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Chapter 1: Indirect Effects of Imidacloprid on Natural 
Enemies of Spider Mites in Two Systems 

 

Abstract 

 With a growing number of reports showing secondary outbreaks of spider 

mites following systemic applications of imidacloprid, a study was designed to test 

the indirect effects of this insecticide on natural enemies of spider mites.  We exposed 

two predators, Chrysoperla rufilabris and Stethorus punctillum, to mites that were 

reared on boxwoods and elms treated with imidacloprid and examined  prey 

consumption, predator mobility and mortality.  Mites reared on treated foliage were 

extremely toxic to predators, eliciting sharp reductions in feeding, locomotion, and 

longevity.  These findings document that non-target pests feeding on plants treated 

with imidacloprid cause lethal and sublethal responses in natural enemies.  We 

discuss implications on the compatibility of imidacloprid with IPM practices and 

infer impacts on generalist and specialist natural enemies. 
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Introduction 

Literature review  

An ecological outbreak is defined as an explosive increase in the abundance of 

a particular species over a relatively short period of time (Berryman 1987).  A pest 

outbreak then is a marked increase in an organism that has a negative impact on 

human health or well-being, be that economic, ecologic, or emotional (Berryman 

1987).    Even in naturalized systems, Nothangle and Schultz (1987) provide 

extensive evidence suggesting that many of the present-day pest species have only 

become pests after the advent of anthropogenic habitat alterations.  For instance, 

gypsy moth could only become a major pest after chestnut blight allowed favorable 

host trees to become dominant in the eastern hardwood forest (in Barbosa and Schultz 

1987).  Other studies illustrate that even within forest ecosystems, outbreaks are more 

likely near points of extensive human influence, like margins and logging sites 

(Battisti et al. 2000). 

Nowhere is human influence on  habitats more extreme than the urban 

environment.  Not surprisingly, pest outbreaks are common occurrences in urban 

landscapes (Raupp et al. 1992, Raupp et al. in press).  A number of factors in these 

managed systems contribute to allow arthropod pests to reach economic and 

aesthetically damaging levels.  These factors include both bottom-up (plant-mediated) 

and top-down (natural enemy-mediated) processes (Daugherty et al. 2007, Raupp et 

al. in press). While few ecological studies examine mechanisms underlying pest 

outbreaks in urban environments, the fast pace of urban development and the 
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potential for significant losses to pests predicates that we gain more insight into 

ecological processes in urban settings (McIntyre 2000). 

A number of bottom-up processes contribute to pest outbreaks in urban 

landscapes.  Given that landscape plants did not evolve in man-altered habitats 

several studies suggest that resistance to herbivores will be lost in these plants due to 

selection for traits advantageous in the introduced range (drought and hypoxia 

tolerance, etc.) in lieu of energetically costly defensive chemicals (Blossey and 

Noetzold 1995, Maron et al. 2004).  Herms (2002) and Ghandi and Herms (in press) 

also suggested that many landscape plants do not share an evolutionary history with 

their pests and growing conditions, which can lead to damaging population levels of 

these pests. Other plant-mediated factors contributing to outbreaks can be as simple 

as the inherent susceptibility of the host to a particular pest, as some plant species and 

cultivars are more resistant than others (Reinert et al. 2006, Chappell and Robacker 

2006).  Planting of resistant plants is a largely underutilized pest management 

technique (Morgan et al. 1978, Nielsen 1989, Raupp et al. 1992). 

Plants in the urban landscape are typically exposed to elevated levels of 

abiotic stress. That may predispose them to pest attack (Mattson and Haack 1987, 

Herms and Mattson 1992, Herms 2002, Raupp et al. in press) When compared to a 

forest setting, urban habitats are considerably more stressful (Beran et al. 1985, 

Krizek and Dubik 1987, Whitlow and Bassuk 1988, Whitlow et al. 1992).  Possibly 

the most prevalent stress factor in the landscape is drought.  While technically a lack 

of available water, drought is especially common in urban and suburban 

environments due to soil compaction, loss of organic matter, poor soil structure, 
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reflected heat, restricted or severed root space, lack of infiltration, competition with 

grass and other and groundcovers. Excess salinity due to the deposition of de-icing 

road salt may compound these problems (Whitcomb 2006).  White (1969) and 

Mattson and Haack (1987) provide a number of mechanisms by which drought can 

increase insect attack on landscape plants.  They also document 14 different insect 

pest genera that outbreak on drought-stressed plants.  Air pollution, common in many 

urban environments, has been linked to gypsy moth and bark beetle infestations 

(Endress et al. 1991, Koehler et al. 1978, respectively).  Mechanical damage, 

unavoidable in urban settings, leads to increased activity of lepidopteran and 

coleopteran borers (Koehler et al. 1983, Koehler 1991).  Furthermore, Mattson and 

Haack (1987) argue that because plant responses to stress are similar regardless of the 

stress type, most stresses will predispose plants to pest outbreaks.  Indeed, numerous 

studies have shown outbreaks of pests in urban environments that rarely reach high 

densities in naturalized settings as a result of stress (Frankie and Ehler 1978, Nielsen 

1989, Driestadt et al. 1990, McIntyre 2000).  However, several studies suggest that 

the relationship between plant stress and herbivore abundance is non-linear (Herms 

2002, Huberty and Denno 2004). 

In addition to planting susceptible hosts and stress in urban habitats, design 

elements may increase pest abundance.  Vegetational and structural complexity 

impact arthropod communities immensely (Rypstra et al. 1999, Shrewsbury and 

Raupp 2000, Langellotto and Denno 2004).  Homogeneity, both structurally and in 

the plant palette, often act in tandem to facilitate pest outbreaks of managed systems 

(Raupp et al. 1992, Brown et al. 2006, Shrewsbury and Raupp, 2006).  Shrewsbury 
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and Raupp (2000, 2006) link this increased pest activity to a loss of natural enemy 

abundance and diversity in response to alternate prey items.  Tooker and Hanks 

(2000) referred to urban landscapes as “impoverished areas” in regards to biodiversity 

of natural enemies. 

 In addition to design, improper cultural practices may lead to outbreaks as 

well. Excessive fertilization is often associated with inflated numbers of sucking 

insects due to the higher nitrogen content in sap (McClure 1991, Herms 2002, Davies 

et al. 2005, Lu et al. 2005).  Similarly, excessive fertilization has been linked to 

infestations of sawflies and borers (Schoeneweiss 1975).  Pruning, if performed 

improperly or at incorrect times, can also increase pest abundance (Svihra and 

Koehler 1989, Byers et al. 1980).   

Perhaps the most notable and counterintuitive examples of pest outbreaks 

resulting from landscape management practices are outbreaks associated with 

pesticide application.  Pesticides often negatively disrupt natural enemy communities 

either through non-target toxicity or elimination of food sources, leading to a loss of 

top-down control of many pests (Stern et al. 1959, Smith and van den Bosch 1967, 

Croft 1990).  A mosquito fogging program in a resort community resulted in 

decimation of parasitoids, allowing pine needle scale (Chionaspis pinifoliae (Fitch)) 

to reach outbreak proportions.  When the fogging program was modified, the natural 

enemy communities rebounded, causing the scale population to decline (Luck and 

Dahlstein 1975).  Similarly, weekly application of dimethoate to a community in 

Michigan to control filth flies, resulted in outbreaks of fruit lecanium 

(Parthenolecanium corni [Bouche’]).  Again, when the program was adjusted to IPM 
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standards, the scales were brought under control (Merritt et al. 1983).  When a 

localized population of Japanese beetle (Popillia japonica Newman) was discovered 

in California, the control measures proved to be more toxic to natural enemies than 

the target pest, resulting in secondary pest outbreaks of whiteflies, mealybugs, scales, 

and mites (DeBach et al. 1977).  In addition to outbreaks resulting from large-scale 

insecticide applications, Raupp et al. (2001) showed that twelve species of armored 

scales became more abundant in landscapes that received weekly sprays of residual 

pesticides.   

A new class of insecticides, neonicotinoids, were originally believed to 

obviate non-target effects and concomitant pest outbreaks.  Owing to their broad host 

range, systemic mode of action, and low mammalian toxicity, neonicotinoids are 

among the most widely-used pesticides in the urban landscape (Sclar and Cranshaw 

1996; Gill et al. 1999).  Among this relatively new class of agrochemicals, 

imidacloprid (N-[1-[(6-Chloro-3-pyridyl)methyl]-4,5-dihydroimidazol-2-

yl]nitramide), first registered for use in the U.S. in 1994, is the most popular.  

Imidacloprid is the most heavily applied, in terms of volume, insecticide in the world 

(Ware 2000).  Bayer CropScience holds over 80 brands of imidaclroprid-containing 

products labeled for use in over 140 different crops (Thielert 2006).  Imidacloprid, 

like other neonicotinoid insecticides, acts upon the central nervous system of the 

insect, binding to acetylcholine receptors on the nerve cells, causing nerve impulses 

to fire constantly (Ware 2000).  Mammalian acetylcholine receptors, in addition to 

being less sensitive than insect receptors to imidacloprid, are located in the muscles 
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rather than the nerves, which causes imidacloprid’s low mammalian toxicity (Zwart et 

al. 1994, Ware 2000).   

Imidacloprid can be absorbed through plant roots when applied as a soil 

drench or in granular form, or are injected into trunk or root flares.  Imidacloprid is 

highly water-soluble and very mobile in the xylem, where it is transmitted to the 

shoots and leaves (Sur and Stork 2003).  It then moves through the plant’s water 

supply via xylem and the apoplast (Isaacs 1999, Sur and Stork 2003).  When applied 

as a soil drench, roughly 5% of the active ingredient is taken up by the plant, varying 

between species (Sur and Stork 2003).  This systemic mode of application eliminates 

the complications associated with drift of insecticides applied as a traditional spray.  

As they can remain in plant tissues for up to three years, neonicotinoids are often 

applied less frequently than foliar pesticides (Webb et al. 2003, Raupp et al. 2005).  

Less frequent treatments, combined with reduced direct contact with non-target 

arthropods, originally contributed to imidacloprid’s designation as relatively benign 

to natural enemies (Mizell and Sconyers 1992; Kaakeh et al. 1996).  

Imidacloprid is labeled for use against a broad range of key pest species, 

primarily sucking insects, but it is effective against some coleopteran, dipteran, and 

lepidopteran pests (Elbert et al. 1991).  Many of these target insects, such as Asian 

longhorn beetle, emerald ash borer, and hemlock wooly adelgid, are invasive, exotic 

pests that threaten profitability of nurserymen or ecological sustainability of natural 

forest stands and urban forests. In some instances mortality is severe enough to alter 

the native range of plants and push them toward extinction altogether (Nowak et al. 

2001; MacFarlane and Meyer 2005; Preisser et al. 2008).  In some instances, systemic 
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insecticides are one of the most effective control methods for these invasive insect 

pests (Webb et al 2003; Herms 2003) and are likely to see continued, if not increased 

use. 

Soon after its introduction in 1994, arborists and landscapers began to notice 

that mite abundance and injury became more prevalent on plants treated with 

imidacloprid.  Sclar et al. (1998) first documented an outbreak of two phytophagous 

mite species on honeylocust trees and bedding marigolds.  James et al. (2001) 

reported an increase in two-spotted spider mites, Tetranychus urticae (Koch), on hop 

plants that had been treated with imidacloprid.  Furthermore, Canadian hemlocks, 

Tsuga canadensis (L.), treated with imidacloprid produced vastly elevated 

populations of spruce spider mite, Oligonychus ununguis (Jacobi), and hemlock rust 

mite, Nalepella tsugifolia Keifer, when compared with untreated control hemlocks 

(Raupp et al. 2004).   

We propose two categories underlying secondary outbreaks of spider mites: 

bottom-up processes and top-down processes.  Bottom-up processes are mechanisms 

mediated by resources increasing fitness of the mites and a top-down effect, and top-

down processes are mechanisms mediated by altered natural enemy activity.  

Hormoligosis, a sublethal effect of a pesticide leading to increased fecundity in an 

organism, is one example of a bottom-up effect (Luckey 1968).  James and Price 

(2002) demonstrated a hormoligotic effect with twospotted spider mites sprayed with 

imidacloprid and those reared on bean leaves treated systemically with imidacloprid.  

Fecundity and longevity was increased in the mites exposed to imidacloprid through 

either avenue.  Another unexplored hypothesis that would contribute to a bottom-up 
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increase in mite populations is a change in plant quality.  This idea, proposed by 

Bayer Corporation, implicates imidacloprid as a plant growth regulator, thereby 

enhancing the quality of treated leaves as food for non-target herbivores (Thielert 

2006).  Thielert (2006) claimed that imidacloprid application leads to increased 

biomass accumulation, increased yield, increased stress tolerance, and increased 

disease tolerance.  These claims are corroborated in part by Weston (2008), who 

found an increase in Viburnum dentatum L. height after application of imidacloprid.    

However, the study failed to control for greater levels of herbivory on the untreated 

plants.  Elevated nitrogen levels are a strong factor inducing herbivorous pest 

outbreaks, as described previously, and Mote et al. (1995) found that seed treatments 

of imidacloprid resulted in cotton plants with higher nitrogen and chlorophyll content 

in the leaves.  Either hormoligosis, plant quality or a combination of both factors 

could contribute to a bottom-up inflation of mite levels. 

A second category of processes that could explain secondary outbreaks of 

mites on plants treated with imidacloprid is the loss or impairment of top-down 

regulation by natural enemies. Imidacloprid is toxic to a number of natural enemies, 

such as lady beetles, pirate bugs, big eyed bugs, and lacewing larvae when applied as 

a spray (Mizell and Sconyers 1992).  Mullins (1993) conjectured that lethal effects of 

imidacloprid on natural enemies should be eliminated for seed, soil or trunk 

applications as the pesticide should not contact the organism.  However, a growing 

body of literature suggests that omnivorous natural enemies can be exposed to toxic 

levels of systemic imidacloprid through plant residues, nectar, or sap feeding (Sclar et 

al. 1998, Smith and Krischik 1999, James and Vogele 2001, James and Coyle 2001, 
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Rebek and Sadof 2003).  Smith and Krischik (1999) noted a reduction in survival, an 

increase in preovipositional time, and impaired coordination in Coleomigilla 

maculate (DeGeer), a facultative pollen feeding lady beetle following exposure to 

imidacloprid.  Several studies have demonstrated the presence of imidacloprid in the 

nectar of treated flowering plants and its toxicity to parasitoids and green lacewing 

adults resulting in reduced survivorship and impaired foraging behavior (Stapel et al. 

2000, Rebek and Sadof 2003, Krischik et al. 2007, Rongers et al. 2007).  Kunkel et al. 

(2001) reported impaired locomotion, excessive grooming, and an inability to escape 

from ant predation in Harpalus pennsylvanicus (DeGeer), a commonly occurring 

carabid beetle, after several methods of exposure to imidacloprid, including 

consumption of contaminated food items.  Poletti et al. (2007) documented a 

reduction in functional responses of two predatory mite species following exposure to 

imidacloprid.  They showed a 55% and 87% reduction in spider mite eggs consumed 

by Neoseiulus californicus (McGregor) and Phytoseiulus macropilis (Banks) if the 

eggs were sprayed with imidacloprid.  All of these studies examined only direct 

exposure to imidacloprid: exposure to spray, spray residues, or plant products.   

Only recently have scientists begun to understand that systemic insecticides 

may indirectly affect natural enemies through exposure of prey that have ingested 

pesticides. In the first study of this kind, lettuce seedlings were treated with a soil 

drench of imidacloprid, commonly used to control the lettuce aphid, Nasnovia 

ribisnigri (Mosley), and potato aphids, Macrosiphum euphorbiae (Thomas). 

Imidacloprid was applied and aphids allowed to feed for 48 hours.  These intoxicated 

prey items were then presented to larvae of the Tasmanian Brown Lacewing, 
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Micromus tasminiae (Walker), over 8 days.  The imidacloprid-exposed aphids killed 

96% of exposed lacewing larvae, and the lettuce seedlings continued to produce toxic 

aphids up to 40 days after treatment (Cole and Horne 2006).  Walker et al. (2007) 

later used lettuce aphids to explore the lethal and sublethal effects of varying doses of 

imidicloprid on the Tasmanian brown lacewing larvae.  They found that low doses of 

systemic imidacloprid, when vectored through aphids, slowed the development rate of 

the lacewing larvae.  The majority of the aphids used in these studies were dead, but 

the studies showed that predators fed on prey items that have been killed by ingesting 

imidacloprid (Cole and Horne 2006, Walker et al. 2007).  More recently, Papachristos 

and Milonas (2008) demonstrated that doses of imidacloprid insufficient to affect pea 

aphids, Aphis fabae Scopoli, lowered overall survivorship of the coccinellid beetle 

Hippodamia undecimnotata en Grace when raised on aphids from treated plants.  

Adult longevity and egg production was also adversely affected in beetles fed aphids 

reared on treated bean plants.  While aphid resistance to imidacloprid has not been 

documented yet, the pesticide’s wide usage has already given rise to resistance in 

leafhoppers (Gorman et al. 2008, Matsumura et al. 2008).  

The aforementioned studies utilized aphids which are target pests for 

imidacloprid.  In a nontarget pest system, James (2003) reported that spider mites 

reared on leaf discs sprayed with imidacloprid were toxic to a predatory mite, 

Galendromus occidentalis Nesbitt. 

Herbivorous mites are not adversely affected by imidacloprid, and in many 

cases, seem to benefit from its application (James and Price 2002).  Previous studies 

demonstrate that imidacloprid can be retained in tissues or the gut of aphids despite 
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the fact that imidacloprid has been shown to produce an antifeeding response in 

aphids, and those that do feed on treated plants are killed after feeding (Nauen 1995). 

A similar phenomenon may occur in mites, which appear to show no aversion to 

imidacloprid and may well be aided by its application (Sclar et al. 1998, James et al. 

2001, Raupp et al. 2004).   

Objectives 

The purpose of this research was to evaluate lethal and sublethal effects of 

indirect exposure to imidacloprid on natural enemies of spider mites.  The central 

hypothesis is that if mites can store or sequester imidacloprid in their bodies, then 

natural enemies feeding on these mites will be exposed to a dose of imidacloprid that 

cause lethal or sublethal responses.  The hypothesized avenue of exposure in our 

study systems is the following: plants are treated systemically with imidacloprid, 

mites feed on these treated plants, sequestering or storing imidacloprid, and a predator 

is exposed to imidacloprid upon consuming the mite.  I hypothesize that exposure to 

imidacloprid intoxication will manifest itself as a reduction in feeding, impairment of 

locomotion, and a shorter lifespan. Furthermore, I predict that plants treated with soil 

drenches of imidacloprid will not cause detrimental effects to predators through 

exposure to foliage alone.  Predators, if not feeding on any plant products, will only 

exhibit pesticide intoxication after eating prey reared on systemically treated plants.   

The two study systems utilized in this series of experiments, American elms 

and boxwoods have shown vastly elevated and damaging mite abundances following 

the application of imidacloprid.  Szczepaniec (2009) have documented that boxwood 

spider mites, Eurytetranychus buxi (family: Tetranychidae), become six times more 
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abundant on plants treated with soil drenches of imidacloprid as compared to 

untreated plants.  After the detection of the Asian Longhorned Beetle in New York 

City’s Central Park in 2002, thousands of trees were treated with trunk injections of 

imidacloprid in 2002-2007 as part of an eradication program.  Elms treated with 

imidacloprid hosted six to 200 times more spider mites, Tetranychus schoenei 

(family: Tetranychidae), than untreated trees (Raupp et al. 2008, Szczepaniec 2009).  

These mites are occasional pests of fruit trees and other woody ornamentals (Johnson 

and Lyons 1991), but reached levels high enough to defoliate the Central Park elms 

treated with imidacloprid prematurely (personal observation).   
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Methods 

Boxwood system 

Due to their evergreen habit and limited palatability to deer, boxwoods are 

one of the most popular plants in Maryland and cold hardy cultivars are planted 

increasingly frequently in the northern states (Raupp et al. 1985, Bachtell pers. comm. 

2008).  Intense pressure from the boxwood leafminer, Monarthropalpus flavus, and 

boxwood psyllids, Cacopsylla buxi, whose damaging stages are protected from 

conventional sprays by feeding inside leaves or cupped terminal foliage, makes 

systemic insecticides invaluable for control of these pests (d’Eustachio and Raupp 

2001).  Twenty ‘Winter Gem’ boxwoods (Buxus microphylla [Siebold & Zucc.] var. 

koreana [Nakai ex Rehder]) were obtained from Conard Pyle Co. nursery in 

Centreville, MD.  The plants had a roughly spherical, 50cm high canopy.  No 

systemic insecticides were applied to the plants before the onset of the study.  Plants 

were in 3 gallon pots, and potting medium consisted of a soilless bark mixture 

enriched with a time release fertilizer.  Plants were housed at the University of 

Maryland Research Greenhouses (College Park, MD) under drip irrigation and a 

temperature of 23° ± 4°C.  Supplemental HID lighting was provided at 14:10h (L:D). 

Eurytetranychus buxi (Garman) is a common pest of cultivated boxwoods, 

particularly those treated with imidacloprid (Johnson and Lyon, 1991).  Mites were 

reared on boxwoods that had never been treated with insecticides before utilization in 

this study.   Clippings from these infested plants were then transferred to the study 

replicates 3 weeks prior to treatment.  Positive identification of the mites was 
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provided by Ronald Ochoa at the Systemic Entomology Lab (BARC, USDA, 

Beltsville, MD).   

Boxwoods infested with mites were randomly assigned to two treatments. Ten 

were treated with imidacloprid (Merit 75WP, Bayer Corporation, Kansas City, MO) 

at a rate of 0.225g AI per pot three months prior to bioassays. Ten plants served as 

untreated controls. Irrigation was halted two days preceding the application of 

imidacloprid. A 100 mL solution of Merit 75WP was applied to ten pots, and 500 mL 

of water was poured onto the pots 15 minutes later.  Untreated controls received 

600mL of water. Plants were returned to drip irrigation two days after the insecticide 

was administered.  Mites were allowed to feed and reproduce under exposure to 

imidacloprid.   

Elm system 

While once among the most widely planted street trees in America, American 

elms, Ulmus americana (L.),  were virtually eliminated in the urban landscape after 

the introduction of Dutch elm disease, Ophiostoma novo-ulmi (Townsend and 

Douglass 2004).  The introduction of disease resistant cultivars has created a renewed 

interest in these stress-tolerant trees.  Fourteen Two-year-old Ulmus americana 

‘Valley Forge’ were grown under ambient greenhouse conditions (24±4°C) in five 

gallon containers and given drip irrigation.  Plants were roughly 1m tall from the soil 

line, and the canopy was pruned to ensure uniformity.  No artificial lighting or 

fertilizer was provided.  Potting medium was a peat based soilless mixture.  Whips 

were received from Bruce Carley (Acton, MA) and were grown in the greenhouse for 

one year before the beginning of the study.   
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Tetranychus schoenei (McGregor) is an occasional pest of fruit and 

ornamental trees (Johnson and Lyon 1991).  Leaves infested with mites were 

collected from the field and placed on the trees in the greenhouse six weeks before 

the onset of the first experiment.  Positive identification of the mites was provided by 

Ronald Ochoa at the Systemic Entomology Lab (BARC, USDA, Beltsville, MD). 

The fourteen plants were randomly assigned to two treatments.  Plants in the 

treated group were administered a labeled dose of imidacloprid two months before the 

onset of the experiments.  Preceding insecticide treatment, water was withheld for 

two days.  Formulated imidacloprid (Merit 75WP, Bayer Corporation, Kansas City, 

MO) was applied at 0.3g AI /pot dissolved in 100mL water to seven plants.  500mL 

water was provided 15 minutes after imidacloprid application.  Control plants were 

given 600mL water.  Plants were returned to drip irrigation two days after treatment.  

Mites were later placed onto the plants and allowed to feed and reproduce.   

Predators 

The two predators used in the experiments were selected on the grounds of 

that they or their congeners were observed on plants treated with imidacloprid, their 

importance in spider mite control as reported in the literature, and their ready 

availability from commercial retailers. Stethorus punctillum (Weise), and its 

congeners (Coccinellidae) are effective spider mite predators both as a larvae and 

adults (Congdon et al. 1993, Raworth 2001).  Britto et al. (2007) showed that S. 

tridens adults can eat up to 30 spider mites in one day.  From personal observations, 

we found Stethorus adults and larvae in association with large mite populations.  

Larvae of the green lacewing, Chrysoperla rufilabris (Burmeister) and its congeners 
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(Chrysopidae) are generalist predators of soft-bodied prey such as aphids, thrips, 

whiteflies and spider mites (Huffaker and Messenger 1976, Rongers et al. 2007).  

Field observations of Chrysoperla spp. were frequent on mite-infested elm trees, and 

a coniopterygid lacewing was commonly found in association with outbreaks of 

spider mites on boxwood (Szczepaniec 2009).   Predators were obtained from a 

commercial insectary (IPM Labs: Locke, NY).  Upon receipt, the insects were 

transferred to a growth chamber set to 11°C with a photoperiod of 12:12h (L:D) and 

RH of 70-75%. Stethorus punctillum adults were stored in a plastic vial misted with 

water and supplied with a 4cm square of cloth soaked in sugar-water. Chrysoperla 

rufilabris larvae were stored in a plastic vial filled with rice hulls to provide refuge 

and reduce cannibalism.  The vial was misted with water and supplied with 

previously frozen eggs of Ephestia keuhniella (Zeller).  Only second instar larvae 

were used in this study.  Any larvae that molted during the course of the assay were 

excluded from the results. 

Prey consumption bioassay (boxwood)  

To determine the effect of indirect exposure to imidacloprid through prey on 

the feeding rate of predators, the following prey consumption assay was conducted in 

the spring of 2007.  Mites were removed from each of twenty boxwood plants 

assigned to the two treatments described above and placed in an arena. The arena 

consisted of a 55 cm filter paper (Whatman International Ltd. Maidstone, England) 

placed on top of a Petri dish (5.9 x 0.9cm)   Mites were transferred individually with a 

paintbrush to avoid injury.  Five adult female mites were placed on the filter paper 

and a smaller Petri dish (3.9 x 1.1cm) was affixed to the filter paper and larger dish 



 

 18 
 

with a rubber band.   A single adult S. punctillum or larva C. rufilabris was 

introduced into each arena.  The arenas were held under lighted ambient laboratory 

conditions (23±2°C) while the assays were underway.  The number of mites eaten 

was recorded at intervals of 0.5, 1.5, 2.5 and 3.5 h after the predator was introduced. 

Two cohorts of five mites were assayed from each plant and the number of mites 

eaten was averaged.   

Predator mobility bioassay (boxwood) 

To determine the affect of exposure of imidacloprid indirectly through prey on 

the mobility of predators, the following assay was conducted in the spring of 2007. 

An arena was constructed of a 118mL Solo Cup (Solo Cup Company, Urbana, IL).  A 

water source was included which consisted of a trimmed micropipette tip stuffed with 

saturated cotton gauze. Each arena was supplied with 6-8 excised leaves from treated 

or untreated plants heavily infested with mites (all life stages) reared on the same 

plant.  The arenas were held under lighted ambient laboratory conditions (23±2°C) 

while the assays were being conducted.  A single adult of S. punctilum or larva of C. 

rufilabris was introduced into each arena and allowed to feed. To test its mobility, the 

predator was moved with a paintbrush from the arena to the center of a 4cm circle 

drawn on paper. A timer was actuated once the insect began moving and was stopped 

once the insect reached the edge of the circle or until 40s had elapsed.  Unresponsive 

insects were assigned a time of 40 s. Observations were made at intervals of 0.5, 1.5, 

2.5, and 3.5 h of exposure to contaminated prey. After the observation, the insect was 

placed back into its respective arena.  As insects were observed to move in a linear 

fashion, mobility was calculated as time to leave the circle divided by 2cm, 
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representing the radius of the circle.  Three predators were assayed after exposure to 

mites from each of the twenty treated and untreated plant replicates.  An additional 

assay was performed to ascertain any effects of insecticide residues on the leaf 

surface on the mobility of predators. Methods were identical to those described 

above, except that leaves were cleared of all mites and mite eggs.  These assays were 

analyzed as a 2x2 factorial design with mites present or absent as one factor and 

treated or untreated foliage as another factor. 

 
Prey consumption and predator mobility bioassay (elm) 

To determine the effect of exposure to imidacloprid indirectly through prey on 

the feeding rate of predators, the following assay was performed in the summer of 

2008.   Seven plants were assigned as replicates to each treatment.  Leaf disks 22mm 

in diameter were taken from each tree using an apple corer (Progressive International: 

Kent, WA).  The disks were cleaned of mites and placed lower side down in a Petri 

dish (3.9 x 1.1cm) filled with saturated cotton gauze (Personna Medical: Staunton, 

VA) (James and Price, 2002).  Ten adult female mites were transferred from each 

plant and placed on the respective leaf disk.  A single adult of Stethorus punctillum or 

a larva of Chrysoperla rufilabris was then introduced to the leaf disk.  Conditions and 

treatment of the assay were the same as that of the boxwood assays, however, both 

consumption and mobility observations were made with the same predator.  Predators 

that drowned during the course of the experiment were excluded from analysis.  As 

insects were observed to move in a linear fashion, mobility was calculated as time to 

leave the circle divided by 2 cm, representing the radius of the circle.  Three cohorts 

of ten mites were assayed from each plant.  The number of mites eaten and mobility 
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rate was averaged by treatment.  An additional assay was performed to ascertain any 

effects that pesticide residue present on the leaf surface might have on predator 

mobility.  Methods are identical to those presented above, but the leaf surface was 

cleared of all mites and mite eggs.   

Predator mortality bioassay (elm) 

To determine the effect of imidacloprid on predator mortality, the following 

assay was performed.  S. punctillum adults or the C. rufilabris larvae were placed in a 

118mL Solo Cup (Solo Cup Company, Urbana, IL) and supplied with a trimmed 

micropipette tip filled with cotton saturated with a sugar-water solution (10mg sugar: 

100mg water).  Leaves infested with spider mites from treated trees described in the 

previous study or from untreated trees were provided at the beginning of the 

experiment and every two days after.  The arenas were held under lighted ambient 

laboratory conditions (23±2°C) while the assay was conducted.  Every 24 hours, 

predators were observed and considered dead if they were completely unresponsive to 

the touch of a probe and not making any movements. Predators found dead at the first 

observation were given a longevity of zero days, predators found dead at the second 

observation were given a longevity of one day, and so on.  .   

Statistical analyses 

Prey consumption bioassays were analyzed with a repeated measures analysis 

using Statistix software (Statistics v. 5.1).  Pairwise comparisons were made at each 

individual observation using Tukey’s Honestly Significant Difference (HSD) test.   
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 Mobility bioassays were analyzed with a repeated measures analysis using 

SAS with a 2x2 factorial model, where treatment was one factor and mites 

present/absent was another factor (SAS v. 9.1).  Pairwise comparisons at each 

individual observation were made using Tukey’s HSD test. 

 Mortality bioassays were compared using a censored mortality analysis using 

R (R Development Core Team 2008).  This analysis was chosen as data were 

censored at 10 days for Stethorus and 20 days for Chrysoperla. Because data 

observations ended before all predators had expired, a simple analysis of existing data 

would not be accurate for only the observed data.  The curves were modeled using an 

exponential distribution for Chrysoperla and using an extreme distribution for 

Stethorus. Longevities of both predators were averaged between treatments and 

analyzed using a two sample T test with equal variances (Statistics v. 5.1).   
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Results 

Prey consumption bioassay (boxwood) 

 Figure 1 illustrates that both the C. rufilabris larvae and S. punctillum adults 

ate markedly fewer E. buxi when mites were reared on boxwoods treated with 

imidacloprid than those reared on untreated plants.  Repeated measures analysis 

revealed that treatment had a significant effect over the course of the experiment for 

C. rufilabris (Table 1).  C. rufilabris consumed approximately twice as many mites 

from treated compared to untreated plants. For S. punctillum, the interaction of time 

and treatment was significant, so only simple means at each observation were 

analyzed. After 3.5 hours almost twice as many mites from untreated plants were 

consumed.  

Lacewing larvae consumed mites faster than did the S. punctillums in the 

untreated samples.  At the first observation, the lacewing larvae had eaten 3.5 mites 

on average, as opposed to the 1.25 mites eaten by the S. punctillum.  This trend 

continued at 1.5 hours, in which the C. rufilabris ate 4.25 mites compared to S. 

punctillum’s 3.10.  By 3.5 hours, however the S. punctillums ate more total mites 

(4.85) than the lacewing larvae (4.45) 

Predator mobility bioassay (boxwood) 

 Predators exposed to mites on treated leaves showed significantly less 

mobility rate than either the predators exposed to mites reared on untreated foliage or 

predators exposed to treated or untreated leaves without mites (Figure 2).  The 

interaction of treatment and the presence of mites was significant in C. rufilabris, 
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allowing us to infer that only contaminated mites had a significant impact on the 

performance of the predator (Table 1, Figure 2). Average mobility of 1.74 mm/s at 

3.5 hours for predators exposed to imidacloprid through prey was less that half of that 

of predators that consumed untainted mites.  Similarly, the interaction of treatment 

and the presence of mites was highly significant for S. punctillum, and the average 

mobility of 0.52 mm/s at 3.5 hours for lady beetles exposed to contaminated mites 

was only about 20% of that observed in lady beetles exposed to mites from untreated 

plants (Table 1, Figure 2).  Predators on both treated and untreated leaves, when mites 

were removed, did not differ in mobility from the predators fed mites reared on 

untreated foliage (4.09 mm/s, 4.12 mm/s, and 3.99, respectively at 3.5 hours for C. 

rufilabris; 3.40 mm/s, 3.70 mm/s, and 3.70 mm/s, respectively at 2.5 hours for S. 

punctillum).   S. punctillum showed a slightly general negative trend in mobility over 

time in the treatments without mites exposed to imidacloprid while C. rufilabris 

maintained a steady mobility over time. 

Predators also showed signs of imidacloprid intoxication, which seemed more 

severe in S. punctillum than C. rufilabris.  Qualitative signs of intoxication included 

tremors, regurgitation, lack of directional response or complete incapacitation. 

Elm study system 

Prey consumption and predator mobility bioassay (elm) 

There was a significant time by treatment interaction with respect to the 

number of mites eaten by predators from treated and untreated elms by T. schoeni 

(Table 2, Figure 3).  T. schoeni from elms treated with imidacloprid wee consumed 

far less by both predators, an effect significantly different by 0.5 hours (Table 2, 
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Figure 3).  The difference between consumption of mites from treated and untreated 

plants became larger as the experiment progressed.  At the last observation, C. 

rufilabris and S. punctillum both ate 80% fewer mites when mites originated from 

trees treated with imidacloprid.  

As with the boxwood system, lacewing larvae fed less than did lady beetles.  

By the first observation, C. rufilabris had eaten nearly 6 mites on average, and S. 

punctillum had eaten only 2.9 mites. This trend continued throughout all the 

observations, with C. rufilabris eating 8.9 mites by 3.5 hours compared to 6.7 eaten 

by S. punctillum. 

There was a significant interaction between time of exposure and mobility of 

both predators (Table 2, Figure 4). Both predators became intoxicated when exposed 

to mites feeding on treated foliage, and their mobility was hampered by 0.5 hours 

(Figure 4).  While the effect did not increase over time, differences were pronounced 

and significant at both beginning and end observations.  Lacewing larvae moved 70% 

slower after eating mites from treated leaves, and coccinellids were 80% slower on 

average at the last observation (2.80 mm/s and 0.87 mm/s for C. rufilabris fed mites 

reared on untreated or treated plants, respectively and 2.44 mm/s and 0.57 mm/s for S. 

punctillum). The repeated measures analysis showed that the interaction of treatment 

and mites present/absent was highly significant, allowing us to ascertain that only 

mites on treated foliages elicited a significant impairment in the predators (Table 2).   

Unlike the boxwood system, S. punctillum did not seem to have any obvious 

negative trend in the treatments without mites exposed to imidacloprid.  However, 
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both predators had slightly lower mobility by the end of the experiment than at the 

beginning in the treatments without treated mites.   

In addition to impaired mobility, predators exhibited clear signs of 

imidacloprid intoxication.  These included complete lack or lack of directional 

response to external stimuli, tremors, regurgitation, excessive grooming of the 

antennae, and inability to right itself when placed on its back.  In some instances, the 

predator became incapacitated while a mite was still impaled on its mandibles. 

Mortality bioassay (elm) 

Predators had significantly shorter longevity when fed mites from treated 

plants.  In C. rufilabris, larvae lived 12.65 days on average, out of a potential 20 days 

when fed mites from untreated plants compared to 2.60 days when fed mites from 

treated plants (Χ2=29.88, DF=1, p<0.0001).  While the experiment ended at day 20, 

we continued to rear the few live lacewing larvae, and 4 larvae developed into pupae.  

The deleterious indirect effect of imidacloprid was similar for S. punctillum, in which 

adults that consumed mites from untreated elm plants lived 9.37 days, out of a 

potential 10.  Beetles presented with mites on treated foliage lived only 1.00 day on 

average and differed significantly from the control (Χ
2=85.15, DF=1, p<0.0001).   
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Discussion 

Comparison to previous studies 

 Several previous studies focused on direct effects of insecticides on natural 

enemies, but only a few examined effects of indirect exposure of predators through 

prey that were targets of pesticidal applications. This study is novel in that the route 

of exposure was through a nontarget pest, one that is not adversely affected by the 

systemic insecticide, imidacloprid.   With regard to sublethal effects, indirect 

exposure to imidacloprid via spider mites caused significant reduction in the mobility 

of lady beetle adults and lacewing larvae. This in turn likely explains significant 

reductions in prey consumption observed in both predators following indirect 

exposure to imidacloprid through the prey.  Furthermore, it appears that mites are the 

only avenue of imidacloprid reaching the predators as enclosures with treated foliage 

elicited no adverse reaction in either predator. Moreover, predators that consumed 

mites exposed to imidacloprid through treated plants, experienced dramatic 

reductions in longevity thus confirming the lethality of this product to lacewing larvae 

and lady beetle adults. These findings support our hypothesis that indirect exposure to 

imidacloprid disrupts the natural enemy community, which in turn promotes 

secondary outbreaks of phytophagous mites.   

  We have documented two sublethal effects and eventual lethal effects of 

indirect imidacloprid exposure, and several papers illustrated lethal and sublethal 

effects of imidacloprid on beneficial arthropods when predators or parasitoids are 

directly exposed to the pesticide through plant products or spray residues (Sclar et al. 

1998, Smith and Krischik 1999, Stapel et al. 2000, James and Vogele 2001, James 
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and Coyle 2001, Rebek and Sadof 2003, Torres and Ruberson 2004, Krischik et al. 

2007, Rongers et al. 2007).  Comparatively, there are few studies implicating 

deleterious effects of indirect pesticide exposure through prey.  James (2003) 

suggested that mites raised on plants treated with systemic imidacloprid could be 

toxic to predatory mites.  However, this supposition is not well supported by the 

literature, as several other studies found that exposure to foliar imidacloprid produced 

minor or no negative responses in predatory mites (Mizell and Sconyers 1992, Leicht 

1993, James and Vogele 2001, Sangsoo et al. 2005).  In fact, James (1997) earlier 

described a hormoligotic response to imidacloprid in another phytoseiid mite (James 

1997). Poletti et al. (2007) documented a reduction in functional responses of 

predatory mites when presented spider mite eggs sprayed with imidacloprid.  Poletti 

et al. (2007) showed that direct exposure to surface residues was a possible route of 

exposure to predators that consumed nontarget pests such as mites and their eggs. 

Papachristos and Milonas (2008) examined the effects of low doses of 

systemic imidacloprid on the aphid predator, Hippodamia undecimnotatta when fed 

lettuce aphids, Nasonovia ribisnigri that were reared on treated lettuce seedlings.   

Low doses of imidacloprid applied to lettuce have no detectable effects on the 

performance of aphids reared on treated plants (Papachristos and Milonas 2008), 

However, reductions in larval survival, extended pre-ovipositional period, and 

reduced per capita fecundity was observed when aphids from treated plants were 

consumed by H. undecimnotatta.   While depicting novel examples of indirect 

pesticide exposure, these three studies revolve around a target pest unlikely to 
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increase dramatically following the application of imidacloprid as aphids are highly 

susceptible to imidacloprid (Elbert 1991). 

Bottom-up versus top-down mechanisms 

Phytophagous mites are not controlled by systemic applications of 

imidacloprid.  In fact, several species benefit from its application and attain much 

higher densities on treated compared to untreated plants (Sclar et al. 1998, James et 

al. 2001, Raupp et al. 2004, 2008).  The mechanisms for bottom-up effects of 

imidacloprid on pest mite populations remain unclear in most cases.  One hypothesis, 

termed hormoligosis by Luckey (1968), poses a sublethal dose of an insecticide as the 

cause for increased fecundity of herbivores.  James and Price (2002) reported 

significant increases in the fecundity of Tetranychus urticae females sprayed with 

imidacloprid.  However, similar studies failed to support the hypothesis of 

hormoligosis (Sclar et al. 1998, Ako 2004).  

While bottom-up mechanisms of underlying mite outbreaks are not yet fully 

understood, findings reported here strongly support the hypothesis that systemic 

imidacloprid contributes to mite outbreaks by disrupting top-down control by natural 

enemies.  This is in concordance with Shrewsbury and Raupp (2006) who found that 

influences affecting predator abundance were crucial in determining the severity of 

the outbreak.  Damaging outbreaks of spider mites are relatively uncommon on 

untreated boxwoods and elms under field conditions (Creary, personal observation). 

To produce colonies of pests useful for these experiments, we needed to move 

nursery plants into greenhouses, suggesting that natural enemies were keeping the 

mites in check while outside.   
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A large proportion of pesticide research concerns lethal effects of pesticides, 

but knowledge of the sublethal effects of insecticide on beneficial arthropods is 

crucial toward gaining a complete understanding of an insecticide’s impact (Desneux 

et al. 2006).  For example, Poletti et al. (2007) noted that the functional response was 

notably altered in two predatory mites, Neoseiulus californicus and Phytoseiulus 

macropilis, treated with imidacloprid. Smith and Krischik 1999 reported dramatic 

reductions in the mobility of lady beetles exposed to imidacloprid. This study 

demonstrated that imidacloprid remains in sufficiently high concentrations in prey to 

reduce mobility, reduce prey consumption, and kill predators exposed to imidaclorpid 

or its metabolites. Due to combined sublethal and lethal effects, predators may be 

consuming few mites on plants treated with imidacloprid, thereby allowing pest 

populations to continually increase. 

Differential implications for specialist and generalist predators 

Another novel aspect of this work is that it investigates responses of both a 

specialist predator, Stethorus punctillum, and a generalist predator, Chrysoperla 

rufilabris to potentially toxic prey.  Although lacewings are noted as predators of 

spider mites, few studies illustrate the specific role of C. rufilabris in spider mite 

control.  In addition to occurring commonly in the field, S. punctillum are also widely 

used in augmentative biological control for crops in protected culture (Congdon et al. 

1993, Rott and Ponsonby 2000, Roy et al. 2005, Creary, personal observation).  

Under field conditions, S. punctillum are thought to seek areas of high mite densities 

in mid to late summer, when mite populations are highest and most damaging (Roy et 

al. 2005, Creary, personal observation).  Congden et al. (1993) showed that Stethorus 
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served as capable biological control agents due to their effective searching and 

dispersal habits.  As they are drawn to large mite populations, they would likely 

aggregate on plants treated with imidacloprid as these host higher densities of mites 

than untreated plants (Sclar et al. 1998, Raupp et al. 2004).  This is corroborated by 

Shrewsbury and Raupp (2006) who suggest that specialist predators show a numerical 

response to increasing prey densities.  We have shown that mites reared on treated 

plants are highly toxic to S. punctillum, thereby reducing its capacity for prey 

consumption, mobility, and survival.  It seems probable that these mite specialists 

would be drawn to treated plants and would consequently become intoxicated by 

ingesting mites, thereby exacerbating rapidly rising populations of mites found there.  

Further studies need to be conducted to test this hypothesis. 

 Generalist predators are important natural enemies that mitigate pest 

outbreaks in managed and natural (Hanks and Denno 1993, Shrewsbury and Raupp 

2006).  Shrewsbury and Raupp (2000) found that population densities of the azalea 

lace bug, Stephanitis pyrioides (Scott) decreased as shade and structural complexity 

increased.  A likely reason for this decrease in abundance was an increase in the 

abundance of generalist predators.  Raupp et al. (2001) found that overall diversity of 

arthropods increase as plant diversity increases. A later study by Shrewbury and 

Raupp (2006) conclusively documented an increase in generalist predators in 

structurally diverse landscapes (Shrewsbury and Raupp 2006).  A number of other 

studies also show increased predator abundance in diverse habitats (see reviews by 

Russell 1989, Gurr et al. 2000, Langellotto and Denno 2004).  Shrewsbury and Raupp 

(2006) also suggested that generalist predator abundance increases as abundance of 
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alternate prey items increases.  The implications of these findings upon this study 

system are twofold.  

First, generalist predators, like C. rufilabris, may suppress mite populations on 

untreated plants.  Mite populations on untreated plants rarely, if ever, reach the high 

damaging levels that populations on plants treated with imidacloprid do (Sclar et al. 

1998, Raupp et al. 2004, Creary personal observation).  Generalist predators could 

provide an acceptable degree of mite control on untreated plants as alternate food 

sources not killed by imidacloprid, such as aphids, soft scales, and leafhoppers, are 

abundant (Creary, personal observation).   

Second, we would expect to find fewer generalist natural enemies on plants 

treated with imidacloprid for the following reasons.  The abundance of alternate prey 

items would be low on treated plants, as imidacloprid is toxic to many commonly 

occurring herbivores (Mullins 1993).  Additionally, imidacloprid contained in pollen, 

sap and nectar of treated plants may be toxic to omnivorous natural enemies, thereby 

reducing their incidence (Sclar et al. 1998, Smith and Krischik 1999, Stapel et al. 

2000, James and Vogele 2001, James and Coyle 2001, Rebek and Sadof 2003, Torres 

and Ruberson 2004, Krischik et al. 2007, Rongers et al. 2007).  Due to the cost of 

treatment with imidacloprid, especially for large trees, typically only specimen 

plantings or plants with severe pest infestations are treated (Creary, personal 

observation).  As specimen plantings are often isolated, and large key pest 

populations indicate lack of natural enemies, one would suspect that generalist 

predators would be rarer in plantings treated with imidacloprid.  However, we have 

shown that indirect exposure to imidacloprid is highly toxic to C. rufilabris, so the 
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generalist predators drawn to plants treated with imidacloprid are likely to become 

intoxicated shortly after their arrival.  In order to conclusively assess the effects of 

imidacloprid on generalist predators, one would need to test immigration of these 

predators to both areas of high prey density and plants treated with imidacloprid.  If 

they are drawn to high mite densities and cannot discriminate between treated and 

untreated plants, then treated plants may act as sinks for these natural enemies as 

well.  Thus, application of systemic imidacloprid is likely to disrupt both specialist 

and generalist predators of spider mites, contributing to damaging outbreaks, but 

specialist predators are more prone to severe repercussions as they are drawn to high 

densities of spider mites. 

Comparison of study systems 

Another interesting finding from this study is that E. buxi seems to elicit a 

weaker response in predators than T. schoenei when the mites were reared on their 

respective host plants treated with imidacloprid.  Both predators were able to eat more 

mites from treated boxwoods than from treated elms (Figures 1 and 3). Similarly, 

mobility was not reduced to as great an extent when predators were fed mites from 

treated boxwood as opposed to treated elms.  Elms treated with imidacloprid evoked a 

severe, immediate response in both predators.  S. punctillum adults and C. rufilabris 

larvae ate on average one mite from a treated elm and did not eat any more 

throughout the course of the experiment. Ingestion of just one mite was sufficient to 

completely intoxicate the insect for the next three hours.  This differential response is 

contrary to our expectations.  Boxwood mites are considerably larger than elm mites, 

so we expected the boxwood mites to contain a larger dose of imidacloprid.  
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Differences in physiology between the two plants could account for the mites being 

more or less toxic when reared on either plant.  Elms are considerably more succulent 

and have greater water content in their leaves than do boxwoods by virtue of being 

deciduous (Larcher 2004).  As imidacloprid is soluble and transmitted in water, this 

would result in a greater concentration of the insecticide in areas of greater water 

content.  Sur and Stork (2003) noted that different plant species absorb different 

percentages of imidacloprid from soil drenches, which could also explain the 

difference in mite toxicity.  Additionally, boxwoods were grown in a bark-based 

medium, and elms were grown in a peat-based soil-less mixture, which retains more 

water and perhaps more imidacloprid. 

Biological control and imidacloprid 

This study has numerous ramifications for biological control of mites on 

plants in protected culture with augmentative releases of predators.  When using 

mites from untreated plants, we found that S. punctillum was able to find and 

completely eradicate small mite populations, such as those within the arenas used in 

the boxwood prey consumption trials.  While they did not eat proportionally as many 

mites in the elm system over the study period, the increase in mites eaten was 

constant until the end.  This is in concordance with Congden et al. (1993) who found 

that S. punctillum were able to find and control small and medium mite infestations 

due to their effective dispersal and searching habits as specialist mite predators.  

While C. rufilabris ate a smaller proportion of the mites provided in the boxwood 

system, these insects had a higher feeding rate.  Similarly, in the elm system, 

lacewing larvae reached an upper limit fairly early in the experiment.  Pappas et al. 
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(2007) showed that spider mites were not an ideal prey type for a closely related 

lacewing species, Dichochrysa prasina Burmeister, as development time and adult 

weight were adversely affected when fed mites in comparison to several aphid species 

and eggs of the moth, Ephestia kuehniella.  For augmentative releases of natural 

enemies, development and pupation of the biocontrol agent is secondary to its 

efficacy at controlling the target pest.  Stethorus continued to prove an effective 

biological control agent for spider mite infestations.  We found that C. rufilabris was 

able to eat a large number of mites in a short period of time and could be used for 

control of high density populations of spider mites.   

Mizell and Sconyers (1993) suggested that systemic applications of 

imidacloprid will not contact predators, and concluded that toxicity to natural enemies 

should be negligible. These attributes enhance imidacloprid’s compatibility with IPM 

programs.  However, the growing body of literature illustrating the deleterious effects 

of imidacloprid on beneficial insects, especially honey bees has led France and 

Germany to ban seed treatments of sunflowers with imidacloprid (Suchail et al. 2000, 

Halm et al. 2006, Karnatak et al. 2006).  A similar body of evidence showing that 

systemic applications of imidacloprid do in fact intoxicate natural enemies through 

ingestion rather than contact (Sclar et al. 1998, Smith and Krischik 1999, Stapel et al. 

2000, James and Vogele 2001, Rebek and Sadof 2003, Torres and Ruberson 2004, 

Krischik et al. 2007, Rongers et al. 2007).  Meanwhile, this study joins Cole and 

Horne (2006), Walker et al. (2007) and Pappachristos and Milonas (2008) in proving 

that in addition to direct or residue contact, and ingestion of plant products, natural 

enemies are negatively impacted by feeding on prey exposed to imidacloprid.   
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Other studies have shown that imidacloprid causes secondary outbreaks of 

spider mites (Sclar et al. 1998, Raupp et al. 2004).  This study supports the hypothesis 

that disruptions in the natural enemy community contributes to these secondary pest 

outbreaks.  Predators fed mites from plants treated with imidacloprid exhibited a stark 

impairment in locomotion, feeding ability, and longevity.  If natural enemies are 

attracted to high densities of spider mites, such as those found on treated plants, it 

seems likely that those plants would act as a trap for beneficial insects in the urban 

landscape.  This reduction in overall natural enemy abundance could then spur further 

outbreaks in the landscape, even on untreated plants.  As the mite outbreaks caused 

by imidacloprid often cause aesthetic damage to the plants, landscape owners may 

turn to miticide applications, causing even further disruption of natural enemy 

communities.  However, systemic imidacloprid is invaluable to manage many key 

pests, such as hemlock wooly adelgid and emerald ash borer—pests that will 

ultimately kill the host plant.  This study does not contradict all the benefits of using 

imidacloprid.  However, the costs to the natural enemy community need to be taken 

into account before any application of imidacloprid as it is clear that top-down 

regulation provided by natural enemies is severely curtailed by indirect exposure to 

imidacloprid through contaminated prey. 
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Figure 1.  Mean number of Eurytetranychus buxi females from untreated boxwoods and boxwoods 
treated with systemic imidacloprid consumed by (A) Chrysoperla rufilabris larvae and (B) Stethorus 
punctillum adults at four observations over time.  Bars represent means and vertical lines represent 
respective standard errors. Means that share a letter did not differ by a Tukey HSD pairwise 
comparisons made at each observation with experimentwise α=0.05 
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Figure 2.  Mean mobility of (A) Chrysoperla rufilabris larvae and (B) Stethorus punctillum adults after 
exposure to four treatments: Untreated boxwood foliage with and without Eurytetranychus buxi and 
boxwood foliage treated with systemic imidacloprid with and without E. buxi at three observations 
over time.  Bars represent means and vertical lines represent standard errors. Means that share a letter 
did not differ by a Tukey HSD pairwise comparisons made at each observation at experiment wise 
α=0.05 
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Figure 3.  Mean number of Tetranychus shoenei adult females eaten from untreated American elms 
and elms treated with systemic imidacloprid consumed by (A) Chrysoperla rufilabris larvae and (B) 
Stethorus punctillum adults at four observations over time.  Bars represent means and vertical lines 
represent respective standard errors. Means that share a letter did not differ by a Tukey HSD pairwise 
comparisons made at each observation with experimentwise α=0.05 
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Figure 4.  Mean mobility of (A) Chrysoperla rufilabris larvae and (B) Stethorus punctillum adults after 
exposure to various treatments: Untreated elm foliage with and without Tetranychus schoenei and elm 
foliage treated with systemic imidacloprid with and without T. schoenei at four observations over time.  
Bars represent means and vertical lines represent standard errors. Means that share a letter did not 
differ by a Tukey HSD pairwise comparisons made at each observation at experimentwise α=0.05 
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Figure 5.  Percentage of A) Chrysoperla rufilabris larvae and (B) Stethorus punctillum adults alive at 
the time observed after being continuously provided with mites (Tetranychus schoenii) on elm foliage 
treated with imidacloprid and mites on untreated foliage.  
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Table 1.  Repeated measures ANOVA for Chrysoperla rufilabris and Stethorus punctillum prey 
consumption and mobility bioassays in the boxwood system 
 
 Prey Consumption 

 C. rufilabris S. punctillum 

Effect df F P df F P 
Treatment 1, 18 17.61 0.0005 1, 18 34.52 0.0000 

Time 3, 18 14.29 0.0000 3,18 91.42 0.0000 

Treatment*time 3, 54 1.73 00.1721 3, 54 9.07 0.0001 

 Mobility 

 C. rufilabris S. punctillum 

Effect df F P df F P 
Treatment 1,36 6.61 0.0144 1,36 27.34 0.0000 

Mites 1,36 8.51 0.0060 1,36 15.01 0.0004 

Treatment*Mites 1,36 7.32 0.0104 1,36 15.56 0.0004 

Time 3,108 4.01 0.0094 3,72 11.84 0.0000 

Treatment*Time 3,108 4.26 0.0069 3,72 1.44 0.2429 

Mite*Time 3,108 0.34 0.7960 3,72 0.55 0.5776 

Treatment*Mite*Time 3,108 1.41 0.2440 3,72 1.31 0.2772 
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Table 2.  Repeated measures ANOVA for Chrysoperla rufilabris and Stethorus punctillum prey 
consumption and mobility bioassays in the elm system 
 
 Prey Consumption 

 C. rufilabris S. punctillum 

Effect df F p df F p 
Treatment 1, 12 52.29 0.0000 1, 12 37.5 0.0001 

Time 3, 12 31.49 0.0000 3, 12 41.01 0.0000 

Treatment*time 3, 36 25.64 0.0000 3, 36 34.07 0.0000 

 Mobility 

 C. rufilabris S. punctillum 

Effect df F p df F p 
Treatment 1,24 19.76 0.0002 1,24 21.50 0.0001 

Mites 1,24 9.62 0.0049 1,24 27.84 0.0000 

Treatment*Mites 1,24 16.75 0.0004 1,24 13.21 0.0013 

Time 3,72 4.00 0.0108 3,72 2.42 0.0733 

Treatment*Time 3,72 0.40 0.7500 3,72 0.46 0.7079 

Mite*Time 3,72 1.76 0.1634 3,72 0.38 0.7658 

Treatment*Mite*Time 3,72 1.57 0.2039 3,72 0.83 0.4835 
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