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In this work we consider several instances of the following problem: “how

complicated can the isomorphism relation for countable models be?” Using the

Borel reducibility framework from [4], we investigate this question with regard to

the space of countable models of particular complete first-order theories. We also

investigate to what extent this complexity is mirrored in the number of back-and-

forth inequivalent models of the theory, denoted I∞ω(T ). We consider this question

for two large and related classes of theories.

First, we consider o-minimal theories, showing that if T is o-minimal, then ∼=T

is either Borel complete or Borel. Further, if it is Borel, then it is exactly equivalent

to one of the following: ∼=1, ∼=2, or (3a6b,=), with a, b ∈ ω. All values are possible,

and we characterize exactly when each possibility occurs. Further, in all cases Borel

completeness implies λ-Borel completeness for all λ. Much of this portion appeared

in [21] and extends work from [25], which itself builds upon [15].

Second, we consider colored linear orders, which are (complete theories of)

a linear order expanded by countably many unary predicates. We discover the



same characterization as with o-minimal theories, taking the same values, with the

exception that all finite values are possible except two. We characterize exactly

when each possibility occurs, which is similar to the o-minimal case. Additionally,

we extend Schirrman’s theorem from [26], showing that if the language is finite,

then T is ℵ0-categorical or Borel complete. As before, in all cases Borel completeness

implies λ-Borel completeness for all λ. This work appeared in [20] and builds heavily

on [24].
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Chapter 1: The Complexity of First-Order Theories

Given a first-order theory T , how can we measure its complexity? We would like

such a measure to be representative of some important features of the theory and

to take on enough different values to distinguish between many different theories.

A classical answer to this question is to consider the spectrum function of T

– the function taking uncountable cardinals λ to the number I(T, λ) of pairwise

non-isomorphic models of T . By important work of Shelah, Hart, Hrushovski, and

Laskowski (see [27] and [3] for example), we know that these spectrum functions are

always comparable (indeed there is essentially a list of them), and that they represent

important properties of the theory, such as stability, superstability, NDOP, depth,

and so on. Thus this is an excellent indicator of complexity; if T1 has fewer models

than T2 (eventually) then T1 is “less complex” than T2, and so on.

However, this completely ignores the situation for countable model theory.

For example, the theory of dense linear orders (without endpoints) has only one

countable model, yet is “maximally complex” with regard to the spectrum function

above. This sort of behavior is extremely common – one can be quite complicated

at the countable level, but be quite simple at the uncountable level, or vice-versa.

One fix seems to be to consider simply the number of countable models, but this
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turns out to be quite a coarse invariant (regardless of how Vaught’s conjecture turns

out), and we can do better.

One better way turns out to be Borel reducibility. We begin this chapter

by defining Borel reductions. We will then build up the general theory around

these, including basic results and several benchmarks. Additionally, we discuss back-

and-forth equivalence, potential cardinality, and the connection this gives between

countable model theory and uncountable model theory.

We hope to justify our assertion that (among other things) ℵ0-categorical

theories are “minimally complex,” despite the possibility that they could be quite

complex in terms of classical stability theory.

1.1 Borel Reductions

We are interested in measuring the complexity of the isomorphism problem for

countable models of T , which is a finer measurement than just counting the number

of countable models. A common way to do this is through the idea of Borel re-

ducibility – establishing a natural way to see if one relation is “more difficult” than

another to compute. That is: given two sentences Φ and Ψ, we say that “Φ is at

least as complex as Ψ” if (Mod(Ψ, ω),∼=) ≤
B

(Mod(Φ, ω),∼=). We will now define

these terms.

The notion of a Borel reduction as a way to compare complexity of classes was

introduced by Friedman and Stanley in [4]. Consider pairs of the form (X,E), where

X is a Borel subset of a Polish space, and E ⊆ X2 is an equivalence relation. Given
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two such pairs, we say (X1, E1) ≤B (X2, E2) (sometimes written as E1 ≤B E2) if

there is a Borel function f : X1 → X2 where, for all a, b ∈ X, aE1b holds if and

only if f(a)E2f(b). It is clear that ≤B forms a preorder, and the requirement that

f be Borel provides a reasonable analogue to saying “E1 is effectively computable

from E2” when (as is usual) X1 and X2 are uncountable. We will use <
B

when the

relation is strict – that is, (X,E) <
B

(Y, F ) precisely when (X,E) ≤
B

(Y, F ), but

(Y, F ) 6≤
B

(X,E). Similarly we use ∼
B

when (X,E) ≤
B

(Y, F ) and (Y, F ) ≤
B

(X,E).

For a countable language L, define Xω
L (for the purpose of this section) to be

the set of L-structures with universe ω. This is a Polish space using the formula

topology: for any formula φ(x) and any tuple n from ω, the set {M ∈ Xω
L :M |=

φ(n)} is open. L-isomorphism is a natural equivalence relation on this space.

It is well-known that for any isomorphism-invariant Borel subset B of Xω
L ,

there is a corresponding Lω1,ω-sentence ΦB, such that B is the set of models of ΦB

– see, for example, Theorem 16.8 in [8]. We refer to B as Mod(ΦB, ω).

This preorder notion is well-defined and independently beautiful, but it has

a shortcoming: given a specific Φ, one might ask “how complex is Φ?” The most

precise answer to this question – it is Borel bireducible to (Mod(Φ, ω),∼=) – is less

than illuminating.

Less precisely but more usefully, we might ask how Φ compares to some specific

“test” relation, the significance of which is understood to the writer and the reader.

Toward this end, we have assembled a useful class of benchmark relations, each of

which has some independent significance.
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1.1.1 Smooth Relations

Formally, (X,E) is smooth if, for some standard Borel space Y , (X,E) ≤
B

(Y,=). It

turns out that all standard Borel spaces (such as Xω
L , R, or 2ω) are in Borel bijection

with one another, so the Y above can be chosen to be whatever you like (see [8]

for this and similar results). Intuitively, (X,E) is smooth if there is a “mechanical”

assignment of real invariants to the E-classes of X.

The smooth relations are linearly ordered by <
B

, and are completely classified

by their size. In fact, they are as follows:

(1,=) <
B

(2,=) <
B
· · · (ω,=) <

B
(2ω,=)

It is straightforward to show that all of these reductions are strict: if (X,E) ≤
B

(Y, F ), then |X/E| ≤ |Y/F |. That these are all the possible smooth relations is a

theorem of Silver, related to the fact that the continuum hypothesis holds for analytic

sets. The point for us is that if (X,E) is smooth, then it is completely described by

the number of E-classes.

Some of the smooth classes can be seen as minimal, in the following sense:

Proposition 1.1.1. Suppose 1 ≤ κ ≤ ℵ0 and Ψ ∈ Lω1ω. Then either Ψ ≤
B

(κ,=)

or (κ,=) ≤
B

Ψ.

Indeed Ψ ≤
B

(κ,=) if and only if Ψ has at most κ countable models, and

symmetrically with the latter.
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Note that here and throughout, we will use Φ ≤
B

Ψ as shorthand for

(Mod(Φ, ω),∼=) ≤
B

(Mod(Ψ, ω),∼=)

Similarly we will say “Φ is smooth” when we really mean (Mod(Φ, ω),∼=) is smooth.

The proof of this Proposition requires Scott sentences which we discuss in

detail in the next section. The reader may prefer to skip ahead to there, but only

the standard facts from any beginning model theory course are used.

Proof of Proposition 1.1.1. Let Ψ be an Lω1ω-sentence. First suppose that Ψ has

exactly κ ≤ ℵ0 countable models (up to isomorphism); let {Ψi : i ∈ κ} be the

Scott sentences of these models. We show (Mod(Ψ, ω),∼=) ≤
B

(κ,=). Given M ∈

Mod(Ψ, ω), say f(M) = i if and only if M |= Ψi. This is a well-defined bijection.

Additionally, if M,N ∈ Mod(Ψ, ω), then M ∼= N if and only if their Scott sentences

are equal, if and only if f(M) = f(N). Finally, this is a Borel reduction: (κ,=) has

the discrete topology, so it’s enough to show that f−1(i) is Borel for each i. This is

true, since f−1(i) = Mod(Ψi, ω), which is Borel by a standard argument. So f is a

Borel reduction.

On the other hand, suppose Ψ has at least κ models; let {Mi : i ∈ κ} be

pairwise nonisomorphic elements of Mod(Ψ). Define f : κ → Mod(Ψ, ω) where

f(i) = Mi. This is an injection, meaning i = j if and only if f(i) = f(j). Since κ

has the discrete topology, f is continuous and thus Borel, completing the proof.

It is noteworthy that we did not say “if Φ is smooth and Ψ has at least as

many countable models as Φ, then Φ ≤
B

Ψ;” that is, the smooth relations are not
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necessarily minimal in this sense. The only exception is (2ω,=), the minimality of

which would imply Vaught’s conjecture (among other things).

1.1.2 Borel Relations

Suppose (X,E) is some equivalence relation, and X is a standard Borel space. We

say E is Borel if it is a Borel subset of X ×X. As usual, say Φ is Borel if the graph

of the isomorphism relation is Borel as a subset of Mod(Φ, ω)2. In particular, we

say that E is Π0
α if it a Π0

α subset of X×X, and say Φ is Π0
α likewise. The following

theorem motivates the definition:

Theorem 1.1.2. Let Φ be an Lω1ω-sentence. The following are equivalent:

• Φ is Borel.

• There is a countable ordinal β where for all M,N ∈ Mod(Φ, ω), M ∼= N if

and only if M ≡β N .1

This result is folklore with no clear origin point, but a proof appears in [2].

As might be expected, if Φ is Π0
α, there is a β which is a linear polynomial in α

(with coefficients in ω1) such that ≡β is sufficient for isomorphism among countable

models of Φ. Likewise, given such a β, one can similarly compute an α from β where

Φ is Π0
α. The exact computations are inexact (that is, they provide non-sharp upper

bounds) and depend on one’s specific formulation of back-and-forth equivalence, so

we will not describe them here.

1The relation ≡β is defined by the usual back-and-forth game of ordinal length. See for instance

[13] or [5].
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One could conclude from the above theorem that there is “no hope” of “un-

derstanding” the isomorphism relation for Φ if Φ is not Borel; certainly there is not

a bounded computation which can determine isomorphism. However, understand-

ing an equivalence relation often involves assigning invariants to the classes, and

that ship sailed when we left smooth, so discarding the non-Borel relations may be

premature.

The Borel relations are “simpler” than non-Borel relations in another sense:

if Φ ≤
B

Ψ and Ψ is Borel, then Φ is also Borel. It is thus easy to imagine the Borel

relations as minimal, but this is incorrect (for some notions of minimal):

Theorem 1.1.3 (Friedman, Stanley). There are Lω1ω-sentences Φ and Ψ where Φ

is Borel, Ψ is not Borel, and Φ 6≤
B

Ψ (indeed they are incomparable).

We will give several such examples later.

It turns out that the smooth relations really are minimal among the Borel

relations: if Φ is smooth, then Φ is Borel. Additionally, if Ψ is Borel but not

smooth, then Φ <
B

Ψ.

Unlike the smooth relations, there is no nice characterization of the Borel

relations – even those of the form (Mod(Φ, ω),∼=). Despite this, it is a theorem of

Hjorth, Kechris, and Louveau that the Borel equivalence relations are stratified into

ω1 distinct classes, each of which has a maximal element and which corresponds to

being “potentially Π0
α” in a particular sense. We describe this result now.

We define ∼=0 as (ω,=), which can be seen as the isomorphism relation of some

complete first-order theory T0 in a relational language L0.
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Given ∼=α as the isomorphism relation of some theory Tα in a relational lan-

guage Lα, we define Lα+1 = {Eα} ∪ Lα, where Eα is some binary relation not

appearing in Lα. Then Tα+1 states that Eα is an equivalence relation with infinitely

many classes, each of which is a model of Tα, and the models do not interact (say,

the relations in Lα are always false on mixed tuples). The resulting theory Tα+1 is

complete by a standard argument.

Finally for limit λ, given ∼=α, Tα, and Lα for all α < λ, let Lλ be {Uα : α < λ}

along with the disjoint union of the Lα. Let Tλ state that the unary predicates Uα

are disjoint, and the set of realizations of Uα form a model of Tα. Additionally, if

R ∈ Lα and a is a tuple which contains some element not of Uα, then R(a) is taken

to be false. The resulting theory Tλ is complete; the “unsorted elements” which

exist by compactness are unstructured and turn out not to matter.

The reader is encouraged to check that these ∼=α are Borel bi-reducible to the

=α described in [7]. Intuitively, we should think of Tα+1 as coding sets of models of

Tα, while T0 codes natural numbers. Thus Tα codes hereditarily countable sets of

rank α, where we consider the natural numbers as urelements.

Theorem 1.1.4 (Hjorth, Kechris, Louveau). Let α be a countable ordinal. Then

there is a countable ordinal β such that:

For all Lω1ω-sentences Φ, Φ ≤
B
∼=α if and only if Φ is “potentially Π0

β:” for

some equivalent topology2 τ on Mod(Φ, ω), the graph of isomorphism for Φ is a Π0
β

subset of τ × τ .

2That is, yielding the same Borel sets
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For example, one can easily see that if we add relations for countably many

(infinitary) formulas, we gain a refined topology on Mod(Φ, ω) which is equivalent

to the original, although not all equivalent topologies are so easily described. Thus

the idea of being potentially Π0
β is a sort of “language-free” measure of complexity

of the sentence.

Therefore the relations∼=α are of independent interest. The following extension

explains why they are useful for us:

Theorem 1.1.5. For all α < β, ∼=α<B
∼=β.

If Φ is Borel, then Φ ≤
B
∼=α for some α.

The second clause of Theorem 1.1.5 follows from Theorem 1.1.4, but the first

(showing the strictness of the embedding) needs an additional argument. A highly

technical argument appears in [4] which relies on Borel determinacy; a much sim-

pler argument appears in [28] which uses potential cardinality, and is sketched in

Proposition 1.2.16 later in this chapter.

Thus the ∼=α form a strictly increasing sequence which is cofinal in the Borel

sentences. Thus we can measure the complexity of a sentence Φ with some precision

by proving results of the form ∼=α≤B
Φ <

B
∼=α+1. Indeed, even if Φ is not Borel, it

makes sense to find the minimal α where ∼=α 6≤B
Φ, and this is a good measure of

complexity of Φ.

The first three of the ∼=α will be of particular interest to us. ∼=0 and ∼=1 are

smooth: ∼=0 is (ω,=), and ∼=1 is (R,=). Less trivially, we have the following theorem

of Marker from [14]:
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Theorem 1.1.6 (Marker). Let T be a complete first-order theory which is non-small

– that is, where S(T ) is uncountable. Then ∼=2≤B
T .

That is, ∼=2 is the minimal element among isomorphism relations for non-

small theories. Thus, if T is non-small and T ∼
B
∼=2, then T is ≤

B
-minimal among

all non-small theories.

This concludes our survey of the Borel equivalence relations.

1.1.3 Borel Complete Relations

We have now discussed various notions of “minimal” isomorphism relations; from

ℵ0-categorical theories which are actually minimal, to various objects which are

minimal among those which satisfy certain constraints. There is also a maximal

relation.

Say Φ is Borel complete if, for all Ψ, Ψ ≤
B

Φ. The word is due to Friedman

and Stanley in [4], and is somewhat unfortunate. It means “complete with regard

to Borel reductions” and not “complete among Borel relations” or “maximal among

Borel relations.” In fact:

Theorem 1.1.7 (Friedman, Stanley). If Φ is Borel complete, then Φ is not Borel;

in fact its isomorphism relation is complete analytic.

It is easy to see that if such a relation were Borel, of some height Π0
α, then

every Ψ would be potentially Π0
α as well by Theorem 1.1.5, collapsing the hierarchy

(which doesn’t happen; see [7] or [5]). The result stated above is somewhat stronger,

although it should be noted that the converse does not hold (also proven in that
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paper).

The really surprising thing about Borel complete relations is that they exist.

Indeed, they are common:

Theorem 1.1.8 (Friedman, Stanley). The following classes are all Borel complete:

graphs, trees, groups, fields, linear orders, . . . .

Indeed many of these results can be sharpened, in the sense that much smaller

subclasses can be shown to be Borel complete (which implies Borel completeness of

the larger class). For example, the class of discrete linear orders without endpoints

is Borel complete (see Chapter 2). For any prime p, the class of nilpotent class 2

groups with exponent p are Borel complete [4]. The class of fields of characteristic

p is Borel complete, for any prime p [4]. The class of real-closed fields is Borel

complete [25]. Many other results along these lines have been proven as well.

It seems that any reasonably expressive class without a “depth limit” is Borel

complete. In a way it is almost more surprising that a natural class along these lines

would not be Borel complete, but this can happen:

Theorem 1.1.9 (Friedman, Stanley). The class of abelian groups is neither Borel

nor Borel complete.

Indeed, for any prime p, the class of abelian p-groups is neither Borel nor

Borel complete. Indeed, ∼=2 is not Borel reducible to any of these classes. Despite

this, the graph of isomorphism for this class is complete analytic.

This example is not first-order, but in [28], we demonstrated several complete

first-order theories with similar behavior.
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1.2 Back-and-Forth Equivalence

Let us now consider the question of back-and-forth equivalence. Given two L-

structures A and B, we say a set F is a back-and-forth system from A to B if

all the following are satisfied:

1. The elements of F are partial functions from A to B.

2. If f ∈ F , a ⊂ dom(f), and R ∈ L, then A |= R(a) if and only if B |= R(fa).

3. If f ∈ F and a ∈ A, there is g ∈ F where f ⊂ g and a ∈ dom(g)

4. If f ∈ F and b ∈ B, there is g ∈ F where f ⊂ g and b ∈ im(g).

We say A and B are back-and-forth equivalent, denoted A ≡∞ω B, if there is a

back-and-forth system from A to B. It is immediate that if A ∼= B, then A ≡∞ω B –

if f : A→ B is an isomorphism, then {f} is a back-and-forth system. Despite this,

we often think of F as consisting of finite partial functions. With this restriction,

we could instead let F be the set of finite sub-functions of f .

The converse holds when A and B are countable; this is the origin of the “back

and forth argument” and the proof is immediate:

Proposition 1.2.1. Suppose A ≡∞ω B. If A and B are countable, then A ∼= B.

The property “F is a back-and-forth system from A to B” is absolute between

transitive models of ZFC; the following is an immediate consequence:

Corollary 1.2.2. Regardless of the cardinalities of A and B, if A ≡∞ω B, then

A ∼= B in any forcing extension V[G] in which both A and B are countable.
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In fact, the converse is true, although we will save the proof for the next section.

Thus, if A ≡∞ω B, then A and B are “potentially isomorphic.” Consequently, they

are “indistinguishable” from the point of view of certain logics:

Corollary 1.2.3. Suppose A ≡∞ω B. If φ ∈ L∞ω is any infinitary sentence, then

A |= φ if and only if B |= φ.

The proof of this fact follows from an observation, immediate by standard

absoluteness results, that for any structure M and any φ ∈ L∞ω, the expression

“M |= φ” is absolute.

With this in mind, one could reasonably ask the following question. Suppose

A and B are structures which are non-isomorphic, but nevertheless they are back-

and-forth equivalent. In what sense are they distinguishable?

It is our opinion that in many interesting ways, they are not distinguishable, as

evidenced by Corollary 1.2.3. Thus, we consider the following a meaningful invariant

of a theory T :

Definition 1.2.4. Let T be a first-order theory (or more generally, a sentence of

Lω1ω). Let I∞ω(T ) be the number of back-and-forth inequivalent models of T , of

any cardinality; let I∞ω(T ) =∞ if there are class-many such.

It is more interesting to give a few examples:

Example 1.2.5. Suppose T is ℵ0-categorical. Then I∞ω(T ) = 1.

Proof. Let A and B be models of T . Let V[G] be a forcing extension in which A

and B are both countable. Being ℵ0-categorical is absolute, so A ∼= B in the forcing

extension. Thus A ≡∞ω B in the ground model V, witnessing I∞ω(T ) = 1.
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Example 1.2.6. Let T be the theory of algebraically closed fields of characteristic

p (p prime or zero). Then I∞ω(T ) = ℵ0. The models are given by the transcendence

degree, where the options are n, for any n ∈ ω, or “infinite.”

Proof. If two countable models are back-and-forth equivalent, they are isomorphic;

thus the usual models of finite transcendence degree are all back-and-forth inequiv-

alent, and inequivalent to the (countable) model with infinite transcendence degree.

But now let A and B be models with infinite transcendence degree. Let V[G]

be a forcing extension in which both are countable. Then it is easy to see they still

have infinite transcendence degree in the forcing extension, but are countable, so

isomorphic. Hence they are back-and-forth equivalent in V, as desired.

Before developing this theory further, we need to introduce Scott sentences.

1.2.1 Scott Sentences

The concept of a Scott sentence is standard, but we will be doing some nonstan-

dard things with it, so we review. First, to clear up any misconceptions, we define

canonical Scott sentences for all infinite L-structures, regardless of cardinality. The

definition below is in both Barwise [1] and Marker [13].

Definition 1.2.7. Suppose L is countable and M is an L-structure of cardinality κ.

For each α < κ+, define an Lκ+,ω formula φaα(x) for each finite a ∈M<ω as follows:

• φa0(x) :=
∧
{θ(x) : θ atomic or negated atomic and M |= θ(a)};

• φaα+1(x) := φaα(x) ∧
∧{
∃y φa,bα (x, y) : b ∈M

}
∧ ∀y

∨{
φa,bα (x, y) : b ∈M

}
;
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• For α a non-zero limit, φaα(x) :=
∧{

φaβ(x) : β < α
}

.

Next, let α∗(M) < κ+ be least such that for all finite a, a′ from M ,

∀x[φaα∗(M)(x)↔ φa
′

α∗(M)(x)] =⇒ ∀x[φaα∗(M)+1(x)↔ φa
′

α∗(M)+1(x)]

Finally, put css(M) := φ∅α∗(M) ∧
∧{
∀x[φaα∗(M)(x)→ φaα∗(M)+1(x)] : a ∈M<ω

}
.

It can easily be seen that css(M) ∈ L|M |+ω. Also, it turns out the choice of

css(M) is highly canonical, assuming one codes formulas properly as sets. We avoid

these details and simply assert the following:

Fact 1.2.8. Let M and N be infinite L-structures. The following are equivalent:

• M ≡∞ω N

• M |= css(N)

• N |= css(M)

• css(M) = css(N)

Of course if both M and N are countable, then all of these are equivalent

to M ∼= N as well. The proofs are standard; although the reader may only be

familiar with them in the countable case, the proofs in (e.g.) [5] apply equally well

to uncountable structures if one is willing to conclude back-and-forth equivalence

instead of isomorphism. Of particular note, to us, is the following:

Proposition 1.2.9. The function css is absolute; that is, for any φ and M , the

relation “css(M) = φ” is absolute between models of ZFC.
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These two facts are why we refer to css(M) as the “canonical” Scott sentence;

other sentences (conceivably simpler sentences) could capture M up to back-and-

forth equivalence, but we want a specific sentence with useful properties.

Fact 1.2.8 and Prop 1.2.9 together give a proof of the following:

Proposition 1.2.10. Let M and N be infinite L-structures. The following are

equivalent:

1. M ≡∞ω N ,

2. in some forcing extension V[G], M ≡∞ω N , and

3. in some forcing extension V[G], M ∼= N .

Proof. If M ≡∞ω N , then let F be a back-and-forth system. In any forcing extension

V[G], F is still a back-and-forth system, so M ≡∞ω N in V[G] as well, establishing

(1)⇒ (2).

If M ≡∞ω N in V[G], then in any forcing extension V[G][H], M ≡∞ω N still.

So let V[G][H] collapse |M | and |N | to ℵ0. Then M ∼= N in V[G][H], which is a

forcing extension of V, establishing (2)⇒ (3).

Finally, suppose M ∼= N in V[G]. Let φ = css(M) in V. Then still φ = css(M)

in V[G] and M ∼= N (hence M ≡∞ω N) in V[G], so N |= φ in V[G]. Sentence

satisfaction is absolute, so N |= φ in V. By Fact 1.2.8, N ≡∞ω M in V, establishing

(3)⇒ (1).

We believe that Proposition 1.2.10 is the real justification for studying ≡∞ω

and I∞ω(T ). If two models are back-and-forth equivalent, but not isomorphic, it is
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not because of any intrinsic difference between the two, but instead because of a

characteristic of the surrounding universe of set theory, related to the existence or

nonexistence of certain functions which could exist, but happen to not exist.

We end this section with a nice application of Scott sentences to counting

I∞ω(T ):

Proposition 1.2.11. Suppose T is a theory, or possibly a countable set of Lω1ω

sentences. Suppose λ is an infinite cardinal and T has exactly κ ≤ λ back-and-forth

inequivalent models of size at most λ.

Then I∞ω(T ) = κ.

Indeed, every model of T is back-and-forth equivalent to one of size at most λ.

Proof. Let {Mi : i ∈ κ} be an exhaustive (up to equivalence) list of models of T of

size at most λ, and let φi = css(Mi) for all i. Then suppose the result is false. That

is, for some model M |= T , M is not back-and-forth equivalent to any Mi.

Let ψ be
∧
T ∧

∧
i<κ ¬φi. Since κ ≤ λ, ψ is a Lλ+ω-sentence, so there is a

fragment F of Lλ+ω of size λ which contains it. Observe that M |= ψ. Since F has

size λ, there is an F -elementary substructure of M of size at most λ by a standard

downward Löwenheim-Skolem argument.

Let N be this structure, observing that N |= ψ. Then N |= T . Since |N | ≤ λ,

N ≡∞ω Mi for some i, hence N |= css(Mi) = φi, a contradiction of the fact that

N |= ψ.
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1.2.2 Potential Cardinality

Our next background concept is the notion of potential cardinality. Unlike the

previous topics discussed here, this is fairly new – at time of writing, the definition

exists only in preprint form. The interested reader should check [28] for details; we

present a digested form of the exposition there which is useful for our work here.

By the original completeness theorem, if a first-order theory T is formally

consistent, then it has a model. We can define a proof system for sentences of L∞ω

as well. The proofs are now well-founded trees, rather than finite sequences, but the

system is otherwise predictable (see e.g. [29] for details). With this in mind, we can

say a sentence φ ∈ L∞ω is consistent if it does not prove its own negation, in this

sense. After these definitions are settled, one can show that if φ ∈ L∞ω is countable

– that is, φ ∈ Lω1ω – then consistency of φ implies the existence of a model for φ.

This is a theorem of Karp in her thesis, but for a more modern treatment, see for

example [9] or [29].

Unfortunately, this ceases to be true for uncountable sentences. For example,

let L = {<} ∪ {cn : n ∈ ω}. Let ψ be the Scott sentence of (ω1, <) (making no

mention of the cn) and let φ be ψ ∧ ∀x
∨
n x = cn. Then ψ has no countable models

(ordinals are characterized up to isomorphism by back-and-forth equivalence) but φ

has no uncountable models, so φ simply has no models.

Despite this, φ is consistent – it does not prove its own negation. More to

the point, φ potentially has a model – if V[G] collapses the ordinal we think of as

ω1, then φ has a model there, which is any expansion of (ω1, <) by an exhaustive
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countable set of constants. Indeed, those who wish to avoid mention of an infinitary

proof system could take this as the definition of consistency of an infinitary sentence,

although it robs Karp’s theorem of some of its weight.

With this in mind, we make the following definition:

Definition 1.2.12. Let φ ∈ L∞ω. We say φ is a potential Scott sentence if, in some

forcing extension V[G], there is an infinite L-structure M where css(M) = φ.

This is a well-defined notion; indeed if φ is a potential Scott sentence then

φ is a canonical Scott sentence in every forcing extension in which is it countable.

We sketch the proof: if φ is inconsistent in a forcing extension, then a proof of that

inconsistency is contained in the least admissible fragment containing φ, and thus

in any transitive model of ZFC which contains φ, including V. Therefore, if φ is

consistent in V, it remains so in any V[G] where it is countable, and then by Karp’s

theorem, it has a model there.

We can now make our final definition:

Definition 1.2.13. Let T be a theory (or Lω1ω-sentence). Let CSS(T ) denote the

set of all potential canonical Scott sentences which (formally) imply T .

If CSS(T ) is a set, let ‖T‖ = |CSS(T )|; otherwise let ‖T‖ = ∞, which we

consider strictly greater than any cardinal. Refer to ‖T‖ as the potential cardinality

of T .

The following is immediate from the definitions:

Remark 1.2.14. Let T be a theory. Let I(T,ℵ0) be the number of countable models

of T , up to isomorphism (or back-and-forth equivalence).
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Then I(T,ℵ0) ≤ I∞ω(T ) ≤ ‖T‖.

All these inequalities can be strict; in particular I∞ω(T ) can be strictly less

than ‖T‖ if there are potential Scott sentences of T which do not have models. In

any case, the real point of potential cardinality is the following, which is proved in

[28]:

Theorem 1.2.15. Let T1 and T2 be theories. If T1 ≤B
T2, then ‖T1‖ ≤ ‖T2‖.

We sketch the proof; a completely rigorous treatment is in [28]. Fix a Borel

reduction f : Mod(T1) → Mod(T2) and suppose Φ ∈ CSS(T1). In any forcing

extension V[G] making Φ countable, f is still a Borel reduction from Mod(T1) to

Mod(T2), so takes (the unique countable model of) Φ to some (countable model

which has) canonical Scott sentence Ψ. Since Borel reductions are Borel, we can

apply Schoenfield absoluteness to the appropriate statement about its codes, and

discover that f always takes Φ to Ψ, in any universe extending the ground model.

By a forcing argument, one can show that Ψ is actually in V, so that this induced

function f : CSS(T1) → CSS(T2) is well-defined. It is clearly an injection, so f

witnesses ‖T1‖ ≤ ‖T2‖.

Since ≤
B

does not give rise to a linear order, there is no converse to this

theorem, even in “normal” circumstances (although it will be true for the smooth

relations). Also note that this is not true for the number of back-and-forth in-

equivalent models. Indeed there are examples of theories T1 and T2 which are Borel

equivalent and where I∞ω(T1) =∞, while I∞ω(T2) = i2.

The following fact is easily shown; see [28]:
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Proposition 1.2.16. Let α be a countable ordinal.

If α is finite, then ‖ ∼=α ‖ = iα. If α is infinite, then ‖ ∼=α ‖ = iα+1.

For conciseness, observe that this is equivalent to the expression: for all count-

able α, ‖ ∼=α ‖ = i−1+α+1. We can now prove our first significant implication show-

ing that the countable model theory of T “controls” the uncountable model theory,

in the form of I∞ω(T ):

Corollary 1.2.17. If the isomorphism relation for T is Borel, then I∞ω(T ) < iω1.

In particular, if the isomorphism relation for T is Π0
α, then I∞ω(T ) ≤ i−1+α+1.

This is striking, but the only direct consequence of this we will need is the

following:

Proposition 1.2.18. Let T be a theory. If the isomorphism relation for T is smooth,

then I(T,ℵ0) = I∞ω(T ) = ‖T‖.

Proof. Since T is smooth, T ≤
B
∼=1. Since ∼=1 is the unique successor of ∼=0, this

means that either T ≤
B
∼=0 or T ∼

B
∼=1.

If T ≤
B
∼=0, then I(T,ℵ0) = I∞ω(T ) by 1.2.11. Additionally, T ∼

B
(κ,=)

where κ = I(T,ℵ0), and it is easily seen that ‖(κ,=)‖ = κ and potential cardinality

is preserved under Borel equivalence. So ‖T‖ = κ, as desired.

On the other hand, if T ∼
B
∼=1, then ‖T‖ = ‖ ∼=1 ‖ = i1. Additionally, since

∼=1≤B
T , there are continuum-many countable models of T , so I(T,ℵ0) = i1. Since

i1 = I(T,ℵ0) ≤ I∞ω(T ) ≤ ‖T‖ = i1, all the inequalities are equalities, completing

the proof.
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Beyond what we will need for this thesis, the aim of potential cardinality is

to show that a particular theory is not that complex, in terms of Borel reducibility.

Assuming ‖T‖ can be shown to have some cardinality which is not ∞, then T is

not Borel complete, and assuming it is less than iω1 , many Borel relations cannot

be reduced to it. This is the engine by which one can see theories which are neither

Borel nor Borel complete; see [28] for details.

1.2.3 λ-Borel Completeness

The final topic of this chapter is the idea of λ-Borel completeness. Since we are

discussing I∞ω(T ) and the uncountable model theory of T generally, one might

wonder “how maximal” T can be. Borel completeness is the right notion for the

countable models, and in [11], Laskowski and Shelah defined a corresponding notion

for uncountable models. The idea is for the models of a theory T to have maximally

complicated ≡∞ω relation among the models of size λ, for every λ. In particular

this implies Borel completeness, I∞ω(T ) = ∞, and ‖T‖ = ∞, and simultaneously

strengthens all of them.

To make this definition, for any infinite cardinal λ and any Φ ∈ Lλ+ω, let

Modλ(Φ) be the space of L-structures with universe λ which model Φ. We make

this a topological space using atomic formulas to form a subbasis, as with Modω(Φ).

A function f : Modλ(Φ) → Modλ(Ψ) is said to be λ-Borel if the preimage of

any subbasic open set is λ-Borel, meaning it can be formed as a usual Borel set,

but with conjunctions and disjunctions of size at most λ. Because of the presence
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of parameters from λ, it can easily be seen that the λ-Borel subsets of Modλ(Φ)

are precisely (infinite) Boolean combinations of subbasic open sets, so there is no

incongruity with [11].

A λ-Borel function f : Modλ(Φ) → Modλ(Ψ) is a λ-Borel reduction when

for all M,N ∈ Modλ(Φ), M ≡∞ω N if and only if f(M) ≡∞ω f(N). We denote

the existence of such a function by saying (Modλ(Φ),≡∞ω) ≤λ
B

(Modλ(Ψ),≡∞ω),

often shortened to Φ ≤λ
B

Ψ. We say Φ is λ-Borel complete if, for all Ψ ∈ Lλ+ω,

Ψ ≤λ
B

Φ. Observe that in the case that λ = ℵ0, we recover the original notion of

Borel reductions, Borel completeness, and so on, since back-and-forth equivalence is

the same as isomorphism for countable structures; thus examples exist in that case.

But actually such sentences exist for all λ:

Theorem 1.2.19 (Laskowski, Shelah). For any infinite cardinal λ, the class of

(downward closed) subtrees of λ<ω is λ-Borel complete.

To make this completely precise, we fix a bijection λ<ω → λ so that λ has a

tree structure on it. Then a “subtree of λ<ω” is formed by expanding this structure

by a unary predicate whose realizations are downward-closed with regard to the tree

order, and outside of which we forget the tree order, along with some standard tricks

so that the complement of the “subtree” is always infinite, and thus irrelevant to

the back-and-forth equivalence structure. In [11], Laskowski and Shelah introduce

the notion of “λ-Borel complete for all λ” as a kind of maximal level of complexity

of a theory, and using Theorem 1.2.19 as a “test class,” they also produce a large

class of examples. For our purposes we will need a different test class:
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Theorem 1.2.20. Let LO be the sentence “< is a linear order” in the language

{<}. Then LO is λ-Borel complete for all λ. In particular, for all infinite λ, there

are 2λ pairwise back-and-forth inequivalent linear orders of size λ, so I∞ω(LO) =∞.

Proof. The “in particular” is a corollary, as follows. Trivially there are at most 2λ

orders of size λ, up to back-and-forth equivalence (or isomorphism). For the other

direction, it is enough to show a finite language where there are 2λ back-and-forth

inequivalent structures of size λ in that language.

To see this, recall the classical result that distinct ordinals are back-and-forth

inequivalent. Therefore, there are at least λ+ linear orders of size λ, indexed by

the interval [λ, λ+). Then consider the language {E,<}, and the incomplete theory

which states that E is an equivalence relation and < is a linear order on each class

(but not well-defined between classes). Then for any X ⊂ [λ, λ+) of size at most λ,

let MX have E-classes indexed by X, where the class corresponding to α ∈ X has

order type (α,<). If X 6= Y then MX 6≡∞ω MY , so there are at least [λ+]≤λ = 2λ

inequivalent structures – and therefore linear orders, by the reduction – of size λ.

This holds for all λ, proving that I∞ω(LO) =∞.

The main result is an extension of Friedman and Stanley’s proof that linear

orders are Borel complete.

Let λ be any infinite cardinal. It follows from Theorem 1.2.19 that there is a

finite language L where Modλ(L) – the space of L-structures with universe λ – is

λ-Borel complete. To imitate the original proof we need a notion of a λ-dense linear

order : a structure of size λ in the language {<} ∪ {Pα : α ∈ λ} where < is a dense
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linear order without endpoints, the Pi are disjoint unary predicates, and they are

dense, codense, and exhaustive in the order.

Such a model can be constructed directly. Start with M0 = (Q, <), where

each element has color P0. Given Mn, construct Mn+1 by adding new elements of

color α between every two elements of Mn, for every α < λ. Let Mω =
⋃
nMn. It

is clear that Mω is λ-dense.

From now we follow [4] quite closely; we have imitated the notation to assist

the reader.

Next, we need to define a particular linear order I<ω as a directed union
⋃
n In.

We say I−1 is empty. For each n ∈ ω, we say In is In−1 × (−∞ _ I), where we

identify In−1 with In−1 × {−∞} inside In. For any x ∈ I<ω, define `(x) as the least

n where x ∈ In.

We give a labeling f of I<ω by λ<ω satisfying the following conditions:

• If `(x) = n, then f(x) ∈ λn.

• If x ∈ In, then f maps {x} × I onto {f(x) _ α : α ∈ λ}.

• For any x ∈ In and any α ∈ λ, f−1({f(x) _ α : α ∈ λ} is dense in {x} × I.

We define f by induction. If `(x) = 0, f(x) is the empty sequence () ∈ λ0. If

`(x) = n+ 1, then x = (y, i) for some y ∈ In and some i ∈ I, and there is a unique

α ∈ λ where I |= Pα(i). So let f(x) = f(y) _ (α). Visibly this function has the

desired properties, using λ-density of I.

Next, for each n ∈ ω, let TYn be the set of all complete atomic L-types in

variables x1, . . . , xn; since L is finite, so is TYn. Let e(0) = 0, and for each n ∈ ω,
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let e(n+ 1) = e(n) + |TYn|. Let TY =
⋃
n TYn. We fix some bijection k : TY→ ω,

so that if p ∈ TYn, then e(n) ≤ k(p) < e(n+ 1).

We can now finally produce our λ-Borel reduction. Let A be an L-structure

with universe λ; we construct a linear order MA with universe λ in a λ-Borel way,

such that for any L-structures A and B on λ, A ≡∞ω B if and only if MA ≡∞ω MB.

We construct MA from A by expanding I<ω according to A.

So for any x ∈ I<ω with `(x) = n, there is a corresponding tuple f(x) ∈ λn,

and this tuple has an atomic type otpA(f(x)), which has a corresponding index

k(otpA(f(x))). So let Jx be the linear order Q _ 2 + k(otpA(f(x))) _ Q; this is

a dense piece, followed by a long enough finite piece not to disappear but which

uniquely captures the type of f(x), followed by a dense piece to separate this infor-

mation from others. So let MA be the sum
∑

x Jx. The map A 7→ MA can easily

be made a λ-Borel function from Modλ(L) to Modλ(LO); the detail to check is that

each Jx is countable and I<ω is a fixed set of size λ, so |
∑

x Jx| can be put into

(more or less) canonical bijection with λ.

To show it is a reduction, let V[G] be a forcing extension in which λ is countable

(e.g. a Levy collapse of λ+ to ω1 will do). Observe that A ≡∞ω B if and only if

A ∼= B in V[G], and likewise with MA and MB. So pass to V[G]. Once there,

observe that I is isomorphic to any ℵ0-dense partition of (Q, <), and A and B are

(up to isomorphism) just elements of Modω(L). Therefore, this collapses to the

exact construction showing Modω(L) ≤
B

Modω(LO) from [4], so A ∼= B (in V[G]) if

and only if MA
∼= MB (in V[G]). This completes the proof.
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We will use this result in the following chapters to show λ-Borel completeness

for several first-order theories.
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Chapter 2: O-Minimal Theories

In 1988, Laura Mayer proved Vaught’s Conjecture for o-minimal theories in a sur-

prising way- an o-minimal T either has finitely many countable models or continuum

many. This was accomplished through a sharp dichotomy she introduced: whether

or not T admits a “nonsimple type.” If T admits a nonsimple type, T must have

continuum-many models. If not, the isomorphism relation can be simply character-

ized, and T has continuum-many countable models if and only if there are infinitely

many nonisolated types.

In this paper we sharpen this divide, completely characterizing where∼=T lies in

the Borel complexity hierarchy. Most prominently we show that, given a nonsimple

type, T is Borel complete, and indeed λ-Borel complete for all λ. This is proved by

reducing the isomorphism problem for linear orders into the one for models of T ;

by Theorem 3 in [4] and Theorem 1.2.20, every isomorphism problem is reducible

to this one, so this is sufficient. Note that this implies I∞ω(T ) =∞ trivially.

If there is no such type, one of two things happens. If T is non-small – that

is, S(T ) is uncountable – then ∼=T is ∼=2, the “equality relation on countable sets of

reals.” Correspondingly, I∞ω(T ) = i2. If T is small – that is, S(T ) is countable

– then ∼=T is smooth, and equivalent to the equality relation on κ, the number of
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countable models of T , which can also be computed directly by a type counting

argument. Curiously, κ can be 1, any finite number of the form 3a6b, or 2ℵ0 , but

cannot be ℵ0. In all of these cases, I∞ω(T ) = κ.

These values are significant. In case T is small, then ∼=T is the minimal value

among all theories with at least κ countable models. In case T is not small, ∼=T is

the minimal value among all non-small theorems (see Theorem 1.3 in [14]). Thus

in some important sense, ∼=T is either maximal or minimal. Also, among o-minimal

theories, I∞ω(T ) is always the “expected” value from the Borel complexity of ∼=T .

Therefore the divide is as sharp as it could be- (Mod(T ),∼=) is either maximal

among all isomorphism problems, or minimal among all problems with which it can

be reasonably compared.

We continue with two interesting corollaries to the main theorem. The first

states that any nontrivial o-minimal theory (in particular, any theory which defines

an infinite group) is λ-Borel complete. The second states that any discretely o-

minimal theory (or even one with an infinite discrete part) is λ-Borel complete.

Together, these imply and strengthen virtually all known Borel completeness results

for concrete examples of o-minimal theories.

We end with a section filled with examples to demonstrate the different kinds

of behavior which can occur, as well as settle a few easy questions one might ask

when comparing this case to colored linear orders (see Chapter 3) which admits a

very similar “main theorem” to this one.

These questions were originally explored in Dave Sahota’s PhD thesis [25],

where a partial form of the main result was shown and where many of the techniques

29



here were first employed. In particular, he introduced the concept of faithfulness

and showed that the existence of a faithful type is sufficient for Borel completeness.

From there, given a nonsimple type over finitely many parameters, he added finitely

many more parameters to produce a faithful non-cut, yielding a Borel completeness

result for the extended theory. It is a major open problem whether this implies

Borel completeness for the original theory, however, and the thesis stopped there.

The main addition of this chapter, aside from extending the scope to I∞ω(T )

and to λ-Borel completeness, is to get around this issue of parameters. This requires

more refined analysis of cuts and substantially new ideas to deal with atomic inter-

vals (the canonical tail). Although Sahota finished his thesis before I was aware of

the problem, it was never published; thus, to recognize the contributions of both

authors, much of this work was published in [21] under both names.

2.1 Background

Throughout this chapter, T will refer to an o-minimal theory in a countable lan-

guage. We will not assume the underlying order is dense. However, as we will see

in Theorem 2.4.2, if the order has an infinite non-dense part, then there is a very

simple answer to our main question, which shows that T is λ-Borel complete for

all λ. Where relevant, we will work in a sufficiently saturated monster model from

which all parameters will be drawn; all models will be elementary substructures of

this monster model. When we say a set A or a tuple of elements b, we mean these

to be subsets or elements of this monster model.
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Since our models will be linearly ordered, for any set A, dcl(A) = acl(A). We

will refer to this shared value as cl(A). Since closure will be used so heavily in

this chapter, we define two extended notations. If A is any set, then clA(B) will

be cl(A ∪ B), where the intention is that A acts like a set of parameters. If p is a

partial type over A, then clpA(B) will be those elements of clA(B) which satisfy p.

Much of the basic theory of o-minimality was developed in [18] by Pillay

and Steinhorn and in [10] by Knight, Pillay, and Steinhorn. In particular, they

showed the cell decomposition theorem, the continuity-monotonicity theorem, and

the existence of (unique) constructible models over sets. Readers unfamiliar with

o-minimal theories are directed to [30] for a modern introduction to o-minimality.

For definitions – a structure M is o-minimal if < is a linear order of the

structure and, for all parameter-definable sets φ(x, a), φ(M, a) is a finite union of

points and open intervals. It is a nontrivial fact, shown in [18] and [10], that if

M ≡ N and M is o-minimal, then N is o-minimal as well. Thus we may say a

complete theory T is o-minimal if some (all) of its models are.

First, for cell decomposition. A 1-cell (over A) is either a single point in cl(A)

or an open interval whose endpoints are in cl(A). An n+ 1-cell V (over A) consists

of an n− 1-cell U over A and one of two things:

1. An A-definable partial function f , defined on U . Then V = {(x, y) : x ∈

U , f(x) = y}.

2. Two A-definable partial functions f and g, defined on U , where f(x) < g(x)

on U . Then V = {(x, y) : x ∈ U , f(x) < y < g(x)}.
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An n-cell is open if the underlying 1-cell is an open interval, and in higher

cases, we always take case (2). The cell-decomposition theorem states that for any

A-formulas φ1(x), . . . , φk(x), Mn can be A-definably divided into n-cells such that

φi(Mn) is a disjoint union of cells. The only usage of this theorem directly in this

chapter is the following easy consequence:

Proposition 2.1.1. Suppose a is a tuple, φ(x) is a formula over A, and φ(a) is

true. Then there is a n-cell U , definable over A, where a ∈ U and φ holds for all

elements of U .

Along with the cell-decomposition theorem is a corresponding statement for

functions. For general A-definable n-ary partial functions f1, . . . , fk, we can defin-

ably decomposeMn into n-cells over A such that for all i, dom(fi) is a disjoint union

of cells and where fi is continuous on each cell. When n = 1, we can do even better

and insist that on each cell, fi is not only continuous, but either constant, strictly

increasing, or strictly decreasing; this is call the continuity-monotonicity theorem.

The following is an easy consequence we will use frequently:

Proposition 2.1.2. Suppose A is a set and a and b are single elements outside

of cl(A). If f is an A-definable partial function and f(a) = b, then f is a strictly

monotone homeomorphism from the realizations of tp(a/A) to the realizations of

tp(b/A). We will refer to this condition as “f is a bijection from tp(a/A) to tp(b/A).”

It follows immediately that clA satisfies the Steinitz exchange axiom: for any

set A and any single elements a and b, if a ∈ cl(Ab) \ cl(A), then b ∈ cl(Aa). Thus
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for any sets A and B, dimA(B) is well-defined to be the cardinality of the largest

clA-independent subset of B.

A model M is constructible over A if A ⊂ M and there is an enumeration

(aα : α < δ) of M such that for all α, tp(aα/Aα) is isolated, where Aα = A ∪ {aβ :

β < α}. If there is a constructible model over A, then that model is the unique

prime model over A, up to isomorphism fixing A. When the underlying theory is

o-minimal, for all sets A (from some model), there is a constructible model over A

which we will denote Pr(A).

In [12], Marker identified the three kinds of complete nonalgebraic 1-types

which can arise. A complete 1-type p which has both a definable infimum L and

a supremum R is atomic, and is either algebraic (if L = R) or is generated by the

atomic interval (L,R); note that L or R may be among ±∞. If p has a definable

infimum or a definable supremum, but not both, then p is nonisolated and is called

a “non-cut.” Finally, if p has neither endpoint, then p is nonisolated and is called

a “cut.” It is easy to see that there are no definable bijections between types of

different “kinds.” From this observation Marker showed that if tp(a/A) is a non-cut

and q ∈ S1(A) is a cut, then the prime model over Aa omits q, and likewise when

exchanging cuts for non-cuts.

2.1.1 Nonsimplicity

Less well-known than the general theory but fundamental to our work here, is the

notion of nonsimplicity. This definition is due to Mayer and is central to her solution
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of Vaught’s conjecture for o-minimal theories in [15].

Definition 2.1.3. A type p ∈ S1(A) is simple if, for every set B of realizations of

p, clpA(B) is B.

Say p is nonsimple if p is not simple; that is, for some set B of realizations of

p, there is a b 6∈ B which realizes p and which is B-definable.

By compactness, if p is nonsimple, there is a finite set B satisfying the above.

In particular, we will say p is n-nonsimple if there is some B as above with |B| ≤ n.

We will say p is n-simple if there is no such set B. The following remark makes the

minimal nonsimplicity index very interesting:

Remark / Definition 2.1.4. If p is k-simple, then the type pk+1(x0, . . . , xk) gen-

erated by {x0 < · · · < xk} ∪
⋃k
i=0 p(xi) is complete.

If p is n-nonsimple, then there is some ascending n-tuple a of realizations of

p, and some element b which realizes p and is a-definable but is not in a. If n is

minimal such that p is n-nonsimple, then by the remark, pn is a complete type.

By combining these two facts, we get a definable function f : pn → p such that

f(a) = b.

While we will be very interested in particular nonsimple types, we are using

the existence of a nonsimple type as a property of the theory which forms the

most important dividing line for complexity. Since the use of parameters can be

a significant obstacle to descriptive set theoretic analysis, the following lemma is

extremely helpful:
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Lemma 2.1.5. Let A be a finite set, and suppose p ∈ S1(A) is n-nonsimple. Then

the restriction p0 of p to S1(∅) is is n+ |A|-nonsimple.

Proof. By an obvious inductive argument, we assume A is a singleton a, and p ∈

S1(a). Assume n is minimal such that p is n-nonsimple. By way of contradiction,

suppose that p0 is n + 1-simple. By nonsimplicity and the remark, there is an a-

definable function f : pn → p. In fact, we may take f to be f(x; y) such that f(x; a)

is a nontrivial function pn → p, and by exchange over a, may assume that f(x; a) is

defined on ascending tuples x1 < · · · < xn and satisfies f(x; a) > xn everywhere.

Suppose that clp0(a) is nonempty; that is, there is an a′ ∈ cl(a) which realizes

p0. But then by exchange, a ∈ cl(a′), so f(x; a) is a′-definable, witnessing n + 1-

nonsimplicity of p0. So it must be that p is equivalent to p0; therefore we take p = p0

for the remainder of the proof. Let q(y) = tp(a).

But now the type pn0 × q is complete, and f is a function pn0 × q → p0. By

exchange and the preparation above, we may replace f with a function g : pn+1
0 → q.

Assume g is of minimal arity with this property. Then for any b1 < · · · < bn from

p0, the function g(b;xn+1) is a bijection from the complete b-type p0(x) ∪ {x > bn}

to the complete b-type q.

Therefore, define the function h : pn+1
0 → p0 by h(x1, . . . , xn+1) to be the

unique y > xn+1 from p0 where g(x1, . . . , xn+1) = g(x2, . . . , xn+1, y); such a y must

exist and be greater than xn+1 by the above proof, yielding n + 1-nonsimplicity of

p0, as desired.

In fact, since functions require only finitely many parameters to be defined,
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if T admits a nonsimple type over any set, then T has a nonsimple type over the

empty set. Although we will not use it, the converse is also true – any nonsimple

type over any set A admits a nonsimple extension to any B ⊃ A. Therefore:

Corollary 2.1.6. For a complete o-minimal T , the following are equivalent:

• T admits a nonsimple type over ∅.

• T admits a nonsimple type over A, for some set A.

• T admits a nonsimple type over A, for every set A.

We will refer to any of the above conditions on T as admitting a nonsimple

type.

2.1.2 Outline

Most of the content of this chapter is in proving the following Theorem:

Theorem 2.1.7. Let T be a complete o-minimal theory in a countable language.

1. If T has no nonsimple types and S1(T ) is countable, then ∼=T is (3a6b,=) and

I∞ω(T ) = ‖T‖ = 3a6b, where a and b are the number of independent non-cuts

and cuts, respectively. Note that either or both could be infinite.

2. If T has no nonsimple types and S1(T ) is uncountable, then ∼=T is ∼=2 and

I∞ω(T ) = ‖T‖ = i2.

3. If T admits a nonsimple type, then (Mod(T ),∼=) is Borel complete and indeed

λ-Borel complete for all λ.
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First, we consider the case where T has no nonsimple types. We state and re-

prove Mayer’s characterization of isomorphism for such T . Then we go on to prove

the exact place in the Borel hierarchy for T by giving explicit Borel reductions into

the appropriate spaces.

The more complicated case is when T has a nonsimple type. In all cases,

we will give a λ-Borel reduction from (LO,∼=) into (Mod(T ),∼=). In essence, we

will give a λ-Borel function LO → Mod(T ) where L appears as the Archimedean

ladder of some nonsimple type inML. In actuality, this only works in the presence

of a faithful nonsimple type. The notion of faithfulness applies in different ways

depending on the ‘kind’ of nonsimple type we have, so we divide into cases based

on whether our nonsimple type is isolated or not.

If p is a nonsimple, nonisolated type, then either p is a non-cut or a cut. We

show that all nonsimple non-cuts are faithful, and that every cut is either faithful or

can be used to produce a nonsimple non-cut (which is necessarily faithful). When

p is isolated, there may be no faithful types anywhere. We exploit the idea that we

can add parameters to produce a non-cut, so that we can embed a linear order as

the ladder of this type. This will not be preserved under isomorphism of models,

but we show that such an embedding has a canonical tail which is preserved.

We then show that this is enough – there is a λ-Borel complete class of linear

orders where tail isomorphism is equivalent to actual isomorphism, so we can still

produce a Borel reduction from linear orders to T . Therefore, given a nonsimple

type, T must be λ-Borel complete for all λ.

We follow up with two corollaries which provide sufficient conditions for λ-
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Borel completeness. First, if the theory itself is nontrivial (regardless of whether

this happens in a single type), we can use exchange to produce a nonsimple type

over finitely many parameters. Second, if the underlying order is not almost dense

(that is, there are infinitely many non-dense points), we will be able to generate a

faithful nonsimple type over ∅, just using the successor function.

We end with a section of examples of o-minimal theories which exhibit several

types of behavior discussed in the main body of this chapter.

2.2 No Nonsimple Types

The aim of this section is to completely characterize the complexity of ∼=T in the

case that T does not admit a nonsimple type. Therefore, for the rest of this

section, T is a countable o-minimal theory with no nonsimple types. Our

characterization will depend entirely on the size of S1(T ) and the number of inde-

pendent cuts and non-cuts. To do this, consider the following definition, which is

implicit in [15]:

Definition 2.2.1. Let M and N be countable models of T . We say that M and

N are apparently isomorphic if, for every p ∈ S1(∅), p(M) ∼= p(N ) as linear orders.

Our characterization relies on two major facts; that “apparent” isomorphism

is equivalent to “actual” isomorphism, and that apparent isomorphism is a relatively

simple thing to compute.
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2.2.1 Apparent Isomorphism is Equivalent to Isomorphism

We begin by summarizing the part of Mayer’s work which is relevant to us. All

results and definitions in this subsection are due to her and proved in [15], although

the exposition is new.

Lemma 2.2.2. Given countable models M and N of T , M∼= N if and only if M

and N are apparently isomorphic.

This lemma follows from a back-and-forth argument using the following lemma

as an inductive step:

Lemma 2.2.3 (Mayer). Suppose M and N are countable models of T and A is a

finite set of parameters in M ∩N where, for all p ∈ S1(A), p(M) ∼= p(N ) as linear

orders. Then, for any a ∈ M, there is a b ∈ N such that tp(a) = tp(b) and for all

q(x; y) ∈ S2(A), q(M; a) ∼= q(N ; b) as linear orders.

Proof. Let M and N be as described; clearly we may assume A = ∅ by adding it

into the language. Let a ∈M be arbitrary, and for every p ∈ S1(∅), let fp : p(M)→

p(N ) be an order isomorphism as guaranteed by hypothesis.

First, note that any ∅-definable function between complete 1-types must be a

continuous, strictly monotone bijection, either order-preserving or order-reversing;

this follows from the continuity-monotonicity theorem and the fact that both types

are complete. Next, note that since all types are simple, there is at most one ∅-

definable function between any two 1-types, since if f, g : p → q are distinct, then

g−1 ◦ f : p→ p makes p nonsimple. As a consequence, for every type p, there is at
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most one element a′ ∈ cl(a) which realizes p. The same holds for any b in N .

With all this said, fix p = tp(a) and let b = fp(a) ∈ N . Observe that

tp(a) = tp(b) = p. We argue that this choice of b works; that for any q(x; y) ∈ S2(∅),

q(M; a) ∼= q(N ; b). By the previous paragraph, every type over ∅ either stays

the same or splits into two convex pieces. If q(x; a) is equivalent to its restriction

q0 to ∅, then so is q(x; b), and they are already isomorphic under fq. If it does

split, then there is an a′ ∈ cl(a) which realizes q0, so there is a unique ∅-definable

homeomorphism f : p → q0 where f(a) = a′. Observe that f works in N as well,

and q(x; b) splits into two pieces over b′ = f(b).

Assume that f : p → q0 is strictly decreasing (the strictly increasing case is

similar). Then f is a strictly decreasing bijection p ∪ {x > a} → q0 ∪ {x < a′} and

p∪{x < a} → q0∪{x > a′}, and similarly for b and b′ inN . So f◦fp◦f−1 is an order-

preserving bijection q0∪{x < a′} → q0∪{x < b′} and q0∪{x > a′} → q0∪{x > b′}.

Since q(x; a) is either q0∪{x < a′} or q0∪{x > a′}, and q(x; b) similarly, the function

f ◦ fp ◦ f−1 is the desired order-isomorphism q(M; a) → q(N ; b), completing the

proof.

It only remains to prove that “apparent isomorphism” is a comparatively sim-

ple notion to compute. To that end, consider the following lemma:

Lemma 2.2.4. [Mayer] For any simple p ∈ S1(∅) and any countable M |= T , if

a, b ∈ p(M) and a < b, then there is a c ∈ p(M) with a < c < b.

Therefore, p(M) is order-isomorphic to one of six countable linear orders.

Proof. First, suppose p(M) has at least two elements, a < b. If a has an immediate
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successor, then at most b, and by convexity of p, every realization of p has an

immediate successor which realizes p. Therefore, the successor function is a ∅-

definable witness to p being 1-nonsimple (against hypothesis). Thus this cannot

happen, so no element of p(M) has an immediate successor or predecessor.

Therefore, either |p(M)| ≤ 1 (yielding two possible isomorphism types) or

p(M) is a dense linear order. In this case, two choices remain with respect to

endpoints, and therefore four more possible options for the isomorphism type of

p(M), for a total of six.

As a consequence, two models M and N are apparently isomorphic if and

only if, for every type p ∈ S1(∅) which is realized in M or N , if p(M) has a first

element (or last element, or sole element), then so does p(N ), and vice-versa.

2.2.2 The Complexity of Isomorphism for Theories With No Non-

simple Types

With both models in hand, computing apparent isomorphism is not especially dif-

ficult. Determining precisely how difficult leads to the following characterization:

Theorem 2.2.5. Suppose T is o-minimal with no nonsimple types.

• If there are c pairwise-independent cuts and n pairwise-independent non-cuts

over ∅, both finite, then ∼=T is Borel equivalent to (3n6c,=). Additionally,

I∞ω(T ) = 3n6c.

• If there are an infinite but countable number of pairwise-independent non-
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isolated 1-types over ∅, then ∼=T is Borel equivalent to ∼=1. Additionally,

I∞ω(T ) = i1.

• If S1(T ) is uncountable, then ∼=T is Borel equivalent to ∼=2. Additionally,

I∞ω(T ) = i2.

To be precise, we should define independence. Two complete, nonalgebraic

types p and q (over A) are dependent if there is an A-definable function f which

takes realizations of p to realizations of q. A set Γ ⊂ S1(T ) is independent if no

pair of types in Γ is dependent. In [15], a more complicated notion of dependence

was given so that a type could depend on finitely many others. This will never

be necessary because of Theorem 2.4.1, which states that if T is nontrivial then

T admits a nonsimple type (this is not circular). Consequently dependence is an

equivalence relation on complete types over a set A, and the equivalence classes have

size at most ℵ0 + |A|. Additionally, though we will not need it specifically, cuts can

only depend on cuts, and likewise with non-cuts and atomic intervals.

For the first and second points, we need only show that if T is small, then

T is smooth. In this case the Borel equivalence class of T is defined exactly by

the number of nonisomorphic countable models of T , a count which has already

been done in [15], where the notion of “pairwise-independent” is also made precise.

Moreover, the computation of I∞ω(T ) follows immediately from Proposition 1.2.18.

Lemma 2.2.6. If S1(T ) is countable and has no nonsimple types, then T is smooth.

Proof. We need a Borel function F : Mod(ω, T ) → X, for some Polish space X,

where M1
∼= M2 iff F (M1) = F (M2). So let X = 6S1(T ), which is a countable
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product of Polish spaces and is therefore Polish. Fix an enumeration of the six

possible countable dense linear orders, and for any M |= T and p ∈ S1(T ), let

F (M)(p) be the index of the order-type of p(M). This function is clearly Borel and

satisfies the requirements.

For the third point, it’s enough to show that if S1(T ) is uncountable, then

T ≤
B
∼=2. For as has already been mentioned, ∼=2 embeds into ∼=T whenever T is not

small.

Lemma 2.2.7. If S1(T ) is uncountable, then ∼=T≤B
∼=2.

Proof. Since T is not small, X = S1(T )× 6 is an uncountable Polish space. We will

produce a Borel function F : Mod(ω, T )→ Xω such that M1
∼=M2 iff {F (M1)n :

n ∈ ω} and {F (M2)n : n ∈ ω} are equal as sets.

To that end, fix an enumeration of the six possible countable dense linear

orders, and define F (M)(n) be (tpM(n), k), where k is the index of the isomorphism

type of tpM(n)(M). This function is again Borel, and two models yield the same

set of sequence values if and only if they are apparently isomorphic.

Unfortunately, Marker’s theorem does not give any information about I∞ω(T ).

We can do this ourselves without much extra effort:

Lemma 2.2.8. If S1(T ) is uncountable, then I∞ω(T ) = i2.

Proof. First, observe that almost isomorphism is absolute. Thus, if two models

(of any cardinality) are almost isomorphic, then in any forcing extension in which

both are countable, they are still almost isomorphic, and thus isomorphic (in the
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forcing extension), so back-and-forth equivalent (in the forcing extension), and thus

back-and-forth equivalent (in the ground model) since back-and-forth equivalence

is absolute. It is easy to see that there are only i2 possible almost-isomorphism

classes of models of T , indexed by functions from S1(T ) to 6, so I∞ω(T ) ≤ i2. The

other direction is less trivial.

Dependence among types is an equivalence relation with countably many

classes. Since S1(T ) is uncountable, it has size continuum, and thus there is a

set X ⊂ S1(T ) of size continuum consisting of nonalgebraic, nonisolated, mutually

independent types. For each Y ⊂ X, let CY be a set of constants from the monster

model consisting of one realization of each type in Y , and nothing else. The prime

model MY over CY will realize each type in Y . If p ∈ X\Y is realized in MY by some

element a, then for some finite c from CY , tp(ac) is isolated. Since p is nonisolated

and tp(a/c) extends it, this means there is a b ∈ cl(c) which realizes p. By triviality

of T (see Theorem 2.4.1; this is not circular), this means p is mutually dependent

with some type in Y , against construction of X. This contradiction shows that p is

omitted in MY .

Thus, if Y1 and Y2 are distinct subsets of X, then MY1 and MY2 realize different

types, so are not back-and-forth equivalent. Since |X| = i1, |P(X)| = i2, so

I∞ω(T ) ≥ i2, as desired. Note that a more delicate form of this argument would

show that ∼=2≤B
T , along essentially the same lines as the proof of Marker’s theorem

in [14].

This proves the main results for this section, as well as the following unexpected
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corollary, which gives another way in which these theories are dominated by their

1-types:

Corollary 2.2.9. Let T be o-minimal with no nonsimple types. T is small if and

only if S1(T ) is countable.

Proof. If T is small, then S(T ) is countable, so S1(T ) ⊆ S(T ) is countable. If T is

not small, then F2 ≤B T , so T is not smooth, so S1(T ) is uncountable.

2.3 A Nonsimple Type

Our goal for this section is to show that if T is a countable o-minimal theory which

admits a nonsimple type, then the ∼=T is λ-Borel complete. Therefore, for the

rest of this section, T is a countable o-minimal theory which admits a

nonsimple type. Since the isomorphism relation on linear orders (of size λ) is

known to be λ-Borel complete, our goal will be to show a λ-Borel reduction from

linear orders to T .

Given a complete type p over some set A, and for any set B ⊃ A, define

an Archimedean equivalence relation on realizations of p as follows: given a and

b realizing p, say a ∼B b if there are a1, a2 ∈ clpB(a) and b1, b2 ∈ clpB(b) such that

a1 ≤ b ≤ a2 and b1 ≤ a ≤ b2. For our purposes, A will usually be ∅. In the quite

common case that A = B = ∅, we will omit the subscript on ∼.

This is easily seen to be an equivalence relation. Moreover, the equivalence

classes are convex, and thus they are totally ordered. As a result, given any model

M of T which contains B, the quotient p(M)/ ∼B is a linear order. We call this
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the Archimedean ladder. If A = B = ∅, this is an invariant of the model which is

preserved under isomorphism. Assuming we can construct models with arbitrary

countable ladders, and do this in a λ-Borel fashion, we can give a λ-Borel reduction

from linear orders to T and show λ-Borel completeness.

The next step toward this is the notion of faithfulness:

Definition 2.3.1. A nonsimple type p ∈ S1(A) is faithful if, for any set B of

realizations of p which are pairwise ∼A-inequivalent, and any c ∈ clpA(B), c ∼A b for

some b ∈ B.

Approximately, “faithfulness” says that given some realizations of p, you can’t

access anything too fundamentally different. In particular, you can’t access any new

Archimedean classes. Since o-minimal theories have constructible models over sets,

this gives a technique: given a countable linear order L, pick a faithful type p ∈ S1(∅)

and a set of ∼-inequivalent constants which realize p, and which are indexed and

ordered by L. The constructible model over this set of constants will have ladder

exactly isomorphic to L, and we’re done. The details will be shown later, but there

is no hidden difficulty. The problem is finding a faithful type at all.

Our first stage is to show that if there is a nonisolated nonsimple type over ∅,

then there is a faithful nonsimple type over ∅. It turns out all nonsimple non-cuts

are 1-nonsimple, and all 1-nonsimple non-cuts are faithful, so if there is a nonsimple

non-cut, there is a faithful type. Neither of these properties are true for cuts, but if

there is an unfaithful cut over ∅, then we can use it to produce a nonsimple non-cut

over ∅. So if T admits any nonisolated nonsimple type, we can produce a faithful
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type and conclude that T is λ-Borel complete.

This does not completely resolve the question, however. Consider the theory

of ordered, affinized divisible abelian groups (Example 2.5.9). In this case, the

only 1-type over ∅ is given by the atomic formula x = x, which is 1-simple but 2-

nonsimple. No such type can be faithful, so this theory admits no faithful types over

∅. However, if we add two parameters (call them 0 and 1), there is a resulting non-

cut “at infinity,” which is faithful by the work above. We can build a ladder in this

non-cut by faithfulness, but because the definition of the type relies on parameters,

it will not be preserved under isomorphism. To deal with this, we introduce the

notion of a canonical tail:

Definition 2.3.2. Let p ∈ S1(T ) be an atomic nonsimple type, and let n be minimal

where p is n-nonsimple. Say p has a canonical tail if, for all sets A and B from p of

size n, ∼A and ∼B coincide above clp(AB). That is, for all elements c, d from p, if

c, d > clp(AB), then c ∼A d if and only if c ∼B d.

The problem from before is that if we use parameters to construct a ladder,

it will not be preserved under isomorphism. However, if the atomic type has a

canonical tail, then any isomorphism between suitably chosen models will preserve

a tail of the intended linear order. With this in mind, we will first show that

every nonsimple atomic type has a canonical tail. Next, we will construct a λ-

Borel complete class of linear orders on which isomorphism and sharing a tail are

the same notion, and use this to show that an atomic type with a canonical tail

provides λ-Borel completeness.
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Combining these two ideas shows that if T is a countable, o-minimal theory

which admits a nonsimple type, then T is λ-Borel complete for all λ.

2.3.1 A Nonsimple Nonisolated Type

Our goal in this section is to show that if T admits a nonsimple nonisolated type

over ∅, then T admits a faithful nonisolated type over ∅. There are two distinct cases

– non-cuts and cuts. Before we prove our needed results, we will need one lemma

which is used frequently and without explicit mention. Note that in this lemma and

all that follow, we can also work with types over parameters with no change in the

argument.

Lemma 2.3.3. If p ∈ S1(T ) is n-nonsimple, then for any set B of realizations of

p with |B| ≥ n, clp(B) has no first or last element. Further, if p is 1-simple, then

clp(B) is a dense linear order.

Proof. Let n be minimal where p is n-nonsimple, and let a = a1 < · · · < an be

realizations of p. By n-nonsimplicity, there is a b ∈ clp(a) which is not in a. By

exchange, any of the elements of ab is definable over the other n. By minimality of

n, this yields functions fi : pn → p for i = 0, 1, . . . , n where f0(a) < a1 < f1(a) <

· · · < an < fn(a).

In particular, f0(a) < a1 and an < fn(a), so no sufficiently large set’s closure

has a first or last element. Furthermore, if n ≥ 2, then we can use f1 to get between

a1 and a2, establishing density.

Lemma 2.3.4. If p ∈ S1(T ) is a nonsimple non-cut, then p is 1-nonsimple.
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Proof. We assume p is a left non-cut, with definable supremum L; the infimum

case is symmetric. Let n be minimal such that p is n-nonsimple. By exchange and

minimality of n, construct f(x) : pn → p such that if x = x1 < · · · < xn are all from

p, then xn < f(x) < L. Then f is defined and has this property on a convex set

below L, so there is a b ∈ cl(∅) where if b < x1 < · · · < xn < L, then f(x) is defined

and xn < f(x) < L.

But since p is a non-cut, cl(∅) approaches L from the left, so there are elements

a1 < · · · < an−1 from cl(∅) satisfying b < a1 < · · · < an−1 < L. So the function

g(x) = f(a1, . . . , an−1, x) is a nonsimple function from p to p such that x < g(x),

establishing 1-nonsimplicity.

Lemma 2.3.5. If p ∈ S1(T ) is a nonsimple non-cut, then p is faithful.

Proof. Suppose p is unfaithful. We may assume p has a supremum L; the infimum

case is symmetric. By unfaithfulness, there is a tuple a1 < · · · < an of realizations

of p where [a1] < · · · < [an] and where there is a b ∈ clp(a) such that b 6∼ ai for

any i = 1, . . . , n. We assume n is minimal with this property. Clearly n > 1. By

exchange, we may assume b < a1. Let A = {a1, . . . , an−1}.

By minimality of n, b cannot be defined over a proper subset of a; thus, every

point of ab is definable over the other n. Also, observe that tp(b/c) is a cut (p

is nonsimple, so the closure of a nonempty set has no first or last element), while

tp(an/Ab) is a non-cut. Both are nonisolated over A, so neither is realized in Pr(A).

Yet tp(an/A) is realized in Pr(Ab), indicating that tp(an/A) is isolated over Ab, so

there is some element of cl(Ab) which realizes tp(an/A). This means there is an
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A-definable function from a cut over A to a non-cut over A, which is impossible.

Thus, if there is a nonsimple non-cut, we are done. We will now address the

issue of nonsimple cuts, which are not as convenient as non-cuts:

Lemma 2.3.6. If a cut p ∈ S1(T ) is nonsimple, then it is 2-nonsimple.

Proof. Suppose not. That is, let p ∈ S1(T ) be a nonsimple cut, and let n be minimal

such that p is n-nonsimple, and such that n ≥ 3.

By exchange and minimality of n, there is a ∅-definable function f : pn → p,

defined on ascending n-tuples from p, such that if x1 < · · · < xn are realizations of

p, then x1 < f(x) < x2 < · · · < xn. Then these properties hold on a convex set, so

hold on a ∅-definable open interval I = (a, b) containing p. Since cl(∅) approaches

p from the right, we can choose elements c3 < · · · < cn from cl(∅) where cn < b and

p(x) implies x < c3.

Then the function g(x1, x2) = f(x1, x2, c3, . . . , cn) is ∅-definable and defined

on the interval (a, c3). Further, if x1 < x2 realize p, then x1 < g(x1, x2) < x2, so by

convexity of p, g(x1, x2) realizes p as well, establishing 2-nonsimplicity of p.

Note that this lemma is best-possible; Example 2.5.6 gives a nonsimple cut

which is 1-simple. The binary function making this cut nonsimple is an averaging

function, which “spills over” to nearby non-cuts and makes them nonsimple instead

(and thus a faithful type is exhibited). This behavior turns out to be completely

general:

Lemma 2.3.7. If p ∈ S1(T ) is a nonsimple, 1-simple cut, then there is a faithful

non-cut q ∈ S1(T ).
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Proof. Let n be minimal such that p is n-nonsimple. By hypothesis and Lemma 2.3.6

we may conclude that n = 2. By exchange, there is a function g : p2 → p where

if x < y and both realize p, then x < g(x, y) < y. But then this property holds

on an ∅-definable interval I containing p. Since cl(∅) approaches p from the right,

let c ∈ cl(∅) be some element such that c ∈ I and p(x) implies x < c. Then the

function g(x, c) is ∅-definable, defined on the open interval (a, c) which includes p,

and if a < x < c, then x < g(x, c) < c.

Since cl(∅) approaches p from the right, let c′ ∈ cl(∅) be such that p(x) < c′ < c.

Then the set {y ∈ cl(∅) : a < y < c} is nonempty, and because g(x, c) is ∅-definable,

it must therefore approach c from the left. So the type q(x) = {x < c} ∪ {x > y :

y ∈ cl(∅) ∧ y < c} is a non-cut, and is nonsimple under the function g(x, c). By

Lemma 2.3.5, q is faithful, completing the proof.

Of course a cut need not be faithful; the example of a 1-simple, 2-nonsimple

cut exhibits this. However, Example 2.5.8 shows that even if a cut is 1-nonsimple, it

may be unfaithful due to the presence of a function of larger arity. In that example,

the binary function “overspills” and makes nearby non-cuts nonsimple, as before.

This is again completely general, but the proof is more delicate than before. We

will temporarily require the notion of n-unfaithfulness ; the property of a type which

says that it is unfaithful, and there is a witness of length at most n.

Lemma 2.3.8. If a cut p ∈ S1(T ) is 1-nonsimple but 2-unfaithful, then for any b

realizing p, the non-cut below b is 1-nonsimple as a type over b.

Proof. Suppose that p is 2-unfaithful, and pick a witnessing pair. That is, there is
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some pair [a] < [b] from p and a ∅-definable g(x, y) where [a] < [g(a, b)] < [b]. We

will show that the non-cut (b)− is 1-nonsimple as a b-type.

Since the type r(x, y) = p(x) ∪ p(y) ∪ {[x] < [y]} is complete, g witnesses un-

faithfulness for every sufficiently spread pair. In particular, g is defined, continuous,

strictly increasing in both of its arguments, and satisfies x < g(x, y) < y everywhere

on this type. We may therefore consider a ∅-definable open 2-cell U(x, y) containing

the descending pair (b, a) (order intentional) on which these properties are satisfied.

Its underlying interval must contain all of p(x), and its boundary functions L(x)

and R(x) are everywhere defined on p(x).

Then L(b) < a < R(b); since [a] < [b] in p(x), this means L(b) is beyond the

left edge of p(x), so there is an element of cl(∅) which is strictly between p and

every value that L(x) can take on p. Thus we may assume that L(x) is a constant

function whose value lies below p. In particular, if (x, y) are from p, then the pair

is in U if and only if y < R(x). Since R(b) ≤ b, R(y) ≤ y for all y realizing p, so R

is a strictly increasing function p→ p.

Consider the function g(R(x), y). If y realizes p and x ∈ (y)−, then x < y,

so R(x) < R(y), so g(R(x), y) is defined. Since g is strictly increasing in both

arguments and R is strictly increasing, the composition will be strictly increasing

in both of its arguments. If we fix y (as b, for example), then since the function

is strictly increasing in x, it must be a bijection from (y)− to some other non-cut

(f(y))− for some ∅-definable function f : p→ p. Therefore h(x, y) = f−1(g(R(x), y))

is a function (y)− → (y)−; it only remains to show it’s not equal to the identity

function x.
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But if it is – that is, if h(x, y) = x for all x ∈ (y)− – then f(x) = g(R(x), y) for

all y and all x ∈ (y)−. This is impossible, since g(R(x), y) is strictly increasing in

y, but the equality would imply g(R(x), y) is locally constant in y, a contradiction

[note that g(R(x), y) has an open domain, so the notion of being locally strictly

increasing or locally constant in y does make sense]. In particular, h(x, b) is a

nontrivial b-definable function from (b)− to itself, completing the proof.

By repeatedly applying the previous lemma, we can produce a faithful non-cut

from any unfaithful cut:

Lemma 2.3.9. If p ∈ S1(T ) is an unfaithful cut, then there is a faithful non-cut

q(x) ∈ S1(T ).

Proof. Let p ∈ S1(T ) be unfaithful. We may assume p is 1-nonsimple. Fix a tuple

from p of minimal length which witnesses unfaithfulness; this length must be at

least two, so we label it [a] < [b] < [c1] < · · · < [ck] where k ≥ 0, such that for

some ∅-definable f(x, y, z), [a] < [f(a, b, c)] < [b]. The type q(x) = p(x) ∪ {[x] <

[c1]} is a complete c-type which is 2-unfaithful under the function f(x, y, c), so

by Lemma 2.3.8, there is a bc-definable function g(x, b, c) where if x ∈ (b)−, then

x < g(x, b, c) < b.

This is a definable property, so pick a k + 1-cell U containing the tuple

(b, c1, . . . , ck) such that if (y, z1, . . . , zk) is in U , and if x ∈ (y)−, then x < g(x, y, z) <

y. Thus there are ∅-definable functions L(y, z1, . . . , zk−1) and R(y, z1, . . . , zk−1) such

that L(b, c1, . . . , ck−1) < ck < R(b, c1, . . . , ck−1). By minimality of the length of the

unfaithful tuple and the fact that [ck−1] < [ck], R is above p entirely. Thus there
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is an element dk ∈ cl(∅) such that (b, c1, . . . , ck−1, dk) ∈ U , and therefore, that if

x ∈ (b)−, then x < g(x, b, c1, . . . , ck−1, dk) < b.

Continuing in this way, we see that the boundary functions must always jump

over the end of the type, and therefore can be replaced by constant functions. That

is, we can replace all the ci in g(x, y, c) with elements of cl(∅). So there is a ∅-

definable g(x, y) where for any y from p, and any x ∈ (y)−, x < g(x, y) < y.

Since this property holds on an infinite set, it holds on an interval I, which must

necessarily include all of p. Since cl(∅) approaches p from the right, there is an

element b′ ∈ cl(∅) which is in I. But then the ∅-definable function g(x, b′) is a

function from the ∅-definable non-cut (b′)− to itself, completing the proof.

Thus we have shown that if there is a nonsimple nonisolated type, there is a

faithful nonisolated type. It is tempting to conjecture, based on all we have shown,

that if there is a nonsimple cut, there must be a nonsimple non-cut. However,

Example 2.5.7 shows this is not the case – the theory has a nonsimple (faithful) cut,

but no nonsimple non-cuts or atomic intervals. Thus, the above seems to be the

most direct path to the conclusion of this Subsection:

Lemma 2.3.10. If T admits a nonisolated nonsimple type over ∅, then T admits a

faithful type over ∅.

We will use this fact in Subsection 2.3.4.
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2.3.2 A Nonsimple Isolated Type

Our goal in this subsection is to show that if there is a nonsimple, atomic type

over ∅, then that type has a canonical tail. Throughout, p will refer to a nonsimple

atomic type, and I will refer to the atomic interval which generates it. We will refer

to the left and right endpoints of I as −∞ and ∞, respectively, though they may

actually be standard elements of the structure. Throughout this section, clI(A) will

refer to the closure of A within I; this is used instead of p to emphasize that p is

isolated.

Because of the restrictions in Lemma 2.3.3, the cases where this type is 1-

nonsimple and 1-simple are fairly different. We deal with the 1-nonsimple case first.

Lemma 2.3.11. If p ∈ S1(T ) is a 1-nonsimple atomic type, then p has a canonical

tail.

Proof. Suppose not. Then there are a, b, c, d in I, such that c, d > clI(ab) and c ∼a d

but c 6∼b d. Clearly c 6∼ d, so by symmetry, we may assume that [c] < [d]. Then

there is a definable function f(x, y) such that f(c, a) ≥ d. By completeness of the

c-type {x ∈ I} ∪ {[x] < [c]}, f(c, y) is strictly monotone and continuous on the

interval (−∞, c′) for some c′ ∈ clI(c). If f(c, y) is strictly increasing in y, then pick

any c′′ < c′ in clI(c), observing that a < c′′, so f(c, c′′) > f(c, a) ≥ d, so that c ∼ d

(and therefore c ∼b d as well, a contradiction).

Therefore f(c, y) is strictly decreasing in y. If b < a then f(c, b) > f(c, a) ≥ d

so c ∼b d again; therefore a < b. If a ∼ b, then there is b′ ≤ a in clI(b), so that

f(c, b′) ≥ f(c, a) ≥ d, a contradiction. So [a] < [b], and in fact [a] < [b] < [c] < [d].
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Let a′ = f(b, a), defined since [a] < [b]. By construction of f , [a] < [b] < [a′] <

[c] < [d]. Since cl(ab) = cl(ba′) and c ∼a d, c ∼ab d, so c ∼ba′ d. Therefore, there is

a b-definable function g(x, y) where g(a′, c) ≥ d. But all of the elements a′, c and d

come from the non-cut q(x) above cl(b) and below ∞. Therefore, we may say that

c ∼a′ d in this non-cut q(x), which is over b. Further, a′ and c are inequivalent in

q(x): if they were equivalent, then c would be bounded by cl(ba′) = cl(ab), against

hypothesis. But then by faithfulness of q(x), c ∼ d in q(x), implying c ∼b d.

We can now deal with the 1-simple case by an inductive argument, using both

clauses of Lemma 2.3.3 freely.

Lemma 2.3.12. If p ∈ S1(T ) is nonsimple and atomic, then p has a canonical tail.

Proof. Let n be minimal such that p is n-nonsimple. By Lemma 2.3.11, we may

assume n ≥ 2. We use the following claim as an inductive step:

Claim 1. Let a, c, d realize p, and let |A| ≥ n be a set of realizations of p. Suppose

c, d > clp(Aa) and c ∼Aa d. Then c ∼A d as well.

Proof of Claim 1. Let A, a, c, and d be as described, and suppose c 6∼A d. Since

c ∼Aa d, there is an A-definable function f(x, y) such that f(c, a) ≥ d. Since c 6∼A d,

[c] < [d] in the non-cut (∞)−A, the type {x ∈ I} ∪ {x > a′ : a′ ∈ clI(A)}.

First, consider the case where a realizes this type. Then because c > clI(Aa),

it must be that [a] < [c] < [d] in (∞)−A. Since f(a, c) ∈ clIA(ac), we conclude

f(a, c) ∼A a by faithfulness of non-cuts, so d ∼A c by convexity of ∼A classes. Thus

it only remains to show a lies in (∞)−A.
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Second, suppose tp(a/A) is a non-cut at some L ∈ clI(A), which may be ±∞;

say a ∈ (L)− for concreteness. Then the formula limy→L− f(x, y) = ∞ is satisfied

when c = x, and therefore is satisfied by all x which are sufficiently large over A.

So pick some c′ ∈ clI(A) where limx→L− f(c′, x) = ∞. Let a′ = f(c′, a). Then

f(c′, a) ∈ cl(Aa) \ cl(A), so cl(Aa) = cl(Aa′), so c ∼Aa′ d. Moreover, tp(a′/A) is

(∞)−, so by the first case (using a′ in place of a), c ∼A d.

Third, suppose tp(a/Ac) is a cut. Then the function f(c, y) must be strictly

monotone at a, else f(a, c) ∈ cl(Ac), so c ∼A d. But since tp(a/Ac) is a cut, clI(Ac)

approaches a on both sides, in particular touching the “nice domain” of f(c, y) on

both sides. So if f(c, y) is strictly increasing at a, then pick an a′ ∈ cl(Ac) above a

and in the “nice domain,” noting that f(c, a′) > f(c, a) ≥ d, so c ∼A d. The strictly

decreasing case is similar.

Since n ≥ 2, by Lemma 2.3.3, clI(A) and clI(Ac) are dense, so neither tp(a/A)

nor tp(a/Ac) is an atomic interval. Clearly neither is algebraic, so by exhaustion

of cases, we may assume tp(a/A) is a cut and tp(a/Ac) is a non-cut. This means

there is an element L ∈ clI(Ac) where (we may assume) a ∈ (L)−, but L 6∈ clI(A)

(the case a ∈ (L)+ is similar). Then there is a function g over A which sends c to L

and which is locally strictly monotone at c. However, tp(c/A) is (∞)−A, a non-cut,

while tp(L/A) = tp(a/A) is a cut, so no such function exists. This contradiction

completes our proof. (Claim 1)

The lemma follows immediately from the claim. Let A and B be n-element

sets of realizations of p. Let c and d realize p and satisfy c, d > clp(AB). If c ∼A d,
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then trivially c ∼AB d as well. By applying the claim n times, we can remove all

elements of A from consideration and conclude c ∼B d, establishing the canonical

tail.

2.3.3 A Useful Class of Linear Orders

This subsection is a temporary departure from model theory. We need to produce a

subclass of the class of linear orders on λ such that (LOλ,≡∞ω) is λ-Borel reducible

to it, and where for any L1 and L2, if L1 and L2 are back-and-forth equivalent on a

tail, then L1 and L2 are back-and-forth equivalent. We do this by giving two λ-Borel

maps f and g from LO to itself, so that the class will be the image of g ◦ f .

We define a tail of a linear order L to be any interval of the form [a,∞),

interpreted in L, where a is in L.1 Two orders L1 and L2 are tail-equivalent, or

back-and-forth equivalent on a tail, if there are tails E1 of L1 and E2 of L2 such

that E1 ≡∞ω E2 as linear orders.

To define the maps, first define the order X = {0}∪{x ∈ Q : 1 ≤ x ≤ 2}∪{3},

with the inherited order from Q. Then define f : LO → LO by L 7→ L × X, with

the lexicographic order. That is, f expands every point of L to a copy of X.

Lemma 2.3.13. For any linear orders L1 and L2, L1
∼= L2 if and only if f(L1) ∼=

f(L2).

Proof. The left-to-right direction is obvious. For the right-to-left direction, observe

that the set {(x, 1)} ⊂ f(L) of “1-points” is uniformly definable by the formula

1The reason we use this notion of tail, rather than the more-convenient “upwards closed set,” is

that this way, tail-equivalence is more obviously absolute. This will be useful almost immediately.
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which expresses “there is a unique predecessor, but there is an interval to the right

which is pure dense.” Further, this is order-isomorphic to L itself under the map

(x, 1) 7→ x. Therefore, if f(L1) ∼= f(L2), then the “1-points” of f(L1) are isomorphic

to the “1-points” of f(L2), so L1
∼= L2.

Next, define g : LO → LO by L 7→ ω × (L ∪ {∞}), where ∞ is some point

not in L which is above every point in L. That is, g stacks up ω copies of L,

with a separating “∞-point” between each one; in particular each ∞-point has an

immediate “next” ∞-point. We will show that these ∞-points are (eventually)

definable, even on tails. Therefore, if g(f(L1)) and g(f(L2)) are isomorphic on a

tail, then we can match up consecutive ∞-points between the tails, and get an

isomorphism between f(L1) and f(L2).

Lemma 2.3.14. For any linear orders L1 and L2, the following are equivalent:

1. L1
∼= L2,

2. g(f(L1)) and g(f(L2)) are isomorphic, and

3. g(f(L1)) and g(f(L2)) are isomorphic on a tail.

Proof. Two of the implications are obvious; it remains to show that if g(f(L1)) and

g(f(L2)) are isomorphic on a tail, then L1
∼= L2. We will need a claim:

Claim 1. Let L be any countable linear order. There is a {<}-formula φ(v) such

that for any tail E of g(f(L)), there is a point b ∈ E such that, φ(E) ∩ (b,∞) is

exactly the set of “∞-points” above b.
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Proof of Claim 1. Let E = [a,∞) be some tail of g(f(L)). Let b be the first∞-point

satisfying b > a. On [b,∞), every point which is not an∞-point has a neighborhood

which is isomorphic to f(L); therefore, any formula which gave its “class” before

– as a 0-point, a 1-point, a 2-point, a 3-point, or a “pure dense” point – will still

apply here. More precisely:

The pure dense points are exactly those satisfying the formula stating “there

is an open neighborhood around v which is pure dense.” The 1-points are exactly

those stating “v is not pure dense, but there is a right-neighborhood which consists

entirely of pure dense points,” and the 2-points are defined symmetrically to the 1-

points. The 0-points are exactly those stating “v has an immediate successor which

is a 1-point,” and the 3-points are defined symmetrically to the 0-points.

Let c be any ∞-point above b. Then every left-neighborhood c contains in-

finitely many 0-points, and thus is neither pure dense nor empty, so c does not

satisfy the defining formulas for pure dense points, 2-points, or 3-points. If L has

no first element, then the right neighborhoods of c will have the same properties.

Otherwise, if L does have a first element, then the immediate successor of c will be a

0-point. Either way, c does not satisfy the defining formulas of 0-points or 1-points.

So let φ(v) be the negation of all the above defining formulas. Then for all

x > b, φ holds on x if and only if x is an ∞-point. φ(v) is defined independent of

everything, completing the proof. (Claim 1)

With this in mind, suppose g(f(L1)) and g(f(L2)) are isomorphic on a tail, say

[a1,∞) ∼= [a2,∞). Fix an isomorphism σ : [a1,∞)→ [a2,∞). Let b1 ∈ g(f(L1)) and
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b2 ∈ g(f(L2)) be as in the claim. Since σ is an order-isomorphism, it preserves φ. Let

c > max(b1, σ
−1(b2)) be some∞-point, and let c′ be the next∞-point after c. Then

the interval (c, c′) is order-isomorphic to f(L1). Also, σ(c) and σ(c′) are consecutive

∞-points in g(f(L2)) by construction, so (σ(c), σ(c′)) is order-isomorphic to f(L2).

Since σ is an isomorphism (c, c′) → (σ(c), σ(c′)), this shows f(L1) ∼= f(L2), so

L1
∼= L2, completing the proof.

The preceding has only concerned isomorphism, but concluding results about

back-and-forth equivalence is straightforward:

Theorem 2.3.15. Let L1 and L2 be linear orders on λ. The following are equivalent:

1. L1 ≡∞ω L2

2. g(f(L1)) ≡∞ω g(f(L2))

3. g(f(L1)) and g(f(L2)) are tail-equivalent.

Proof. The maps f and g are absolute, as are back-and-forth equivalence and tail-

equivalence; note this last one is absolute because tails must be of the form [a,∞),

and forcing does not add new elements to a specific set. So let V[G] be a forcing

extension collapsing λ. The truth values of (1), (2), and (3) are invariant between

V and V[G], and because of countability, are equivalent (in V[G]) to the equivalent

expressions where ≡∞ω is replaced by ∼=. But the conditions (1), (2), and (3) are

equivalent in this form by Lemma 2.3.14, completing the proof.
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2.3.4 λ-Borel Completeness

In this section, our goal is to show that if T admits a nonsimple type, then T is

λ-Borel complete for all λ. We have already shown that if T admits a nonsimple

type, then T admits a nonsimple type over ∅. So we have two cases, in line with

our previous work: either this type is nonisolated or atomic. The first case is

straightforward:

Lemma 2.3.16. If T admits a nonsimple nonisolated type over the empty set, then

T is λ-Borel complete for all λ.

Proof. If T admits a nonsimple, nonisolated type over ∅, then by Lemma 2.3.10, T

also admits a faithful nonsimple type p over the empty set. Fix such a p.

Our main concern is to show that given any countable linear order L, there

is a countable model ML |= T such that p(ML)/ ∼ is isomorphic to L as a linear

order. A close examination of the proof will show that this can be made a λ-Borel

function from LO to Mod(T ). Since isomorphism of models implies isomorphism

of the ladders, this establishes a λ-Borel reduction from the λ-Borel complete class

LO, establishing λ-Borel completeness.

So fix a linear order L with universe λ, and let XL = {aα : α ∈ L} be a set

of realizations of p, such that if α < β in L, then [aα] < [aβ] – by faithfulness, this

is a complete specification of tp(XL). Let ML be a constructible model over XL.

Clearly ML has cardinality λ, and this construction is predictable enough to be

made λ-Borel.
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Claim 1. For any L, p(ML)/ ∼ is isomorphic to L as a linear order.

Proof of Claim 1. Define the function f : L → p(ML)/ ∼ by f(α) = [aα]. By

construction of XL, f is injective and order-preserving. So it only remains to show

surjectivity.

Let c ∈ p(ML). Since ML is atomic over XL, tp(c/XL) is either algebraic

or an atomic interval. If c ∈ cl(XL), then for some sequence [aα1 ] < · · · < [aαn ],

c ∈ cl(a). By faithfulness, this means c ∼ aαi
for some i, so [c] = f(αi).

Alternately, suppose tp(c/XL) is an atomic interval. Let (a, b) be an XL-

atomic interval in p where a < c < b. By faithfulness, p is 1-nonsimple, so there

is an a′ ∈ clp(a) where a′ > a. Since a ∈ cl(XL), we also have a′ ∈ cl(XL), so by

XL-atomicity of (a, b), we have a′ ≥ b. Clearly a ∼ a′, so by convexity, a ∼ c. By

the previous paragraph, a ∼ xα for some α, so by transitivity, c ∼ xα as well, so

[c] = f(α).

Therefore f is surjective, so is an isomorphism. Thus p(ML)/ ∼ is isomorphic

to L. (Claim 1)

Now we want to show that for all linear orders L1 and L2 on λ, L1 ≡∞ω L2

if and only if ML1 ≡∞ω ML2 . So let V[G] be any forcing extension in which λ is

countable. The conditions L1 ≡∞ω L2 and ML1 ≡∞ω≡∞ω ML2 are both absolute

and (in the forcing extension) are equivalent to isomorphism, since the structures

are countable. Additionally, the construction L 7→ ML is absolute, so our claim still

holds in V[G]. It is clear that if L1
∼= L2, then tp(XL1) = tp(XL2), so by uniqueness

of constructible models, ML1
∼= ML2 . On the other hand, if ML1

∼= ML2 , then
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p(ML1)/ ∼∼= p(ML2)/ ∼ as linear orders, so by the claim, L1
∼= L2, as desired.

Lemma 2.3.17. If T admits a nonsimple isolated type over the empty set, then T

is λ-Borel complete for all λ.

Proof. Let λ be an infinite cardinal. Recall that in Theorem 2.3.15, we constructed

λ-Borel reductions g and f from LO to itself such that for all L1 and L2, L1 ≡∞ω L2

if and only if g(f(L1)) ≡∞ω g(f(L2)), if and only if g(f(L1)) and g(f(L2)) are

equivalent on a tail. To simplify notation, we will assume that all linear orders used

in this proof are in the image of g ◦ f , and we will have no particular use for the

preimage of these orders under g ◦ f .

So let p be a nonsimple atomic type, and fix the minimal n where p is n-

nonsimple. For any linear order L on λ, let L∗ = {1, . . . , n} ∪ g(f(L)), where

1 < 2 < · · · < n and n < α for all α ∈ g(f(L)). Let XL be {xα : α ∈ L∗} where

for all α ∈ L∗, xα realizes p and xα > clp({xβ : β < α}). Evidently this condition

completely specifies tp(xα/X<α), so by a standard argument this completely specifies

tp(XL). Let ML be constructible over XL. The function L 7→ ML can be made λ-

Borel, and the isomorphism type ofML is completely determined by tp(XL), which

is completely determined by the isomorphism type of L. By a standard forcing

argument, this can be extended to show that if L1 ≡∞ω L2 then ML1 ≡∞ω ML2 .

The remainder of this proof is to show the converse of this fact.

For any n-element set B fromML, let pB(x) be the nonsimple non-cut p(x)∪

{x > clp(B)}. The primary claim in this proof is to show that for any n-element

set B from p(ML), we recover a tail of g(f(L)) in pB. That is, pB(ML)/ ∼B is
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isomorphic on a tail to g(f(L)). As before, we must divide into two cases, based on

whether p is 1-nonsimple, because of the restrictions in Lemma 2.3.3.

Claim 1. If p is 1-simple, then for any set B ⊆ p(ML) with |B| = n, pB(ML)/ ∼B

is isomorphic on a tail to g(f(L)).

Proof of Claim 1. Let A = {1, . . . , n}; then by construction of ML and the fact

that non-cuts are faithful, pa(ML)/ ∼A is isomorphic to g(f(L)). It is therefore

sufficient to show that for any B, pB(ML)/ ∼B and pA(ML)/ ∼A are isomorphic

on a tail.

So fix an n-element set B from p(ML). Since p is 1-simple, by Lemma 2.3.3,

clp(XL) is a dense linear order without endpoints. Since Pr(XL) is atomic over XL,

p(ML) is clp(XL). So by compactness, there is a finite subset L0 ⊂ L∗ containing

{1, . . . , n} such that AB ⊂ clp ({xα : α ∈ L0}). Let X0 be the tail of XL above XL0 ;

that is, the set of all xα such that for all β ∈ L0, α > β. Since L has no largest

element, X0 is nonempty. We will show it forms a common tail of pA(ML)/ ∼A and

pB(ML)/ ∼B, which is sufficient to prove the claim.

X0 forms a tail of pA(ML)/ ∼A under the function xα 7→ [xα], by the charac-

terization of pA(ML)/ ∼A at the beginning of this proof. As for pB, by construction

of L0, if xα ∈ X0, then xα realizes pB. Each of the xα ∈ X0 is ∼L0-inequivalent

by construction of XL, so must be ∼B-inequivalent as well; it only remains to show

that the set {[x] : x ∈ X0} is right-closed in pB(ML)/ ∼B.

So suppose xα ∈ X0 and c > xα realizes p. By the characterization of

pA(ML)/ ∼A, c ∼A xβ for some β ≥ α. Since c and xβ are both greater than
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or equal to xα, which is above clp({xγ : γ < α}) ⊃ clp(AB), we can use the canoni-

cal tail condition to conclude that c ∼B xβ as well. Therefore, [c] ∈ {[x] : x ∈ X0},

so X0 forms a tail of pB(ML)/ ∼B. This completes the proof. (Claim 1)

The difference between the preceding claim and the next is that if n = 1, we

cannot necessarily assume that p(ML) is equal to clp(XL): the latter may not be a

dense linear order, so tp(a/XL) being isolated may not imply it being algebraic.

Claim 2. If p is 1-nonsimple, then for any set B from p(ML) with |B| = n = 1,

pB(ML)/ ∼B is isomorphic on a tail to g(f(L)).

Proof of Claim 2. Let a = x1. As before, we can conclude that pa(ML)/ ∼a is

isomorphic to g(f(L)), and therefore that we need to show for every b ∈ p(ML),

pb(ML)/ ∼b and pa(ML)/ ∼a agree on a tail. So, fix such a b. Since tp(b/XL)

is atomic, either b ∈ cl(XL), or tp(b/XL) is generated by an atomic interval. If

b ∈ cl(XL), then the previous proof applies without change. Therefore, assume

tp(b/XL) is an atomic interval (C,D) where C,D ∈ cl(XL).

Let L0 be a finite subset of L∗ which contains 1 and such that C,D ∈ cl({xα :

α ∈ L0}). Let X0 be the elements of XL which are above L0. This is a right-closed

subset of g(f(L)), so it forms a tail of pa(ML)/ ∼a; it remains to show it forms a tail

of pb(ML)/ ∼b. As before, the function x 7→ [x] is a well-defined, order-preserving

injection from X0 to pb(ML)/ ∼b. It remains to show surjectivity.

So pick a c from pb(ML) such that for some xα ∈ X0, c > xα. For some

β ≥ α, c ∼a xβ; we want to show c ∼b xβ as well. Since p has a canonical tail, it

is enough to show that xα > clp(ab), so suppose not. Then there is an a-definable
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function f(x) where f(b) ≥ xα. Then f(x) is defined and strictly monotone on the

atomic interval (C,D); we may assume strict increasing. Since xα > clp(X0), it

must be that limx→D− f(x) =∞. We will use this limit to prove that (C,D) is not

X0-atomic, yielding a contradiction.

The image of (C,D) under the function f must also be an interval, since f

is continuous and strictly increasing, and so by the argument above, it must be of

the form (E,∞) for some E ∈ clp(X0). By 1-nonsimplicity, there is a E ′ > E in

p which is E-definable; since the interval is right-infinite, E ′ ∈ im(f). But then

f−1(E ′) ∈ (C,D) and is X0-definable, a contradiction of atomicity of (C,D).

(Claim 2)

Having performed these two claims, the result follows immediately. Suppose

ML1 ≡∞ω ML2 . Let V[G] be a forcing extension which collapses λ, so that (in

the extension) ML1
∼= ML2 . Let f : ML1 → ML2 be an isomorphism, and let b

be f(a), where a = {x1, . . . , xn}. Then f is an isomorphism between the expanded

structures (ML1 , a) and (ML2 , b), so in particular p(a)(ML1)/ ∼a and pb(ML2)/ ∼b

are isomorphic as linear orders.

The former is isomorphic to g(f(L1)). By the claims, the latter is isomorphic

to a tail of g(f(L2)), so by construction of our linear orders, g(f(L1)) ∼= g(f(L2)) (in

V[G]). Thus g(f(L1)) ≡∞ω g(f(L2)) in V[G] and in the ground model, completing

the proof.

Combining this with results from the above, we have proved the main theorem

of the section.
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Theorem 2.3.18. Let T be a countable o-minimal theory. If T admits a nonsimple

type, then T is λ-Borel complete for all λ.

2.4 Corollaries

Most interesting o-minimal theories admit nonsimple types, and are therefore Borel

complete. Our aim for this section is to establish two broad classes of o-minimal

theories which are λ-Borel complete; these yield very general sufficient conditions

for λ-Borel completeness.

The first such class of such theories is the class of nontrivial theories - those

where it is possible for a point to be definable over a set without being definable over

any single point inside that set. For example, any theory with an infinite definable

group would satisfy this property. We show that any nontrivial o-minimal theory is

λ-Borel complete by using nontriviality to construct a nonsimple type over a finite

set, then appealing to Theorem 2.1.7.

The other broad class is the discretely o-minimal theories, or even those which

have a significant discrete part. Although it was shown in [19] that the discrete

part of an o-minimal theory is completely trivial (in the above sense), the successor

function still provides an interesting (unary) function on that part of the structure

where it is defined, which is enough to construct a nonsimple type and show λ-Borel

completeness.

We remark that these two results, while quite general, do not suggest a char-

acterization of all nonsimple types. Example 2.5.1 and its variations give theories
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which are trivial and completely dense, but still admit nonsimple types.

2.4.1 Nontrivial Theories

Recall that a theory T nontrivial if there is some point b and some set A where

b ∈ cl(A) but b 6∈
⋃
a∈A cl(a). We use exchange and nontriviality to produce a

nonsimple type over finitely many parameters, and therefore conclude with λ-Borel

completeness.

Theorem 2.4.1. If T is a nontrivial o-minimal theory then T admits a nonsimple

type.

Proof. Suppose T is nontrivial. We will produce a nonsimple type p(x) over finitely

many parameters, establishing λ-Borel completeness by Theorem 2.1.7 and Corol-

lary 2.1.6. By nontriviality, there is a set A and b ∈ cl(A) where b 6∈ cl(a) for any

a ∈ A. We may assume A is finite, and that A has minimal cardinality among all

“nontrivial sets.” Enumerate A in an ascending way as a1 < · · · < an, remarking

that n ≥ 2. The set B = {a3, . . . , an} will be the first part of our parameter set.

Then b ∈ clB(a1, a2) but b 6∈ clB(ai) for either i. Let p(x) = tp(a1/B),

q(x) = tp(a2/B), and r(x) = tp(b/B). Each of these types is nonalgebraic. Suppose

(for example) that clpB(a2) is nonempty; then we may replace a2 with some realization

of p(x), bidefinable with a2 over B, without affecting the dependence relation b ∈

cl(a1a2)\(cl(a1)∪cl(a2)). Using this idea and exchange, we may assume the following

cases are exhaustive:

First: One of the types p, q, or r is a nonsimple B-type, in which case the
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theorem is proved.

Second: p = q = r; then p is a 2-nonsimple B-type under whatever function

takes the pair (a1, a2) to b.

Third: p = q and p 6= r. Then there is a B-definable binary function f :

p2 → r taking ascending pairs from p into single elements of r. Then for any a

modeling p, there is a unique extension of r to a Ba-type (or else we’re actually in

the previous case) and the function f(a, y) must be a bijection from the complete

Ba-type p(x) ∪ {x > a} to r. But then the function g : p → p where g(x) is the

unique y > x such that f(x, y) = b is well-defined and nonsimple, so that p(x) is a

complete, nonsimple Bb-type.

Fourth: p, q, and r are all distinct. Let f be such that f(a1, a2) = b. Then

for any c modeling r, the types p and q are completely described over Bc and the

function f(a, y) is a bijection from q to r. So for any c realizing r, we have a bijection

hc : p→ q taking x to the unique y where f(x, y) = c.

Therefore, fix c1 < c2 realizing r. If p or q does not extend uniquely to a

complete Ac1c2-type, then we have a function r2 → p or r2 → q, and T is λ-Borel

complete by a previous case. But otherwise, p and q are complete over Ac1c2, and

the functions hc1 and hc2 are distinct bijections p → q. Therefore h−1
c1
◦ hc2 is a

nontrivial bijection p→ p, so p is a nonsimple type over Bc1c2.

By Corollary 2.1.6, such a theory admits a nonsimple type. By Theorem 2.1.7,

this implies λ-Borel completeness and more. Note that this implies the λ-Borel

completeness of any o-minimal theory which defines a group, such as the theory of
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(R,+, ·).

2.4.2 Non-Dense Theories

Given an o-minimal theory T , a model M |= T , say a point a ∈ M is non-dense

if a has either an immediate successor or an immediate predecessor (which may

be among ±∞). If T has only finitely many such points, they play no role in the

countable model theory of T ; we can canonically fit a copy of (Q, <) between any

non-dense point and its successor or predecessor, resulting in a theory which is

essentially identical (for our purposes) to T , but which is everywhere dense. Our

theorem for this section is the following:

Theorem 2.4.2. If T is an o-minimal theory with infinitely many non-dense points,

then T admits a nonsimple type.

Proof. We construct a nonsimple type over the empty set. Since there are infinitely

many non-dense points, there is an infinite interval I0 over ∅ which consists entirely

of non-dense points. Therefore, there is a subinterval I of I0 of points which all have

immediate successors and predecessors. Let S(x) denote the immediate successor

function, where it is defined. We will construct a complete type extending I which

is nonsimple under the function x 7→ S(x).

Let I = (a, b), noting a, b ∈ cl(∅). We have several cases:

First: If a has no immediate successor, then define p(x) by

p(x) = {a < x} ∪ {x < c : c > a, c ∈ cl(∅)}

By o-minimality, p(x) is a complete type, and clearly extends I. It may be either
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an atomic interval (if clI(∅) = ∅) or a non-cut (a)+ (if not), but either way, it must

be closed under S. For if not, there is an x realizing p(x) such that S(x) ≥ c for

some c ∈ clI(∅). But then S(x) = c, so S−1(c) is well-defined, in cl(∅), and equal to

x, so that x does not model p after all.

Thus p(x) is complete and nonsimple under the function S.

Second: If b has no immediate predecessor, then define q(x) by

q(x) = {x < b} ∪ {x > c : c < b, c ∈ cl(∅)}

By the same logic as above, q(x) is complete and closed under the function x 7→

S−1(x), so is nonsimple.

Finally: If S(a) and S−1(b) both exist, then define r(x) by

r(x) = {x > Sn(a) : n ∈ ω} ∪ {x < c : c ∈ cl(∅) ∧ c > Sn(a) for all n ∈ ω}

Then r(x) is a complete type over ∅ as before, and is a cut. But as before, if x

realizes r, then S(x) is defined and must still realize r. Thus r is nonsimple.

By Theorem 2.1.7, such a theory must be λ-Borel complete.

2.5 Examples

We begin with several basic example of o-minimal theories. We assume the reader

is aware of classical quantifier elimination results for the theory of real-closed fields

and for ordered divisible abelian groups; if not see [13]. Most of our examples are

definable reducts of an expansion of these theories by constants, so that o-minimality

follows automatically. We have omitted many of the verifications of these examples
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when they seem similar to previous proofs; the interested reader is encouraged to

fill them in as s/he desires.

Example 2.5.1. LetM have universe Q and have a unique unary function f given

by x 7→ x+ 1.

Then S1(T ) has a single element, the atomic interval x = x, and this is 1-

nonsimple and faithful.

Proof. M is o-minimal as a reduct of (Q,+, <). The function x 7→ x + q is an

automorphism ofM for any q ∈ Q, and thus every element has the same 1-type, so

x = x is a complete formula. This atomic interval is 1-nonsimple under the function

f .

To see faithfulness, we will need to see that the following statements are a

complete axiomatization of T , and that the resulting theory has quantifier elimina-

tion:

• < is a dense linear order without endpoints.

• f is a strictly increasing bijection on the universe.

• For all x, x < f(x).

The proof of quantifier elimination of the above axioms is standard; complete-

ness follows from the fact that M satisfies these axioms and embeds into every

model of them.

To see faithfulness, let N be some elementary extension of M. It is enough

to see that if [x1] < · · · < [xn] and z ∈ cl(x), then z ∈ [xi] for some i. For each i,
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let Qi = {y : ∃n ∈ Z(sn(x) ≤ y < sn+1(x))}. Evidently Qi ⊂ [xi], so Q1 < Q2 <

· · · < Qn. Also, by completeness of the above axioms, the set Q = Q1 ∪ · · · ∪Qn is

a model of T ; by quantifier elimination, Q ≺ N . Since z ∈ cl(x), z ∈ Q, so z ∈ Qi

for some i, so z ∈ [xi].

Example 2.5.2. LetM have universe Q, have a single function f(x) = x+ 1, and

have constant symbols for n ∈ Z.

Then S1(T ) has infinitely many atomic intervals, all dependent on one another

and simple, and two non-cuts, which are independent, nonsimple, and faithful.

The above properties still hold if we only have a single constant symbol.

Proof. The types n < x < n + 1 are atomic – any order-preserving bijection from

(n, n+1) to itself induces an automorphism of the structure, witnessing completeness

of the intervals. They must be simple since all countable dense linear orders are n-

transitive for all n. Of course the non-cuts at ∞ and −∞ are nonsimple under the

function f , and non-cuts are faithful, as desired.

Example 2.5.3. Let M have universe Q, constant symbols for each n ∈ Z, and

unary functions fn for n ∈ Z where fn(x) = x+1 and fn is only defined on [n, n+1).

Then S1(T ) has infinitely many atomic intervals, all dependent on one another

and simple, and two non-cuts, which are independent and simple.

Example 2.5.4. Let M have universe Q, constant symbols for each q ∈ Q, and

unary functions fn for n ∈ Z where fn(x) = x+1 and fn is only defined on [n, n+1).

Then S1(T ) has no atomic intervals, infinitely many independent non-cuts (all

of which have an infinite dependence class), and uncountably many independent
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cuts (all of which have an infinite dependence class). Additionally T has two non-

cuts which are independent from each other and everything else. All these types are

simple.

Example 2.5.5. LetM have universe Q, have a single function f(x) = x+ 1, and

have constant symbols for q ∈ Q.

Then S1(T ) has infinitely many independent non-cuts, each of which has an

infinite dependence class. S1(T ) also has uncountably many cuts, each of which has

an infinite dependence class and is simple. S1(T ) has no atomic intervals.

Additionally, S1(T ) has two independent non-cuts which are nonsimple.

The above properties still hold if we give M symbols for fq(x) = x+ q for all

q ∈ Q.

Example 2.5.6. Let M be (Q, <,+, 0, 1), and let p be the cut corresponding to

any irrational number.

Then the cut p is 2-nonsimple and 1-simple, hence unfaithful. There are no

faithful cuts, but there are nonsimple non-cuts near p.

Proof. Clearly p is 2-nonsimple under the function (x, y) 7→ x+y
2

.

Let N be (R, <,+, 0, 1). Since T = Th(M) has quantifier elimination, M ≺

N . The type p is realized by a single element (the irrational number used to create

p); call it a. If p were 1-nonsimple under some function f , then f(a) would be

a realization of p which is not equal to a, which is impossible. This proves p is

1-simple.

Since every cut is of this form, we have proven the result. The nonsimple
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non-cuts are any non-cut, including those at ∞. The non-cuts at (q)+ and (q)− for

rational q are nonsimple under the function x 7→ x+q
2

.

Example 2.5.7. Let M have underlying set Q1 + Q2, where both Qi are copies of

(Q, <) and Q1 < Q2. Give M symbols for all n in both copies of Z, and a unary

function f(x) where f(x) = x+ 1i, where 1i is the copy of 1 in the Qi containing x.

Let p be the type {m < x < n : m ∈ Zi, n ∈ Zi}.

Then the cut p is 1-nonsimple and faithful, but there are no nonsimple non-

cuts or atomic intervals anywhere. M has infinitely many atomic intervals (two

dependence classes) and two non-cuts (independent of one another).

If we add constants for all rationals, then we have no atomic intervals, many

non-cuts, and uncountably many cuts, but the only nonsimple type is still p.

Example 2.5.8. LetM be an ℵ0-saturated elementary extension of (Q, <,+, 0, 1),

let a be some realization of the non-cut (0)+, and let T be the theory of M with a

symbol for a.

Let π be some irrational number in R, and let p(x) be the type given by

{x > q + na : q ∈ Q<π, n ∈ Z} ∪ {x < q + na : q ∈ Q>π, n ∈ Z}.

Then the cut p is 1-nonsimple yet unfaithful. There are no faithful cuts, but

there are nonsimple non-cuts near p.

Proof. First, by the usual quantifier elimination for the theory of ordered divisible

abelian groups, for any set X, cl(X) = q + ra+ sx, where q, r, s ∈ Q, a is our fixed

infinitesimal, and x ∈ X. In particular this shows p(x) is a complete type and a

cut. Clearly p is closed under the function x 7→ x+ a, witnessing 1-nonsimplicity.
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To see the unfaithfulness, suppose [x] < [y]; we will show [x] < [x+y
2

] < [y].

This follows quickly from the following claim:

Claim 1. Suppose b ∈ clp(x). Then b = x+ ra for some rational r.

Proof of Claim 1. If b ∈ clp(x), then b = q+ra+sx for some rational q, r, s. We will

show q = 0 and s = 1. Since p is fixed under x 7→ x+a and is convex, it is also closed

under x 7→ x − ra, so b − ra = q + sx realizes p. If s = 0 then b = q + ra ∈ cl(∅),

which is not a realization of p, so s 6= 0. Also, sx realizes the (partial) cut π − q,

so x realizes the (partial) cut π−s
q

. But of course x realizes the (partial) cut π, so

π−s
q

= π, so (1 − q)π = s. If q 6= 1, then π is irrational (a contradiction); if q = 1,

then s = (1− q)π = 0, proving the claim. (Claim 1)

Since [y] > [x], y > clp(x), so in particular y > 2ra + x for all rational r.

Equivalently, y−x > 2ra for all r. Then x+y
2
−x = y−x

2
> ra for all r, so x+y

2
> x+ra

for all rational r. Thus [x] < [x+y
2

]. Similarly [x+y
2

] < [y], as desired.

Example 2.5.9. Let M have universe Q and have a single function f(x, y, z) =

x+ y − z.

Then S1(T ) has a single element, the atomic interval x = x, and this is 1-

simple, 2-nonsimple, and unfaithful.

Proof. T is a definable reduct of the theory of (Q,+, 0, <), so is o-minimal. If a < b

and c < d, then the function x 7→ (x−a) · d−c
b−a preserves f , is a bijection, and takes a

to c and b to d. Thus the formula x = x defines a complete type which is 1-simple.

Visibly this is 2-nonsimple under the function (x, y) 7→ x+ x− y, so the type must

be unfaithful as well.

77



Example 2.5.10. Let M have universe Q, a unary function s(x) = x + 1, and a

ternary function f(x, y, z) = x+ y − z.

Then S1(T ) has a single element, the atomic interval x = x, and this is 1-

nonsimple and unfaithful.

Proof. T is a definable reduct of an o-minimal theory, so is o-minimal. For any x

and y in Q, the function z 7→ z + (y − x) is readily seen to be an automorphism of

the structure taking x to y, so x = x is a complete type. It is visibly 1-nonsimple

under the function s. To see the unfaithfulness, we must construct a nonstandard

model, since M has only one Archimedean class.

So let M′ be the expansion of M by a constant symbol for zero. Then M′

is a definable expansion of (Q,+, 0, 1, <), so the theory T ′ of M′ implies that the

definable reduct to s(x) = x+ 1 and f(x, y, z) = x+ y− z is a model of our original

theory T , and this will hold for any model of T ′. So let M′
2 be a model of T ′ with

infinite elements x and y such that [x] < [y] in M′
2.

Let M2 be the reduct of M′
2 to our original language. Since Archimedean

equivalence is finer in a reduct, it is still true that [x] < [y] in M2. The function

z 7→ z + (y − x) is an automorphism of M2 taking x to y and y to 2y − x; thus

[x] < [y] < [2y − x] in M2. Yet 2y − x = f(y, y, x), so is in the closure of {x, y},

witnessing 2-unfaithfulness of the type.

In Chapter 3, we will see that if T is a colored linear order in a finite language,

then either T is λ-Borel complete or ℵ0-categorical. It is natural to ask if the same

is true for o-minimal theories, and the answer is no:
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Example 2.5.11. Let M have universe Q ∪Q
√

2. Give M two unary functions f

and g:

• f has domain [0, 2], and where defined, f(x) = x+ 1.

• g has domain [0, 2], and where defined, g(x) = x+
√

2.

Then T = Th(M) is o-minimal in a finite language, and ∼=T is Borel equivalent

to ∼=2.

Proof. The theory of “ordered divisible abelian groups” is o-minimal, and Q∪Q
√

2

is a model of this theory. If we expand it by constants for 0, 1, 2, and
√

2, it is

still o-minimal, and f and g are definable on this structure. So M is a definable

reduct of this o-minimal structure, so is o-minimal. It remains to show that S1(T )

is uncountable and that it contains no nonsimple types.

First we must show S1(T ) is uncountable. To see this, we first show cl(∅) is

dense in some interval. Toward this end, note that the function h(x) taking x ∈ [0, 1]

to (x+
√

2) mod 1 is definable – h(x) is the unique y ∈ [0, 1] such that x+
√

2 is equal

to y+ 1 or y+ 2. It is a classical fact if r is irrational, the orbits of x 7→ x+ r in S1

are dense in S1, implying our desired result. Then cl(∅)∩ (0, 1) is a countable dense

linear order, so is order-isomorphic to (Q, <). Thus (R, <) has an order-preserving

injection into S1(T ), sending each rational r to the corresponding algebraic type

and sending each irrational r to the corresponding cut.

Second we show that S1(T ) has no nonsimple types. Consider first the intervals

(−∞, 0) and (2 +
√

2,∞). Any order-preserving bijection of either set induces an
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isomorphism of the structure. Thus these intervals are complete types. Additionally,

for any n, (Q, <) is n-transitive, so these intervals must be n-simple. Since this holds

for all n, they are simple types.

For the rest of the types, first consider the theory T where f and g have

unrestricted domain; this theory has an easy quantifier elimination. If h(x1, . . . , xn)

is definable in T , it is also definable in T , so locally h(x1, . . . , xn) is equal to xi + a

for some a ∈ Q + Q
√

2. So suppose p ∈ S1(T ) is nonsimple. Then p must be

1-nonsimple, so some function x 7→ x+ a maps p to p. Yet since p implies 0 ≤ x ≤

2 +
√

2, so p has “finite width;” therefore, after enough applications of x 7→ x + a,

x will no longer satisfy p. This contradiction shows that p cannot be nonsimple, as

desired.

We end this chapter with an annoying open question:

Question 2.5.12. Let T be o-minimal and let p be a type. Is it possible for p to

be nonsimple but 2-simple?

If so, are both cuts and atomic intervals of this form possible?

Similarly, is it possible for p to be 1-nonsimple, 2-faithful, and 3-unfaithful?

My intuition is no for several reasons. First and weakest, by analogy with

colored linear orders, it an old result (see for example [23]) that any 2-transitive

linear order is n-transitive for all n. Since being n-simple corresponds to pn+1 being

complete, which has a straightforward phrasing in terms of automorphisms taking

n + 1-tuples to n + 1-tuples, one might wonder whether his argument generalizes

here. Unfortunately it does not, but the suggestion is there. Second and equally
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unconvincing, the examples simply refuse to present themselves, despite quite a bit

of trying.

Third and finally, by appeal to the trichotomy theorem in [17]. If a type is

1-simple and 2-nonsimple, then the theory interprets a group (interval) near that

type. If a type is 2-simple and 3-nonsimple, then the theory interprets a field (or

rather, a portion of it). Both of these involve parameters, but if we ignore this for

a moment, then either of the binary functions of the field seem to make the type

2-nonsimple, a contradiction. This would revolve around a serious examination of

their proof to identify sources of parameters, but seems promising. It is well outside

the scope of this work, though, so we will not address it further.
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Chapter 3: Colored Linear Orders

In 1973, Matatyahu Rubin published his master’s thesis on the model theory of

complete theories of linear orders, possibly with countably many unary predicates

added. Most prominently, he proved in [24] that such a theory has either finitely

many or continuum-many countable models, up to isomorphism. This was part of

a larger set of results in his master’s thesis, wherein he investigated a huge vari-

ety of model-theoretic properties of such theories, such as the size of type spaces,

finite axiomatizability, and characterizing saturation of models. We continue his

investigation here, examining what we will call colored linear orders.

Definition 3.0.13. Say 0 ≤ κ ≤ ℵ0, and let Lκ be the language {<} ∪ {Pi : i ≤ κ}

where < is a binary relation and each Pi is a unary relation. A colored linear order,

or CLO, is a complete Lκ-theory for some κ making < a linear order.

If T is a CLO (theory) and A |= T , we will also refer to A as a CLO. This will

cause no confusion.

Note that the term “colored linear orders” can be misleading; we allow the

possibility of elements having multiple “colors,” or to have no “colors” at all. A

CLO is merely an expansion of a linear order by up to ℵ0 unary predicates.

We look into the complexity of such theories from two perspectives – the
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Borel complexity of isomorphism for countable models of CLOs, and the number of

models (of any cardinality) up to back-and-forth equivalence. It turns out that there

are essentially five classes of such theories. First is the ℵ0-categorical theories; then

those with finitely many countable models; then those whose complexity corresponds

exactly to ∼=1; then those whose complexity corresponds exactly to ∼=2; then those

with unbounded complexity. With the exception of “finite,” each of these classes

contains exactly one element up to reducibility, and the Borel complexity lines up

exactly with the corresponding count of back-and-forth inequivalent models. This

theorem is finally stated and proved precisely in Theorem 3.3.13. It is worth noting

that these five complexity classes are essentially identical to those appearing for

o-minimal theories, as shown in Chapter 2, and for essentially the same reasons –

a divide on local simplicity or nonsimplicity, then a type-counting argument in the

simple case.

The outline of this chapter is as follows. We begin by highlighting what is the

core of Rubin’s work in [24], since this paper relies heavily on his work there. We

then introduce other background the reader will need, such as notions of sum and

shuffle and Rosenstein’s characterization of ℵ0-categorical linear orders.

In Section 3.2 we re-introduce the notion of self-additive CLOs (approximately

those which cannot be definably divided into proper convex pieces) and show they

are either minimally or maximally complex. In Section 3.3, we show that CLOs can

be definably decomposed into essentially self-additive pieces, and that if any of these

are maximally complicated, so is the whole theory. If not, we characterize back-and-

forth equivalence for such theories as fairly simple, showing a strong dichotomy. We
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then fine-tune this analysis to give the exact cases which a CLO can fall into, and

prove our characterization.

We end with a special case, showing that none of the “middle cases” can

happen if the language is finite. This generalizes a theorem of Schirmann in [26],

where a similar result was shown for complete theories of linear orders.

3.1 Background

For this section we cover several classical topics which are essential to the study of

linear orders, such as convex sums, shuffles, and Rosenstein’s characterization of ℵ0-

categorical linear orders. But first and foremost, we want to highlight the following

“technical lemma” of Rubin, which appears as Corollary 2.3 in [24]:

Lemma 3.1.1. Let A be a CLO, and let B ⊂ A be convex. Let φ(x) be a for-

mula, possibly with parameters from A \B. Then there is a formula φ#(x) with no

parameters where, for all b from B, B |= φ#(b) if and only if A |= φ(b).

This is the reason that CLOs are so nice from a logical perspective. Because

B is convex, the order type of some b ∈ B and some a ∈ A is determined by a and

the fact that b ∈ B; that is, for any b, b′ ∈ B, b < a if and only if b < a′. The rest of

the atoms are unary, so hold in B exactly as they would in A. So by an inductive

argument, we get the above lemma.

This is used to tremendous effect throughout [24], primarily to prove that

given some CLOs A ⊂ B, actually A ≺ B. We will cite numerous lemmas from

[24] which are of this form, and their proofs are all essentially of this form. We do
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not reproduce these arguments here, though we do need to produce one ourselves

for Lemma 3.3.8, so that the reader can get some of the flavor. It is our opinion

that all of our results on CLOs hinge on two points: the ease of constructing models

through sums, and some form of Lemma 3.1.1.

3.1.1 Sums and Shuffles

We now introduce two classical operations, the sum and the shuffle, which go back

at least to Hausdorff. Unlike the situation with o-minimal theories or ℵ0-stable

theories, CLOs lack prime models over sets in general. Consequently we will rely on

these operations to construct new models of our theories.

We first examine the notion of a sum; if (I,<) is a linear order and for each

i, Ai is a CLO in the language L, we can define
∑

iAi in the natural way. It has

universe {(a, i) : a ∈ Ai, i ∈ I}. We say (a, i) < (b, j) if i < j, or if i = j and a < b

in Ai. For any color P in L, we say P (a, i) holds in the sum if P (a) holds in Ai.

This is an extremely well-behaved operation, and the following properties can be

verified immediately (or see [23]):

Proposition 3.1.2. Let (I,<) be a linear order and let (Ai : i ∈ I) be CLOs in the

same language L.

1. If Ai ∼= Bi for all i, then
∑

iAi
∼=
∑

iBi.

2. If Ai ≡ Bi for all i, then
∑

iAi ≡
∑

iBi.

We use the familiar notation A1 + · · ·+An for finite sums. If C ⊂ A is convex,

then A decomposes as a sum B1 + C + B2, where B1 is the set of elements below
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every element of C, and likewise with B2. The following gives one way we will use

sums to construct new models:

Proposition 3.1.3. Suppose Φ(x) is a partial type with no parameters, A is a CLO,

and C = Φ(A) is convex. Decompose A as B1 + C + B2. For any CLO D, define

AD as B1 +D +B2. If C ≡ D, then AD ≡ A and Φ(AD) = D.

Proof. First, add a new predicate P to the language, and let P (a) hold for some

a ∈ A if and only if a ∈ C. Expand D to the new language to let P hold everywhere.

We show that for all tuples b1 and b2 from B1 and B2 respectively, (A, b1, b2) ≡

(AD, b1, b2). This is done by an Ehrenfeucht-Fräısse game argument. So as usual

we may assume the language is finite, fix an n ∈ ω, and describe a strategy for the

second player to win the game of length n. Since C ≡ D, fix a winning strategy for

the second player in the game of length n between C and D. Then for any play,

if the first player plays an element of B1 or B2 from one model, the second player

plays the same element in the other model. If the first player plays within C or D,

the second player follows the winning strategy for those two. This is well-defined

and clearly preserves colors and < within components. Since the components are

convex and we stay within them, this preserves < generally, so proves the result.

That A ≡ AD follows immediately. To see that Φ(AD) = D, first note that

A |= ∀x(P (x) → φ(x)) for all φ ∈ Φ, so D ⊂ Φ(AD). On other hand, for any

b ∈ A \ C, there is a φ ∈ Φ where A |= ¬φ(b). Since (A, b) ≡ (AD, b), AD |= ¬φ(b),

so Φ(AD) ⊂ D, proving the proposition.

Next we define the shuffle. To do this, fix a natural number n, and form a
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countable structure Dn in the language Ln = {<,P1, . . . , Pn} satisfying the following

axioms:

• < is a linear order which is dense and without endpoints.

• The Pi are disjoint, dense, codense, and exhaustive.

It is easy to see that these axioms are consistent, complete, and ℵ0-categorical,

so Dn is defined up to isomorphism. Now for any language L and any CLOs

A1, . . . , An, we form the shuffle σ(A1, . . . , An) as follows. For each i ∈ Dn, de-

fine Di as Aj if and only if Pj(i) holds. Then σ(A1, . . . , An) is the sum
∑

iDi. The

following facts are easily verified:

Proposition 3.1.4. Let A1, . . . , An be countable CLOs in the same language L.

Then all the following hold:

1. If τ is a permutation of {1, . . . , n}, then σ(A1, . . . , An) ∼= σ(Aτ(1), . . . , Aτ(n)).

2. If for all i, Ai ≡ Bi, then σ(A1, . . . , An) ≡ σ(B1, . . . , Bn).

3. If for all i, Ai ∼= Bi, then σ(A1, . . . , An) ∼= σ(B1, . . . , Bn).

While the shuffle may seem somewhat arbitrary, it is important in Rosen-

stein’s characterization of ℵ0-categorical CLOs, and will come up in a natural way

in Section 3.2.

3.1.2 ℵ0-categorical Theories

By convention, we will refer to a structure (of any size) as ℵ0-categorical if and only if

its complete theory has a unique countable model up to isomorphism. In particular,
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following [22], we will consider finite structures (and their complete theories) to be

ℵ0-categorical.

In Section 3.3, we will make important use of Rosenstein’s characterization of

ℵ0-categorical linear orders in [22], which was extended to CLOs by Mwesigye and

Truss in [16]. One begins by defining several classes, which we call Mn.

• M0 is the set of all one-point CLOs; the colors can be arbitrary.

• Mn+1 is the smallest class of CLOs such that all the following are satisfied:

– If A ∈Mn, then A ∈Mn+1.

– If A,B ∈Mn, then A+B ∈Mn+1.

– If A1, . . . , Ak ∈Mn, then σ(A1, . . . , Ak) ∈Mn+1.

• M is the union
⋃
nMn.

The characterization is:

Theorem 3.1.5 (Rosenstein; Mwesigye, Truss). Let T be a CLO. Then T is ℵ0-

categorical if and only if T = Th(A) for some A ∈M.

Note that the above makes sense and is true even if the language is infinite,

and we will take advantage of that. However, this “generalization” is almost vacuous

– if a CLO is ℵ0-categorical, only finitely many of its colors are inequivalent.

We can also define a rank: if A is an ℵ0-categorical CLO, let r(A) be the least

n where there is some B ∈ Mn such that A ≡ B. This turns out to be a useful

inductive tool, allowing us to prove all the following facts:
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Proposition 3.1.6. Let A be a CLO in a language L.

1. If A is ℵ0-categorical, then every convex subset B ⊂ A is also ℵ0-categorical.

Indeed, r(B) ≤ 2 · r(A) + 1.

If L is finite, then we also get the following:

2. For any n ∈ ω, there are only finitely many ℵ0-categorical CLOs in L of rank

n.

3. For any ℵ0-categorical A, there are only finitely many convex subsets of A, up

to back-and-forth equivalence. This bound is uniform in r(A).

Proof. (1) First, assume A is countable; we will generalize in a moment. We show

this by induction on rank. It is trivially true for r(A) = 0. So let r(A) = n+1. Then

either A = B1 +B2 for some Bi ∈Mn, or A = σ(B1, . . . , Bk) for some Bi ∈Mn. In

the first (sum) case, if C ⊂ B1 +B2 is convex, then C = (B1∩C) + (B2∩C), where

each Bi∩C is a convex subset of the Bi. By induction, r(Bi∩C) ≤ r(Bi)+1 ≤ n+1,

so C is the sum of two CLOs with rank at most n+1, so r(C) ≤ n+2 ≤ 2(n+1)+1,

as desired.

In the other (shuffle) case, if C ⊂ σ(B1, . . . , Bk) is convex, then C is either

Bi ∩ C for some i, or (Bi1 ∩ C) + σ(B1, . . . , Bk) + (Bi2 ∩ C), where either of the

Bij could be empty. This is because the left “edge” of C either slips exactly be-

tween Bi components or cuts into one (corresponding to Bi1 being empty or some

Bi, respectively). Similarly with the right “edge.” If these cut into the same Bi

component, there is no shuffle and C is a convex subset of Bi, so has rank at most
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2 · r(Bi) + 1 ≤ 2n+ 1. If they cut into different components, there is an isomorphic

copy of the shuffle between the Bi. The shuffle has rank n + 1, while each of the

sides has at most 2n + 1, so the sum has rank at most 2n + 3 = 2(n + 1) + 1, as

desired.

For the case when A may be uncountable, let C ⊂ A be convex, and let (A,C)

be the structure with an unary predicate for C. Let (A0, C0) ≺ (A,C) be countable,

noting that C ≡ C0, A ≡ A0, and C0 is a convex subset of A0. Then the preceding

special case applies to (A0, C0), and by elementary equivalence, the result for A0

and C0 implies it for A and C, as desired.

(2) If there are k distinct unary predicates in L, there are 2k one-point CLOs,

so there are 2k elements ofM0. IfMn has m elements, thenMn+1 has m elements

from Mn, m2 elements as sums from Mn, and
∑m

i=1

(
m
i

)
elements as shuffles from

Mn. So Mn+1 is finite, as desired.

(3) If B is a convex subset of some A with r(A) ≤ n, then r(B) ≤ 2n + 1 by

(1). By (2), there is a finite number of ℵ0-categorical CLOs of rank at most 2n+ 1,

and this depends only on n.

Finally, we include Corollary 5.11 of [24]:

Theorem 3.1.7 (Rubin). If T is a CLO in a finite language and S1(T ) is finite,

then T is finitely axiomatizable.

In particular, if T is ℵ0-categorical in a finite language, then T is finitely

axiomatizable. This special case can be proven by induction, showing that if A ∈

Mn, then Th(A) is finitely axiomatizable. The proof of Rubin’s theorem above
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requires a characterization of those CLOs which have S1(T ) finite, which has a

similar induction construction (in addition to the above rules, insist that if A ∈Mn,

then Z × A ∈Mn+1); see Theorem 5.9 of [24] for the details.

3.2 Self-Additive Linear Orders

The crux of the characterization of CLOs is a clever definition due to Rubin –

the notion of self-additivity. We summarize their basic properties, following from

Theorem 3.2 and Lemma 3.4 in [24]:

Theorem / Definition 3.2.1. Let A be a CLO with more than one point. The

following properties are equivalent:

• The only ∅-definable convex subsets of A are ∅ and A.

• If Aj ≡ A for all j ∈ (J,≤), then each canonical embedding Aj →
∑

j∈J Aj is

elementary.

If A satisfies either of these properties, call A self-additive.

For example, each of (Z,≤), (Q, <), and (R, <,Q) are self-additive, but neither

(N, <) nor (Z + 1 + Z, <) is. Self-additive structures are extremely useful for us

because we can easily construct models using the sum operation – property (2)

implies that if T is self-additive, then any sum of models of T is again a model of

T . They also have another important property, namely, a nice condensation on the

models.
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Definition 3.2.2. Let A be a self-additive CLO, and let a and b be from A. Say

a ∼ b if there is a formula φ(x, a) where φ(A, a) is convex, bounded, and contains

both a and b.

The fact that∼ is an equivalence relation is not obvious; indeed both symmetry

and transitivity require a signficant argument which we do not reproduce here. That

∼ is an equivalence relation is a theorem of Rubin in [24], but is spelled out more

plainly in Theorem 13.99 of [23].

Note that we consider a set bounded if there are elements strictly above and

strictly below the entire set. Since self-additive orders cannot have first or last

elements, this is equivalent to any other reasonable definition.

The following is the main way we will show complexity of CLOs:

Lemma 3.2.3. Suppose A is a self-additive CLO, T = Th(A), and p ∈ S1(T ) is

such that there is exactly one ∼-class in A containing a realization of p. Then T is

λ-Borel complete for all λ.

Proof. Let A0 ≺ A be countable and contain a realization of p. If a, b ∈ A0, then

a ∼ b in A0 if and only if a ∼ b in A, so A0 still satisfies the hypotheses of the

theorem. This is to say, we may assume A is countable, and in fact that A has

universe ω. Fix an infinite cardinal λ and a canonical bijection λ× ω → λ. We aim

to show that (LOλ,≡∞ω) ≤λ
B

(Modλ(T ),≡∞ω); by Theorem 1.2.20, this shows that

T is λ-Borel complete.

For any linear order (I,<) with universe λ, let AI =
∑

i∈I A which has universe

λ×ω; under the bijection we may assume AI has universe λ. Let (J,<) be another
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linear order with universe λ, and let AJ be formed like AI . Let V[G] be a forcing

extension in which λ is countable, so that I, J , AI , and AJ are all countable in

V[G]. Then (I,<) ≡∞ω (J,<) if and only if (I,<) ∼= (J,<) in V[G], and likewise

with AI and AJ . This is all to say we may work solely in the countable case, with

isomorphism.

Now clearly if I ∼= J , then AI ∼= AJ . On the other hand, consider the set of

∼-classes EI = {a/∼: AI |= p(a)}. These are naturally ordered by <, and if a ∼ b in

AI , then they come from the same Ai, and are equivalent in AI if and only if they’re

equivalent in Ai. Since each Ai contains exactly one ∼-class containing a realization

of p, EI has order type (I,<). Clearly if AI ∼= AJ , then (EI , <) ∼= (EJ , <), so I ∼= J ,

completing the proof.

For example, this shows that Th(Z, <) is λ-Borel complete for all λ, since

(Z, <) has a unique ∼-class. But it can be used much more generally than that. We

borrow Lemma 6.1 of [24]:

Lemma 3.2.4 (Rubin). Let A ≡ B be self-additive, T = Th(A). Let b ∈ B be

arbitrary. Then the canonical embedding from A + (b/∼) + A to A + B + A is

elementary.

Lemma 3.2.5. Let T be a theory of a self-additive CLO such that S1(T ) is infinite.

Then T is λ-Borel complete for all λ.

Proof. Let p ∈ S1(T ) be nonisolated. Let A,B |= T be countable such that A omits

p and B realizes p at b. Let B0 = b/∼ as computed in B, and let C = A+B0+A. By

Lemma 3.2.4, C ≺ A+B +A is elementary. Since A,B |= T and T is self-additive,
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A+B+A |= T , so C |= T . Also, both embeddings A→ A+B+A are elementary,

so in particular, no element of A is ∼-equivalent to any element of B0. Similarly,

since B ≺ A + B + A and every element of B0 is ∼-equivalent in B, they are still

∼-equivalent in A+B + A, and thus in C. Finally, c ∈ C realizes the same type it

does in A + B + A, and thus C contains a unique ∼-class containing a realization

of p. So C and T satisfy the hypotheses of Lemma 3.2.3, so T is λ-Borel complete

for all λ.

Of course we cannot say the same when S1(T ) is finite – (Q, <) is ℵ0-categorical

and thus as far from Borel complete as one could be. Our aim is to show that these

are the only two cases which can occur, but we need to move slightly beyond the

self-additive case to do so. We borrow Lemma 5.4 of [24]:

Lemma 3.2.6 (Rubin). Let T be self-additive with S1(T ) finite. If A |= T and

a ∈ A, let Ta = Th(a/∼). Then |S1(Ta)| ≤ |S1(T )|. Also, one of the following

alternatives holds:

1. For every a ∈ A, (a/∼) ≺ A.

2. For every a ∈ A, the set (a/∼) is definable over a. There is no first or last

element in the quotient order A/∼, and if a/∼< b/∼ and p ∈ S1(T ), there is

a c realizing p where a/∼< c/∼< b/∼.

With this lemma in hand, we can finish our work with self-additive structures:

Lemma 3.2.7. Let T be a theory of a self-additive CLO such that S1(T ) is finite.

Then either T is ℵ0-categorical or T is λ-Borel complete for all λ.
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Proof. Let n = |S1(T )|; we go by induction on n, beginning with n = 1. If n = 1

then every element has the same type, and thus the same color, so essentially T is

the theory of a linear order. If T says the order has a first element, every element

is first, so T is the theory of a singleton, so is ℵ0-categorical (and indeed totally

categorical); the same happens with a last element. Assume this does not happen,

so there is no first or last element. If some element has a unique successor, they all

do, and their successors have predecessors, so everything does. This is known to be

an axiomatization of (Z, <), which (after expanded to an L-structure) has a unique

∼-class, so is λ-Borel complete for all λ by Lemma 3.2.3. Now assume these do not

happen, so no element has an immediate successor or predecessor and there are no

maximal or minimal elements. This is known to be an axiomatization of (Q, <),

which is ℵ0-categorical, completing the proof of the base case.

We move on to the step, where n ≥ 2. There are several cases.

Case: T is not self-additive.

Let φ(x) be a formula with parameters such that (according to T ), the real-

izations of φ form a nonempty proper initial segment of the model. Let A |= T , let

T1 = Th(φ(A)), and let T2 = Th(¬φ(A)). Note that T1 and T2 depend only on T ,

not on A. If both are ℵ0-categorical, so is T , by Proposition 3.1.5. On the other

hand, given any model A |= T and B |= T1, we can construct a structure AB where

we replace φ(A) with B. By Proposition 3.1.3, AB |= T and φ(AB) = B. Evidently

this gives a λ-Borel reduction Mod(T1) ≤λ
B

Mod(T ), so if T1 is λ-Borel complete,

so is T . The same goes for T2. Since |S1(T )| = |S1(T1)| + |S1(T2)|, the inductive

hypothesis applies to both Ti. Thus, either both Ti are ℵ0-categorical or one of them
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is λ-Borel complete for all λ. So the lemma holds for T .

Case: T is self-additive and case (1) of Lemma 3.2.6 applies.

Let A |= T , let a ∈ A be arbitrary, and let B = a/∼. Then B ≺ A, so B |= T ,

so T has a model with a single ∼-class. Then Lemma 3.2.3 applies, so T is λ-Borel

complete for all λ.

Case: T is self-additive and case (2) of Lemma 3.2.6 applies.

Let A |= T be arbitrary. Each ∼-class is an L-structure on its own, and the

theory of a/∼ is determined by tp(a). So there are k ≤ n ∼-classes up to elementary

equivalence; enumerate their theories as T1, . . . , Tk. To simplify notation, add k

unary predicates U1, . . . , Uk to the language, and expand T to the new language by

saying Ui(a) holds if and only if a/∼|= Ti. Since this is a definable expansion, this

does not change the size of the type space, and T satisfies the lemma if and only if

its expansion does.

Then T states precisely that each maximal convex piece of Ui is a model of

Ti, and between any two “convex pieces” and for any i ≤ k, there is a model of Ti

as a maximal convex piece of Ui. It states that the Ui are disjoint and exhaustive.

Fix particular countable models Ai |= Ti, and for any M fitting the preceding

description, form the L-structure A by replacing each maximal convex piece of any

Ui with the L-structure Ai. This can be done, and by Proposition 3.1.2, M ≡ AM .

However, given M and N fitting the description, AM ∼= AN by Proposition 3.1.4, so

the preceding description is a complete theory, so must completely axiomatize T .

Next, see that
∑

i |S1(Ti)| ≤ |S1(T )|. For if a and b come from different Ui,

they have different types in T . And since the ∼-class of an element is formula-
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definable with that element, if a and b come from the same Ui but have different

types in that structure, they have different types in T . Therefore, if k ≥ 2, then

|S1(Ti)| < |S1(T )| for all i, so the inductive hypothesis applies to each of them. If

each is ℵ0-categorical, so is T by Proposition 3.1.5 – T is the shuffle of the Ti. If

some Ti is λ-Borel complete, then so is T , as follows. Let M |= T be countable and

fixed. For any A |= Ti of size λ, let MA be formed by replacing each convex model

of Ti with A. Then |MA| = λ, and given a B |= Ti also of size λ, form MB in the

same way. If MA
∼= MB, this isomorphism preserves maximal convex pieces of Ui,

so A ∼= B. With this in mind, let V[G] collapse λ, so A ≡∞ω B if and only if A ∼= B

in V[G], if and only if MA
∼= MB in V[G], if and only if MA ≡∞ω MB. This shows

Modλ(Ti) ≤λB Modλ(T ), so T is also λ-Borel complete.

The only remaining case is when k = 1, so T is a shuffle of T1. If T1 is self-

additive, then each ∼-class of any A |= T is an elementary substructure of A, so

T1 = T and T admits a model with a single ∼-class. However, since the ∼-class of

any element is definable, T would then imply that every model has only one ∼-class,

contradicting what we already know about T . So T1 is not self-additive. Then a

previous case applies to T1, so T1 is either ℵ0-categorical or is λ-Borel complete for

all λ. In either case, T follows T1 by the logic in the previous paragraph, completing

the proof.

While we do not care about orders with finitely many types for themselves,

we do recover the following theorem which is crucial to us:

Theorem 3.2.8. Let T be self-additive. Then either T is ℵ0-categorical or is λ-Borel
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complete for all λ.

3.3 The General Proof

Finally we consider the general case, where we break up arbitrary CLOs into what

are essentially self-additive pieces. The crucial definition is the following:

Definition 3.3.1. Let T be a CLO. A convex type Φ(x), always in one variable, is

a maximal consistent collection of convex formulas over ∅. The space IT(T ) is the

set of all convex types.

We may give IT(T ) the usual formula topology, wherein it is compact, Haus-

dorff, second countable, and totally disconnected as usual. However, convex types

are naturally ordered by < as follows: say Φ < Ψ if there are formulas φ ∈ Φ and

ψ ∈ Ψ where every realization of φ is strictly below every realization of Ψ (according

to T ). It is immediate that if Φ 6= Ψ, then either Φ < Ψ or Ψ < Φ, and not both.

This induces the same topology as before.

For our purposes, say an L-structure A is sufficiently saturated if it is ℵ0-

saturated, and if a, b ∈ A realize the same type, there is an automorphism of A

taking a to b; we will never need a larger monster model than this. Every complete

theory admits such a model, although there will not be a countable such unless the

theory is small. Sufficiently saturated CLOs are “locally self-additive:”

Lemma 3.3.2. Let T be a CLO, and let S |= T be sufficiently saturated. Then

for all Φ ∈ IT(T ), the set Φ(S) of realizations of Φ in S is either a singleton or

self-additive as an L-structure.
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Proof. Suppose not. Then there is a formula φ(x) whose realizations are initial in

Φ(S), and where there is are points a, b ∈ Φ(S) where Φ(S) |= φ(a) ∧ ¬φ(b). Let

p = tp(b) as formed in the whole of S. Then the type p(x) ∪ {x < a} must be

consistent; otherwise there would be some ψ(x) ∈ p(x) where a lies strictly below

the convex definable set ∃y (y ≤ x ∧ ψ(y)) which includes b, and therefore a and b

realizes different convex types. By ℵ0-saturation of S, there is c ∈ S which realizes

p and has c < a. Clearly Φ(S) |= φ(c). But then there is an automorphism σ of S

where σ(a) = c. But σ preserves Φ, so is an automorphism of Φ(S) which takes b

to c, so by elementarily, Φ(S) |= ¬φ(c), a contradiction.

The theory of Φ(S) turns out to depend only on T , not on choice of sufficiently

saturated model:

Lemma 3.3.3. Let S1 and S2 be sufficiently saturated models of a CLO T . For any

Φ ∈ IT(T ), the L-structures Φ(S1) and Φ(S2) are back-and-forth equivalent, and

thus elementarily equivalent.

Let TΦ be the theory of Φ(S) for any sufficiently saturated S |= T .

Proof. Our claim is that if a ∈ Φ(S1)n and b ∈ Φ(S2)n have (S1, a) ≡ (S2, b), and if

a ∈ Φ(S1) is arbitrary, there is a b ∈ Phi(S2) where (S1, aa) ≡ (S2, bb). This implies

that aa and bb have the same atomic type in the substructures, so together with the

opposite (which follows from symmetry) gives the result.

So fix such tuples a, b, and a. Then p(x, x) = tp(a, a) (evaluated in S1) is

realized and thus consistent with T . Therefore it is realized in S2 by some pair c, c.

But then tp(c) = tp(a) = tp(b), so there is an automorphism σ of S2 taking c to b;
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let b = σ(c). Clearly tp(aa) = tp(cc) = tp(bb), and b ∈ Φ(S2) since c is, so b satisfies

the conditions and proves the result.

Therefore Φ(S1) ≡ Φ(S2), so we may define the notation TΦ to be the complete

L-theory of Φ(S) for any sufficiently saturated S |= T . We can now declare our

fundamental dichotomy:

Definition 3.3.4. Let T be a CLO. Say T is locally simple if for all Φ ∈ IT(T ), TΦ

is ℵ0-categorical. Otherwise say T is locally nonsimple.

Theorem 3.3.5. If T is a locally nonsimple CLO, T is λ-Borel complete for all λ.

Proof. Let S |= T be sufficiently saturated, and let Φ ∈ IT(T ) be such that TΦ is not

ℵ0-categorical. Let A ≺ S be countable such that Φ(A) ≺ Φ(S). Then Φ(A) |= TΦ,

which is a self-additive CLO which is λ-Borel complete for all λ by Theorem 3.2.8.

Furthermore, TΦ ≤λB T as follows. If B ∈ Modλ(TΦ), construct AB by replacing

Φ(A) by B; then A ≡ AB and Φ(AB) = B by Proposition 3.1.3, so in particular

AB ∈ Modλ(T ). Clearly B ∼= B′ if and only if AB ∼= AB′ , so by using that fact in

some V[G] which collapses λ, B ≡∞ω B′ if and only if AB ≡∞ω AB′ , completing the

proof.

Since the global behavior of a CLO is determined essentially by the structure

of IT(T ), if there is also local simplicity, there isn’t much behavior left. Thus, locally

simple CLOs turn out to admit a nice characterization. We borrow Lemma 2.7(1)

of [24]: if B is a CLO, A is any subset of B, and C is the convex hull of A in B,

then A ≺ C. The following is the core lemma for understanding this case:
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Lemma 3.3.6. Let T be locally simple and Φ ∈ IT(T ). Then there is a (minimal)

natural number nΦ and a set {T iΦ : 1 ≤ i ≤ nΦ} of distinct ℵ0-categorical L-theories

where for all A |= T , there is an i where Φ(A) |= T iΦ.

Against model-theoretic convention, we include the “theory of the empty set”

in the list, where we say ∅ |= ∀x(x 6= x), in case A omits Φ.

Further, nΦ = 1 if and only if Φ is isolated in IT(T ).

Proof. Let A |= T . Then Φ(A) ⊂ Φ(S) for any sufficiently saturated S |= T where

A ≺ S. Let C be the convex hull of Φ(A) in Φ(S); then A ≺ C, so they have

the same theory. Also, Φ(C) is a convex subset of an ℵ0-categorical CLO, so is ℵ0-

categorical by Proposition 3.1.6. So A is ℵ0-categorical. Also by Proposition 3.1.6,

there are only finitely many pairwise inequivalent convex subsets of Φ(S), and this

bound depends only on TΦ. So the main text of the lemma is proven.

If Φ is nonisolated, there is a model omitting it and another realizing it, so

nΦ ≥ 2. If Φ is isolated by some formula φ, then for every sentence σ of L, the

sentence “σ holds on Φ” is equivalent to “the relativization of σ to φ is true,” which

is a single L-sentence and thus decided by T . So nΦ = 1.

This allows us to give a simple characterization of back-and-forth equivalence

for locally simple CLOs:

Lemma 3.3.7. Let T be a locally simple CLO, and A,B |= T . The following are

equivalent:

1. A ≡∞ω B
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2. For all Φ ∈ IT(T ), Φ(A) ≡∞ω Φ(B)

3. For all Φ ∈ IT(T ), Φ(A) ≡ Φ(B).

The equivalence of (1) and (2) does not require local simplicity. If A and B

are countable, (1) is equivalent to A ∼= B, and likewise with (2).

Proof. Assuming (1), we can get (2) by playing the back-and-forth game within any

particular Φ; we can reverse this step by patching the various solutions to the Φ

together, and making sure we always match choice of interval type. Assuming (2)

we get (3) immediately, since elementary equivalence is just ≡ωω. The nontrivial

step is to show that (3) implies (2), which follows from Lemma 3.3.6. For if Φ(A) |=

T iΦ for some i, then Φ(B) |= T iΦ, and since T iΦ is ℵ0-categorical, all of its models

are back-and-forth equivalent. The equivalence of back-and-forth equivalence with

isomorphism when the structures are countable is standard and follows from Zorn’s

lemma.

It only remains to give an exhaustive list of the behaviors that a CLO can

exhibit, both in terms of I∞ω(T ) and of the Borel complexity of ∼=T . We will use

the following lemma to construct many models, to the extent that the type space

allows it. Approximately, we would like to choose to omit or realize whatever types

we like. The problem is that if we omit too many, we don’t have enough content

left over to have a model. This turns out to be the only obstruction:

Lemma 3.3.8. Suppose A ⊂ C ⊂ B, that A,B |= T , and that A ≺ B. Suppose also

that there is a collection K ⊂ IT (T ) where C = B \
(⋃

Φ∈K Φ(B)
)
. Then C ≺ B as

well.
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Proof. Let φ(x, y) be a formula, c a tuple from C, and b an element from B where

B |= φ(c, b). It’s enough to show there is a c ∈ C where B |= φ(c, c). By the

particular construction of C, either b ∈ C or there is a convex formula ψ(y) where

B |= ψ(b), and where no element of c realizes ψ. By Lemma 3.1.1, there is a formula

φ#(y) where for all b′ realizing ψ, ψ(B) |= φ#(b′) if and only if B |= φ(c, b′). Since

ψ is itself definable, there is a formula φ∗(y) where B |= ∀y (φ∗(y)↔ φ(c, y)). Of

course B |= φ∗(b), and since A ≺ B, there is an a ∈ A where B |= φ∗(a). Since

A ⊂ C, this a is the element we were looking for, which completes the proof.

We can now give individual cases:

Proposition 3.3.9. If T is locally simple and IT(T ) is finite, T is ℵ0-categorical

and I∞ω(T ) = 1.

Proof. Since IT(T ) is finite, every Φ ∈ IT(T ) is isolated. Thus nΦ = 1 for all Φ, so

every A,B |= T are back-and-forth equivalent by Lemma 3.3.7. If A and B are also

countable, they are isomorphic as well.

Proposition 3.3.10. If T is locally simple and IT(T ) is infinite but with only finitely

many nonisolated types, there is a natural number n ≥ 3 where ∼=T is (n,=) and

I∞ω(T ) = n.

Proof. Let Φ1, . . . ,Φk ∈ IT(T ) be the nonisolated convex types, and let m be the

product of the nΦi
. For any A |= T , let tA be (Th(Φi(A)) : i ≤ k). If A,B |= T , then

A ≡∞ω B if and only if tA = tB. Further, there are at most m possible sequences

tA, so T has at most m countable models up to isomorphism; call the exact count
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n. That n ≥ 2 comes the fact that some type is nonisolated; that n ≥ 3 comes from

the fact that T is a complete first-order theory.

Clearly I∞ω(T ) ≥ n. That I∞ω(T ) ≤ n comes as follows; if A |= T is arbitrary,

let A0 ≺ A be countable and have Φ(A0) ≺ Φ(A) for all Φ ∈ IT(T ). Then A ≡∞ω A0.

And for any two models A,B |= T , A ≡∞ω B if and only if A0 ≡∞ω B0, if and

only if A0
∼= B0. Since there are n isomorphism types of countable models of T ,

I∞ω(T ) ≤ n, completing the proof.

Proposition 3.3.11. If T is locally simple and IT(T ) is countable but with infinitely

many nonisolated types, then ∼=T is ∼=1 and I∞ω(T ) = i1.

Proof. We first show ∼=T≤B
∼=1 by showing a Borel reduction from Modω(T ) to (ωω,=

). For each Φ, fix an indexing of {T iΦ : 1 ≤ i ≤ nΦ}. Also fix an indexing {Φn :

n ∈ ω} of IT(T ). Then for any model M |= T , let sM ∈ ωω take n ∈ ω to the

unique i where Φn(A) |= T iΦ. Certainly for any M,N |= T , M ≡∞ω N if and only

if sM = sN , so ∼=T≤B
∼=1. Since this construction makes sense for any models of T ,

this also shows I∞ω(T ) ≤ i1.

For the other direction, we show ∼=1≤B
∼=T by giving a Borel reduction from

(2ω,=) to Modω(T ). So let A |= T be some model omitting every nonisolated type

in IT(T ), and let B � A realize every type in IT(T ). For η ∈ 2ω, let Cη omit

Φn ∈ IT(T ) if and only if η(n) = 0. This is done by use of Lemma 3.3.8, so that

Cη is just the elements of B which are not in
⋃
{Φ(B) : η(n) = 0}. Certainly this

can be made Borel and Cη ∼= Cν if and only if η = ν. So ∼=1≤B
∼=T . Since these

models is countable and pairwise nonisomorphic, they are also pairwise back-and-
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forth inequivalent. So I∞ω(T ) ≥ i1, completing the proof.

Proposition 3.3.12. If T is locally simple and IT(T ) is uncountable, then ∼=T is

∼=2 and I∞ω = i2.

Proof. We first show that ∼=T≤B
∼=2 by showing a Borel reduction from Modω(T )

to ((X)ω, E), where X is the set of all possible L-theories and two functions are

equivalent if and only if their images are equal as sets. Since X is a standard Borel

space, (X,E) ∼
B
∼=2. So let M ∈ Modω(T ), and for each n ∈ ω, let ΦM

n be the convex

type of n in M . Then let TMn be the theory of ΦM
n (M), and define our function by

M 7→ (TMn : n ∈ ω). By Lemma 3.3.7, countable models M,N |= T have M ∼= N if

and only if they realize the same convex types (necessarily a countable set), and for

each realized type Φ, Φ(M) ≡ Φ(N). This is equivalent to the sets {TMn : n ∈ ω}

and {TNn : n ∈ ω} being equal.

The back-and-forth version of this argument is less delicate. Two models

M,N |= T (of any size) are back-and-forth equivalent if and only if, for all Φ ∈

IT(T ), Φ(M) ≡ Φ(N). Since IT(T ) is uncountable, |IT(T )| = i1, so I∞ω(T ) ≤

ωi1 = i2.

For the reverse, we again use Lemma 3.3.8. Fix a countable model M |= T and

some model S |= T realizing every convex type. Let X be the set of convex types

omitted by M ; since IT(T ) is uncountable and M is countable, X is an uncountable

standard Borel space using the usual topology. For any set K ⊂ IT(T ), let MK be

S \
⋃

Φ∈X\K Φ(S). If K1 6= K2, MK1 and MK2 realize different types, so are pairwise

inequivalent. Thus I∞ω(T ) ≥ i2.
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For the countable version of this argument, we need to be slightly more careful.

We restrict ourselves to countable K, so that MK realizes only countably many

types. We also need Φ(S) to be countable for each S, which can be guaranteed by

simply replacing each Φ(S) with a countable elementary substructure. But then we

have a Borel function from (Xω, E) to (Modω(T ),∼=), where we take f : ω → X to

Mim(f). Certainly Mim(f)
∼= Mim(g) if and only if im(f) = im(g), if and only if fEg.

So ∼=2≤B
∼=T , as desired.

We summarize our findings in the following compilation theorem:

Theorem 3.3.13. Let T be a CLO. If T is locally nonsimple, T is λ-Borel complete

for all λ. Otherwise T is locally simple and exactly one of the following happens:

1. T is ℵ0-categorical.

2. There is some n with 3 ≤ n < ω where ∼=T is (n,=) and I∞ω(T ) = n.

3. ∼=T∼B
∼=1 and I∞ω(T ) = i1.

4. ∼=T∼B
∼=2 and I∞ω(T ) = i2.

All five cases are possible, including every value of n with 3 ≤ n < ω.

We end this section with a nice corollary of our findings, a special case when

the language is finite and the dichotomy is very sharp. This result generalizes a

result of Schirmann in [26], where a countable version of the same theorem was

proven for linear orders without any colors.
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Corollary 3.3.14. If T is a CLO in a finite language L, then either T is ℵ0-

categorical or is λ-Borel complete for all λ.

Proof. If T is locally nonsimple, or if IT(T ) is finite, the corollary follows from

Theorem 3.3.13. So suppose, by way of contradiction, that there is a nonisolated

Φ ∈ IT(T ). Let (Φn : n ∈ ω) be a sequence from IT(T ) limiting to Φ. Without loss

of generality, we assume Φn < Φn+1 for all n. Since L is finite, every ℵ0-categorical

CLO in L is finitely axiomatizable by Theorem 3.1.7, and there are only finitely many

such theories of any particular rank by Theorem 3.1.5. Thus, for every n, there is an

L-formula σ(x, y) stating “x < y and [x, y] is not an ℵ0-categorical CLO of rank at

most n.” For a moment, suppose the partial type Γ(x, y) = σ(x, y)∪Φ(x)∪Φ(y) is

consistent. Then any sufficiently saturated S |= T realizes it at some pair [a, b]. But

then [a, b] is not ℵ0-categorical, despite being a dense subset of the ℵ0-categorical

structure Φ(S). This will give us our contradiction, assuming we can show Γ is

consistent.

We show this by compactness. So let Γ0 ⊂ Γ be finite. Then Γ0(a, b) says

at most that a < b, that [a, b] is not ℵ0-categorical, and that there is a formula

φ(x), contained in cofinitely many of the Φn, such that both a and b satisfy φ. So

pass to some sufficiently saturated S |= T , and let b ∈ S realize Φ. Let m be large

enough that realizing Φm guarantees realizing φ, and let a ∈ S realize a. For every

n < ω, there is a convex formula φn where Φi implies φn if and only if i = n. By

Lemma 3.1.1, there is a formula φ#
n (x) where for all c ∈ [a, b], [a, b] |= φ#

n (c) if and

only if S |= φn(c). But if m < n < n′ < ω, then φ#
n and φ#

n′ are disjoint definable

107



subsets of [a, b], meaning [a, b] admits infinitely many inequivalent formulas, so is

not ℵ0-categorical. Thus (a, b) realize Γ0, completing the proof.

3.4 Examples

Here we give examples showing that all of our cases are possible. We include a basic

schema of examples for each case and leave generalizations to the reader.

Example 3.4.1. Let L = {<}, and let A = (Q, <). Then Th(A) is ℵ0-categorical

and I∞ω(Th(A)) = 1.

Proof. This is classical, but we summarize it. Suppose B ≡ A, so in particular,

B is dense without endpoints. It follows from these axioms (which turn out to be

complete) that if x1 < · · · < xn is an ascending sequence from either model, then

there is a tuple y from that mode satisfying y0 < x1 < y1 < x2 < · · · < xn < yn.

From here, showing B ≡∞ω A is immediate.

The following examples are due to Ehrenfeucht, and give examples of every

finite (non-one) value that I∞ω(T ) can take. By Corollary 3.3.14, the use of an

infinite language is necessary – no CLO in a finite language can fall into this class.

Example 3.4.2. Let n ≥ 1 be a natural number. Let L be the language {<}∪{Pk :

k ∈ ω} ∪ {Ui : 1 ≤ i ≤ n}. Let A have underlying order (Q, <), where Pk(q) holds

if and only if k = q, and where the Ui partition the universe into dense and codense

pieces; for concreteness suppose that if Pk(q) holds, then U1(q) also holds.

Then T = Th(A) has exactly n+2 countable models, and I∞ω(Th(A)) = n+2.
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Proof. As this is also classical, we only summarize. For ease of notation, let ck refer

to the unique realization of Pk in whatever model we’re working with. The possible

options for a countable model, up to isomorphism, are as follows:

1. The sequence (ck) is unbounded above.

2. The sequence (ck) is bounded above, but has no least upper bound.

3. The sequence (ck) has a least upper bound, and this element satisfies Ui.

Since there are precisely n possible values of i in the last case, this is n + 2

distinct cases. Clearly being in a case is preserved under isomorphism, or even back-

and-forth equivalence, and all the cases are possible of models of T . So I∞ω(T ) =

n+ 2 and ∼=T is (n+ 2,=).

To move up to ∼=1, we can simply include infinitely many copies of this idea:

Example 3.4.3. Let S ⊂ Q be the set of all rationals of the form k + 1
n+1

where

k ∈ Z and n ∈ ω. Let L = {<} ∪ {Ps : s ∈ S}.

Let A have underlying order type (Q, <), and say Ps(q) holds if and only if

s = q. If T = Th(A), then ∼=T is ∼=1, and I∞ω(T ) = i1.

Proof. This is essentially infinitely many problems of the above form. In particular,

if M and N are models of T , then M ≡ N if and only if, for all k ∈ Z, the sequence

{k+ 1
n+1

: n ∈ ω} has a greatest lower bound, where we interpret these rationals as

the unique realizations of the associated predicates in each model.

This shows that ∼=T≤B
∼=1 and I∞ω(T ) ≤ i1. The presence of a greatest lower

bound corresponds exactly to omitting a certain interval type (the one between
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k and the sequence (k + 1
n+1

)n), and the model A omits all of them. Thus, by

Lemma 3.3.8, one can omit or realize any set of these types, showing ∼=1≤B
∼=T and

I∞ω(T ) ≥ i1.

The example of an ∼=2 example is probably the first thing you’d think of:

Example 3.4.4. Let L = {<} ∪ {Pq : q ∈ Q}, and let A have underlying order

type (Q, <). Say Pq(r) holds if and only if q = r. If T = Th(A), then ∼=T=∼=2, and

I∞ω(T ) = i2.

Proof. Clearly S1(T ) is uncountable, so ∼=2≤B
T and I∞ω(T ) ≥ i2. It is enough to

show that T is locally simple. But observe that every Φ ∈ IT(T ) is defined exactly

by which rational numbers lie above or below (or in) Φ. Thus, if S is any sufficiently

saturated model and Φ ∈ IT(T ) is nonisolated, then the set Φ(S) has order type

which is dense and without endpoints, and all the predicates Ps will be false. So this

structure is ℵ0-categorical, so T is locally simple, so ∼=T≤B
∼=2 and I∞ω(T ) ≤ i2, as

desired.

Local nonsimplicity can come about in a few ways. The first is simply to have

non-dense order type:

Example 3.4.5. Let L = {<} and let A = (Z, <). Then T = Th(A) is λ-Borel

complete for all λ, and I∞ω(T ) =∞.

Proof. This structure is self-additive by a classical argument, but A 6∼= A+ A, so is

not ℵ0-categorical. The result follows.

One can also hide a non-dense order type in a predicate:
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Example 3.4.6. Let L = {<} ∪ {P}, and let A = (Q, <,Z); that is, the predicate

P is said to hold only on the integers. Then T = Th(A) is λ-Borel complete for all

λ, and I∞ω(T ) =∞.

Proof. This structure is self-additive by appeal to the argument for (Z, <), but

again, A 6∼= A+ A.

Maximal complexity can also come about without any hidden non-density, but

just from too much behavior going on. The following example also gives an example

of a CLO which is maximally complex, but where every reduct to a finite language

is ℵ0-categorical; this behavior is impossible for o-minimal theories.

Example 3.4.7. Let L = {<}∪{Pn : n ∈ ω}. For each n, let Ln = {<}∪{Pk : k <

n}, so that Ln ⊂ L. Let Tn state that the order type is dense without endpoints,

and that the boolean combinations of {Pk : k < n} are all consistent and together

partition the space into dense, codense pieces.

Let T =
⋃
n Tn. Then each theory Tn is ℵ0-categorical, but T is locally nonsim-

ple (hence λ-Borel complete for all λ). All the theories Tn and T are self-additive.

Proof. ℵ0-categoricity and self-additivity of each Tn is immediate by a back-and-

forth argument. Clearly Tn+1 implies Tn, so Tn+1 ∪ Tn is consistent, and thus T is

consistent, although it is harder to construct a canonical model (indeed T has no

isolated types, and hence no prime model).

To see that T is self-additive, let A andB model T , and consider the embedding

A→ A+B (the other case is identical). If this embedding were not elementary, there

would be a formula witnessing it, and formulas use only finitely many elements of the
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language. Thus there is an n where the reducts An and Bn of A and B (respectively)

to Ln make An → An +Bn not elementary. But since T implies Tn, An and Bn are

models of Tn, contradicting self-additivity of Tn. So the original embedding must

have been elementary, establishing self-additivity.

To see that T is locally nonsimple, it is enough to observe that it is self-additive

and not ℵ0-categorical. We have demonstrated the former; for the latter, simply

observe that S1(T ) is infinite (indeed, uncountable), as {Pn(x) : n ∈ X}∪{¬Pn(x) :

n 6∈ X} is consistent for all X ⊂ ω.
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