model), and crosses (dis-

crete) are all located at approximately the same height on a vertical scale, meaning

that none of them generates better predictions for any alternative.
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In Figure 4.2 the probabilities are plotted against their ordered probit counter-

part. Since there is almost no correlation between the error terms, both the circles

(joint model) and the triangles (separate model) are approximately distributed along

the identity line. This is to be expected since the small correlation induces noise in

the predictions of the two models.

Predicted values for the regression are not very relevant in the context of a

joint model because our model formulation uses the error of the continuous part to

improve the prediction of the discrete part. There will be large differences in the

predicted values only if the joint model optimizes the regression coefficient in such a

way to improve the overall fit, but they cannot benefit directly from the conditioning

in our scheme. If we were to report the predicted probability of the discrete model

and then use this information to adjust the predicted value of the regression, we

might be able to see an improvement in the regression fit. However, as discussed in

previous chapters the conditioning is a difficult task.

Figure 4.3 shows the predicted values for the validation sample. It is worth

noting that the apparent poor fit is due to the high variance of the residuals and no

modeling approach can fix it. The coefficients of the models are given in tables 4.2

through 4.6. Not surprisingly, we are able to recover the true value of the coefficients

in all cases, that is typically the case for a sample generated following the true model.

Table 4.1: ODC Validation - ρ = 0.1

model min. 1st q. median mean 3rdq. max. Log-likelihood
joint ODC 0.003 0.328 0.580 0.603 0.949 1.000 -283.346
separate ODC 0.0026 0.326 0.588 0.601 0.946 1.000 -286.116
just OP 0.003 0.322 0.590 0.602 0.948 1.000 -286.287
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Figure 4.1: Simulated ODC, ρ = 0.1 - Comp. with Market Shares
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Figure 4.2: Simulated ODC, ρ = 0.1 - Comp. with OP
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Figure 4.3: Simulated ODC, ρ = 0.1 - Regression
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Table 4.2: Simulated ODC, ρ = 0.1 - ODC coefficients for validation sample

name true param. estimate SD t p
const 1 0.983 0.054 18.196 0.000

X1 1 0.975 0.046 21.026 0.000
X2 -1 -0.993 0.045 -21.881 0.000
X3 0.5 0.405 0.037 10.802 0.000
X4 0.5 0.512 0.038 13.498 0.000
X5 2 2.017 0.069 29.287 0.000
α1 1 0.966 0.058 16.678 0.000
α2 1 1.048 0.059 17.686 0.000

const -1 -0.938 0.123 -7.610 0.000
X6 1 0.875 0.124 7.084 0.000
X7 1 0.981 0.124 7.916 0.000
X8 1 1.117 0.123 9.048 0.000
X9 2 2.128 0.119 17.915 0.000
X10 -2 -2.070 0.120 -17.251 0.000

σ2 25 24.242 0.856 28.323 0.000
ρ 0.1 0.071 0.035 2.027 0.043

maxLL -5868.34
n 1600

Table 4.4: Simulated ODC, ρ = 0.1 - OP coefficients for validation sample

name true param. estimate SD t p
const 1 0.991 0.054 18.314 0.000

X1 1 0.982 0.046 21.139 0.000
X2 -1 -0.996 0.046 -21.845 0.000
X3 0.5 0.401 0.038 10.650 0.000
X4 0.5 0.515 0.038 13.498 0.000
X5 2 2.024 0.069 29.355 0.000
α1 1 0.969 0.058 16.707 0.000
α2 1 1.043 0.059 17.680 0.000

maxLL -1047.853
n 1600
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Table 4.6: Simulated ODC, ρ = 0.1 - Regression coefficients for validation sample

name true param. estimate SD t p
const -1 -0.926 0.124 -7.493 0.000

X6 1 0.867 0.124 6.994 0.000
X7 1 0.989 0.124 7.952 0.000
X8 1 1.115 0.124 9.001 0.000
X9 2 2.126 0.119 17.835 0.000
X10 -2 -2.060 0.120 -17.106 0.000

sigma 5 4.936
adj R2 0.346

n 1600
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4.2.3 ODC validation results: high correlation

All the results for the ordered discrete-continuous model with high correlation

(ρ = 0.9) are presented in figures 4.8 through 4.13. Table 4.8 reports the summary of

predicted probabilities in the validation sample. Except for the minimum and max-

imum predicted probabilities that are almost zero and one for all three approaches,

the quartiles, mean and log-likelihood of the joint model are greatly improved.

Figures 4.4 and 4.2 report predicted probabilities against market shares of or-

dered probit. As expected all three methods defeat market share predictions. The

impact of the high correlation is shown in figure 4.2. The circles denote the condi-

tional probabilities and the triangles the unconditional probabilities. The triangles

are distributed along the identity line, meaning that the unconditional probabilities

are about the same than their equivalent using just an ordered probit model. The

circles are mostly high above the identity line, meaning that the joint model does

much better than the ordered probit. Some circles are however, below the identity

line meaning that conditioning worsens the predictions for these observations. It ap-

pears that while the discrete-continuous model improves the predictions when there

is sufficient correlation between error terms, this improvement is never uniform such

that there are always units that have a worse conditional prediction.

The model’s coefficients are reported in tables 4.9 through 4.13. It is worth

noting is that the model estimates are not always close to the true values. It is hard

to explain why this happens, but we think that it may have to do with the very

high correlation that might affect the identification of the model.
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Table 4.8: ODC Validation - ρ = 0.9

model min. 1st q. median mean 3rdq. max. Log-likelihood
joint ODC 0.036 0.635 0.911 0.785 1.000 1.000 -134.535
separate ODC 0.020 0.307 0.577 0.591 0.935 1.000 -293.999
just OP 0.009 0.334 0.562 0.600 0.957 1.000 -296.4021

Table 4.9: Simulated ODC, ρ = 0.9 - ODC coefficients for validation sample

name true param. estimate SD t p
const 1 0.846 0.041 20.874 0.000

X1 1 0.871 0.026 33.201 0.000
X2 -1 -0.845 0.026 -32.453 0.000
X3 0.5 0.450 0.021 21.321 0.000
X4 0.5 0.423 0.020 21.132 0.000
X5 2 1.785 0.046 38.741 0.000
α1 1 0.833 0.043 19.284 0.000
α2 1 0.896 0.043 20.693 0.000

const -1 -1.092 0.125 -8.741 0.000
X6 1 0.979 0.083 11.795 0.000
X7 1 1.062 0.084 12.634 0.000
X8 1 0.962 0.083 11.540 0.000
X9 2 1.884 0.082 22.983 0.000
X10 -2 -2.023 0.080 -25.316 0.000

σ2 25 24.950 0.890 28.038 0.000
ρ 0.9 0.786 0.009 86.762 0.000

maxLL -5354.587
n 1600.000

Table 4.11: Simulated ODC, ρ = 0.9 - OP coefficients for validation sample

name true param. estimate SD t p
const 1 1.021 0.055 18.596 0.000

X1 1 0.954 0.046 20.972 0.000
X2 -1 -0.970 0.045 -21.463 0.000
X3 0.5 0.572 0.040 14.418 0.000
X4 0.5 0.508 0.039 13.146 0.000
X5 2 2.083 0.071 29.298 0.000
α1 1 0.992 0.060 16.604 0.000
α2 1 1.076 0.061 17.773 0.000

maxLL -1035.574
n 1600
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Figure 4.4: Simulated ODC, ρ = 0.9 - Comp. with Market Shares
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Table 4.13: Simulated ODC, ρ = 0.9 - Regression coefficients for validation sample

name true param. estimate SD t p
const -1 -1.057 0.125 -8.492 0.000

X6 1 1.107 0.125 8.866 0.000
X7 1 1.066 0.125 8.510 0.000
X8 1 0.960 0.125 7.696 0.000
X9 2 1.931 0.120 16.088 0.000
X10 -2 -2.089 0.121 -17.225 0.000

sigma 5 4.971
adj R2 0.340

n 1600
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Figure 4.5: Simulated ODC, ρ = 0.9 - Comp. with OP
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Figure 4.6: Simulated ODC, ρ = 0.9 - Regression
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4.3 Simulated data: unordered discrete-continuous (UDC) model

validation

4.3.1 UDC data generation

For the validation of the unordered discrete-continuous model, we are using a

similar procedure. The four utility functions are defined as follows:

U0 = X1 - X2 +ε0
U1 = 0.5 + 2X3 - 2X4 +ε1
U2 = -0.5 - 2X5 + 2X6 +ε2
U3 = 1 - X7 + X8 +ε3

The continuous part is set to be:

Yr = 1 + X9 – X10 + 2X1 – 0.5X2 + εr

We are considering a case with low correlation, and a case with high correla-

tion. The Cholesky matrix (L) of the covariances (S) is reported because this is what

is being optimized in the log-likelihood method. We refer to the joint covariance

of differences in utilities and regression residuals. In our case, the first three rows

correspond to differences in utilities with respect to the 0th alternative (U0) and

the last row corresponds to the covariance terms between the regression and these

differences.

Slow =



1 0.25 0 –0.2

0.25 1.0625 0.25 –0.05

0 0.25 1.0625 0.2

–0.2 –0.05 0.2 1.08
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Llow =



1 0 0 0

0.25 1 0 0

0 0.25 1 0

–0.2 0 0.2 1



Shigh =



1 0.8 –0.3 –0.6

0.8 1 0.24 –0.48

–0.3 0.24 0.98 0.48

–0.6 –0.48 0.48 1.08



Lhigh =



1 0 0 0

0.8 0.6 0 0

–0.3 0.8 0.5 0

–0.6 0 0.6 0.6



4.3.2 UDC validation results: low correlation

The results for the unordered discrete-continuous model are presented in the

same way than for the ordered model. Figures 4.15 through 4.20 represent the

results obtained for the model with low correlations.

Table 4.15 shows the distribution of predicted probabilities for the joint and

unconditional model, as well as for the probit model alone. Although the correlation

is ”low”, it is still higher than for the low correlation of the ordered joint model.

We can observe that the mean and quartiles of the joint model are slightly higher
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than their unconditional counterpart. Interestingly enough, the median is increased

more than the mean and we think that this is due to the observation we made earlier

that conditioning actually reduces the predicted probability of some choices. On the

other side, the median is a very robust measure of location and is much less affected

by this problem.

Figures 4.7 and 4.8 show the predicted probabilities. Again the model out-

performs the market share approach. Here the model is more complex because the

regression is correlated differently depending on the alternatives. The green circles

are closer to the identity line than the circles of other colors. This is likely due to

the fact that the regression is less correlated to the third alternative (second column

in covariance matrix) than to the other ones with a covariance of -0.05 versus -0.2

and 0.2. Again, the triangles of unconditional probabilities are distributed along the

identity line because no information from the correlation is accounted for in their

calculation.

Figure 4.9 shows the predicted continuous variable. Just like for the ordered

model, we do not use any conditioning information for the regression prediction and

we do not expect significant differences for these predictions. The fit appears to be

better than for the joint ordered example but this is only due to the smaller variance

of the residuals (1.08 versus 25).

Coefficients are reported in tables 4.16 through 4.20. The most interesting

information in these tables lie in the difference between the discrete-continuous

model coefficients and the probit coefficients. The joint model appears to suffer

from some bias that is not present in the probit.

71



Table 4.15: UDC Validation - low correlations
model min. 1st q. median mean 3rdq. max. Log-likelihood
joint UDC 0.012 0.569 0.841 0.738 0.960 1.000 -176.360
separate UDC 0.011 0.548 0.808 0.722 0.939 1.000 -180.794
just Probit 0.007 0.553 0.821 0.729 0.953 1.000 -179.815

Figure 4.7: Simulated UDC, low correlations - Comp. with Market Shares
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Figure 4.8: Simulated UDC, low correlations - Comp. with OP
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Figure 4.9: Simulated UDC, low correlations - Regression
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Table 4.16: Simulated UDC, low correlations - UDC coefficients for validation sam-
ple

name true param. estimate
X1 1.0000 1.2233
X2 -1.0000 -1.1565

const 0.5000 0.7500
X3 2.0000 2.0494
X4 -2.0000 -2.1669

const -0.5000 -0.6279
X5 -2.0000 -2.3091
X6 2.0000 2.2953

const 1.0000 1.1714
X7 -1.0000 -1.0469
X8 1.0000 1.1616

const -1.0000 -1.0013
X9 1.0000 1.0057
X10 -1.0000 -0.9749
X1 2.0000 1.9979
X2 -0.5000 -0.4525
L21 0.2500 0.0207
L22 1.0625 1.2756
L31 0.0000 0.0755
L32 0.2500 0.4824
L33 1.0625 1.0786
L41 -0.2000 -0.1953
L42 -0.0500 0.0744
L43 0.2000 0.2825
L44 1.0800 0.9938

maxLL -3099.2520
n 1600.0000
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Table 4.18: Simulated UDC, low correlation - Probit coefficients for validation sam-
ple

name true param. estimate
X1 1.0000 1.0383
X2 -1.0000 -0.9861

const 0.5000 0.5816
X3 2.0000 1.8296
X4 -2.0000 -1.9304

const -0.5000 -0.5360
X5 -2.0000 -1.9665
X6 2.0000 1.9608

const 1.0000 0.9898
X7 -1.0000 -0.8733
X8 1.0000 0.9891
L21 0.2500 0.0492
L22 1.0625 1.0421
L31 0.0000 0.0578
L32 0.2500 0.3195
L33 1.0625 0.9091

maxLL -768.8513
n 1600.0000

Table 4.20: Simulated UDC, low correlation - Regression coefficients for validation
sample

name true param. estimate SD t p
const -1.0000 -0.9862 0.0264 -37.4100 0.000

X9 1.0000 0.9979 0.0255 39.1600 0.000
X10 -1.0000 -0.9704 0.0257 -37.7300 0.000
X1 2.0000 1.9969 0.0270 74.1000 0.000
X2 -0.5000 -0.4651 0.0262 -17.7800 0.000

sigma 1.0400 1.0540
adj R2 0.8696

n 1600.0000
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4.3.3 UDC validation results: high correlation

Figures 4.22 through 4.27 report the validation results with high covariance

elements. Figure 4.22 summarizes the predicted probabilities. This time, all quar-

tiles and the mean are significantly higher for the joint model. The validation

log-likelihood is also much higher (-144 vs -204). However, the log-likelihood for the

unconditional discrete-continuous model is lower than the log-likelihood of probit

alone. We think that the model estimation may be somehow shifted in the context

of a discrete-continuous model. This may be related to the apparent bias is the es-

timation of the coefficient for the joint model, that we do not observe for the probit

alone. Tables 4.23 and 4.25 tend to confirm this hypothesis since the probit coeffi-

cients are less biased than the corresponding coefficients of the discrete-continuous

model. Also we note that the high correlation appears to increase this apparent

bias. Again we suggest that the covariance structure might be weakening the model

identification but this requires more research.

Figures 4.10 and 4.11 are basically a more extreme version of their low correla-

tion equivalent. Unconditional probabilities represent by triangle are still distributed

along the identity line. Conditional probabilities represented by circles are further

from the identity. Most circles are above the line but some are under it.

Table 4.22: UDC Validation - high correlations

model min. 1st q. median mean 3rdq. max. Log-likelihood
joint UDC 0.024 0.611 0.910 0.779 0.991 1.000 -144.3271
separate UDC 0.000 0.531 0.825 0.716 0.958 1.000 -204.4712
just Probit 0.001 0.531 0.840 0.725 0.964 1.000 -192.7428
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Figure 4.10: Simulated UDC, high correlations - Comp. with Market Shares
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Figure 4.11: Simulated UDC, high correlations - Comp. with OP
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Figure 4.12: Simulated UDC, high correlations - Regression
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Table 4.23: Simulated UDC, high correlations - UDC coefficients for validation
sample

name true param. estimate
X1 1.0000 1.3416
X2 -1.0000 -1.2953

const 0.5000 0.9029
X3 2.0000 2.4853
X4 -2.0000 -2.3999

const -0.5000 -0.7895
X5 -2.0000 -2.7010
X6 2.0000 2.6898

const 1.0000 1.1432
X7 -1.0000 -1.4073
X8 1.0000 1.5180

const -1.0000 -1.0078
X9 1.0000 1.0315
X10 -1.0000 -1.0001
X1 2.0000 2.0515
X2 -0.5000 -0.4667
L21 0.8000 0.9875
L22 1.0000 0.7871
L31 -0.3000 -0.2956
L32 0.2400 0.8750
L33 0.9800 1.1284
L41 -0.6000 -0.6742
L42 -0.4800 -0.0443
L43 0.4800 0.3976
L44 1.0800 0.7264

maxLL -2949.9730
n 1600.0000
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Table 4.25: Simulated UDC, high correlation - Probit coefficients for validation
sample

name true param. estimate
X1 1.0000 1.1703
X2 -1.0000 -1.0785

const 0.5000 0.7951
X3 2.0000 2.1475
X4 -2.0000 -2.0838

const -0.5000 -0.7265
X5 -2.0000 -2.3638
X6 2.0000 2.4109

const 1.0000 1.0276
X7 -1.0000 -1.1679
X8 1.0000 1.2878
L21 0.2500 1.0586
L22 1.0625 0.6719
L31 0.0000 -0.2334
L32 0.2500 1.0792
L33 1.0625 0.5383

maxLL -691.1823
n 1600.0000

Table 4.27: Simulated UDC, high correlation - Regression coefficients for validation
sample

name true param. estimate SD t p
const -1.0000 -1.0111 0.0268 -37.6900 0.000

X9 1.0000 1.0112 0.0259 39.0000 0.000
X10 -1.0000 -0.9996 0.0262 -38.1800 0.000
X1 2.0000 2.0660 0.0274 75.3400 0.000
X2 -0.5000 -0.4514 0.0266 -16.9600 0.000

sigma 1.0400 1.0720
adj R2 0.8718

n 1600.0000
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4.4 Real data: discrete-continuous model validation

Predicting a discrete variable can be done in several ways. It is not possible

to assume that the chosen alternative is simply the alternative with the highest

probability. To illustrate this, imagine that we want to predict if people will use

their car or public transit for their daily commute to work. If the model were to

assign a probability of using a car between 70% and 100% and, correspondingly,

a probability between 0% and 30% of using public transit, then the most likely

alternative would be ”car” for 100% of observations. This result does not reflect

the actual market share. Also, if we were to predict a rare choice, such as using a

bicycle to commute to work, it may be important to identify who are the individuals

that are the most likely to make this choice, even if every single decision maker still

has a higher probability of not using a bicycle. For the reasons explained above

the most used approach is sample enumeration, by which the choice probabilities of

each decision maker in a sample are averaged over decision makers.

In a regular regression model, the dependent variable will have fitted values

after the model has been calibrated. There are a number of issues that may affect

the validity of these fitted values. For example model estimation, goodness of fit or

model selection can be challenging. However, once these issues have been addressed,

there will be a unique numerical fitted value for the dependent variable. In a re-

gression we would use a F-test to test if the regression model is significantly better

than simply using the mean of the dependent variable as a predictor. We argue

that we can do a similar analysis by comparing the probabilities predicted by the
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model with the sample market shares. If, for example, we have 80% of our sample

who use their car and 20% who use public transit, then we want a model that will

predict the transit alternative with a probability more than 20 % for at least some

observations. Otherwise the model is not more useful than just using market shares,

and therefore the model is not useful.

In joint discrete-continuous models two two dependent variables, (one dis-

crete and one continuous) are predicted simultaneously. The validation procedure

suggested in our work suppose that if the probability of the chosen alternative as

predicted by the joint model is higher than the one predicted by the regular model,

then we conclude that the more complicated model is more useful, otherwise we

should favor the simpler model.

4.4.1 Discrete-continuous car ownership model - NHTS 2009

The NHTS 2009 dataset has been divided into a calibration sample containing

80% of the total observations and a validation sample that has the remaining obser-

vations (20% of the total). Coefficients’ estimates for the ODC model are reported

in 4.30; the coefficients of the OP are in 4.32, and the predictor sif the regression in

4.34. We first perform a BIC variable selection for both the ODC and a separate

ordered probit, and then we compute the predicted probability of the actual choice

in the validation sample using three methods:

• Joint model using the regression for the conditional probability;

• Joint model ignoring the regression;
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• Only the ordered probit.

Table 4.29 highlights some interesting results. First, the joint model slightly

outperforms the regular model, as it predicts higher probabilities than the separate

DC/regression and OP alone. The minimum and maximum predicted probabilities

are practically zero and one for all three models. The three quartiles of predicted

probabilities considered are higher for the conditional ODC model, but by just

small quantities. For example the median predicted probability is 63%, which is 5%

more than the one obtained by using a regular ordered probit. The mean predicted

probability is also higher by about 5%.

In figure 4.13 we compare the predicted probabilities obtained with the ODC

models to the market share; the line represents the identity line where predicted

probabilities equals the market share. It is worth noting that each observation

in the validation sample is reported three times in the figure; one for each model

estimated (joint, sep, disc). Ideally, all points should be above the identity line,

which will indicate that every choice is predicted better than with just the market

share.

Figure 4.14 reports these predicted probabilities against the ones obtained

by using just an ordered probit alone. The line is still the identity line. The ideal

scenario would be to have predicted probabilities consistently above the identity line;

in that case the predicted probability of the joint model would always be superior

to the base model. However, as it can be seen from 4.14 this is not always the case.
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Table 4.29: 2009 - ODC
model min. 1st q. median mean 3rdq. max. Log-likelihood
joint ODC 0.008 0.419 0.632 0.574 0.755 0.999 -209.5722
separate ODC 0.004 0.365 0.557 0.506 0.643 0.998 -239.648
just OP 0.001 0.362 0.585 0.527 0.695 0.999 -238.669

Figure 4.13: ODC 2009 - Validation against market shares
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Figure 4.14: ODC 2009 - Validation against ordered Probit
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Figure 4.15: ODC 2009 - Validation of regression
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Table 4.30: 2009 NHTS - ODC coefficients

name estimate SD t p
const -1.734 0.283 -6.125 0.000

driver count 0.885 0.089 9.952 0.000
cost per mile 15.018 1.095 13.709 0.000

density 0.000 0.000 -11.787 0.000
age -0.002 0.003 -0.829 0.407

own home 0.614 0.113 5.412 0.000
income 0.054 0.008 6.721 0.000

num adults 0.282 0.095 2.963 0.003
transit -0.368 0.137 -2.679 0.007
urban -0.140 0.102 -1.363 0.173
gender -0.141 0.061 -2.313 0.021

urban size -0.019 0.021 -0.885 0.376
num workers 0.056 0.051 1.101 0.271

α1 2.503 0.160 15.616 0.000
α2 1.871 0.075 25.052 0.000
α3 1.246 0.077 16.098 0.000

const 1.522 0.320 4.756 0.000
age -0.018 0.004 -5.239 0.000

cost per mile 0.196 1.067 0.183 0.855
urban size -0.076 0.028 -2.746 0.006

num workers 0.221 0.069 3.216 0.001
own home 0.501 0.135 3.706 0.000

density 0.000 0.000 -3.875 0.000
income 0.047 0.011 4.103 0.000
urban -0.232 0.137 -1.697 0.090
transit -0.312 0.173 -1.805 0.071

num drivers 0.730 0.108 6.785 0.000
num adults -0.033 0.120 -0.277 0.782
education -0.064 0.039 -1.623 0.105

σ2 2.090 0.087 23.962 0.000
ρ 0.450 0.022 20.266 0.000

max LL -2836.070
n 1136.000
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Table 4.32: 2009 NHTS - Ordered Probit coefficients

name estimate SD t p
const -1.662 0.319 -5.219 0.000

num drivers 1.001 0.097 10.276 0.000
density 0.000 0.000 -3.135 0.002

cost per mile 16.598 1.187 13.981 0.000
income 0.065 0.010 6.499 0.000

own home 0.706 0.125 5.628 0.000
num adults 0.275 0.106 2.606 0.009

transit -0.367 0.153 -2.402 0.016
urban -0.159 0.112 -1.415 0.157
gender -0.213 0.074 -2.886 0.004

age -0.004 0.003 -1.438 0.150
education -0.050 0.037 -1.365 0.172
density 0.000 0.000 -1.097 0.273

urban size -0.021 0.024 -0.841 0.401
num workers 0.056 0.056 0.993 0.321

α1 2.787 0.173 16.118 0.000
α2 2.097 0.080 26.181 0.000
α3 1.298 0.082 15.923 0.000

max LL -906.556
n 1136.000

Table 4.34: 2009 NHTS - Regression coefficients

name estimate SD t p
driver count 0.747 0.064 11.663 0.000

density 0.000 0.000 -4.446 0.000
income 0.054 0.010 5.530 0.000

num workers 0.334 0.064 5.200 0.000
urban size -0.094 0.023 -4.154 0.000
own home 0.422 0.118 3.564 0.000

σ 1.477
adj R2 0.744
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The UDC version of this analysis does not favor joint models. First, table 4.36

illustrates that the probit model outperforms the joint model. This appears to be

partly due to failed convergence in the estimation of the UDC. It is still the case

however that conditional probabilities of the UDC are higher for all quartiles and

for mean versus their unconditional counterpart.

Figures 4.16 and 4.18 provide more details about the predicted probabilities.

Unfortunately, UDC predicted probabilities appear to be distributed at random,

which is far from ideal. We can see that the green point that represent the 2 cars

alternative are consistently under predicted by the joint model, which may indicate

that the the component if this alternative’s utility are either poorly estimated, or

poorly specified. On the other side, the 1 and 4 cars alternative are still predicted

better with the joint model, although it is not clear whether the circles, representing

the conditional probabilities, offer a substantial improvement.

The coefficients used for this validation are reported in tables 4.37 through

4.40.

Table 4.36: 2009 - UDC
model min. 1st q. median mean 3rdq. max. Log-likelihood
joint UDC 0.000 0.250 0.363 0.390 0.517 0.896 -348.752
separate UDC 0.000 0.268 0.321 0.342 0.388 0.765 -367.763
just probit 0.000 0.335 0.569 0.481 0.637 0.973 -279.552
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Figure 4.16: UDC 2009 - Validation against market share
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Figure 4.17: UDC 2009 - Validation against Probit
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Figure 4.18: UDC 2009 - Validation of regression
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Table 4.37: 2009 NHTS - UDC coefficients
name estimate
const 1.315
income 0.106

num drivers 0.302
gender -0.242

urban size -0.212
density 0.000
const -2.543
income 0.285

num drivers 2.449
gender 0.255

urban size -0.944
density 0.000
const -7.547
income 0.564

num drivers 2.536
gender -4.045

urban size -1.244
density 0.000
const -4.887
income 0.438

num drivers 2.915
gender 0.775

urban size -1.440
density 0.000

const 0.909
income 0.083

own home 0.791
gender -0.035
density 0.000

cost per mile 2.554
L21 3.148
L22 0.173
L31 -3.759
L32 -3.091
L33 2.322
L41 1.943
L42 -1.306
L43 2.117
L44 -0.751
L51 0.448
L52 -0.894
L53 0.196
L54 -0.851
L55 1.130

max LL -3654.819
n 1136.000
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Table 4.38: 2009 NHTS - Probit coefficients

name estimate
const 0.224
income 0.109

num drivers 0.823
gender -0.481

urban size -0.106
density 0.000
const -18.882
income 0.796

num drivers 11.923
gender -3.564

urban size -0.594
density -0.001
const -30.443
income 0.911

num drivers 15.916
gender -3.533

urban size -1.418
density -0.001
const -27.793
income 0.852

num drivers 15.454
gender -3.709

urban size -1.114
density -0.002

L21 8.464
L22 4.471
L31 0.218
L32 3.950
L33 6.264
L41 2.567
L42 4.395
L43 3.408
L44 -0.027

max LL -1059.813
n 1136.000
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Table 4.40: 2009 NHTS - Regression coefficients

name estimate SD t p
const 0.505 0.217 2.324 0.020
income 0.102 0.010 10.416 0.000

own home 0.429 0.148 2.903 0.004
gender -0.146 0.098 -1.483 0.138
density 0.000 0.000 -7.985 0.000

cost per mile 2.619 1.173 2.234 0.026
σ 1.628

adj R2 0.689
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4.5 Conclusions

In this chapter, we have argued that using actual choice probabilities is a good

way to assess the predictive power of a discrete-continuous model. We have seen,

using simulated samples that the conditional predictions offer a significant improve-

ment over unconditional predictions when there is a high correlation between the

error terms. Using the 2009 NHTS data, we have shown that ordered discrete-

continuous models offer a modest improvement in predicting vehicle holding along

with vehicle miles traveled. Both conditional and unconditional predicted probabil-

ities using ordered models greatly outperform their unordered part. For instance,

the median prediction using ODC is 63%, approximately twice as much as the with

the UDC. The results obtained from just the probit model, whose prediction com-

pare with the ordered probit and ODC, illustrate that optimal values of UDC have

probably not been reached in the maximization process. Altogether, we have il-

lustrated that unordered models pose great challenges and suffer from competition

with ordered ones for this application.
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Chapter 5: Random Effect Models for Free-Flow speed estimation

5.1 Introduction

Speed is a fundamental variable in the geometric design of highways and

streets. Transportation engineers normally refer to the design speed to calculate

the characteristics of geometric elements of the road, and to the operating speed to

assess the consistency of the adopted design values along the designed road align-

ment. Hence, operating speed models are fundamental in road design since they can

anticipate the speeds that will be adopted by drivers.

In this Chapter, we present results obtained from the estimation of free-flow speed

on two-lane rural highways. The model structure adopted separates the estimate of

the central tendency of speeds from the typical deviations of individual speeds. In

the model the same set of variables can be used to evaluate the mean value and the

standard deviation of the speed distribution; the desired speed percentile is then

calculated considering the associated standard normal random variable (Z). Fixed

effect (FE) models are also calibrated for comparison purposes and the (Bayesian

Information Criterion) BIC criterion is used for variable selection and applied to

both the FE and RE models. A summary of this work has recently been published

in a peer-reviewed journal [BCMnt].
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5.2 Literature review

Operating speeds reflect the speed behavior of drivers who are affected by

the horizontal and vertical alignments as well as the cross section. As a conse-

quence, operating speed data are collected from isolated vehicles moving in free-

flow conditions. Free-flow speeds are generally normally distributed as indicated

in many contributions [Tra11] [BDMC14]. Usually, to assess if speed design con-

sistency has been achieved, the 85th percentile of the distribution (V85) is consid-

ered [Has04] [MFT05], since it conventionally separates the population of prudent

drivers from the small group of more aggressive drivers. Despite this widespread

approach, some commentators contend that a knowledge of the parameters describ-

ing the entire distribution is more powerful and useful for applications and infer-

ences [Tra11] [MFT05] [Bon01].

Figueroa and Tarko [MFT05] emphasized this concept with the following given

example: of two different distributions, the first with a low mean speed (50 km/h)

and high standard deviation (15 km/h), the second with high mean speed (60 km/h)

and a low standard deviation (5 km/h), that have the same V85 (65 km/h). Hence,

the V85 alone is not able to provide a comprehensive interpretation of the effect of

road geometrics on operating speeds.

Several variables influence the operating speed. If on urban streets cross sec-

tional and environmental variables seem to be more significant in modeling [WDLH06]

[BM13], on rural highways the characteristics describing the horizontal and vertical

alignments are found to be significant in a number of scientific and technical con-
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tributions [Tra11] [MFT05] [Tra03]. Despite the fact that a considerable amount of

research on operating speeds has been produced in the last twenty years, more recent

works have aimed at improving model predictions and at extending the spectrum of

road typologies to those types that have not been fully investigated.

In July 2011 the Operational Effects of Geometrics Committee of the Trans-

portation Research Board sponsored the publication of the E-C 151 Circular [Tra11].

This document included some important remarks regarding the current level of re-

search on the topic, and some criticisms and suggestions were made to improve

model applicability and speed predictability.

According to the E-C 151 Circular [Tra11], the majority of the models available

in literature can predict the V85th percentile speeds for cars on horizontal curves,

assuming they (the cars) maintain a constant speed throughout. Only a few models

predict truck speeds, and speeds on tangents; some can estimate speed variations

approaching and exiting the curves, and a few consider the possibility of variation

in speeds within a curve; only one model [MFT05] allows for the evaluation of the

entire speed distribution.

In the E-C 151 Circular [Tra11], some remarks were also made on variables:

many models contain the parameters describing the horizontal curvature, while few

include variables related to the vertical alignment (i.e., grade), tangent, horizontal–

vertical combinations, cross-section elements (i.e., width of lanes), available sight

distance, and posted speeds.

Starting from this state of the art, this research aims at the calibration of linear

regression models able to predict any speed percentile. The proposed methodology
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takes into account possible random effects caused by the structure of the data where

sections are randomly selected from roads forming part of the two-lane highway

network in the Northwest of Italy.

5.3 Speed database

The speed database was assembled at various stages from 2005 to 2011 with

data from several road sections in the provinces of Turin, Vercelli and Alessandria

(Italy). A series of observational surveys was carried out on several typologies of

rural roads including freeways, multi-lane and two-lane highways. In this inves-

tigation, only the sub-database of two-lane rural roads was considered for model

calibration. Speed data were collected from a total of 13 roads and 37 sections with

the final database containing 6,567 speed observations, which were eventually used

to calibrate the speed models. During the surveys, no data were measured in one

lane, thus leading to 73 individual lanes investigated. Table 5.1 lists the identifica-

tion code for roads and sections, the name, the length of the road, and the main

geometric characteristics of sections. In particular, the table reports the lane width,

the radius of the centerline (the symbol ∞ denotes tangent sections) and the av-

erage longitudinal grade across the sections. All the geometric characteristics were

derived from regional GIS databases. For the some roads, several cross sections were

selected when differences in the geometric characteristics and/or margin treatments

were observed. The minimum distance between the closest sections of the same road

was set equal to 2 km. Surveys were carried out at different time periods; thus it
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is reasonable to assume that the same vehicles were not surveyed multiple times at

different road sections.

Table 5.1: Geometric and operative characteristics of the selected road sections
Road Section Road Road Lane Radius Grade Vmin Vmax V85 PSL nobs

name length width
# # km m m ±% km/h km/h km/h km/h

1 1 SP70-VC 3.830 3.60 ∞ 1.50 39.0 97.0 76.0 70 429
2 2 SP8-VC 7.790 3.70 178.47 3.00 45.0 128.0 87.0 90 618

3
3

SP299-VC 57.250
3.75 ∞ 0.00 32.0 157.0 85.0 50 972

4 3.60 334.57 0.50 45.0 128.0 87.0 90 799
5 3.70 ∞ 1.00 38.0 130.0 89.0 90 669

4 6 SS460-TO 61.757 3.75 1000.00 1.44 57.0 122.6 93.2 70 192

5

7

SS565-TO 18.180

3.75 304.00 5.14 24 114.0 94 70 312
8 3.75 ∞ 2.09 57.0 124.0 98.0 70 101
9 3.75 3226.00 4.69 52.0 114.0 91.0 70 101
10 3.25 150.00 8.50 46.0 77.0 70.1 50 87

6

11

SP55-AL 18.180

3.00 ∞ 1.50 42.6 129.4 90.3 70 107
12 3.00 ∞ 0.00 46.7 128.6 94.3 70 120
13 3.00 ∞ 0.00 50.0 114.0 90.4 70 108
14 3.00 ∞ 2.00 49.6 129.4 101.7 70 128
15 3.00 ∞ 0.00 49.0 127.8 95.9 70 127
16 3.00 ∞ 0.00 46.3 128.3 98.9 70 138
17 3.00 ∞ 0.00 49.4 149.6 95.3 70 128

7

18

SP230-VC 39.466

3.50 ∞ 0.50 42.0 115.2 88.5 90 41
19 3.50 ∞ 0.50 73.0 130.0 106.6 90 29
20 3.50 2250.00 0.50 70.0 118.0 107.0 90 26
21 3.50 ∞ 0.50 58.0 127.0 112.9 90 28
22 3.50 ∞ 0.00 55.0 130.0 100.3 90 30
23 3.50 1502.00 1.00 32.0 72.0 57.4 50 32
24 3.50 ∞ 0.00 59.0 110.0 92.6 70 27
25 3.50 909 1.00 44.0 96.0 78.0 70 37
26 3.50 8351.25 0.00 47.0 98.0 85.5 70 38
27 3.50 452.00 0.00 44.0 70.0 57.5 50 36
28 3.50 1503.00 1.00 56.0 130.0 97.0 90 43
29 3.50 ∞ 1.00 65.0 119.5 107.9 90 38
30 3.50 ∞ 0.00 54.7 108.1 85.1 70 42
31 3.50 ∞ 0.00 44.3 120.2 83.6 70 140

8 32 SP177-TO 10.927 3.20 300.00 2.50 27.6 93.3 75.8 70 116
9 33 SP176-TO 4.961 3.80 ∞ 0.00 42.6 106.6 75.3 90 67
10 34 SP267-TO 8.839 3.50 ∞ 0.00 34.7 105.4 68.5 50 154
11 35 SP220-TO 4.045 3.80 ∞ 0.00 44.2 89.1 79.8 70 100
12 36 SP183-TO 2.156 3.50 ∞ 0.00 36.9 134.8 82.5 50 161
13 37 SP23-TO 92.223 3.50 550.00 0.50 36.4 192.1 102.1 90 249

Speed data were collected using two different techniques: longitudinal mea-

surement by means of a laser speed gun, and cross-sectional measurement by means

of a digital video camera positioned perpendicularly to the road axis. The type

of technique was decided on the basis of the characteristics of the survey site, and

the observation points were carefully selected so as to minimize any disturbance to

traffic and to avoid any change in driver behavior.

To merge the data coming from the longitudinal and transversal surveys into

the same dataset, a preliminary comparison of speeds detected with the use of the

two devices was carried out. In particular, differences in speed distribution ascrib-
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able to the precision and accuracy of the two measurement systems were carefully

checked. A comparison of the speeds detected for the same vehicle with the two

methods is reported in figure 5.1. All the data are included between the 10% lines

across the equality line. The high coefficient of determination and the small stan-

dard error confirm the possibility of using the two datasets jointly to calibrate the

same speed model. Speed data were collected under free-flow conditions assuming

a minimum headway of 6 seconds, and at points where drivers assumed stationary

speeds, hence along tangents in sections far from curves, and in sections located at

the center of curves. Each observation included in the database was associated with

first the corresponding percentile p and then the standardized normal variable Zp,

derived from the average and standard deviation calculated on the sub-dataset of

the lane (Zp = 0 when p = 50%, and Zp = 1.036 when p = 85%).

Field inspections were carried out to collect information on the geometric

characteristics of the transversal section (i.e., lane and shoulder width, posted speed

limit, as well as the presence of driveways, retaining walls, ramps and barriers). Such

investigations were supported by the collection of the same information from aerial

views on Google Earth . Regarding the curvature (corresponding to the inverse

of the radius) and the longitudinal grade, data were obtained from GIS databases

thanks to the cooperation of the public agencies that manage the road networks.

Each set of measurements was subjected to the chi-squared and the Kol-

mogorov Smirnov tests [CVC88] to check if data were normally distributed. In all

cases the tests were successful. Table 5.1 also includes the minimum and the max-

imum speed values, the 85th percentile of observed speeds, and the posted speed
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limit. Fifteen sections belonging to roads SP230-VC and SP177-TO had less than

100 speed observations, which is typically the minimum number of observations

recommended in speed surveys. This was due to the very low traffic volumes that

occurred during the surveys. In these cases, the goodness of fit tests demonstrated

that in each direction the number of speed data were sufficient to form a normal

distribution. Moreover, minimum and maximum speed ranges were wide enough;

hence, reasonably, the recorded speed data were considered representative of the

speed conditions in those sections.

The posted speed limit was between 50 and 90 km/h, the maximum grade of

8.5%. Fourteen of thirty-seven sections were on curves with radii ranging between

150 and 8351.25 m. The lane width was between 3 and 3.8 m. The road characteris-

tics in Table 5.1 are representative of typical Italian two-lane rural highways, where

the V85 is frequently observed to be above the posted speed limit (in the dataset

this happens 32 times out of a total of 37 observations).

Figure 5.1: Comparison of operating speeds detected for the same vehicle from video
image analysis and laser speed gun
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Data were differentiated according to the direction of driving, since the same

road feature may produce different effects depending on the side occupied with

respect to the driving trajectory (right and closer, left and farther). Hence, all the

elements located on the roadside have been considered two times for the two driving

directions.

Table 5.2 contains the list of the thirty-four variables considered in the in-

vestigation with the raw statistics in order to understand the variability of each

parameter, and consequently the field of validity for the models. Furthermore, the

frequency, which counts the percentage of non-zero values, with which the variable is

present in the database has also been reported. The variables included in Table 5.2

are a mix of numerical continuous, numerical discrete and Boolean, and are denoted

in the table by the symbols NC, ND and B respectively. In the case of Boolean

variables, 0 indicates that the element is absent, while the value 1 indicates that the

element is present.

Some variables have been considered twice in an effort to understand if either

their presence or density affects driver behavior. All the variables characterized by

units expressed in No./km were estimated by summing the number of elements (i.e.,

ramps, driveways, intersections, and pedestrian crossings) in a section of 1 km across

each investigated cross section. Throughout the surveys, particular attention was

given to the roadside characteristics, since they are normally not taken into account

in operating speed investigations on two-lane rural roads [Tra11].

For both the right (R) and left (L) sides, the presence and width of shoulders

(SR, SL, SRW, and SLW respectively), the presence and density of ramps (RLS,
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Table 5.2: Summarized raw statistics of considered variables
Variable symbol type unit min. max. µ σ Frequency
Posted speed limit PSL ND km/h 50 90 73.0 13.610 73 100%
Posted speed limit variation ∆PSL ND km/h 0 20 0.5 3.287 2 3%
Lane width LW NC m 3.0 3.8 3.5 0.260 73 100%
Curvature 1/R NC m-1 0 6.67e-3 8.28e-4 1.61e-3 28 38%
Longitudinal grade LG NC % –8.85 8.50 -0.012 2.110 41 56%
Shoulder right SR B - 0 1 - - 69 95%
Shoulder left SL B - 0 1 - - 69 95%
Shoulder right width SRW NC m 0.0 1.5 0.9 0.437 69 95%
Shoulder left width SLW NC m 0.0 1.5 0.9 0.437 69 95%
Ramp left side RLS B - 0 1 - - 5 7%
Ramp right side RRS B - 0 1 - - 5 7%

Ramp density left side TRDLS NC km–1 0.0 2.0 0.1 0.323 5 7%

Ramp density right side TRDRS NC km–1 0.0 2.0 0.1 0.323 5 7%
Driveways left side DLS B - 0 1 - - 55 75%
Driveways right side DRS B - 0 1 - - 55 75%

Driveway density left side DDLS NC km–1 0.0 8.0 2.3 2.321 55 75%

Driveway density right side DDRS NC km–1 0.0 8.0 2.3 2.325 55 75%
Intersections left side ILS B - 0 1 - - 39 53%
Intersections right side IRS B - 0 1 - - 39 53%

Intersection density left side IDLS NC km–1 0.0 5.0 1.1 1.362 39 53%

Intersection density right side IDRS NC km–1 0.0 5.0 1.1 1.362 39 53%
Stopping places Lay-by left side SPLS B - 0 1 - - 25 34%
Stopping places Lay-byright side SPRS B - 0 1 - - 27 37%
Sidewalk left side SLS B - 0 1 - - 13 18%
Sidewalk right side SRS B - 0 1 - - 13 18%
Pedestrian crossing Ped B - 0 1 - - 12 16%

Pedestrian crossing density PedD NC km–1 0.0 4.0 0.3 0.845 12 16%
Parking lanes left side PKLLS B - 0 1 - - 1 1%
Parking lanes right side PKLRS B - 0 1 - - 1 1%
Safety barrier left side SBLS B - 0 1 - - 19 26%
Safety barrier right side SBRS B - 0 1 - - 20 27%
(Retaining) Wall left side WLS B - 0 1 - - 1 1%
(Retaining) Wall right side WRS B - 0 1 - - 1 1%

RRS, TRDLS, and TRDRS), the presence and the density of driveways (DLS, DRS,

DDLS, and DDRS), the presence of lay-bys (LBR-SR and LBL-SL), sidewalks (SLS

and SRS), parking lanes (PKLLS and PKLRS), safety barriers (SBLS and SBRS),

and retaining walls (WLS and WRS) were carefully noted, as well as, the presence

and density of pedestrian crossings (Ped and PedD).

5.4 Modeling approach

In order to evaluate the operating speed, we adopted the model structure

proposed by Figueroa and Tarko [MFT05]. This model structure separates the

estimate of the central tendency of speeds from the typical deviations of individual

speeds, which is a function of the driving skills and decisions of individual drivers.

In the speed dataset each speed data is a speed percentile (p) for a single direction
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(d), on a specific section (s) and on a specific road (r); thus the sample dataset

consists of data randomly extracted from sections and roads in the road network.

5.4.1 Fixed and random effect models

The data collected according to the methodology described in Section 5.3, con-

tains repeated measurements; multiple observations are in fact available for the same

road, the same section and for both directions. Random effects were included in the

model to account for the dependency between any estimation errors from individ-

ual observations. They evaluate the existence of any differences between the speed

predictions for all directions/sections/roads and the corresponding predictions for a

specific direction/section/road. They are considered normally distributed according

to the following distributions:

αr ∼ N(0,σ2
r )

αs ∼ N(0,σ2
s )

αd ∼ N(0,σ2
d)

(5.1)

The dependent variable (Vrsd,i), which represents the generic observed speed (i) at

a certain percentile (p) in a direction (d), section (s) and road (r), is then derived

from a random effect (RE) model as follows:

Vrsd,i = β0 +
∑

k

βC
k XC

rsd,k +
∑

j

βD
j (ZpXD

rsd,j) +
∑

m∈{r,s,d}
αm + εrsd,i (5.2)
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in which β0 is the general model intercept, βC and βD are calibration param-

eters for the variables affecting the estimated mean XC, and the estimated stan-

dard deviation XD respectively. Zp is the standardized normal variable. The sum∑
m∈{r,s,d} αm is the cumulation of the random effects. εrsd,i is the error associated

with each measurement; this is the same ”regular” error terms than in regular re-

gressions. In equation 5.2, the second term represents the central tendency term,

while the third represents the dispersion term. If random effects from equation 5.2

are assumed to be constants to be estimated (instead of being normally distributed),

the model becomes a fixed effect (FE) model. It is customary to use Greek letters

for random effects and Latin letters for fixed effects.

5.4.2 Variable selection

The Information Criterion (BIC) postulated by Schwarz [Sch78] was used to

select the variables that significantly affect driver speed behavior from all the pos-

sible covariates. The model with the lowest BIC function value fBIC, calculated

according to formula 5.3, would be preferred:

fBIC = –2L̂L + k ln(n) (5.3)

In this equation, L̂L is the maximized value of the log-Likelihood function,

n the number of observations, and k is the number of parameters included in the

model. According to the structure of equation 5.2, the number of parameters k is

equal to the sum of the size of coefficients β0, βC and βD. Only the variables that
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contributed to the minimization of the BIC function were selected and included in

the model.

5.5 Model calibration

A total of three models have been calibrated. Model #1 is a fixed effect (FE)

model, in which a simple multiple regression analysis was performed by including

all the variables selected according to the BIC criterion. Model #2 is a FE model

that was calibrated with the variables selected by the random effects (RE) model

and, finally, model #3 is an RE model, which was also calibrated using variables

selected according to the BIC criterion.

Analyses have been carried out through the use of the R-software version

3.0.2, in particular using the REML algorithm running the lme4 package [R C15]

[BMBW15]. The synthesis of results from model calibration can be found in tables

5.3 and 5.4. From an analysis of the table, it can be observed that the BIC criterion

selects different variables when applied to FE or RE regression types. In the FE

model, both geometric characteristics and Z values are selected, while the same

method when applied to the RE model only keeps the section curvature and the

pedestrian density in addition to the Z variables.

In model #1, twenty of the thirty-three variables resulted significant with

respect to direction of the central tendency of data, while eighteen variables are

responsible for the dispersion of speed data as a function of the percentile p. It

was noted that the central tendency did not appear to be affected by the presence
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on the left side of shoulders, ramps, barriers, retaining walls and driveways, nor by

the presence of stopping places and by the intersection density along the road. The

presence on the right side of barriers and retaining wall did not prove relevant either.

The dispersion around the average speed is affected by a number of variables. It is

worth noting that the presence of stopping places and retaining walls on both sides

are excluded from the model.

In the case of models #2 and #3, the group of significant variables is the same

since it was selected using the BIC criterion for model #3, as explained before.

Table 3 shows that a drastic change of significant variables occurred, since the

central value of speed distribution is affected by the curvature and the presence

of a sidewalk on the right side (i.e., the closest sidewalk to the driving trajectory),

while the dispersion is not affected by the presence of a shoulder and stopping places

located on the left side.

Tables 5.3 and 5.4 contain the synthesis of the statistical analyses carried out

with the three models. The variables in the two tables are described in table 5.2.

The quality of the results obtained can be appreciated in the following figures,

where a comparison of observed vs. predicted speed values has been presented, with

the results for model #1 reported in figure 5.2 and those for model #2 in figure 5.6.

The results of these two models are compared with those of model #3 in figures 5.3

and 5.7 respectively. The graph in figure 5.7 compares the RE model #3 and the

FE model #1, for which the variable selection is not the same.

In figure 5.3 sets of points appear to be distributed randomly along the identity

line (y=x). However, the predicted values of the RE model are much closer to the
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Table 5.3: Model 1 and 2 - coefficients and significant variables
Variable

Model 1 Model 2
estimate s.d. p-value estimate s.d. p-value

(Intercept) 98.48 1.07 0.000 77.27 0.10 0.000
DDLS 0.71 0.05 0.000
DDRS 0.81 0.05 0.000
DRS -8.03 0.19 0.000
ILS -1.87 0.17 0.000
IRS -2.78 0.17 0.000
LG -0.25 0.03 0.000
LW -10.59 0.27 0.000
Ped -5.66 0.45 0.000
PedD -0.47 0.21 0.026 -7.12 0.14 0.000
PKLLS 6.15 0.74 0.000
PKLRS 11.71 0.68 0.000
PSL 0.22 0.01 0.000
RRS 4.45 0.67 0.000
SLS -4.32 0.26 0.000
SLW 16.74 0.52 0.000
SR 3.22 0.28 0.000
SRS -6.29 0.25 0.000
SRW -13.47 0.52 0.000
TRDRS 0.86 0.50 0.086
1/R -1151.00 38.90 0.000 -1175.00 42.80 0.000
Z · 1/R -202.20 27.21 0.000 -33.67 55.06 0.541
Z · DDRS 0.98 0.05 0.000 1.02 0.10 0.000
Z · DLS -2.52 0.16 0.000 -2.29 0.62 0.000
Z · DRS -3.20 0.20 0.000 -2.78 0.56 0.000
Z · IDRS 0.18 0.09 0.046 -0.14 0.23 0.545
Z · ILS -1.27 0.16 0.000 -1.40 0.52 0.007
Z · IRS -3.25 0.21 0.000 -2.40 0.50 0.000
Z · Ped 2.08 0.30 0.000 1.21 0.95 0.206
Z · PKLLS -3.46 0.68 0.000 -3.28 1.35 0.015
Z · PSL 0.07 0.01 0.000 0.16 0.03 0.000
Z · SBLS -2.14 0.16 0.000 -1.28 0.54 0.018
Z · SBRS -2.62 0.17 0.000 -1.41 0.53 0.008
Z · SLS -2.59 0.22 0.000 -2.91 0.57 0.000
Z · SLW 12.07 0.52 0.000 11.78 0.89 0.000
Z · SR 2.65 0.29 0.000 4.47 0.79 0.000
Z · SRS -3.32 0.22 0.000 -3.22 0.55 0.000
Z · SRW -14.66 0.52 0.000 -14.45 0.89 0.000
Z · TRDLS -4.01 1.01 0.000
Z · TRDRS -2.40 1.01 0.018
Z ·WLS -2.77 1.09 0.011
Z ·WRS -4.18 1.16 0.000
Z · DDLS 0.13 0.11 0.208
Z ·∆PSL -0.13 0.06 0.046
Z · IDLS 0.22 0.23 0.341
Z · LG 0.09 0.05 0.075
Z · LW -1.60 1.16 0.167
Z · PKLRS 1.64 1.36 0.229
Z · RLS 5.32 1.62 0.001
Z · RRS 3.58 1.58 0.024
Z · SPRS 0.39 0.45 0.383
Zlane 13.31 0.65 0.000 9.33 3.24 0.004

Residual standard error: 4.048 Residual standard error: 6.673
Degrees of freedom (df): 6528 df: 6532

Corrected multiple R2: 0.927 Corrected multiple R2: 0.8006
F-statistic: 2182 with 38 and 6828 df F-statistic: 776 with 34 and 6532 df
P(F38,6828 > 2182) < 10e – 16 P(F34,6832 > 776) < 10e – 16

line, which indicates a much better fit. A similar result can be seen in figure 5.7,

with model #2 points that are further from the equality line. This is to be expected

since the model selection for the regression is not optimal according to the BIC

criterion.

Finally, figures 5.4, 5.5, 5.8, 5.9, 5.11 and 5.12, report the residual distribu-

tions for the three models, organized by road and section. The expected results

for these box plots would be for all 13 boxes of road residuals and all 37 boxes of
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Table 5.4: Model 3 - coefficients and significant variables
Variable

Model 3
estimate s.d. p-value

Intercept 79.34 1.82 0.000
PedD -7.61 1.94 0.000
1/R -1949.00 1063.00 0.067
Z 10.99 0.69 0.000
Z · 1/R -134.10 11.69 0.000
Z · SLS -2.81 0.12 0.000
Z · SBLS -1.27 0.11 0.000
Z · IDRS -0.13 0.05 0.009
Z · DLS -2.34 0.13 0.000
Z · Ped 1.38 0.20 0.000
Z · SRS -3.14 0.12 0.000
Z · SBRS -1.44 0.11 0.000
Z · SRW -14.40 0.19 0.000
Z · SLW 11.94 0.19 0.000
Z · ILS -1.37 0.11 0.000
Z · PSL 0.15 0.01 0.000
Z · DDRS 1.00 0.02 0.000
Z · DRS -2.80 0.12 0.000
Z · IRS -2.40 0.11 0.000
Z · SR 3.99 0.17 0.000
Z · PKLLS -3.29 0.28 0.000
Z · TRDLS -4.21 0.21 0.000
Z · RLS 5.58 -0.34 0.000
Z · LW -1.83 0.24 0.000
Z ·WRS -3.38 0.24 0.000
Z · IDLS 0.22 0.05 0.000
Z · LG 0.09 0.01 0.000
Z · DDLS 0.11 0.02 0.000
Z ·∆PSL -0.11 0.01 0.000
Z ·WLS -1.99 0.23 0.000
Z · PedD 0.73 0.08 0.000
Z · PKLRS 1.63 0.29 0.000
Z · TRDRS -2.53 0.21 0.000
Z · RRS 3.74 0.33 0.000
Z · LBRS 0.40 0.09 0.000

BIC at convergence: 36,775

R2: 0.9332

Random effect Variance
Direction:Section 19.45
Section:Road 85.96
Road 0.00
Residuals 3.86

section residuals to have approximately the same height and shape, and to be cen-

tered around zero. This would indicate that errors are independent and identically

distributed for all roads and sections.

The plots 5.4 and 5.5 indicate that model 1 cannot be considered satisfactory

due to the large dispersion of the residuals. For example, road #7 has very high

residuals in absolute value terms, suggesting a high variance, section #18 has very

low negative residuals for almost all observations suggesting a strong negative effect,

and section 19 has very high residuals indicating a positive effect.

Model #2 is not satisfactory either, since the residuals for roads (figure 5.8)

are never centered around zero, while the RE model #3 fixes most of the regression
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Figure 5.2: Fitted and Observed Values for Model 1
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problems. In fact, in this last case the errors for all roads and sections are centered

around zero, hence the fitted values are not biased in any road or any section. The

variance of the residuals is much lower than in the case of model #1 and #2. This

illustrates a very interesting property of RE models: they do not simply shift the

error terms for each value of the effects, but they also allow to reduce the spread of

the residuals.

5.6 Conclusions

In this chapter fixed (FE) and random effect (RE) linear models have been

applied to predict a full range of percentile values of the operating speed along

tangents or curves of two lane rural highways. The model has been calibrated with
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Figure 5.3: Comparison of Fitted and Observed Values - Model 1 and 3

*

*
*

*

*

*
**

*

*
***

**

*

*

*

*

*****

*

**
* *

***

*

****

*
*

*

*

*

*
**

*
*

***

*** *
**

*

*

*

*

**
*

*

**
* *

*
*****

*
*

*

*

*

*

*
*

**
*

*

*

*

**

**
*

**

*
**

**

*

* *
***

**

***
*****

* ****
*

*

*

*

***
*

*

*

*

***
***

***

**
*

*

**
*

*

*
***

*
**

*
*

***

***

*

*
*

**

*

*

*

*

*

*
***

*
* *****

*

*
*

*
*

***
*

*

**
*

***
*

*
*

*

* *

*

*

*

*
****

*

***

*

*
*

*

* *

*

*

*

*

***

*

**
****

*

*

*
*

*

*

*
**

*

*
**

*

*
***

*
*

*

*

****
*

*
**

*

*
** *

*

*

***

*
***

*

*

*

***
*

*
*

*

*

**
*

*
***

*
*

*
** *

*
* **

***
**

*
**

**

**

*
*

**

*****
*

**
*

**

*
*

*
***

*
*

***
*

*

*

*
**

***
** **

****
*

*
*

*
*

*

* **
**

*
*

*
*

*

*
** **

**

*

**

*
*

*

*
*

*

**
**

*

*
*

*
*

**

* *

**

*
**

****
******

* ***
*

*
*

*

*

**
*

*

*

*

*
**

*

***

*

**
*

*
*

*
***

*

****
*

***
* ****

*
*

**

*
**

**
*

*

*
*

***** **
* *

****

*

******
*

****
*

*
**

*
***

*
*

* *

*

*

*

*
*****

*
*

**
** *
**

*******
****

*

*

*
**

***

***
*

*

*
*

*

* ***
**

**

* ***
*

***

**

*
*

*
*

**
*

*

*

*

*
**

*

*
*

*

*
*

*
*

*

**
*

*
*

**

***

*

**

*

*

**

*

*

***
**

*

*

*

*
**

*

*

**
*

*

**
***

**
*

*
*

*
*

**
*

**

*
*

* ***
*

*

*

*

*

***

*

*
*

*

*

*
*

****
***

*
*

*
**

*
*

******
*

*
*

**

*
*

**

*

*
**

*
*

* **

*

*
*

*

*** *
****

*

*

*

*

* **
*

*
*

**** ****
*

*

*

*
**

*

*
*

*

*

*

*
*

*

*
**

*

***
**

*

*

*

*
*

*
* **

**** ****

*
*

**

*

** *
**

*
**

*

**

****
*

*

*

*

*

*
*

**

**

*

*
**** **

*

**

*

*

*****
*

***
*

**

***

*

*

***
*

*
***

**
*

***
*** *

*** *
**

*

****

*

*
*

*
**

***

*
* *

**

**

*

***
**

*

*
**

*

*

**

*
**

*

**

*

**
**

*

**

*

***
*

*

*

*
*

*
*

*
***

*

*****

**

**

*
*

***
*

*****

*
**

*
*

* **

*

*

*

*
*

*
*

*

*

*

*
*

*

*

***

*
*

*
* ***

**

*

* ***

*

*
**

*

* ** **

*
**

**
**

*

**

*

*

**

*

*

*

*

*
*

****
**

*
**

**

**

**
*

**

*
***

*

*

*

*

*

* *
**

**

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*
**

*

*

**
**

****
*

*

**
***

*

**

**
*

****

*

*

*

**
*

***

*
*

**

*
*

* *

*

*

*
***

***
*

*

*

*

* *

*

*

*

* *

*
*

*

*

*
**

*

*

**
* *

*

*

*

***
*

**

*
*

*
*

*

*
*

*

**

*
*

*

*
*

***
***

*

*
*

*

*
* *

*
*** *

*
****

***
**

*

**

*****

*
*

*** **

**
*

*

**
*

*

**
*

*

*

**
**

*

**

*

*

*

**

*
**

**

*

*

*
***

*
*

*

*

*

*
*

*
*

* * *

*

*

*

*

*

**
* *****

**
*

*

**

*
*

*
*

***

*

*

****

***
*****
*

*

*

*
*

*

*

*

**

*

*

*
***

*

*
**

*
* *

*
***

*

*

*

*
*

*** **

*
*

**

**

*

*

*

**
** *

*

*
*

*

**
**

*

*
**

*
*

*

*

*

**

*

*

*

*

*

***

*

*
*

*

*
***

*****
***

*

*

**

**

*

*

*

*
*

*

*

**

*

***

***
*

*
*

*

***

**

*

*

*
**

* *** *

*

*

*

**

*
**
*

*

*

*

*

*
*** **

*

*
*

***

*

*

*

*
*

*
*

*
**

*

*****
**

* *
*

*
*

*****
*

*
*

***
*

*

*

*
*

*

**
*

*
*

*

*

* *

**

***

*

*
**

*
**

*

***
**

* *

*

*

*

*

*
*

****

**

*
*

***
*

*

*

*

*

* *

*
*

**

*
*

*
*

**

**

**

*

**
*

*

*

*
*

*
*

*

*

*

* ***

*
*

*

**

**
*

*

*
*

* **

*

*
**

**
*

*
**

*

*

*
*

*
*

*
*

*

***

*

*

*

*

*
*

**

*

*
*

*

*

*

*

*

*

*

*

**

**

**
***

*
**

*

*
*

*
*

*

**

*

**
*

**** **
*

*

*
*

* *

*

*

*

*

*
*

*

*

***

*

*
*

*
*

**

*

**

*
**

*

*
*

*

*

****
**

*

**

*

*
*

* **

*

***

*

* **

*
*

*

*
*

*
*

*

*

* *

*
*

*****
* **

*

**
* ***

****

*

*
**

*
*

**

**

*

*

**
*

*

*

*

*
*

**

*

**

*

*

**
*

*

** *
**

*

*

*

*

**

*

**
*

**
*

*
*

*

***** *
* **

*

*

***
*

*

*

*

*

* *

**

*

*
**
*

*

*

**
*

*

* *
*

*
** **

*
*

**
*****

*
*

*
*

*
**
*

*

**
*

*
*

**

*

*

*
**

*

*

***

*

*
*

*

*
*

**
**

***
*

*

*

*
**

*
*

*

*

*

*

*
* **

*
**

*
*

*

**
**

*
****

**

*

* **
*

*
*

**
*

*
*

***
*

*

****
*

*

* **

*

*

**
**

*

*

***
*

*

*

*

**

*
*

****
**

**
*

*
*

**
*

* **
*

*

**

*

*
*

* *

*

*

*
* *

**
**

**
*

*
*

*

*

*
*

*
**

*

*

*

*

* *
*

*

*

*

*

*

*

*
*

**

*

*

* * *
**

** *
*

*

*

*

*

*

*

**

**
*

*

*

***
**

*

*
**

*

*

**

*
**

*

**

*

**

*

*

*

***
*

*
*

*
*

*

*

**
* *

*
***

**

*

*

*

* *
*

*
*

*

*

*

*

*

*

*

*

******

**
*

*
*

*
*

*
*

*
*

*

***

**

*

***

*

**

**
*

*

*

**

*

***

*
*

**

*
*

*
**

*
**

*

*

*

*
*

*

**

*

*
*

*
*

*

*

*

*
*

*

*
**

*

***
**

*

*

*

*
*

*
* **

***
*

*
*

**

*

*
* *

*
**

*
** *

*

**
*

* *
*

*
*

*

*

*

*

*

**

* *

*

** *
*

**
*

* *
*

*

*
*

**

*
*

*

*

*

* **

***
*

*

*

*

*
**

*

*
***

*

***

**

*

*

*

* *

*
*

*

*

*

* *

***

*

*

*

*
**

*

**
**

*

*

*

*

*

*

*

*

*

*

* *
***

****

*

*
*

*

***
*

*

*

*
*

*

*

*
* *

***
*

*
*

*
****

*

*

***

*

*
*

*
**
**

***
*

*

*

**
*

*
*

*

*
*

**

*
**

*
*

**

*
*

*

*

*

*
*

*

*

* *

*
*

*
*

*

*

*

*

*

*

*
*

**
**

*

*

*

** **
*

*

*

**

*

*
*

*

* ***
*

*

*
**

*

****
*

*

* *
*

**
*

*

*
*

***

**

***
*

*
*

**
*

**
*

**

***
*

*

**
**

*
*

*******

*
*

*
**

**
**

***

**

*

*
*

**

**
*

****
*

*

** *
*

*

**

*

********

*
*

*
* *

*
***

*

*
*

*
*

**

*

**

**
*

**
**

**
**

*

*
*

*

*
* *

*

*

*

*

**
*

*

*
*

*

*

*

*

*
**

**

**
*

*

*

*
*

**
* *

**

*
*

*

*
**

**

*
*

*

*

**

* *

*****
*

*
**

*
**

* *

***
*

**

**

*

*

*

**

** ***

**
*****
***

*

**
*

*
*

*

*
*

**
*

*

*

***
*****

*
*

*

*

*
*

**
*

****
*

* **
**** **

**
*

**

* *

****

*

**

*

*
*

***

*

*
*

* *
*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*** *
*

* *

*

*

*

*
**

*

*

*
*

***

*

***
**
*

***
*

*

**

*

*

* *

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*
*

*
*

*
*

*
**

***

*

*

**

*

*

*
*

*

*

*

*

*

*

*

****
*

*

*

*

*

*

*

*

*
*

*

*

**

*

*
* *

*

***

*
*

*
*

*

**

*

*
***

*

*

**
*

*

*

*
*

*

*

***
*

*
*

**

*
*

**

*

*

*

***

*

*

*

*

***
****

*

*

*
*

*

*
*

*
*

*
** *

*

*

***
*

*

**

**

*

***

*

*

*

*

*

*

*
*

*
*

*
*

*

*

*

*

*

**
*

*
*

*

*
*

*
****

*

*
*

***

*
*

*

* **

**

*

* **

*
*

*

*

**

*
*

*

*
*

*
* *

*
*

*

*

*

*

*

*
*

*
*

*

*

**

*

*

*
*

*
*

**
***

**

*

*

**
*

*

*

*

***
*

*

*

***

*

*
*

*
*

*

*

**

*

*
*

*

*

*

*
*

**

*

**

*
*

*

*

*

***

*

*
*

*

*

**
* *

*

*

****
**

**

*

*

****

**
**

*
*

*

*

*

**

*

*****

*

*

*
*

*
**

*
*

**

*

*

*

*

*

**

*

***

*
*

* *

*

*

* *

*

*

*

*

*

**

*
*

*
*

*
*

**

*

*

*
**

*
**

*

*
*

*

*
*

*

*

*
**

*

*

* *
*

*

*
***

*
*

*

***
***
*

*
*

*
*

*
*

**
* **

*

* **
*

*

*
**

*

*
*

****

***

*

*

*

*
*

*
*

*
*

**

*

***

*

*
*

*
*

*

*

*

**

**
*

**

*
*

*
*

*

*

*
*

* **
* **

*

*

*
*

**

*
*

* *

*

*

*
*

*

*

*

*
**

*

*

*

*
*

*
*

**

*

*

*

*

*
****

*
*

**
*

*

*

*
**

*
**

*

*

*

*

*
*

*
*

*

* *
******

*

*****
*

*
*

*
*

**
*

*
****
*

*
**

**

***

*
*

*****
**

*********

* *
*

*
*

**
**

**

*

*
**

*
**

*

*
*

*

*

*

*

*

*

**
*

****

** ***
*

*

***
*

*

*

*

*

*

*

*

*

*

*

*
**

*

*

*

*

**

***

*

*

*

******

***********
*

*

***
******

***

****

****

*

***** **
*

**
*****

**
***

***********

*

*

*

**

************

**
***

***

****

*****

****
****

**

**

***
***

**** **
*****

***

*
*

*

****

*

*********
*

***
*

*

***

****

*

*

**

**

******** **

*

*
*

**

**

*

*

*

*

*

*

***
*

*

*

*
* **

*
**

*
***

*

*

*

**

*
*

**

*
*

*

*
***

**

*

*

**

*
***

*

*
*

*

*

***

*
**

*

*
*

*

**

*
*

**

*
*

***
*

*

*
*

**

*

*

**
*

*

*

*

***

**
*

*

*

*

*

*

*
*

*
*

*

*
*

*

*

*

*
*

**
*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
**

*

*

**

**
*

*

*

*

***
*

***

*
*

*
****

*

*

*

*
*

*

*

*

**
*

*

* **

*
* ****

*

*

*
***

**

*

*

*

*
*

*
**

*
*

*****
** * ****

*
*

***
*

* **
*

* *
*

****

*
**

**
*

*
*

**

*

*
*

*
*

*

*

*
*

* *
*

***

*

*
*

*

*

*

***

*
*

*

* *

**

*

*

* *

*

*

**

*

*
*

*

*

*

*
**

*

*
*

****

*

*

*

*

*
*

*

* *

*

***
*

*

*
*

*

*

*

**

*

*

*

*
**

*
**

*

*

*

*

*

*

*
*

*

**

**

*

*

*

*

*

*

*
*

**
*

**
* **

*

*
*

*
*

*
*

*

*

*

*

*
* *

**

*

*** ***
*

*

*

*
*

*

*

**

*

*

*

**
*

*

*

*

*

*

*

**

*
*

*

**

* *
**

**

*

**

*

*

**

*

**
* *

*

*

*

*

**

*

*

*
*

*
* *

*
*

**

*
*

**

*
**

*
*

*

*

**

*
*

***
*

*

*

*
**

** *

*
* *
*

*

*

*

*
*

*

*

*

*

*

*
*

**

**

**

*
*

*
*

*

**

*

**

*

**
*

* *

******
*

*
*

*** *

*

**

*

**
**

* * *

***
*

* *

*
*

* **

*
*

**

*

*

*
*

**

*
**

*
***

*

*

*
* * *

**

*
*

***

*

**
*

**

*

* ****

* ***
*

*

*
*

**

*

*

*
*

*

*
*

**

*

* *
*

*
**

*
**

*

*

*

*
**

*
*

*

*
*

*

**
*

*
*

*
*

*

*

*

*

* **
*

*
**

**
**

*

**

*

*

*
*

*

*

*

*
*

*

*

*

*
***

*

*

*

*

*** *

*
*

**
*** *

*

*

*

**

*

*
**

**

*

*

*

*
**
*

*

*

**

*
*

*

*

**

*

*

*

*

*
*

*

*

*

**
**

**

*

*

*

*

*
*

*

*

*

*

*

***
*

*
*

*

*
*

**
**

**

***
*

*
**

**
*

*

*

*

*

**

*

*
*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

*
*

*

*

*

*

*

*

*
**

*

**
*

*
*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*
*

*
*

*

*

**
**

*

*

*

*
*

*
*

*

*
*

**
*

**
*

**

*

*

*

*

*
*

*
*

*
**

*

**

*

*

*
*

*
**

*

**

*

*

*

*

*

*

**

**

*

*
* *

*
*

****
**

*
*

*

*

*
*

*
*

*

*

**

*

*

*

*

*
*

*

*

*

*

*

*

*

*

**
**

**
*

*

*

*

* *

*

*

*

***

*

*

*

*

* *

*

*
*

**

*

*
*

*
*

***

*

*

*

*

*

*
**

*

**

*

*

*
*

*

*

*

*

*

*

*
**

*

*

*

*

*
*

*

*

*

**

*

**
*

*

*

*

*

*

*

*

*

*

*
*

**

*

*

*
*

* *

*
*

*
*

*

*

*

**
*

*

*

**

*

*

*

*

*

*

*

*

*

**
**

*

*

*

*
*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

* * *

*
*

*
*

*

*
*

*
*

*

*

*

*

*

*
*

*

*

**

*
*

*

*
**

*

*

**

*

*

***
*

*

**

*
*

*
*

*

*

*

*

*

*

*
*

*

*

**

**
**

*

**

**

*
*

*

*

*

*

*
*

*
*

**

*

**
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

**
*

*

*

*
**

*

*
*

*

*
***

*

*

*

*

**

*

*
**

**

*

*

*

* *

*

*
*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

**
*

*
* *

*

*

*

*

*

*

****

*
*

*

**

*
*

*

*

*

*

*

**

*

*

*

*

*
*

*

*

*
**

*

*

*

*

*
*

*

*
*

*

*

*
*

*

*

*
*

*
**

**

*
**

**

*

*

*

*
*

*

* *

*

*

*
*

*

* **

* *

*

*

*
*

* *
*

*
***

*

*

*

**

*

*

*

* *
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

**
*

*

* *

*
*

*
*

*
*

*

*

*

*
*

*
*

*
*

*

*
*

*

*

*

*
*

*

*

*
**

*

**
**
**

*
*

*

*
*

*

*
*

*

*

*
*

*

**
*

*

*
*

*

*

***

*

* *

*

*
*

***
*

*

*

*

*

*
*

*

*
*

*

*

*

*
*

***
*

*
*

*

**

**

*
*

*

**

*

**

*

*
**

*

*

*

*

**

*

*

*

*

*

*

*

*

*
*

*

*

**

*

*

*

*

*

*

*
*

*

*
*

*

**

*

* **

*

*

*

*
*

*

*
*

*

*

*

**

*

**

*

*

*

*

*

**

*

***
*

*

*

*
***

*

*

*
* * *

*

**
*

* *

*

*

*
*

*
**

*

* *
*

*

*

****
*

*

*

*

*

*

*
*

**
*

*

**

**
**

*

*

*
*

**

*

*

*
*

*

*

*

*
*

**
*

*

*
*

*

*

*
**

*

*
**

**

*

*

*
**

*

***

*

**
**

*
*

**

*
*

*
*

*

*

*
*****

*
*

*

* *

*

*

*

*

*

*

*

*

**

*

*

**

*

* *
**

*

**

*

**

*

*

*

**
*

*

*
**

*
*

*

*

*
*

*
**

*

*

*

*

**

*
*

**
*

**
*

*
**

*

*
*

*
* *

**

*

*

**

*

*

*

*

*

*

*

*

*
*

*

**

*

*

*
*

*
**

*

*

*

**
*

*

*

**
*

*

**
**

*

*

* *
** ****

*
*

*

*

****
**

***
*

*

*

*

*

*

*

*

*

*

*
**

*

*

*

**

*

*

**
*

** *

**

*

***

*

**

*

*

*

**

**

*

**
**

*

*

*

*
*

*

*

**
*

*

*
*

*

*

**

*
*

*
*

*

*

*

**
*

*
*

*

*

*
*

*

*

*

*

*

**

*

*
**

**

**
*

*
*

**
*

*

*
*

*

*

*
*

*

**
**

*

*

**

***

*
*

*
*

*

*
*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

**

*
*

*
* *

**
*** ***

*
*

*
*

**
*

*

*

*

***
**

*

**

*

*
*

*
**

**
*

******
**

**
*

*
*

*

*

*

*

*

*
*

*
*

*

*

*
* *

*

*

**

*
**

*
*

*

*

*
*

*
*

*

*
*

*

*

**

*

*

**

*

*

**

*
***

*

*

*
**

*
*****

*
***

*

*

*
**

*

*
*

*

**

*

**
*

*

*
*

*

*

*
* *

*

*

*

*
**

*

*

*

*

*

*

*

*

*

*

*

*

*

** ***
*

***

*

*

*

**
*

*
****

* *

*

*

***
***

*

**
**

****

*

*

*

****

*

**
*

*

*
*

* *
*

***

*
*

**
*

*

*
*

* *

***

*

***

*
*

*

*

***

*
*

*
*

*

*

***
*

*

*

*

*

*

*

*
*

*

*
*

**
*

*
**

*
*

**

*

**

*
*

*

**
*

*
*

*

*

*

**
*

***
*

*
*

***

*
*

* **
*

*
*

**
*

**
*

*

**

*

**
*****

*
*

*

**
*

*
****

*

****
*

*

*
*

*

*

**
*

*
**

**

*

*
*

*
*

***

*

*
****

***
***

*

***
**

****

*

*

*

*

**

*

***
*

*
****
* *

**

*

***

* *****
**

***
***

*
*

*

*
*

*

****

***

****

*

*

*

*
*

*

*

**
**

*

*
*

*
** *

*
*

*
*

*

*

*
* *

*
***

* *

*

*

*

*
*

*

***
*

*
*

*

*

*

*

*
*

**

*

*
*

****
*

**

*

*
*

*
**

*
*

*

*

**

*
*

*

*
*

*
**

*

*

*

*

*

**
*

*

*

*

****
*

*
*

*
***

*
*

*

*

*
**

*

*

*

***

*
*

***
*

**
**

*

*

*

*

***
*

*

*

*

*

*
*

***

**
*

*

****

*

**

*

*

*

*

*

*

**
***

**
*

*
*

*******

*
*

*
*

*
*

*

*

*

**
**

*
* *

*

***

*

*
*

*

*****
*

*
*

*
*

**
*

*

*
*

*

*
*** *

*

*

*

**
******

*
*

*

**
****

*

**

* ***
**

*

*

**

*

*

*

*
*

*
*

*
*

*
*

*

*

*

**
*

*

*

**

**

*

*

*

*

*

*

* *
*

**

*

*

*

*

*

*

*

*

*
*

*

*

****

*

*
*

*
*

*

*

**

*

*

*

*

*

*

**

*

*

*

*

**

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*
*

*

* *
*

*
*

*
*

**

*

* **
*

*

*
*

*

*

*
*

*

*
*

*

*

*

**

**

*
*

*

*

*

*
*

*

*

*

*
*

*

*

**

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*
*

*

*

*

*

**

*

*

*

*
*

*

**

**

*

*

*

*

*

*

*

*
*

**

*

*

*

**

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*

*

***

**

*

*

*

**

*

*
*

*

*

*

*

**

*

*

*

*
*

*

*

*

*

**

**

*

*

**

*

*

*

*
**

*

*

*

*

*

*

*

*

*

*

*

*

*

50 100 150

50
10

0
15

0

predicted values

ob
se

rv
ed

 v
al

ue
s

*

*
*

*

*

*
**

*

*
***

**

*

*

*

*

*****

*

**
* *

***

*

****

*
*

*

*

*

*
**

*
*

***

*** *
**

*

*

*

*

**
*

*

**
* *

*
*****

*
*

*

*

*

*

*
*

**
*

*

*

*

**

**
*

**

*
**

**

*

* *
***

**

***
*****

* ****
*

*

*

*

***
*

*

*

*

***
***

***

**
*

*

**
*

*

*
***

*
**

*
*

***

***

*

*
*

**

*

*

*

*

*

*
***

*
* *****

*

*
*

*
*

***
*

*

**
*

***
*

*
*

*

* *

*

*

*

*
****

*

***

*

*
*

*

* *

*

*

*

*

***

*

**
****

*

*

*
*

*

*

*
**

*

*
**

*

*
***

*
*

*

*

****
*

*
**

*

*
** *

*

*

***

*
***

*

*

*

***
*

*
*

*

*

**
*

*
***

*
*

*
** *

*
* **

***
**

*
**

**

**

*
*

**

*****
*

**
*

**

*
*

*
***

*
*

***
*

*

*

*
**

***
** **

****
*

*
*

*
*

*

* **
**

*
*

*
*

*

*
** **

**

*

**

*
*

*

*
*

*

**
**

*

*
*

*
*

**

* *

**

*
**

****
******

* ***
*

*
*

*

*

**
*

*

*

*

*
**

*

***

*

**
*

*
*

*
***

*

****
*

***
* ****

*
*

**

*
**

**
*

*

*
*

***** **
* *

****

*

******
*

****
*

*
**

*
***
*

*
* *

*

*

*

*
*****

*
*

**
*****

*******
****

*

*

*
**

***

***
*

*

*
*

*

* ***
**

**

* ***
*

***

**

*
*

*
*

**
*

*

*

*

*
**

*

*
*

*

*
*

*
*

*

**
*

*
*

**

***

*

**

*

*

**

*

*

***
**

*

*

*

*
**

*

*

**
*

*

**
***

**
*

*
*

*
*

**
*

**

*
*

* ***
*

*

*

*

*

***

*

*
*

*

*

*
*

****
***

*
*

*
**

*
*

******
*

*
*

**

*
*

**

*

*
**

*
*

* **

*

*
*

*

*** *
****

*

*

*

*

* **
*

*
*

**** ****
*

*

*

*
**

*

*
*

*

*

*

*
*

*

*
**

*

***
**

*

*

*

*
*

*
* **

**** ****

*
*

**

*

** *
**

*
**

*

**

****
*

*

*

*

*

*
*

**

**

*

*
**** **

*

**

*

*

*****
*

***
*

**

***

*

*

***
*

*
***

**
*

***
****

*** *
**

*

****

*

*
*

*
**

***

*
* *

**

**

*

***
**

*

*
**

*

*

**

*
**

*

**

*

**
**

*

**

*

***
*

*

*

*
*

*
*

*
***

*

*****

**

**

*
*

***
*

*****

*
**

*
*

***

*

*

*

*
*

*
*

*

*

*

*
*

*

*

***

*
*

*
* ***

**

*

* ***

*

*
**

*

* ** **

*
**

**
**

*

**

*

*

**

*

*

*

*

*
*

****
**

*
**

**

**

**
*

**

*
***

*

*

*

*

*

* *
**

**

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*
**

*

*

**
**

****
*

*

**
***

*

**

**
*

****

*

*

*

**
*

***

*
*

**

*
*

* *

*

*

*
***

***
*

*

*

*

* *

*

*

*

* *

*
*

*

*

*
**

*

*

**
* *

*

*

*

***
*

**

*
*

*
*

*

*
*

*

**

*
*

*

*
*

***
***

*

*
*

*

*
* *

*
*** *

*
****

***
**

*

**

*****

*
*

*** **

**
*

*

**
*

*

**
*

*

*

**
**

*

**

*

*

*

**

*
**

**

*

*

*
***

*
*

*

*

*

*
*

*
*

* * *

*

*

*

*

*

**
* *****

**
*

*

**

*
*

*
*

***

*

*

****

***
*****
*

*

*

*
*

*

*

*

**

*

*

*
***

*

*
**

*
* *

*
***

*

*

*

*
*

*** **

*
*

**

**

*

*

*

**
** *

*

*
*

*

**
**

*

*
**

*
*

*

*

*

**

*

*

*

*

*

***

*

*
*

*

*
***

*****
***

*

*

**

**

*

*

*

*
*

*

*

**

*

***

***
*

*
*

*

***

**

*

*

*
**

* *** *

*

*

*

**

*
**
*

*

*

*

*

*
*** **

*

*
*

***

*

*

*

*
*

*
*

*
**

*

*****
**

* *
*

*
*

*****
*

*
*

***
*

*

*

*
*

*

**
*

*
*

*

*

* *

**

***

*

*
**

*
**

*

***
**

* *

*

*

*

*

*
*

****

**

*
*

***
*

*

*

*

*

* *

*
*

**

*
*

*
*

**

**

**

*

**
*

*

*

*
*

*
*

*

*

*

* ***

*
*

*

**

**
*

*

*
*

* **

*

*
**

**
*

*
**

*

*

*
*

*
*

*
*

*

***

*

*

*

*

*
*

**

*

*
*

*

*

*

*

*

*

*

*

**

**

**
***

*
**

*

*
*

*
*

*

**

*

**
*

**** **
*

*

*
*

* *

*

*

*

*

*
*

*

*

***

*

*
*

*
*

**

*

**

*
**

*

*
*

*

*

****
**

*

**

*

*
*

* **

*

***

*

* **

*
*

*

*
*

*
*

*

*

* *

*
*

*****
* **

*

**
* ***

****

*

*
**

*
*

**

**

*

*

**
*

*

*

*

*
*

**

*

**

*

*

**
*

*

** *
**

*

*

*

*

**

*

**
*

**
*

*
*

*

***** *
* **

*

*

***
*

*

*

*

*

* *

**

*

*
**
*

*

*

**
*

*

* *
*

*
** **

*
*

**
*****

*
*

*
*

*
**
*

*

**
*

*
*

**

*

*

*
**

*

*

***

*

*
*

*

*
*

**
**

***
*

*

*

*
**

*
*

*

*

*

*

*
* **

*
**

*
*

*

**
**

*
****

**

*

* **
*

*
*

**
*

*
*

***
*

*

****
*

*

* **

*

*

**
**

*

*

***
*

*

*

*

**

*
*

****
**

**
*

*
*

**
*

* **
*

*

**

*

*
*

* *

*

*

*
* *

**
**

**
*

*
*

*

*

*
*

*
**

*

*

*

*

* *
*

*

*

*

*

*

*

*
*

**

*

*

* * *
**

** *
*

*

*

*

*

*

*

**

**
*

*

*

***
**

*

*
**

*

*

**

*
**

*

**

*

**

*

*

*

***
*

*
*

*
*

*

*

**
* *

*
***

**

*

*

*

* *
*

*
*

*

*

*

*

*

*

*

*

******

**
*

*
*

*
*

*
*

*
*

*

***

**

*

***

*

**

**
*

*

*

**

*

***

*
*

**

*
*

*
**

*
**

*

*

*

*
*

*

**

*

*
*

*
*

*

*

*

*
*

*

*
**

*

***
**

*

*

*

*
*

*
***

***
*

*
*

**

*

*
* *

*
**

*
** *

*

**
*

* *
*

*
*

*

*

*

*

*

**

* *

*

** *
*

**
*

* *
*

*

*
*

**

*
*

*

*

*

* **

***
*

*

*

*

*
**

*

*
***

*

***

**

*

*

*

* *

*
*

*

*

*

* *

***

*

*

*

*
**

*

**
**

*

*

*

*

*

*

*

*

*

*

* *
***

****

*

*
*

*

***
*

*

*

*
*

*

*

*
* *

***
*

*
*

*
****

*

*

***

*

*
*

*
**
**

***
*

*

*

**
*

*
*

*

*
*

**

*
**

*
*

**

*
*

*

*

*

*
*

*

*

* *

*
*

*
*

*

*

*

*

*

*

*
*

**
**

*

*

*

** **
*

*

*

**

*

*
*

*

* ***
*

*

*
**

*

****
*

*

* *
*

**
*

*

*
*

***

**

***
*

*
*

**
*

**
*

**

***
*

*

**
**

*
*

*******

*
*

*
**

**
**

***

**

*

*
*

**

**
*

****
*

*

** *
*

*

**

*

********

*
*

*
* *

*
***

*

*
*

*
*

**

*

**

**
*

**
**

**
**

*

*
*

*

*
* *

*

*

*

*

**
*

*

*
*

*

*

*

*

*
**

**

**
*

*

*

*
*

**
* *

**

*
*

*

*
**

**

*
*

*

*

**

* *

*****
*

*
**

*
**

* *

***
*

**

**

*

*

*

**

** ***

**
*****
***

*

**
*

*
*

*

*
*

**
*

*

*

***
*****

*
*

*

*

*
*

**
*

****
*

* **
**** **

**
*

**

* *

****

*

**

*

*
*

***

*

*
*

* *
*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*** *
*

* *

*

*

*

*
**

*

*

*
*

***

*

***
**
*

***
*

*

**

*

*

* *

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*
*

*
*

*
*

*
**

***

*

*

**

*

*

*
*

*

*

*

*

*

*

*

****
*

*

*

*

*

*

*

*

*
*

*

*

**

*

*
* *

*

***

*
*

*
*

*

**

*

*
***

*

*

**
*

*

*

*
*

*

*

***
*

*
*

**

*
*

**

*

*

*

***

*

*

*

*

***
****

*

*

*
*

*

*
*

*
*

*
** *

*

*

***
*

*

**

**

*

***

*

*

*

*

*

*

*
*

*
*

*
*

*

*

*

*

*

**
*

*
*

*

*
*

*
****

*

*
*

***

*
*

*

* **

**

*

* **

*
*

*

*

**

*
*

*

*
*

*
* *

*
*

*

*

*

*

*

*
*

*
*

*

*

**

*

*

*
*

*
*

**
***

**

*

*

**
*

*

*

*

***
*

*

*

***

*

*
*

*
*

*

*

**

*

*
*

*

*

*

*
*

**

*

**

*
*

*

*

*

***

*

*
*

*

*

**
* *

*

*

****
**

**

*

*

****

**
**

*
*

*

*

*

**

*

*****

*

*

*
*

*
**

*
*

**

*

*

*

*

*

**

*

***

*
*

* *

*

*

* *

*

*

*

*

*

**

*
*

*
*

*
*

**

*

*

*
**

*
**

*

*
*

*

*
*

*

*

*
**

*

*

* *
*

*

*
***

*
*

*

***
***
*

*
*

*
*

*
*

**
* **

*

* **
*

*

*
**

*

*
*

****

***

*

*

*

*
*

*
*

*
*

**

*

***

*

*
*

*
*

*

*

*

**

**
*

**

*
*

*
*

*

*

*
*

* **
* **

*

*

*
*

**

*
*

* *

*

*

*
*

*

*

*

*
**

*

*

*

*
*

*
*

**

*

*

*

*

*
****

*
*

**
*

*

*

*
**

*
**

*

*

*

*

*
*

*
*

*

* *
******

*

*****
*

*
*

*
*

**
*

*
****
*

*
**

**

***

*
*

*****
**

*********

* *
*

*
*

**
**

**

*

*
**

*
**

*

*
*

*

*

*

*

*

*

**
*

****

** *** *
*

***
*

*

*

*

*

*

*

*

*

*

*

*
**

*

*

*

*

**

***

*

*

*

******

***********
*

*

***
******

***

****

****

*

***** **
*

**
*****

**
***

***********

*

*

*

**

************

**
***

***

****

*****

****
****

**

**

***
***

**** **
*****

***

*
*

*

****

*

*********
*

***
*

*

***

****

*

*

**

**

**********

*

*
*

**

**

*

*

*

*

*

*

***
*

*

*

*
* **

*
**

*
***

*

*

*

**

*
*

**

*
*

*

*
***

**

*

*

**

*
***

*

*
*

*

*

***

*
**

*

*
*

*

**

*
*

**

*
*

***
*

*

*
*

**

*

*

**
*

*

*

*

***

**
*

*

*

*

*

*

*
*

*
*

*

*
*

*

*

*

*
*

**
*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
**

*

*

**

**
*

*

*

*

***
*

***

*
*

*
****

*

*

*

*
*

*

*

*

**
*

*

* **

*
* ****

*

*

*
***

**

*

*

*

*
*

*
**

*
*

*****
** * ****

*
*

***
*

***
*

* *
*

****

*
**

**
*

*
*

**

*

*
*

*
*

*

*

*
*

* *
*

***

*

*
*

*

*

*

***

*
*

*

* *

**

*

*

* *

*

*

**

*

*
*

*

*

*

*
**

*

*
*

****

*

*

*

*

*
*

*

* *

*

***
*

*

*
*

*

*

*

**

*

*

*

*
**

*
**

*

*

*

*

*

*

*
*

*

**

**

*

*

*

*

*

*

*
*

**
*

**
* **

*

*
*

*
*

*
*

*

*

*

*

*
* *

**

*

*** ***
*

*

*

*
*

*

*

**

*

*

*

**
*

*

*

*

*

*

*

**

*
*

*

**

* *
**

**

*

**

*

*

**

*

**
* *

*

*

*

*

**

*

*

*
*

*
* *

*
*

**

*
*

**

*
**

*
*

*

*

**

*
*

***
*

*

*

*
**

** *

*
* *
*

*

*

*

*
*

*

*

*

*

*

*
*

**

**

**

*
*

*
*

*

**

*

**

*

**
*

* *

******
*

*
*

*** *

*

**

*

**
**

* * *

***
*

* *

*
*

***

*
*

**

*

*

*
*

**

*
**

*
***

*

*

*
* **

**

*
*

***

*

**
*

**

*

* ****

* ***
*

*

*
*

**

*

*

*
*

*

*
*

**

*

* *
*

*
**

*
**

*

*

*

*
**

*
*

*

*
*

*

**
*

*
*

*
*

*

*

*

*

* **
*

*
**

**
**

*

**

*

*

*
*

*

*

*

*
*

*

*

*

*
***

*

*

*

*

*** *

*
*

**
*** *

*

*

*

**

*

*
**

**

*

*

*

*
**
*

*

*

**

*
*

*

*

**

*

*

*

*

*
*

*

*

*

**
**

**

*

*

*

*

*
*

*

*

*

*

*

***
*

*
*

*

*
*

**
**

**

***
*

*
**

**
*

*

*

*

*

**

*

*
*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

*
*

*

*

*

*

*

*

*
**

*

**
*

*
*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*
*

*
*

*

*

**
**

*

*

*

*
*

*
*

*

*
*

**
*

**
*

**

*

*

*

*

*
*

*
*

*
**

*

**

*

*

*
*

*
**

*

**

*

*

*

*

*

*

**

**

*

*
* *

*
*

****
**

*
*

*

*

*
*

*
*

*

*

**

*

*

*

*

*
*

*

*

*

*

*

*

*

*

**
**

**
*

*

*

*

* *

*

*

*

***

*

*

*

*

* *

*

*
*

**

*

*
*

*
*

***

*

*

*

*

*

*
**

*

**

*

*

*
*

*

*

*

*

*

*

*
**

*

*

*

*

*
*

*

*

*

**

*

**
*

*

*

*

*

*

*

*

*

*

*
*

**

*

*

*
*

* *

*
*

*
*

*

*

*

**
*

*

*

**

*

*

*

*

*

*

*

*

*

**
**

*

*

*

*
*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

* * *

*
*

*
*

*

*
*

*
*

*

*

*

*

*

*
*

*

*

**

*
*

*

*
**

*

*

**

*

*

***
*

*

**

*
*

*
*

*

*

*

*

*

*

*
*

*

*

**

**
**

*

**

**

*
*

*

*

*

*

*
*

*
*

**

*

**
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

**
*

*

*

*
**

*

*
*

*

*
***

*

*

*

*

**

*

*
**

**

*

*

*

* *

*

*
*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

**
*

*
* *

*

*

*

*

*

*

****

*
*

*

**

*
*

*

*

*

*

*

**

*

*

*

*

*
*

*

*

*
**

*

*

*

*

*
*

*

*
*

*

*

*
*

*

*

*
*

*
**

**

*
**

**

*

*

*

*
*

*

* *

*

*

*
*

*

* **

* *

*

*

*
*

* *
*

*
***

*

*

*

**

*

*

*

* *
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

**
*

*

* *

*
*

*
*

*
*

*

*

*

*
*

*
*

*
*

*

*
*

*

*

*

*
*

*

*

*
**

*

**
**
**

*
*

*

*
*

*

*
*

*

*

*
*

*

**
*

*

*
*

*

*

***

*

* *

*

*
*

***
*

*

*

*

*

*
*

*

*
*

*

*

*

*
*

***
*

*
*

*

**

**

*
*

*

**

*

**

*

*
**

*

*

*

*

**

*

*

*

*

*

*

*

*

*
*

*

*

**

*

*

*

*

*

*

*
*

*

*
*

*

**

*

* **

*

*

*

*
*

*

*
*

*

*

*

**

*

**

*

*

*

*

*

**

*

***
*

*

*

*
***

*

*

*
* * *

*

**
*

* *

*

*

*
*

*
**

*

* *
*

*

*

** **
*

*

*

*

*

*

*
*

**
*

*

**

**
**

*

*

*
*

**

*

*

*
*

*

*

*

*
*

**
*

*

*
*

*

*

*
**

*

*
**

**

*

*

*
**

*

***

*

**
**

*
*

**

*
*

*
*

*

*

*
*****

*
*

*

* *

*

*

*

*

*

*

*

*

**

*

*

**

*

* *
**

*

**

*

**

*

*

*

**
*

*

*
**

*
*

*

*

*
*

*
**

*

*

*

*

**

*
*

**
*

**
*

*
**

*

*
*

*
* *

**

*

*

**

*

*

*

*

*

*

*

*

*
*

*

**

*

*

*
*

*
**

*

*

*

**
*

*

*

**
*

*

**
**

*

*

* *
** ****

*
*

*

*

****
**

***
*

*

*

*

*

*

*

*

*

*

*
**

*

*

*

**

*

*

**
*

** *

**

*

***

*

**

*

*

*

**

**

*

**
**

*

*

*

*
*

*

*

**
*

*

*
*

*

*

**

*
*

*
*

*

*

*

**
*

*
*

*

*

*
*

*

*

*

*

*

**

*

*
**

**

**
*

*
*

**
*

*

*
*

*

*

*
*

*

**
**

*

*

**

***

*
*

*
*

*

*
*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

**

*
*

*
* *

**
*** ***

*
*

*
*

**
*

*

*

*

***
**

*

**

*

*
*

*
**

**
*

******
**

**
*

*
*

*

*

*

*

*

*
*

*
*

*

*

*
* *

*

*

**

*
**

*
*

*

*

*
*

*
*

*

*
*

*

*

**

*

*

**

*

*

**

*
***

*

*

*
**

*
*****

*
***

*

*

*
**

*

*
*

*

**

*

**
*

*

*
*

*

*

*
* *

*

*

*

*
**

*

*

*

*

*

*

*

*

*

*

*

*

*

** ***
*

***

*

*

*

**
*

*
****

**

*

*

***
***

*

**
**

****

*

*

*

****

*

**
*

*

*
*

* *
*

***

*
*

**
*

*

*
*

* *

***

*

***

*
*

*

*

***

*
*

*
*

*

*

***
*

*

*

*

*

*

*

*
*

*

*
*

**
*

*
**

*
*

**

*

**

*
*

*

**
*

*
*

*

*

*

**
*

***
*

*
*

***

*
*

* **
*

*
*

**
*

**
*

*

**

*

**
*****

*
*

*

**
*

*
****

*

****
*

*

*
*

*

*

**
*

*
**

**

*

*
*

*
*

***

*

*
****

***
***

*

***
**

****

*

*

*

*

**

*

***
*

*
****
* *

**

*

***

* *****
**

***
***

*
*

*

*
*

*

****

***

****

*

*

*

*
*

*

*

**
**

*

*
*

*
** *

*
*

*
*

*

*

*
* *

*
***

* *

*

*

*

*
*

*

***
*

*
*

*

*

*

*

*
*

**

*

*
*

****
*

**

*

*
*

*
**

*
*

*

*

**

*
*

*

*
*

*
**

*

*

*

*

*

**
*

*

*

*

****
*

*
*

*
***

*
*

*

*

*
**

*

*

*

***

*
*

***
*

**
**

*

*

*

*

***
*

*

*

*

*

*
*

***

**
*

*

****

*

**

*

*

*

*

*

*

**
***

**
*

*
*

*******

*
*

*
*

*
*

*

*

*

**
**

*
* *

*

***

*

*
*

*

*****
*

*
*

*
*

**
*

*

*
*

*

*
*** *

*

*

*

**
******

*
*

*

**
****

*

**

* ***
**

*

*

**

*

*

*

*
*

*
*

*
*

*
*

*

*

*

**
*

*

*

**

**

*

*

*

*

*

*

* *
*

**

*

*

*

*

*

*

*

*

*
*

*

*

****

*

*
*

*
*

*

*

**

*

*

*

*

*

*

**

*

*

*

*

**

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*
*

*

* *
*

*
*

*
*

**

*

* **
*

*

*
*

*

*

*
*

*

*
*

*

*

*

**

**

*
*

*

*

*

*
*

*

*

*

*
*

*

*

**

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*
*

*

*

*

*

**

*

*

*

*
*

*

**

**

*

*

*

*

*

*

*

*
*

**

*

*

*

**

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*

*

***

**

*

*

*

**

*

*
*

*

*

*

*

**

*

*

*

*
*

*

*

*

*

**

**

*

*

**

*

*

*

*
**

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

random effect
regression

data collected from surveys of isolated vehicles on a number of road sections in

the Northwest of Italy. A total of 6,567 observations have been collected from 37

sections randomly selected from 13 roads. In total, 33 geometric and environmental

variables have been taken into account for model estimation. The structure of the

model separates the central tendency from the dispersion of speed data allowing the

estimation of not only the 85th percentile (which is usually regarded as a reference

measure for operating speeds) but also the evaluation of any percentile through the

standardized normal variable Zp.

The comparison across fixed effect and random effect models containing vari-

ables selected according to the BIC criterion demonstrates that the latter perform

better from a statistical point of view. The free-flow speed data collected in this
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Figure 5.4: Residuals for Model 1, by Road
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study violate the assumptions of ordinary least squares regression which produces

biased estimates and large dispersion of the residuals. The RE model, which cor-

rectly accounts for the sampling design, produces a very low level of errors and it

does not suffer from the presence of outliers.

The RE model results (Model #3) highlights once again [Tra11] the effects

of the curvature on the central tendency of speed distribution. The density of

pedestrian crossing is the only other variable that significantly affects the mean value

of free-flow speeds. According to the same model several cross-sectional elements

located in the roads margins contribute to the dispersion of speed data around the

central value. Each element affects driver behavior in a small measure, but when all

these effects are taken into account the differences between drivers behavior become
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Figure 5.5: Residuals for Model 1, by Section
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significant. When analyzing the single REs it is possible to conclude that road

effects are negligible, that most of the errors are associated with a road section and

for a lesser extent to the direction effect, and that the residuals have low standard

deviation.

The results obtained also clearly demonstrate that speed predictions are less

variable and more transferable if they are obtained from random effect models than

from fixed effect models.

Future investigation might be aimed at the validation of the model presented

here with speed data relative to different driving environments and collected with

different measurement technologies.

117



Figure 5.6: Fitted and Observed Values for Model 2
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Figure 5.7: Comparison of Fitted and Observed Values - Model 2 and 3

*

*
*

*

*

*
**

*

*
***

**

*

*

*

*

*****

*

**
* *

***

*

****

*
*

*

*

*

*
**

*
*

***

*** *
**

*

*

*

*

**
*

*

**
* *

*
*****

*
*

*

*

*

*

*
*

**
*

*

*

*

**

**
*

**

*
**

**

*

* *
***

**

***
*****

* ****
*

*

*

*

***
*

*

*

*

***
***

***

**
*

*

**
*

*

*
***

*
**

*
*

***

***

*

*
*

**

*

*

*

*

*

*
***

*
* *****

*

*
*

*
*

***
*

*

**
*

****

*
*

*

* *

*

*

*

*
****

*

***

*

*
*

*

* *

*

*

*

*

***

*

**
****

*

*

*
*

*

*

*
**

*

*
**

*

*
***

*
*

*

*

****
*

*
**

*

*
** *

*

*

***

*
***

*

*

*

***
*

*
*

*

*

**
*

*
***

*
*

*
** *

*
* **

***
**

*
**

**

**

*
*

**

*****
*

**
*

**

*
*

*
***

*
*

***
*

*

*

*
**

***
** **

*****

*
*

*
*

*

* **
**

*
*

*
*

*

*
** **

**

*

**

*
*

*

*
*

*

**
**

*

*
*

*
*

**

* *

**

*
**

****
******

* ***
*

*
*

*

*

**
*

*

*

*

*
**

*

***

*

**
*

*
*

*
***

*

****
*

***
* ****

*
*

**

*
**

**
*

*

*
*

***** **
* *

****

*

******
*

****
*

*
**

*
***
*

*
* *

*

*

*

*
*****

*
*

**
*****

*******
****

*

*

*
**

***

***
*

*

*
*

*

* ***
**

**

* ***
*

***

**

*
*

*
*

**
*

*

*

*

*
**

*

*
*

*

*
*

*
*

*

**
*

*
*

**

***

*

**

*

*

**

*

*

***
**

*

*

*

*
**

*

*

**
*

*

**
***

**
*

*
*

*
*

**
*

**

*
*

* ***
*

*

*

*

*

***

*

*
*

*

*

*
*

****
***

*
*

*
**

*
*

******
*

*
*

**

*
*

**

*

*
**

*
*

* **

*

*
*

*

*** *
****

*

*

*

*

* **
*

*
*

**** ****
*

*

*

*
**

*

*
*

*

*

*

*
*

*

*
**

*

***
**

*

*

*

*
*

*
* **

**** ****

*
*

**

*

** *
**

*
**

*

**

****
*

*

*

*

*

*
*

**

**

*

*
**** **

*

**

*

*

*****
*

***
*

**

***

*

*

***
*

*
***

**
*

***
****

*** *
**

*

****

*

*
*

*
**

***

*
* *

**

**

*

***
**

*

*
**

*

*

**

*
**

*

**

*

**
**

*

**

*

***
*

*

*

*
*

*
*

*
***

*

*****

**

**

*
*

***
*

*****

*
**

*
*

***

*

*

*

*
*

*
*

*

*

*

*
*

*

*

***

*
*

*
* ***

**

*

* ***

*

*
**

*

* ** **

*
**

**
**

*

**

*

*

**

*

*

*

*

*
*

****
**

*
**

**

**

**
*

**

*
***

*

*

*

*

*

* *
**

**

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*
**

*

*

**
**

****
*

*

**
***

*

**

**
*

****

*

*

*

**
*

***

*
*

**

*
*

* *

*

*

*
***

***
*

*

*

*

* *

*

*

*

* *

*
*

*

*

*
**

*

*

**
* *

*

*

*

***
*

**

*
*

*
*

*

*
*

*

**

*
*

*

*
*

***
***

*

*
*

*

*
* *

*
*** *

*
****

***
**

*

**

*****

*
*

*** **

**
*

*

**
*

*

**
*

*

*

**
**

*

**

*

*

*

**

*
**

**

*

*

*
***

*
*

*

*

*

*
*

*
*

* * *

*

*

*

*

*

**
* *****

**
*

*

**

*
*

*
*

***

*

*

****

***
*****
*

*

*

*
*

*

*

*

**

*

*

*
***

*

*
**

*
* *

*
***

*

*

*

*
*

*** **

*
*

**

**

*

*

*

**
** *

*

*
*

*

**
**

*

*
**

*
*

*

*

*

**

*

*

*

*

*

***

*

*
*

*

*
***

*****
***

*

*

**

**

*

*

*

*
*

*

*

**

*

***

***
*

*
*

*

***

**

*

*

*
**

* *** *

*

*

*

**

*
**
*

*

*

*

*

*
*** **

*

*
*

***

*

*

*

*
*

*
*

*
**

*

*****
**

* *
*

*
*

*****
*

*
*

***
*

*

*

*
*

*

**
*

*
*

*

*

* *

**

***

*

*
**

*
**

*

***
**

* *

*

*

*

*

*
*

****

**

*
*

***
*

*

*

*

*

* *

*
*

**

*
*

*
*

**

**

**

*

**
*

*

*

*
*

*
*

*

*

*

* ***

*
*

*

**

**
*

*

*
*

* **

*

*
**

**
*

*
**

*

*

*
*

*
*

*
*

*

***

*

*

*

*

*
*

**

*

*
*

*

*

*

*

*

*

*

*

**

**

**
***

*
**

*

*
*

*
*

*

**

*

**
*

**** **
*

*

*
*

* *

*

*

*

*

*
*

*

*

***

*

*
*

*
*

**

*

**

*
**

*

*
*

*

*

****
**

*

**

*

*
*

* **

*

***

*

* **

*
*

*

*
*

*
*

*

*

* *

*
*

*****
* **

*

**
* ***

****

*

*
**

*
*

**

**

*

*

**
*

*

*

*

*
*

**

*

**

*

*

**
*

*

** *
**

*

*

*

*

**

*

**
*

**
*

*
*

*

***** *
* **

*

*

***
*

*

*

*

*

* *

**

*

*
**
*

*

*

**
*

*

* *
*

*
** **

*
*

**
*****

*
*

*
*

*
**
*

*

**
*

*
*

**

*

*

*
**

*

*

***

*

*
*

*

*
*

**
**

***
*

*

*

*
**

*
*

*

*

*

*

*
* **

*
**

*
*

*

**
**

*
****

**

*

* **
*

*
*

**
*

*
*

***
*

*

****
*

*

* **

*

*

**
**

*

*

***
*

*

*

*

**

*
*

****
**

**
*

*
*

**
*

* **
*

*

**

*

*
*

* *

*

*

*
* *

**
**

**
*

*
*

*

*

*
*

*
**

*

*

*

*

* *
*

*

*

*

*

*

*

*
*

**

*

*

* * *
**

** *
*

*

*

*

*

*

*

**

**
*

*

*

***
**

*

*
**

*

*

**

*
**

*

**

*

**

*

*

*

***
*

*
*

*
*

*

*

**
* *

*
***

**

*

*

*

* *
*

*
*

*

*

*

*

*

*

*

*

******

**
*

*
*

*
*

*
*

*
*

*

***

**

*

***

*

**

**
*

*

*

**

*

***

*
*

**

*
*

*
**

*
**

*

*

*

*
*

*

**

*

*
*

*
*

*

*

*

*
*

*

*
**

*

***
**

*

*

*

*
*

*
***

***
*

*
*

**

*

*
* *

*
**

*
** *

*

**
*

* *
*

*
*

*

*

*

*

*

**

* *

*

** *
*

**
*

* *
*

*

*
*

**

*
*

*

*

*

* **

***
*

*

*

*

*
**

*

*
***

*

***

**

*

*

*

* *

*
*

*

*

*

* *

***

*

*

*

*
**

*

**
**

*

*

*

*

*

*

*

*

*

*

* *
***

****

*

*
*

*

***
*

*

*

*
*

*

*

*
* *

***
*

*
*

*
****

*

*

***

*

*
*

*
**
**

***
*

*

*

**
*

*
*

*

*
*

**

*
**

*
*

**

*
*

*

*

*

*
*

*

*

* *

*
*

*
*

*

*

*

*

*

*

*
*

**
**

*

*

*

** **
*

*

*

**

*

*
*

*

* ***
*

*

*
**

*

****
*

*

* *
*

**
*

*

*
*

***

**

***
*

*
*

**
*

**
*

**

***
*

*

**
**

*
*

*******

*
*

*
**

**
**

***

**

*

*
*

**

**
*

****
*

*

** *
*

*

**

*

********

*
*

*
* *

*
***

*

*
*

*
*

**

*

**

**
*

**
**

**
**

*

*
*

*

*
* *

*

*

*

*

**
*

*

*
*

*

*

*

*

*
**

**

**
*

*

*

*
*

**
* *

**

*
*

*

*
**

**

*
*

*

*

**

* *

*****
*

*
**

*
**

* *

***
*

**

**

*

*

*

**

** ***

**
*****
***

*

**
*

*
*

*

*
*

**
*

*

*

***
*****

*
*

*

*

*
*

**
*

****
*

* **
**** **

**
*

**

* *

****

*

**

*

*
*

***

*

*
*

* *
*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*** *
*

* *

*

*

*

*
**

*

*

*
*

***

*

***
**
*

***
*

*

**

*

*

* *

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*
*

*
*

*
*

*
**

***

*

*

**

*

*

*
*

*

*

*

*

*

*

*

****
*

*

*

*

*

*

*

*

*
*

*

*

**

*

*
* *

*

***

*
*

*
*

*

**

*

*
***

*

*

**
*

*

*

*
*

*

*

***
*

*
*

**

*
*

**

*

*

*

***

*

*

*

*

***
****

*

*

*
*

*

*
*

*
*

*
** *

*

*

***
*

*

**

**

*

***

*

*

*

*

*

*

*
*

*
*

*
*

*

*

*

*

*

**
*

*
*

*

*
*

*
****

*

*
*

***

*
*

*

* **

**

*

* **

*
*

*

*

**

*
*

*

*
*

*
* *

*
*

*

*

*

*

*

*
*

*
*

*

*

**

*

*

*
*

*
*

**
***

**

*

*

**
*

*

*

*

***
*

*

*

***

*

*
*

*
*

*

*

**

*

*
*

*

*

*

*
*

**

*

**

*
*

*

*

*

***

*

*
*

*

*

**
* *

*

*

****
**

**

*

*

****

**
**

*
*

*

*

*

**

*

*****

*

*

*
*

*
**

*
*

**

*

*

*

*

*

**

*

***

*
*

* *

*

*

* *

*

*

*

*

*

**

*
*

*
*

*
*

**

*

*

*
**

*
**

*

*
*

*

*
*

*

*

*
**

*

*

* *
*

*

*
***

*
*

*

***
***
*

*
*

*
*

*
*

**
* **

*

* **
*

*

*
**

*

*
*

****

***

*

*

*

*
*

*
*

*
*

**

*

***

*

*
*

*
*

*

*

*

**

**
*

**

*
*

*
*

*

*

*
*

* **
* **

*

*

*
*

**

*
*

* *

*

*

*
*

*

*

*

*
**

*

*

*

*
*

*
*

**

*

*

*

*

*
****

*
*

**
*

*

*

*
**

*
**

*

*

*

*

*
*

*
*

*

* *
******

*

*****
*

*
*

*
*

**
*

*
****
*

*
**

**

***

*
*

*****
**

*********

* *
*

*
*

**
**

**

*

*
**

*
**

*

*
*

*

*

*

*

*

*

**
*

****

** ***
*

*

***
*

*

*

*

*

*

*

*

*

*

*

*
**

*

*

*

*

**

***

*

*

*

******

***********
*

*

***
******

***

****

****

*

***** **
*

**
*****

**
***

***********

*

*

*

**

************

**
***

***

****

*****

****
****

**

**

***
***

**** **
*****

***

*
*

*

****

*

*********
*

* **
*

*

***

****

*

*

**

**

**********

*

*
*

**

**

*

*

*

*

*

*

***
*

*

*

*
* **

*
**

*
***

*

*

*

**

*
*

**

*
*

*

*
***

**

*

*

**

*
***

*

*
*

*

*

***

*
**

*

*
*

*

**

*
*

**

*
*

***
*

*

*
*

**

*

*

**
*

*

*

*

***

**
*

*

*

*

*

*

*
*

*
*

*

*
*

*

*

*

*
*

**
*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
**

*

*

**

**
*

*

*

*

***
*

***

*
*

*
****

*

*

*

*
*

*

*

*

**
*

*

* **

*
* ****

*

*

*
***

**

*

*

*

*
*

*
**

*
*

*****
** * ****

*
*

***
*

**
*

*

* *
*

****

*
**

**
*

*
*

**

*

*
*

*
*

*

*

*
*

* *
*

***

*

*
*

*

*

*

***

*
*

*

* *

**

*

*

* *

*

*

**

*

*
*

*

*

*

*
**

*

*
*

****

*

*

*

*

*
*

*

* *

*

***
*

*

*
*

*

*

*

**

*

*

*

*
**

*
**

*

*

*

*

*

*

*
*

*

**

**

*

*

*

*

*

*

*
*

**
*

**
* **

*

*
*

*
*

*
*

*

*

*

*

*
* *

**

*

*** ***
*

*

*

*
*

*

*

**

*

*

*

**
*

*

*

*

*

*

*

**

*
*

*

**

* *
**

**

*

**

*

*

**

*

**
* *

*

*

*

*

**

*

*

*
*

*
* *

*
*

**

*
*

**

*
**

*
*

*

*

**

*
*

***
*

*

*

*
**

** *

*
* *
*

*

*

*

*
*

*

*

*

*

*

*
*

**

**

**

*
*

*
*

*

**

*

**

*

**
*

* *

******
*

*
*

*** *

*

**

*

**
**

* * *

***
*

* *

*
*

**
*

*
*

* *

*

*

*
*

**

*
**

*
***

*

*

*
* **

**

*
*

* **

*

**
*

**

*

* ****

* ***
*

*

*
*

**

*

*

*
*

*

*
*

**

*

* *
*

*
**

*
**

*

*

*

*
**

*
*

*

*
*

*

**
*

*
*

*
*

*

*

*

*

* **
*

*
**

**
**

*

**

*

*

*
*

*

*

*

*
*

*

*

*

*
***

*

*

*

*

*** *

*
*

**
*** *

*

*

*

**

*

*
**

**

*

*

*

*
**
*

*

*

**

*
*

*

*

**

*

*

*

*

*
*

*

*

*

**
**

**

*

*

*

*

*
*

*

*

*

*

*

***
*

*
*

*

*
*

**
**

**

***
*

*
**

**
*

*

*

*

*

**

*

*
*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

*
*

*

*

*

*

*

*

*
**

*

**
*

*
*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*
*

*
*

*

*

**
**

*

*

*

*
*

*
*

*

*
*

**
*

**
*

**

*

*

*

*

*
*

*
*

*
**

*

**

*

*

*
*

*
**

*

**

*

*

*

*

*

*

**

**

*

*
* *

*
*

****
**

*
*

*

*

*
*

*
*

*

*

**

*

*

*

*

*
*

*

*

*

*

*

*

*

*

**
**

**
*

*

*

*

* *

*

*

*

***

*

*

*

*

**

*

*
*

**

*

*
*

*
*

***

*

*

*

*

*

*
**

*

**

*

*

*
*

*

*

*

*

*

*

*
**

*

*

*

*

*
*

*

*

*

**

*

**
*

*

*

*

*

*

*

*

*

*

*
*

**

*

*

*
*

* *

*
*

*
*

*

*

*

**
*

*

*

**

*

*

*

*

*

*

*

*

*

**
**

*

*

*

*
*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

* * *

*
*

*
*

*

*
*

*
*

*

*

*

*

*

*
*

*

*

**

*
*

*

*
**

*

*

**

*

*

***
*

*

**

*
*

*
*

*

*

*

*

*

*

*
*

*

*

**

**
**

*

**

**

*
*

*

*

*

*

*
*

*
*

**

*

**
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

**
*

*

*

*
**

*

*
*

*

*
***

*

*

*

*

**

*

*
**

**

*

*

*

* *

*

*
*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

**
*

*
* *

*

*

*

*

*

*

****

*
*

*

**

*
*

*

*

*

*

*

**

*

*

*

*

*
*

*

*

*
**

*

*

*

*

*
*

*

*
*

*

*

*
*

*

*

*
*

*
**

**

*
**

**

*

*

*

*
*

*

* *

*

*

*
*

*

* **

* *

*

*

*
*

* *
*

*
***

*

*

*

**

*

*

*

* *
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

**
*

*

**

*
*

*
*

*
*

*

*

*

*
*

*
*

*
*

*

*
*

*

*

*

*
*

*

*

*
**

*

**
**
**

*
*

*

*
*

*

*
*

*

*

*
*

*

**
*

*

*
*

*

*

***

*

* *

*

*
*

***
*

*

*

*

*

*
*

*

*
*

*

*

*

*
*

***
*

*
*

*

**

**

*
*

*

**

*

**

*

*
**

*

*

*

*

**

*

*

*

*

*

*

*

*

*
*

*

*

**

*

*

*

*

*

*

*
*

*

*
*

*

**

*

***

*

*

*

*
*

*

*
*

*

*

*

**

*

**

*

*

*

*

*

**

*

***
*

*

*

*
***

*

*

*
***

*

**
*

**

*

*

*
*

*
**

*

* *
*

*

*

****
*

*

*

*

*

*

*
*

**
*

*

**

**
**

*

*

*
*

**

*

*

*
*

*

*

*

*
*

**
*

*

*
*

*

*

*
**

*

*
****

*

*

*
**

*

***

*

**
**

*
*

**

*
*

*
*

*

*

*
****
*

*
*

*

* *

*

*

*

*

*

*

*

*

**

*

*

**

*

* *
**

*

**

*

**

*

*

*

**
*

*

*
**

*
*

*

*

*
*

*
**

*

*

*

*

**

*
*

**
*
**

*

*
**

*

*
*

*
* *

**

*

*

**

*

*

*

*

*

*

*

*

*
*

*

**

*

*

*
*

*
**

*

*

*

**
*

*

*

**
*

*

**
**

*

*

* *
**

****
*

*

*

*

****
**

***
*

*

*

*

*

*

*

*

*

*

*
**

*

*

*

**

*

*

**
*

** *

**

*

***

*

**

*

*

*

**

**

*

**
**

*

*

*

*
*

*

*

**
*

*

*
*

*

*

**

*
*

*
*

*

*

*

**
*

*
*

*

*

*
*

*

*

*

*

*

**

*

*
**

**

**
*

*
*

**
*

*

*
*

*

*

*
*

*

**
**

*

*

**

***

*
*

*
*

*

*
*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

**

*
*

*
* *

**
*** ***

*
*

*
*

**
*

*

*

*

***
**

*

**

*

*
*

*
**

**
*

******
**

**
*

*
*

*

*

*

*

*

*
*

*
*

*

*

*
* *

*

*

**

*
**

*
*

*

*

*
*

*
*

*

*
*

*

*

**

*

*

**

*

*

**

*
***

*

*

*
**

*
*****

*
** *

*

*

*
**

*

*
*

*

**

*

**
*

*

*
*

*

*

*
* *

*

*

*

*
**

*

*

*

*

*

*

*

*

*

*

*

*

*

*****
*

***

*

*

*

**
*

*
****

**

*

*

***
***

*

**
**

****

*

*

*

****

*

**
*

*

*
*

* *
*

***

*
*

**
*

*

*
*

* *

***

*

***

*
*

*

*

**
*

*
*

*
*

*

*

***
*

*

*

*

*

*

*

*
*

*

*
*

**
*

*
**

*
*

**

*

**

*
*

*

**
*

*
*

*

*

*

**
*

***
*

*
*

***

*
*

* **
*

*
*

**
*

**
*

*

**

*

**
*****

*
*

*

**
*

*
****

*

****
*

*

*
*

*

*

**
*

*
**

**

*

*
*

*
*

***

*

*
****

***
***

*

***
**

****

*

*

*

*

**

*

***
*

*
****
* *

**

*

***

* *****
**

***
***

*
*

*

*
*

*

****

***

****

*

*

*

*
*

*

*

**
**

*

*
*

*
** *

*
*

*
*

*

*

*
**

*
***

* *

*

*

*

*
*

*

***
*

*
*

*

*

*

*

*
*

**

*

*
*

****
*

**

*

*
*

*
**

*
*

*

*

**

*
*

*

*
*

*
**

*

*

*

*

*

**
*

*

*

*

****
*

*
*

*
***

*
*

*

*

*
**

*

*

*

***

*
*

***
*

**
**

*

*

*

*

***
*

*

*

*

*

*
*

***

**
*

*

****

*

**

*

*

*

*

*

*

**
***

**
*

*
*

*******

*
*

*
*

*
*

*

*

*

**
**

*
* *

*

***

*

*
*

*

*****
*

*
*

*
*

**
*

*

*
*

*

*
*** *

*

*

*

**
******

*
*

*

**
****

*

**

* ***
**

*

*

**

*

*

*

*
*

*
*

*
*

*
*

*

*

*

**
*

*

*

**

**

*

*

*

*

*

*

**
*

**

*

*

*

*

*

*

*

*

*
*

*

*

****

*

*
*

*
*

*

*

**

*

*

*

*

*

*

**

*

*

*

*

**

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*
*

*

* *
*

*
*

*
*

**

*

* **
*

*

*
*

*

*

*
*

*

*
*

*

*

*

**

**

*
*

*

*

*

*
*

*

*

*

*
*

*

*

**

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*
*

*

*

*

*

**

*

*

*

*
*

*

**

**

*

*

*

*

*

*

*

*
*

**

*

*

*

**

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*

*

***

**

*

*

*

**

*

*
*

*

*

*

*

**

*

*

*

*
*

*

*

*

*

**

**

*

*

**

*

*

*

*
**

*

*

*

*

*

*

*

*

*

*

*

*

*

50 100 150

50
10

0
15

0

predicted values

ob
se

rv
ed

 v
al

ue
s

*

*
*

*

*

*
**

*

*
***

**

*

*

*

*

*****

*

**
* *

***

*

****

*
*

*

*

*

*
**

*
*

***

*** *
**

*

*

*

*

**
*

*

**
* *

*
*****

*
*

*

*

*

*

*
*

**
*

*

*

*

**

**
*

**

*
**

**

*

* *
***

**

***
*****

* ****
*

*

*

*

***
*

*

*

*

***
***

***

**
*

*

**
*

*

*
***

*
**

*
*

***

***

*

*
*

**

*

*

*

*

*

*
***

*
* *****

*

*
*

*
*

***
*

*

**
*

****

*
*

*

* *

*

*

*

*
****

*

***

*

*
*

*

* *

*

*

*

*

***

*

**
****

*

*

*
*

*

*

*
**

*

*
**

*

*
***

*
*

*

*

****
*

*
**

*

*
** *

*

*

***

*
***

*

*

*

***
*

*
*

*

*

**
*

*
***

*
*

*
** *

*
* **

***
**

*
**

**

**

*
*

**

*****
*

**
*

**

*
*

*
***

*
*

***
*

*

*

*
**

***
** **

*****

*
*

*
*

*

* **
**

*
*

*
*

*

*
** **

**

*

**

*
*

*

*
*

*

**
**

*

*
*

*
*

**

* *

**

*
**

****
******

* ***
*

*
*

*

*

**
*

*

*

*

*
**

*

***

*

**
*

*
*

*
***

*

****
*

***
* ****

*
*

**

*
**

**
*

*

*
*

***** **
* *

****

*

******
*

****
*

*
**

*
***
*

*
* *

*

*

*

*
*****

*
*

**
*****

*******
****

*

*

*
**

***

***
*

*

*
*

*

* ***
**

**

* ***
*

***

**

*
*

*
*

**
*

*

*

*

*
**

*

*
*

*

*
*

*
*

*

**
*

*
*

**

***

*

**

*

*

**

*

*

***
**

*

*

*

*
**

*

*

**
*

*

**
***

**
*

*
*

*
*

**
*

**

*
*

* ***
*

*

*

*

*

***

*

*
*

*

*

*
*

****
***

*
*

*
**

*
*

******
*

*
*

**

*
*

**

*

*
**

*
*

* **

*

*
*

*

*** *
****

*

*

*

*

* **
*

*
*

**** ****
*

*

*

*
**

*

*
*

*

*

*

*
*

*

*
**

*

***
**

*

*

*

*
*

*
* **

**** ****

*
*

**

*

** *
**

*
**

*

**

****
*

*

*

*

*

*
*

**

**

*

*
**** **

*

**

*

*

*****
*

***
*

**

***

*

*

***
*

*
***

**
*

***
****

*** *
**

*

****

*

*
*

*
**

***

*
* *

**

**

*

***
**

*

*
**

*

*

**

*
**

*

**

*

**
**

*

**

*

***
*

*

*

*
*

*
*

*
***

*

*****

**

**

*
*

***
*

*****

*
**

*
*

***

*

*

*

*
*

*
*

*

*

*

*
*

*

*

***

*
*

*
* ***

**

*

* ***

*

*
**

*

* ** **

*
**

**
**

*

**

*

*

**

*

*

*

*

*
*

****
**

*
**

**

**

**
*

**

*
***

*

*

*

*

*

* *
**

**

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*
**

*

*

**
**

****
*

*

**
***

*

**

**
*

****

*

*

*

**
*

***

*
*

**

*
*

* *

*

*

*
***

***
*

*

*

*

* *

*

*

*

* *

*
*

*

*

*
**

*

*

**
* *

*

*

*

***
*

**

*
*

*
*

*

*
*

*

**

*
*

*

*
*

***
***

*

*
*

*

*
* *

*
*** *

*
****

***
**

*

**

*****

*
*

*** **

**
*

*

**
*

*

**
*

*

*

**
**

*

**

*

*

*

**

*
**

**

*

*

*
***

*
*

*

*

*

*
*

*
*

* * *

*

*

*

*

*

**
* *****

**
*

*

**

*
*

*
*

***

*

*

****

***
*****
*

*

*

*
*

*

*

*

**

*

*

*
***

*

*
**

*
* *

*
***

*

*

*

*
*

*** **

*
*

**

**

*

*

*

**
** *

*

*
*

*

**
**

*

*
**

*
*

*

*

*

**

*

*

*

*

*

***

*

*
*

*

*
***

*****
***

*

*

**

**

*

*

*

*
*

*

*

**

*

***

***
*

*
*

*

***

**

*

*

*
**

* *** *

*

*

*

**

*
**
*

*

*

*

*

*
*** **

*

*
*

***

*

*

*

*
*

*
*

*
**

*

*****
**

* *
*

*
*

*****
*

*
*

***
*

*

*

*
*

*

**
*

*
*

*

*

* *

**

***

*

*
**

*
**

*

***
**

* *

*

*

*

*

*
*

****

**

*
*

***
*

*

*

*

*

* *

*
*

**

*
*

*
*

**

**

**

*

**
*

*

*

*
*

*
*

*

*

*

* ***

*
*

*

**

**
*

*

*
*

* **

*

*
**

**
*

*
**

*

*

*
*

*
*

*
*

*

***

*

*

*

*

*
*

**

*

*
*

*

*

*

*

*

*

*

*

**

**

**
***

*
**

*

*
*

*
*

*

**

*

**
*

**** **
*

*

*
*

* *

*

*

*

*

*
*

*

*

***

*

*
*

*
*

**

*

**

*
**

*

*
*

*

*

****
**

*

**

*

*
*

* **

*

***

*

* **

*
*

*

*
*

*
*

*

*

* *

*
*

*****
* **

*

**
* ***

****

*

*
**

*
*

**

**

*

*

**
*

*

*

*

*
*

**

*

**

*

*

**
*

*

** *
**

*

*

*

*

**

*

**
*

**
*

*
*

*

***** *
* **

*

*

***
*

*

*

*

*

* *

**

*

*
**
*

*

*

**
*

*

* *
*

*
** **

*
*

**
*****

*
*

*
*

*
**
*

*

**
*

*
*

**

*

*

*
**

*

*

***

*

*
*

*

*
*

**
**

***
*

*

*

*
**

*
*

*

*

*

*

*
* **

*
**

*
*

*

**
**

*
****

**

*

* **
*

*
*

**
*

*
*

***
*

*

****
*

*

* **

*

*

**
**

*

*

***
*

*

*

*

**

*
*

****
**

**
*

*
*

**
*

* **
*

*

**

*

*
*

* *

*

*

*
* *

**
**

**
*

*
*

*

*

*
*

*
**

*

*

*

*

* *
*

*

*

*

*

*

*

*
*

**

*

*

* * *
**

** *
*

*

*

*

*

*

*

**

**
*

*

*

***
**

*

*
**

*

*

**

*
**

*

**

*

**

*

*

*

***
*

*
*

*
*

*

*

**
* *

*
***

**

*

*

*

* *
*

*
*

*

*

*

*

*

*

*

*

******

**
*

*
*

*
*

*
*

*
*

*

***

**

*

***

*

**

**
*

*

*

**

*

***

*
*

**

*
*

*
**

*
**

*

*

*

*
*

*

**

*

*
*

*
*

*

*

*

*
*

*

*
**

*

***
**

*

*

*

*
*

*
***

***
*

*
*

**

*

*
* *

*
**

*
** *

*

**
*

* *
*

*
*

*

*

*

*

*

**

* *

*

** *
*

**
*

* *
*

*

*
*

**

*
*

*

*

*

* **

***
*

*

*

*

*
**

*

*
***

*

***

**

*

*

*

* *

*
*

*

*

*

* *

***

*

*

*

*
**

*

**
**

*

*

*

*

*

*

*

*

*

*

* *
***

****

*

*
*

*

***
*

*

*

*
*

*

*

*
* *

***
*

*
*

*
****

*

*

***

*

*
*

*
**
**

***
*

*

*

**
*

*
*

*

*
*

**

*
**

*
*

**

*
*

*

*

*

*
*

*

*

* *

*
*

*
*

*

*

*

*

*

*

*
*

**
**

*

*

*

** **
*

*

*

**

*

*
*

*

* ***
*

*

*
**

*

****
*

*

* *
*

**
*

*

*
*

***

**

***
*

*
*

**
*

**
*

**

***
*

*

**
**

*
*

*******

*
*

*
**

**
**

***

**

*

*
*

**

**
*

****
*

*

** *
*

*

**

*

********

*
*

*
* *

*
***

*

*
*

*
*

**

*

**

**
*

**
**

**
**

*

*
*

*

*
* *

*

*

*

*

**
*

*

*
*

*

*

*

*

*
**

**

**
*

*

*

*
*

**
* *

**

*
*

*

*
**

**

*
*

*

*

**

* *

*****
*

*
**

*
**

* *

****
**

**

*

*

*

**

** ***

**
*****
***

*

**
*

*
*

*

*
*

**
*

*

*

***
*****

*
*

*

*

*
*

**
*

****
*

* **
****

**
**

*

**

* *

****

*

**

*

*
*

***

*

*
*

* *
*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

***
*

*
* *

*

*

*

*
**

*

*

*
*

***

*

***
**
*

***
*

*

**

*

*

* *

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*
*

*
*

*
*

*
**

***

*

*

**

*

*

*
*

*

*

*

*

*

*

*

****
*

*

*

*

*

*

*

*

*
*

*

*

**

*

*
* *

*

***

*
*

*
*

*

**

*

*
***

*

*

**
*

*

*

*
*

*

*

***
*

*
*

**

*
*

**

*

*

*

***

*

*

*

*

***
****

*

*

*
*

*

*
*

*
*

*
** *

*

*

***
*

*

**

**

*

***

*

*

*

*

*

*

*
*

*
*

*
*

*

*

*

*

*

**
*

*
*

*

*
*

*
****

*

*
*

***

*
*

*

* **

**

*

* **

*
*

*

*

**

*
*

*

*
*

*
* *

*
*

*

*

*

*

*

*
*

*
*

*

*

**

*

*

*
*

*
*

**
***

**

*

*

**
*

*

*

*

***
*

*

*

***

*

*
*

*
*

*

*

**

*

*
*

*

*

*

*
*

**

*

**

*
*

*

*

*

***

*

*
*

*

*

**
* *

*

*

****
**

**

*

*

****

**
**

*
*

*

*

*

**

*

*****

*

*

*
*

*
**

*
*

**

*

*

*

*

*

**

*

***

*
*

* *

*

*

* *

*

*

*

*

*

**

*
*

*
*

*
*

**

*

*

*
**

*
**

*

*
*

*

*
*

*

*

*
**

*

*

* *
*

*

*
***

*
*

*

***
***
*

*
*

*
*

*
*

**
* **

*

* **
*

*

*
**

*

*
*

****

***

*

*

*

*
*

*
*

*
*

**

*

***

*

*
*

*
*

*

*

*

**

**
*

**

*
*

*
*

*

*

*
*

* **
* **

*

*

*
*

**

*
*

* *

*

*

*
*

*

*

*

*
**

*

*

*

*
*

*
*

**

*

*

*

*

*
****

*
*

**
*

*

*

*
**

*
**

*

*

*

*

*
*

*
*

*

* *
******

*

*****
*

*
*

*
*

**
*

*
****
*

*
**

**

***

*
*

*****
**

*********

* *
*

*
*

**
**

**

*

*
**

*
**

*

*
*

*

*

*

*

*

*

**
*

****

** ***
*

*

***
*

*

*

*

*

*

*

*

*

*

*

*
**

*

*

*

*

**

***

*

*

*

******

***********
*

*

***
******

***

****

****

*

***** **
*

**
*****

**
***

***********

*

*

*

**

************

**
***

***

****

*****

****
****

**

**

***
***

**** **
*****

***

*
*

*

****

*

*********
*

***
*

*

***

****

*

*

**

**

**********

*

*
*

**

**

*

*

*

*

*

*

***
*

*

*

*
* **

*
**

*
***

*

*

*

**

*
*

**

*
*

*

*
***

**

*

*

**

*
***

*

*
*

*

*

***

*
**

*

*
*

*

**

*
*

**

*
*

***
*

*

*
*

**

*

*

**
*

*

*

*

***

**
*

*

*

*

*

*

*
*

*
*

*

*
*

*

*

*

*
*

**
*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
**

*

*

**

**
*

*

*

*

***
*

***

*
*

*
****

*

*

*

*
*

*

*

*

**
*

*

* **

*
* ****

*

*

*
***

**

*

*

*

*
*

*
**

*
*

*****
** * ****

*
*

***
*

***
*

* *
*

****

*
**

**
*

*
*

**

*

*
*

*
*

*

*

*
*

* *
*

***

*

*
*

*

*

*

***

*
*

*

* *

**

*

*

* *

*

*

**

*

*
*

*

*

*

*
**

*

*
*

****

*

*

*

*

*
*

*

* *

*

***
*

*

*
*

*

*

*

**

*

*

*

*
**

*
**

*

*

*

*

*

*

*
*

*

**

**

*

*

*

*

*

*

*
*

**
*

**
* **

*

*
*

*
*

*
*

*

*

*

*

*
* *

**

*

*** ***
*

*

*

*
*

*

*

**

*

*

*

**
*

*

*

*

*

*

*

**

*
*

*

**

* *
**

**

*

**

*

*

**

*

**
* *

*

*

*

*

**

*

*

*
*

*
* *

*
*

**

*
*

**

*
**

*
*

*

*

**

*
*

***
*

*

*

*
**

** *

*
* *
*

*

*

*

*
*

*

*

*

*

*

*
*

**

**

**

*
*

*
*

*

**

*

**

*

**
*

* *

******
*

*
*

*** *

*

**

*

**
**

* * *

***
*

* *

*
*

**
*

*
*

**

*

*

*
*

**

*
**

*
***

*

*

*
* **

**

*
*

***

*

**
*

**

*

* ****

* ***
*

*

*
*

**

*

*

*
*

*

*
*

**

*

* *
*

*
**

*
**

*

*

*

*
**

*
*

*

*
*

*

**
*

*
*

*
*

*

*

*

*

* **
*

*
**

**
**

*

**

*

*

*
*

*

*

*

*
*

*

*

*

*
***

*

*

*

*

*** *

*
*

**
*** *

*

*

*

**

*

*
**

**

*

*

*

*
**
*

*

*

**

*
*

*

*

**

*

*

*

*

*
*

*

*

*

**
**

**

*

*

*

*

*
*

*

*

*

*

*

***
*

*
*

*

*
*

**
**

**

***
*

*
**

**
*

*

*

*

*

**

*

*
*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

*
*

*

*

*

*

*

*

*
**

*

**
*

*
*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*
*

*
*

*

*

**
**

*

*

*

*
*

*
*

*

*
*

**
*

**
*

**

*

*

*

*

*
*

*
*

*
**

*

**

*

*

*
*

*
**

*

**

*

*

*

*

*

*

**

**

*

*
* *

*
*

****
**

*
*

*

*

*
*

*
*

*

*

**

*

*

*

*

*
*

*

*

*

*

*

*

*

*

**
**

**
*

*

*

*

* *

*

*

*

***

*

*

*

*

**

*

*
*

**

*

*
*

*
*

***

*

*

*

*

*

*
**

*

**

*

*

*
*

*

*

*

*

*

*

*
**

*

*

*

*

*
*

*

*

*

**

*

**
*

*

*

*

*

*

*

*

*

*

*
*

**

*

*

*
*

* *

*
*

*
*

*

*

*

**
*

*

*

**

*

*

*

*

*

*

*

*

*

**
**

*

*

*

*
*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

* * *

*
*

*
*

*

*
*

*
*

*

*

*

*

*

*
*

*

*

**

*
*

*

*
**

*

*

**

*

*

***
*

*

**

*
*

*
*

*

*

*

*

*

*

*
*

*

*

**

**
**

*

**

**

*
*

*

*

*

*

*
*

*
*

**

*

**
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

**
*

*

*

*
**

*

*
*

*

*
***

*

*

*

*

**

*

*
**

**

*

*

*

* *

*

*
*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

**
*

*
* *

*

*

*

*

*

*

****

*
*

*

**

*
*

*

*

*

*

*

**

*

*

*

*

*
*

*

*

*
**

*

*

*

*

*
*

*

*
*

*

*

*
*

*

*

*
*

*
**

**

*
**

**

*

*

*

*
*

*

* *

*

*

*
*

*

* **

* *

*

*

*
*

* *
*

*
***

*

*

*

**

*

*

*

* *
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

**
*

*

* *

*
*

*
*

*
*

*

*

*

*
*

*
*

*
*

*

*
*

*

*

*

*
*

*

*

*
**

*

**
**
**

*
*

*

*
*

*

*
*

*

*

*
*

*

**
*

*

*
*

*

*

***

*

* *

*

*
*

***
*

*

*

*

*

*
*

*

*
*

*

*

*

*
*

***
*

*
*

*

**

**

*
*

*

**

*

**

*

*
**

*

*

*

*

**

*

*

*

*

*

*

*

*

*
*

*

*

**

*

*

*

*

*

*

*
*

*

*
*

*

**

*

* **

*

*

*

*
*

*

*
*

*

*

*

**

*

**

*

*

*

*

*

**

*

***
*

*

*

*
***

*

*

*
* **

*

**
*

**

*

*

*
*

*
**

*

* *
*

*

*

****
*

*

*

*

*

*

*
*

**
*

*

**

**
**

*

*

*
*

**

*

*

*
*

*

*

*

*
*

**
*

*

*
*

*

*

*
**

*

*
**

**

*

*

*
**

*

***

*

**
**

*
*

**

*
*

*
*

*

*

*
*****

*
*

*

* *

*

*

*

*

*

*

*

*

**

*

*

**

*

* *
**

*

**

*

**

*

*

*

**
*

*

*
**

*
*

*

*

*
*

*
**

*

*

*

*

**

*
*

**
*

**
*

*
**

*

*
*

*
* *

**

*

*

**

*

*

*

*

*

*

*

*

*
*

*

**

*

*

*
*

*
**

*

*

*

**
*

*

*

**
*

*

**
**

*

*

* *
**

****
*

*

*

*

****
**

***
*

*

*

*

*

*

*

*

*

*

*
**

*

*

*

**

*

*

**
*

** *

**

*

***

*

**

*

*

*

**

**

*

**
**

*

*

*

*
*

*

*

**
*

*

*
*

*

*

**

*
*

*
*

*

*

*

**
*

*
*

*

*

*
*

*

*

*

*

*

**

*

*
**

**

**
*

*
*

**
*

*

*
*

*

*

*
*

*

**
**

*

*

**

***

*
*

*
*

*

*
*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

**

*
*

*
* *

**
******

*
*

*
*

**
*

*

*

*

***
**

*

**

*

*
*

*
**

**
*

******
**

**
*

*
*

*

*

*

*

*

*
*

*
*

*

*

*
* *

*

*

**

*
**

*
*

*

*

*
*

*
*

*

*
*

*

*

**

*

*

**

*

*

**

*
***

*

*

*
**

*
*****

*
***

*

*

*
**

*

*
*

*

**

*

**
*

*

*
*

*

*

*
* *

*

*

*

*
**

*

*

*

*

*

*

*

*

*

*

*

*

*

*****
*

***

*

*

*

**
*

*
****

**

*

*

***
***

*

**
**

****

*

*

*

****

*

**
*

*

*
*

* *
*

***

*
*

**
*

*

*
*

* *

***

*

***

*
*

*

*

**
*

*
*

*
*

*

*

***
*

*

*

*

*

*

*

*
*

*

*
*

**
*

*
**

*
*

**

*

**

*
*

*

**
*

*
*

*

*

*

**
*

***
*

*
*

***

*
*

* **
*

*
*

**
*

**
*

*

**

*

**
*****

*
*

*

**
*

*
****

*

****
*

*

*
*

*

*

**
*

*
**

**

*

*
*

*
*

***

*

*
****

***
***

*

***
**

****

*

*

*

*

**

*

***
*

*
****
* *

**

*

***

* *****
**

***
***

*
*

*

*
*

*

****

***

****

*

*

*

*
*

*

*

**
**

*

*
*

*
** *

*
*

*
*

*

*

*
**

*
***

* *

*

*

*

*
*

*

***
*

*
*

*

*

*

*

*
*

**

*

*
*

****
*

**

*

*
*

*
**

*
*

*

*

**

*
*

*

*
*

*
**

*

*

*

*

*

**
*

*

*

*

****
*

*
*

*
***

*
*

*

*

*
**

*

*

*

***

*
*

***
*

**
**

*

*

*

*

***
*

*

*

*

*

*
*

***

**
*

*

****

*

**

*

*

*

*

*

*

**
***

**
*

*
*

*******

*
*

*
*

*
*

*

*

*

**
**

*
* *

*

***

*

*
*

*

*****
*

*
*

*
*

**
*

*

*
*

*

*
*** *

*

*

*

**
******

*
*

*

**
****

*

**

* ***
**

*

*

**

*

*

*

*
*

*
*

*
*

*
*

*

*

*

**
*

*

*

**

**

*

*

*

*

*

*

* *
*

**

*

*

*

*

*

*

*

*

*
*

*

*

****

*

*
*

*
*

*

*

**

*

*

*

*

*

*

**

*

*

*

*

**

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*
*

*

* *
*

*
*

*
*

**

*

* **
*

*

*
*

*

*

*
*

*

*
*

*

*

*

**

**

*
*

*

*

*

*
*

*

*

*

*
*

*

*

**

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*
*

*

*

*

*

**

*

*

*

*
*

*

**

**

*

*

*

*

*

*

*

*
*

**

*

*

*

**

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*

*

***

**

*

*

*

**

*

*
*

*

*

*

*

**

*

*

*

*
*

*

*

*

*

**

**

*

*

**

*

*

*

*
**

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

random effect
regression BIC

118



Figure 5.8: Residuals for Model 2, by Road
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Figure 5.9: Residuals for Model 2, by Section
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Figure 5.10: Fitted and Observed Values for Model 3
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Figure 5.11: Residuals for Model 3, by Road

*********

*

****

**********
**
*
**
***
***
*****
*
***
**
*
***
*
**
***
*
**
*
*
*
*
*
****
**
**********
**
****
**

*
*

*

*

*
*
*

*

*

*

*
***

*

*
**
**

*

*

*

*
**

*

*
*
**

***
*

*

**

*

**

**

**
*
*

*

*

*
*

*

**
*******
**
*****
**
***
*
*******
*
*
*
*****

*
*****
*
*****
**
***
********
*
****
*
**
****
***
****
*******
************
*********
*
*
****
*
*
*****
***
*

*

**********
*
***
*

*
***
****
**
****
**
*
***
*
****

**

**

***
*
*
*********
**
*
*********
**
*
*
***

*
*
*
*

*
**

*

*

*

*

*

*
**
**

**
*
***

**

*

*

*
*
*

********

***

******

**

****

*

*

*

*
*

*
*

****
*

*

**

*

******

*

*

*

*

*

*
*

*

*

*

*******

*
*
*
**

*

*
**

**

*

**
***
*
*

*

*

*

*

**

*

*

***

*
*
**

*
*

*

**

***
*

***

** *
**
*
*

**

*

*

*

*

*

*

*

*

*

*

*

*

***

*
*

*
*

*

*

*

*

**

**
*

*
**

*
*
*

*

**

**

*

*

*
*

**

**

*

*

*
**

**

**

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

***
*
*

*

***

*

*

*

*

***

*

*

*

*
*

*

**

*

*

*

*

*

*
*

****

*

*

*

*

*
*
*

*
*

*

*

*

*
*

*

*

*

*

*
*

*

*
*

*

*

*

**

**

*

*

*

*
*

*

*

*
*

*

*

*

*

**
*
*

***

*
*

**
*

*

*

*

**

****

*

*

***

*

*

**
*

*

**

*

*
**
**

*

*

*
*

*

*

*

*

**

*

*

*
*

*

***** ****

*

*

*

*
*
**
*

*

*

*
*

***

*

***

*

1 2 3 4 5 6 7 8 9 10 11 12 13

−
15

−
10

−
5

0
5

10
15

20

road number

pr
ed

ic
tio

n 
er

ro
r

120



Figure 5.12: Residuals for Model 3, by Section
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Chapter 6: Validation of Random Effects

6.1 Introduction

In this chapter, we propose methods to predict quantiles of speed data dis-

tributions for road sections that were not in the original sample and for which we

suppose to have very few observations available. We have shown that the theory

of linear models can be used to estimate random effect models and to predict their

realized values in the sample. Our problem, however, poses two challenges. First,

we are interested in making out of sample predictions, and in order to do that we

need to calculate random effects in the new road section. Second, our modeling

approach makes use of speed quantiles as predictors of the linear model; those are

not readily available for the new sections.

Random effects in most situations are assumed to have zero mean and therefore

the best a priori predictor for random effects in a new road section is zero. We

claim that better predictors could be produced by considering an auxiliary, simpler

random effect model whose purpose is to overcome the unavailability of quantiles

in the validation sample. We show that this auxiliary model, although inferior to

the actual model, can provide good random effect predictors by sampling as little

as five observations for each new section.
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Searle [MSN08, p. 260] suggests to model random effect pairs jointly; this way

to proceed takes advantage of the potential correlation existing between them. We

followed this idea and we use it to build our auxiliary model. We correlate the

random effects of the original model with the random effects to be defined for the

new section and we use the first one to predict the latter.

Our validation approach is based on jackknife technique [ET93, p. 141,237].

The validation is performed on the quantiles of 31 sections; predictions for each

section are made based on the information contained in the remaining sections.

This is similar to regular validation schemes that calibrate a model on 80% of the

sample and use it to make predictions for the remaining 20% of the sample. With the

jackknife scheme, however, each set of predictions is made using a different training

sample.

6.2 One random effect models

We describe our methodology for a simple case where the response variable is

affected by a set of predictors X, one random effect αs and an error term ε:

Ysi = Xsiβ + αs + εsi

Where αs and εsi are independent and follow a normal distribution:

αs ∼ N(0,σ2
s )
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εsi ∼ N(0,σ2)

Once the model is calibrated, estimates for β, σ2
s and σ2 are available. Predictors

for the realized values of αs in the sample can be computed using either the true

or the estimated values of the parameters. If our interest is focused on the value of

αs′ in a new section that is not in the sample, the best we can do without further

modeling assumptions is to predict the overall mean of the random effects: α̂s′ = 0.

It is worth noting that we estimate β, σ2
s and σ2 because they are parameters

of the model. On the other side we predict αs and Ysi because they are regular

random variables.

Let’s assume that we are interested in predicting random effects for a new

section s′ with unknown random effect αs′ . The best a priori estimate of αs′ is zero

since αs′ ∼ N(0,σ2
s ). In some contexts this may be satisfying, but we are exploring

methods to sample a few observations in the new section s′ in order to improve our

knowledge about αs′ and build a better a posteriori estimator.

The terms a priori and a posteriori are used in their classic meaning here. a

priori refers to what happens before we observe data to predict αs′ and a posteri-

ori refers to what happens after we observe data for the prediction. No Bayesian

inference is performed in this chapter.

6.2.1 Conditional mean

Suppose that we observe k observations Ys′1, Ys′2, ..., Ys′k in the new section.

For illustration purposes we will work with k = 3. Our objective is to find a good
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predictor of αs′ .

First, we note that we cannot observe αs′ directly: we always observe αs′ +εs′i.

We start by defining this sum of residuals:

rs′i = Ys′i – Xs′iβ̂

We cannot observe Ys′i – Xs′iβ because we do not know the value β, so we will use

the estimated value β̂ from model calibration to estimate the total residuals.

We know by hypothesis that u = (αs′) follows a normal distribution with mean

zero and variance D = (σ2
s ).

We know that r = (rs′1, rs′2, rs′3) has approximately a zero mean and variance:

V =

σ2
s + σ2 σ2

s σ2
s

σ2
s σ2

s + σ2 σ2
s

σ2
s σ2

s σ2
s + σ2


We can also write V like this:

V = σ2I + σ2
s

V is approximate because r was not calculated with the real parameter of the

model. The approximate covariance between the random effect αs′ and one given

total residual is:

Cov(αs′ , rs′i) ≈ σ2
s

So we can write that the approximate covariance C between u and r is:

C =
[
σ2

s σ2
s σ2

s

]
or, with 1m×n being a m× n matrix of ones:

C = σ2
s11×k

125



and then: u

r

 ∼

0

0

 ,

 D C

CT V




Here we do not make claims on the joint distribution of (u, r). It is sufficient

to know the first and second moments of (u, r) to derive the best linear unbiased

predictor (BLUP) of u. If the joint distribution were normal, the BLUP would

be the overall best predictor of u, however it will not be the case for our final

application.

6.2.2 Best predictor

Once we observe r, the BLUP of u is the conditional mean. The expectation

of u|r is given by:

E(u|r) = CV–1r

If (u, r) were jointly normal, the BLUP would happen to be the best predictor.

In the case of only one random effect u will have dimension one and is equal

to αs′ . The predicted value for an observation i in section s′ will be:

Ŷs′i = Xs′iβ̂ + α̂s′

We can estimate β̂ relatively easily so the main challenge for this problem is to

predict α̂s′ . Our objective is to investigate what is the smallest sample in section

s′ we can use to predict αs′ satisfactorily. Generally, the prediction converges faster
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when σ2 is low and σ2
s is high because then one single observation of r is less noisy

and more correlated with the unknown realized value αs′ .

6.3 Numerical examples

To illustrate our methodology, we use the speed database with 37 sections

described in 5.3. In our first case study we ignore the direction effect. For all 31

sections considered, we calibrate the model on 36 sections, and we compute the

estimated random effect with k = 1, 2, 3, ... observations taken from the section that

is left out for validation. This will provide a series of predicted random effects. We

want to assess the convergence of the prediction.

Figures 6.1, 6.2, 6.3 and 6.4 contain the results obtained for each section. The

subplots represent the predicted random effects in the validation section. The x-

axis corresponds to the number of observations that were used from the validation

section in order to predict the random effects. For example, an x-value of 10 for

section 3 means that we estimated a model with all sections but the third one, and

then looked at 10 observations in the third section in order to predict the (realized)

effect of section 3. Each subplot contains a solid dark red line, a solid pale red line

and a dotted dark red line. The solid dark red line shows the predicted effects for

the full model, assuming we knew the quantile information in the validation sample.

This is not a realistic case for this problem but it is nevertheless the effect that we

ultimately want to predict. The pale red line shows the predicted effects with the

auxiliary model. These effects can be computed but we are only interested in how
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they can help us predict the ones from the full model. The dashed red line shows

the predicted effects for the full model but using only information from the auxiliary

model. This is the prediction that we ultimately use.

From the figures 6.1, 6.2, 6.3 and 6.4 we can conclude the following. First, a

relative convergence in the predicted effects as the number of observations grows is

observed. Second, there is a substantial difference between the solid pale and dark

red lines. This is not a problem in itself although the closer the two lines are, the

more likely it will be to predict one from the other. Lastly, the dashed dark red line

does not approximate the dark red line and it is mostly superposed to the pale red

line, meaning that the predicted effect of the full model using the auxiliary model

are no better approximation than just the predicted effects of the auxiliary model.

This is obviously disappointing but we will see later that accounting for the design

of the sample mostly fixes this problem.
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Figure 6.1: Sections 1-12
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Figure 6.2: Sections 13-22
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Figure 6.3: Sections 23-31
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Figure 6.4: Sections 32-36
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6.4 Two random effects models

The case with two nested random effects is described by the following equation:

Ysdi = Xsdiβ + αs + βd + εsdi

where the random effect βd is nested within the levels of αs. To simplify the notation

we write βd and not βd|s, but the latter is more precise.

In this model, a sample from the new section s′ also includes some levels

of the direction effect. In our case there are two directions for all sections. For

illustration purpose we will assume that we sample one section, two directions and

k = 3 observations per direction. The random effect to be predicted is:

u = (αs′ , β1, β2)

and the total residuals are given by:

rs′di = Ys′di – Xs′diβ

Similar to the one random effect model, we do not observe a single random effect by

itself, instead we always observe a sum of effects. We have the following covariance

structure for the total residuals:

var(rs′di) ≈ σ2
s + σ2

d + σ2
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cov(rs′di, rs′dj) ≈ σ2
s + σ2

d

and:

cov(rs′di, rs′d′i) ≈ σ2
s

These covariance components are approximated because the rsdi terms are

computed using estimated values of β̂. Moreover, we will also plug in estimated

values for the variance components. Even if we do not address here the effect of

such an approximation, it is always useful to keep it in mind.

The covariance matrices D, C and V of u and r are:

D =

σ2
s 0 0

0 σ2
d 0

0 0 σ2
d



V = σ2
s +



σ2
d + σ2 σ2

d σ2
d 0 0 0

σ2
d σ2

d + σ2 σ2
d 0 0 0

σ2
d σ2

d σ2
d + σ2 0 0 0

0 0 0 σ2
d + σ2 σ2

d σ2
d

0 0 0 σ2
d σ2

d + σ2 σ2
d

0 0 0 σ2
d σ2

d σ2
d + σ2


or just, with 0m×n being a matrix of zeros:

V = σ2
s +

[
σ2

d + σ2I 0k×k
0k×k σ2

d + σ2I

]

C =

σ2
s σ2

s σ2
s σ2

s σ2
s σ2

s
σ2

d σ2
d σ2

d 0 0 0

0 0 0 σ2
d σ2

d σ2
d


or:

C =

σ2
s11×k σ2

s11×k
σ2

d11×k 01×k
01×k σ2

d11×k
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The predicted random effects are still given by the expected mean:

E(u|r) = CV–1r

The predicted value for an observation i in section s′ and direction d will be:

Ŷs′di = Xs′diβ̂s′di + α̂s′ + β̂d

The sum α̂s′ + β̂d is always used in predicted values so we are always interested

in assessing that it converges fast enough. For example, if α̂s′ is underestimated but

β̂d is overestimated, their sum might still be a good predictor of the real sum of

random effects.

6.4.1 Numerical examples

For this second case, we use the same speed database and we keep the direction

effect. For all the 31 sections considered, we calibrate the model on 36 sections, and

we compute the predicted random effects with k = 1, 2, 3, ... observations taken from

each direction. We want to assess the convergence of α̂s′ , β̂1 and β̂2.

Figures 6.5 through 6.8 should be read in the same way as figures 6.1 through

6.4; please note that we do not include the predicted random effect of the auxiliary

model. The solid red line corresponds to the predicted section effect, and the two

solid blue lines to the predicted direction effects. The dashed lines correspond to the
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predicted effects using the auxiliary model and can be computed in the validation

section.

For both the sections and directions, the predicted effects using the auxiliary

model are very close to the ones using the full model. However there are still

noticeable differences when very few observations are used for the prediction. For

example, predictions in sections 8 and 27 are not so precise for only two or three

observations.

We also note striking differences between predictions with one and two random

effects. Effects with only a section component are not close to the “true” effects of

the full model but incorporating the directions, thus accounting for the design of

the sample, drastically improves the predictions.
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Figure 6.5: Sections 1-12
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Figure 6.6: Sections 13-22
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Figure 6.7: Sections 23-31
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Figure 6.8: Sections 32-36
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6.5 Computation of the residuals

In the previous examples we were calculating:

rsdi = Ysdi – Xsdi

However it is not always possible to compute r. Suppose that we have the

following model specification:

Ysdi = Xsdiβx + Zsdiβz + αs + βd + εsdi

where Zsdi, which represents the regular variables multiplied by the normal

quantiles Z, is not available in the validation sample. In this case, it is not possible

to isolate the sum of random effects and we must rely on alternative methods.

The strategy here is to use the estimated total residuals from the first model,

with only observable predictors X, to predict the random effects of the complicated

model.

The simple (with X) and expanded (with X and Z) models are both calibrated

and parameters are estimated from both models. In addition we also calculate the

empirical correlation between the effects from both models. The ideal scenario is

that corresponding effects from both models are perfectly correlated:

Ysdi = Xsdiβ∗ + αs∗ + βd∗ + εsdi∗

αs∗ ∼ N(0,σ2
s∗)
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βd∗ ∼ N(0,σ2
d∗)

εsdi∗ ∼ N(0,σ2
∗)

Ysdi = Xsdiβx + Wsdiβw + αs + βd + εsdi

αs ∼ N(0,σ2
s )

βd ∼ N(0,σ2
d)

εsdi ∼ N(0,σ2)

By design, the marginal distributions of the random effects are normal. How-

ever, the empirical analysis does not support the assumption that they are jointly

normal so we can only hope to estimate first and second moments of all the effects

and residuals to compute the BLUP.

We will assume that (αs,αs∗) and (βd,αs∗) have correlation ρα and ρβ , re-

spectively, and derive the moments of r∗ and u using this correlation.

Figure 6.9 and 6.10 plot the predicted effects of one model against the other.

The more correlated they are, the easier will be to predict one using the other.
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Figure 6.9: Comparison of Section Effects
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Figure 6.10: Comparison of Direction Effects
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We can define the total residuals is the simple model like this:

rsdi∗ = Ysdi – Xsdiβ∗

We note that rsdi∗ can be calculated easily in the validation sample. The

variance of one of those residual is given by:

Var(rsdi∗) = σ2
s∗ + σ2

d∗ + σ2
∗

the covariance of two residuals in the same direction is:

Cov(rsdi∗, rsdj∗) = σ2
s∗ + σ2

d∗

The covariance of two residuals not in the same direction is:

Cov(rsdi∗, rsd′i∗) = σ2
s∗ + σ2

d∗

The covariance between residuals and random effects are given by:

Cov(rsdi∗,αs) = Cov(αs∗ + βd∗ + εsdi∗,αs) = Cov(αs∗,αs) = ρασsσs∗ = σss∗

Cov(rsdi∗, βd) = Cov(αs∗ + βd∗ + εsdi∗, βd) = Cov(βs∗, βs) = ρβσdσd∗ = σdd∗

Therefore, the joint covariance of r∗ and u = (αs, β1, β2) is described by the

following variance components:
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D is the same as before:

D =

σ2
s 0 0

0 σ2
d 0

0 0 σ2
d



V is different because the random effects in r are from the simpler model:

V = σ2
s∗ +



σ2
d∗ + σ2

∗ σ2
d∗ σ2

d∗ 0 0 0

σ2
d∗ σ2

d∗ + σ2
∗ σ2

d∗ 0 0 0

σ2
d∗ σ2

d∗ σ2
d∗ + σ2

∗ 0 0 0

0 0 0 σ2
d∗ + σ2

∗ σ2
d∗ σ2

d∗
0 0 0 σ2

d∗ σ2
d∗ + σ2

∗ σ2
d∗

0 0 0 σ2
d∗ σ2

d∗ σ2
d∗ + σ2

∗


C is also affected:

C =

σss∗ σss∗ σss∗ σss∗ σss∗ σss∗
σdd∗ σdd∗ σdd∗ 0 0 0

0 0 0 σdd∗ σdd∗ σdd∗



6.6 Results: quantiles calculation

Tables 6.1 through 6.8 report predicted speed deciles. A number of patterns

can be observed. First, some sections are predicted accurately. For example, sections

7, 13, 18 and 27 have good predictions within 2-3 miles per hour for almost all

the quantiles. Most central deciles (40th to 60th quantiles) have good predictions.

However, this is not enough to the scope of this research, which aims at estimating

quantiles of speed distributions. Furthermore, the additional observations collected

to predict random effects could be used to predict the mean speed of the section with

some accuracy. The worst value obtained for the predicted median (50th quantile)

is for section 29, direction 1, with an observed median of 93.1 and a prediction of
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88. This compare with the 10th quantile that predicts 63.2 for an observed value of

72.3.

Second, we can observe that some sections are likely to have an error in part

due to the prediction error of the random effects. One way to assess this is to observe

the extreme quantiles and check what sections appear to underestimate both the

10th and the 90th quantiles. Two good examples of this are section 22, direction 1

and section 23, direction 1. In the first case most deciles are underestimated and

in the second case they are overestimated. Going back to the plots of predicted

random effects, we see in figure 6.6 that the direction effects are not so precise with

only five observations and this is likely a case where the prediction has created a

small error. For section 23 we see in figure 6.7 that the section effect and one of

the direction effect are overestimated with 5 observations, which would explain this

component of the prediction error.

Third, the most obvious prediction error is the overestimation of low deciles

and the underestimation of high deciles, or vice-versa. This can be observed for

example in section 10, direction 1 that underestimates the 10th quantile by 5.3

but overestimates the 90th quantile by 8.6. There might still be an error in the

predicted random effect for this section but it cannot be fixed because the random

effect is a constant added to all predictions in the same section and direction. The

most likely cause for this kind of error lies in the estimated jackknife coefficients. All

sections with severe quantile prediction errors also have a lot of jackknife coefficients

that greatly differ from the full sample coefficients. We think that this is the most

important source of error.
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Table 6.1: Predicted quantiles sections 1,3,5 and 7

quantile
Section 1 Section 3 Section 5 Section 7

dir 1 dir 2 dir 1 dir 2 dir 1 dir 2 dir 1 dir 2
pred. emp. pred. emp. pred. emp. pred. emp. pred. emp. pred. emp. pred. emp. pred. emp.

10 52.4 56 51.3 54 66.2 58 67 63 63.8 60 60.8 57 64.3 66 64.6 72.6
20 58.2 59 57.6 58 69.3 63 70.4 68 67.5 64 65.8 63 70.1 69 70.7 76
30 62.4 62 62.1 60 71.5 66 72.8 71 70.2 68 69.5 67 74.3 73 75.1 79.8
40 66 65.8 66 62 73.4 69 74.9 74 72.4 71 72.6 70 77.8 77 78.9 82
50 69.3 67 69.6 65 75.2 72 76.9 77 74.6 73 75.5 75 81.1 80 82.4 85
60 72.6 69 73.2 67 77 74 78.8 79 76.7 77 78.4 77 84.5 82 85.9 87
70 76.2 71 77.1 70 78.9 77 80.9 82 79 81 81.5 81.9 88 86.8 89.7 89
80 80.4 73 81.6 74 81.2 81 83.4 85 81.6 85 85.1 87 92.2 90 94.1 93
90 86.2 77.3 87.9 79 84.3 88 86.8 89 85.3 90 90.1 94 98 95 100.2 97.4

Table 6.2: Predicted quantiles sections 8,9,10,11

quantile
Section 8 Section 9 Section 10 Section 11

dir 1 dir 2 dir 1 dir 2 dir 1 dir 2 dir 1 dir 2
pred. emp. pred. emp. pred. emp. pred. emp. pred. emp. pred. emp. pred. emp. pred. emp.

10 68.1 69.4 68.1 74.2 61.9 60 66.5 70 44.7 50 50.7 56 54.5 59.3 55.2 59.3
20 73.7 75.4 73.6 77 67.8 67 71.2 72.8 50.2 51.2 54.8 60 61.4 63.2 61.8 61.7
30 77.8 81 77.6 77.6 72.1 68 74.6 76 54.2 54.6 57.7 63 66.3 65.1 66.6 67.1
40 81.3 84 81 81.6 75.7 73 77.5 79.6 57.6 55 60.2 64 70.6 68.1 70.7 71
50 84.6 86 84.2 85 79.1 75 80.2 82 60.8 56 62.6 65 74.5 70.6 74.5 72.5
60 87.9 88.2 87.4 87.2 82.5 79 82.9 86.4 64 57 64.9 67 78.5 71.9 78.4 74
70 91.3 90 90.8 90 86.2 86 85.8 88 67.5 59 67.4 68 82.7 75.9 82.5 76.4
80 95.4 94.2 94.8 94.8 90.4 87 89.2 91.2 71.5 60.8 70.4 71.2 87.6 81.6 87.3 81.6
90 101.1 103.5 100.3 100.6 96.3 90 94 94.1 77 64.4 74.5 73 94.5 95.6 93.9 93

Table 6.3: Predicted quantiles sections 12,13,14,15

quantile
Section 12 Section 13 Section 14 Section 15

dir 1 dir 2 dir 1 dir 2 dir 1 dir 2 dir 1 dir 2
pred. emp. pred. emp. pred. emp. pred. emp. pred. emp. pred. emp. pred. emp. pred. emp.

10 63.1 59.7 61.7 59 65.6 62.7 64 65.8 64 67.1 61.1 67.8 67.2 64.3 58.5 65.7
20 67.9 64.2 67.3 67.5 70.3 67.4 69.3 68.5 71 70.6 69.2 72.1 72.5 69.5 66.9 73.8
30 71.3 71.3 71.3 72 73.7 70.7 73.2 72 76.1 76.3 75.1 75.3 76.3 74.3 73 75.6
40 74.3 73.9 74.7 78.3 76.6 75.4 76.4 74.3 80.4 79.6 80.1 79.1 79.6 78 78.1 80.2
50 77 76.9 77.9 82.9 79.3 79.8 79.5 81.9 84.4 83.1 84.8 83 82.6 81.9 83 83.8
60 79.8 85.7 81 86 82 84.2 82.5 84.4 88.5 85.9 89.4 90.6 85.7 84.3 87.8 85.2
70 82.7 88.8 84.5 90 84.9 87.8 85.8 84.8 92.8 91 94.4 94.1 89 88.6 93 88.7
80 86.1 92.1 88.5 91 88.3 89.1 89.7 86.9 97.8 96.3 100.3 97.9 92.8 92.6 99.1 93.7
90 90.9 94.8 94 106.8 93 93.2 95 93.4 104.8 107.1 108.4 105.9 98.1 103.1 107.5 97.2

Table 6.4: Predicted quantiles sections 16,17,18,21

quantile
Section 16 Section 17 Section 18 Section 21

dir 1 dir 2 dir 1 dir 2 dir 1 dir 2 dir 1 dir 2
pred. emp. pred. emp. pred. emp. pred. emp. pred. emp. pred. emp. pred. emp. pred. emp.

10 64.8 71.7 64.4 71.3 60.4 66.2 63.4 67.8 51.5 51.9 50.5 52.6 73.2 73 73.6 81.7
20 71.5 75.2 71.1 74.6 67.9 69.2 69.9 70.9 58 54.2 57.5 56.6 80 88 80.7 89.2
30 76.4 80.2 76 76.3 73.4 72.9 74.6 74.4 62.8 58.4 62.6 60.9 85 92.5 85.8 95.3
40 80.5 82.5 80.1 79.6 78 74.5 78.6 77.4 66.8 65.3 66.9 62.2 89.2 97 90.1 98.4
50 84.4 85 84 82.2 82.4 76.9 82.3 80 70.5 67.2 70.9 68.5 93.1 98 94.2 104
60 88.3 88.3 87.9 84.4 86.8 85.4 86.1 83.3 74.3 69.7 74.9 71.8 97.1 99 98.3 105
70 92.4 90.5 92 91.5 91.4 92.3 90.1 88.7 78.3 74.9 79.2 75.4 101.3 99.5 102.6 105
80 97.3 93.5 96.9 94.3 96.9 96.3 94.8 92.4 83 80.3 84.2 84.9 106.2 100 107.7 111.8
90 104 108.6 103.6 100.2 104.4 99.3 101.3 94.1 89.6 91.2 91.2 91.7 113.1 105 114.8 114.9
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Table 6.5: Predicted quantiles sections 22,23,24,25

quantile
Section 22 Section 23 Section 24 Section 25

dir 1 dir 2 dir 1 dir 2 dir 1 dir 2 dir 1 dir 2
pred. emp. pred. emp. pred. emp. pred. emp. pred. emp. pred. emp. pred. emp. pred. emp.

10 59.8 64.8 55.8 64 53.3 39.1 50 46 62.5 67 65.6 59.7 58.3 54 59.1 50.4
20 67.1 69 63.9 70 53.9 42.4 52.2 47 68.4 68.6 70.5 66 62 56.2 63 55.2
30 72.5 71.4 69.8 71 54.4 46.1 53.7 48 72.6 69 74.1 75.3 64.8 59.8 65.7 65.4
40 77 78 74.8 72 54.8 46.8 55.1 50 76.2 72.4 77.1 77.4 67.1 62.6 68.1 71.4
50 81.2 82 79.4 72 55.1 47.5 56.4 50.5 79.6 74 80 79 69.2 66 70.3 73
60 85.5 94 84.1 75 55.5 48.2 57.6 51.8 83 79.4 82.8 81.8 71.4 68.6 72.5 78.4
70 90 97.8 89.1 76 55.9 48.9 59 54.1 86.6 81 85.9 88.1 73.7 71 74.9 81.2
80 95.3 101 94.9 79 56.3 50.2 60.6 57.4 90.9 86 89.4 90.2 76.4 75 77.6 84.2
90 102.7 108.4 103 82 56.9 51 62.8 61.5 96.8 99 94.4 96.1 80.2 75 81.5 89

Table 6.6: Predicted quantiles sections 26,27,28,29

quantile
Section 26 Section 27 Section 28 Section 29

dir 1 dir 2 dir 1 dir 2 dir 1 dir 2 dir 1 dir 2
pred. emp. pred. emp. pred. emp. pred. emp. pred. emp. pred. emp. pred. emp. pred. emp.

10 59.4 59.4 61.9 57.2 41.3 44.6 43 45.8 63.2 67 63.6 76.6 63.2 72.3 64.1 78.5
20 64.6 65.6 66.2 60.6 44.7 46.2 45.8 47.6 71.1 75 71.7 78 71.7 77.1 72.6 80.1
30 68.2 67 69.3 65.5 47.1 47.8 47.9 48.4 76.7 77 77.6 83.8 77.9 84 78.7 82.6
40 71.4 67.6 72 68.8 49.2 49.4 49.6 49.2 81.6 78 82.6 86.4 83.1 89.2 83.9 85.1
50 74.3 73 74.5 76 51.2 51 51.3 51 86.1 87 87.3 87 88 93.1 88.8 85.1
60 77.3 75.8 77 76.8 53.1 53.6 52.9 53.6 90.7 87 91.9 87.6 93 93.1 93.7 93.7
70 80.4 77.1 79.6 77.3 55.2 54.2 54.6 55.6 95.5 88.5 97 91 98.2 93.1 98.9 101.2
80 84.1 80.8 82.8 80.4 57.7 55 56.7 56.8 101.2 89 102.8 96.8 104.4 94.9 105 103.9
90 89.2 86.7 87.1 86.6 61.1 60 59.5 60.2 109.1 103 111 100.8 112.9 109.7 113.5 108.8

Table 6.7: Predicted quantiles sections 30,31,32,33

quantile
Section 30 Section 31 Section 32 Section 33

dir 1 dir 2 dir 1 dir 2 dir 1 dir 2 dir 1 dir 2
pred. emp. pred. emp. pred. emp. pred. emp. pred. emp. pred. emp. pred. emp. pred. emp.

10 60.8 56.3 65.3 57.4 60.4 61.2 63.2 67.2 40.4 52.1 46.5 55.2 53.4 52.7 57 58.2
20 63.3 56.3 66.6 62.1 65.3 66.5 67.3 68.9 49.2 57.5 53.1 59.2 58.6 58.1 61.1 60.9
30 65.1 57.5 67.5 62.1 68.9 68 70.3 70 55.5 59.6 57.9 62.2 62.4 60 64 64
40 66.7 61.4 68.3 63.8 71.9 70.3 72.9 73 60.9 59.6 62.1 63.9 65.6 62.7 66.5 67.4
50 68.1 65.9 69 71.8 74.7 71.9 75.3 74.4 65.9 64.2 65.9 67.4 68.6 66.2 68.9 67.4
60 69.6 69.3 69.7 74.1 77.5 73.2 77.7 77.1 71 66.7 69.7 69.3 71.6 67.6 71.2 67.4
70 71.1 69.3 70.5 74.1 80.6 74.6 80.3 79.6 76.4 69.5 73.8 71.4 74.8 71.1 73.7 71.1
80 73 87.2 71.4 79.2 84.1 76.9 83.3 83.4 82.7 79.4 78.7 73.5 78.5 73.8 76.6 71.9
90 75.5 93.2 72.6 79.2 89 84.1 87.4 87.5 91.5 83.4 85.3 77.3 83.7 81.3 80.7 75.3

Table 6.8: Predicted quantiles sections 34,36

quantile
Section 34 Section 36

dir 1 dir 2 dir 1 dir 2
pred. emp. pred. emp. pred. emp. pred. emp.

10 44.1 42.5 40.9 43.1 52 44.6 53.6 56.7
20 48.4 46.5 46.5 50.6 57.5 50.9 58.8 59.1
30 51.4 49.1 50.6 52.7 61.5 59.2 62.5 62.2
40 54 51.2 54.1 56.2 64.9 64.2 65.7 65.2
50 56.5 53.2 57.4 58.8 68 68.2 68.7 69.5
60 58.9 54.7 60.7 60.2 71.2 70.9 71.7 72.4
70 61.5 58 64.2 64.9 74.6 74.9 74.9 76.8
80 64.6 62.2 68.3 70.3 78.6 79.3 78.7 78.8
90 68.8 68.4 73.9 76 84.1 94.6 83.9 82.5

148



6.7 Jackknifed coefficients

The poor predictions, especially for the high and low quantiles, in some com-

binations of section and direction appear to be caused by the instability of the

jackknife coefficients used for the validation.

Tables 6.9, 6.10 and 6.11 present the jackknife coefficients used for speed data

validation and should be read together (the tables are only split in order to fit in the

document). Each line corresponds to estimates with one section removed, except

the first one that contains the estimations on the whole sample. Each column

corresponds to the estimated coefficients for a specific predictor. The gray cells

indicate the coefficients that are very different from the full sample equivalent.

The validation scheme used in this chapter is a variant of the jackknife method

in statistics. We have discussed in details in the previous section how to compute out

of sample predictors for random effects. However, the prediction of speed quantiles

in a new section also requires that the model’s coefficients be estimated for the

validation sample. Ideally, the estimated coefficients in a given column would be

stable and comparable to the estimated coefficient for the whole sample. Large

differences between a coefficient estimated with one section out and with the whole

sample raises concerns about that section or predictor. For example the jackknife

coefficients for Z times SLW are very similar for all 31 sections removed and with

the overall sample, whereas the coefficients for Z times X1 over R appear to be off

for sections 1,3,5,7,10,12 and 30.

The sections that generate extreme jackknife coefficients are consistently the
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same for all predictors. Sections 1,3,5,7,10,15,29,30,32 and 36 generate most of

the extreme jackknife coefficients. This might be an indication that these sections

behave according to a different model, or that the measurement of predictors and

speed data was less reliable on these sections.
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Table 6.9: Jackknife coefficients 1

se
ct

io
n

ou
t

in
te

rc
ep

t

Z
la

n
e

Z
ti

m
es

X
1

ov
er

R

Z
ti

m
es

S
L

S

Z
ti

m
es

S
B

L
S

Z
ti

m
es

ID
R

S

Z
ti

m
es

D
L

S

Z
ti

m
es

P
ed

Z
ti

m
es

S
R

S

Z
ti

m
es

S
B

R
S

Z
ti

m
es

S
R

W

Z
ti

m
es

S
L
W

none 79.34 10.99 -134.12 -2.82 -1.27 -0.13 -2.34 1.38 -3.14 -1.44 -14.4 11.94
1 79.8 6.88 -64.43 -1.63 -1.89 -0.05 -1.92 1.51 -2.22 -1.85 -15.11 11.13
3 79.52 19.35 -88.29 -2.19 -1.68 -0.22 -2.3 1.62 -2.5 -1.91 -13.44 12.7
5 79.49 16.02 -88.36 -1.97 -1.68 -0.27 -2.49 1.92 -2.47 -1.26 -13.96 12.36
7 79.22 10.67 -94.03 -2.64 -0.44 -0.03 -2.23 1.7 -3.01 -0.85 -14.5 12.06
8 79.1 11.27 -143.02 -2.77 -1.16 -0.12 -2.33 1.46 -3.1 -1.35 -14.4 11.97
9 79.31 10.92 -135.47 -2.78 -1.21 -0.11 -2.31 1.36 -3.2 -1.54 -14.39 11.94
10 79.21 20.94 -92.76 -2.04 -1.32 -0.33 -2.68 1.99 -2.28 -1.52 -13.87 12.32
11 79.54 11.26 -133.6 -2.89 -1.27 0.02 -2.28 1.12 -3.28 -1.53 -14.4 11.94
12 79.29 6.79 -108.67 -2.98 -1.62 0.18 -2.53 0.72 -3.54 -1.88 -14.43 11.86
13 79.34 11.01 -129.85 -2.82 -1.33 -0.17 -2.34 1.46 -3.12 -1.51 -14.36 11.96
14 79.12 12.74 -133.41 -2.65 -1.15 -0.09 -2.07 1.39 -3.3 -1.5 -14.31 11.97
15 79.23 10.55 -146.97 -2.43 -1.03 -0.21 -5.05 1.74 -3.1 -1.55 -14.62 11.69
16 79.12 13.2 -137.08 -2.85 -1.41 -0.12 -2.14 1.49 -3.16 -1.55 -14.31 12.03
17 79.23 11.44 -132.53 -2.77 -1.05 -0.18 -2.3 1.19 -3.23 -1.31 -14.45 11.89
18 79.68 11.87 -139.33 -2.71 -1.21 -0.12 -2.33 1.47 -3.09 -1.38 -14.43 11.92
20 78.41 9.39 -135.25 -2.76 -1.1 -0.2 -2.15 1.43 -3.13 -1.39 -14.48 11.87
21 78.72 9.76 -134.22 -3 -1.45 -0.02 -2.45 1.02 -3.29 -1.64 -14.4 11.93
22 79.33 9.46 -127.27 -2.74 -1.03 -0.14 -2.37 1.3 -3.26 -1.47 -14.47 11.89
23 80.42 12.08 -127.73 -2.42 -1.13 -0.27 -2.52 2.29 -2.72 -1.24 -14.47 11.8
24 79.34 10.84 -134.9 -2.83 -1.14 -0.14 -2.35 1.55 -3.05 -1.4 -14.46 11.91
25 79.74 11.12 -129.57 -2.94 -1.63 -0.06 -2.53 1.1 -3.25 -1.74 -14.43 11.85
26 79.59 10.6 -133.18 -2.97 -1.19 -0.12 -2.44 1.44 -2.98 -1.46 -14.46 11.9
27 79.48 11.05 -135.3 -2.84 -1.3 -0.12 -2.31 1.3 -3.16 -1.46 -14.38 11.97
28 79.09 8.72 -123.17 -2.94 -1.45 -0.08 -1.68 1.2 -3.36 -1.79 -14.4 11.86
29 78.94 12.35 -137.62 -2.58 -1.15 -0.36 -1.98 2.02 -2.9 -1.15 -13.95 12.32
30 79.37 7.44 -73.32 -4.76 -2.23 -0.32 -2.1 -2.06 -4.79 -2.25 -14.3 11.95
31 79.52 11.39 -135.74 -2.64 -1.36 -0.11 -2.25 1.33 -3.29 -1.41 -14.35 11.99
32 79.47 11.94 -97.53 -3.01 -1.06 0.17 -1.42 4.08 -3.45 -1.14 -14.34 11.94
33 79.78 11.29 -134.52 -2.81 -1.33 -0.12 -2.39 1.31 -3.23 -1.44 -14.41 11.93
34 79.34 11.06 -134.27 -2.84 -1.3 -0.12 -2.31 1.4 -3.17 -1.45 -14.38 11.97
36 79.4 13.11 -129.52 -3 -1.58 -0.16 -2.65 -0.03 -2.05 -0.28 -14.39 11.85
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none -1.37 0.15 1 -2.8 -2.4 3.99 -3.3 -4.21 5.58 -1.84 -3.38 0.22
1 -1.08 0.13 0.9 -2.78 -2.18 4.97 -6.59 -2.31 2.19 0 -4.93 0.29
3 -1.06 0.14 0.94 -2.88 -1.93 0.88 -2.98 -2.18 2.07 -3.71 -2.27 0.19
5 -0.8 0.13 0.99 -3.17 -2.11 5.87 -3.27 -5.08 7.46 -3.59 -1.48 0.03
7 -1.02 0.17 1.08 -3.07 -2.65 4.68 -3.66 -4.71 5.09 -2.3 -3.39 0.03
8 -1.32 0.15 1.01 -2.84 -2.41 4.01 -3.35 -4.31 5.58 -1.97 -3.29 0.2
9 -1.3 0.15 1.01 -2.85 -2.46 3.96 -3.34 -4.19 5.53 -1.77 -3.47 0.21
10 -1.08 0.13 0.95 -2.95 -1.78 1.46 -3.2 -5.1 7.57 -3.83 -1.94 0.06
11 -1.43 0.15 1.04 -2.83 -2.55 4 -3.26 -4.13 5.43 -1.84 -3.3 0.21
12 -1.69 0.14 1.14 -3.38 -3.15 3.95 -3.81 -3.85 4.87 -0.2 -3.53 0.47
13 -1.58 0.15 1.02 -2.84 -2.44 3.92 -3.45 -4.21 5.6 -1.78 -3.35 0.3
14 -1.34 0.15 1.1 -2.95 -2.67 3.95 -3.57 -4.19 5.56 -2.42 -3.12 0.18
15 -0.71 0.16 0.96 -0.79 -2.36 4.4 -3.3 -6.53 10.16 -1.69 -3.82 0.04
16 -1.65 0.14 0.96 -2.64 -2.67 3.84 -2.89 -4.03 5.24 -2.17 -2.87 0.24
17 -1.24 0.16 1.09 -2.95 -2.27 4.24 -3.65 -4.29 5.74 -2.33 -3.79 0.24
18 -1.28 0.15 1.03 -2.92 -2.37 3.92 -3.52 -4.2 5.55 -2.11 -3.24 0.2
20 -1.01 0.16 0.98 -3.15 -2.14 4.29 -3.32 -4.11 5.35 -1.66 -3.9 0.12
21 -1.51 0.14 0.98 -2.77 -2.48 3.95 -3.13 -4.16 5.55 -1.29 -3.77 0.35
22 -1.13 0.16 1.06 -2.88 -2.36 4.35 -3.47 -4.34 5.84 -1.68 -3.84 0.14
23 -1.13 0.17 1.02 -2.97 -2.26 4.24 -3.79 -4.61 6.5 -2.71 -2.7 -0.02
24 -1.27 0.15 1 -2.8 -2.3 4.11 -3.37 -4.29 5.74 -1.93 -3.41 0.15
25 -1.48 0.14 1.02 -3.03 -2.48 3.73 -3.32 -4.02 5.37 -1.44 -3.19 0.31
26 -1.43 0.15 1 -2.76 -2.28 4.1 -3.31 -4.29 5.72 -1.77 -3.49 0.19
27 -1.38 0.15 1 -2.78 -2.4 3.93 -3.23 -4.21 5.58 -1.82 -3.34 0.22
28 -1.51 0.15 0.97 -3.7 -2.71 4.26 -2.92 -3.31 3.79 -0.92 -3.74 0.27
29 -1.13 0.18 1.03 -2.32 -2.13 3.73 -3.47 -5.64 8.62 -3.35 -2.69 0.01
30 -1.27 0.11 0.91 -2.29 -1.96 3.72 0.68 -3.31 4.14 0.31 -3.74 0.17
31 -1.26 0.15 1 -2.84 -2.54 3.87 -3.22 -4.15 5.45 -1.9 -3.15 0.21
32 -1.49 0.17 0.98 -2.49 -2.73 4.19 -5.47 -4.23 5.63 -2.92 -4.5 0.45
33 -1.48 0.15 0.99 -2.79 -2.37 3.94 -3.2 -4.16 5.49 -1.83 -3.33 0.25
34 -1.37 0.15 1 -2.78 -2.41 3.93 -3.22 -4.21 5.58 -1.82 -3.33 0.22
36 -2.26 0.18 0.74 -2.19 -1.97 4.17 -1.77 -4.46 6.07 -3.25 -3.48 0.58
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Table 6.11: Jackknife coefficients 3
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none 0.09 0.11 -0.11 -1.99 0.73 1.63 -1949.12 -7.6 -2.53 3.74 0.4
1 0.09 -0.11 -0.12 -4.32 -0.31 -0.34 -2044.73 -7.79 -0.76 0.61 1.11
3 0.12 0.07 -0.06 -0.48 0.51 1.99 -1985.25 -7.67 1.09 -3.04 0.45
5 0.09 0.05 -0.1 -0.73 0.33 1.81 -1979.94 -7.66 -3.49 5.8 0.37
7 -0.07 0.06 -0.2 -3.5 0.73 1.65 -2280.23 -7.56 -2.91 3.48 0.43
8 0.08 0.11 -0.12 -2.04 0.72 1.64 -1899.47 -7.51 -2.63 3.77 0.42
9 0.1 0.1 -0.11 -1.9 0.73 1.67 -1946.11 -7.59 -2.55 3.75 0.37
10 0.15 0.09 -0.09 -0.12 0.31 1.71 -1216.14 -7.56 -3.61 5.92 0.47
11 0.09 0.09 -0.1 -2.29 0.75 1.9 -1990.04 -7.68 -2.39 3.47 0.48
12 0.08 0.21 -0.07 -2.21 0.57 1.26 -1939.59 -7.59 -2.44 3.6 0.4
13 0.09 0.12 -0.1 -1.6 0.69 1.68 -1948.84 -7.6 -2.56 3.8 0.44
14 0.11 0.05 -0.09 -1.72 0.73 2.29 -1904.54 -7.52 -2.65 3.93 0.62
15 0.08 0.1 -0.19 -1.8 0.69 0.74 -1925.73 -7.56 -0.37 -0.63 -0.22
16 0.09 0.09 -0.07 -1.47 0.75 1.97 -1904.2 -7.52 -2.41 3.52 0.37
17 0.09 0.11 -0.13 -2.14 0.77 2.02 -1927.38 -7.56 -2.61 3.9 0.57
18 0.09 0.09 -0.12 -1.98 0.68 1.73 -2019.71 -7.73 -2.57 3.81 0.52
20 0.08 0.11 -0.16 -2.3 0.8 1.28 -1758.79 -7.25 -2.97 4.6 0.18
21 0.09 0.13 -0.11 -2.22 0.76 1.53 -1821.74 -7.37 -2.51 3.78 0.29
22 0.08 0.11 -0.15 -2.2 0.78 1.52 -1947.73 -7.6 -2.57 3.83 0.23
23 0.08 0.12 -0.14 -1.77 0.64 1.13 -2171.51 -8.02 -2.91 4.65 0.46
24 0.08 0.09 -0.13 -2.11 0.75 1.6 -1948.27 -7.6 -2.52 3.73 0.37
25 0.09 0.13 -0.09 -1.88 0.69 1.7 -2031.33 -7.76 -2.36 3.58 0.46
26 0.08 0.11 -0.12 -2.05 0.74 1.52 -1999.88 -7.7 -2.43 3.56 0.31
27 0.09 0.11 -0.11 -1.97 0.79 1.72 -1978.23 -8.74 -2.54 3.75 0.41
28 0.09 0.16 -0.11 -1.76 0.79 1.16 -1898.56 -7.51 -3.29 5.25 -0.06
29 0.09 0.07 -0.1 -1.72 0.92 2.26 -1866.59 -7.45 -3.64 6.13 0.81
30 0.1 0.09 -0.05 -2.15 2.39 5.53 -1956.46 -7.57 -1.52 2.04 0.52
31 0.09 0.12 -0.1 -1.99 0.72 1.68 -1986.33 -7.67 -2.64 3.95 0.46
32 0.08 -0.13 -0.1 -4.06 0.22 1.37 -1976.37 -7.45 -2.66 4.04 1.26
33 0.09 0.13 -0.11 -1.94 0.74 1.69 -2040.42 -7.77 -2.46 3.61 0.43
34 0.09 0.11 -0.11 -2 0.68 1.72 -1949.95 -7.68 -2.54 3.75 0.42
36 0.13 0.33 -0.12 -3.14 1.11 1.71 -1961.17 -7.54 -2.86 4.3 0.93
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6.8 Conclusions

In this chapter we have explored methods to predict speed distributions using

mixed linear models.

The difficulties of making prediction were twofold. First we are using a model

with random effects and predictions for new road sections require some way to

predict these random effects. Second, we are using normal quantiles of the dependent

variables to build more predictors, effectively making out-of-sample predictions of

random effects more difficult.

We have discussed that it was necessary to observe at least some speed data

in the section for which decile predictions were computed. To overcome the problem

created by the use of normal quantiles in the calculation of residuals, we proposed the

use of a simple auxiliary model. We have shown how to set the relationship between

this auxiliary model and the full actual model used in prediction in order to derive

the best linear unbiased predictor (BLUP) in this context. We observed that this

method was not performing well when used to make random effect predictions for

a model that ignored the sampling design of the data, but turned out to be very

precise when the full sampling sampling design was accounted for in the model.

The other part that was required to validate the model are the coefficients

associated with the variables in the model. We have seen that their estimation was

roughly stable except for some variables that generated more extreme coefficients

for some sections. The sections with extreme coefficients were consistently the same

for all the affected variables.
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By applying a jackknife technique we obtained some interesting results. Some

road sections were predicted satisfactorily. The sections that presented large errors

in the prediction of random effect were mostly affected by errors in the coefficients of

the model. Some sections appeared to have a disproportionate effect on the model,

suggesting that they should be modeled in a different way.
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Chapter 7: Conclusions

7.1 Summary

This dissertation has proposed econometric techniques to model decisions that

involve both discrete and continuous dependent variables and a mixed linear model

that accounts for the survey design. Procedures to apply these models in a predictive

context have been formulated and applied to simulated data and real case studies.

Probit and ordered probit are estimated jointly with linear regression by corre-

lating the error terms, that are assumed to follow a multivariate normal distribution.

It has been shown that the existence of a closed form for the choice probability of

ordered models makes them much more stable numerically. On the other hand, the

calculation of choices probabilities in the probit model, that involves the integration

of multivariate normal probabilities, has resulted to be challenging. A method, first

suggested by Genz, has proved to greatly reduce the simulation error compared to

a naive Monte-Carlo approach, to be more stable and generally more suited for the

problem. There are still, however, several limitations to the use of such models,

notably the long computation time and the numerical instability.

Discrete models are peculiar to use for predictions because they only produce

choice probabilities. In a cross-validation scheme actual choices have been compared
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to predicted probabilities. Market shares of alternatives are taken into account when

looking at predicted probabilities, mostly because it is very hard to predict a choice

that has a very low occurrence. It was found that both discrete-continuous models

only improves marginally the predictive power of vehicle ownership and use models

estimated on 2009 NHTS data, and that ordered models appear to have a slightly

better predicting power. However, results obtained on simulated data attest that

improvements that these models offer can be significant when high correlation exists

between the continuous and the discrete variables.

The second part of this dissertation reviewed the use of linear mixed models in

the context of free-flow speed distribution estimation. Random effect models offer

the possibility to account for the sampling design of our data, that contain multiple

observations for the same direction, road and section. A variable selection methods

based on BIC has been used to select the final model specification. Among the

results obtained, it was found that there is no contribution from the road to free-

flow speed and that instead only road sections have an impact, that is sometimes

very high. The two directions on a road section do have an impact on speeds,

although this is more limited.

Finally, a method to predict the distribution of free-flow speeds on new road

sections is offered. An auxiliary model that deals with the unavailability of certain

predictors in the validation sample is used to predict the value of the random effects.

The methods was successfully applied to speed distribution predictions on most

of the road sections in our sample, although significant errors were calculated in

a limited number of other sections. A jackknife based analysis has shown that
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predictor coefficients are likely the cause of this problem, as some road sections

have a disproportionate impact on them.

7.2 Contributions

The major contributions from this dissertation can be summarized as follows:

• Models for dependent variables that do not belong to the same family are

emerging in the transportation literature and related fields (i.e. marketing,

economics). This thesis has offered a theoretical framework, computational

tools and numerical results for discrete-continuous models.

• The discrete-continuous models have been not only estimated but also vali-

dated to measure their ability to reproduce choice probabilities in validation

samples.

• The discrete-continuous models have been applied in the context of car own-

ership and use, which is a very relevant subject in our societies that are highly

dependent on cars and fossil fuel. The models proposed here can be used to cal-

culate energy consumption from private transportation and Greenhouse Gas

Emissions. The models are general and can be applied in different contexts

and in different disciplines.

• The Random Effect model for free-flow speed distribution represents a signif-

icant step in the ability to understand, model and transfer operational speed

measurements. This method was suggested by several analysts, but never fully
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explored in this context. Moreover, the transferability study offers the possi-

bility to reduce cost associated with data collection and to extend on a large

scale the results obtained.

• The techniques developed in this thesis are highly multi-disciplinary. Elements

from statistics, econometrics, optimization, survey design and transportation

have been assembled to produce these results.

7.3 Future work

There any many questions left unanswered in this document.

The unordered discrete-continuous model suffers from numerical problems in

estimation. The application of more advanced optimization procedures should be

investigated to solve numerical instability and to compute standard errors for model

parameters. The discrete-continuous models can be further expanded to take into

account heterogeneity in the form of latent classes or random parameters. Although

these extensions are possible, the numerical problems and the long computation

time might prevent practical applications. The proposed models are general and can

be applied to several transportation problems that include discrete and continuous

decision variables: activity type and duration; number of trips and distance traveled,

departure time and trip duration.

Model selection is just partially addressed in this dissertation; other methods

than BIC could be implemented and their effectiveness explored with respect to

model fit and model prediction. One problem that has not been studied is the
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incorporation of sampling weights in the analysis, which would make inferences to

the whole population more robust. The modeling approach for free-flow speed has

proved to be useful, but more validation is needed in order to make the coefficients

of the model robust. This may involve the use of mixture of models. Finally, more

realistic validation runs can be performed by collecting a handful of observations on

new roads.
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