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A fundamental goal of statistical mechanics is to connect a description of

the intermolecular interactions and the accompanying microscopic structural details

of a molecular system to its macroscopic thermodynamic properties. When the

interactions between molecular components are treated with sufficient simplicity,

as in an ideal gas or a hard sphere fluid for example, the link between structure

and thermodynamics can be apparent. In contrast, when both local and non-local

interactions are present in the system, competition between the various short and

long ranged forces can lead to surprising thermodynamic behaviors as exemplified

by the complexities of liquid water. Local molecular field (LMF) theory provides

a physically motivated formalism for systematically decomposing the structure and

thermodynamics of molecular systems into portions arising from local and non-local

interactions. In this thesis, LMF theory is employed to examine the structure and

thermodynamics of molecular systems, with a focus on aqueous solutions.

LMF-motivated truncations of classical water models are first developed as



analysis tools to explore the roles of the local hydrogen bond network, dispersion

interactions, and long ranged multipolar interactions in the determination of sev-

eral anomalous thermodynamic properties of bulk water. This type of analysis is

then extended to the study the relative importance of hydrogen bonding and inter-

facial unbalancing potentials in hydrophobic effects. The underlying ideas of LMF

theory are then utilized to study local and non-local interactions in ion solvation.

Modifications to classical dielectric continuum theories are explored with a focus on

determining the electrostatic potentials inside ionic cores. LMF ideas are then used

to develop the concept of a Gaussian test charge. We then argue that this type of

test charge is the appropriate generalization of a classical point test charge to probe

the dielectric response of molecularly detailed systems and develop an accurate for-

malism for the description of the dielectric response to such probes. Finally, a LMF

theoretic foundation for performing free energy calculations is developed and tested

before concluding the thesis with a discussion of future work involving LMF theory.
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Chapter 1

Introduction

This dissertation is concerned with the link between microscopic structure and

macroscopic thermodynamics. The experimental ability to synthesize and manipu-

late materials on nano-scopic length-scales has never been greater, and at the heart

of this ability is knowledge of the impact that molecular-scale interactions have on

bulk properties. As science and technology move forward, theoretical advances are a

necessary complement to experimental approaches, and are a necessity when nano-

scale properties are of interest. In particular, a combination of statistical physics and

computer simulation has proved to be an invaluable tool for such studies. This is the

approach employed herein to study the macroscopic thermodynamic consequences

of molecular-scale structural details.

Molecular systems can be modeled by prescribing physics-based interaction

potentials between atomic groups, which can then be transcribed into formats

amenable to computer simulation. While the specific form of these interatomic

interactions may vary between systems, most can be separated into a short ranged

component responsible for local structure, like the tetrahedral lattice of ice, and a

long ranged portion usually arising from Coulomb interactions which is associated

with behavior occurring over much larger than molecular length-scales. The recently

developed local molecular field (LMF) theory of nonuniform fluids provides a physi-

1



cal means for optimally dividing such interaction potentials, in addition to a compu-

tationally efficient theoretical technique for determining the structural and thermo-

dynamic response to the long ranged component of the interactions [1, 2, 3, 4, 5]. We

will exploit the ideas of LMF theory to examine the structure and thermodynamics

of complex systems throughout this dissertation.

1.1 Uniform Liquid Structure is Dominated by Short Ranged Forces

The successful development of theories of nonuniform liquids hinges on an un-

derstanding of such fluids in the uniform bulk liquid state. Of particular importance

for simple liquids, like the Lennard-Jones (LJ) fluid, is understanding the relative

roles of repulsive and attractive forces. The fundamental idea of separating the roles

of repulsions and attractions has led to monumental breakthroughs in our under-

standing of the phase behavior of fluids through the work of van der Waals, and later

work has substantially influenced our understanding of the liquid state of matter in

general [6, 7, 97].

At the core of these developments is the concept of force cancellation. To

understand these ideas, consider the example of a dense uniform LJ fluid near its

triple point, where the LJ potential describing interparticle interactions is

uLJ(r) = 4εLJ

[(σLJ

r

)12

−
(σLJ

r

)6
]
, (1.1)

where −εLJ and σLJ are the energy minimum and inter-particle length scale associ-

ated with the fluid. This potential is shown in Figure 4.8a. The LJ potential can

be separated into a short ranged purely repulsive portion which is rapidly-varying

2



(a)

(b)

(c)

Figure 1.1: (a) Separation of the LJ potential into its rapidly-varying, short ranged
and slowly-varying, long ranged components. (b) Schematic illustration of the idea
of force cancellation, wherein the vector sum of the force due to u1(r) (blue arrows)
on a tagged particle (black) from its neighbors effectively cancels. (c) Comparison
of the pair distribution functions g(r) of the LJ fluid and its corresponding WCA
reference system at the state point T ∗ = 0.65 and ρ∗ = 0.85.

over molecular length-scales and a long ranged, slowly-varying attractive compo-

nent. This separation is of the form developed by Weeks, Chandler, and Andersen

(WCA) in their seminal work on perturbation theory of uniform liquids [6]. This

WCA separation splits the LJ potential uLJ(r) into its corresponding repulsive and

attractive forces, such that

u0(r) =


uLJ(r) + εLJ r < r0

0 r > r0

(1.2)

and

u1(r) =


−εLJ r < r0

uLJ(r) r > r0

(1.3)

where r0 = 21/6σLJ is the position of the minimum of the LJ potential [6] and u0(r)

is typically referred to as the WCA potential throughout the literature.

For a single particle in a dense fluid, the average vector sum of the attractive

forces due to u1(r) from its surrounding neighbors exactly cancels by symmetry, and
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this remains true to a good approximation in most typical configurations of a uniform

fluid. This force cancellation is schematically illustrated in Figure 4.8b. Therefore,

the attractive potential u1(r) will have a negligible effect on the structure of a dense

fluid and merely provides a uniform background energy, which can be accounted for

in a simple mean field manner [7]. While the role of the attractive forces is minimal

in a dense uniform fluid, the harsh repulsive interactions encompassed by u0(r)

determine the structure of the liquid. Indeed, the pair distribution function g(r)

of a LJ fluid is quantitatively captured by its WCA reference system, as shown in

Figure 4.8c, where the pair distribution function in a homogenous, isotropic system

is given by

g(r) =
1

ρ

〈
1

N

N∑
i=1

N∑′

j=1

δ (r− rj + ri)

〉
, (1.4)

ρ = N/V is the bulk density of a system with N particles in a volume V , ri is

the position of particle i, 〈· · · 〉 indicates an ensemble average, δ(r) is the Dirac

delta function, and the prime on the sum over j indicates the omission of terms

when i = j. The highly accurate description of the LJ fluid by its WCA reference

has led to the successful development of perturbation theories of uniform fluids [6].

By assuming equivalence of the pair correlation functions of the LJ and WCA fluids

(g(r) ≈ g0(r)), one can effectively integrate over the structure of the reference system

to obtain thermodynamic properties of the full system. These ideas, in conjunction

with theoretical developments to determine the reference fluid g0(r) [8] with high

accuracy, comprise the foundation of the WCA theory of uniform fluids [6].

However, the concept of force cancellation breaks down in the presence of

4



(a)

(b)

Figure 1.2: (a) Schematic illustration of the unbalanced force (blue) on a particle
(black) near the interface of a large hard sphere (red). (b) Comparison of the
nonuniform densities of the LJ fluid and its corresponding WCA reference system
at the state point T ∗ = 0.85 and ρ∗ = 0.70.

structural inhomogeneities. For example, consider introducing a large hard spherical

particle (HS) into a LJ fluid, schematically shown in Figure 1.2a. If one once again

considers the vector sum of attractive interactions on a fluid particle, but now for

a particle close to the interface between the fluid and the HS, we see that the

slowly-varying long ranged attractions do not cancel. Instead, they provide a net

unbalanced force at the fluid-HS interface that leads to phenomena like drying. The

structure of the purely repulsive reference fluid does not approximate that of the

corresponding fully interacting LJ fluid, as evidenced by the nonuniform density

distributions shown in Figure 1.2b. Accounting for the effects of such unbalanced

forces in a short ranged reference fluid requires further theoretical developments,

and this is achieved through the use of local molecular field theory for nonuniform

fluids.
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1.2 Local Molecular Field Theory for Nonuniform Fluids

Local molecular field (LMF) theory utilizes the above-described separation of

molecular interactions into short and long ranged components to enable the study of

nonuniform systems by simulating short ranged models in the presence of an effective

external field that accounts for the averaged effects of any long ranged interactions [1,

2, 3, 4, 5]. LMF theory considers a nonuniform system of particles interacting with a

pair potential u(r) = u0(r)+u1(r), and in a general external field φ(r). This external

field could be due to hard walls, a fixed solute, or an electric field, for example. LMF

theory seeks to map this full system onto a mimic system, wherein interparticle

interactions are described by a short ranged pair potential u0(r). However, the

external field in this mimic system is now a renormalized external field φR(r), such

that this LMF mapping is 
u(r)

φ(r)

⇒


u0(r)

φR(r)

 (1.5)

As discussed above, the short ranged interaction potentials are chosen such that

u0(r) contains all the harsh, rapidly-varying portions of the potential. These strong

short ranged interactions therefore yield an accurate account of forces between typ-

ical nearest neighbors in a liquid. The long ranged component u1(r) is chosen to

be slowly-varying over molecular length-scales. The LMF mapping in Equation 1.5,

and the renormalized potential φR(r), is chosen in principle such that the singlet

density of the full system matches that of the mimic system,

ρ(1) (r; [φ]) = ρ
(1)
R (r; [φR]) . (1.6)
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The short ranged system then “mimics” the structure of the corresponding full

system. The functional dependence of the densities on the corresponding external

fields will be omitted in the rest of this work unless necessary for clarity.

The effective field, φR(r), is obtained from the self-consistent LMF equation,

φR(r) = φ(r) +

∫
dr′ρ

(1)
R (r′)u1(|r− r′|) + C, (1.7)

where C is a constant of integration that sets the zero of the potential, and is

typically chosen so that φR(r) is zero in the bulk fluid. Equation 1.7 is obtained from

an approximate integration of a combination of the corresponding first equations of

the exact Yvon-Born-Green (YBG) hierarchy of equations for the full and mimic

systems,

kBT∇r ln ρ(r) = −∇rφ(r)−
∫
dr′ρ(r|r′)∇ru(|r− r′|) (1.8)

and

kBT∇r ln ρR(r) = −∇rφR(r)−
∫
dr′ρR(r|r′)∇ru0(|r− r′|), (1.9)

respectively, where

ρ(r|r′) ≡ ρ(2)(r, r′)

ρ(r)
(1.10)

is the conditional singlet density: the density at r′ given that a particle is at r,

such that ρ(2)(r, r′) is the nonuniform pair density. These YBG equations relate

mean interatomic forces to the structure they induce, such that LMF theory es-

sentially integrates from the “bottom-up” to obtain the structural properties of

a molecular system. This contrasts traditional classical density functional theory

(DFT) approaches, in which an approximate free energy functional is differentiated

7



to yield structure [9], such that one is working from the “top-down.” This distinc-

tion between bottom-up and top-down approaches is significant, especially when

determining accurate thermodynamic properties, which will be the focus of a later

chapter in this thesis.

Subtracting Equation 1.8 from Equation 1.9 when Equation 1.6 holds yields

an expression relating ∇rφ(r) to ∇rφR(r),

−∇rφR(r) = −∇rφ(r)−
∫
dr′ρR(r′; [φR])∇ru1(|r− r′|)

−
∫
dr′ [ρ(r′|r; [φ])− ρR(r′|r; [φR])]∇ru0(|r− r′|)

−
∫
dr′ [ρ(r′|r; [φ])− ρ(r′; [φ])]∇ru1(|r− r′|). (1.11)

Physically sound approximations are then made to Equation 1.11 to arrive at the

LMF equation. These approximations hinge on two crucial ideas. The first is

that a good choice of u0(r) provides an accurate description of nearest neighbor

interactions, and therefore higher order correlations as described by the conditional

singlet density are also captured by the mimic system on these molecular length

scales, in addition to the singlet density which is captured by construction. The

second approximation requires that u1(r) be slowly-varying over nearest neighbor,

molecular length-scales, and when these conditions are satisfied, Equation 1.7 can

be obtained and is found to be highly accurate. When these conditions hold, the

second and third terms in Equation 1.11 vanish. The remaining terms can then be

formally integrated to obtain the LMF Equation 1.7.

For LJ interactions, the WCA separation of the potential discussed above

typically satisfies the conditions leading to the LMF equation. In systems containing
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charged particles, experience has shown that it is very useful to separate the 1/r ≡

v(r) portion of the Coulomb potential into short ranged rapidly-varying (v0(r)) and

long ranged slowly-varying (v1(r)) components as

v(r) =
1

r
=

erfc(r/σ)

r
+

erf(r/σ)

r
≡ v0(r) + v1(r), (1.12)

where erf(r) and erfc(r) = 1 − erf(r) are the usual error and complementary error

functions. This separation is shown in Figure 1.3. The parameter σ is the length-

scale on which the potential is separated, typically referred to as the LMF smoothing

length. This length-scale is usually chosen on the order of the nearest-neighbor

distance between charges. Within an electrostatic context, the interaction potential

v1(r) is that due to a unit Gaussian charge distribution of width σ,

v1(r) =
1

σ3π3/2

∫
dr′

e−(r′/σ)2

|r− r′|
. (1.13)

Analogously, the short ranged potential v0(r) is that arising from a unit point charge

and a neutralizing Gaussian distribution of charge,

v0(r) =

∫
dr′

[
δ(r′)− e−(r′/σ)2

σ3π3/2

]
1

|r− r′|
. (1.14)

Clearly, v1(r) is slowly-varying for r < σ, and reduces to the full v(r) = 1/r for

distances larger than the smoothing length, as desired.

A detailed discussion of the derivation of the LMF equation is detailed else-

where [1, 10]. Therefore, only the results obtained for LJ and Coulomb potentials

are quoted when appropriate. However, the self-consistent nature of the LMF equa-

tion requires a discussion of the details surrounding its solution, and a detailed
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Figure 1.3: Separation of the 1/r portion of the Coulomb potential into its short
ranged, rapidly-varying and long ranged, slowly-varying components v0(r) and v1(r),
respectively. The separation shown is for σ = 4.5 Å, as illustrated.
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account of implementing LMF theory in practical applications is provided in Ap-

pendix A. We will use LMF theory and its physically suggestive decomposition of

interaction potentials throughout this dissertation to examine the role of local and

non-local forces on the structure and thermodynamics of molecular systems, and

aqueous media in particular.

1.3 Structure and Thermodynamics of Bulk Water

There may be no better example of structural influence on macroscopic prop-

erties than water, and the uniqueness of liquid water will be the focus of much of

this dissertation. Water is probably the most far-reaching and important substance

studied by science. Without it, life on Earth would not exist, and for this reason

it is often called the “matrix of life” [11, 12]. Seemingly uncomplicated when con-

sidering its molecular formula alone, liquid H2O is anything but simple. In fact,

water’s complexity is what allows it to be such a great medium for biology, and

understanding the nature of this liquid is essential to understand processes ranging

from protein folding and self-assembly to the design of water repellent materials and

cleaning supplies [12, 13].

The structure of bulk water is substantially different from that of typical sim-

ple liquids, such as the HS and LJ fluids. Unlike simple liquids, water displays local

tetrahedral ordering, due to directional hydrogen bonds (HBs) between neighboring

molecules. In classical water potentials like the SPC/E model [14] discussed ex-

tensively in the next chapter, hydrogen bonding arises from electrostatic attraction
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between the positive charge of the hydrogen atomic site and the partial negative

charge of an oxygen atom rich in electron density [12]. Although describing the

behavior of the electrons of a water molecule in detail requires computationally in-

tense quantum mechanical techniques, a reasonable picture of the liquid structure

can be obtained using these simple classical mechanical models, in which the average

electron density of a molecule is represented through partial point charges.

Using computer simulations, we first compare the bulk structure of liquid

water to that of a simple liquid, namely a LJ fluid with the same LJ parameters

as the SPC/E water model. To this end, we first examine the pair distribution

functions g(r) in bulk water and the LJ fluid at the same bulk number density.

The distributions are shown in Figure 1.4 for correlations between oxygen sites in

SPC/E water and between particles in the LJ fluid. Due to H-bonding between water

molecules, the first peak in the SPC/E g(r) is found at a much smaller distance than

that for the LJ fluid. In fact, the repulsive cores of the LJ potentials of neighboring

H-bonded water molecules overlap significantly, something that could be produced

in a uniform LJ fluid only at huge pressures, and H-bonding in SPC/E water arises

due to frustrated charge-pairing, discussed further in the next chapter.

Another simple measure of the structure of the two liquids is the number

of particles within a distance r from the central particle, termed the coordination

number, N(r). The coordination number is proportional to the integral of g(r),

N(r) = 4πρ

∫ r

0

dr′r′2g(r′). (1.15)

The coordination numbers of the two systems are shown in Figure 1.4, with the
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SPC/E
LJ

Figure 1.4: (top) Comparison of the pair distribution functions, g(r), and the coor-
dination numbers, N(r) = 4πρ

∫ r
0
dr′r′2g(r′), for the SPC/E water model and a LJ

fluid with the same bulk density and LJ energy and length-scale parameters. Black
solid lines indicate the value of N(r) at the first minimum of the corresponding
g(r), which corresponds to the number of nearest neighbors in the first solvation
shell. (bottom) Snapshots from MD simulations depicting the first solvation shell of
SPC/E water (left) and a LJ fluid (right). In the case of SPC/E water, the central
water molecule is shown in its entirety, with oxygen and hydrogen atoms colored red
and light grey, respectively, while its nearest neighbors are shown only as oxygen
atoms, with hydrogen bonds indicated by dashed black cylinders. For the LJ fluid,
the central particle is colored grey, while its nearest neighbors are shown in red.
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value of N(r) at the first minimum of g(r) indicated by solid lines. The particles

located between r = 0 and the first minimum of g(r), r = rmin, are termed the

first coordination shell (FCS), and the number of particles in this region differs

significantly between water and simple liquids. The LJ fluid has a coordination

number of N(rmin) ≈ 12 in the FCS, like a simple close-packed structure. Water, on

the other hand, has between 4 and 5 nearest-neighbors, much lower than expected

from simple close-packing arguments. This value of N(rmin) is a direct result of the

directional H-bonding present in liquid water, as illustrated by the snapshots of the

FCS structures in water and the LJ fluid in Figure 1.4.

While the structure of the LJ fluid at high density is dictated mainly by its

repulsive forces (and therefore simple packing arguments) [6], the formation of in-

termolecular HBs in water, drawn as black dashed cylinders in the figure, leads to a

water molecule being tetrahedrally coordinated by its four nearest-neighbors. In an

ideal configuration, a molecule of SPC/E water in the bulk will form four hydrogen

bonds with its neighbors, two by donation of hydrogen bonds via the explicit hydro-

gen sites, and two through accepting hydrogen bonds from neighboring molecules at

the site of the negative charge. Although lone pairs are not explicitly represented in

the SPC/E model, the minimum energy configuration is this tetrahedral H-bonding

geometry in which the favorable electrostatic attractions between opposing charges

are maximized, while unfavorable, repulsive interactions between like charges are

minimized. When combined with the repulsive LJ core energies from neighboring

molecules, this leads to an average of only four H-bonding “sites” on each molecule.

The insertion of another (fifth) molecule into the FCS without the formation of a
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H-bond to compensate the large LJ repulsive forces is rather unfavorable, although

this does occur, and will be further discussed in the next chapter.

The complex structure of water, dictated by the propensity to form inter-

molecular hydrogen bonds, gives rise to an incredible number of anomalous ther-

modynamic properties [15]. Reference [15] lists at least 67 anomalous properties of

water, ranging from its high boiling point, melting point, and critical temperature,

to maxima and/or minima in the specific heat as a function of temperature (CV and

CP ) and its unusually high surface tension and dynamic anomalies such as a maxi-

mum in the diffusion coefficient as a function of temperature at high pressure. A few

of the anomalies of bulk water are examined from the perspective of LMF theory

in Chapter 2, before turning our attention to nonuniform systems. This chapter is

based heavily on R. C. Remsing, J. M. Rodgers, and J. D. Weeks, J. Stat. Phys.,

145, 313–334, 2011 [16].

At the heart of many processes occurring in aqueous solution is the hydropho-

bic effect [12, 13]. A hydrophobic, or “water-fearing” substance is one that is not

readily solvated by liquid water, and an attempt at such can often result in phase

separation, such as the common phenomena of the un-mixing of water and oil [12].

It is often noted that the term hydrophobic is actually a misnomer, because the

low solubility of nonpolar substances in water results from water having a greater

affinity for itself than the hydrophobic substance. The hydrophobic effect, or the

propensity for hydrophobic solutes to aggregate in water, has been acknowledged as

a major driving force for protein folding, for example [12, 13]. The amino acid units

that make up a protein sequence can be classified as hydrophobic or hydrophilic (in-
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teracting favorably with water). In order to minimize the free energy of the system,

contact between water and the hydrophobic groups should be kept at a minimum.

As a means to do so, proteins will tend to fold in such a way that the majority of hy-

drophobic groups tend to be located in the interior of the protein, while hydrophilic

groups are at the surface, in contact with water [12, 13].

It has long been understood that the process of dissolving a small apolar so-

lute in water differs substantially from the hydration of a large hydrophobe, both

in structure and thermodynamics. Therefore, a transition between the two regimes

occurs as a solute is “grown” from small to large at a crossover radius RC [17, 18].

While the solvation of solutes with a radius less than RC is governed by small-scale

density fluctuations in the liquid, hydration of an extended solute is dictated by

three underlying features: formation of a cavity of the size of the solute, unbalanced

dispersion forces that lead to interfacial drying phenomena, and any possible dis-

tortions and breaking of the hydrogen bond network in the vicinity of the solute.

Cavity formation is a characteristic feature of all solvation processes, whether in

a hard-sphere fluid or water, while the existence of unbalanced dispersion forces

is observed in both water and simple LJ fluids [3]. Many workers have stressed

the underlying similarities of the small and large solute size limits in water and LJ

fluids [17, 18, 13, 3, 12], but important details of the length scale dependence of

hydrophobic hydration must hinge on the properties of the hydrogen bond network,

especially for solute sizes near the crossover radius. Nevertheless, most discussions

of the length scale transition in water have not focused on this point, and the precise

role of hydrogen bonding, as well as the various other forces present in the system
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in the vicinity of this crossover in solvation behavior has not been quantified. This

task is the subject of Chapter 3, which is heavily based on R. C. Remsing and J. D.

Weeks, J. Phys. Chem. B, 2013 (in press) [19].

In addition to the solvation of simple hydrophobes, the process of ion hydra-

tion is still not fully understood. In particular, the electrostatic nature of charged

molecular species renders neutrality and the nature of the boundary conditions of a

dielectric system quite important. In addition, the exact representation of the inter-

molecular interactions of water has a significant influence on both the structure and

thermodynamics of ionic solutions, and leads to distinct asymmetries with respect

to the sign of the ion charge. We explore the origins of these asymmetries in Chap-

ters 4 and 5, which describes aspects of ongoing collaborative work with researchers

at Pacific Northwest National Laboratory. Specifically, Chapter 4 is concerned with

the solvation shell around a simple model of an uncharged ionic core, and how the

asymmetric intramolecular charge distribution of a water molecule induces asymme-

tries in the structure and thermodynamics before a charge is even introduced in the

system. The response of dielectric media to the long wavelength component of ion

charge is examined in Chapter 5, and a general theoretical formalism for describing

this response is developed.

The phrase “from structure to thermodynamics” is embodied by Chapter 6.

There, a general framework for performing free energy calculations with LMF theory

is developed. The crux of this LMF theoretic formalism is that good structure begets

good thermodynamics, and accurate structural properties of a molecular system are

integrated to obtain the free energy in this “bottom-up” approach to thermody-
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namics. After demonstrating the accuracy of this formalism for describing numer-

ous processes associated with hydrophobicity, the dissertation is concluded with a

summary of its main points and a discussion of future work in Chapter 7.
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Chapter 2

Deconstructing Classical Water Models I: Anomalous Structure and

Thermodynamics of Bulk Water 1

2.1 Introduction

Classical empirical water potentials involving fixed point charges and Lennard-

Jones (LJ) interactions were introduced in the first computer simulations of water

forty years ago and modern versions are widely used even today in many biomolec-

ular and materials-based simulations. Two recent reviews [20, 21] have focused on

this wide class of model potentials and assessed their performance for a broad range

of different structural and thermodynamic properties, some of which were used as

targets in the initial parameterization of the models. Despite known limitations

associated with the lack of molecular flexibility and polarizability, they qualita-

tively and often quantitatively capture a large number of properties of water and

often represent a useful compromise between physical realism and computational

tractability.

Given the simple functional forms of the intermolecular potentials it may seem

surprising that such good agreement is possible. But recent work has shown that

even simpler models where particles interact via isotropic repulsive potentials with

1Based in part on R. C. Remsing, J. M. Rodgers, and J. D. Weeks, J. Stat. Phys., 145, 313–334,

2011 [16].
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two distinct length scales are able to qualitatively reproduce certain characteristic

dynamic and thermodynamic anomalies of bulk water [22, 23, 24]. Similarly in dense

uniform simple liquids a hard-sphere-like repulsive force reference system can give

a good description of the liquid structure, and this in turn permits thermodynamic

properties to be determined by a simple perturbation theory [25, 6].

This suggests it should be useful to analyze the construction and predictions

of empirical water potentials from the perspective of perturbation theory of uniform

fluids and the related Local Molecular Field (LMF) theory [1, 5, 4, 2, 3, 6]. LMF

theory provides a more general approach applicable to both uniform and nonuniform

fluids and gives strong support to the basic idea of perturbation theory that in a

uniform fluid slowly varying long ranged parts of the intermolecular interactions

have little effect on the local liquid structure.

To apply these ideas to water we divide the intermolecular interactions in

a given water model into appropriately chosen short and long ranged parts. In

this context, it is conceptually useful to consider separately the slowly varying long

ranged parts of both the LJ interactions and the Coulomb interactions. This decon-

struction of the water potential via LMF theory provides a hierarchical framework

for assessing separately the contributions of (i) strong short ranged interactions lead-

ing to the local hydrogen bonding network, (ii) dispersive attractions between water

molecules, and (iii) long ranged dipolar interactions between molecules. Disentan-

gling these contributions without the insight of LMF theory is very difficult due to

the multiple contributions of the point charges and the LJ interactions in standard

molecular water models
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In uniform systems, the long ranged forces on a given water molecule from

more distant neighbors tend to cancel [6, 7]. The remaining strong short ranged

forces between nearest neighbors arise from the interplay between the repulsive

LJ core forces and the short ranged attractive Coulomb forces between donor and

acceptor charges. These forces determine a minimal reference model that can ac-

curately describe the local liquid structure – the hydrogen-bond network for bulk

water. The slowly varying parts of the intermolecular interactions are not important

for this local structure and could be varied essentially independently to help in the

determination of other properties as is implicitly done in the full model. Based on

previous work with LMF theory [2, 10, 26], we examine two basic areas where we

expect the different contributions to play varying but important roles – bulk ther-

modynamics and nonuniform structure. The short ranged interactions responsible

for the hydrogen-bonding network are clearly necessary in all cases. LMF theory

allows us to determine the relative importance of dispersive attractions and long-

ranged dipolar attractions in these applications using simple analytical corrections

for thermodynamics and an effective external field for nonuniform structure.

2.2 Local Hydrogen Bonds in Full and Truncated Water Potentials

In this chapter, we will consider one of the simplest and most widely used

water models, the extended simple point charge (SPC/E) model [14], but similar

ideas and conclusions apply immediately to most other members of this class. As

shown in Fig. 2.1, SPC/E water consists of a LJ potential as well as a negative point
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Figure 2.1: Schematic diagram of the SPC/E water model listing its various geo-
metric parameters and interaction parameters. The O-H bond length and H-O-H
angle are fixed, such that the molecule is rigid. The LJ well depth is εLJ = 0.65
kJ/mol. The oxygen site is depicted as a large red circle, while the hydrogen atoms
are shown as smaller, gray circles.

charge centered at the oxygen site. Positive point charges are fixed at hydrogen

sites displaced from the center at a distance of 1 Å with a tetrahedral HOH bond

angle. It is a remarkable fact that this simple model can reproduce many structural,

thermodynamic, and dielectric properties of bulk water as well as those of water

in nonuniform environments around a variety of solutes and at the liquid-vapor

interface.

In the following we use the perspective of perturbation and LMF theory to

help us see how this comes about. We use these ideas here not to suggest more

efficient simulations using short ranged model potentials but rather as a method of

analysis that provides physical insight into features of the full model as well. Since

a detailed description and justification of LMF theory is given elsewhere [1], we will

focus on qualitative arguments and just quote specific results when needed.
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Figure 2.2: Optimal hydrogen bonding configuration of water taken from two
molecules in ice Ih. LJ cores are depicted as gray transparent spheres with a diame-
ter σLJ = 3.16 Å, while the hydrogen bond between waters with oxygens separated
by 2.75 Å is illustrated by a dashed, blue cylinder. Oxygen and hydrogen atoms are
colored red and white, respectively.

Fig. 2.2 gives some insight into why a perturbation picture based on the dom-

inance of strong short ranged forces in uniform environments could be especially

accurate for bulk SPC/E and related water models. This shows two adjacent water

molecules with a separation of 2.75 Å that form an optimal hydrogen bond as seen

in the structure of ice Ih. Hydrogen bonding in this model is driven by the very

strong attractive force between opposite charges on the hydrogen and oxygen sites

of adjacent properly oriented molecules. Proper orientation permits similar strong

bonds to form with other molecules, leading to a tetrahedral network in bulk water.

The gray circles drawn to scale depict the repulsive LJ core size as described by the

usual parameter σLJ = 3.16 Å. The substantial overlap indicates a large repulsive

core force opposing the strong electrostatic attraction, finally resulting in a near-

est neighbor maximum in the the equilibrium oxygen-oxygen correlation function of

2.75 Å.

It is interesting to note that the first BNS water model introduced in 1970
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used a smaller core size σLJ = 2.82 Å [27]. However a much larger LJ core with

strong core overlap at typical hydrogen-bond distances is a common property of

almost every water model introduced since then and seems to be a key feature

needed to get generally accurate results from simple classical point charge models.

Evidently, the highly fluctuating local hydrogen-bond network in these models arises

from geometrically-frustrated “charge pairing”, where the strong LJ core repulsions

and the presence of other charges on the acceptor water molecule oppose the close

approach of the strongly-coupled donor and acceptor charges.

We can test the accuracy of this picture by considering various truncated or

“short” water models where slowly varying long ranged parts of the Coulomb and LJ

interactions in SPC/E water are completely neglected. We first consider a Gaussian-

truncated (GT) water model, already studied by LMF theory [2, 10, 26]. Here the

Coulomb potential is separated into short and long ranged parts as

v(r) =
1

r
=

erfc(r/σ)

r
+

erf(r/σ)

r
= v0(r) + v1(r), (2.1)

where erf and erfc are the error function and complementary error function, respec-

tively. The short-ranged v0(r) is the screened electrostatic potential resulting from a

point charge surrounded by a neutralizing Gaussian charge distribution of width σ.

Hence v0(r) vanishes rapidly at distances r much greater than σ while at distances

less than σ the force from v0(r) approaches that of the full 1/r potential.

In GT water, depicted in Fig. 2.3a, the Coulomb potential associated with

each charged site in SPC/E water is replaced by the short-ranged v0 with no change

in the LJ interaction. As suggested by Fig. 2.2, important features of the local
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Figure 2.3: Schematic diagrams of (a) GT and (b) GTRC water models. Truncated
interactions are indicated by dashed lines, while full interaction potentials are in-
dicated by solid lines. LJ interactions are represented by black lines, while oxygen
and hydrogen electrostatic interaction potentials are shown as red and gray lines,
respectively.

hydrogen-bond network should be well captured by such a truncated model if the

cutoff distance controlled by the length parameter σ in Eq. (2.1) is chosen larger than

the hydrogen bond distance. Following Refs. [10] and [26], here we make a relatively

conservative choice of σ = 4.5 Å, but values as small as 3 Å give essentially the

same results. The circles are drawn to scale with diameters σ and σLJ.

The basic competition between very strong short ranged repulsive and attrac-

tive forces in the hydrogen bond depicted in Fig. 2.2 should be captured nearly

as well by an even simpler reference model where the LJ potential is truncated as

well, and replaced by the repulsive force reference potential u0(r) used in the WCA

perturbation theory for the LJ fluid [6]. The resulting Gaussian truncated repulsive

core (GTRC) model is schematically shown in Fig. 2.3b.

As discussed in perturbation theories of simple liquids [25, 6], a well-chosen ref-

erence system should accurately reproduce bulk structure present in the full system

at the same fixed density and temperature. As illustrated by the pair distribution
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functions in Fig. 2.4, bulk GT and GTRC water models have a liquid state structure

virtually identical to that in the full SPC/E model. This very good agreement is

also reflected in other properties of the hydrogen-bond network. We directly exam-

ined the hydrogen bonding capabilities of GT and GTRC water models through the

calculation of the average number of hydrogen bonds per water molecules, 〈nHB〉, as

well as the probability distribution of a water molecule taking part in nHB hydrogen

bonds, P (nHB), using a standard distance criterion of hydrogen bonds, ROO < 3.5 Å

and θHOO′ < 30◦, where ROO is the oxygen-oxygen distance and θHOO′ is the angle

formed by the H-O bond vector on the hydrogen bond donating water molecule

and the O-O′ vector between the oxygen on the donor water (O) and the acceptor

oxygen (O′) [28]. For both GT and GTRC water models, 〈nHB〉 and P (nHB) were

calculated at temperatures ranging from 220-300 K, and were found to be nearly

identical to the analogous quantities in the full SPC/E model. These findings give

credence to the idea that these two truncated models reproduce the hydrogen-bond

network of the full model to a high degree of accuracy.

These truncated models offer a minimal structural representation of bulk water

as a fluctuating network of short ranged bonds determined mainly by the balance

between the very strong electrostatic attraction between donor and acceptor charges

and the very strong repulsion of the overlapping LJ cores. We can view them as

primitive water models in their own right, analogous to other simplified models re-

cently proposed, which capture very well arguably the most important structural

feature of bulk water, the hydrogen bond network, and it is instructive to see what

other properties of water such minimal network models can describe. But correc-
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Figure 2.4: (a) Oxygen-oxygen, oxygen-hydrogen, and hydrogen-hydrogen site-site
pair distribution functions, gOO(r), gOH(r), and gHH(r), respectively, for the three
water models under study at T = 300 K and v = 30.148 Å3. gHH and gOH have
been shifted by 0.5 and 1 units, respectively, for clarity. (b) Differences between
gOO(r) of the full model and that of the designated reference systems, ∆gOO(r).

tions from neglected parts of the intermolecular interactions are certainly needed for

bulk thermodynamic and dielectric properties and for both structure and thermody-

namics of water in nonuniform environments. LMF theory provides a more general

framework where the truncated models are viewed as useful reference systems that

can be systematically corrected to achieve good agreement with full water models.

We will use both viewpoints herein.

2.3 Simulation Details

All molecular dynamics simulations were performed using modified versions of

the DL POLY software package [29] and the SPC/E water model [14] or its variants

described in Section 2. The equations of motion were integrated using the leapfrog
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algorithm with a timestep of 1 fs [30] while maintaining constant temperature and

pressure conditions through the use of a Berendsen thermostat and barostat respec-

tively [31].

2.3.1 Bulk water simulations

The evaluation of electrostatic interactions in bulk simulations of the full

SPC/E water model employed the standard Ewald summation method using a real

space cutoff of 9.5 Å, unless this was larger than half of the box length, in which

case the cutoff was set to half of the box length [30]. Short-ranged electrostatic

interactions in the GT and GTRC reference systems, as well as LJ interactions in

all systems, were truncated at the real space cutoff length used in the analogous

full system. Simulations of bulk water were performed with N = 1000 molecules

in the isothermal-isobaric (NPT) ensemble to determine the density maximum and

with N = 256 molecules in the canonical (NVT) ensemble to determine P (T ), the

internal pressure, and the cascade of anomalies described below. The internal pres-

sure in Eq. (2.8) was calculated by evaluating ε(v) for numerous values of v at each

T . The function ε(v) was then fit to a polynomial, which was differentiated at the

desired v to yield the internal pressure.

2.3.2 Simulation of nonuniform systems

In order to generate starting configurations for the LV and LS interfacial sys-

tems discussed in Section 5, we first equilibrated N water molecules in a cubic
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geometry, where N is listed in Table 1. The z-dimension of the system was then

elongated to more than three times the x- and y-dimensions, and in the case of the

LS interface, a wall potential of the form

Uw(z) =
A

|z − zw|9
− B

|z − zw|3
(2.2)

was added at zw = 0 and the parameters A and B are given in Ref. [32]. In order

to ensure water molecules did not approach the wall from z < 0, a repulsive wall

was added at large z to constrain the water molecules to the desired region of the

simulation cell while still allowing a large vacuum region for the formation of a vapor

phase. Electrostatic interactions were handled using the corrected Ewald summation

method for slab geometries [33] with a real space cutoff of 11.0 Å, which was also

the cutoff distance for LJ and short-ranged electrostatic interactions.

2.4 Thermodynamic Anomalies

The complex structure of water, dictated by the propensity to form inter-

molecular hydrogen bonds, gives rise to an incredible number of anomalous ther-

modynamic properties [15]. Reference [15] lists at least 67 anomalous properties of

water, ranging from its high boiling point, melting point, and critical temperature,

to maxima and/or minima in the specific heat as a function of temperature (CV

and CP ) and its unusually high surface tension and dynamic anomalies such as a

maximum in the diffusion coefficient as a function of temperature at high pressure.

Herein, we utilize the above-described short ranged variants of the SPC/E water

model to elucidate the molecular origins of several anomalous thermodynamic prop-
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erties of liquid water. In particular, the density maximum, as well as the anomalous

temperature and density dependences of the internal pressure of water are examined.

2.4.1 Density Maximum

Now we turn our attention to the thermodynamics of bulk water. For a fixed

volume V , temperature T , and number of molecules N , the pressure and other

thermodynamic properties of the GT and GTRC systems will not generally equal

those of the full system. However, because of the accurate reference structure, we

can correct the thermodynamics using simple mean-field (MF) arguments. Thus we

can define the pressure in the full system to be the sum of the short-ranged reference

pressure and a long-ranged correction, P = P0 + P1.

Simple corrections to the energy and pressure of the GT model from this per-

spective were recently derived [26]. With σ = 4.5 Å, these corrections are relatively

small and were ignored in most earlier work using truncated water models but they

are conceptually important in revealing the connections between truncated models

and perturbation theory and are required for quantitative agreement. The pres-

sure correction P1 = P q
1 for the GT model arises only from long-ranged Coulomb

interactions and is given as

P q
1 = − kBT

2π3/2σ3

ε− 1

ε
, (2.3)

where ε is the dielectric constant.

In the case of the GTRC model, the need for a thermodynamic correction is

much more obvious since we have to correct for the absence of LJ attractions as
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well. Here we adopt the simple analytic correction used in the van der Waals (vdW)

equation derived from WCA theory for the LJ fluid, as discussed in Ref. [3]. Thus

P1 = P q
1 − aρ2 for the GTRC potential, where

a ≡ −1

2

∫
dr2 u1(r12) (2.4)

and u1 is attractive part of the LJ potential. This simple approximation does not

give quantitative results but does capture the main qualitative features and we use it

here to emphasize the point that both the long ranged Coulomb and dispersion force

corrections to bulk GTRC water can be treated by simple perturbation methods.

We can test the accuracy of these corrections by using them to help determine

the temperature TMD at which the density maximum of the full SPC/E water model

at a constant pressure of 1 atm should occur. This can alternatively be defined as the

temperature at which the thermal expansion coefficient, αP , is zero. Accordingly,

we seek to evaluate αP using the relation

αP ≡
1

v

(
∂v

∂T

)
P

= −1

v

(
∂P

∂T

)
v

(
∂v

∂P

)
T

, (2.5)

where v = V/N is the volume per particle. Using the last expression we can deter-

mine where the quantity (∂P/∂T )v = 0 by monitoring the corrected pressure of the

reference systems while changing the temperature at a fixed density. This can be

done by simulation in the canonical ensemble. The fixed density ensures that the

structure of the reference and full systems are very similar, as assumed in the deriva-

tion of the corrections in Eqs. (2.3) and (2.4). We can also determine TMD through

the first equality in Eq. (2.5) by finding where (∂v/∂T )P = 0. Thus we simulate

GT and GTRC water at constant pressures of P0 = P − P1, where P = 1.0 atm
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Figure 2.5: The dependence of (a) density and (b) pressure for the corrected refer-
ence models as a function of temperature. The analogous quantities for the models
without MF corrections are shown in (c) and (d), respectively. ρ(T ) is calculated
at a constant pressure of 1.0 atm and P (T ) is calculated at a fixed volume of
v = 30.148 Å3. Full SPC/E data for ρ(T ) at constant P was taken from the work
of Ashbaugh et al. [35].

is the pressure in the full system. Note that the correction P q
1 ≡ P q

1 (T ; ε(T )) is

temperature-dependent, as is the dielectric constant ε, so that we are not moving

along an isobar in P0, but an isobar in P . The temperature-dependent values of ε

were taken to be the experimental values [34].

Figs. 2.5a and 2.5b give the density and pressure of full SPC/E water and the

corrected reference models as a function of temperature. As expected, the inclusion
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of P q
1 in the pressure of GT water quantitatively corrects the density and pressure of

this system. However, the MF correction applied to GTRC water, P0 = P−P q
1 +aρ2,

is not as accurate, although the dependence of ρ on T is qualitatively well captured.

These remaining errors arise from our use of the simple van der Waals aρ2 correction

for the long ranged part of the LJ potential. This level of agreement is typical when

this correction is used in pure LJ fluids [3] and a full WCA perturbative treatment

of the attractive portion of the LJ potential in GTRC water would likely lead to

quantitatively accurate results [6].

We now turn to the alternate and less accurate interpretation of the GT and

GTRC models as primitive water models in their own right. Do these models at

an uncorrected pressure of 1 atm have a density maximum and how well does it

compare to that of the full model? To that end, we find where (∂v/∂T )P = 0 in

each model by varying the temperature along an isobar using MD simulations in the

isothermal-isobaric ensemble at a constant pressure of 1 atm. By requiring the same

pressure in the full and reference models, we probe structurally different state points

in general and there is no guarantee that the density and temperature of the reference

systems at a density maxima (if present) will be similar to that in the full system.

Nevertheless Fig. 2.5c shows that the GT model does have a density maximum very

similar to that of the full model. This is because the pressure correction to the

density from the long-ranged Coulomb interactions in Eq. (2.3) is very small on the

scale of the graph. In contrast, the uncorrected GTRC model does not exhibit a

density maximum at P = 1.0 atm, even upon cooling to 50 K.

These results should be compared to earlier work where the TIP4P water
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Figure 2.6: (a) The oxygen-oxygen pair distribution function, gOO(r), for the three
water models at T = 300 K. Inset: The average number of hydrogen bonds per
water molecule as a function of temperature, 〈nHB(T)〉, for full and truncated water
models. (b) Hydrogen bonding efficiency ηHB as a function of temperature. All
results were obtained at a constant uncorrected pressure of 1 atm.

potential was approximated by a simpler “primitive model” [36]. In that work,

the repulsive LJ core was mapped onto a hard-sphere potential, hydrogen bonding

was captured by a square-well potential, and long-ranged dipole-dipole interactions

were represented with a dipolar potential. The equation of state was found using a

perturbative approach, and thermodynamic quantities were analyzed. The authors

of Ref. [36] found that the inclusion of dispersion forces does not lead to a density

maximum, and only when both dispersive interactions and long-ranged dipole-dipole

interactions were taken into account did a density maximum appear.

To provide some understanding of these differing results, we analyze the struc-

ture of the uncorrected GT and GTRC reference models in comparison to the full

model at the common pressure of one atmosphere. The oxygen-oxygen radial dis-
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tribution functions, gOO(r), for each of the three water models at T = 300 K are

depicted in Fig. 2.6a. The GT model is in good agreement with the full model,

consistent with its accurate description of the bulk water density and the density

maximum. In contrast, as shown later in Fig. 2.11, the coexisting liquid density of

GTRC water is about about 15% lower than that of the full water model. Never-

theless the first peak of gOO(r) in GTRC water is higher than that of the full water

model due to better formation of local hydrogen bonds. As shown in the inset, a

molecule of GTRC water has slightly fewer hydrogen bonds on average than full and

GT water models for temperatures higher than 240 K. However the hydrogen bond

efficiency shown in Fig. 2.6b,

ηHB =
〈nHB〉
〈nNN〉

, (2.6)

where 〈nNN〉 is the average number of nearest-neighbors satisfying ROO < 3.5 Å,

indicates that GTRC water is about 10 percent more efficiently hydrogen bonded

to its available neighbors at all temperatures. In this sense the low density GTRC

water at P = 1.0 atm is structurally more ice-like than the full water model.

These results provide some insight into earlier first principles simulations of

liquid water using density functional theory [37, 38, 39]. The standard exchange-

correlation functionals used there can give a good description of local hydrogen

bonding, but do not include effects of van der Waals interactions. These simulations

produced a decrease in the bulk density of water accompanied by increased local

structural order very similar to that seen here for GTRC water. Moreover, when

dispersive interactions were crudely accounted for, they observed much better agree-
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ment with experiment, in complete agreement with our findings for perturbation-

corrected GTRC water.

Our results indicate that van der Waals attractions play the role of a cohesive

energy needed to achieve the high density present in SPC/E water at low pressure,

as demonstrated by the qualitative accuracy of Eq. (2.4) and the good agreement

of the GT model. Evidentially a density maximum can arise only when additional

somewhat less favorably bonded molecules are incorporated into the GTRC network

to produce the full water density. If the local hydrogen bond network of water at the

correct bulk density is properly described, long ranged dipolar forces are not needed

to obtain the correct behavior of ρ(T ). Indeed, LJ attractions are not needed either

provided that the proper bulk density is prescribed by some other means. Thus we

found that if GTRC water is kept at a high constant pressure of 3 katm, where its

bulk density is close to that of the full water model at ambient conditions, a density

maximum is also observed.

2.4.2 Internal Pressure

We further employ the reference water models to explain the anomalous “inter-

nal pressure” of water [40]. For a typical van der Waals liquid, the internal pressure

is given by Pi = (∂ε/∂v)T ≈ aρ2 for low to moderate densities, where ε = E/N is

the energy per molecule. In fact, it was recently shown by computer simulation that

the portion of the internal pressure due to the attractions in a LJ fluid displays this

aρ2 dependence even at high densities [41]. Water, on the other hand, displays a
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Figure 2.7: (a) The electrostatic contribution to the internal pressure, P q
i , and (b)

the analogous contribution from LJ interactions, PLJ
i . The total internal pressure

as a function of density is shown in the inset. Lines are guides to the eye.

negative dependence of Pi on density. It is this anomalous behavior that we seek to

explain.

We begin by partitioning the internal energy of the system as

ε = εLJ + εq, (2.7)

where εLJ is the Lennard-Jones contribution to the energy and εq is the energy due to

charge-charge interactions (note that the change in kinetic energy when perturbing

the volume at constant T is zero, so we only consider the potential energy). We can

then write the internal pressure as

Pi =

(
∂ε

∂v

)
T

= PLJ
i + P q

i . (2.8)

This decomposition of Pi will allow us to determine which molecular interactions

are responsible for the strange dependence of this quantity on ρ.
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Fig. 2.2 suggests the following qualitative picture. At a given temperature and

density the dominant hydrogen bond contribution to the energy ε is determined from

the balance between strong repulsive forces from the LJ cores and strong attractions

from the more slowly varying Coulomb interactions between donor and acceptor

charges. The Coulomb contribution P q
i to the internal pressure Pi(T, ρ) is positive

since a small positive change in volume reduces the negative Coulomb energy and

similarly the LJ core contribution to PLJ
i is negative. If the density is now varied

at constant temperature we would expect the changes in Pi(T, ρ) to be dominated

by the rapidly varying LJ core forces.

Conversely, to the extent that the repulsive LJ cores are like hard spheres,

they would contribute no temperature dependence to the internal pressure at fixed

density. Thus we expect the more slowly varying Coulomb forces to largely deter-

mine how the internal pressure varies with temperature at fixed density. The results

given below are in complete agreement with these expectations.

We evaluated Eq. (2.8) by performing MD simulations of water in the canon-

ical ensemble for various volumes at T = 300 K. The dependence of the internal

pressure on density at T = 300 K is shown in Fig. 2.7. Note that the total internal

pressure, Pi, becomes increasingly negative as ρ is increased, in direct opposition

to the aρ2 dependence given by the vdW equation of state. However, it is known

that as the density of a LJ fluid is increased to high values so that neighboring

repulsive cores begin to overlap, the total Pi exhibits a maximum, after which the

internal pressure becomes increasingly negative from the dominant contribution of

the repulsive interactions [41].
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Figure 2.8: (a) The electrostatic contribution to the internal pressure, P q
i , and

(b) the analogous contribution from LJ interactions, PLJ
i , both as a function of

temperature at a fixed volume of v = 29.9 Å3. The total internal pressure as a
function of temperature is shown in the inset. Lines are guides to the eye.

As shown in Fig. 2.2 there is substantial overlap of the repulsive LJ cores

between nearest neighbors in SPC/E water. The repulsive interactions from these

LJ cores dominate the density dependence of both ε and Pi for SPC/E and related

water models, as evidenced by the similarity of the internal pressures of both the

full and GTRC water models in Fig. 2.7. Although εq > εLJ for all density, εq

does not exhibit very large changes upon increasing density, a direct consequence

of the ability of water to maintain its hydrogen bond network under the conditions

studied. Thus the density dependence of the internal pressure of SPC/E water is

actually similar to that of a LJ fluid but one at a very high effective density with

substantial overlap of neighboring cores.

In addition to the anomalous density dependence of Pi, the temperature de-

pendence of the internal pressure of water has also been called an anomaly [40]. For
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most organic liquids (and vdW fluids), the internal pressure decreases with increas-

ing temperature, but that of water increases when the temperature is increased, as

shown in Fig. 2.8. Using the concepts presented above, we can rationalize this be-

havior in terms of molecular interactions. By decomposing Pi into its electrostatic

and LJ components, we find that P q
i dominates the temperature dependence of the

internal pressure, increasing with increasing temperature, while PLJ
i is dominated

by repulsive interactions at all temperatures studied, as evidenced by its negative

value for all T . As the temperature of the system is increased, the number of ide-

ally tetrahedrally coordinated water molecules decreases, and the hydrogen bond

network becomes increasingly “flexible”. Therefore, if one increases the volume of

the system at high T , water will more readily expand to fill that volume. But an

increase in the electrostatic energy will also occur due to a slight decrease in the

number of (favorable) hydrogen bonding interactions. This will happen to a lesser

extent at low temperatures, when the hydrogen bond network is more rigid and the

thermal expansivity of water is lower.

2.5 The Cascade of Anomalies

In the previous sections, short-ranged water models were used to provide in-

sight into the anomalous temperature dependence of the density, as well as the

anomalous temperature and density dependence of the internal pressure of bulk wa-

ter [16]. In addition, the pair structure as measured through site-site correlation

functions was found to be captured by both GT and GTRC water [16]. In this
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section, we examine the extent to which the GT and GTRC models reproduce more

complex measures of the orientational and translational ordering, as well as the

dynamics of bulk SPC/E water as described by the diffusion coefficient.

In order to quantify orientational and translational order in the various models,

we utilize the order parameters defined by Errington and Debenedetti [42], q and t,

respectively. The tetrahedral order parameter q is defined as

q = 1− 3

8

3∑
j=1

4∑
k=j+1

(
cosψjk +

1

3

)2

, (2.9)

where ψjk is the angle formed by the vectors connected the oxygen atom of a water

molecule with those if its nearest-neighbors j and k, and 0 ≤ q ≤ 1, such that the

lower and upper bounds on q correspond to an ideal gas and a perfect tetrahedral

network, respectively.

The translational order parameter t is

t =
1

ξc

∫ ξc

0

dξ |h(ξ)| , (2.10)

where ξ = rρ1/3 is the oxygen-oxygen distance between molecules scaled by the

average separation between molecules. The cutoff distance is chosen to be ξc = 2.843,

following previous work. The oxygen-oxygen pair correlation function is h(r) =

g(r)−1, such that g(r) is the usual pair distribution function. The order parameter

t quantifies the extent to which translational ordering in the fluid of interest deviates

from ideal gas behavior, since g(r) = 1 in an ideal gas.

At high density and temperature, the order parameters q and t are in agree-

ment for all three models, SPC/E, GT, and GTRC. This is consistent with the idea

that long-ranged forces cancel in dense fluids at high temperatures, and therefore
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Figure 2.9: Density dependence of (a) the tetrahedral order parameter q, (b) the
translational order parameter t, and (c) the diffusion coefficient D for the SPC/E,
GT, and GTRC models at temperatures in the range of 220 K to 340 K. The arrow
in (c) indicates the direction of increasing temperature, for T=220 K to T=340 K
in steps of 20 K.

play a negligible role in the determination of liquid structure at these state points.

As the density and/or temperature is decreased, the GTRC model is more orienta-

tionally and translationally ordered than SPC/E, as evidenced by its larger values of

q and t in Figures 2.9a and 2.9b. This is consistent with the above-drawn conclusion

that GTRC water has a more “ice-like” H-bond network that SPC/E water, even

at the same density.

The orientational ordering of GT water, on the other hand, agrees with SPC/E

water for all T and ρ studied. Orientational structure in bulk water is achieved

through delicate balance of short-ranged electrostatics and dispersion forces. The

former leads to tetrahedral H-bonding between a water and its four nearest-neighbors,

while the latter disrupts the tetrahedrality of this network by “pulling” a fifth neigh-

bor into the coordination shell. Because GT water has both local charge-charge in-

teractions and LJ attractions, the local, orientation structure of water is accurately

captured in this model.
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However, the removal of long-ranged electrostatic interactions leads to in-

creased translational ordering at low T and ρ with respect to that of the SPC/E

model. This increased translational ordering at low temperatures is due to the in-

ability of GT water to screen dipoles at a distance much greater than σ. At these low

temperatures, dipolar ordering akin to that observed between hydrophobic walls [2]

but to a much lesser extent increases the translational order in the system. However,

at high T , any slight long ranged dipolar ordering is disrupted by thermal fluctua-

tions, and the translational ordering of GT water as measured by t agrees with that

of the full SPC/E model at the same temperature and density.

The diffusion coefficients presented in Figure 2.9c were obtained through lin-

ear fitting of the long-time behavior of the mean-squared displacement, MSD(t) =

〈r2(t)〉, and use of the Einstein relation, 6D = dMSD(t)/dt. It is found that the

self-diffusivity of liquid water is intimately related to its orientational structuring,

with GTRC water diffusing slower than SPC/E and GT water at state points where

it has larger values of the order parameter q. The D-values obtained for SPC/E

and GT water, however, are in accord for all T and ρ studied, illustrating that the

subtle differences observed in longer-ranged translational order, as measured by t,

have little effect on the self-diffusivity. This is consistent with the classic view of

diffusion processes in liquids; a molecule “rattles” within its coordination shell on

short-timescales, then, when this shell is disrupted, the molecule “hops” out of this

shell and becomes part of another coordination shell. From this view, diffusion rates

are a direct consequence of local ordering in the nearest-neighbor shell of a tagged

water molecule, as supported by the data presented here.
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Figure 2.10: The cascade of anomalies for the (a) SPC/E, (b) GT, and (c) GTRC
water models.

We now turn our attention to the “cascade of anomalies” of each model, as

defined by Errington and Debenedetti. This cascade is constructed from the loca-

tions of the minima and maxima of various order parameters as a function of ρ and

T . The locations of these extrema in the ρ − T plane indicate illustrate that the

region of thermodynamic anomalies, as measured by the temperature of maximum

density (TMD), is located within the region of dynamic anomalies, which, in turn

is contained within the structurally anomalous region. The dynamically anomalous

region is defined as that in which the diffusion coefficient increases with increasing

density (or pressure), which is therefore bound by diffusion minima and maxima.

The region of structural anomalies is bound from below by maxima in the orienta-

tional order parameter q (though can be equivalently obtained from maxima in t),

and is bound from above by minima in the translational order parameter t, such

that within the bounds, structural order decreases upon compression.

This general ordering of anomalous regions is found to be true for all three

models. SPC/E and GT water have nearly identical cascades of anomalies, but the

shape and width of the boundaries differ in the GTRC model. The TMD occurs at
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higher T for GTRC water, but the general shape is the same as the TMD boundary

in SPC/E and GT water. The dynamically anomalous region is significantly wider

for the GTRC water model than that in the other two models. Nevertheless, this

boundary is still contained within the structurally anomalous region, which is nearly

equivalent to that of the other two models.

2.6 Unbalanced forces in nonuniform aqueous media from the view-

point of LMF theory

In contrast to uniform systems, a net cancellation of long ranged forces does not

occur in nonuniform environments, and these unbalanced forces can cause significant

changes in the structure and thermodynamics of the system [2, 3]. As shown above,

the bulk structure of both the GT and GTRC models are very similar to that of

the full water model at a given temperature and density. But interfacial structure

and coexistence thermodynamic properties of the uncorrected reference models can

be very different. For example, GTRC water still has a self-maintained liquid-

vapor (LV) interface at T = 300 K as illustrated in Fig. 2.11, even though the LJ

attractions are ignored, because of the strong charge pairing leading to hydrogen

bond formation. However its 90-10% interfacial width increases to w ≈ 4.9 Å from

the w ≈ 3.5 Å seen in both GT water and the full water model, and the coexisting

liquid density of GTRC water is about about 15% lower. In contrast, the density

profile of the GT model with LJ interactions fully accounted for is in very good

qualitative agreement with that of the full model. This strongly suggests that if
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Figure 2.11: Density profiles of oxygen sites at the liquid-vapor interface of SPC/E,
GT, and GTRC water models. The Gibbs dividing surface of each interface is
located at z = 0.

local hydrogen bonding is properly taken into account, the equilibrium structure of

the LV interface of water is governed mainly by long ranged LJ attractions, with

long ranged dipole-dipole interactions playing a much smaller role. It is the exact

balance of these long ranged interactions we seek to examine in this section.

LMF theory provides a framework in which the averaged effects of long ranged

forces are accounted for by an effective external field [1]. It has previously been used

mainly as a computational tool to permit very accurate determination of properties

of the full nonuniform system while using a numerical simulation of the short ranged

reference system in the presence of the effective field [5, 43, 2]. But the effective or

renormalized field also gives a convenient and natural measure of the importance of

long ranged forces in different environments. In this section we use the renormalized

external fields determined directly from simulations of interfaces in the full SPC/E

water model along with simulations of truncated water models to quantitatively

examine the relative influence of the local hydrogen bond network and unbalanced
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long-ranged Coulomb and van der Waals forces.

We first consider the LV interfaces of the SPC/E, GT, and GTRC water models

shown in Fig. 2.11. The removal of long-ranged electrostatics in the GT model leaves

the density distribution virtually unchanged, whereas removal of the LJ attractions

in GTRC water has a substantial impact on ρ(z). To understand this behavior,

we focus our attention on the impact of the averaged unbalanced forces from the

long-ranged electrostatic and LJ interactions, as determined in LMF theory from the

effective external fields VR1 and φLJ
R1, respectively and defined below. The unbalanced

force F acting on an oxygen site from the LMF potentials is given by

FO(r) = −∇rφ
LJ
R1(r)− qO∇rVR1(r). (2.11)

Here qO is the partial charge on the oxygen site and VR1(r) is the slowly-varying

part of the effective electrostatic field, given by

VR1(r) =
1

ε

∫
dr′ρq(r′)v1 (|r− r′|) , (2.12)

where ρq(r) is the total charge density of the system. The other contribution φLJ
R1(r)

is the field arising from the unbalanced LJ attractions on the oxygen site (where the

LJ core is centered), given by

φLJ
R1(r) =

∫
dr′ [ρ(r′)− ρB]u1 (|r− r′|) , (2.13)

with ρ(r) indicating the nonuniform singlet density distribution of oxygen sites and

ρB defined as the bulk density of oxygen sites at the state point of interest [1, 3].

Since the hydrogen sites lack LJ interactions, the unbalanced LMF force acting on
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Figure 2.12: (a) Density distributions as a function of the z-coordinate for the
hydrophobic LS interface and the LV interface of water. (b) Ensemble averaged net
force on a water molecule due to VR1 (open symbols) and φLJ

R1 (closed symbols) at
the LV (circles) and LS (squares) interfaces. Solid lines indicate the net force due to
u1. The black dashed line at z = 0 Å indicates the position of the hydrophobic wall.
The Gibbs dividing interface of the LV system is located at z = 2.34 Å, in order to
make comparison with the water-wall interface. Inset: Forces on oxygen sites only,
determined by evaluating the gradient of the corresponding LMF potentials.

a hydrogen site is due exclusively to electrostatics,

FH(r) = −qH∇rVR1(r). (2.14)

Given its importance in the density distribution of water, it may seem natural

to examine the components of the LMF force on the oxygen sites, FO(z), shown

in the inset of Fig. 2.12a. Naive examination of the relative magnitude of these

force functions would lead to the conclusion that long-ranged electrostatics are the

dominant unbalanced force at the LV interface. However, VR1 also interacts with

hydrogen sites and one should instead consider the net forces from long ranged

Coulomb and LJ interaction felt by an entire water molecule at these interfaces.

This ensemble averaged net molecular force 〈F〉 (Fig. 2.12b) clearly indicates
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that the net unbalanced force at an interface is almost entirely due to long-ranged

LJ attractions from the bulk, which pull water molecules away from the interface.

The long-ranged Coulomb contributions to the average force on a water molecule are

essentially negligible in comparison. This is not surprising since water molecules are

neutral, and it has previously been shown that the small net interfacial electrostatic

force simply provides a slight torque on water molecules in this region [2]. This

torque has little effect on the oxygen density distribution, as illustrated by the good

agreement of the GT model density profile with that of the full water model in

Fig. 2.11. However, it plays a key role in determining electrostatic and dielectric

properties, which are strongly affected by the behavior of the total charge density,

and here the uncorrected GT model gives very poor results [2, 1].

It is also instructive to compare the unbalanced long ranged forces at the

LV interface to those at the liquid-solid (LS) interface between water and a model

hydrophobic 9-3 LJ wall introduced by Rossky and coworkers [44], as shown in

Fig. 2.12b. Despite the large differences in the density profiles shown in Fig. 2.12a,

the net unbalanced forces on molecules at the LV and LS interfaces are remarkably

similar for all z until molecules encounter the harsh repulsion of the wall and an

accurate sampling of 〈F(z)〉 by simulation cannot be made. Water molecules can

sample all regions in the liquid-vapor interface, leading to a smooth 〈F(z)〉 at smaller

z.

Indeed, the net molecular force due explicitly to a configurational average of

the attractive u1(r) acting on molecules present at each z-position is in outstanding

quantitative agreement with that arising from φLJ
R1(z) for all adequately sampled
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regions in the liquid, as illustrated by the solid lines in Fig. 2.12b. This serves

largely as confirmation of the validity of the mean-field treatment inherent in LMF

theory within the liquid slabs. Deviations between the two quantities for distances

less than the Gibbs dividing surface are a reflection of the increasing effect of larger

force fluctuations due to long-wavelength capillary waves not well described by mean

field theory. The relative magnitudes of the components of 〈F〉 for the LV and

LS interfaces are strikingly similar, with the net unbalanced LJ force
〈
F
(
z;φLJ

R1

)〉
reaching its maximum value of slightly less than kBT/Å near the Gibbs dividing

interface and the repulsive boundary of the wall, respectively.

The similarities of the unbalanced forces at the LV and the hydrophobic LS

interfaces of water and the dominance of the LJ attractions are completely consistent

with the analogies commonly drawn between these two systems [17, 13, 45] and

used in the LCW theory of hydrophobicity [18, 46, 3]. A common criticism of LCW

theory is its apparent neglect of the hydrogen bond network of water and the use of

a van der Waals like expression for the unbalanced force at an interface. Although

some features of the network are implicitly captured by using the experimental

surface tension and radial distribution function of water as input to the theory,

electrostatic effects at the interface, including dipole-dipole interactions, are ignored.

However, this assumption is justified since the averaged effects of long-ranged dipole-

dipole interactions, accounted for by VR1, are shown to indeed be negligible at a

hydrophobic interface (Fig. 2.12). LCW theory correctly describes the unbalanced

LJ attractions from the bulk, which dominates the behavior at both the liquid-vapor

and extended hydrophobic interfaces.
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2.7 Conclusions

In this work, we have examined the different roles of short and long ranged

forces in the determination of the structure and thermodynamics of uniform and

nonuniform aqueous systems, using concepts inherent in classical perturbation and

LMF theory. In particular, we have evaluated individually for SPC/E water the

contributions of (i) all the strong short ranged repulsive and attractive interactions

that lead to the local hydrogen-bonding network, (ii) longer ranged dispersive LJ

attractions between molecules, and (iii) long ranged dipole-dipole interactions, and

demonstrated a hierarchical ordering of their importance in determining several

properties of water in uniform and nonuniform systems.

All of our truncated models accurately describe the local hydrogen bonding

network, and as expected, this network alone is sufficient to match bulk structure as

well as solvent structure around small hydrophobic solutes provided that the bulk

density and temperature are accurately prescribed. Furthermore, the anomalous

temperature and density dependence of the “internal pressure” of water is found to

be dominated by the competing short-ranged repulsive and attractive forces deter-

mining the local hydrogen bonding network as well.

But local network concepts alone cannot capture all the complexities of even

the simple SPC/E water model. While the dispersive LJ attractions between water

molecules primarily provide a uniform cohesive energy in bulk systems, they strongly

influence the structure and density profile of large scale hydrophobic interfaces.

Their importance provides further support for analogies between water at extended
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hydrophobic interfaces and the liquid-vapor interface, and the unbalanced LJ force

can be used to quantify the transition between small and large scale hydrophobicity

for simple solutes.

Although the long-ranged dipolar interactions between molecules have only

small effects on most of the interfacial density properties considered here, we have

shown elsewhere that they are crucial in determining dielectric properties of both

bulk and nonuniform water. Indeed, as will be discussed elsewhere, we have found

that electrostatic quantities may in fact be a sensitive structural probe of hydropho-

bicity in general environments [47].

This interaction hierarchy, wherein strong short-ranged local interactions alone

determine structure in uniform environments while the longer ranged forces are

needed as well to capture other properties could prove quite useful in refining sim-

ple site-site water models. Current water models incorporate a vast amount of clever

engineering and empirical fine-tuning and manage to reproduce a variety of different

properties through a complex balance of competing interactions with simple func-

tional forms. Changes in the potential that improve one property generally speaking

produce poorer results for several others.

One promising route to a more systematic procedure may be sensitivity analy-

sis, in which small perturbations of potential parameters are made and the correlated

response of a variety of physical observables is quantified. By perturbing the rel-

ative magnitudes of short and long ranged interactions, Iordanov et al. found that

thermodynamic properties of bulk water are most sensitive to small changes in the

LJ repulsions and the short ranged electrostatic interactions [48], in agreement with
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our findings. A new water model was then proposed by optimizing parameters to re-

produce a specific bulk thermodynamic quantity (the internal energy) in an attempt

to correct the deficiencies present in a previously developed water potential.

However, the theoretical scheme of splitting the potential described in this

paper may provide a more concrete and physically suggestive path to incrementally

match various known physical quantities for water without ruining the fitting of

previous quantities, and one could combine an approach like sensitivity analysis

with the conceptual framework presented herein to systematically optimize a specific

water model.

In particular, it has recently been suggested that the accuracy with which a

water model can predict the experimental TMD correlates well with the accuracy

that the same model displays in predicting the thermodynamics of small-scale hy-

drophobic hydration [35]. Arguably, the least justified feature of current simple

water models like SPC/E is the functional form of the core LJ potential u0(r), espe-

cially at the very short separations relevant for describing local hydrogen bonding

as illustrated in Fig. 2.2. One could try to fine-tune a GTRC-type model through

alteration of the local hydrogen bond network by varying the form of the repulsive

core in order to match the experimental density maximum, as well as other bulk

properties like the internal pressure, in order to obtain a short-ranged system that

yields accurate bulk properties. Although a detailed discussion of this process is

beyond the scope of this chapter, one could try to use some type of optimization

procedure to determine such potentials [49, 50, 48]. Perhaps first principles DFT

simulations [38, 37] could be used to provide a more fundamental description of
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the local network. Subsequently, the structure and thermodynamics of nonuniform

systems, which require dispersions and long ranged Coulomb interactions, could be

used to parametrize the long-ranged interactions.
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Chapter 3

Deconstructing Classical Water Models II: The Length Scale

Dependence of Hydrophobic Hydration and Association 1

3.1 Introduction

Hydrophobic interactions play a key role in phenomena ranging from biolog-

ical processes like protein folding and membrane formation to the design of water-

repellent materials [12, 13, 45]. Thus, significant effort has been devoted to studying

the behavior of apolar moieties in water. In pioneering work, Stillinger argued that

hard sphere solutes smaller than a critical radius RC can be inserted into liquid

water while maintaining the hydrogen bond network, but for solutes with a radius

larger than RC bonds must be broken, generating a molecular scale interface with

properties resembling that of the liquid-vapor interface in water [17]. More recent

work has confirmed the basic features of this idea and put the arguments on a firmer

statistical mechanical foundation [13, 45, 18, 3].

While this qualitative description of the length scale dependence of hydropho-

bic hydration seems physically very reasonable, it focuses only on the hydrogen bond

network of water and makes no mention of the van der Waals (VDW) attractions

and long ranged multipolar interactions between water molecules or of the VDW

attractions that would be present between a more realistic solute and the solvent.

1Based heavily on R. C. Remsing and J. D. Weeks, J. Phys. Chem. B, 2013 (in press) [19].
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Moreover, a qualitatively similar length scale transition is seen in a dense Lennard-

Jones (LJ) fluid near the triple point, with the formation of a “dry” vapor-like

interface around a large hard sphere solute [3]. In that case clearly there are no hy-

drogen bonds and the transition is generated solely by unbalanced VDW attractive

forces arising from solvent molecules far from the solute.

Consideration of such unbalanced forces is an essential ingredient in the Lum-

Chandler-Weeks (LCW) theory of hydrophobicity [18], which uses the same basic

framework to describe hard sphere solvation in simple liquids and in water, differing

only in the thermodynamic parameters needed as input to the theory [18, 51, 52].

Indeed LCW theory has been criticized for not treating hydrogen bonds and other

distinctive features of water more explicitly and there has also been considerable

debate about possible effects of solute-solvent LJ attractions on the proposed length

scale transition in water [45]. Thus it seems useful to explore in more detail the

varying roles hydrogen bonds, VDW interactions, and long ranged multipolar in-

teractions play in hydrophobic solvation, and to determine what analogies exist to

solvation in simple, non-associating fluids.

To that end, we build on our previous work [16] using truncated water models,

and exploit the underlying ideas of perturbation [6, 7] and local molecular field [3, 1]

(LMF) theories of uniform and nonuniform fluids, respectively, to study hydrophobic

solvation and association from small to large length scales. We employ short ranged

variants of the SPC/E water model to show that small scale solvation and association

in water is governed by the energetics of the hydrogen bond network alone. However

when the solute is large and the hydrogen bond network is broken at the hydrophobic
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interface, water behaves in a manner qualitatively similar to a simple fluid, with

unbalanced LJ attractions dominating the solvation behavior.

In the next section, the truncated water models are briefly introduced and

our simulation methods are detailed. Section III examines the roles of unbalanced

dispersion and electrostatic forces in determining the equilibrium solvation structure

around small and large apolar solutes. The strength of the hydrogen bond network

around small solutes is then analyzed by perturbing the hydration shell in Section

IV. The role of this network in setting the length-scale for the crossover in solvation

thermodynamics is then studied in Section V. The origin of entropy convergence

is briefly discussed in Section VI. Finally, the hydrophobic association of model

methane and fullerene molecules is studied in Section VII. Our conclusions and a

discussion of the implications of this work are given in Section VIII.

3.2 Models and Simulation Details

Hydrogen bonds in most classical water models arise from “frustrated charge

pairing”, where an effective positive charge on a hydrogen site of one molecule tries to

get close to a negatively charged acceptor site on a neighboring molecule, as discussed

in the previous chapter [16]. This strong attractive interaction is opposed by the

overlap of the repulsive LJ cores and the presence of other hydrogen sites in the

acceptor molecule. As a result, short ranged versions of the full water model where

Coulomb interactions are truncated at distances larger than the hydrogen bond

length and with only truncated LJ core interactions if desired can still give a very
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accurate description of the hydrogen bond network and pair correlation functions

in bulk water [16, 2].

In this chapter, we use the extended simple point charge (SPC/E) model

of water [14] and the short ranged variants of this model discussed in the previous

chapter [16] to examine hydrophobic hydration and association as the solute perturbs

the hydrogen bond network. The truncated models provide a hierarchical framework

for disentangling in such classical models the separate contributions of (i) strong

short ranged interactions leading to the hydrogen bond network, (ii) longer-ranged

VDW attractions between water molecules and with the solute, and (iii) long ranged

dipolar interactions between water molecules.

In order to compare the SPC/E water model at a pressure of P = 1 atm with

the short ranged GT and GTRC models in the work presented below, the latter

two models were simulated at corrected pressures yielding the same density using

the pressure corrections described earlier [16, 26]. In the preceding chapter, it was

shown that simple analytical corrections to the pressure can bring the bulk densities

of these three models into quantitative agreement. All data presented in this work

were obtained from molecular dynamics simulations performed in the isothermal-

isobaric ensemble (constant NPT) using a modified version of the DL POLY2.18

software package [29]. Constant temperature and pressure conditions were main-

tained through the use of a Berendsen thermostat and barostat, respectively [31].

The evaluation of electrostatic interactions in simulations of the full SPC/E water

model employed the Ewald summation method [30].

It is instructive to compare the solvation behavior of water to that of a simple
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LJ fluid at an analogous state point throughout this work. Therefore, following

the work of Huang and Chandler [51], we also study a LJ fluid at a state point

near the triple point, where the potential is truncated and shifted at 2.5σ. This

LJ fluid is studied at a reduced temperature and pressure of T ∗ = kBT/ε = 0.85

and P ∗ = Pσ3/ε = 0.022, respectively, corresponding to a reduced density of ρ∗ =

ρσ3 = 0.70. In order to study the analogous short ranged reference fluid, we use

the same repulsive force truncation of the LJ potential as was used for the GTRC

water model, and study the model at a mean-field corrected pressure that accounts

for the lack of LJ attractions [16].

We should emphasize that the above-mentioned short ranged GT and GTRC

models are not being used in this paper as replacements for standard long-ranged

models such as SPC/E or to give accurate representations of most properties of real

water. Rather, we utilize these models as analysis tools to examine the different

roles the hydrogen bond network as described by the GT or GTRC models, long

ranged dispersions, and dipolar interactions play in determining the properties of

systems containing liquid water.

However, the GT model describes very well pair correlation functions and

hydrogen bond statistics in bulk water, and as we discuss further below, it also cap-

tures many features of the water density in nonuniform environments including the

basic length scale transition for hydrophobic solutes [16]. But thermodynamic and

particularly electrostatic properties depend sensitively on the long ranged Coulomb

interactions and GT results need corrections for quantitative accuracy. Acharya and

Garde [53] have recently carried out a detailed study of the strengths and weaknesses
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of the GT model as a simple water model in a variety of settings, including both

hydrophobic and ionic solvation.

3.3 The Influence of Long Ranged Interactions on Interfacial Struc-

ture

In this section, we examine the role of the various unbalanced forces in de-

termining the interfacial structure of water near a hydrophobic solute. The solute

is considered to be a uniform density of LJ particles, such that its interaction with

water can be represented by an integration of the LJ potential over the volume of

the solute, resulting in the integrated “9− 3” potential of Huang and Chandler [54]

Usw (r;RS) = πεswρσ
3
sw

×

[
4

5
σ9

sw

(
1

8rr8
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(
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3r3
−

)]
, (3.1)

where r± = r ± RS. The parameters of the potential are chosen to mimic paraf-

fin, such that the density of LJ sites, energy, and length scale are given by ρ =

0.0240 Å−3, εsw = 0.882 kJ/mol, and σsw = 3.468 Å, respectively [54]. Furthermore,

in order to make this particle as hydrophobic as possible, only the repulsive part of

the potential is used, such that the solute-water interaction potential used in the

MD simulations is given by

U0,sw(r) =

{
Usw(r)− Usw (r0) , r ≤ r0

0, r > r0

(3.2)
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Figure 3.1: Density distributions around solutes of radii RHS ≈ 2 Å (a) and RHS ≈
20 Å (b). The inset in (b) depicts the renormalized portion of the LJ LMF for
GTRC water in units of kBT .

where r0 is the location of the minimum of the potential. Finally, we should note

that the size of the particles is better represented through an effective hard-sphere

radius, RHS, rather than the size parameter RS found in the potential. This effective

radius can be estimated as [8]

RHS ≈
∫ ∞

0

dr {1− exp [−βU0,sw(r)]} , (3.3)

where β = (kBT )−1, and will be reported as RHS herein.

The hydration structure around small solutes has been postulated to be a di-

rect consequence of the need for water to maintain its hydrogen bond network. A

small solute can be “inserted” into bulk water with the network continuing around
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the solute without breaking hydrogen bonds. Indeed, in the small solute regime we

find that the nonuniform densities of GT and GTRC models around an apolar parti-

cle are nearly identical to that of the full SPC/E water, dramatically confirming that

local hydrogen bonding dictates the hydration structure in this limit (Figure 3.1a).

In the large solute limit, Figure 3.1b, the density profiles of SPC/E and GT

water are still very similar, demonstrating that long ranged electrostatic interactions

have an almost negligible influence on this measure of interfacial structure. GTRC

water, on the other hand, has a ρ(r) markedly different from that of SPC/E water.

Removal of the LJ attractions from the bulk liquid in GTRC water eliminates

the phenomena of drying, and it evidentially wets the surface of the solute. Accord-

ing to LMF theory [1], we can account for the averaged effects of the neglected LJ

forces by using a renormalized solute field

φLJ
R (r) = U0,sw(r) +

∫
dr′ [ρR(r′)− ρB]u1 (|r− r′|) , (3.4)

where quantities obtained in the presence of the effective field are indicated by

the subscript ‘R’ throughout this work, ρB is the bulk density of the fluid, and

u1(r) is the attractive portion of the LJ potential. The use of this renormalized

field recovers drying behavior and brings the density profile of GTRC water into

qualitative agreement with that of the SPC/E and GT models, as illustrated by

the curve labeled ‘GTRC-LJLMF’ in Figure 3.1b. The renormalized portion of the

LMF, φLJ
R1(r) ≡ φLJ

R (r) − U0,sw(r), provides an effective force that pushes solvent

molecules away from the solute, as shown in the inset of Figure 3.1b.

From the data presented in Figure 3.1, we can conclude that the unbalanced
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forces arising from LJ attractions are the driving force for drying at extended hy-

drophobic interfaces. Indeed, we have previously shown that the net force on a

water molecule at an extended hydrophobic interface from long ranged electrostat-

ics is much smaller than that from LJ attractions [16]. Nevertheless, long ranged

electrostatics play a subtle but important role in determining the orientational pref-

erences of water and properties dependent upon this orientational structure. One

such quantity is the electrostatic or polarization potential Φ(r) felt by a test charge

Φ(r) = −
∫ r

0

dr′E(r′) = −
∫ r

0

dr′

r′2

∫ r′

0

dr′′r′′2ρq(r′′), (3.5)

where ρq(r) ≡ 〈
∑

i qiδ(r− ri)〉 is the ensemble averaged charge density of the system

and E(r) is the electric field due to the polarization of water molecules induced by

the presence of the solute.

The polarization potential of SPC/E water, shown in Figure 3.2a, reaches a

constant value of approximately 500 mV in the bulk region, consistent with previous

determinations of interface potentials at extended hydrophobic interfaces for this

water model [2]. Removal of the long ranged electrostatic interactions in GT water

leads to an approximate charge density that does not predict this plateau in the

bulk region, Figure 3.2a. Thus there is a net electric field E(r) in this system,

even far from the solute surface as shown in Figure 3.2b. The appearance of a non-

vanishing electric field in the bulk of GT water is associated with an over-orientation

of interfacial OH bonds toward the solute surface. This is evidenced by a larger

peak at θOH ≈ 0◦ in the probability distribution P (θOH) for interfacial GT water

molecules in comparison to that observed for SPC/E water, shown in Figure 3.2c,
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where θOH is the angle formed by the OH bond vector and the oxygen-solute vector

The increase in the number of OH groups pointing toward the interface in

GT water is driven by the tendency to maintain the hydrogen bond network alone.

This results in the formation of an overly ordered dipole layer at the interface,

demonstrated by the peak at θµ ≈ 60◦ in P (θµ), shown in Figure 3.2d, where θµ

is the angle formed by the dipole vector of water and the oxygen-solute vector.

Without long ranged dipole-dipole interactions, water far from the surface does not

respond to the presence of this dipole layer, and E(r) remains non-zero well into the

bulk region. However, we can compensate for the averaged effects of the long ranged

electrostatics through the introduction of the electrostatic LMF for an uncharged

solute [1]

VR(r) =

∫
dr′ρqR(r′)v1 (|r− r′|) , (3.6)

where v1(r) = erf(r/σ)/r is the long ranged, slowly varying component of 1/r,

separated with a smoothing length σ = 4.5 Å [16] herein, and in general σ should

be chosen to be greater than the nearest-neighbor distance in a fluid [1]. Inclusion

of this renormalized solute potential in the GT water system leads to quantitative

accuracy of both the electrostatic and orientational structure of interfacial water,

evidenced by the curves labeled GT-LMF in Figure 3.2.

In his seminal work on nonpolar solutes in aqueous solutions, Stillinger de-

duced that orienting an OH bond toward the interface provides the least energetic

detriment to the hydrogen bond network of water [17]. In GT water there are no

opposing long ranged electrostatic interactions and the energetics of the hydrogen
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Figure 3.2: (a) Polarization potential Φ(r) and (b) the corresponding electric fields
E(r) obtained for a solute of RHS ≈ 20 Å in SPC/E and GT water, as well as
for GT water in the presence of the electrostatic LMF (GT-LMF). (c) Probability
distributions of the angle formed by the OH bond vector and the vector connecting
the oxygen site with the center of the solute (θOH), for molecules within 1 Å of the
solute surface for the three systems shown in (a). The analogous distributions for
the dipolar angle θµ are shown in (d).
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bond network alone determines the orientational preferences of water at the inter-

face. However, this results in too high a probability of pointing an OH bond toward

the interface, illustrating that while hydrogen bonding is a major driving force in

determining the structure of water around large apolar solutes, it is not the sole

determinant of the observed orientational preferences of interfacial water.

In an earlier contribution, Stillinger and Ben-Naim initially postulated that

the dipole and quadrupole moments of water lead to a mean torque on a molecule

at the interface with its vapor that orients the dipole moment of an interfacial water

molecule toward the bulk liquid [55]. This behavior is reflected in the change of

P (θµ) upon the inclusion of long ranged interactions through VR, which provides

the slowly-varying torque necessary to slightly turn the molecular dipoles of interfa-

cial water in the direction of the bulk and obtain the desired orientational structure,

evidenced by the distributions P (θµ) shown in Figure 3.2d. Therefore, the orienta-

tional structure of water at extended hydrophobic surfaces is a result of a delicate

balance of the energetics of the hydrogen bond network and the mutipolar inter-

actions arising from the electrical asymmetry of a water molecule, with the former

dominating.

3.4 The Response of Interfacial Water to Unbalanced Forces

In this section, we examine the response of short ranged reference systems

around solutes of varying sizes to the presence of very strong unbalanced forces like

those seen in reality only for very large solutes. This provides a stringent test of the
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stability of the hydrogen bond network around small solutes even when subjected

to strong perturbations. In order to accomplish this task, we scale the long ranged

LJ LMF determined for a large solute of radius RHS ≈ 20 Å by its radius, and then

rescale the field to the desired solute size, R̃HS,

φ̃R1

(
r;λ, R̃HS

)
= λφLJ

R1

(
R̃HS

RHS

r;RHS

)
. (3.7)

where φLJ
R1(r) is the slowly-varying renormalized portion of the LMF shown in the

inset of Figure 3.1b. Here the notation φLJ
R1 (r;RHS) indicates that the field φLJ

R1 is

a function of r and that it was determined when a solute of radius RHS is fixed

at the origin. The fictitious, rescaled LMF is indicated by φ̃R1, and the coupling

parameter λ is used to further adjust the magnitude of this field. In effect we have

taken the large unbalanced LJ force around a large solute, which Figure 3.1b shows

is strong enough to significantly perturb the large scale density profile of GTRC

water when corrected with LMF theory, and artificially applied it to a small scale

system like that in Figure 3.1a with an intact local hydrogen bond network. This

provides insight into the very different response interfaces around small and large

hydrophobic solutes have to repulsive forces over a wide range of magnitude as λ

is varied, including exceptionally large unbalanced forces seen in reality only near

large hydrophobic solutes.

In order to quantify the response of water to strong unbalanced forces, we

focus on the λ-dependence of the average number of water molecules in the solute

solvation shell, 〈N(λ)〉φ̃R1
, as well as the corresponding response function

χ(λ) = − 1

〈N(0)〉φ̃R1

(
∂ 〈N(λ)〉φ̃R1

∂λ

)
, (3.8)
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Figure 3.3: Average number of truncated water and LJ molecules in the first solva-
tion shell as a function of the coupling parameter λ for solutes of radii RHS ≈ 3 Å
(a) and RHS ≈ 15 Å (b). Results are shown for both GTRC water and the WCA
fluid (with the LJ parameters of SPC/E water), and 〈N(λ)〉φ̃R1

has been normalized
by its value in the case of zero field in order to make comparisons between the two
fluids. The corresponding response functions are shown in (c) and (d), respectively.
Solid lines in (a) and (b) are spline fits to 〈N(λ)〉φ̃R1

and those in (c) and (d) are
the negative derivatives of the corresponding fits.

where 〈· · · 〉φ̃R1
indicates that the ensemble average is performed in the presence of

the field φ̃R1

(
r;λ, R̃HS

)
. The function 〈N(λ)〉φ̃R1

is calculated for distances r < rmin,

where rmin is defined as the distance at which the density distribution in the absence

of the field reaches its first minimum.

In the large scale hydration regime the broken hydrogen bonds in the interfacial

region effectively permit the interface to detatch from the solute and the interface

is “soft” and fluctuating. We expect water to have a response qualitatively similar

to that of simple liquids where drying occurs with increasing strength of φ̃R1. How-
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ever, in the small length scale limit, while network fluctuations certainly occur, the

hydrogen bond network is basically maintained around the solute. We thus expect

that the small scale solute-water interface is “stiff” and highly resistant to pertur-

bations unless they are strong enough to break hydrogen bonds. This should lead to

behavior that is fundamentally different from that of a simple LJ fluid, which lacks

such strong, local interactions.

As postulated above, in the large solute regime, the behavior of 〈N(λ)〉φ̃R1
and

χ(λ) are qualitatively similar for both GTRC water and the WCA fluid (Figures 3.3b

and 3.3d). Gradual dewetting is observed with increasing field strength, until no

molecules are present in the solvation shell region at high values of the coupling

parameter. In fact, as λ is increased, a peak in the response function χ is observed,

indicative of a drying transition in the hydration shell of the solute; the details of

the transition differ between GTRC water and the WCA fluid due to differences in

state points and interaction potentials.

In the small solute regime, the WCA fluid displays signatures of a drying

transition completely analogous to those seen in the large solute case with a simple

shift in λ. GTRC water, on the other hand, does not display characteristics of such

nanoscale dewetting (Figures 3.3a and 3.3c); 〈N(λ)〉φ̃R1
stays roughly constant and

the response function fluctuates about zero. Using a typical geometric definition

of a hydrogen bond [28, 16], we find that the average number of hydrogen bonds

per molecule, for waters located between the solute and the position of the first

maximum in the corresponding ρ(r), fluctuates around 3.5 for all λ ≥ 0, very close

to the bulk value of 3.6 hydrogen bonds per water molecule. Therefore, the hydrogen
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bond network is maintained around the small solute for all studied values of λ, and

the strong local interactions of the hydrogen bond network prohibit drying at the

solute surface, even in the presence of the extremely large external fields considered

herein.

The above-described results indicate that the underlying physics behind the

solvation behavior in a LJ fluid is qualitatively similar in the small and large length

scale regimes, dependent only on the magnitude of the unbalancing potential arising

from the bulk, while that of water qualitatively differs in the two regimes. In the

large length scale regime, water behaves in a manner similar to a LJ fluid, with the

unbalanced LJ attractions having a substantial impact on the solvation structure.

For solutes smaller than the crossover radius, however, water wets the surface of

the solute even in the presence of extremely large (though fictitious) unbalancing

potentials; the hydration shell remains intact due to the great strength of the local

hydrogen bond network. Therefore, interfacial fluctuations and the physics dictating

where the length scale transition occurs is different for water than for simple, non-

hydrogen bonding fluids.

3.5 Hydrogen bonding sets the scale for the crossover in hydration

thermodynamics

The above-described physical balance between hydrogen bonding and interfa-

cial unbalancing potentials also plays a key role in the solvation thermodynamics of

apolar solutes. Gibbs free energies of solvation, ∆G, were calculated by performing
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equilibrium simulations of solutes with effective hard sphere radii RHS ≤ 13 Å in

increments of ∆RHS ≈ 0.5 Å. Due to poor phase space overlap between neighboring

windows, ∆RHS was decreased to 0.25 Å to determine ∆G for solutes with RHS > 7 Å

solvated by GTRC water. The solvation free energies presented herein were calcu-

lated using the Bennett acceptance ratio or BAR [56, 57] method. To emphasize

the crossover in the scaling behavior of the solvation free energies, we normalize ∆G

by the surface area of the apolar solute (Figure 3.4), ∆G̃ = ∆G/4πR2
HS.

In the small solute regime, RHS ≤ RC ≈ 5.0 Å, the hydration free energies

are in agreement for all three models. This illustrates that the hydration thermody-

namics of small, nonpolar solutes are dictated by the local structure of water alone,

as would be expected from the conclusions drawn above regarding solvation in the

SPC/E, GT, and GTRC models. Indeed, the dominant role of local structure in

the small solute regime is not restricted to water, as indicated by the agreement of

the solvation free energies for LJ and WCA fluids for small solute sizes shown in

Figure 3.4b.

The free energy for large solutes scales with surface area in both SPC/E water

and the LJ fluid, and here long ranged interactions become increasingly important.

Only small differences in ∆G are observed between SPC/E and GT water, reflecting

the relatively small role of long ranged electrostatics in hydrophobic hydration [16].

LJ attractions, on the other hand, make a substantial contribution to the hydra-

tion free energy. Indeed because of the absence of these attractions, GTRC water

completely lacks the plateau in ∆G̃ for large solute sizes.

The behavior of the GTRC water model can be explained by noting that in

71



the large solute regime, ∆G ∼ PVS + γAS, where VS and AS are the volume and

surface area of the solute, respectively, P is the pressure of the system, and γ is the

solute-water surface tension. In order to obtain the same bulk density as SPC/E

water at a pressure of 1 atm, the GTRC model must be maintained at a pressure

of roughly 3 katm. At this state the GTRC water model is far from liquid-vapor

coexistence, and the pressure is large enough to make the PVS term dominate the

behavior of ∆G for large solutes.

However we have previously shown that GTRC water can indeed have a self-

maintained liquid-vapor interface, but at a lower bulk density close to that of ice.

The interface is maintained by the strong short ranged Coulomb attractive forces be-

tween donor and acceptor sites and the need to preserve as many hydrogen bonds as

possible [16]. However, because there are no unbalanced forces from LJ attractions,

the surface tension is much smaller than that of the full SPC/E model.

As shown in the curve labeled “GTRC-coex” in Figure 3.4a, the solvation

free energies in GTRC water near coexistence in both the small and large solute

regimes are smaller in magnitude than those in SPC/E water. However it exhibits

essentially the same crossover radius as the full SPC/E model and scales with solute

surface area for large solutes. The behavior of ∆G below the crossover radius can

be understood from our previous results for the bulk structure of the GTRC model

near coexistence [16]. The bulk coexistence density is close to that of ice and the

hydrogen bond network has a more ordered tetrahedral structure that can more

readily accommodate the formation of a cavity than is the case for SPC/E water.

Although the solvation free energies of apolar solutes in water and in the LJ
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Figure 3.4: Solvation free energies of apolar spheres per unit solute area as a function
of solute radius, scaled by the effective diameter of a corresponding solvent molecule
(deff = 2.75 Å for water), for (a) SPC/E, GT, and GTRC water models, as well as
(b) a LJ fluid and its corresponding WCA reference system. Error bars are smaller
than the symbols shown.
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fluid exhibit qualitatively similar crossover behavior, they differ in one important

respect: the length scale at which the crossover in solvation behavior occurs. For

the LJ fluid, the crossover radius is approximately equal to the diameter of a solvent

particle. At this solute size, the unbalanced forces from the LJ attractions of the

bulk region become large enough to “pull” particles away from the solute surface,

leading to drying.

Although unbalanced LJ forces also exist when apolar particles of similar size

are solvated by water, the possible disruption of strong local hydrogen bonds between

interfacial water molecules dominates the energetics, and the crossover occurs only

when water is not able to maintain this network. This leads to an estimate for

the crossover radius, RC ≈ 5 Å, almost twice the diameter of a water molecule

(2.75 Å) and significantly larger than that found in a LJ fluid. As shown above,

hydrophobic solvation in GTRC water near coexistence also displays a crossover in

its scaling behavior at a value of RC essentially the same as that of the full SPC/E

model. Because GTRC water accounts only for the hydrogen bond network, we

can conclusively say that the crossover in solvation behavior is determined by the

hydrogen bond network of water alone, occurring when the solute size is increased

to a point beyond which it is impossible for this network to remain intact, consistent

with the original arguments of Stillinger [17].

Given the importance of the hydrogen bond network for small scale solvation in

water, how can we rationalize the success of the LCW theory [18] and related lattice

models incorporating similar physics [46, 58], which lack an explicit description of

hydrogen bonds? These theories correctly describe the small scale physics driven
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by Gaussian density fluctuations in the bulk solvent and the large scale physics

dominated by the formation of a vapor-like interface around a large repulsive solute.

Effective parameters controlling the transition between the two regimes are fit to

experimental data for each particular solvent.

The key experimental parameters determining the transition length scale in

the LCW theory are the liquid-vapor surface tension, and the bulk density and com-

pressibility. The small compressibility and large surface tension of water compared

to a LJ fluid implicitly accounts for the strength of the hydrogen bond network in

bulk water and the difficulty of disrupting it by interface formation for large solutes.

This allows the LCW theory to qualitatively describe the different transition length

scales in both water and a LJ fluid [51] using the same basic framework. But LCW

theory uses mean field ideas and square gradient and other approximations, and er-

rors are seen in its detailed predictions for certain other properties like the interface

width [51]. More detailed approaches describing structure and fluctuations in both

small and large length scale regimes are needed for quantitative calculations.

More recent work by Rajamani, Truskett, and Garde [59] has clarified the re-

lation between bulk thermodynamics and the crossover radius. They suggested that

the crossover radius is proportional to the Egelstaff-Widom length scale lEW = γκT ,

the product of the liquid-vapor surface tension γ and the isothermal compressibility

κT [60]. Quantitative agreement can be achieved by using a microscopic compress-

ibility that depends on the solute volume rather than the long wavelength bulk

compressibility in conjunction with the solute-water interfacial tension to estimate

the crossover radius RC .
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A simple but stringent test of this idea is to compare the Egelstaff-Widom

length scale of GTRC water near liquid-vapor coexistence to that of SPC/E water.

As discussed above, the crossover radius in GTRC water is essentially the same as

in SPC/E water. This is easily rationalized from our microscopic understanding of

the very similar behavior of the hydrogen bond network around the solute in GTRC

and SPC/E water. If this simple physics is reflected in the Egelstaff-Widom length

scale, this too should be nearly the same although both the surface tension and bulk

compressibility differ considerably in the two models.

Indeed, the compressibility κGTRC
T of GTRC water at T = 300 K and a pressure

of 1 atm is 0.087 katm−1, roughly a factor of two larger than that of SPC/E at

the same state point, 0.045 katm−1, while the surface tension of the GTRC model

γGTRC ≈ 27 mN/m, is about half of that of the SPC/E model γSPC/E ≈ 54.7 mN/m.

Here the value for SPC/E water was taken from the work of Sedlmeier and Netz [61]

and the surface tension of GTRC water was estimated by extrapolating the solvation

free energies ∆G̃(RHS) presented in Section V to the limit RHS → ∞. Thus, the

Egelstaff-Widom length scales of SPC/E and GTRC water are nearly equal, l
SPC/E
EW =

0.24 Å and lGTRC
EW = 0.23 Å, respectively, as expected.

3.6 Entropy convergence is a consequence of the hydrogen bond net-

work

The temperature dependence of hydrophobic hydration also displays features

distinct from solvation in typical van der Waals liquids. Specifically, hydration free
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Figure 3.5: Hard sphere solvation free energy ∆G per unit solute volume VS as a
function of temperature in (a) SPC/E and (b) GTRC water. The corresponding
entropies of solvation ∆S as a function of T are shown in (c) and (d), respectively.
Hard sphere radii are indicated in the legend. Solvation free energies as a function
of solute size for T = 300 K, 325 K, 350 K, 375 K, and 400 K are shown in the insets
of (c) and (d) for the SPC/E and GTRC models, respectively. The arrows point in
the direction of increasing temperature.
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energies ∆G of small apolar particles increase with increasing temperature along

a significant portion of the coexistence curve until a maximum is reached. Above

this temperature, free energies of solvation decrease with increasing temperature, a

behavior typical of most fluids. Associated with this region of anomalous solvation

is the phenomenon of entropy convergence, in which the hydration entropies, ∆S =

−(∂∆G/∂T )P , intersect near a temperature of 400 K for a large range of solute sizes,

although the location of the hydration free energy maximum varies somewhat with

solute size. Analogous to the discussion of the crossover length scale, the explanation

of entropy convergence typically uses thermodynamic arguments, citing the small

and nearly constant compressibility of water along the liquid-vapor coexistence line,

relative to organic solvents [62, 63, 64], although explanations exist that do not

hinge on the relative incompressibility of bulk water [65].

In this section, we show that entropy convergence in water arises from the

hydrogen bond network through its impact on bulk thermodynamics by studying

the temperature dependence of hard sphere solvation in the SPC/E and GTRC water

models near liquid-vapor coexistence. Simulations of bulk SPC/E and GTRC water

were carried out at a pressure of 1 atm and temperatures ranging from 275K–500K

and 225K–425K, respectively. Hard sphere solvation free energies in the small solute

regime were determined by assuming Gaussian bulk density fluctuations [66, 63, 62],

∆G ≈ kBTρ
2
B(T )V 2

S

2σVS(T )
+
kBT

2
ln [2πσVS(T )] , (3.9)

where σVS = 〈(δN)2〉VS is the mean squared fluctuation in the number of molecules
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N in a solute-sized probe volume VS, with δN = N − 〈N〉VS , and we consider the

volume VS = 4πR3
HS/3 of a spherical solute of radius RHS herein. These solvation

free energies were then fit to ∆G(T ) = a + bT − cT 2, and are plotted as lines

in Figures 3.5a and 3.5b. Solvation entropies were determined from the negative

derivative of these fits, and are shown in Figures 3.5c and 3.5d.

The temperature dependence of hard sphere solvation is qualitatively simi-

lar in both SPC/E and GTRC water. In fact, entropy convergence is observed

in the GTRC model, albeit at a convergence temperature T̃ approximately 100 K

less than the convergence temperature in SPC/E water; T̃SPC/E = 387 ± 8 K and

T̃GTRC = 291± 7 K, obtained from linear fitting of ∆S as a function of the heat ca-

pacity of solvation, ∆CP (T ) = T (∂∆S/∂T )P , for several temperatures [64]. Despite

this quantitative distinction, the fact that the minimal reference network of GTRC

water captures the phenomena of entropy convergence explicitly demonstrates that

this signature of hydrophobic hydration is directly related to the energetics of the

hydrogen bond network over a wide range of temperatures.

Previous work has shown that the logarithmic term in Equation 3.9 has merely

a secondary effect on entropy convergence, shifting T̃ to somewhat lower values and

∆S(T̃ ) from zero to negative values [62]. Therefore, in order to obtain a qualitative,

microscopic explanation for entropy convergence, we can neglect this term in the

Gaussian approximation for the free energy, and write the solvation entropy as

∆S ≈ −
(
kBV

2
S

2σVS

)
ρ2

B(T ) [1− 2TαP (T )] , (3.10)

where αP = −(∂ ln ρB/∂T )P is the thermal expansion coefficient at constant pres-
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Figure 3.6: Thermal expansion coefficient multiplied by twice the temperature (left
axis, closed symbols) and average number of hydrogen bonds per water molecule
(right axis, open symbols) for SPC/E and GTRC water.

sure, which was determined by fitting the bulk densities to Laurent polynomials [35].

Here we have also assumed that the temperature dependence of the variance σVS

can be neglected, as has been previously established [62]. Thus within the accuracy

of Equation 3.10, entropy convergence is seen for ∆S(T̃ ) = 0, and an estimate of

the convergence temperature can be obtained from the intersection of αP (T ) and

(2T )−1. The convergence temperatures obtained for the SPC/E and GTRC models

from Equation 3.10 are roughly 420 K and 330 K, respectively, in reasonably good

agreement with the results presented above, although T̃ will always be overesti-

mated in this approximation. Nonetheless, the difference between the convergence

temperatures of the two models is quantitatively captured by this estimation, indi-

cating that additional T -dependences arising in ∆G are similar in the two models,

and these have been discussed in detail elsewhere [62, 64].
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In this simplified Gaussian framework the behavior of αP (T ) plays a key role

in entropy convergence. In the case of SPC/E water, the thermal expansion coef-

ficient vanishes at the temperature of maximum density near 248 K [35, 16]. As

shown in Figure 3.6, 2TαP (T ) then increases with increasing temperature but re-

mains less than one until about 420 K, where entropy convergence is predicted to

occur. The thermal expansion coefficient of GTRC water behaves in a qualitatively

similar manner with 2TαP (T ) remaining less than one until about 330K, although

αP (T ) is never negative, because this model lacks a density maximum near liquid-

vapor coexistence [16]. The behavior of the thermal expansion coefficient is a direct

consequence of the energetics of the H-bond network in both models. At ambient

temperatures, the average number of hydrogen bonds per molecule approaches four

in both SPC/E and GTRC water [16]. With increasing temperature, thermal fluc-

tuations increasingly disrupt the entropically unfavorable hydrogen bond network

in both models (Figure 3.6), which leads to an increase in the thermal expansion

coefficient. However, the lower density of GTRC water permits more fluctuations as

the temperature is increased, consistent with its larger compressibility and a more

rapid increase in αP (T ), leading to a lower convergence temperature.

We also determined the temperature dependence of large solute solvation free

energies following the description in the previous section. After the length scale

transition, solvation is dominated by interfacial physics. As evidenced by the in-

sets in Figure 3.5, hard sphere solvation free energies in this regime decrease with

increasing temperature for both models, following the T -dependence of the surface

tension, just as is the case for LJ solvation.
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3.7 Long ranged interactions and the size dependence of hydrophobic

association

In this section, we examine the role of the various short and long ranged forces

in the thermodynamics of hydrophobic association. In order to accomplish this

task, we consider the association of pairs of spherical solutes, one pair in which

both solutes are in the small-scale regime, while the other pair consists of two large

solutes. We first examine the free energy as a function of solute-solute distance, R,

βW (R) = − lnP (R), (3.11)

where P (R) was obtained by umbrella sampling with the harmonic biasing potential

Ubias(R) =
κ

2
(R−R∗)2 , (3.12)

R∗ is the desired value of R, and κ is a force constant tuned to achieve adequate

overlap between neighboring windows. The probability distribution P (R) was then

constructed from the set of biased simulations using the multistate Bennet accep-

tance ratio method (MBAR) [67].

We first focus on hydrophobic association in the small scale regime, and con-

sider the association of two united atom (UA) methane models, which are simply

LJ particles with length and energy parameters of σMe−Me = 3.73 Å and εMe−Me =

1.234 kJ/mol, respectively [68]. Methane-water interactions were obtained from

Lorentz-Berthelot mixing rules.

The potentials of mean force, W (R), shown in Figure 3.7 for the association
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Figure 3.7: Potential of mean force, W (r), between two UA methane particles in
SPC/E, GT, and GTRC water.

of two UA methanes are nearly identical for all water models under consideration.

Therefore, not only does the hydrogen bond network dictate the solvation structure

around individual small solutes, but also the association of solutes in this length

scale regime, as expected from the results presented in the previous sections.

We now consider the association of two large C60 fullerene molecules in the

various models of water. Each C60 is represented as a single site using the coarse-

graining procedure prescribed by Girifalco [69, 70], such that the fullerene-fullerene

interaction is given by

UFF(R) = −α
[

1

s(s− 1)3
+

1

s(s+ 1)3
− 2

s4

]
+ ζ

[
1

s(s− 1)9
+

1

s(s+ 1)9
− 2

s10

]
, (3.13)

where α = 4.4775 kJ/mol, ζ = 0.0081 kJ/mol, s = R/2η, and η = 3.55 Å. The
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C60-water interaction potential is

UwF(r) = 4NεwF
σ2

wF

rη

{
1

20

[(
σwF

η − r

)10

−
(
σwF

η + r

)10
]

− 1

8

[(
σwF

η − r

)4

−
(
σwF

η + r

)4
]}

, (3.14)

where N = 60, σwF = 3.19 Å, and εwF = 0.392 kJ/mol. Previous work has shown

that this coarse-grained water-C60 interaction provides a very good representation

of the solvation structure in the corresponding atomically-detailed water-C60 sys-

tem [70].

The water-C60 interaction potential UwF(r) leads to a hydrophilic particle due

to the high density of carbon sites on the surface of the C60 molecule. Therefore,

we also consider a hydrophobic particle obtained by using only the repulsive water-

C60 and C60-C60 forces. This is obtained by performing a WCA-like separation of

the potentials UFF and UwF to obtain the corresponding purely repulsive potentials

U0,FF and U0,wF, as detailed above for Usw.

We further separate the potential of mean force asW (R) = Wvac(R)+Wsolv(R),

where Wvac(R) and Wsolv(R) are the vacuum and solvent-induced portions of the

PMF, respectively, focusing on the latter contribution herein. The solvent-induced

PMFs between purely repulsive C60 particles in the SPC/E and GT water models,

shown in Figure 3.8a, are indicative of the hydrophobic effect; the association of two

large apolar particles in water is barrierless, although the free energy of association is

slightly lower in GT water due to its lower surface tension. Previous work has shown

that the collapse of two extended hydrophobic surfaces proceeds by the formation

of a vapor tube [71, 72], in which solvent molecules are evacuated from a cylindrical
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Figure 3.8: Solvent-induced potential of mean force, Wsolv(R), between two (a)
purely repulsive and (b) attractive coarse-grained C60 particles in SPC/E, GT, and
GTRC water. Insets in (a) and (b) show the corresponding nonuniform densities
around a single coarse-grained C60 immersed in each water model. The gray curve
in (b) is the GTRC PMF from panel (a).
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region between the two hydrophobes, and we will show below that the association

of two repulsive fullerenes also occurs by this mechanism.

In GTRC water, however, the PMF Wsolv(R) displays a slight barrier at R ≈

15 Å, and another significantly higher barrier at R ≈ 12 Å, as shown in Figure 3.8a.

Because the C60-C60 distance does not explicitly account for changes in the behavior

of the aqueous solvent, it is not a good reaction coordinate to study the association of

two large hydrophobes on its own [71, 72] and W (R) cannot provide an explanation

for the appearance of this barrier in Wsolv(R).

To understand hydrophobic association in GT and GTRC water, we calculate

the free energy as a function of the C60-C60 distance R and the density ρv of water

in a cylindrical volume of radius 3.75 Å between the particles. This two-dimensional

free energy landscape is given by βW (R, ρv) = − lnP (R, ρv), where P (R, ρv) was

calculated using the indirect umbrella sampling method [73] to bias the number of

particles in the volume v. The harmonic potential in Equation 3.12 was used to bias

R. Again MBAR was used to reconstruct the probability distribution from these

biased simulations [67].

The free energy surface shown in the top panel of Figure 3.9 indicates that

hydrophobic collapse in GT water (or SPC/E water) is indeed driven by the barrier-

less formation of a vapor tube [71, 72] at a C60-C60 distance between 14 and 15 Å.

Hydrophobic collapse in GTRC water, on the other hand, does not follow this mech-

anism because capillary evaporation in the inter-fullerene region has been suppressed

by the removal of LJ attractions in the solvent. This is consistent with the lack of

drying at the interface of a single repulsive solute, as evidenced by the nonuniform
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densities shown in the inset of Figure 3.8a and would be anticipated from the results

presented in Section IV.

Instead, the free energy minimum in GTRC water (for a specific value of

R) remains at liquid-like densities as the C60-C60 distance is decreased, until the

water molecules cannot physically remain between the fullerene particles due to

repulsive core overlap near R ≈ 12 Å. Only at this point are the solvation shell water

molecules in the inter-fullerene region expelled. This expulsion of water molecules

in the observation volume causes the large free energy barrier observed at the same

inter-fullerene distance in the one-dimensional Wsolv(R) for GTRC water shown in

Figure 3.8a.

Instead of artificially suppressing capillary evaporation between large hydrophobes

by removal of solvent LJ attractions as in GTRC water, we can directly counter-

act the unbalanced LJ interfacial forces leading to evaporation in the GT or full

water models by making the solutes sufficiently hydrophilic. LMF theory would

predict very similar behavior for these two systems. This is accomplished by using

the full UFF and UwF potentials to describe fullerene-fullerene and water-fullerene

interactions, respectively. Inclusion of the water-C60 attractive interactions leads

to an almost perfect cancellation of these unbalanced forces, as evidenced by the

good agreement of the SPC/E and GT nonuniform densities with that of the GTRC

model, shown in the inset of Figure 3.8b.

These strong solute-water attractions, arising from the high surface density

of carbon atoms, render the C60 molecule hydrophilic, and the associated solvent-

induced PMFs are repulsive for all distances. This indicates that water opposes the
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Figure 3.9: Free energy as a function of C60-C60 distance, R, and density of water in
the observation volume v with respect to that in the bulk, ρv/ρB, for the association
of two hydrophobic fullerene particles in (a) GT and (b) GTRC water models.
Contour lines are spaced in increments of kBT .
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association of two such particles, in accord with previous results [74]. Because of the

effective hydrophilicity of the particles, capillary evaporation between the particles

does not occur, and Wsolv(R) is the same for all three models for R ≥ 12 Å. At

smaller separations water is forcibly expelled from the inter-fullerene region due to

overlap with the repulsive cores of the solutes and then differences arise due to the

differing pressure of the systems.

The two-dimensional PMF W (R, ρv) was also calculated for the case of hy-

drophilic fullerene particles in GT water, and is shown in Figure 3.10. This PMF is

qualitatively very similar to that shown for hydrophobic collapse in GTRC water in

Figure 3.9b as expected. As R is decreased, the free energy minimum as a function

of ρv remains in regions of liquid-like densities. It is not until very small R, less

than 12 Å, that W (R, ρv) develops a minimum at low ρv, indicating a global free

energy minimum at the contact state. In fact, the solvent induced PMF Wsolv(R)

between hydrophobic solutes in GTRC water is nearly identical to the PMFs ob-

tained between hydrophilic solutes in all models until water is expelled from the

inter-fullerene region, R < 12 Å, as illustrated by the curve labeled ‘GTRC-Hphob’

in Figure 3.8b. In contrast to what is found for the association of large hydrophobic

particles, the solvent opposes association and the contact state is stabilized by the

large solute-solute attractions between hydrophilic fullerenes.
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Figure 3.10: Free energy as a function of C60-C60 distance, R, and density density
of water in the observation volume v with respect to that in the bulk, ρv/ρB, for
the association of two hydrophilic fullerene particles in GT water. Contour lines are
spaced in increments of kBT .
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3.8 Conclusions

We have used short ranged variants of the SPC/E water model [16] in con-

junction with LMF theory to examine the crossover in the behavior of hydrophobic

hydration with increasing solute size. While small scale solvation is determined

exclusively by the local structure of water, i.e. the hydrogen bond network, long

ranged interactions are important for the accurate description of the hydration of

large apolar solutes. Dispersion interactions lead to the phenomena of drying at ex-

tended hydrophobic interfaces, while long ranged dipolar interactions are essential

for the description of the orientational ordering of water in the vicinity of a large

solute, as well as for interfacial electrostatic properties.

The truncated GT and GTRC water models also provide insight into hy-

drophobic interactions between solutes in the small and large length scale regimes.

The local structure of water, dictated by the hydrogen bond network, is found to gov-

ern the association of two small scale solutes, a concept which has been successfully

exploited to provide a theoretical framework for describing hydrophobic hydration

and association at small length scales [66]. Moreover, previous work has shown that

coarse-grained models, whereby water molecules interact via a single spherically

symmetric pairwise potential, can reproduce the thermodynamics of association of

two methanes [75, 76]. From the results presented here, it is not surprising that such

coarse-grained models can capture features of small scale hydrophobicity, since these

models also describe the bulk structure of water with near quantitative accuracy.

The association of two large scale hydrophobes involves the formation of an
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inter-solute vapor tube, and the unbalanced forces arising from water-water LJ at-

tractions are found to be of the utmost importance for this mechanism of hydropho-

bic association. In this regime the coarse-grained water models will fail completely.

Cancellation of the effects of interfacial unbalanced forces, either by explicit removal

of solvent-solvent LJ attractions (as in GTRC water) or by addition of large solute-

water attractions that counterbalance these forces, suppresses capillary evaporation

between two large solutes. As a result the solute surface is wet by the aqueous

solvent, and free energy barriers to the association of two large hydrophilic solutes

exist. In all these cases comparison of results in the full model with those from

the short-ranged GT and GTRC water models provides a simple and physically

suggestive way to disentangle the effects of longer ranged dispersive and Coulomb

interactions from properties of the local hydrogen bond network.
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Chapter 4

On Molecular Interactions and the Response to Nanoscale Broken

Symmetries I: Cavity Solvation

4.1 Introduction

The solvation of ions in water presents many conceptual and computational

challenges to current models of ion and water interactions. The solvation free energy

is usually described using a two step process [77, 78, 79, 80, 81]: i) the formation of

a cavity in water that accommodates the neutral ion core along with its associated

ion-water dispersion interactions and ii) the additional free energy resulting from

charging the core to the full charge of the ion. The simplest Born model treats

water outside the cavity as a continuum dielectric that responds linearly to the

inserted charge, and predicts that the resulting electrostatic free energy contribution

is independent of the sign of the charge.

This disagrees with experiment and workers have long recognized that nonlin-

ear electrostatic effects induced by the initial insertion of the ion core must be taken

into account. These nonlinearities arise from the molecular nature of the system,

since steric effects from inserting even a neutral ion core can strongly perturb the

number and arrangements of local hydrogen bonds and orientations of molecular

dipoles and other multipoles.
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The fixed cavity or ion core itself breaks the translational symmetry of the bulk

solvent and induces molecular scale interfaces between the solute and solvent. The

nonuniform charge density induced by a neutral solute can be generally character-

ized as a locally broken charge symmetry, and will typically generate an electrostatic

potential difference between the region near the solute and in the bulk solvent. Ac-

counting for this potential difference as the solute itself is further charged represents

an important correction to the Born theory. Broken charge symmetry is quite gen-

eral and can be seen in many other charged systems with local correlations on the

scale of the solute size, exemplified by the insertion of a hard sphere solute into a

size asymmetric primitive model of an ionic solvent, as we will discuss later.

But water and other molecular solvents can also exhibit broken angular sym-

metry from non-spherical molecular cores and the asymmetric intramolecular charge

distribution. Using quantum chemistry results, Agmon has suggested that regions

with a net effective positive charge in a water molecule are localized near the dis-

tinct hydrogen sites, while the associated negative charge is smeared nearly uni-

formly along a “negativity track” between the classical lone pair sites [82]. Broken

angular symmetry from any source would give rise to differences between donor and

acceptor hydrogen bonds even in bulk water, and would be expected to have more

dramatic effects on the molecular interfaces involved in solvation of neutral solutes,

with further important consequences for charged solutes.

In this chapter we study the structural and electrostatic consequences of the

various broken symmetries that arise from inserting the simplest model of an un-

charged ion core, a hard sphere solute of varying radius RHS, into water as described
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by two classical water models, SPC/E and TIP5P, and by state-of the art quantum

density functional calculations 1. As we will show, the broken symmetries from

hard sphere solvation generate special configurations that are particularly sensitive

to small differences between donor and acceptor hydrogen bonds and to local vari-

ations in the induced charge density. This system thus provides a stringent test of

classical water models in a physically important application where accurate quantum

calculations can be carried out to assess their predictions.

4.2 The Negativity Track

The SPC/E and TIP5P models differ qualitatively in their description of donor

and acceptor hydrogen bonds. Hydrogen bonds in almost all classical water models

arise from “frustrated charge pairing”, where an effective positive charge on a donor

hydrogen site of one molecule tries to get close to a negatively charged acceptor site

on a neighboring molecule, as illustrated in Figure 2.2 of Chapter 2. This strong

electrostatic attractive force is opposed by overlap of the repulsive Lennard-Jones

(LJ) cores centered on the oxygen sites and the presence of other hydrogen sites in

the acceptor molecule. In the SPC/E model all the negative charge is placed on

the central oxygen site while in TIP5P negative point charges are placed on explicit

“lone-pair” sites displaced tetrahedrally outward from the oxygen site.

Because of the more symmetric treatment of positive and negative charges, we

1All quantum simulations and subsequent analysis of their output were performed by Christo-

pher Mundy, Marcel Baer, and Gregory Schenter at Pacific Northwest National Laboratory

(PNNL).
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Figure 4.1: (a) Local coordinate system used to compute water dimer interaction
energies as a function of oxygen-oxygen distance rOO along the z-axis and as the
water at the origin is rotated by an angle θ, ϕ, or ψ around the x-, y-, or z-axis,
respectively. Rotation about the x-axis by the angle θ corresponds moving along
the proposed ‘negativity track’ of Agmon [82]. Dimer interaction energies for are
shown for both (b-d) SPC/E and (e-g) TIP5P water models. Note that the contours
are not equally spaced in (b), (c), (e), and (f), but spaced by smaller increments
near the energy minima. (h) The energy as a function of the angle of rotation about
the x-axis (i.e. along the ‘negativity track’) for the H-bond distance rOO = 2.75 Å
is also shown for both models, where the energies have been shifted such that the
minimum is located at E = 0. TIP5P dimer configurations at the relevant extrema
are also shown. All energies are in kJ/mol.
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would expect much smaller differences in properties of donor and acceptor hydrogen

bonds for a typical molecule in bulk TIP5P water as compared to SPC/E water. In

this sense TIP5P is reminiscent of the early BNS water model, with its completely

symmetric treatment of tetrahedral charge sites [27], or of the purely tetrahedral

mW model [83], which makes no distinction between donor and acceptor bonds.

Charge pairing to distinct negative sites in TIP5P should also yield hydrogen bonds

with reduced angular fluctuations when compared to those in SPC/E and related

three and four site water models, where all the negative charge is placed on a single

site located much further inside the LJ core. This permits greater flexibility in ac-

cepting hydrogen bonds from neighboring molecules in the SPC/E model, effectively

generating a classical version of the “negativity track” discussed by Agmon [82].

A simple demonstration of this effect is to compute the H-bonding energy

E(r,Ω) of a classical water dimer as a function of the water-water distance r and

orientation Ω. We consider the oxygen-oxygen distance as one reaction coordinate

along which we compute the energy. The orientational dependence of the H-bonding

energy is described by rotating one water about the local x-, y-, and z-axes illustrated

in Figure 4.1a by the angles of rotation θ, ϕ, and ψ, respectively, such that Ω =

(θ, ϕ, ψ). In Chapters 2 and 3, we discuss the use of GTRC truncations of classical

models, and how these truncated models define a minimal reference system that

describes the H-bond network. Therefore, the interaction energies for the SPC/E

and TIP5P dimers shown in Figures 4.1b and 4.1c are those of the GTRC variants

of each model, such that the local interactions leading to H-bond formation are

disentangled from long ranged dispersion and multipolar forces.
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Although the classical representation of lone pair electron density influences

all energy landscapes in Figure 4.1, the effects of the negativity track are most

prevelant in E(r, θ). At the H-bond distance, r = 2.75 Å, the SPC/E dimer energy

displays a single energy minimum, located at a rotation angle of θ = 0◦, as shown

in Figures 4.1b and 4.1h. This orientation corresponds to H-bond formation at the

virtual trigonal site of the acceptor oxygen, and this orientation is also shown in

Figure 4.1a. Of particular importance is the lack of an energetic barrier in E(r, θ)

as θ is changed in the SPC/E dimer, indicating that the donor hydrogen can readily

‘slide’ along the classical negativity track of the acceptor oxygen site.

The dimer H-bond energies E(r,Ω) obtained for the TIP5P model strongly

contrast those of the SPC/E model. As shown in Figures 4.1e and 4.1h, the TIP5P

dimer energy (evaluated using the GTRC truncation scheme) has a barrier of roughly

4 kcal/mol (6.7 kBT at T = 300 K) located at r = 2.75 Å and θ = 0◦, due to the

absence of any negative charge at the trigonal site. Instead, energetic minima are

located at θ ≈ ±45◦, in accord with the location of the lone pair sites. Therefore,

the donor hydrogen cannot move freely from one lone pair site to another in the

TIP5P model, but must overcome the energetic barrier at θ = 0◦ through thermal

fluctuations2 , and TIP5P water is not considered to have a classical negativity

track.

In addition, the presence of such energetic barriers to rotation will influence

2In the bulk, cooperative effects from neighboring water molecules should reduce the size of the

barrier. Nonetheless, a barrier to rotation is still expected to exist, as supported by the results

presented in Figure 4.2 and the discussion in the text.
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(a) (b) (c)

Figure 4.2: Isosurfaces of the three dimensional oxygen (red) and hydrogen (white)
densities around a central water in the (a) SPC/E and (b) TIP5P models at T =
300 K and P = 1 atm. Isosurfaces are drawn at twice the bulk density of each
species and TIP5P lone pair sites are not shown for ease of comparison to SPC/E. (c)
Spherically symmetric site-site pair distribution functions g(r) in both water models.
Hydrogen-hydrogen and oxygen-hydrogen distributions are shifted vertically by 0.5
and 1, respectively.

local H-bond dynamics [82], but this is not our focus. In this work, we concen-

trate on the consequences of the proposed negativity track on the structure and

thermodynamics of aqueous solutions. In the bulk, the influence of the negativity

track can be observed in the three dimensional density distribution of oxygen and

hydrogen sites around a central water, and isosurfaces of these ρ(r) distributions

are shown in Figure 4.2 for both SPC/E and TIP5P water. In SPC/E water, a

continuous lobe of hydrogen density and an accompanying lobe of oxygen density

are found around the oxygen atom of the central water, consistent with the ability

of the H-bond donating water to move freely along the acceptor site in this model.

On the other hand, TIP5P shows two distinct regions of high density at the location

of the lone pair sites and a lack of density at the trigonal site. The location of this

density deficiency is also consistent with that of the energetic barrier to rotation
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discussed above, illustrating that the form of E(r, θ) can have subtle effects on the

bulk structure.

However, the differences in the behavior of ρ(r) between SPC/E and TIP5P

water have little influence on other structural and thermodynamic properties of

the liquids. Indeed, the spherically symmetric pair distribution functions g(r) of

each model shown in Figure 4.2c agree quite well. The bulk dynamic and ther-

modynamic properties of SPC/E and TIP5P are also in relatively good agreement

with each other and with other water models, especially after appropriate scaling is

performed [84].

Unlike what is found in the bulk, the subsequent sections of this chapter

demonstrate that the way in which lone pairs are modeled does have a significant

influence on the structure and thermodynamics of nonuniform systems. In particu-

lar, the solvation of model spherical solutes is significantly affected by the presence

or absence of the donor-acceptor asymmetries that lead to the concept of a classical

negativity track.

4.3 Structural Response to Cavities

The various effective representations of physical lone pair electrons in classical

water models lead to qualitatively different results for hard sphere solvation and

the thermodynamics of charging these model ionic cores, as we now show in this

section. The donor/acceptor asymmetries that appear are not readily apparent in

common measures of interfacial structure like the nonuniform densities shown in
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Figure 4.3: Nonuniform singlet densities for SPC/E and TIP5P water around cavi-
ties with radii RHS = 2, 4, 6, and 8 Å.

Figure 4.3, which are remarkably similar when water is modeled with the SPC/E or

TIP5P potential for all cavity sizes under study. The only differences arise in the

large solute regime and are due to larger unbalanced LJ forces in the TIP5P model

than those in SPC/E because of a deeper attractive well in the TIP5P LJ potential.

However, donor/acceptor asymmetries are manifested in the orientational struc-

ture of water around solutes, and therefore the manner in which the hydrogen bond

network is maintained in the interfacial region. The orientation of a water molecule

relative to the solute can be uniquely defined by two angular coordinates [85], θµ

and φ. The first of which is the angle formed by the vector between the water oxy-

gen and the center of the solute, ~rOS, and the dipole moment vector of the water

molecule, ~µ, where ~rOS points in the direction of the solute. The angle φ is obtained
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Figure 4.4: Joint probability distributions P (θµ, φ) calculated for molecules within
1 Å of the surface of the solute with RHS = 4 Å for the classical (a) SPC/E and
(b) TIP5P water models, as well as the corresponding distributions obtained from
DFT-based simulations using the (c) BLYP and (d) PBE functionals. Red indicates
high probability, while blue corresponds to low probability. The specific orientations
discussed in the text and in Figure 4.5 are indicated in (b) by the dashed regions.

by first defining a local coordinate frame in which ~µ is the z-axis and the normal to

the H-O-H plane is the x-axis, such that the y-axis will point in the direction of the

H-H vector. The oxygen-solute vector ~rOS is then projected onto the xy-plane of

the local frame, and φ is defined as the angle between this projection and the x-axis

of the local frame. Due to the symmetry of the water molecule, φ can be made to

satisfy 0 ≤ φ ≤ 90◦.

Joint probability distributions P (θµ, φ) for the classical SPC/E and TIP5P
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models, as well as DFT results obtained with both the PBE and BLYP functionals

are shown in Figure 4.4 for water molecules within 1 Å of the surface of a hard

sphere with a radius of RHS = 4 Å, which is close to the crossover radius RC but

still in the small scale regime. The two dominant orientations both correspond to

a water molecule pointing one H-bonding group directly toward the bulk, while

the other three H-bonds continue around the solute. In the case of SPC/E water,

Figure 4.4a, pointing the donor hydrogen sites around the solute is preferred, such

that an acceptor group is pointed into the bulk, indicated by the large peak at low

φ labeled B. However, the orientation obtained upon interchange of donor/acceptor

groups, orientation B̃, is much less populated. In this entropy-dominated, small

solute regime, differences in the flexibility of the H-bond networks of SPC/E and

TIP5P water become apparent as the solvation entropy is maximized. The tendency

of SPC/E water to point acceptor sites toward the bulk is a direct result of this

maximization, and leads to an increased flexibility in the H-bond network formed

between the first and second solvation shells.

Angular asymmetry is virtually absent in the TIP5P model, and may even be

expected, to the extent that H-bond acceptors are represented in nearly the same

fashion as donors in this potential. Interestingly, the results obtained from both

sets of DFT simulations are also consistent with a nearly symmetric representation

of donor and acceptor moieties, in stark contrast to what is expected from previous

ab initio studies that support the negativity track picture discussed by Agmon and

others [82]. Further work is needed to discern the validity of the negativity track

picture, although our results do not support this concept for hard sphere solvation.
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Figure 4.5: Solute size dependence of the fractions of orientations α and α̃ in (a,c)
SPC/E and (b,d) TIP5P water models for (a,b) α = A and (c,d) α = B.
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Hydrogen bond configurations and the associated nonuniform charge density

near the inserted solute also have very interesting behavior as the solute radius is var-

ied, with the most dramatic change occurring at a crossover radius of RC ≈ 0.5 nm.

Hydrogen bonds must be broken to accommodate larger solutes, and the resulting

molecular interface resembles the liquid-vapor interface of water. Both SPC/E and

TIP5P give qualitatively similar descriptions of the enthalpically driven length scale

transition and the interfacial properties of large solutes, but smaller solutes can

be accommodated into the bulk hydrogen bond network with mainly an entropic

penalty from constrained fluctuations near the solute. Here subtle differences in the

arrangements of donor and acceptor bonds can play a key role, especially near the

length-scale transition.

The solute size-dependent orientational structure of interfacial water is first

examined by classifying molecules according to their angular preferences, as indi-

cated in Figure 4.4b. We focus on the behavior of each orientation α, as well as the

corresponding orientations obtained by interchanging the lone pair and hydrogen

sites, α̃. The fraction xα(RHS) of hydration shell waters of type α as a function

of solute size shown in Figure 4.5 reveals that distinct donor/acceptor asymme-

tries emerge for solute sizes near RC in the case of SPC/E water. In particular, a

prominent peak appears in xA(RHS) prior to the crossover radius, while xÃ(RHS)

monotonically decays with RHS. Similar asymmetries are observed for populations

B and B̃, respectively, but with the respective fractions peaking in the vicinity of

RC .

The TIP5P potential, on the other hand, is much more symmetric with re-
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gard to interchange of donor and acceptor sites (α and α̃) for all RHS; any small

asymmetries are commensurate with the slight differences between the lone pair and

hydrogen sites. Transitions in the populations of A/Ã and B/B̃ in TIP5P water

occur at nearly the same solute radius as the analogous quantities in SPC/E water,

supporting the idea that the qualitative features of the length-scale transition are

captured by both potentials, while the specific details surrounding the crossover

differ.

4.4 Thermodynamic Consequences: Ion Solvation and the Cavity

Potential

An immediate consequence of the donor/acceptor angular asymmetries and

the corresponding broken charge symmetries found here is the nature of the elec-

trostatic potential in the vicinity of the water-solute interface. Subtle differences in

orientational structure can lead to drastic changes in the value of the mean electro-

static potential at the center of the cavity, termed the cavity potential herein. This

quantity is crucial to theoretical estimates of the charging free energy of a neutral

core, traditionally the second step in obtaining ion solvation free energies. However,

there is still no consensus as to exactly what electrostatic potential is appropriate

for predicting ion solvation free energies.

Previous work from Ashbaugh [86] sought to modify the classical expressions

for the charging free energy ∆µQ by a term linear in the ionic charge Q in order to

account for the experimentally observed asymmetries in ion solvation free energies,
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wherein anions and cations are solvated more and less readily, respectively, than

predicted by the symmetric Born model. This work implied a modification of the

Born model for ionic charging in a dielectric medium with permittivity ε of the form

∆µQ = Q
〈
φA(0; R)

〉
0
− Q2

2RB

(
1− 1

ε

)
, (4.1)

where RB is termed the Born radius and
〈
φA(0; R)

〉
0

is the value of the electrostatic

potential at the center of an uncharged core evaluated as an ensemble average over

configurations R from a simulation with periodic boundary conditions (PBCs) in

all directions, as indicated by 〈· · · 〉0. It is important to note that in this framework,

the electrostatic potential is evaluated such that its value is zero in the bulk liquid,

and this convention is designated by the subscript “A.”

The classical Born equation is recovered when
〈
φA(0; R)

〉
0

= 0 in Equation 4.1.

This modification, which still treats RB as a free parameter, was able to account

for the asymmetric nature of ∆µQ for large solutes with radii larger than 5–6 Å 3,

but not completely for small core sizes. The asymmetries observed for small ions

were explained by Garde and coworkers [77], and later by Bardhan et al. [78]. Be-

cause the harsh repulsive core of the ion only excludes the oxygen site of a water

molecule, hydrogen sites can get closer to the ion charge than the oxygen atom of the

same molecule. Therefore, by adjusting RB independently for positive and negative

ions, both works were able to account for this type of asymmetry, arising from the

3It will be shown later in this chapter that this length scale corresponds to a transition from

short ranged local interactions dominating the cavity potential to long ranged electrostatics being

paramount.
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intramolecular charge asymmetries of a water molecule.

However, these advances were still unable to provide an adequate description

of solvation processes involving ions. In particular, cavity potentials obtained from

ab initio DFT simulations are opposite in sign and roughly seven times larger in

magnitude than those obtained from the classical SPC/E model (+3.5 V versus

-0.5 V). Therefore, quantum mechanics based models would predict ion solvation

free energies in qualitative disagreement with those from experiment and classical

simulations.

This was seemingly resolved by the two interface model of Harder and Roux,

which suggested that the cavity potential should be referenced to the electrostatic

potential of the vapor phase by performing a simulation with a liquid-vapor interface

present [87]. In this case, the modified Born model becomes

∆µQ = Q
〈
φ(0; R)− ΦLV

〉
0
− Q2

2RB

(
1− 1

ε

)
, (4.2)

where ΦLV is the electrostatic potential difference across a planar liquid-vapor (LV)

interface, often referred to as the surface potential. By subtracting ΦLV from〈
φ(0; R)

〉
0
, simulation results obtained in the presence and absence of a LV in-

terface were brought into agreement, and reasonable results could be obtained from

DFT simulations [88, 89]. In addition, dielectric continuum theory predictions for

the free energy of moving an ion from the bulk to a LV interface by Baer et al. [90],

which are consistent with simulation data for the same process, produce a cavity

potential that is consistent with the two interface model. While these results seem to

resolve the paradoxical asymmetry associated with ion solvation, there are numer-
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ous problems associated with this approach. Not the least of which is that solvation

calculations cannot be performed away from liquid-vapor coexistence, indicating

that ion solvation in general from the persepective of the cavity potential is still not

completely understood. We seek to resolve this conundrum herein.

4.4.1 The Role of the Bethe Potential

In order to fully understand the process of charging an ionic core in a dielectric

medium, we must first begin with the uniform solvent itself. Previous approaches,

from the Born model to the two interface model, assume that the electrostatic

potential of the bulk liquid is arbitrary, and often taken to be zero. At first glance

this may seem reasonable, because the average charge density of a uniform dielectric

is zero, and the electric field in the bulk also vanishes. However, this does not imply

that the average potential is zero; a constant potential will also produce a zero

electric field. Accounting for the effects of this constant potential of a bulk phase,

termed the Bethe potential, is the key ingredient to understanding ion solvation.

The Bethe potential is derived in Appendix B and is given by [91, 92]

φBethe = −4π

3
T = −2π

3

〈
1

V

∫
drr2ρq(r; R)

〉
B

, (4.3)

such that the integration is over the volume V of the simulation cell,

T =
1

2

〈
1

V

∫
drr2ρq(r; R)

〉
B

(4.4)

is the trace of the second moment tensor (also referred to as the primitive quadrupole
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moment tensor) arising from the solvent charge density

ρq(r; R) =

NC∑
i=1

qiδ(r− ri(R)) (4.5)

in configuration R for the NC solvent charges, and 〈· · · 〉B indicates an ensemble

average over configurations R in the uniform, bulk system. Note that T , and there-

fore φBethe, is constant throughout space and is a property of the bulk. The Bethe

potential can vary significantly between different models of the same molecule. In

the case of rigid, classical models, the trace of the second moment tensor T , and

therefore φBethe, is proportional to the trace of the primitive quadrupole moment

tensor of a single molecule:

φBethe = −4π

3
ρB Tr {Qmol} , (4.6)

where ρB is the bulk density and Tr {Qmol} is the trace of the primitive quadrupole

tensor of a single molecule, Qmol. Equation 4.6 is derived in Appendix D. The

quadrupole moments of classical water potentials are typically not parameterized

when developing such models, and therefore they differ significantly between the

planar SPC/E model and the near tetrahedral TIP5P model 4, for example, resulting

in different values of φBethe for the two models. We can also expect that the φBethe of

quantum mechanics-based models, which include some representation of nuclear and

4For SPC/E water, Tr
{
QSPC/E

mol

}
= r2OHqH, where rOH is the oxygen-hydrogen bond length and

qH is the charge on a hydrogen site. The analogous expressions for TIP5P water is Tr
{
QTIP5P

mol

}
=

(r2OH−r2OL)qH, where rOL is the oxygen-lone pair site bond length. Note that the bond lengths and

charges are also not equivalent in the two models and quadrupoles are obtained using the oxygen

site as the origin of the local coordinate system.
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electronic charges, will differ significantly from classical models, as supported by the

large positive electrostatic potential difference across a liquid vapor interface [93].

However, since solvation energies probe changes induced by the solute, we may

expect on very general grounds, and will see below, that ion solvation energies do

not depend on φBethe.

We now focus on the solvation free energy of a single ion in a bulk fluid, as is

typically estimated in simulations. The system consists of a cubic box with PBCs,

and the model ion, composed of a hard core or cavity with a point charge at its

center, fixed at the origin of the simulation cell. As discussed above, the free energy

of solvation can be written as ∆µ = ∆µcav + ∆µQ, where ∆µcav is the free energy of

inserting a cavity corresponding to the size of the ion into the solvent and ∆µQ is

the free energy of charging the cavity from zero to a charge Q. We concern ourselves

with the latter quantity herein.

In general, we cannot perform a simulation of a non-neutral system, especially

when using Ewald summation [30] to handle the electrostatics in the periodic envi-

ronment. In this case, when we charge the ion from zero to Q, we must also turn on

a neutralizing uniform background charge density from zero to −Q, canceling the

ion charge and maintaining neutrality at every step. The uniform background pene-

trates the cavity and exerts no force on the ion. This seems to be the least intrusive

way to maintain neutrality in a finite system with PBCs while focusing mainly on

properties of the ion. However, there are significant finite size effects due to the use

of Ewald summation with PBCs that must also be taken into account [94, 79, 80, 77].

In order to obtain an expression for the free energy of charging ∆µQ, we first
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define the interaction energy Ψ(R) in configuration R between the point charge and

the solvent, with the preexisting cavity present, as

Ψ(R) =

∫
drQδ(r)φ(r; R) +

∫
dr

(
−Q
V

)
φ(r; R) = Qφ(0; R)− Q

V

∫
drφ(r; R),

(4.7)

where V is the volume of the central simulation cell and the charge densities of the

ion and the background are Qδ(r) and −Q/V , respectively. The quantity

φ(r; R) =

∫
dr′

ρq(r′; R)

|r− r′|
(4.8)

is the electrostatic potential arising from the solvent, such that φ(0; R) is the value

of the electrostatic potential at the origin (the location of the point charge) in

configuration R.

In general, the average electrostatic potential
〈
φ(r; R)

〉
can be written as the

sum of a constant potential of the uniform phase (with no cavity present), i.e.

the Bethe potential [91], and an electrostatic potential induced by inhomogeneities,

which can be thought of as the change in the electrostatic potential induced by the

nanoscale broken charge symmetries that arise at the solute-solvent interface, even

in the absence of solute charge. Therefore, we can write the electrostatic potential

from the solvent as 〈
φ(r; R)

〉
= φBethe +

〈
∆φ(r; R)

〉
. (4.9)

The nonuniform potential
〈
∆φ(r; R)

〉
is the change in the solvent electrostatic po-

tential induced by the presence of the solute relative to the bulk solvent, and is

nonzero even when the solute charge is zero and only an uncharged cavity is present

in solution.
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We now proceed to derive an expression for the free energy ∆µQ by a straight-

forward coupling parameter integration, but alternate forms of ∆µQ obtained from

potential distribution theory are presented in Appendix C. In order to obtain the

desired change in free energy from a system with a cavity and no charge to one with

a cavity and a charge with its associated neutralizing background, the interaction

energy is linearly coupled to a parameter λ, such that

Ψλ(R) = λQφ(0; R)− λQ
V

∫
drφ(r; R) (4.10)

is the interaction energy at state λ. Note that this fashion of coupling λ to the

interaction energy Ψλ(R) turns on the point charge and the neutralizing uniform

background charge density in a manner that maintains neutrality for all values of

the coupling parameter λ. The free energy of state λ is given by

βµQ(λ) ∝ − ln

∫
dRe−βH0(R)e−βΨλ(R), (4.11)

where H0(R) is the portion of the Hamiltonian describing solvent-solvent interac-

tions. Differentiating this free energy with respect to λ yields the average

∂βµQ
∂λ

=

〈
∂βΨλ(R)

∂λ

〉
λ

, (4.12)

where 〈· · · 〉λ indicates an ensemble average over the system described by a coupling

parameter of λ, in which there is a cavity already present in the system. We can

now integrate over λ to obtain the free energy of charging,

∆µQ = Q

∫ 1

0

dλ
〈
φ(0; R)

〉
λ
− Q

V

∫ 1

0

dλ

〈∫
drφ(r; R)

〉
λ

. (4.13)

Using Equation 4.9, the first term in Equation 4.13 can be expressed as

Q

∫ 1

0

dλ
〈
φ(0; R)

〉
λ

= QφBethe +Q

∫ 1

0

dλ
〈
∆φ(0; R)

〉
λ
. (4.14)
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The second term in Equation 4.13, arising from the background charge density,

can be rewritten using Equation 4.9 as

−Q
V

∫ 1

0

dλ

〈∫
drφ(r; R)

〉
λ

= −QφBethe −
Q

V

∫ 1

0

dλ

〈∫
dr∆φ(r; R)

〉
λ

. (4.15)

Harris has shown the electrostatic potential φEW(r) obtained from conventional

Ewald summation is that of a system with no net charge, zero dipole, and zero prim-

itive quadrupole (or equivalently, zero traceless quadrupole and zero second moment

tensor) [92]. Therefore, even if the system has a non-zero second moment tensor,

specifically its trace T , this will be absent from the potential as evaluated by the

Ewald method. Therefore, the Ewald potential is equivalent to the electrostatic po-

tential of the system with the Bethe potential removed, i.e. ∆φ(r; R) = φEW(r; R).

One well-known feature of the Ewald potential is that its average must be zero over

the simulation cell,

1

V

∫
drφEW(r; R) =

1

V

∫
dr∆φ(r; R) = 0, (4.16)

such that the second term in Equation 4.15 vanishes. Therefore, the contribution

to the free energy from turning on the background charge is

−Q
V

∫ 1

0

dλ

〈∫
drφ(r; R)

〉
λ

= −QφBethe, (4.17)

as would be expected.

Finally, combining Equations 4.13, 4.14, and 4.17, the total free energy of
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charging is 5

∆µQ = Q

∫ 1

0

dλ
〈
∆φ(0; R)

〉
λ
. (4.18)

The contributions from the constant bulk potential φBethe have canceled, and will do

so for any neutral combination of charges. The expression for the free energy given

in Equation 4.18 is a direct result of structural perturbations of the solvent induced

by the solute, and does not contain any contributions from the bulk. Therefore, ion

solvation probes changes in the electrostatic potential induced by the presence of

the solute and there is no contribution from the absolute potential of the bulk phase.

We may now ask why approaches like the two interface model have had suc-

cess in describing ion solvation for a vast array of forms of the solvent interaction

potential. The surface potential [95, 96] that arises at a planar liquid-vapor (LV)

interface can be written using Equation 4.6 in the following form,

ΦLV = 4π

∫ zL

zV

Pz(z)dz +
[
φL

Bethe − φV
Bethe

]
, (4.19)

where the first term in the expression for ΦLV is an integration of the z-component of

the molecular dipole moment density Pz(z) from a point in the bulk vapor phase zV

to a point in the bulk liquid phase zL. The second term is a difference of the Bethe

potentials in the bulk liquid (L) and vapor (V) phases, and the latter is typically

taken to be zero in the case of water at ambient conditions due to a negligible solvent

density in the vapor phase. The first term in Equation 4.19 is the portion of the

5Note that when the system is not neutral, for example, if the neutralizing background is not

included, the contribution from the Bethe potential does not vanish. In this case, the free energy

of charging the cavity is given by ∆µQ = Q
∫ 1

0
dλ
〈
φ(0; R)

〉
λ
.
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electrostatic potential difference that arises from the structural changes induced by

a planar liquid-vapor interface, while the term involving the Bethe potentials is a

bulk contribution.

In the absence of solute charge, including the neutralizing background, the

two interface model defines the electrostatic potential at the center of a cavity in

the presence of a LV interface as
〈
φ(0; R)

〉
0,LV

=
〈
φ(0; R)

〉
0
− ΦLV. By making the

reasonable assumption that because of the low vapor density φV
Bethe ≈ 0, and using

Equations 4.9 and 4.19, the cavity potential in the presence of a LV interface is

〈
φ(0; R)

〉
0,LV

=
〈
∆φ(0; R)

〉
0
− 4π

∫ zL

zV

Pz(z)dz, (4.20)

which does not depend on the Bethe potential! Therefore, by neglecting free energy

changes from the neutralizing background, but including ΦLV, the two interface

model removes the contribution from φBethe, albeit at the cost of including the

additional dipolar potential from solvent reorganization at the LV interface. Note

that this dipolar potential is absent in purely quadrupolar fluids like methane [87],

and the two interface model yields the desired value of the potential needed for

Equation 4.18 exactly in this case, although one is still constrained to state points

along the LV coexistence curve.

Also note, however, that the two interface model is still not physically correct.

In essence, using the potential given by Equation 4.20 in expressions for the charging

free energy would seem to indicate that an interface infinitely far away from an ion

will have a significant influence on the solvation thermodynamics of the solute.

This cannot be the case, because interfacial electric fields vanish rapidly away from
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the location of the LV interface, and the potential in Equation 4.18 should be used

regardless of the geometry of the simulation cell. In addition, it is only for the special

case of negligible vapor density that it is appropriate to make the approximation

that the potential of this phase is zero, and the solvent will not generally have a

vanishing bulk potential in the vapor.

4.4.2 Calculation of Bulk and Nonuniform Electrostatic Potentials

The determination of the electrostatic potential has been a source of confusion

in itself, especially when concerning that of the uniform bulk liquid phase. Therefore,

we devote this subsection to discussing the calculation of such potentials. The

original development of the Bethe potential was concerned with finding the mean

inner potential at the center of an infinite crystal lattice. More recent work on this

same issue has led to the insight that the potential of a bulk phase is arbitrary

until boundary conditions are defined [91]. If no boundaries are defined, so that the

bulk phase extends to infinity, the potential of the bulk phase is zero. This is the

approach taken by the Ewald summation and what is typically done in simulations

determining the cavity potential [86, 77], wherein one simply integrates Poisson’s

equation from r = 0 to r = L/2, where L is the length of the cubic simulation cell.

However, as discussed above, this approach of considering an infinite bulk is

not correct, and in general the bulk phase will have a non-zero potential relative to

the vacuum, which should be taken as zero. Indeed, the bulk electrostatic potential

can be obtained from Equation 4.3. Boundaries are introduced in this expression
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Figure 4.6: (a) Schematic depiction of carving a hypothetical droplet of neutral
molecular charge densities out of a configuration of bulk water. (b) Electrostatic
potentials determined by integrating Poisson’s equation the hypothetical droplets
with and without a cavity present in the bulk phase. The change in the electrostatic
potential induced by the presence of the cavity is referred to as the cavity potential,〈
∆φ(0; R)

〉
0
, and is depicted in the figure. The potential φBethe obtained from

Equation 4.3 is also shown.

by bounding the integration volume by that of the cubic simulation cell. Although

Equation 4.3 does provide accurate numerical results for the potential of the bulk

phase relative to the vacuum in the absence of any macroscopic interfaces (like a

liquid-vapor interface), a method for determining the bulk potential that makes the

effect of boundaries clear is still desired.

The bulk potential of uniform fluid can be obtained from a simulation using

PBCs introducing the concept of a hypothetical droplet, similar to what is often

imagined in classical electrostatic discussions of dielectric media. This process is

illustrated in Figure 4.6. At each configuration R in a simulation, a cutoff radius

rc is defined. Then, a droplet of radius rc is “carved out” of the bulk, forming an

imaginary interface to which the liquid is not allowed to respond. It is important to

note that this droplet must contain neutral molecular charge distributions, since the

presence of net charge will render the medium a conductor with zero bulk potential.
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There is a direct analogy to the concept of a Gibbs dividing surface in interfacial

physics where a uniform bulk is supposed to extend unchanged up to the dividing

surface [97].

Once this droplet is defined, Poisson’s equation is integrated to yield the elec-

trostatic potential in configuration R with respect to the vacuum for a system with

spherical symmetry,

φ(r; R) = −
∫ r

0

dr′

r′2

∫ r′

0

dr′′r′′2ρq(r; R) +

∫ ∞
0

dr′

r′2

∫ r′

0

dr′′r′′2ρq(r; R), (4.21)

where the second constant term references the configurational potential to the vac-

uum phase located at r � rc. The average electrostatic potential is simply obtained

as the ensemble average in each configuration,
〈
φ(r; R)

〉
B

. For a uniform bulk,〈
φ(r � rc; R)

〉
B

= φBethe and
〈
φ(r � rc; R)

〉
B

= 0, which allows for the determi-

nation of φBethe as the difference in the electrostatic potential between these two

limits. This is demonstrated in Figure 4.6.

We conclude this subsection by emphasizing that this method of determining〈
φ(r; R)

〉
explicitly references the average electrostatic potential to its value in the

vacuum but does not require the presence of a macroscopic phase boundary in a

simulation. This approach is not restricted to uniform media, and can readily be

extended to determine electrostatic potentials in nonuniform systems. Indeed, the

potential determined in the presence of a cavity, shown in Figure 4.6b, yields φBethe

as the potential in the bulk phase and also allows for the estimation of
〈
∆φ(0; R)

〉
0
.

This allows for the determination of the cavity potential and therefore the study of

ion hydration away from liquid-vapor coexistence. In addition, it is also important

119



1.0 0.5 0.0 0.5 1.0 1.5

∆φ(0) (V)
0.00

0.05

0.10

0.15

0.20

0.25

P
0
(∆
φ
(0

))

(a) SPC/E, RHS =4 
◦
A

SPC/E, RHS =10 
◦
A

TIP5P, RHS =4 
◦
A

TIP5P, RHS =10 
◦
A

2 4 6 8 10

RHS (
◦
A)

200

150

100

50

0

β
∆
µ
Q

(b)

SPC/E
TIP5P
Q=+1
Q=-1
Born Model

Figure 4.7: (a) Probability distributions P0(∆φ(0)) of the cavity potential ∆φ(0)
in the absence of any solute charge. Distributions are shown for RHS = 4 Å and
RHS = 10 Å for both the SPC/E and TIP5P models. Note that as the solute size
is increased, the distributions narrow, in accord with Equation 4.25. Solid lines are
Gaussian distributions with the same mean and variance as the simulation results,
drawn as data points. (b) Free energies of charging a hard core of radius RHS

predicted by Equation 4.26 for the SPC/E and TIP5P models. Gray and purple
symbols indicate the SPC/E and PBE-DFT free energy predictions for a non-neutral
system as discussed in the text. The solid line is the charge-symmetric prediction
of the Born model.

to note that the introduction of a macroscopic liquid-vapor interface modifies the

bulk potential by 4π
∫ zL
zV
Pz(z)dz, but the change in the potential induced by the

presence of a cavity,
〈
∆φ(0; R)

〉
0
, is unchanged by the presence of an interface far

away.

4.4.3 Nanoscale Influences on Dielectric Continuum Theory

The above discussion has lead us to the idea that ion solvation probes changes

in the electrostatic potential that are induced by the presence of the solute relative

to the bulk phase, as exemplified by Equation 4.18. However, the results presented

there make no connections to classical dielectric continuum theories. In order to
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accomplish this task, we can use the form of ∆µQ obtained from PDT in Appendix C,

∆µQ = −kBT ln
〈
e−βQ∆φ(0;R)

〉
0
. (4.22)

As further discussed in the next chapter, DCTs like the Born model for ion solvation

assume that linear response theory is accurate, which is equivalent to stating that the

probability distribution of the cavity potential P0(∆φ(0)) =
〈
δD

(
∆φ(0)−∆φ(0; R)

)〉
0

is Gaussian, where δD(x) refers to the Dirac delta function. When this is the case,

a second-order cumulant expansion of Equation 4.22 can be performed, yielding

∆µQ ≈ Q
〈
∆φ(0; R)

〉
0
− βQ2

2

〈(
δ∆φ(0; R)

)2
〉

0
, (4.23)

where

〈(
δ∆φ(0; R)

)2
〉

0
=
〈(

∆φ(0; R)−
〈
∆φ(0; R)

〉
0

)2
〉

0
=
〈(
δφ(0; R)

)2
〉

0
, (4.24)

because the contribution to φ(r; R) from φBethe is a constant that does not depend

on R.

Previous work [98, 86, 99] has shown that the fluctuations of the cavity po-

tential can be related to the macroscopic Born theory via

βQ2

2

〈(
δ∆φ(0; R)

)2
〉

0
=

Q2

2RB

(
1− 1

ε

)
. (4.25)

Therefore, the linear response approximation to the charging free energy can be

written as the following modified Born model,

∆µQ ≈ Q
〈
∆φ(0; R)

〉
0
− Q2

2RB

(
1− 1

ε

)
, (4.26)

121



which differs from Equations 4.1 and 4.2 by the form of the term linear in the ionic

charge, which in this case is proportional to the electrostatic potential at the center

of the cavity induced by the presence of the solute.

Probability distributions of the cavity potential, shown in Figure 4.7a, are

well approximated by Gaussian distributions of the same mean and variance (shown

as solid lines), giving credence to the cumulant expansion performed to arrive at

Equation 4.26. The variances of the distributions in SPC/E and TIP5P water are

similar for solutes of the same size, as may be expected from Equation 4.25 and

the fact that they have similar dielectric constants. However, the mean of the

distributions differ between water models. This differing average cavity potential

is a direct result of the subtle structural differences at the cavity-water interface

described above. SPC/E has a higher preference to point hydrogen sites toward the

cavity, resulting in a more negative cavity potential than TIP5P water. The high

symmetry of the TIP5P model results in a cavity potential closer to zero, and the

cavity potential would vanish in the case of a water model with perfect tetrahedral

symmetry, like the BNS model of Ben-Naim and Stillinger [27].

The smaller magnitude of the TIP5P cavity potential leads to smaller solva-

tion asymmetries with respect to the sign of the ion charge than is expected from

SPC/E. Indeed, the predicted free energies of charging in SPC/E and TIP5P water,

compared with the classical Born model in Figure 4.7b, supports this idea. The

magnitude of the deviations from the Born model are also in good agreement with

previous results [77], with anions being more favorably solvated than cations of the

equivalent size.
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In the framework presented here,
〈
∆φ(0; R)

〉
0

=
〈
φA(0; R)

〉
0
. However, pre-

vious work has used
〈
φA(0; R)

〉
0

to predict charging free energies of a non-neutral

system in the absence of a neutralizing background charge density [86, 77]. Co-

incidentally, this subtle misinterpretation recovers the expected charge asymmetry

observed in experiment. If one utilizes the form of Equation 4.26 appropriate to a

system with a net charge,

∆µQ ≈ Q
〈
φ(0; R)

〉
0
− Q2

2RB

(
1− 1

ε

)
, (4.27)

charging free energies predicted for classical water models display the opposite asym-

metry. These predictions for the SPC/E model are shown as gray data points in

Figure 4.7b.

In contrast, the predicted charging free energies obtained using cavity poten-

tials from quantum mechanical DFT simulations shown as the purple data points in

Figure 4.7b display the experimentally observed asymmetry for a non-neutral sys-

tem. The absolute cavity potentials obtained from DFT simulations are opposite

in sign to the corresponding classical potentials, leading to charging free energies of

the expected asymmetry with respect to the sign of the ion charge. It was shown

above that these DFT calculations resulted in an interfacial structure similar to

that of the TIP5P cavity-water interface, which would lead one to believe that the

resultant cavity potentials should be similar. However, unlike classical point-charge

models, the nuclear and electron densities of water are explicitly represented in such

quantum models. Therefore, electron density can “spill” somewhat into the cavity,

effectively allowing negative charge density to penetrate further into the solute than

123



any positive charge. This is in stark contrast to what occurs in classical models,

where a positive point charge can penetrate further than negative charges. Due

to the closeness of negative charge density to the center of the solute, we can ex-

pect the resultant DFT cavity potentials to be positive, as is observed. However,〈
∆φ(0; R)

〉
0

is opposite in sign and much larger than that of classical models, as

discussed above. Thus, the predicted free energies of charging in a neutral system

significantly differ between classical and quantum representations of the molecular

interactions in water, despite the promising predictions obtained for systems with

a net charge. Ongoing work is being undertaken to resolve this issue. Therefore,

we focus our attention on
〈
∆φ(0; R)

〉
0

obtained for classical water models in the

remainder of this chapter, but the results found qualitatively apply to
〈
φ(0; R)

〉
0

as

well.

4.5 Length-scales of Ion Solvation

Originating with the work of Ashbaugh [86], it has been appreciated that after

a core radius of roughly 5–6 Å, the cavity potential is relatively insensitive to the

ion size. In order to understand this phenomenon, we further extend our analysis

by decomposing the cavity potential into short-ranged (SR) and long-ranged (LR)

components, also termed near- and far-field, respectively. Following the treatment

of electrostatics in local molecular field (LMF) theory, we can write the electrostatic
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potential as

φ(r; R) =

∫
dr′

ρq(r′; R)

|r− r′|

=

∫
dr′

ρqc(r′; R)

ε |r− r′|
+

∫
dr′

ρqσ(r′; R)

ε |r− r′|

≡ φSR(r; R) + φLR(r; R), (4.28)

where φSR(r; R) is the near-field portion of the electrostatic potential, while φLR(r; R)

is the corresponding far-field component, such that

ρqc(r; R) =

∫
dr′ρq(r′; R)

[
δ(|r− r′|)− exp(− |r− r′|2 /σ2)

σ3π3/2

]
(4.29)

is the short ranged “core” component of the charge density, and

ρqσ(r) =

∫
dr′ρq(r′; R)

exp(− |r− r′|2 /σ2)

σ3π3/2
(4.30)

is the Gaussian-smoothed, LR portion of the charge density, which naturally arises

in LMF theory.

As detailed in Appendices E.1 and E.2, the far-field component of the potential

completely contains the contributions from the first non-vanishing multipole moment

of the charge density ρq(r), as well as the next higher order moment. Therefore, the

splitting of the potential in Equation 4.28 effectively isolates the longest-wavelength

modes of the electrostatic response to the presence of the solute within φLR(r; R).

This far-field component will also contain non-trivial modifications to the higher

moments in terms of the lower moments, and these modifications in turn make

up the multipole contributions to φSR(r; R). In the case of water, the electrostatic

potential φLR(r; R) will have the exact same dipole and quadrupole terms as φ(r; R),
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Figure 4.8: Decomposition of the cavity potential into near- and far-field com-
ponents,

〈
∆φSR(0; R)

〉
0

and
〈
∆φLR(0; R)

〉
0
, respectively, for (a) SPC/E and (b)

TIP5P water as a function of solute size. Shaded regions indicate the variance of
the corresponding distributions of each component of the cavity potential, shown in
Figure 4.9. Note the different scales of the vertical axes in (a) and (b).

while φSR(r; R) will contain only multipole contributions of order greater than the

quadrupole. Therefore, φSR(r; R) will also lack any contribution from the Bethe

potential, which will be considered part of the far field response. The cavity potential

can then be written as

〈
∆φ(0; R)

〉
0

=
〈
φ(0; R)

〉
0
− φBethe =

〈
φSR(0; R)

〉
0

+
〈
φLR(0; R)

〉
0
− φBethe

=
〈
∆φSR(0; R)

〉
0

+
〈
∆φLR(0; R)

〉
0
, (4.31)

such that the far-field component of the cavity potential is

〈
∆φLR(0; R)

〉
0

=
〈
φLR(0; R)

〉
0
− φBethe (4.32)

and the near-field component is simply
〈
∆φSR(0; R)

〉
0

=
〈
φSR(0; R)

〉
0
.

For a planar interface, the electrostatic potential difference across the phase

boundary, given by Equation 4.19, is a sum of a long ranged dipolar component

and the Bethe potential. In this limit, the surface potential is exclusively due to

126



far field contributions. Therefore, we can expect that
〈
∆φLR(0; R)

〉
0

will dominate

the cavity potential in the large solute limit. This is indeed the case, evidenced by

the data shown in Figure 4.8. In contrast, we find that for small solutes (RHS <

1 nm), the cavity potential has a significant component that is due to near-field

electrostatics, which do not contain dipole and quadrupole contributions. Therefore,

by separating the electrostatics into near- and far-field components, we can readily

see that in the small cavity limit higher order multipoles will make a nontrivial

contribution to the cavity potential, in agreement with explicit multipole expansions

of the potential [100, 101].

In the small solute regime, when the near-field electrostatics contribute sub-

stantially to
〈
∆φ(0; R)

〉
0
, the cavity potential is very sensitive to local structure,

and therefore the manner in which the H-bond network is maintained around the so-

lute. Due to the donor/acceptor angular asymmetries detailed above,
〈
∆φSR(0; R)

〉
0

displays a significant dependence on the specific form of the water-water interaction

potential; cavity potentials generated by SPC/E water are roughly 4–5 times larger

in magnitude than those for the TIP5P model for all RHS. However, the qualita-

tive features of the solute size-dependence of all portions of the cavity potential are

independent of the choice of water model. The near-field component of the cavity

potential is significant for RHS < RC , a crossover occurs at a solute radius near RC ,

after which
〈
∆φLR(0; R)

〉
0

dominates the behavior of the cavity potential.

The variances of the corresponding distributions of the components of the

cavity potential are depicted as shaded regions in Figure 4.8. The variance of the

near-field portion has a significant dependence on solute size, decreasing with in-
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Figure 4.9: Probability distributions of (a) the total cavity potential, (b) its near-
field component, and (c) its far-field for cavities of radii RHS =1, 4, and 10 Å
in SPC/E and TIP5P water. Solid and dashed lines are Gaussian distributions
with the same mean and variance as the corresponding simulation data points for
the SPC/E and TIP5P models, respectively. The inset in (a) displays lnP0(δφ(0))
and the corresponding Gaussian distributions with the same mean and variance
for RHS = 1 Å for SPC/E and TIP5P water. Note that for small cavity sizes the
distributions do not follow Gaussian statistics.

creasing cavity radii, and it will reach a δ-function distribution for RHS � σ, as

evidenced by the probability distributions of the near-field component of the cavity

potential shown in Figure 4.9b. In contrast, the variance of the far-field portion of

the cavity potential changes very little as the solute is changed from a point solute

to RHS = 10 Å, and the distributions of ∆φLR(0) are remarkably Gaussian for all

solute sizes, Figure 4.9c. Therefore, deviations from a Gaussian in distributions of

the total cavity potential, shown in Figure 4.9a, arise solely from the non-Gaussian

nature of the near-field component. This may not be surprising, since near-field in-

teractions involve local reorientations of charge on the scale of a water molecule, and

significant non-linearities due to structural rearrangements can be expected when

charging a neutral core. On the other hand, long ranged electrostatic interactions are

slowly-varying over such small distances, and the corresponding far-field response
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is a collective behavior involving length-scales on the order of several molecules,

exemplified by the formation of dipole layers at the interface of a large cavity, for

example. As such, we can expect far-field components of electrostatic quantities to

follow Gaussian behavior with a variance described by linear-response relations akin

to Equation 4.25, which treat the solvent as a dielectric continuum. These ideas are

discussed in further detail in the next chapter.

4.6 Conclusions

In this chapter, we have demonstrated that subtle differences in the represen-

tation of molecular interaction are manifested in the structure and thermodynamics

of ion hydration. In particular, the proposed negativity track of Agmon [82], aris-

ing from a delocalization of electron density about the oxygen atom of a water

molecule, was not substantiated by quantum mechanical DFT calculations of hard

sphere solutes in water. Instead, the manner in which the hydrogen bond network

is maintained around solutes near the length scale transition was found to be con-

sistent with the explicit representation of lone pair electrons in the classical TIP5P

water model, and contrasts the structure of SPC/E water around the solute, which

displays significant donor/acceptor asymmetries.

These subtle asymmetries in nanoscale interfacial structure have significant

consequences on the thermodynamics of solvation; in this case, ion hydration is

influenced by structure through the cavity potential. In our quest to illustrate this

point, we have also shed light on the paradoxical hydration asymmetry with respect
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to the sign of the ion charge. In particular, the symmetric portion of the charging

free energy, originally described by Born, should be modified by an additional term

consisting of the product of the ion charge and the portion of the electrostatic

potential at the center of the cavity that is induced by the solute, and not the total

electrostatic potential as initially postulated. This component of the cavity potential

is obtained by removing the constant potential of the bulk dielectric, termed the

Bethe potential, and several methods of calculating this potential were explored.

The approach developed herein also allows for the study of ion solvation away from

liquid-vapor coexistence, something that is not possible when employing the two-

interface model discussed throughout the text.

In addition, by separating this cavity potential into near- and far-field com-

ponents, it was shown that near-field electrostatics, and therefore higher order mul-

tipole interactions, are important when solvating small ions. However, a crossover

occurs in the range 5 Å < RHS < 10 Å, in which the contribution from the near-field

electrostatics diminishes, and after which the cavity potential is exclusively due to

far-field electrostatics. It has been suggested that after this length scale ion specific

effects vanish [102], and consequently, our results imply that such ion specificity

arises from near-field electrostatics. In addition, long ranged components of dielec-

tric response are found to be Gaussian in nature for all solute sizes, and continuum

descriptions of far-field electrostatics are expected to be accurate. We will describe

some aspects of such DCTs in the next chapter.

We conclude by noting that our findings are not restricted to aqueous solutions.

Two particularly interesting and important limits are illustrated by considering ion
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solvation in methane and a size-asymmetric primitive model (SAPM) electrolyte.

As mentioned above, methane, at least in the tetrahedral site-site classical model

typically used, is a purely quadrupolar molecule; it has no dipole or net charge. For

such a fluid,
〈
φ(0; R)

〉Me

0
= 0, such that

〈
∆φ(0; R)

〉Me

0
= φMe

Bethe. In this case, there

is no structural component to the cavity potential, and the symmetry with respect

to the sign of the ion charge depends only on the sign of φMe
Bethe. In addition, for

solvation of a single ion in the absence of a neutralizing background, the charging

process is completely symmetric with respect to the sign of the ion charge, because〈
φ(0; R)

〉Me

0
= 0.

The SAPM electrolyte represents the opposite limit, wherein the cavity po-

tential is completely determined by the response of the solvent to the solute. The

bulk potential vanishes in any conductor, therefore φSAPM
Bethe = 0. It immediately fol-

lows that the cavity potential
〈
∆φ(0; R)

〉SAPM

0
=
〈
φ(0; R)

〉SAPM

0
is solely due to the

structure induced by the solute, which in this case is simply a consequence of the

size asymmetry between the positive and negative ions of the SAPM. Indeed, in the

limit that the solvent ions are the same size, leading to the symmetric primitive

model (SPM), the cavity potential vanishes.
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Chapter 5

On Molecular Interactions and the Response to Nanoscale Broken

Symmetries II: Dielectric Response

5.1 Ion Solvation from the LMF Perspective

The theoretical and computational treatment of ion solvation typically begins

by dividing the solvation process into electrostatic and non-electrostatic steps, such

that one begins with a uniform bulk solvent and ends with a single ion of charge

Q in solution. The traditional approach, illustrated in Figure 5.1 and considered

even by Born [103], separates an ion into a hard core, which excludes solvent charge

from a spherical volume of radius R, and a point charge at the center of this cav-

ity. Instead of inserting an ion directly into the solvent, first a cavity is created by

inserting the hard spherical core of the ion into the fluid. This first step is typically

considered non-electrostatic in nature, because the free energy of core insertion does

not depend on the ion charge. However, as discussed in detail in the preceding

chapter, significant asymmetries in the structural response of the solvent to such

cavities can develop. This asymmetric structure of the solvation shell can induce a

non-zero electrostatic response to cavity formation, exemplified by the cavity poten-

tial. Therefore, significant electrostatic asymmetries already exist when a spherical

cavity is formed in a dielectric.
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The asymmetric solvation structure around a cavity additionally complicates

the classical concept of a test charge in molecular simulation. Dielectric response

cannot be probed directly with a point test charge because it can overlap with

charged molecular sites, giving rise to singularities. Therefore, point charges must be

placed inside cavities already existing in a fluid. But standard dielectric continuum

arguments no longer hold due to the asymmetries and nonlinearities associated with

the solvent response to a cavity. To overcome such issues, we will utilize LMF theory

to introduce the concept of a Gaussian test charge. We will show that Gaussian

charge distributions are the appropriate entity to use as a test charge in order to

probe dielectric response in molecular simulations.

The non-zero electrostatic response of the solvent to the ion core will make

the next step of the solvation process, placing a point charge of magnitude Q at the

center of the spherical cavity, asymmetric with respect to the sign of Q. Further

asymmetries develop when one considers the additional polarization of the solvent,

in this case water, in response to the presence of the ion charge. This polarization

asymmetry will depend on the nature of the water-water intermolecular potential,

and, to a lesser extent, the ion-water interaction potential. If the ionic charge

is negative, classical water models like SPC/E and TIP5P will tend to orient a

positively charged hydrogen site toward the ion. Indeed, when the joint probability

distributions P (θµ, φ) discussed in the previous chapter are calculated for water

molecules in the hydration shell of an anion, we find similar structures for both

models, Figures 5.2a and 5.2b. However, if one considers turning on a positive charge

at the center of the ion core, the different representations of the lone pair electrons
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Figure 5.1: Illustration of the classical view on ion solvation in aqueous solution.
The first step consists of inserting a hard core into the solvent, depicted as a grey
sphere, and the free energy of this process is considered non-electrostatic in nature.
This first step already exhibits non-linear response and asymmetries in the solvation
shell of the cavity. This asymmetric structure leads to further asymmetries in the
rest of the solvation process. The electrostatic portion of the ion solvation free
energy is due to charging of the hard sphere to yield the fully charged ion, indicated
by the green sphere with a “+” at the center, and this makes up the second step
of the ion solvation process. Note that this latter step can be further split into two
processes from an LMF perspective: turning on the short ranged ion charge Qv0(r),
and turning on the far field contribution, vQ(r) = Qv1(r).

will lead to significantly different solvation structures. Indeed, the distributions

in Figure 5.2c indicate that SPC/E tends to point its dipole moment away from a

cation, and can readily adopt configurations along its “classical negativity track.” In

contrast, the cationic hydration shell structure of TIP5P water is nearly symmetric

with respect to the anionic shell upon interchange of lone pair and hydrogen sites,

Figure 5.2d. The high symmetry of the TIP5P solvation shell may be expected from

our results in the previous chapter.

An alternative view of ion solvation can be obtained through the perspective

of LMF theory, as depicted in Figure 5.3. We can divide the final step of the

traditional process, charging the ionic core, into near- and far-field components.

The near-field portion of the point charge, with potential Qv0(r), is short ranged,

rapidly varying over molecular length scales, and will contain the divergence of the
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Figure 5.2: Joint probability distributions P (θµ, φ) calculated for molecules in
the first hydration shell of an anionic (a,b) or cationic (c,d) LJ particle of unit
charge in SPC/E (a,c) or TIP5P (b,d) water. Red indicates high probability, while
blue corresponds to low probability. The water-ion LJ interaction parameters are
σLJ = 3.44778 Å and εLJ = 0.893228 kJ/mol, and correspond to a united atom
representation of methane [79]. For consistency, the same ion-water LJ parameters
were used for both SPC/E and TIP5P water systems.
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Coulomb potential as r goes to zero. Therefore, the insertion of this truncated point

charge into the fluid cannot be performed without a cavity present, and this step

must follow insertion of the ion core. Consequently, asymmetric solvation behavior

associated with the presence of a cavity in the fluid, as well as the polarization

asymmetry discussed above, will be associated with this near-field charging process.

The far-field component of the point charge corresponds to a Gaussian charge

distribution of magnitude Q and width l, where l is the LMF length scale used

to separate the point charge. Insertion of this Gaussian charge distribution into

the solvent can be accomplished with or without an excluded volume present in

the liquid, because the potential due to this charge distribution is finite at r = 0.

Therefore, we can rearrange the steps in the ion solvation process as depicted in

Figure 5.3: (i) introduce a Gaussian charge distribution into the bulk fluid, (ii)

insert a spherical cavity into the solvent at the center of the Gaussian charge, and

(iii) turn on the near-field portion of the charge. The free energy change associated

with this process is identical to that of Figure 5.1, yet the alternative rearrangement

better illustrates where asymmetries and non-linearities arise.

Modification of strong, local interactions, like the insertion of a hard core in

the presence or absence of a Gaussian test charge, or turning on near-field charges,
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will typically induce a non-linear and asymmetric solvent response 1, as discussed

above and in detail in the previous chapter. In contrast, we expect the insertion

of an appropriately chosen Gaussian charge distribution into the solvent to be a

small perturbation, such that the first step in the LMF-based ion solvation process

in Figure 5.3 follows linear response theory and therefore will be symmetric with

respect to the sign of Q. Therefore, the LMF approach to ion solvation isolates linear

and symmetric responses in the first step, while moving all asymmetries and non-

linear responses to steps (ii) and (iii). These latter steps involve strong short ranged

interactions more dependent on details of the particular molecular models used and

are not amenable to general theoretical treatment. This chapter focuses on step (i),

inserting a Gaussian charge distribution into a fluid of interest. We develop accurate

analytic approximations to the structural and thermodynamic response of dielectric

and conducting fluids to such Gaussian charges, and find that such distributions are

an interesting probe of dielectric response in their own right. Indeed we argue they

play the role of the classical test charge but can be consistently used in molecular

simulations.

1If the cavity radius is much larger than the truncation length of the charge, R � l, the

surrounding fluid will not interact with the near-field component of the charge. In this special

case, the solvent will not exhibit a response to this portion of the charging process. However, there

will still exist a large non-linear response to the insertion of such a large cavity and an associated

asymmetric hydration structure and cavity potential.
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Figure 5.3: Illustration of the LMF-based reordering of the ion solvation process
as discussed in the text. The first step in this process corresponds to inserting a
Gaussian charge distribution of width l and magnitude Q into the uniform bulk
fluid, and this distribution is schematically indicated by the green region in the
second panel from the left. This first step is expected to be symmetric with respect
to the sign of Q and in the linear response regime, as detailed in the text. The next
step in the process consists of inserting the uncharged ion core at the location of the
Gaussian test charge, yielding a solute with far-field electrostatics and strong, short
ranged, non-electrostatic core interactions. This step in the solvation process will
introduce asymmetries with respect to Q due to the asymmetric nature of the water
molecule and the H-bond network around the solute. The response of the solvent
to the introduction of such a cavity is also expected to be non-linear, due to harsh
repulsive core interactions. The third and final step of the process is to turn on the
near-field portion of the ion charge, Qv0(r), effectively turning the Gaussian charge
into a point charge. This step will be asymmetric with respect to the sign of Q if the
water model used is not perfectly tetrahedral. Whether or not the solvent response
to this charging process is in linear regime will depend on both the magnitude and
sign of Q, as well as the exact form of the water-water and water-ion interaction
potentials, and general statements regarding this type of charging cannot be made.
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5.2 Regularizing point charge singularities: Probing the dielectric

response of bulk fluids with Gaussian charges

Inserting a test charge into a fluid continuum to probe its dielectric response is

commonplace in classical electrostatics [104, 105, 106]. Nevertheless, complications

arise when this is performed in a molecular detailed system. For example, a point

charge can be readily inserted into the space between molecules, which is free of nu-

clear charge or effective point charges in classical models. However, if the probe is

placed close to a charged atomic site, singularities arise and the associated energet-

ics and response cannot be calculated. This classical Coulomb collapse singularity

is often avoided through the introduction of a hard spherical volume surrounding

the probe charge where even intramolecular point charge sites are not allowed to

penetrate [106], and appears in the commonly used scheme depicted in Figure 5.1

to calculate ion solvation free energies [79, 80].

An alternative route to this type of regularization is to smear the probe with

a Gaussian distribution, resulting in a Gaussian test charge, which, with smearing

over large enough scales (a few Angstroms for water), can be inserted even near

intramolecular point charged sites without large singular energies arising. This

type of charge distribution arises when using LMF theory ideas to reorganize the

steps involved in calculating ion solvation free energies, as illustrated in Figure 5.3.

We derive accurate analytic approximations to the structural and thermodynamic

response of dielectric fluids to a Gaussian test charge herein.

We first consider the free energy change upon insertion of a Gaussian charge
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distribution of width l centered at the origin, such that the electrostatic potential

is

vQ(r) =
Q erf(r/l)

r
= Qv1(r). (5.1)

One formally exact way to determine the free energy of inserting this distribution,

∆Gl, is to use PDT,

e−β∆Gl =
〈
e−βΨ(R)

〉
0

=
〈
eβΨ(R)

〉−1

Q
, (5.2)

where 〈· · · 〉Q and 〈· · · 〉0 indicate ensemble averages over configurations of the system

where the Gaussian charge distribution is present or absent, respectively,

Ψ(R) =
N∑
i=1

qivQ(ri) =

∫
drρq(r; R)vQ(r) (5.3)

is the total energy of interaction with the Gaussian charge distribution for a single

point in phase space R, and

ρq(r; R) =

NC∑
i=1

qiδ(r− ri(R)) (5.4)

is the singlet charge density of the system of NC charges, where ri(R) and qi,

respectively, are the position and charge of site i in configuration R, such that the

average charge density in the presence of vQ(r) is given by

ρqQ(r) =
〈
ρq(r; R)

〉
Q

=

〈
NC∑
i=1

qiδ(r− ri(R))

〉
Q

. (5.5)

A formally equivalent but alternative route to the free energy ∆Gl that avoids

averaging over exponentials is to proceed by coupling parameter integration, and

this is detailed in Appendix F.

140



The Gaussian charge distribution can be considered a small perturbation with

appropriately chosen Q and l, and so we expect the system to respond in a manner

consistent with linear response theory. In this regime, the free energy of turning on

vQ(r) is given by the Gaussian or linear response approximation to Equation 5.2,

∆Gl ≈
1

2

[〈
Ψ(R)

〉
0

+
〈
Ψ(R)

〉
Q

]
. (5.6)

Note that in the bulk, uniform fluid, the average charge density is ρq0(r) = 0, and

therefore
〈
Ψ(R)

〉
0

= 0. The free energy of turning on the Gaussian distribution of

charge can now be written as

∆Gl =
1

2

〈
Ψ(R)

〉
Q

=
1

2

∫
drρqQ(r)vQ(r) =

1

2

1

(2π)3

∫
dkρ̂qQ(k)v̂Q(k), (5.7)

where we have used Parseval’s theorem to rewrite the free energy in terms of an

integral in Fourier space, and v̂Q(k) = 4πQ
k2 e

−k2l2/4. Further consequences of Equa-

tion 5.7 are discussed in Appendix G. We proceed by finding an analytic expression

for the structural response ρqQ(r) to the Gaussian test charge in the next subsection.

5.2.1 Nonuniform Charge Densities from Linear Response Theory

A functional expansion of ρqQ(r) about the uniform system to linear order in

vQ(r) allows us to rewrite the charge density of the nonuniform system in terms of

the charge-charge linear response function of the uniform system;

ρqQ(r) ≈ ρq0(r) +

∫
dr′

δρq0(r)

δ [−βvQ(r′)]
[−βvQ(r′)] = −β

∫
dr′χqq0 (|r− r′|)vQ(r′), (5.8)

where χqq0 (r, r′) =
〈
δρq0(r; R)δρq0(r′; R)

〉
0

is the charge-charge linear response func-

tion and δρq0(r; R) ≡ ρq(r; R) − ρq0(r) = ρq(r; R). The resulting expression for the
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density in k-space is then given by

ρ̂qQ(k) ≈ −βχ̂qq0 (k)v̂Q(k). (5.9)

The Gaussian in v̂Q(k) cuts off large k components in ρ̂qQ(k). For large enough l, we

can thus expand the charge-charge linear response function to second order as

χ̂qq0 (k) ∼ χ̂
(0)qq
0 + k2χ̂

(2)qq
0 = k2χ̂

(2)qq
0 , (5.10)

where χ̂
(0)qq
0 = 0 due to neutrality, and χ̂

(2)qq
0 = −1

6

∫
drr2χqq0 (r). The expression for

the charge density then becomes

ρ̂qQ(k) ≈ −4πβQχ̂
(2)qq
0 e−k

2l2/4 (5.11)

The second moment of the charge-charge linear response function is exactly

related to the dielectric constant by a generalization of the Stillinger-Lovett moment

conditions [107, 108, 109, 26, 106],

4πβχ̂
(2)qq
0 = 1− 1

ε
. (5.12)

Therefore, the expression for the charge density in Equation 5.11 becomes

ρ̂qQ(k) = −Q
(

1− 1

ε

)
e−k

2l2/4, (5.13)

or, equivalently in real space,

ρqQ(r) = −Q
(

1− 1

ε

)
1

l3π3/2
e−r

2/l2 . (5.14)

Thus, in this approximation the charge density induced by a Gaussian test charge

with potential vG(r) is a Gaussian with the same width as the test distribution and
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with magnitude −Q
(
1− 1

ε

)
. This illustrates the classical concept of incomplete

charge screening in a dielectric, where the magnitude of a charge immersed in a

dielectric that is felt by a test charge very far away is reduced by a factor of 1/ε.

In the case of a conducting medium, ε = ∞, and complete screening is recovered,

ρ̂qQ(0) = −Q.

In addition to the bare charge density, we can also readily obtain an approxi-

mate expression for the Gaussian smoothed charge density ρqσQ (r) =
∫
dr′ρq(r′)ρG(|r− r′| ;σ),

where ρG(r;σ) ≡ exp(−r2/σ2)/σ3π3/2. Using Equation 5.14 for the charge density,

ρqσQ (r) is given by

ρqσQ (r) = −Q
(

1− 1

ε

)
1

γ3π3/2
e−r

2/γ2

, (5.15)

where γ ≡
√
l2 + σ2. We can anticipate that approximation 5.15 for the smoothed

charge density will be accurate even for circumstances where Equation 5.14 fails,

because the smoothed charge density is a description of the long-wavelength response

of a charged system [1].

At this point, I should mention that the charge density in the presence of vQ(r)

can also be obtained from configurations of the bulk fluid using the configuration-

based linear response formulation of Hu and Weeks [110],

ρqQ(r) =

〈
ρq0(r; R)e−βΨ(R)

〉
0〈

e−βΨ(R)
〉

0

≈ −β
〈
δρq0(r; R)δΨ0(R)

〉
0
, (5.16)

where the approximation is valid in the linear regime and δΨ0(R) ≡ Ψ(R) −〈
Ψ(R)

〉
0

= Ψ(R). Hu and Weeks discuss the more general case, where the 0 system

is nonuniform, and in general

〈
δρq0(r; R)δΨ0(R)

〉
0

=

∫
dr′χqq0 (r, r′)vQ(r′) (5.17)
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for any particular choice of the reference system. For the specific case where the

reference state is a uniform fluid, as considered here, we can readily evaluate both the

left and right sides of Equation 5.17, as both will depend only on the scalar distance

r. However, if we consider turning on a test charge distribution in a nonuniform

environment, the charge-charge linear response function χqq0 (r, r′) is six-dimensional,

while the fluctuation term on the LHS of Equation 5.17 is at most three-dimensional,

and can easily be evaluated in both uniform and nonuniform systems.

5.2.2 The Continuum Free Energy

When the above approximations for the induced charge density are valid, we

can readily obtain an analytic expression for the free energy ∆Gl by inserting Equa-

tion 5.14 into Equation 5.7, yielding

∆Gl = − Q2

l
√

2π

(
1− 1

ε

)
. (5.18)

This approximation for ∆Gl can be used to analytically evaluate the first step in

the LMF-based ion solvation process of Figure 5.1. It is also interesting to note that

Equation 5.18 has the same form as the classical Born charging free energy, with

2RB → l
√

2π.

Regularizing the electrostatic interactions by consideration of a Gaussian charge

distribution and not a point charge is essential, as it eliminates any divergences at

large k. Indeed, if one tries to carry out the above with a point charge, the integra-

tion over k in Equation 5.7, and therefore the free energy, will diverge (analogously,

the point charge limit of Equation 5.18, liml→0 ∆Gl, also diverges). This divergence
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occurs as k approaches infinity, or equivalently as r approaches zero. This classical

Coulomb collapse singularity occurs at small scales, contrasting the other common

divergence of the Coulomb potential when r → ∞, for example, when analytically

evaluating the electrostatic energy of a system in classical statistical mechanics,

limR→∞
∫ R
rc
dr1

r
= ∞, where the cutoff rc > 0 regularizes the potential at short

distances. While Gaussian charges still have the latter, long-ranged divergences,

the short-ranged, r → 0 singularity is tamed, allowing us to consider processes like

inserting a test distribution in a molecular system.

The free energy in Equation 5.18 can be readily generalized in terms of a k-

dependent dielectric constant, arising from the higher order terms neglected in the

small-k expansion of the charge-charge linear response function in Equation 5.10.

In this case,

4πβ

k2
χ̂qq0 (k) = 1− 1

ε(k)
, (5.19)

and the linear response expression for the free energy becomes

∆Gl = − Q2

l
√

2π

[
1− l

√
2π

π

∫ ∞
0

dk
e−k

2l2/2

ε(k)

]
, (5.20)

which can be readily evaluated if ε(k) is known, or at least a good representation

of the small k-behavior of ε(k) should provide a reasonable approximation to ∆Gl.

Simulations results for χqq0 (r) will provide such data, and can be used to verify the

approximations used above. We also expect that linear response theory will be

quite accurate for a Gaussian charge distribution with l ≥ 4 Å in all classical water

models, but there may, and most likely will be small differences in ε(k) depending

on the particular interaction potential for water.
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5.2.3 Gaussian Fluctuations of the Interaction Energy

The accuracy of the linear response approximations in the derivation of ∆Gl

imply that the distribution of the interaction energy Ψ(R) is Gaussian. The dis-

tribution is then completely defined by its first two cumulants, and we determine

analytic expressions for these quantities in this subsection.

In the uniform system, the first cumulant is trivially zero,
〈
Ψ(R)

〉
0

= 0. From

Equations 5.7 and 5.18, the mean evaluated over configurations in the system with

the charge present is

〈
Ψ(R)

〉
Q

= 2∆Gl = − 2Q2

l
√

2π

(
1− 1

ε

)
. (5.21)

In Appendix G, we demonstrate that the variances in the systems with and

without the Gaussian charge present are equal,
〈
(δΨ(R))2

〉
0

=
〈
(δΨ(R))2

〉
Q

. The

variance can be evaluated by first noting that
〈
(δΨ(R))2

〉
0

=
〈
Ψ2(R)

〉
0
, because

the mean interaction energy is zero in the uniform fluid. The square of the energy

can be rewritten as

〈
Ψ2(R)

〉
0

=

〈∫
dr

∫
dr′ρq(r; R)ρq(r′; R)vQ(r)vQ(r′)

〉
0

=

∫
dr

∫
dr′
〈
ρq(r; R)ρq(r′; R)

〉
0
vQ(r)vQ(r′)

=

∫
dr

∫
dr′χqq0 (|r− r′|)vQ(r)vQ(r′)

=
1

(2π)3

∫
dkχ̂qq0 (k)v̂Q(k)v̂Q(−k), (5.22)

using Parseval’s theorem and the convolution theorem to arrive at the last equality.

By expanding the linear response function χ̂qq0 (k) to second order and using the

Stillinger-Lovett second moment condition, as done above for the free energy, we
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obtain

〈
(δΨ(R))2

〉
0

=
〈
(δΨ(R))2

〉
Q

=
2kBTQ

2

l
√

2π

(
1− 1

ε

)
= −2kBT∆Gl. (5.23)

The probability distribution of the interaction energy can then be described by the

Gaussian distribution

P0/Q(Ψ) =
[
2π
〈
(δΨ(R))2

〉
0/Q

]−1/2

exp

−
(

Ψ−
〈
Ψ(R)

〉
0/Q

)2

2
〈
(δΨ(R))2

〉
0/Q

 , (5.24)

such that sampling in the presence of the Gaussian charge simply shifts the mean

of the distribution.

5.3 Long-Wavelength Dielectric Response is Insensitive to Molecular-

Scale Details

We can now test the above ideas by probing the response of dielectric fluids

to a Gaussian charge distribution with simulation. In this section, we focus on the

response of SPC/E and TIP5P water to this type of regularized test charge. We

can take several approaches to handle the electrostatics in the simulation of these

systems. The results presented in this section were obtained by using the Ewald

summation method to calculate electrostatic interactions between water molecules,

while the interactions between the Gaussian distribution and water was performed

by simple summation using the minimum image convention. This manner of treating

electrostatics leads to artifacts at the edges of the box due to discontinuities in the

force from the Gaussian test charge, and we therefore omit water molecules within

five Angstroms of the box edge in our results. We will see later that when Ewald
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Figure 5.4: (a) Bare and (b) Gaussian smoothed charge densities for SPC/E and
TIP5P water obtained in the presence of Gaussian test charge of magnitude Q = ±1
and width l = 4.5 Å. Data points are simulation results while lines in (a) and (b)
are the analytic approximations of Equations 5.14 and 5.15, respectively. Smoothed
charge densities were calculated using a smoothing length of σ = l.

summation is used to evaluate all electrostatic interactions in the system, including

those between the Gaussian charge and water, significant finite size effects arise due

to the periodicity of the Ewald method and need to be taken into account in our

formalism.

In the previous chapter, it was demonstrated that small differences in the in-

teraction potentials of SPC/E and TIP5P lead to significant differences in the struc-

tural response to a spherical cavity and, therefore, ion solvation thermodynamics.

However, the bare and smoothed charge densities in Figure 5.4 illustrate that such

molecular details are not needed for the accurate description of long-wavelength di-

electric response. The analytic approximations for the induced charge densities in

Equations 5.14 and 5.15 describe the simulation data remarkably well, illustrating
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Figure 5.5: Probability distributions of the interaction energy Ψ between (a) SPC/E
or (b) TIP5P water and a Gaussian test charge of magnitude Q = +1 and l = 4.5 Å
in the uniform fluid, P0(Ψ), and in the presence of the test charge, PQ(Ψ). Solid
lines are the corresponding analytic approximations given by Equation 5.24. Dashed
lines are the finite size corrected approximations to the distributions obtained with
a variance estimated by Equation 5.25. (c) The variance of the interaction energy
in SPC/E water as a function of inverse box length L. The solid line is a linear fit
to the data points and the starred data point is the continuum approximation to
the variance given by Equation 5.23. (inset) Natural logarithm of the probability
distributions corresponding to the data points in the main figure.

that far-field electrostatics follows dielectric continuum theory. Since the only prop-

erty of the fluid in the expressions for ρqQ(r) and ρqσQ (r) is the dielectric constant,

we can conclude that this is all that is needed for a model to accurately describe

long-wavelength dielectric response. Indeed, the dielectric constants of SPC/E and

TIP5P are quite similar, εSPC/E = 72 while εTIP5P = 81.5, and their responses to a

Gaussian test charge are nearly identical.

In addition to providing an accurate description of the static dielectric re-

sponse, fluctuations in the energy are well approximated by the framework devel-

oped herein, as evidenced by the probability distributions of the interaction energy

Ψ in Figure 5.5. For both SPC/E and TIP5P water models, the distribution P0(Ψ)

obtained from the uniform bulk is nearly identical to the distribution PQ(Ψ) calcu-
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lated in the presence of the Gaussian test charge when shifted by their respective

means. This demonstrates that fluctuations in the water-test charge interaction en-

ergy do in fact follow Gaussian statistics, such that their variances are equal. This

variance is well approximated by Equation 5.23, as evidenced by the solid lines in

Figure 5.5 obtained through the use of Equation 5.23 in Equation 5.24. However,

Equation 5.23 slightly overestimates the width of P0/Q(Ψ).

A large portion of this overestimation is simply due to finite size effects.

Equation 5.23 assumes an infinite system size, whereas the simulation results in

Figures 5.5a and 5.5b were obtained with cubic cells containing N = 1000 water

molecules. We can account for such finite size effects in our formalism in an ap-

proximate manner by assuming a spherical cutoff at the edge of simulation cell.

At this cutoff, L/2 � l, the potential of the Gaussian test charge is nearly equal

to the Coulomb potential, vQ(r) ≈ 1/r. Therefore, we can estimate the finite size

effects with a simple Born model. The contribution to the free energy outside the

cutoff radius is ∆G(L/2) = −Q2(1 − 1/ε)/L. The variance of the fluctuations in

interaction energy in a finite system of radius L/2 can then be written as

〈
(δΨ(R))2

〉
FS
≈
〈
(δΨ(R))2

〉
− 2kBTQ

2

L

(
1− 1

ε

)
, (5.25)

where the subscript “FS” indicates that the average is obtained in a system of finite

size, the first term on the right hand side is the variance given by Equation 5.23,

and the second term removes the portion of the variance from interactions outside

the cutoff radius L/2. Distributions calculated using Equation 5.25 are in better

agreement with the simulation results than the infinite system limit, as evidenced
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by the dashed lines in Figure 5.5.

Finite size effects on the variance of the distribution P (Ψ) can be quantita-

tively analyzed by performing simulations for a range of N , and the results ob-

tained for this process are shown in Figure 5.5c. The linear dependence on L−1

expected from Equation 5.25 is confirmed, and extrapolation to the limit L → ∞

yields a variance of β2
〈
(δΨ(R))2

〉
≈ 93, much closer to the continuum estimate

of β2
〈
(δΨ(R))2

〉
≈ 97. When such finite size effects are taken into account, the

above formalism describes the simulation results with great accuracy, although the

continuum estimates for the energy fluctuations are still not in perfect agreement

the simulation results.

We expect the remaining discrepancies in the widths of the distributions arise

from the neglect of correlations of order k4 and possibly higher. This is supported

by comparison of the variances of the SPC/E and TIP5P models, which differ more

than their respective dielectric constants would predict. There is no general relation

for the fourth moment of the charge-charge linear response function, because it

depends on the nature of the short ranged, non-electrostatic interactions of the

fluid, and for the one-component plasma and two-component primitive model is

inversely proportional to the compressibility [25], χ̂
(4)qq
0 ∝ κ−1

T . Consequently, we

expect even long-wavelength fluctuations of the dielectric response to depend on

the microscopic details of the fluid under consideration to a small extent, while the

static thermodynamic and structural responses on these length-scales are insensitive

to features beyond the dielectric constant.

The formalism developed herein is readily amenable to dielectrics other than
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(c) (d)

Figure 5.6: Schematic depiction of the (a) localized and (b) delocalized dipole models
of CCl4 parametrized by Fennell et al. [111]. The positively charged carbon site is
shown in cyan, uncharged chlorine atoms are colored grey, while negatively charged
chlorides are shown in red. (b) Site-site pair distribution functions in the localized
and delocalized models. Carbon-chlorine and chlorine-chlorine distribution functions
are averaged over all chlorine atoms. (d) Running average of the dielectric constant
for both CCl4 models under study.

water. For example, we can also test the above approximations on dielectrics that

do not screen charge as efficiently as water, such as carbon tetrachloride (CCl4).

CCl4 is tetrahedral and symmetric, and therefore does not have a dipole moment

in the gas phase, although it does have a dielectric constant greater than unity

in the liquid phase. The induced dipole in the condensed phase can be mimicked

in rigid, point charge models by adding a fixed dipole moment that reproduces the

dielectric constant. This task has been performed by Fennell et al. [111]. There both

localized (L) and delocalized (D) dipole moment models of CCl4 were parametrized,

and these are depicted in Figures 5.6a and 5.6b, respectively. These models place a

fixed dipole on CCl4 by putting a partial positive charge on the carbon atom and a

negative charge on a single chlorine atom in the localized model or negative charges

on three of the four chlorine atoms in the delocalized dipole model.
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For whatever reason, I am unable to reproduce the results from the original

paper with the parameters listed there [111]. However, the models do serve as an

interesting test of our formalism and as a case study in dielectric response in their

own right. The site-site pair distribution functions between various sites of CCl4

are shown in Figure 5.6c, and indicate that the bulk structure of the two models

is identical. Despite this fact, the dielectric constants of the two models differ

significantly, with εL = 1.76 and εD = 1.17 2. The running averages of the dielectric

constants are shown in Figure 5.6d and were obtained from the relation

ε = 1 +
4πβ 〈δM2〉

3 〈V 〉
, (5.26)

where δM = M−〈M〉 and M is dipole moment of the simulation cell. Hence, these

models represent the interesting case of two liquids with identical bulk structure but

differing dielectric responses.

The first peak in the carbon-carbon g(r) is located at r ≈ 6.5 Å, and I have

found that the minimum LMF smoothing length needed to capture the structure of

the bulk fluid is roughly σmin ≈ 8.0 Å. Therefore, I have chosen to insert a Gaus-

sian of width l = 8 Å into CCl4, ensuring that the charge distribution acts over

a length scale of several molecules. The induced bare and smoothed charge densi-

ties are shown in Figure 5.7. While the bare charge densities suffer from statistical

noise, they still appear to be approximated rather well by the linear response ap-

proximations derived in Section I. Gaussian smoothing of ρqQ(r) eliminates much of

2Fennell et al. obtain nearly equal dielectric constants for the localized and delocalized models,

εL = 2.02 and εD = 2.112, respectively.

153



0 5 10 15 20 25

r (
◦
A)

2.0

1.5

1.0

0.5

0.0

ρ
q Q
(r

) 
(1

0
−

4
e 0
/
◦ A
3

)

(a)

Localized
Delocalized

0 5 10 15 20 25

r (
◦
A)

6

5

4

3

2

1

0

ρ
qσ Q

(r
) 

(1
0
−

5
e 0
/
◦ A
3

)

(b)

MD
Analytic

15 10 5 0 5 10 15 20

βΨ−β
〈
Ψ(R)

〉0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

P
(β

Ψ
)

(c) PL
Q (βΨ)

PL
0 (βΨ)

PD
Q (βΨ)

PD
0 (βΨ)

Analytic, L
Analytic, D

Figure 5.7: (a) Bare and (b) Gaussian smoothed charge densities for localized and
delocalized dipole models of CCl4 obtained in the presence of Gaussian test charge
of magnitude Q = +1 and width l = 8 Å. Data points are simulation results while
lines in (a) and (b) are the analytic approximations of Equations 5.14 and 5.15,
respectively. Smoothed charge densities were calculated using a smoothing length
of σ = l. (c) Probability distributions of the interaction energy Ψ between the
localized (L) or delocalized (D) dipole models of CCl4 and a Gaussian test charge of
magnitude Q = +1 and l = 8 Å in the uniform fluid, P0(Ψ), and in the presence of
the test charge, PQ(Ψ). Solid lines are the corresponding analytic approximations
given by Equation 5.24. Dashed lines are the finite size corrected approximations
to the distributions obtained with a variance estimated by Equation 5.25.

the simulation noise, and smooth profiles are obtained for ρqσQ (r) that are very well

described by Equation 5.15, shown as points in Figure 5.7b.

As was the case for water, the probability distributions of the test charge-CCl4

interaction energy shown in Figure 5.7c are remarkably Gaussian, evidenced by the

fact that
〈
(δΨ(R))2

〉
0

=
〈
(δΨ(R))2

〉
Q

. However, Equation 5.23 again overestimates

the widths of the distributions for both L-CCl4 and D-CCl4, though much of this

overestimation is due to finite size effects, and the distributions are almost exactly

captured by estimating the variance with Equation 5.25. It is also interesting to

note that the two models differ from their respective continuum estimates by nearly

the same amount. One might expect fluctuations in the two models to differ equally

from the continuum approximations because the short ranged, non-electrostatic in-
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teractions are nearly equivalent in the two models of CCl4. These molecular-scale

details control the behavior of the higher order moments of χ̂qq0 (k) that are neglected

in the continuum approximations detailed above.

5.4 Conductors Require More Detail

As a more rigorous test of our ideas, we apply the above dielectric continuum

formalism to a conductor, the symmetric primitive model (SPM) electrolyte. In lieu

of the traditional SPM, which consists of charged hard spheres of equal diameter,

the data below is for charged WCA spheres with equal LJ diameters, which is easier

to treat using conventional molecular dynamics simulations. However, I have carried

out Monte Carlo simulations of the traditional SPM for a few systems studied herein,

and the results obtained are in agreement with those for its WCA variant.

In a conducting medium, ε =∞, and Equation 5.14 becomes

ρqQ(r) = − Q

l3π3/2
e−r

2/l2 . (5.27)

Within this level of approximation, the induced charge density is equal and opposite

to the Gaussian charge distribution itself! Therefore, the total charge density is

given by ρqtot(r) = 0, which is just a statement of neutrality, the zeroth moment

condition [107, 108, 109, 25]. Unlike the case of a dielectric medium, to zeroth

order, our approximation for the total charge density has no non-zero terms. We

may anticipate that at least the first non-zero term in the small k expansion of the

charge density is needed for an accurate description of the response of a conducting

fluid to a Gaussian test charge, and this can be done by keeping up to the k4 term
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in the expansion of the linear response function.

As in Section 5.2, we can write the charge density in k-space as

ρ̂qQ(k) ≈ −βχ̂qq0 (k)v̂Q(k), (5.28)

and again expand the linear response function, but keeping terms to fourth order in

k now,

χ̂qq0 (k) ∼ χ̂
(0)qq
0 + k2χ̂

(2)qq
0 + k4χ̂

(4)qq
0 = k2χ̂

(2)qq
0 + k4χ̂

(4)qq
0 . (5.29)

The induced charge density can then be written as

ρ̂qQ(k) ≈ −Qe−k2l2/4 − 4πβQk2χ̂
(4)qq
0 e−k

2l2/4, (5.30)

which, in r-space is

ρqQ(r) = − Q

l3π3/2
e−r

2/l2 +
4πβQχ̂

(4)qq
0

l5π3/2

[(
2r

l

)2

e−r
2/l2 − 6e−r

2/l2

]
. (5.31)

This expression includes the first nonzero term in the small k expansion of the

total charge density, which involves the fourth moment of the bulk linear response

function. However, χ̂
(4)qq
0 has no general analytic expression and depends sensitively

on the details of the intermolecular potentials (both short and long ranged), and

must be determined by other means.

In analogy to the results obtained for dielectric media, we can use the expres-

sion for the charge density in Equation 5.31 to obtain the free energy of inserting

a Gaussian test charge and the fluctuations in the interaction energy. In this level

of approximation, the free energy ∆Gl of inserting a Gaussian test charge into a

conducting medium is

∆Gl = − Q2

l
√

2π

(
1 +

4πβχ̂
(4)qq
0

l2

)
(5.32)
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Figure 5.8: Gaussian smoothed charge densities of the SPM in response to Gaussian
charge distributions of (a) varying charge with fixed width l = 2d and (b) varying
width with Q = 5q. Symbols are simulation results, the approximations to second
and fourther order in the expansion of the linear response function are indicated by
dashed lines and solid lines, respectively. Gaussian smoothing was performed using
σ = 2d. (c) Probability distributions of the interaction energy Ψfor a Gaussian
test charge of magnitude Q = 5d and l = 2d in the uniform fluid, P0(Ψ), and in the
presence of the test charge, PQ(Ψ). Dashed and solid lines are the corresponding an-
alytic approximations with the variance of the distribution given by Equations 5.23
and 5.33, respectively. (d) Variance of the interaction energy as a function of L−1 for
a Gaussian test charge with Q = 5d and l = 2d in the RPM. The solid line is a linear
fit to the data points and the starred data point is the continuum approximation to
the variance given by Equation 5.33.
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and the variance of the interaction energy is

〈(
δΨ(R)

)2
〉

0/Q
=

2kBTQ
2

l
√

2π

(
1 +

4πβχ̂
(4)qq
0

l2

)
. (5.33)

In order to apply Equations 5.31–5.33, we need to estimate χ̂
(4)qq
0 . The gen-

eralized Debye-Hückel (GDH) theory of Lee and Fisher [112, 113, 114] provides an

expression for the fourth-moment of the charge-charge linear response function,

χ̂
(4)qq
0,GDH = ρξ4

D

[
1 +

2

3
ln(1 + x)− 2

3
x− 1

6
x2

]
, (5.34)

where ξD =
√
kBT/(8πq2ρ) is the Debye length, q is the magnitude of the charge of

the ions, and x = d/ξD is the diameter of an ion in units of the Debye length. The

GDH theory satisfies both the zeroth and second moment conditions of Stillinger

and Lovett [107, 108, 109, 112, 114], and yields exact results for correlations in

the low density limit. However, GDH predictions are only semi-quantitative, and

in general will not yield accurate estimates of χ̂
(4)qq
0 for all ρ and Γ. Nevertheless,

simulation results [114] seem to indicate that at our chosen state point, which is far

from the critical point, GDH theory will yield reasonable estimates for the fourth

moment of the linear response function. We indeed find this to be true, as detailed

below.

We probe the response of a neutral SPM composed of N = N+ + N− = 1000

ions at a density of ρd3 = 0.3816 and a coupling strength of Γ = βq2/d = 5

to Gaussian test charges of varying width and magnitude, where d ≈ σLJ is the

approximate diameter of an ion of the SPM, with a LJ well depth of εLJ = kBT .

For all Q and l studied, we find that terms of order k4 in the expansion of the

linear response function (which are of order k2 in the nonuniform charge density)
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are needed to accurately describe the structural response for all r, as indicated by

the smoothed charge densities shown in Figure 5.8. However, as expected, at large

enough r both expressions for the induced charge density converge to the same value

and accurately describe the asymptotic density response.

Fluctuations in the test charge-SPM interaction energy follow Gaussian statis-

tics for all systems under study. The width of the distributions are underestimated

by the continuum approximations, again due to finite size effects, and including

contributions from χ̂
(4)qq
0 slightly increases the variance. Accounting for such fi-

nite size effects can be accomplished by combining the simple Born correction of

Equation 5.25 with the estimate for the variance in Equation 5.33, as evidenced by

the curve labeled “FS, O(k4)” in Figure 5.8c. Therefore, the variance of the distri-

butions will again scale linearly with 1/L. Indeed, simulation results obtained by

varying N from 250 to 3000 ions yields this expected scaling behavior, as shown in

Figure 5.8d. In fact, the L → ∞ limit obtained from linear fitting of the variance

as a function of 1/L agrees well with the estimate of Equation 5.33. In contrast,

neglect of terms of order k4 in the expansion of the charge-charge linear response

function leads to an underestimation of the infinite system limit as obtained from

simulation, illustrated by the point labeled O(k2) in Figure 5.8d. Therefore, by

accounting for the leading order contribution to the density response of the SPM

arising from short ranged interactions in an approximate manner, we are able to

completely describe the electrostatic response of a conducting fluid to a Gaussian

test charge with quantitative accuracy.
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5.5 Ewald Finite Size Effects in the Gaussian Electrostatic Potential

Before concluding this chapter, it is appropriate to briefly discuss the finite size

effects that can arise from the periodicity of the Ewald method when using lattice

summations to evaluate the interactions between the Gaussian test charge and the

dielectric or conducting fluid in which the charge is immersed. In the continuum,

infinite system case, the electrostatic potential of such a charge distribution can be

obtained from the Poisson’s equation

∇2
rvQ(r) = −4πρq(r) = −4πQρG(r), (5.35)

where ρG(r) = (π3/2l3)−1 exp(− |r|2 /l2) is a Gaussian distribution of width l. This

can be readily solved, (the solution is especially easy after transforming to Fourier

space), and is given by

vQ(r) =
Q erf(r/l)

r
, (5.36)

which is just the long ranged portion of the Coulomb potential as defined in LMF

theory. Therefore, the potential vQ(r) has the typical long ranged divergences as-

sociated with the Coulomb potential when attempting to perform simulations. In

simulations, however, we cannot study infinite systems, and are instead confined

to the study of systems with a finite size. In order to give the appearance of an

infinite system, periodic boundary conditions (PBCs) are typically used, in which

the central simulation cell is replicated “to infinity” in all directions.

In order to accomplish this task, we consider an infinite periodic array of Gaus-

sian charge distributions with their corresponding uniform neutralizing background

charge densities (in order to avoid an infinite build up of charge). The Poisson’s
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equation for this system is

∇2
rφ(r) = −4πQ

[
∞∑

n=−∞

ρG(r− nL)− 1

L3

]
, (5.37)

where L is the length of a side of the cubic simulation cell, and n = (nx, ny, nz) is

a lattice vector, such that nα = (...,−2,−1, 0, 1, 2, ...). As one familiar with Ewald

summation may have anticipated, the solution to this equation is the long ranged

portion of the Ewald potential,

φEW
1 (r) =

Q

L3

∑
k6=0

4π

k2
e−k

2l2/4eik·r − Qπl2

L3
, (5.38)

where the second term in Equation 5.38 is the potential from the neutralizing back-

ground charge density. Note that in the usual discussions of the Ewald potential,

the substitution η = 1/l is typically made, however, I have decided to use l here to

make clear any connections with LMF theory and our use of Gaussian test charges

throughout this chapter.

Due to the periodicity of the system, the Gaussian Ewald potential is only

equal to vQ(r) in the limit L → ∞. For finite L, φEW
1 (r) < vQ(r), and the Ewald

potential and its derivative must be continuous at the edge of the central simula-

tion cell. Therefore, the shape of the Gaussian Ewald potential is not spherically

symmetric and must differ from that of its infinite limit, vQ(r). The rotationally

averaged potentials

φ̃EW
1 (r) =

1

4π

∫ 2π

0

dϕ

∫ π

0

dθ sin θφEW
1 (r, ϕ, θ), (5.39)

shown in Figure 5.9a, display significant finite size effects and only slowly approach

vQ(r) as L is increased. Indeed, φ̃EW
1 (r) 6= vQ(r) even for L = 100 Å!
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Figure 5.9: (a) Rotationally averaged Gaussian Ewald potentials φ̃EW
1 (r) for vari-

ous box lengths L compared to the full Gaussian potential erf(r/σ)/r and 1/r. (b)
Gaussian Ewald potential as a function of x- and y-coordinates in the z = 0 plane,
φEW

1 (x, y, z = 0), for L = 14.2 Å. (c) Gaussian smoothed charge densities for simu-
lation cells of SPC/E water corresponding to the values of L in (a). The Gaussian
test charge has width l = 3.2 Å and Gaussian smoothing of bare charge density was
performed with σ = 4.5 Å. Also shown is the Gaussian smoothed charge density ob-
tained without Ewald summation for test charge-water interactions (From vQ(r)),
which is consistent with the continuum, infinite system limit.

Similar to what was found by Levy and coworkers [94] for the case of a periodic

array of point charges, the periodic Ewald potential φEW
1 (r) of an array of Gaussian

charges is not spherically symmetric, as illustrated by φEW
1 (x, y, z = 0), shown

in Figure 5.9b for a representative value of L. Therefore, when determining the

response of a dielectric fluid to a Gaussian charge distribution using PBCs, one must

take into account both the finite-size effects and the asymmetry of the potential.

Thus, we should not expect the response of a dielectric to φEW
1 (r) to be the same as

the response of the same material to vQ(r), even for large box sizes.

Indeed, the Gaussian smoothed charge densities obtained for SPC/E in the

presence of such a periodic array of Gaussian test charges shown in Figure 5.9c

exhibit finite size effects consistent with the spherically averaged potentials shown in

Figure 5.9a. While the effects of the Ewald periodicity are readily observed near r =

0, with ρqσ(0) decreasing toward the infinite limit with increasing L, interesting non-
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physical effects are found at large distances. In particular, ρqσ(r) changes sign near

the point where the corresponding potential φ̃EW
1 (r) becomes negative. This does

not occur in the absence of periodicity, and indeed our theoretical approximations

for the charge density predict no such “overcharging” behavior, in which a net charge

of opposite sign builds up around the Gaussian test charge. These effects are not

expected in a “real,” physical fluid, and is precisely why Ewald summation was

not used to evaluate test charge-water interactions when obtaining the data used

throughout most of this chapter.

5.6 Conclusions

In this chapter, we have examined the response of dielectric and conducting

fluids to a Gaussian test charge distribution. We presented a theoretical formalism

to estimate the structural and thermodynamic response of these fluids in a quantita-

tively accurate manner through physically sound approximations. It was shown that

the structural response of a dielectric fluid to Gaussian charges depends only on the

dielectric constant and is insensitive to other molecular-scale details. The analogous

response in a conducting fluid depends only slightly on the short ranged details of

the models. In both dielectric and conducting fluids, a quantitatively accurate de-

scription of the observed Gaussian energy fluctuations requires some molecular-scale

details and the finite size of the system must be taken into account.

These developments will prove useful to estimate ion solvation thermodynam-

ics by simulation. Through the use of the LMF-based solvation process in Figure 5.3,
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one can calculate the far field electrostatic component of the free energy analytically.

The free energy contributions from the remaining steps must be obtained from sim-

ulation. However, one can again use ideas from LMF theory, especially the solvation

theory developed in the next chapter, to obtain the remaining portions of the free

energy from computationally efficient simulations of purely short ranged systems.

The formalism presented herein can also be utilized to determine dielectric

constants from the structural response of a dielectric fluid to the presence of a

Gaussian test charge. For example, one can determine ρqσ(r) from simulation with

high accuracy, then fit this smoothed charge density to Equation 5.15 to obtain ε.

In addition, the structural response could even be determined from simulations of

the bulk fluid using Equation 5.16, readily allowing for the determination of the

charge density induced by a range of Gaussian test charges with varying Q and l.

This may find use in determining dielectric constants from computationally intense

quantum mechanics-based simulations, where the continuous nature of the electron

density makes it difficult to define molecular units and expressions like Equation 5.26

become intractable.

Another avenue for further investigation is to examine the state point-dependence

of the approximations developed herein for both dielectric and conducting systems.

In particular, we expect the above formalism to break down in the critical region;

it has been found that the Stillinger-Lovett second moment condition breaks down

and χ̂
(4)qq
0 diverges at the critical point [114]. However, Equation 5.31 may be used

to determine χ̂
(4)qq
0 away from the critical point from fits to ρq(r) and ρqσ(r), in

analogy to the above discussion for the dielectric constant, and may even be used
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to study the divergence of charge-charge correlations on the approach to Coulomb

criticality.
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Chapter 6

Free Energy Calculations with Local Molecular Field Theory

6.1 Introduction

The complete description of any chemical or biological process requires an

understanding of the underlying free energy landscape. Consequently, a fundamen-

tal problem in statistical mechanics is the development of accurate and efficient

means to calculate thermodynamic properties of molecular systems. Much progress

in this area has been made in the past fifty years, from the development of a solid

foundation consisting of perturbation theory [115, 116], and thermodynamic inte-

gration [117], to advanced computer simulation techniques to overcome sampling

bottlenecks, like the umbrella sampling methods used throughout this thesis [127].

Free energy calculations have even been extended to non-equilibrium systems, with

the advent of the Jarzynski equality [118], Crooks fluctuation relation [119], and

techniques for sampling in the space of trajectories [120], as opposed to traditional

sampling performed in configuration space.

The development of such techniques for free energy computation in conjunc-

tion with recent rapid technological growth has revolutionized the area of computer

simulations. Despite the immense progress made in free energy calculation method-

ology, all are plagued by the same inefficiencies when electrostatic interactions are

present. These inefficiencies arise from the long range nature of the Coulomb poten-
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tial, which is typically evaluated using lattice summation techniques like that due to

Ewald [30]. The computational time associated with the Ewald summation in typi-

cal implementations scales as O(N2), where N is the number of charged particles in

the system. Even its most efficient implementation, the particle mesh Ewald (PME)

method, scales with the number of sites as O(N logN), but with a large prefactor,

and the method does not scale well in massively-parallel simulations [121]. Thus

systems with Coulomb interactions present significantly more computational prob-

lems than a system with only short ranged interactions, like a LJ fluid, which scales

linearly with N . The situation only worsens when one considers the fact that, unlike

the internal energy or pressure, the free energy cannot typically be obtained directly

from a single simulation, as will be discussed in detail later, but one must perform

a series of long computer simulations to calculate even a single free energy or free

energy landscape.

In addition to sampling issues, the use of lattice summation techniques with

periodic boundary conditions in finite size systems lead to significant errors to due ar-

tifacts in the periodic potential. In particular, spurious interactions between images

of solutes in nonuniform systems can occur, as observed for proteins in water [122].

In addition, the forced neutrality and continuity of the potential and force at the

boundaries of the simulation cell lead to distorted electrostatic potentials that are

not spherically symmetric [94], as discussed in the previous chapter.

Local molecular field theory is a promising avenue for substantially improving

all free energy calculations by removing many of the computational and conceptual

burdens associated with long ranged interactions. LMF theory prescribes a way to
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obtain the structure of a full system, with computationally difficult long ranged inter-

actions, from a mimic system wherein particles interact with short ranged potentials

only. It will be shown that LMF theory contrasts traditional “top-down” approaches

to molecular structure and thermodynamics, like classical DFT [9], wherein ther-

modynamic functions obtained from uncontrolled approximations to the free energy

functional itself are differentiated to obtain structural properties. Instead, LMF the-

ory can be considered a “bottom-up” approach to thermodynamics. LMF theory

first focuses on the underlying forces in a molecular system, and then determines ac-

curate structural properties by compensating for the averaged effects of long ranged

interactions with the presence of an effective field in the mimic system. Once the

desired structure is obtained, we can integrate over structural properties in order to

obtain thermodynamic properties like the free energy, akin to what is done in pertur-

bation theories of uniform fluids [6]. Hence, LMF theory starts at the “bottom” with

intermolecular forces, and successively integrates “up” to obtain thermodynamics.

In this chapter, we develop the formalism for performing LMF-based free en-

ergy calculations and demonstrate its accuracy on numerous systems of interest.

We focus on three major classes of free energy calculations [116], (i) solvation free

energies, (ii) alchemical transformations, and (iii) potentials of mean force. The

basis for LMF free energy calculations is developed in the next section within the

context of solvation free energies, wherein a solute is gradually transformed from a

non-interacting particle into the full solute of interest. This LMF approach can then

be readily applied to the process of changing one solute into another, through mod-

ification of the solute-solvent interaction potentials. The study of such alchemical
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transformations is performed in Section 6.3. We then extend the LMF formalism

to calculate free energies as a function of an order parameter describing a process

of interest. The calculation of such potentials of mean force involves combining

LMF theory with umbrella sampling, and this is accomplished in Section 6.4 before

concluding the chapter in Section 6.5.

6.2 LMF Theory of Solvation

In this section, we derive the basis of the LMF theory-based framework for

free energy calculations. For simplicity and clarity, we consider the solvation of

a rigid solute fixed at the origin in a single component fluid as a basis for the

treatment of more general solvation phenomena. Figure 6.1 schematically depicts

the solvation of such a solute in a LJ fluid, but similar considerations immediately

apply to more complex solvents, including mixtures and fluids with long ranged

Coulomb interactions.

We consider the process of gradually “turning on” a solute-solvent interaction

potential φ(r), such that the solvation free energy Ωsolv is the difference in the

Grand free energy of the solvent-solute system and the pure solvent in zero solute

field: Ωsolv[φ] ≡ Ω[φ]−Ω[φ = 0], such that Ωsolv is a functional of the solute field φ.

The lower left panel of Figure 6.1 shows the core positions of the mobile bulk solvent

(M) in a typical configuration. The solvent molecules interact with a pair potential

u(r) = u0(r) + u1(r), where u1(r) is the long ranged, slowly varying portion of the

solvent-solvent potential. This long ranged portion of the potential can arise from
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electrostatic interactions or the attractive tail of the LJ potential, for example. The

lower right panel of Figure 6.1 schematically depicts an equilibrium configuration of

the full solute-solvent system, where the solute (S) has been inserted into the fluid.

The solute-solvent potential φ(r) is harshly repulsive at short distances where cores

will overlap, and may also contain other short ranged forces describing hydrogen

bonding and other local interactions. There will also exist long ranged solute-solvent

interactions in general, but we can assume that far from the solute an unperturbed,

neutral bulk solvent will exist.

In practice, the solvation free energy cannot generally be computed by simu-

lating only the two states depicted in the lower leg of Figure 6.1. Instead, one must

consider the gradual transformation of a non-interacting point solute into the full

solute through a series of generally non-physical intermediate states. Such stratifica-

tion techniques can be performed with high accuracy, but the transformation process

typically must be carried out in small steps, especially when the harshly repulsive

core interactions are altered between neighboring states. In addition, this multistep

process requires an accurate treatment of long ranged interactions at every step.

This is particularly cumbersome when Coulomb interactions are present, since stan-

dard lattice summation techniques, like those due to Ewald [30] and Lekner [123],

add significant overhead to the simulation time at each step. We indicate this general

problem by using a red arrow to connect the two lower panels of Figure 6.1.

The LMF theory of solvation presented herein introduces a thermodynamic

cycle involving a short ranged mimic system that allows one to eliminate much of

the overhead arising from conventional treatments of long ranged forces. Moreover,
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it provides a natural and physically suggestive way of partitioning the free energy

into short ranged or near field and long ranged or far field components that is

conceptually related to some elements of the formally exact partitioning scheme

used with great success in the quasichemical theory of solvation [81, 124].

The LMF thermodynamic cycle uses the two upper panels in Figure 6.1, which

describes solvation in a mimic system with short ranged intermolecular interactions.

The upper left panel illustrates a configuration of the strong coupling or mimic

solvent (M0), such that the red color indicates truncated solvent-solvent interac-

tions (u0(r) for a LJ fluid). The slowly varying, long ranged components of the

intermolecular forces tend to cancel in a uniform fluid, and therefore the particle

arrangements are similar in the bulk M and M0 panels.

Solvation in the mimic system involves insertion of a mimic solute (SR), de-

scribed by the renormalized potential φR given by LMF theory, and the determina-

tion of the free energy associated with this process is discussed later in Section 6.2.1.

This potential contains all the short ranged solute-solvent interactions φ0(r) that

are in the full potential φ(r). In addition, the averaged effects of the slowly-varying

long ranged interactions on the solvent structure are taken into account using LMF

theory, as suggested by the patterning of the solute color in the upper right panel

of Figure 6.1.

The solvation free energy of the mimic system ΩR,solv[φR] can be determined

using conventional methods, and will be discussed in more detail below. Since φR(r)

contains all the short ranged portions of φ(r), this process is inherently difficult, and

will typically contain just as many intermediate steps as the analogous process in
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Figure 6.1: Thermodynamic cycle for LMF theory of solvation. The bottom leg of
the cycle corresponds to inserting a solute (S) into a mobile solvent (M), both of
which are described by short and long ranged interactions. This process is char-
acterized by the solvation free energy Ωsolv. The top leg of the cycle depicts the
insertion of a LMF-based renormalized solute (SR) into a short ranged mobile sol-
vent (M0), such that the systems in both the upper left and upper right panels are
described only by short ranged interactions, and the solvation free energy in this
mimic system is ΩR,solv. The sum of the free energies of the paths depicted by green
arrows is ΩLMF, as described in the text.
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the full system. However, each step can be carried out more efficiently because

we have eliminated the overhead arising from the evaluation of long ranged forces.

Since the simulations involve non-physical intermediate states, there is no need to

confine our calculations to “real” physical systems, and the desired transformations

can be carried out more efficiently in the simpler mimic system with no loss of

accuracy. This partial simplification is depicted by the red and green stripes on the

arrow connecting the upper panels in Figure 6.1, and contrasts with the red arrow

connecting the lower panels.

The difference in the solvation free energy between the full and mimic systems

is given by the sum of the free energy changes between the lower and upper panels

on the left and right sides of Figure 6.1, indicated by the vertical green arrows. We

derive a simple, analytic expression for this free energy difference ΩLMF[φR] herein,

and the green arrow color indicates the simplicity of this step. We start by linearly

coupling the slowly-varying portion of the solvent-solvent interaction potential with

a parameter λ,

u(λ)(r) = u0(r) + λu1(r).

The renormalized solute-solvent field is also coupled to λ, but no assumptions are

made regarding the exact λ-dependence of φ
(λ)
R (r) yet. However, when λ = 0,

φ
(λ)
R (r) = φR(r), corresponding to the mimic system with bulk density ρB and chem-

ical potential µR. The bare field φ(r) is recovered when λ = 1, such that this state

corresponds to the full system with bulk density ρB and chemical potential µ. We

seek to determine the free energy difference between these two systems.
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First note that the grand partition function of state λ can be written as

Ξλ = Tr
R

{
e−βHλ(R)

}
, (6.1)

where Tr {·} ≡
∑

N

[
N !Λ3N

]−1 ∫
dR {·} indicates the classical trace, such that Λ is

the usual de Broglie wavelength, and R is a point in phase space [125]. We have

also defined the Hamiltonian

Hλ(R) = Φλ(R) + U0(R) + λU1(R), (6.2)

where Φλ(R) =
∫
drϕλ(r)ρ(r; R), such that ϕλ(r) ≡ φ

(λ)
R (r) − µλ is the intrinsic

chemical potential. The quantities U0(R) and U1(R) are the total energies from the

short ranged and long ranged solvent-solvent potentials, respectively, at the phase

space point R.

The grand free energy of state λ is defined by βΩλ ≡ − ln Ξλ, and we proceed

by differentiating this free energy with respect to λ,

∂βΩλ

∂λ
=

Tr
{[
β dΦλ(R)

dλ
+ βU1(R)

]
e−βHλ(R)

}
Tr
{
e−βHλ(R)

}
=

〈
β
dΦλ(R)

dλ
+ βU1(R)

〉
λ

, (6.3)

where 〈· · · 〉λ indicates an ensemble average in the system with coupling parameter

λ. This is a classic result, and appears as an intermediate step when obtaining free

energy differences by thermodynamic integration [25]. When U1(R) is given as a

sum of pair interactions, this can be equivalently written in a form more conducive

to LMF theory, such that the singlet and pair density distribution functions appear:

∂βΩ(λ)

∂λ
= β

∫
dr
dϕλ(r)

dλ
ρλ(r) +

β

2

∫
dr

∫
dr′ρ

(2)
λ (r, r′)u1(|r− r′|), (6.4)
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where ρλ(r) and ρ
(2)
λ (r, r′) are the singlet and pair density distribution functions in

the system with coupling parameter λ.

To obtain the free energy difference between the full and mimic systems, we

integrate over the coupling parameter λ. As noted by Weeks [126], because the

singlet density at the endpoints are equivalent by definition, ρλ=1(r) = ρλ=0(r),

we can choose a particular integration path in λ-space, or equivalently the lambda

dependence of φ
(λ)
R (r), such that the singlet density remains unchanged for all λ,

ρλ(r) = ρ(r). Performing the integration for this path in Equation 6.4 yields

βΩ[φ]− βΩR[φR] = β

∫
drρ(r) [φ(r)− µ− φR(r) + µR]

+
β

2

∫ 1

0

dλ

∫
dr

∫
dr′ρ

(2)
λ (r, r′)u1(|r− r′|), (6.5)

where we have used the fact that Ωλ=1 = Ω[φ] is the free energy of the full system,

and Ωλ=0 = ΩR[φR] is the free energy of the mimic system.

At this point, we note that the solvation free energy is defined as the free energy

difference between the system with and without a solute, Ωsolv[φ] ≡ Ω[φ]−Ω[φ = 0].

This allows for the use of Equation 6.5 to write the difference in solvation free

energies between the full and mimic systems,

βΩsolv[φ]− βΩR,solv[φR] = β

∫
dr[µR − µ][ρ(r)− ρB]− β

∫
drρ(r)[φR(r)− φ(r)]

+
β

2

∫ 1

0

dλ

∫
dr

∫
dr′[ρ

(2)
λ (r, r′)− ρ(2)

B,λ(|r− r′|)]u1(|r− r′|), (6.6)

where ρ
(2)
B,λ(r) is the pair density distribution in the bulk solvent. Equation 6.6 is

an exact formula for the solvation free energy difference corresponding to the green

vertical arrows in Figure 6.1. However, the last term involves the partially coupled
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nonuniform pair distribution function ρ
(2)
λ (r, r′), which in general varies with λ even

though the singlet density remains constant, making this term seem prohibitively

complicated for practical use. But we show here that when LMF theory provides

an accurate description of the structure of the system, we obtain a very simple and

accurate approximation for the right hand side of Equation 6.6.

In order to obtain this expression, we note that the first term in Equation 6.6

generates a Legendre transform to the intrinsic free energy

W [ρ] ≡ Ω[φ]−
∫
drρ(r)[φ(r)− µ], (6.7)

which is explicitly a functional of the density and regularly appears in classical

density functional theories of fluids [9]. Equation 6.6 can then be exactly rewritten

in this ensemble as

β(Wsolv[ρ]−WR,solv[ρ]) =
β

2

∫ 1

0

dλ

∫
dr

∫
dr′[ρ

(2)
λ (r, r′)− ρ(2)

B,λ(|r− r′|)]u1(|r− r′|).

(6.8)

The free energies in Equation 6.8 are all functionals of the common singlet density

ρ(r) = ρλ(r) = ρR(r) because of the integration path we have chosen. By definition

of the Legendre transform, the functional derivative of the intrinsic free energy with

respect to the singlet density is

δW [ρ]

δρ(r)
= −ϕ(r) = µ− φ(r), (6.9)

with an analogous relation holding for the mimic system. Thus, one can functionally
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differentiate Equation 6.8 to obtain a formally exact relation between φR(r) and φ(r):

βφR(r) = βφ(r) +
δ

δρ(r)

{
β

2

∫ 1

0

dλ

∫
dr

∫
dr′[ρ

(2)
λ (r, r′)− ρ(2)

B,λ(|r− r′|)]u1(|r− r′|)

+ β

∫
dr[ρ(r)− ρB][µR − µ]

}
. (6.10)

We have chosen constants so that the term in the braces vanishes in the uniform

bulk system with singlet density ρ(r) = ρB.

The LMF Equation 1.7, derived independently by an approximate integration

of the first member of the Yvon-Born-Green hierarchy of equations relating inter-

molecular forces to induced structure [1], gives a separate and very accurate relation

between φR(r) and φ(r). It can be exactly rewritten in a form analogous to the exact

Equation 6.10 as

βφR(r) = βφ(r) +
δ

δρ(r)

{
β

2

∫
dr

∫
dr′[ρ(r)− ρB][ρ(r′)− ρB]u1(|r− r′|)

}
, (6.11)

where constants have been chosen such that the term in the curly braces again

vanishes in the bulk.

If the LMF Equation 6.11 is accurate, we can now subtract Equation 6.11 from

Equation 6.10 and formally perform the functional integrals over ρ(r) to obtain

β

2

∫ 1

0

dλ

∫
dr

∫
dr′[ρ

(2)
λ (r, r′)− ρ(2)

B,λ(|r− r′|)]u1(|r− r′|) + β

∫
dr[ρ(r)− ρB][µR − µ]

=
β

2

∫
dr

∫
dr′[ρ(r)− ρB][ρ(r′)− ρB]u1(|r− r′|). (6.12)

Thus, the complicated formal expression inside the curly braces in Equation 6.10

involving the nonuniform pair density and exact values of µ and µR is equivalent to

the simple mean-field like expression given by Equation 6.11 where only nonuniform
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singlet densities appear! Moreover, we can utilize the LMF equation to exactly

reexpress Equation 6.12 as

β

2

∫ 1

0

dλ

∫
dr

∫
dr′[ρ

(2)
λ (r, r′)− ρ(2)

B,λ(|r− r′|)]u1(|r− r′|)

=
β

2

∫
dr[ρ(r)− ρB][φR(r)− φ(r)]− β

∫
dr[ρ(r)− ρB][µR − µ], (6.13)

an even simpler expression involving integration of the self-consistent LMF potential

φR(r). Equation 6.13 can then be substituted for the complicated RHS of Equa-

ton 6.8.

Making the Legendre transform back to the grand ensemble, the solvation free

energy in the full system can be written as

βΩsolv[φ] = βΩR,solv[φR]− β

2

∫
dr[ρ(r) + ρB][φR(r)− φ(r)], (6.14)

such that

βΩLMF[φR] = −β
2

∫
dr[ρ(r) + ρB][φR(r)− φ(r)] (6.15)

is the free energy contribution due to the processes indicated by the green vertical

arrows of the thermodynamic cycle in Figure 6.1. Equation 6.15 is a simple expres-

sion for the free energy difference between the full and mimic systems that can be

readily evaluated analytically, and is the principle result of this section.

Finally, we note that Equation 6.14 can be equivalently written as

βΩsolv[φ] = βΩR,solv[φR]− β

2

∫
dr

∫
dr′
[
ρ(r)ρ(r′)− ρ2

B

]
u1(|r− r′|), (6.16)

which could have been obtained by using uncontrolled mean field (MF) approxima-

tions everywhere in Equation 6.6, as is typically done in classical density functional
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theory (DFT) descriptions of fluids; this is demonstrated in Appendix H. However,

in deriving our central result Equation 6.15 using the LMF equation, which itself

is obtained from rigorous statistical mechanics relating structure to intermolecular

forces, we also indicate the conditions under which the MF approximations com-

monly used in DFT are accurate. In particular, Equation 6.16 holds only when the

LMF equation is accurate, or equivalently, when the long-ranged u1(r) is chosen

to vary sufficiently slowly over characteristic nearest neighbor distances and u0(r)

captures the local interactions on these molecular length-scales.

6.2.1 Calculating the Free Energy of the Mimic System

The solvation free energy (SFE) can be determined from simulation as

Ωsolv[φ] = ΩR,solv[φR] + ΩLMF[φR], (6.17)

where the formalism is readily extended to ensembles other than the Grand ensem-

ble 1 We can thus very simply correct the SFE of the mimic system using LMF

theory, but we still need to determine the free energy of the mimic system, ΩR,solv.

The process for doing this is sketched in Figure 6.2.

The SFE in the mimic system, ΩR,solv[φR], can be further divided into the

solvation free energy of the SCA system in the known strong coupling field φ0(r),

Ω0,solv[φ0], and the free energy of turning on the slowly-varying portion of the LMF

1 In the calculations below we will concern ourselves with the isothermal-isobaric ensemble,

which is characterized by the Gibbs free energy G, and all solvation free energies calculated from

simulations will then be referred to by ∆G, as in Chapter 3.
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Figure 6.2: Schematic illustration of the decomposition of the mimic system solva-
tion free energy, ΩR,solv, into the solvation free energy of the SCA system, Ω0,solv,
and the free energy of turning on the slowly varying portion of the LMF, ΩR1.

potential, ΩR1[φR1], such that

ΩR,solv[φR] = Ω0,solv[φ0] + ΩR1[φR1]. (6.18)

The free energy of the SCA can be determined through conventional means by

“growing” a point solute into the full SCA solute described by the solute-solvent

field φ0(r). In general this will require multiple intermediate states and changes in

the harshly repulsive core interactions between states, as indicated by the red arrow

between the first two panels of Figure 6.2.

The quantity ΩR1 is the free energy of turning on the slowly varying portion

of the LMF, φR1(r) = φR(r)−φ0(r). This process is schematically illustrated by the

change from the center to right panels in Figure 6.2. The free energy of turning on

this field can be exactly written as

βΩR1 = − ln
〈
e−βΦR1

〉
0

= − ln

∫
dΦR1P0(ΦR1)e−βΦR1 . (6.19)

In Equation 6.19, 〈· · · 〉0 indicates an ensemble average in the strong-coupling system,

where the solute field is given by the short ranged field φ0(r), ΦR1 =
∑

i φR1(ri),

and P0(ΦR1) is the probably distribution of ΦR1 calculated from configurations in
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the strong-coupling system.

This contribution to the free energy can be written equivalently in terms of

averages in the mimic system,

βΩR1 = ln
〈
eβΦR1

〉
R

= ln

∫
dΦR1PR(ΦR1)eβΦR1 , (6.20)

where 〈· · · 〉R indicates an ensemble average in the presence of the field φR(r) (the

mimic system) and PR(ΦR1) is the probability of ΦR1 in the mimic system. Due

to the slowly-varying nature of φR1(r), we expect the distributions P0(ΦR1) and

PR(ΦR1) to be Gaussian to a good approximation, allowing the use of computation-

ally efficient approximations, and this is indicated by the green arrow in Figure 6.2.

If this is the case, ΩR1 can be estimated from cumulant expansions of Equations 6.19

and 6.20, truncated at second order [116, 57]:

βΩR1 = β 〈ΦR1〉0 −
β2

2

〈
(δΦR1)2〉

0
= β 〈ΦR1〉R +

β2

2

〈
(δΦR1)2〉

R
, (6.21)

where δΦR1 = ΦR1 − 〈ΦR1〉. Averaging the two equivalent forms of the free energy

in Equation 6.21 yields,

βΩR1 =
β

2
[〈ΦR1〉0 + 〈ΦR1〉R] +

β2

4

[〈
(δΦR1)2〉

R
−
〈
(δΦR1)2〉

0

]
. (6.22)

However, the probabilities of the energy ΦR1 in the strong-coupling and mimic

systems are related by the following exact relation due to Bennett [56],

PR(ΦR1) = e−β(ΦR1−ΩR1)P0(ΦR1). (6.23)

Therefore, if one distribution is approximately Gaussian, the other will be Gaussian

with the same variance, such that the variances in the second term of Equation 6.22
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cancel. Thus, our final Gaussian estimate for the free energy of turning on the field

φR1(r) is given by

βΩR1 =
β

2
[〈ΦR1〉0 + 〈ΦR1〉R] . (6.24)

We will show below that the distributions of the slowly-varying portion of the renor-

malized field indeed turn out to be remarkably Gaussian for all systems under study,

and therefore Equation 6.24 provides an accurate estimate of ΩR1. Now that we have

laid the theoretical foundation for determining solvation free energies with LMF

theory, we demonstrate its accuracy below with several non-trivial examples in the

subsequent sections.

6.2.2 Hard Sphere Solvation

The crux of the LMF theory of solvation is that good thermodynamic proper-

ties follow from an accurate representation of the structure in a molecular system.

Therefore, we first show that LMF theory can quantitatively capture the drying

observed at the surface of a hard sphere of radius RHS ≈ 2σLJ in a LJ fluid in

Figure 6.3a. This is a challenging problem for LMF theory since there is a large

change in the density due to the unbalanced LJ forces; indeed this presents more

difficulties than almost all applications of LMF theory to Coulomb interactions, as

will be discussed later. While a LJ fluid dries at the interface of a large purely

repulsive solute due to unbalanced forces arising from the bulk region, removal of

such forces in the corresponding WCA reference system leads to wetting of the so-

lute surface and there is a very large change in density between the blue and red
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Figure 6.3: (a) Nonuniform density around a hard sphere solute of radius RHS ≈ 2σLJ

in a LJ fluid and in its corresponding WCA reference system and LMF mimic
system. The inset shows the bare and renormalized solute fields, φ(r) and φLJ

R (r),
respectively. (b) Solvation free energies as a function of solute radius in LJ and WCA
fluids. Stars indicate the results obtained using the LMF theory of solvation. The
inset in (b) depicts the probability distributions P (βΦR1/2) in the mimic (PR) and
SCA (P0) systems on a logarithmic scale. Given the very different densities shown
in (a), the distributions of the mimic and SCA systems do not overlap significantly,
and therefore an intermediate state sampled with a solute-solvent field φR1(r)/2 was
also simulated in order to obtain the mimic system free energy using stratification.
The probability distribution obtained from sampling this ensemble is indicated by
P1/2. Gaussian distributions with the same mean and variance as the corresponding
simulation data are shown as the solid lines.
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curves in Figure 6.3a. Nevertheless, drying can be obtained with a WCA solvent by

accounting for the averaged effects of such unbalanced LJ forces at the fluid-solute

interface with the LJ LMF

φLJ
R (r) = φ(r) +

∫
dr′ [ρR(r′)− ρB]u1(|r− r′|), (6.25)

which is compared to the bare solute-solvent potential φ(r) in the inset of Fig-

ure 6.3a. The renormalized potential φLJ
R (r) provides an effective “push” on solvent

particles near the interface, such that the density in the mimic system is nearly

identical to that in the full LJ system, as shown by the curve labeled “LMF” in Fig-

ure 6.3a. Therefore, LMF theory can readily account for the significant structural

change induced by interfacial unbalancing potentials with quantitative accuracy.

From the accurate structure obtained from LMF theory, we can proceed to

study the solvation thermodynamics of hard spherical solutes of various sizes. As

demonstrated in Chapter 3, solvation free energies of hard spherical solutes display

a crossover from scaling with solute volume to scaling with solute surface area at

RHS ≈ σLJ, consistent with the appearance of interfacial drying. It was also shown

that this crossover does not occur if the unbalanced forces arising from the LJ

attractions of the fluid are not taken into account because the solvent wets the

solute surface for all solute sizes, and this is again shown in Figure 6.3. After

utilizing LMF theory to determine the structural properties of the mimic system,

the LMF theory of solvation is used to integrate over this structure and obtain

estimates for the solvation free energies.

The hard sphere solvation free energies per unit solute surface area determined
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through this LMF-based framework are compared with those obtained in the full LJ

and WCA systems in Figure 6.3b. The LMF free energies recover the length scale

transition and reproduce the solvation free energies with quantitative accuracy. We

should also emphasize that the Gaussian approximation Equation 6.24 holds re-

markably well when estimating ∆GR1, even in cases where significant structural

transitions occur upon the inclusion of φR1(r), as shown in the inset of Figure 6.3b.

However, when there is low phase space overlap between the SCA and mimic sys-

tems, and therefore distributions of the energy do not display significant overlap

(Figure 6.3b), an intermediate state needs to be studied in order to employ Gaus-

sian approximations to the free energy [57]. For example, to determine the free

energy of the state shown in Figure 6.3a, RHS/σLJ = 2, we have also simulated a

system with a nonphysical, partially coupled LMF, φ
(1/2)
R (r) = φR(r)/2. The free en-

ergy ∆GR1 was then determined from these three states as the sum of the Gaussian

approximated free energy changes between neighboring states.

A similar length scale transition occurs when apolar particles are solvated by

water, although the details of the transition in aqueous media with hydrogen bonds

differ in many important aspects, as discussed in Chapter 3. There it was demon-

strated that this length scale transition also occurs when long ranged electrostatics

are neglected in GT water, although the lower surface tension of GT water leads

to solvation free energies that are somewhat less unfavorable than those in the full

SPC/E model, Figure 6.4a.

We can again use the LMF-based framework for solvation free energies de-

veloped above to obtain accurate estimates of ∆G while neglecting long ranged
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electrostatic interactions. The situation is even more favorable here than for the LJ

system, because the Coulomb interaction is more slowly-varying at long distances

and we can choose the smoothing length σ in an optimal manner. Therefore, in

contrast to the above example of solvation in a LJ fluid, the phase space of the GT

SCA system is sufficiently close to that of the full system, and accurate estimates

for VR1(r) and ρqR(r) can be obtained by iterating over GT water configurations

using only LRT 2. Therefore, simulations of the mimic system do not need to be

performed. Within the accuracy of LRT, the free energy difference between the SCA

and mimic systems can be approximated as

∆GR1 ≈
1

2
[〈ΦR1〉0 + 〈ΦR1〉R] =

1

2

∫
dr [ρq0(r) + ρqR(r)]VR1(r), (6.26)

where the subscript 0 indicates quantities evaluated in the SCA system and the

averages in the mimic system are obtained from GT configurations using LRT.

Combining the LRT estimates for ρqR(r) and ∆GR1 with the LMF theory for sol-

vation, we obtain accurate full system free energies from simulations of a system

without long ranged electrostatics, as shown by the curve labeled “LRT-LMF” in

Figure 6.4a.

While the LMF free energy “corrections” appear small on the scale of Fig-

ure 6.4a, they become significant for large solute sizes. Differences between the full

2When LRT can be used with high accuracy, this also indicates that the probability distributions

of the relevant field (here the LMF) will follow a Gaussian distribution and the distributions for

the two states in question will overlap significantly. Therefore, ∆GR1[VR1] can be obtained with

high accuracy from the Gaussian approximation Equation 6.24, even more so than was the case

for ∆GR1[φLJ
R1], due to the very slowly-varying nature of v1(r) = erf(r/σ)/r.

186



1.0 1.5 2.0 2.5 3.0 3.5 4.0

RHS/deff

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

d
2 ef
fβ

∆
G̃

(a)

SPC/E
GT
LRT-LMF

1.05

1.10

1.15

1.20

1.25

1.0 1.5 2.0 2.5 3.0 3.5 4.0

RHS/deff

2

0

2

4

6

8

10

β
∆

∆
G

(b)

GT
LRT-LMF

Figure 6.4: (a) Solvation free energies of hard spheres in SPC/E and GT water
as a function of solute radius. Stars indicate solvation free energies determined
from configurations in the strong-coupling, GT water system obtained through a
combination of linear response theory (LRT) and LMF theory (LRT-LMF). (b)
Difference between the GT or LRT-LMF solvation free energies and those obtained
in SPC/E water, ∆∆G = ∆GSPC/E −∆G.

free energies and those obtained in GT water and from the LRT-LMF estimates are

shown in Figure 6.4b. The difference ∆∆G = ∆GSPC/E − ∆G is roughly zero in

both the GT and LMF systems for small solute sizes, as one might expect because

the structure and thermodynamics is determined exclusively by local interactions in

this regime. In the large solute regime, however, long ranged interactions become

increasingly important, and solvation free energies in GT water differ from those in

SPC/E water by as much as 9 kBT for a solute with a radius of 11.5 Å, and this

difference will continue to grow with increasing solute size. The LMF estimates for

these free energies readily correct these errors and ∆∆GLRT−LMF fluctuates about

zero for all solute sizes, indicating good agreement with the full system results.

Another stringent test of the LMF theory of solvation is to examine hard

sphere solvation in GTRC water, in which the LJ attractions are further removed
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from GT water. Computing solvation free energies of GT water from a GTRC

mimic system is completely analogous to computing solvation free energies in the

LJ fluid from a WCA mimic system. Removal of the LJ attractions in GTRC

water suppresses any drying at the solute-water interface, and therefore eliminates

the length scale transition in solvation free energies, Figure 6.5a. As was done for

the WCA fluid, LMF theory can be used to account for the averaged effects of

LJ attractions through the field φLJ
R (r). Upon doing so, drying is recovered, and

quantitatively accurate results for the solvation free energies are obtained from the

LMF-based framework, indicated by “LMF” in Figure 6.5a.

Inherent in the LMF theory of solvation is a natural separation of short and

long ranged interactions. The near field contribution to the solvation free energy is

equivalent to that of the approprate SCA reference system, ∆G0. The remainder of

the solvation free energy is due to far field components, ∆GLR = ∆GR1+∆GLMF. For

the case of hard sphere solvation in water, we can choose the appropriate SCA system

to be GTRC water, so that there are two far field components of the free energy,

one due to LJ attractions, ∆GLJ
LR[φLJ

R1], and one due to long ranged electrostatic

interactions, ∆Gq
LR[VR1], both of which are functionals of their respective LMF

potentials.

The long ranged LJ and electrostatic components of the hard sphere solvation

free energies per unit solute surface area as a function of solute radius are shown in

Figure 6.5b. The electrostatic component ∆Gq
LR only slightly increases from zero

as a function of solute size over the range of sizes examined, in agreement with

the fact that long ranged electrostatics play only a small role in the solvation of a
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Figure 6.5: (a) Solvation free energies of hard spheres in GT and GTRC water as
a function of solute radius. Stars indicate solvation free energies determined from
LMF theory for the LJ attractions. (b) Contributions to the solvation free energies
from long ranged LJ attractions (∆GLJ

R1) and long ranged electrostatics (∆Gq
R1) as

a function of solute size. The former is determined from the data in (a), while the
latter contributions were determined from data in Figure 6.4a.

hydrophobic solute. On the other hand, solvent LJ attractions comprise a significant

portion of the solvation free energy, and become increasingly negative as the solute

size is increased. In the large solute regime, the introduction of the field φLJ
R (r)

moves the system from a state of interfacial wetting to drying. The appearance of

a dry interface increases the ease with which a hard sphere is solvated by water, or

equivalently, the probability of finding a cavity the size and shape of the hard solute,

completely consistent with the large negative values of ∆GLJ
LR shown in Figure 6.5b.

6.2.3 Ion Hydration

We conclude this section with the calculation of the solvation free energy of a

single ion in water. Traditional approaches to ion solvation, like the highly successful

formalism developed by Hummer and coworkers [79], involve the simulation of a
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single ion in a dielectric solvent. The electrostatics are treated by Ewald summation

in these systems, and therefore require the presence of a neutralizing background

charge density. In addition, significant finite size effects due to the periodicity

of the Ewald sum are present [94], as discussed in the preceding chapter, although

successful finite-size corrections to the solvation free energy have been developed [79,

94].

LMF theory provides a useful alternative to periodic lattice summation tech-

niques when studying ion solvation. Aside from the efficient simulation of purely

short ranged systems afforded by LMF theory, the conceptual difficulties associated

with a non-uniform electrostatic potential that depends on the size of the simula-

tion cell can be eliminated. Instead, the LMF potential will display the asymptotic

behavior predicted by classical electrostatics, Q/εr for large r, producing a physi-

cally reasonable depiction of ion hydration and enabling the use of simple finite size

corrections in the form of a Born model. We extend LMF theory to ion hydration

herein.

As discussed in Appendix A, great care is to be taken when solving the LMF

equation for electrostatics. In particular, if the proper asymptotic behavior of the

LMF equation is not maintained, the self-consistent iteration process can diverge.

However, this problem is easily overcome by forcing neutrality at each step of the

iteration process for neutral systems. Analogously, we must ensure that VR(r) fol-

lows the expected behavior at small k for a non-neutral system when describing a

single ion solvated by bulk water. Such a stable iteration scheme is presented in Ap-

pendix I, and this method of self-consistently solving the LMF equation is employed
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when calculating the ion solvation free energies.

We consider the calculation of the solvation free energy of a charged methane

“particle” in SPC water, as studied by Hummer et al. [79]. In this case, methane

is modeled in the united atom (UA) scheme, such that methane (Me) is repre-

sented as a single LJ particle with Me-water interaction parameters of εMe−O
LJ =

0.893228 kJ/mol and σMe−O
LJ = 3.44778 Å. We consider a cationic state of this par-

ticle, with charge QMe+ = +1. Charging of an anionic state of the particle is a

more difficult process due to artifacts of classical ion-water interaction potentials.

In these potentials, the repulsive ion core only interacts with the LJ potential of

the oxygen site. Therefore, the positively charged hydrogen site can penetrate well

into the ionic core due to a lack of any repulsive core interactions. This leads to

profound nonlinearities in the charging process for ions, and further work is needed

to address the physical significance, if any, of this behavior.

We separate the solvation free energy ∆GMe+
of the positively charged methane

ion following LMF theory:

∆GMe+

= ∆G0 + ∆GR1 + ∆GLMF. (6.27)

The last two terms ∆GR1 and ∆GLMF are the free energy of turning on the renor-

malized electrostatic potential and the analytic LMF “correction” to the free energy

of mimic system given by the form of Equation 6.15 appropriate for electrostatic

interactions,

∆GLMF = −1

2

∫
drρqR(r) [VR(r)− V(r)] . (6.28)

The free energy ∆GR1 of turning on the field VR1(r) was obtained using a Gaussian

191



Table 6.1: Contributions to the Ion Solvation Free Energy (kJ/mol)

Charge ∆GQ0 ∆GR1 ∆GLMF ∆G Hummer et al. [79]

1 -73 -63 -58 -244 -240

approximation as discussed above.

The first term in Equation 6.27 is the solvation free energy of the ion in the SCA

system. This can be divided into a free energy of inserting an uncharged cavity into

the GT variant of SPC water, ∆Gcav, and a free energy of turning on the near-field

portion of the ion charge, ∆GQ0 , such that ∆G0 = ∆Gcav + ∆GQ0 . The free energy

of inserting the ion core can be readily determined by Widom particle insertion [116],

and here we used the value determined by Hummer and coworkers [79], ∆Gcav =

10.2 kJ/mol. The free energy of the near-field charging process was determined

by performing simulations of charged states Q = 0, 0.25, 0.5, 0.75, and 1.0 and

calculating the free energy as a function of Q using the Bennett acceptance ratio [56].

The solvation free energies of a methane-like cation in SPC water determined

from LMF theory-based free energy calculations are compared with the results of

Hummer et al. [79] in Table 6.1. The total solvation free energy ∆G listed there is

corrected for finite system size by the addition of ∆GFS = Q2ξ(1−1/ε)/(2L), where

ξ = −2.38 for a cubic simulation cell [79]. LMF theory captures the thermodynam-

ics of ionic hydration with reasonable accuracy, and the results obtained from the

above formalism compare well with the solvation free energies obtained in previous

work [79]. It is important to emphasize that the accurate LMF ion hydration free
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energies obtained from relatively simple simulations of purely short ranged systems

and the many difficulties associated with traditional approaches to ion solvation us-

ing Ewald summation are avoided. The only essential correction to the free energy

is simply to account for the finite size of the simulation cell.

6.3 Alchemical Free Energy Calculations

In so-called “computational alchemy,” we are interested in the free energy

change upon transforming one molecule into another, i.e. methane into methanol.

This type of free energy difference is important in numerous areas, such as protein-

ligand binding. In aspects of computer-aided drug design, one is interested in de-

signing a new drug molecule that will bind to a specific protein and possibly promote

or inhibit some aspect of its function. To achieve this task, we could take on the

computationally intense task of calculating the protein-ligand binding free energy

of each molecule of interest, a process akin to calculating solvation free energies.

However, it is not the binding free energies that are of interest but the differences

in binding free energies between molecules, such that we can rank the candidate

molecules in order of binding strength. Computing such differences can be accom-

plished by calculating the free energy change upon transforming one bound molecule

into another, while it is still bound to the protein. Although this may not be simple

in practice, it is more efficient than computing the absolute binding free energy of

each molecule. I will describe how to compute such alchemical free energy changes

using LMF theory below.
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6.3.1 Thermodynamic Cycle for Computational Alchemy

We now consider an arbitrary solute in solution, interacting with a solvent.

This solvent could be water, a mixture of a number of solvents, a protein, and so

forth. Here solvent just refers to the environment surrounding the solute of interest.

The solvent-solvent interactions can be both electrostatic and non-electrostatic in

nature, and the solvent molecules also interact with the solute via the potential

ψ(r;λ). This solute-solvent potential, fixed at the origin, is coupled to a parame-

ter λ which controls the alchemical transformation. Note that this can be readily

generalized to the case of a set of potentials {ψi(r; {λj})} coupled to numerous pa-

rameters {λj} that control various aspects of the potential. This is what would be

needed when fixing a molecule, for example, and transforming this molecule into

another.

When the coupling parameter λ is zero, the solute-solvent interaction is that

of the initial solute of interest, schematically illustrated in the lower left panel of

Figure 6.6. We are interested in the free energy change Ω(0→1) upon transforming

this solute (λ = 0) to another (λ = 1), as indicated by the lower path in Figure 6.6.

In general, this path may require many non-physical intermediate states, each re-

quiring the accurate evaluation of long ranged interactions at every state, and these

difficulties are schematically indicated by the red arrow connecting the lower panels

in Figure 6.6. However, we wish to calculate this free energy difference using short

ranged systems only, and to do so we will use LMF theory by defining an alternative

path to calculate Ω(0→1).
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Figure 6.6: Thermodynamic cycle for calculating alchemical free energy changes via
LMF theory. The bottom leg of the cycle corresponds to changing the solute from
state λ = 0 to state λ = 1, and in general can involve a change in the shape of the
solute and the nature of the solute-solvent interactions. This transformation occurs
in the full system, where both the solute-solvent and solvent-solvent interactions can
be long ranged, and is therefore described by the free energy Ω(0→1). The top leg of
the cycle depicts the analogous transformation being performed in the mimic system,
with a short ranged reference solvent and a renormalized solute at both state λ = 1
and state λ = 0. Performing the alchemical transformation in the mimic system is
characterized by the free energy Ω

(0→1)
R . The sum of the free energies of the paths

depicted by green arrows is a difference of analytic LMF corrections derived for
solvation free energies, as described in the text.
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This alternative path corresponds to the upper panels in Figure 6.6. In this

LMF alchemical transformation, we begin with a mimic system that has the same

structure as that of the fully interacting initial state. This LMF system is described

by short ranged solvent-solvent interactions v0(r) and renormalized solute-solvent

interactions ψR(r;λ = 0). We can then consider performing the alchemical transfor-

mation in the mimic system, where the renormalized solute potential ψR(r;λ = 0) is

slowly transformed into a different renormalized solute with potential ψR(r;λ = 1).

This process is illustrated by the upper leg of the thermodynamic cycle in Fig-

ure 6.6 and is associated with the free energy Ω
(0→1)
R . As was the case for solvation

free energies, this process will in general require as many steps as performing the

transformation in the full system. However, this process is computationally more

efficient, since we have eliminated much of the overhead arising from the evaluation

of long ranged interactions at each step of the transformation process. Hence, we

have connected the upper panels with a red and green striped arrow.

The free energy contributions associated with the green vertical arrows in

Figure 6.6 can be evaluated analytically using Equation 6.15. Therefore, we find

that the free energy of the alchemical transformation is given by

βΩ(0→1) = βΩ
(0→1)
R + βΩ

(λ=1)
LMF − βΩ

(λ=0)
LMF

= βΩ
(0→1)
R − β

2

∫
dr [ψR(r;λ = 1)− ψ(r;λ = 1)] [ρR(r;λ = 1) + ρB]

+
β

2

∫
dr [ψR(r;λ = 0)− ψ(r;λ = 0)] [ρR(r;λ = 0) + ρB] . (6.29)

The free energy of the transformation in the mimic system Ω
(0→1)
R can be obtained

using the techniques described in Section II. A. We can therefore calculate gen-
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eral free energy changes in a fully interacting, long ranged system from simulations

involving short ranged systems alone. Note that this will require at least two addi-

tional simulations (the LMF systems) when LRT approximations to the density and

LMF potentials are not valid. However, all simulations will be much more efficient

as the interactions are short ranged at all steps

6.3.2 The Addition of Solute-Solvent Attractions

A simple example of an alchemical transformation is simply adding attractive

interactions to a purely repulsive spherical solute. In this subsection I explore this

process for solutes of various sizes in water. The solutes are the large apolar spherical

solutes of Chapter 3, and we can write the solute-water interaction potential with

the attractive interactions coupled linearly to the parameter λ,

U (λ)
sw = U0,sw + λU1,sw, (6.30)

where U0,sw and U1,sw are the repulsive and attractive portions of the solute-water

interaction energy, respectively, such that U
(λ)
sw =

∑N
i=1 usw(ri;λ). This type of

solute-solvent potential is included in the nonelectrostatic portion of the external

field, φ(r;λ) = usw(r;λ), because no solute-solvent electrostatic interactions are

present. The renormalized potential acting on site α can then be written as

ψR,α(r;λ) = φα(r;λ) + qαVR(r;λ), (6.31)

where the LMF treatment has only been applied to electrostatic interactions and φα

is the nonelectrostatic solute-solvent potential acting on solute site α. If we separate

197



5 10 15

r (
◦
A)

0.02

0.04

0.06

ρ
(r

) 
(
◦ A
)

(a) λ=0

λ=1

2 4 6 8 10 12 14

RHS (
◦
A)

230

200

170

140

110

80

β
∆
G

(b)

SPC/E
GT
LMF

Figure 6.7: (a) Nonuniform density around solutes with HS radii from RHS = 2 Å
to RHS = 14 Å with (λ = 1) and without (λ = 0) solute-solvent LJ attractions.
(b)Free energy change upon turning on the attractive portion of the solute-water
potential U1,sw calculated in the full, SPC/E water system, the short ranged GT
water system, and from LMF theory.

only the electrostatic portion of the renormalized potential into short and long

ranged components for use with LMF theory, this field can be written as ψR,α(r;λ) =

ψ0,α(r;λ) + ψR1,α(r;λ), where the short ranged portion is

ψ0,α(r;λ) = φα(r;λ) + qαV0(r;λ) (6.32)

and the long ranged component is simply given by

ψR1,α(r;λ) = qαVR1(r;λ). (6.33)

For the solute-solvent potentials considered herein, given by Equation 6.30, the local

electrostatic component of the renormalized solute field is zero, V0(r) = 0, but note

that VR1(r) 6= 0, as this contains the averaged effects of the long ranged solvent-

solvent electrostatic interactions.

198



Density distributions of water around solutes of varying size are shown in

Figure 6.7a in the presence (λ = 1) and absence (λ = 0) of attractive interactions.

For small solutes, the solvation structure is determined entirely by the need for water

to maintain its hydrogen bond network around the solute. Therefore, for RHS less

than roughly 5 Å, attractive interactions have a negligible affect on the solvation

structure.

The hydrogen bond network of water cannot be maintained around large so-

lutes, and a soft, liquid-vapor like interface is nucleated in the vicinity of the solute

surface, resulting in the phenomena of drying in the interfacial region, which be-

comes more pronounced as the solute size is increased. This soft interface is highly

responsive to perturbations, and attractive interactions significantly alter the sol-

vation structure, effectively “pulling” water molecules toward the solute surface,

increasing the magnitude of the first peak in ρ(r) with respect to that observed in

the absence of solute-solvent attractions.

We again determined the free energy of turning on the slowly varying portion

of the LMF potential, ∆GR1,λ, using the Gaussian approximation of Equation 6.24.

To verify the accuracy of this approximation, I have calculated the probability dis-

tributions P
(λ)
0 (ΨR1) and P

(λ)
R (ΨR1), where ΨR1 =

∑N
i=1 ψR1(ri). These distributions

are shown in Figure 6.8 for several solute sizes and for both values of λ in the cor-

responding SCA and mimic systems. The symbols in Figure 6.8 are data calculated

from simulation, while solid lines are Gaussian distributions with the same mean

and variance as the calculated distribution. All distributions for all solute sizes

studied are found to follow Gaussian statistics, verifying the use of Equation 6.24
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Figure 6.8: Probability distributions of the potential energy due to the slowly-
varying portion of the electrostatic LMF VR1 for solutes with effective hard sphere
radii of (a) RHS = 4 Å, (b) RHS = 10 Å, and (c) RHS = 14 Å. Symbols are data
obtained from simulation and lines are Gaussian distributions with the same mean
and variance of the corresponding computed distributions.

to estimate the free energy ∆GR1,λ.

The free energy change along the transformation λ = 0 → λ = 1 can be

obtained by thermodynamic integration,

∆G0→1 =

∫ 1

0

dλ

〈
∂H(λ)

∂λ

〉
λ

=

∫ 1

0

dλ 〈U1,sw〉λ , (6.34)

where H(λ) is the λ-dependent Hamiltonian of the system and 〈· · · 〉λ indicates an

ensemble average over configurations of the system interacting with coupling pa-

rameter λ. The free energy differences calculated using the full SPC/E model are

compared with those calculated using the short ranged GT water model and with

those computed from LMF theory in Figure 6.7b for a range of solute radii. The

LMF route to calculating free energy differences is found to reproduce the results

of the full system almost exactly for all solute sizes examined. Therefore, the re-

sults presented for this simple test case effectively illustrate that the LMF theoretic
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framework can be applied to alchemical transformations with quantitative accuracy.

6.4 Density Fluctuations and Hard Sphere Solvation

The preceding sections describe LMF-based methods for computing free en-

ergy changes of a solute in solution as it is changed from one state to another (a

point solute to the full solute in the case of solvation free energies). In general,

thermodynamics is not limited to the description of solvation processes, and a free

energy can be computed along some relevant order parameter or reaction coordi-

nate describing any process of interest. For example, the association of two model

methane molecules in water was studied by computing the free energy as a func-

tion of methane-methane distance in Chapter 3. However, to compute such free

energy profiles, one often needs to employ advanced non-Boltzmann sampling tech-

niques [30].

One type of non-Boltzmann sampling employed throughout this thesis is um-

brella sampling [127], in which many simulations of a system are performed, each

with a unique “umbrella” potential that biases the system toward a particular value

of the reaction coordinate. The results of this set of simulations can then be stitched

together through a number of means, one of which is the multi-state Bennett ac-

ceptance ratio [67] (MBAR) used many times throughout this work. Therefore, in

order to use the LMF framework to calculate general free energy landscapes as a

function of an order parameter of interest, we need to combine LMF theory with

such non-Boltzmann sampling techniques.
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We have developed such a formalism, and the technical details are described in

Appendix J. We combine LMF theory, umbrella sampling, and MBAR to calculate

ensemble averages in a full system from sampling performed in a mimic or SCA

system. Umbrella sampling is performed with an appropriate biasing potential for

each window and an accompanying window-specific LMF potential. This ensures

an accurate representation of the full system structure in each window. Free energy

differences between these windows, and the associated free energy landscape, can

then be determined for the mimic system using MBAR. Finally, the analytic LMF

contribution to the free energy given by Equation 6.15 can be used to reweight mimic

system ensemble averages in order to obtain the corresponding averages in the full

system. An analogous procedure can be performed for the SCA system when LRT is

accurate, however the reweighting must also account for the free energy differences

between the SCA and mimic systems.

As a demonstration of these theoretical developments, we study density fluc-

tuations in bulk water. Specifically, we seek to calculate the probability of observing

N water molecules within a spherical volume v. This probability Pv(N) is intimately

related to the free energy of solvation ∆GHS of a hard sphere of the same volume

through the potential distribution theorem,

e−β∆GHS =
〈
e−βUHS

〉
M

= 〈δNv ,0〉M = Pv(0), (6.35)

where the ensemble averages are performed over the bulk mobile fluid ensemble (M)

in the absence of a hard sphere, UHS =
∑M

i=1 uHS(ri) = δN,0 is the total solute-

solvent interaction energy, and δN,N ′ is the Kronecker delta function. Therefore,

202



0 5 10 15 20 25 30 35 40
N

80

70

60

50

40

30

20

10

0

ln
P
(N

)

GT
GTRC
GTRC-LMF

Figure 6.9: Probability distribution Pv(N) of finding N water molecules in a spher-
ical observation volume v with a radius of 6 Å determined in GT and GTRC water.
Also included are the results obtained from a combination of LRT and LMF theory,
and described in Section J.3.

β∆GHS = − lnPv(0), where Pv(0) is the probability of observing a cavity the same

size and shape of the solute volume v. It was shown earlier in this chapter that one

can use LMF theory to determine ∆GHS, and therefore − lnPv(0), from a purely

short ranged system with quantitative accuracy for both small and large solute

volumes. In this section, we demonstrate that the full distribution Pv(N) can also

be obtained from short ranged systems with high accuracy by combining LMF theory

and non-Boltzmann sampling techniques.

For relatively small probe volumes, the distributions Pv(N) can be calculated

using the Widom particle insertion method [30]. However, large volume density

fluctuations are rare events not accurately sampled by conventional simulations, and

some type of biased, non-Boltzmann sampling technique is needed to calculate Pv(N)

accurately. In this case, we use umbrella sampling techniques to bias the simulation.
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At first glance, one would like a biasing potential in terms of the variable of interest,

N . However, N is a discrete variable, and this presents issues with MD simulations,

because the potentials and forces will not be continuous (although this is not a

problem in Monte Carlo simulations). Instead, the INDUS method allows N to be

coarse-grained by smoothing N with a truncated and shifted Gaussian distribution,

resulting in the continuous coarse-grained variable Ñ [73]. We can then bias the

simulation toward desired values of Ñ , which, with correctly tuned parameters, will

closely follow N . After performing a set of nw simulations that adequately sample

N and Ñ , with sufficient overlap of the Pv(N, Ñ) distributions between neighboring

windows, we can reconstruct the desired Pv(N) using MBAR [67]. In all cases, a

simple harmonic potential was used to bias the system toward the desired value of

Ñ ,

Vk(Ñ) =
κ

2

(
Ñ − ηk

)2

, (6.36)

where ηk is the desired value of Ñ in window k, and the force constant κ was

chosen independently for each window to yield sufficient overlap between neighboring

windows.

In order to maintain a constant bulk density far from the probe volume across

all biased ensembles, we perform simulations in the isothermal-isobaric (NPT) en-

semble, and therefore must account for the biasing potential in the calculation of

the virial pressure. The contribution to the pressure from the biasing potential is

simply,

P INDUS ≡ −∂Vk
∂V

=
1

3V

M∑
i=1

ri · f INDUS
i , (6.37)
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where M is the number of particles interacting with the biasing potential, ri is

the position of particle i, and f INDUS
i is the force on particle i due to the biasing

potential [73].

For small volumes, below the crossover size, long ranged interactions have a

negligible influence on the solvation behavior. Therefore, density fluctuations in the

bulk fluid are determined by local, hydrogen bonding interactions on such small

length scale, and these fluctuations are not altered upon the inclusion of an LMF

in the short ranged reference system. In contrast, in the large scale regime, Pv(N)

displays non-Gaussian tails at low N in GT water, as shown in Figure 6.9. The

appearance of such fat tails in Pv(N) are a manifestation of the nucleation of a

nanoscale liquid-vapor interface at the surface of a large cavity, and are consistent

with the appearance of interfacial drying. Indeed, removal of the unbalanced at-

tractive LJ forces in GTRC water eliminates drying, and therefore the Pv(N) of

GTRC lacks such fat tails at low N , as can be expected from the results presented

in Chapter 3. In addition, the GTRC Pv(N) is nearly Gaussian for all N , similar

to what is observed in a hard sphere fluid [128].

Using LRT, we determine the densities and LMF fields in each biased ensemble

necessary for performing the reweighting described in Section J.3. Upon doing so,

averages obtained from configurations obtained in the GTRC system are appropri-

ately reweighted, yielding a Pv(N) distribution consistent with GT water, as shown

by the red stars in Figure 6.9. By including the averaged effects of the unbalanced

LJ forces in each biased ensemble, we can capture the non-trivial fat tails observed

at low N with high accuracy, as shown in Figure 6.9.
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6.5 Conclusions

In this chapter we have developed a LMF theory-based framework for per-

forming the major types of free energy calculations. The accuracy of this theoretical

framework was demonstrated through the study of hard sphere solvation in water

and LJ fluids, and ion hydration. Such systems represent the most challenging test

cases for LMF theory, where unbalanced interfacial forces arising from long ranged

interactions are quite important for structure and thermodynamics, leading to inter-

facial drying and the length scale transition of solvophobic solvation. LMF theory

provides an exceptionally accurate description of these systems, and we expect that

the framework developed herein will be readily applicable to more complex systems.

The most natural extension of our theoretical framework is to the solvation of

molecularly detailed solutes consisting of multiple atomic sites. In general, a fixed

solute of this type will generate a nonuniform LMF VR(r) with no symmetries. One

may exploit the ability of the LMF equation to be rewritten in the form of a Poisson’s

equation involving the Gaussian smoothed total charge density of the system [1],

∇2VR1(r) = −ρqσtot(r)/ε, to solve for VR1(r) with a numerical Poisson Solver [129], but

evaluation of a three-dimensional potential may still be computationally difficult.

Another promising avenue to use LMF theory for molecular solutes is to extend the

superposition-like approximation made by Denesyuk and Weeks (DW) [43]. Within

this approximation, the nonuniform LMF potential is approximated by the sum

of the spherically symmetric potentials centered on the atomic sites of the solute
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molecule,

VR(r) ≈
Nα∑
α=1

VR,α(|r− rα|), (6.38)

where there are Nα charged sites in the solute, each of which are indexed by α. DW

have successfully applied such approximations to the description of bulk electrolytes

and the collapse of model polypeptides in electrolyte solutions [43, 130]. Although

DW represented the solvent as a uniform continuum with dielectric constant ε and

used further Debye-Hückel-based approximations to solve the LMF equation, we

expect that expressions like Equation 6.38 will still be accurate in systems where

the solvent is modeled explicitly and the LMF equation is solved in more detail.

The LMF framework for free energy calculations should be of significant im-

portance to the study of biomolecular and materials research. The study of the

large-scale systems involved in these areas often make a characterization of the free

energy landscapes necessary to understand the relevant processes of interest pro-

hibitively expensive. LMF theory reduces such computational burdens, allowing for

the in depth study of large-scale systems involving macromolecules like proteins or

molecular assemblies like membranes and micelles. Indeed, the extension of LMF

theory to these important areas is currently underway.
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Chapter 7

Conclusions and Future Work

Throughout this dissertation, we have utilized LMF theory and its underly-

ing concepts to examine the thermodynamic consequences of nanoscale structural

details. We first focused on several anomalous thermodynamic properties of bulk

water, and examined the structural origins of such anomalies using LMF-based trun-

cations of the SPC/E water model. Long ranged electrostatic interactions play a

minimal role in the studied anomalies, as may be expected from the accuracy of the

force cancellation picture for such slowly-varying interactions. This is reflective of

a hierarchical ordering of importance of the (i) hydrogen bond network, (ii) longer

ranged LJ attractions, and (iii) long ranged multipolar interactions. The anomalous

structural and thermodynamic properties of water arise from a competition of the

local repulsive and attractive forces leading to the hydrogen bond network and the

cohesive energy provided by long ranged attractive interactions.

In addition, LMF-based truncated models were employed to illustrate the role

of unbalancing potentials in hydrophobic effects, and to facilitate a comparsion

between solvophobic solvation in water and simple liquids. In particular, the use

of such truncated models in conjunction with LMF theory allowed us to clearly

illustrate the role of the hydrogen bond network in determining the solute size

at which a crossover from small to large length-scale solvation occurs in water.
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Such strong local interactions lead to significantly different physics underlying the

crossover in water than in a simple LJ fluid.

Local molecular field theory ideas were then employed to study ion hydra-

tion, and subtleties surrounding the calculation of electrostatic potentials arising in

dielectric continuum theories were explored. It was also illustrated that any non-

Gaussian behavior in the response of water to the presence of a charged hard sphere

arises from short ranged, near-field electrostatics. The far-field components of the

electrostatic response, on the other hand, are relatively insensitive to the molecu-

lar details of the solvent, and the solvent can be treated as a continuum on such

long-wavelengths. This was further exemplified by probing the dielectric response of

molecular systems to Gaussian test charges. Such Gaussian distributions of charge

are the appropriate generalization of the concept of a classical test charge to probe

the dielectric response of molecularly detailed systems as studied by simulation.

A highly accurate LMF-theoretic framework was then developed for free en-

ergy calculations, in which long ranged components of the free energy are computed

analytically while the remaining steps are performed using computationally effi-

cient simulations of purely short ranged models. This approach was then applied to

several challenging problems, in which unbalancing forces play a significant role in

determining the structure and thermodynamics of the system. The calculation of

thermodynamic properties from LMF theory is directly applicable to most methods

of free energy calculation, and should therefore find widespread use. Further devel-

opment of this framework for more complex systems is an active area of research.

Of particular interest for future research is to extend the use of truncated
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models to the study the behavior of “cold” water. It has been proposed that wa-

ter has a liquid-liquid critical (LLCP) point located at low temperature and high

pressure [131]. The LLCP hypothesis has been used to provide a theoretical ex-

planation for the many anomalous properties of water based on the existence of

two distinct liquid states. However, this LLCP has eluded experimental detection

because it is located in the so-called “No-Man’s Land” of the water phase diagram,

so named because it is below the homogenous nucleation temperature of ice and

therefore one cannot equilibrate a metastable liquid phase. The existence of such

a critical point, and the liquid-liquid phase transition (LLPT) line it implies, has

been a subject of great debate, with mounting evidence both for [132, 133, 134]

and against [135, 136, 137]. In particular, Limmer and Chandler have argued per-

suasively that there are not two distinct liquid phases at low temperatures in most

realistic water models. Instead, they propose that the previously observed high den-

sity liquid (HDL) and low density liquid (LDL) phases were a misinterpretation of

nonequilibrium phenomena associated with coarsening dynamics of the metastable

liquid state during crystallization [136].

Examination of the low temperature behavior of the GTRC model in particular

could shed some light on these issues. This minimal representation of the hydrogen

bond network of water yields a low density liquid (not the LDL described above)

that lacks the cohesive energy necessary to introduce a fifth nearest neighbor into

the hydration shell of a water molecule. As such, we expect that this model cannot

have a HDL phase. Therefore, if it displays the characteristic increase in response

functions as the temperature is lowered, this cannot be rationalized by the existence
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of two phases. In addition, the density of GTRC is less than that of ice at ambient

conditions, and studying the melting transition of this model should also prove quite

instructive.

Another area of future research that is currently underway is to utilize trun-

cated models in conjunction with LMF theory to study ion specific effects at the

liquid-vapor interface. Contrary to classical dielectric continuum theory predictions,

which state that ions should be repelled from a liquid-vapor interface, both experi-

ments and simulations have observed that ions can adsorb to such interfaces. One

particularly simple and heavily studied ion is Iodide, I−, an anion of relatively low

charge density. Recent results have shown, quite surprisingly, that the energetics

of ion adsorption are dominated by local ion-water interactions, such that I− per-

turbs only water molecules in the first hydration shell [138, 139]. However, the

presence of I− at the water-vapor interface leads to an entropic penalty through the

suppression of interfacial density fluctuations [138, 139]. Such capillary waves are

typically viewed as a long-wavelength phenomenon, and an accurate description of

these interface fluctuations can be provided by field theories neglecting molecular-

scale details. This energy-entropy balance may seem contradictory, because the

energetic contribution to the free energy is dominated by local interactions while

the entropic component arises from non-local effects. As such, attempts have been

made to disentangle the effects of interfacial fluctuations on the free energy of ion

adsorption [140].

Unlike previous studies, the use of LMF-based truncated models allows for

the direct decomposition of effects arising from local and non-local interactions. A
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strong coupling system consisting of GT water and a short ranged I−, for example,

will contain only short ranged electrostatic interactions. The surface tension of GT

water is slightly less than that of SPC/E, and will therefore have a slightly larger

amplitude of capillary wave fluctuations. This system provides a useful test of the

hypothesis that ion adsorption is dominated by local electrostatics. This is indeed

the case, and free energies as a function of distance perpendicular to the average

position of the liquid-vapor interface show a minimum at nearly the same location

in both SPC/E water and its GT variant, as shown in Figure 7.1 1.

The suppression of capillary waves can also be studied using LMF theory and

truncated models. We can utilize the useful “feature” that mean field theory cannot

capture long-wavelength capillary waves [97] to simulate a liquid vapor interface

without these fluctuations. In particular, we can use the GTRC model with LMF

theory for LJ attractions to capture the average structure of the liquid-vapor inter-

face. However, this interface lacks long-wavelength density fluctuations, and simula-

tion results indicate that interfacial height fluctuations are reduced by roughly 70 %

in the LJ-LMF system, such that only local distortions of the interface can occur.

Surprisingly, a distinct minimum in the potential of mean force is present even in

this system, as shown in Figure 7.1. Although decomposition of the free energy into

its energetic and entropic components is necessary to determine the relative balance

of these contributions, these results at least indicate that ion adsorption suppresses

local fluctuations of the interface, and not the traditional long-wavelength capillary

waves.

1More details regarding the liquid-vapor interfaces of truncated models are given in Appendix K
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Figure 7.1: Change in free energy ∆F (z) for moving a fractionally charged iodide as
a function of distance z from the mean liquid-vapor interface located at z = 0 with
full electrostatics (SPC/E), in the GT reference system, and in GTRC water in the
presence of φLJ

R (z) as described in the text. The I− ion is modeled as a LJ particle
with fractional charge QI = −0.8 e0. The oxygen-I− LJ interaction parameters are
εLJ = 0.5215 kJ/mol and σLJ = 4.14525 Å [138].

A major theoretical development that remains for LMF theory is its extension

to dynamics of molecular systems, both in and out of equilibrium. We can illustrate

the successes and failures of LMF theory in the description of dynamical properties

of molecular systems through the examination of a one-component LJ fluid, its WCA

reference system, and the corresponding LMF system at a state point of ρσ3
LJ = 0.85

and T ∗ = 0.65 [141]. The structure of the LJ fluid, quantified by the pair distribution

function g(r), is accurately captured by the LMF system, while small deviations are

found for the WCA reference consistent with previous findings [6]. We quantify

the dynamic properties of the systems through the velocity autocorrelation function

Cv(t),

Cv(t) =
〈v(t) · v(0)〉
〈v2(0)〉

, (7.1)
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Figure 7.2: (a) Pair distribution functions obtained for a LJ fluid, its WCA ref-
erence, and the corresponding LMF system at the state point ρσ3

LJ = 0.85 and
T ∗ = 0.65. (b) Velocity autocorrelation functions and (c) mean squared displac-
ments for the three systems. Note the log-log scale in (c). Times are obtained using
the appropriate units for argon.

where v(t) is the three-dimensional velocity vector of a particle at time t, and the

mean-squared displacement, MSD(t).

We can begin to see where LMF theory needs improvement by dividing space-

time into three distinct regimes. Following Hansen and McDonald [25], we set

the relevant length- and time-scales to be the mean free path lC and the mean

collision time τC . The fastest time-scale, associated with the shortest lengths, is the

free-particle regime, wherein klC >> 1 and ωτC >> 1 (ω indicates frequency, the

Fourier-space analog of time). In this regime, particles move almost independently

of one another, and LMF theory, or even the strong coupling approximation, will

trivially capture the dynamics occurring on such short timescales, as evidenced by

Figure 7.2.

An intermediate regime also exists, characterized by klC ≈ 1 and ωτC ≈ 1,

termed the kinetic regime [25]. In this regime, the molecular structure of the fluid

is of substantial importance. For argon, τC is on the order of 0.1 ps [25], and we
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expect that klC ≈ kρ−1/3 ≤ 21/6σLJk to a good approximation at densities near the

triple point. Therefore the structure and dynamics on this space-timescale will also

be captured by LMF theory, but may not be captured in the corresponding SCA

system which lacks the correct equilibrium structure. Indeed, this is the case, as

Cv(t) and MSD(t) in Figure 7.2 are both accurately described by the LMF system

for t < 0.5 ps, while the WCA reference system fails to reproduce the depth of the

minimum in Cv(t) near 0.4 ps and the MSD of this system increases more rapidly

than the full LJ system.

The third and final regime under consideration is the hydrodynamic regime

associated with long-wavelength, long-time fluctuations [25], klC << 1 and ωτC <<

1. Due to the mean field nature of the LMF approach, long-wavelength fluctuations

are neglected. While this is not problematic when the structure and thermodynamics

of systems in equilibrium are concerned, such fluctuations are important when the

hydrodynamic properties of a system are under consideration. Therefore, we might

expect that LMF theory cannot capture the long-time behavior of the dynamics in

its current formulation. Indeed, the data presented in Figure 7.2 indicate that LMF

theory does not reproduce the collective effects leading to the long-time dynamics

of the full LJ fluid. However, because hydrodynamics does not depend sensitively

on the microscopic details of a fluid, general, time-dependent corrections to LMF

theory from fluctuating hydrodynamic fields should be possible.
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Appendix A

LMF Theory in Practice

This Appendix describes how LMF theory is implemented in practice for a

system examined in this thesis. Although it is more than a “toy” model, I will

demonstrate the use of LMF theory on the case of a large repulsive spherical solute

of the type examined in Chapter 3 with an effective hard sphere radius of RHS ≈ 20 Å

in 6022 SPC/E water molecules. Although this system is quite large, similar results

hold for smaller solutes that are still in the solute size regime in which the H-bond

network cannot be maintained around the solute, roughly RHS ≥ 6 Å. However, the

differences between truncated and full water models become more pronounced as

the solute size is increased.

The potential energy of a uniform, bulk system of N molecules of SPC/E water

is given by

U =
1

2

N∑
i=1

N∑′

j=1

u (rij) +
1

2

3N∑
i=1

3N∑′

j=1

qiqj
ε
v (rij) , (A.1)

where the prime over the second sum indicates that terms when sites i and j are

on the same molecule are omitted and rij = |rj − ri| is the distance between sites i

and j. The first term corresponds to the LJ interactions in the system, with one LJ

site per molecule. The LJ potential is given by

u(r) = 4εLJ

[(σLJ

r

)12

−
(σLJ

r

)6
]
, (A.2)

and the energy and length-scale parameters for water are εLJ = 0.65 kJ/mol and
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σLJ = 3.166 Å, respectively. The second term corresponds to the evaluation of

electrostatic interactions, and, as there are three charges per SPC/E water molecule,

the summations are over the 3N charged sites in the system. The electrostatic

interaction is the Coulomb potential,

qiqj
ε
v(r) =

qiqj
εr

, (A.3)

where qi is the partial charge of site i and ε is the dielectric constant of the media

(taken to be 1 in the case of vacuum).

Here, I will only focus on separating v(r) = 1/r, and not the LJ potential

(solving the LMF equation is similar, and actually easier with the LJ potential).

In this case, the 1/r portion of the Coulomb potential is separated into a rapidly-

varying short ranged portion and a slowly-varying long ranged portion as

v(r) = v0(r) + v1(r) =
erfc(r/σ)

r
+

erf(r/σ)

r
, (A.4)

where the separation length scale σ has been chosen (rather conservatively) to be

equal to 4.5 Å (I say conservatively because even a value of σ = 3.0 Å will capture

the bulk structure of SPC/E water at a fixed volume). Using only v0(r) in place of

1/r in the Coulomb potential leads to the Gaussian-Truncated (GT) model of water,

which will be used to illustrate the process of solving the LMF equation. Note that

the potential energy of a uniform, bulk system of N molecules of GT water is then

given by

UGT =
1

2

N∑
i=1

N∑′

j=1

u (rij) +
1

2

3N∑
i=1

3N∑′

j=1

qiqj
ε
v0 (rij) , (A.5)

in analogy with that of the SPC/E model described above.
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A.1 Obtaining a Self-Consistent Solution of the LMF Equation

The first step of solving the LMF equation is to perform a simulation of the

short ranged system to provide an initial charge density to input into the LMF

equation. Note that if one can provide a good “guess” to the charge density as input

to the LMF equation, this can be input to the LMF equation first and simulate with

an initial field (see Reference [110] for further details and an example).

We will examine four properties of the system in order to compare the full

SPC/E, GT, and LMF systems: (i) the microscopic charge density in a configuration

R̄,

ρq(r; R) ≡
∑
i

qiδ(r− ri(R)),

the ensemble average of which is ρq(r) =
〈
ρq(r; R̄)

〉
, (ii) the Gaussian-smoothed

charge density,

ρqσ(r) =
1

π3/2σ3

∫
dr′ρq(r′) exp

[
−

(
|r− r′|2

σ2

)]
,

which, in a spherically symmetric system is given by

ρqσ(r) =
1

rσ
√
π

∫ ∞
0

dr′r′ρq(r′)

[
exp

(
−|r− r′|2

σ2

)
− exp

(
−|r + r′|2

σ2

)]
,

(iii) the electrostatic (or polarization) potential

Φ(r) =
1

4πε0

∫
dr′

ρq(r′)

|r− r′|
= − 1

ε0

∫ r

0

dr′

r′2

∫ r′

0

dr′′r′′2ρq(r′′),

and (iv) the probability distribution of the angle formed by the O-H bond vector of

a water molecule and the vector connecting the water oxygen site and the solute,

P (θOH), which was calculated for water molecules within 1 Å of the solute surface.
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Figure A.1: (a) Charge densities, (b) Gaussian-smoothed charge densities, (c) elec-
trostatic potentials, and (d) probability distributions of θOH for SPC/E and GT
water models around a purely repulsive spherical solute of radius RHS ≈ 20 Å.

The above-mentioned quantities are shown for the SPC/E and GT water mod-

els in Figure A.1. Although only slight differences are observed between the charge

densities of the two systems, like the larger first peak in that for the GT model,

large differences are found for the remaining quantities. This illustrates that while

the truncated and full systems have only small differences in their charge densi-

ties (and oxygen densities, not shown), there are large effects on other electrostatic

and orientational properties of water. The origin of these effects are discussed in

Chapter 3.
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A.2 Solving the LMF equation at each iteration

A.2.1 One-dimensional LMF equation in a spherically symmetric

system

The next step is to evaluate the LMF equation in a single iteration. In spher-

ically symmetric charged systems, the LMF equation we wish to solve is given by

VR(r) = V0(r) +
1

ε

∫
dr′ρq (r′; [VR]) v1 (|r− r′|) + C, (A.6)

where we have separated the electrostatic LMF into short ranged and long ranged

portions, VR(r) = V0(r)+VR1(r). In order to convert this to a numerically integrable

one-dimensional equation, we seek a Green’s function, G(r; r′), that satisfies the

relation

VR(r) = V0(r) +
1

ε

∫
dr′ρq (r′; [VR])G(r; r′) + C. (A.7)

Physically, G(r; r′) can be considered the potential at position r due to a unit charge

smoothed into spherical shell at position r′, which is then Gaussian-smoothed. We

can then rewrite Equation A.7 in the following manner,

VR(r) = V0(r) +
1

ε

∫
dr′ρq (r′; [VR])

∫
dr′′

δ (r′ − r′′)
4πr′2

v1 (r− r′′) + C, (A.8)

making it evident that the function G(r; r′) is given by

G(r; r′) =

∫ 2π

0

dφ

∫ 1

−1

d (cosθ)

∫ ∞
0

dr′′r′′2
δ (r′ − r′′)

4πr′2

erf
(
|r−r′′|
σ

)
|r− r′′|

=
1

2

∫ 1

−1

d (cosθ)
erf
(
|r−r′|
σ

)
|r− r′|

. (A.9)
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In order to evaluate this integral, we make a transformation to bipolar coordinates,

G(r; r′) =
1

2rr′

∫ |r+r′|
|r−r′|

dy erf (y/σ) (A.10)

Now, upon making the substitutions y/σ = s and dy = σds, the integral can be

easily evaluated as

G(r; r′) =
σ

2rr′

∫ |r+r′|/σ
|r−r′|/σ

ds erf(s)

=
σ

2rr′

(
s erf(s) +

1√
π
e−s

2

) ∣∣∣|r+r′|/σ
|r−r′|/σ

=
1

2rr′

[
|r + r′| erf

(
|r + r′|
σ

)
+

σ√
π
e
−

„
|r+r′|
σ

«2

− |r − r′| erf

(
|r − r′|
σ

)
− σ√

π
e
−

„
|r−r′|
σ

«2]
. (A.11)

Through the use of the Green’s function G(r; r′) given in Equation A.11, VR can be

readily obtained through numerical integration of Equation A.7.

A.2.2 k-space stable form of the LMF equation

When dealing with charged systems, one typically must take care that the

proper asymptotic sum rules are satisfied, and LMF theory is no different. Consider

the Fourier transform of the long ranged slowly-varying portion of the LMF equation

for electrostatics,

V̂R1(k) =
1

ε
ρ̂q(k)e

“
− k

2σ2

4

”
4π

k2
=

1

ε
ρ̂qσ(k)

4π

k2
, (A.12)
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where we have defined the three-dimensional Fourier transform and inverse Fourier

transform of a function f as

f̂(k) =

∫
dre−ik·rf(r)

and

f(r) =
1

(2π)3

∫
dkeik·rf̂(k),

respectively. From the Stillinger-Lovett sum rules [107, 108, 109, 25], we expect that

the charge density will satisfy

ρ̂q(k) ∼ 0 + αk2 +O(k4), (A.13)

at small k for the “correct” VR1. However, for incorrect VR1, i.e. before self-

consistency of the LMF equation is obtained as in the case of GT water, the charge

density may asymptotically behave as

ρ̂q(k) ∼ C + αk2 +O(k4) (A.14)

for small k, where C is a constant. If C 6= 0, then the iteration of the LMF equation

will diverge in k-space, and therefore we need some type of stable iteration scheme.

A scheme for iterating the LMF equation has been developed 1, and the k-space

stable solution of the LMF equation is

VR1(r) =
1

ε

∫
dr′
[
ρqσ(r′)− ρqσl(r′)

] 1

|r− r′|
+

1

l3π3/2

∫
dr′VR1(r′)e−

|r−r′|2
l2 , (A.15)

where we have defined the smoothed charge density

ρqσl(r) =

∫
dr′ρq(r′)ρG(|r− r′| ;

√
σ2 + l2), (A.16)

1The original k-space stable form of the LMF equation developed by Kirill Katsov took on a

different form [142, 143]. This current form is due to John Weeks.
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such that

ρG(r;α) =
1

π3/2α3
e−
|r|2

α2 .

The length l is typically chosen on the order of σ.

For a spherically symmetric system, the one-dimensional k-space stable LMF

equation is

VR1(r) =
1

ε

∫
d′r′ρqR(r′)G(r; r′;σ)

− 1

ε

∫
d′r′ρqR(r′)G(r; r′;

√
σ2 + l2)

+ I(r) + C, (A.17)

where the Green’s function is given by

G(r; r′; γ) =
1

2rr′

[
|r + r′| erf

(
|r + r′|
γ

)
+

γ√
π
e
−

„
|r+r′|
γ

«2

− |r − r′| erf

(
|r − r′|
γ

)
− γ√

π
e
−

„
|r−r′|
γ

«2]
, (A.18)

and I(r) is the integral

I(r) =
1

πlr

∫ ∞
0

dr′r′VR1(r′)

[
e
−

„
|r−r′|
l

«2

− e
−

„
|r+r′|
l

«2]
.

A.3 Iterating the LMF equation with linear response theory

Finally, an iterative solution of the LMF equation needs to be obtained. Tra-

ditionally, this has been done by obtaining a new density at each step through

simulation (Figure A.2a). Recent work has led to the development of a linear re-

sponse theory based framework to iterate the equation (Figure A.2b), and this is

described below.
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Figure A.2: Diagrams depicting (a) traditional iteration using simulation to solve
for the density at each step and (b) linear response theory based method to obtain
the density at each iteration.

A.3.1 Linear response theory for the density

In this section, I will describe how to solve the self-consistent LMF equation

using linear response theory (LRT). Our goal will be to obtain a charge density

response to a new field without performing another simulation with that field. First,

we define the total potential energy due to VR1(r) in a configuration R̄ as

ΦR1

(
R̄
)
≡

N∑
i=1

qiVR1 (ri) =

∫
drρq

(
r; R̄

)
VR1(r), (A.20)

for a system of N charges. Using density response theory, the new charge density is

given by 〈
ρq
(
r; R̄

)〉
VR1

=

〈
ρq
(
r; R̄

)
exp

(
−βΦR1

(
R̄
))〉
V0〈

exp
(
−βΦR1

(
R̄
))〉
V0

, (A.21)

where 〈· · · 〉V0
indicates an ensemble average over the configurations of the strong-

coupling system or the system in the presence of an intermediate field. Such an

average over exponentials is usually difficult to accurately evaluate numerically, and

therefore using LRT allows one to determine the new density without performing
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Figure A.3: (a) Charge densities and (b) Gaussian-smoothed charge densities for
SPC/E and GT water models, as well as that obtained from iterating the LMF
equation via linear response theory (LRT), Equation A.22. (c) The electrostatic
LMF obtained from linear response theory iteration of the LMF equation.

such averages. The LRT result for the new charge density is given by

〈
ρq
(
r; R̄

)〉
VR1
'
〈
ρq
(
r; R̄

)〉
V0
− β

〈
δρq
(
r; R̄

)
δΦR1

(
R̄
)〉
V0
, (A.22)

where

δρq
(
r; R̄

)
≡ ρq

(
r; R̄

)
−
〈
ρq
(
r; R̄

)〉
V0

and

δΦR1

(
R̄
)
≡ ΦR1

(
R̄
)
−
〈
ΦR1

(
R̄
)〉
V0
.

Now, instead of iterating the LMF equation to self-consistency using simulations,

we can iterate using Equation A.22 in conjunction with the LMF Equation until

convergence of a new LMF is obtained. This technique, schematically depicted in

Figure A.2b, is far more efficient than iterating the LMF equation using simulations,

and was used to perform the LMF simulations discussed in this work.

The charge density obtained from iteration of the LMF equation via linear

response theory (LRT) is compared to that of the SPC/E and GT water models
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Figure A.4: (a) Charge densities, (b) Gaussian-smoothed charge densities, (c) elec-
trostatic potentials, and (d) probability distributions of θOH for SPC/E and GT
water models, as well as GT water in the presence of the electrostatic LMF around
a purely repulsive spherical solute of radius RHS ≈ 20 Å.

in Figure A.3a. Although ρq(r) obtained from LRT is much noisier than those of

the SPC/E and GT models, near quantitative agreement with the SPC/E model is

observed, especially in the height of the first peak. Upon Gaussian-smoothing, ρqσ(r)

from LRT is found to be in much better agreement with SPC/E than that of the GT

model in the absence of the renormalized field. Finally, the LMF VR(r) obtained

from iteration via LRT (scheme shown in Figure A.2b) is shown in Figure A.3c. This

field is used to obtain the results shown for the LMF system in the next section.

A.3.2 Comparison with the full system

Finally, we perform a simulation of the truncated system, GT water, in the

presence of the converged LMF in order to obtain equilibrium properties of the
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system. The charge densities, Gaussian-smoothed charge densities, electrostatic

potentials, and probability distributions of θOH are shown in Figure A.4 for SPC/E

and GT water, as well as GT water in the presence of the electrostatic LMF depicted

in Figure A.3c. We find that the inclusion of the renormalized potential VR(r) leads

to properties in quantitative agreement with the full SPC/E system. The quantities

obtained from the LMF system were averaged over 20,000 configurations equally

spaced over a 1 ns simulation.
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Appendix B

Derivation of the Bethe Potential

Consider a neutral system with zero dipole and traceless quadrupole moments,

but nonzero second moment tensor, or equivalently, nonzero primitive quadrupole

tensor. We seek to evaluate the average potential over the cell, defined as

〈φ〉V =
1

V

∫
cell

φ(r) = lim
k→0

φ̂(k). (B.1)

Using Poisson’s equation, the average potential can be written as

〈φ〉V = lim
k→0

4π

k2
ρ̂q(k). (B.2)

Since we are interested in the behavior of the potential in the limit that the wavevec-

tor k approaches zero, we can expand the Fourier transform of the charge density

for small k:

ρ̂q(k) =
1

V

∫
dre−ik·rρq(r)

∼ 1

V

∫
drρq(r)

[
1− ik · r− 1

2
(k · r)2

]
=

1

V
[M(0)− k · M(1)− k⊗ k :M(2)] , (B.3)

where ⊗ is a symmetric outer product, A : B indicates the Frobenius inner product

of the tensors A and B, and M(n) is the nth multipole moment of the charge

distribution, which is a rank n tensor, as detailed in Appendix E.1.

The conditions of neutrality and zero dipole moment lead to M(0) = 0 and
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M(1) = 0, so that the charge density at small k can be written as

ρ̂q(k) ≈ − 1

V
k⊗ k :M(2). (B.4)

If the second moment tensor is nonzero, but the traceless quadrupole moment is

zero, this means that M(2) is diagonal,

M(2) =


Mxx 0 0

0 Myy 0

0 0 Mzz

 . (B.5)

Now, noting that the diagonal components of k⊗ k are given by (k⊗ k)ii = k2/3,

we can perform the tensor product in Equation B.4 and arrive at

ρ̂q(k) ≈ −1

3

k2

2V

∫
drr2ρq(r) = −1

3
k2T, (B.6)

where T is the trace of the second moment tensor M(2). Using this expression,

Equation B.2 becomes

〈φ〉V = −4π

3
T = φBethe. (B.7)

Appendix C

Ion Solvation from Potential Distribution Theory

We can arrive at an expression for ∆µQ using the potential distribution theory

(PDT) framework. PDT yields the free energy of charging as an exponential average:

e−β∆µQ =
〈
e−βΨ(R)

〉
0

=

〈
exp

[
−βQφ(0; R) +

βQ

V

∫
drφ(r; R)

]〉
0

=
〈
e−βQφBethee−βQ∆φ(0;R)eβQφBethe

〉
0

=
〈
e−βQ∆φ(0;R)

〉
0
, (C.1)
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or equivalently,

∆µQ = −kBT ln
〈
e−βQ∆φ(0;R)

〉
0
, (C.2)

where 〈· · · 〉0 indicates an ensemble average performed over the system with no charge

present.

Equivalently, one could use the inverse form of PDT, e−β∆µQ =
〈
eβΨ(R)

〉−1

Q
,

where the ensemble average is performed over configurations sampled with a charge

of magnitude Q present in the system (and its neutralizing background). This yields

∆µQ = kBT ln
〈
eβQ∆φ(0;R)

〉
Q
. (C.3)

Like the coupling parameter formula 4.18, these PDT expressions for the free energy

are formally exact. However, in practice such exponential averages are difficult to

evaluate. Linearization of the exponential terms and averaging the two forms for

∆µQ permits the evaluation of approximate expressions for the free energy of the

form

∆µQ ≈
1

2

[〈
Q∆φ(0; R)

〉
0

+
〈
Q∆φ(0; R)

〉
Q

]
, (C.4)

which is only appropriate when the distribution of ∆φ(0; R) is a Gaussian, and this

may not be true in general.

It is important to note that the quantity appearing in both expressions for the

free energy from PDT involve only the portion of the solvent electrostatic potential

that is induced by the solute. In fact, this is the exact quantity that appears in the

averages that are integrated over in the coupling parameter integration expression

for the free energy Equation 4.18, and the PDT-based Gaussian approximation to
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the free energy is just the average of the end points in the λ-integration. However,

such Gaussian approximations are not valid in general, and exponential averages

like Equations C.2 and C.3, while easy to derive and formally exact, are much

more difficult to evaluate than Equation 4.18. More specifically, charging a neutral

cavity to a charge Q typically induces a large structural change that strongly orients

interfacial water molecules. Such large structural changes are typically nonlinear,

and we can expect Gaussian approximations like Equation C.4 to be less accurate

than similar equations describing the turning on of LJ attractions, for example.

Therefore, the λ-integration form of the free energy in Equation 4.18 may be more

practical when evaluating such free energies from simulation.

Appendix D

Derivation of Equation 4.6

The Bethe potential is defined as

φBethe = −4π

3
T = −4π

3

1

2

〈
1

V

∫
drρq(r; R)r2

〉
. (D.1)

We can now use the definition of the classical charge density, ρq(r; R) =
∑M

i=1 qiδ(r−

ri(R)), where there are M charges in the system with spatial coordinates ri(R). The

Bethe potential can then be written as

φBethe = −4π

3

1

2

〈
1

V

∫
dr

M∑
i=1

qiδ(r− ri(R))r2

〉
= −4π

3

1

2

〈
1

V

M∑
i=1

qir
2
i (R)

〉
.

(D.2)

We can now split the sum over M charges into a sum over N molecules, indexed

by n = 1, ..., N , and Γ charged sites per molecule, indexed by γ = 1, ...,Γ. Each
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charge qγ will have a position rγ, which is equivalent to the ri used above. The

Bethe potential can then be written as

φBethe = −4π

3

1

2

〈
1

V

N∑
n=1

Γ∑
γ=1

qγr
2
γ(R)

〉
. (D.3)

At this point, we make the coordinate transformation r2
γ = |rγn − rn|2, where rn is

the location of the center of molecule n and rγn is the location of site γ relative to

the center of molecule n. Making this transformation, we obtain

φBethe = −4π

3

1

2

〈
1

V

N∑
n=1

Γ∑
γ=1

qγ |rγn − rn|2
〉

= −4π

3

1

2

{〈
1

V

N∑
n=1

Γ∑
γ=1

qγr
2
γn

〉

+

〈
1

V

N∑
n=1

r2
n

(
Γ∑
γ=1

qγ

)〉

− 2

〈
1

V

N∑
n=1

rn

Γ∑
γ=1

qγrγn cos θ

〉}
, (D.4)

where θ is the angle form by the vectors rγn and rn and we have omitted the

dependence of the distances on R for convenience.

The second term in Equation D.4 vanishes due to neutrality,
∑Γ

γ=1 qγ = 0.

The third term also vanishes because the average dipole moment of the cell is zero.

Therefore, the Bethe potential can be written as

φBethe = −4π

3

1

2

〈
1

V

N∑
n=1

Γ∑
γ=1

qγr
2
γn

〉
. (D.5)

At this point, we note that

Γ∑
γ=1

qγr
2
γn(R) =

Γ∑
γ=1

qγr
2
γ1(R) ∀ n,R, (D.6)
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Figure D.1: Bethe potential φBethe(T ) as a function of temperature for the SPC/E
model along the P = 1 atm isobar computed using Equation 4.3 and Equation 4.6.
Error bars are smaller than the symbol size.

i.e. the molecular quadrupole moments are the same for all molecules independent

of configuration in the case of rigid molecular models like SPC/E and TIP5P water.

Therefore, our final result for the Bethe potential is

φBethe = −4π

3

1

2

〈
1

V

N∑
n=1

Γ∑
γ=1

qγr
2
γ1

〉
= −4π

3

1

2

〈
N

V

〉 Γ∑
γ=1

qγr
2
γ1

= −4π

3
ρB

1

2

Γ∑
γ=1

qγr
2
γ1 = −4π

3
ρB Tr {Qmol} , (D.7)

which is Equation 4.6. In the case of rigid intramolecular charge distributions,

Equation 4.6 is completely equivalent to Equation 4.3, as shown in Figure D.1,

although the latter is always valid.
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Appendix E

LMF-Based Multipole Expansions

E.1 Multipole Moment Expansion of Gaussian-Smoothed Charge Den-

sities

Here I present the multipole expansion for the Gaussian-smoothed charge den-

sity, ρqσ(r), and how it relates to that of the bare charge density ρq(r). We consider

first the energy of interaction between two d-dimensional Gaussian-smoothed charge

densities, with centers ri and rj, where the position vector is defined by

r = (x1, x2, ..., xd) , (E.1)

and d ∈ N. The interaction energy of the two charge distributions under considera-

tion, ρqσi (ri) and ρqσj (rj), respectively, is assumed to be of the form

w(rij) =

∫
dr

∫
dr′ρqσi (r− ri)ρ

qσ
j (r′ − rj)

1

ε |r− r′|
. (E.2)

This interaction energy can be rewritten as a k-space integral,

w(rij) =
1

(2π)d

∫
dkρ̂qσi (−k)ρ̂qσj (k)e−ik·rij

4π

εk2
, (E.3)

where we have defined the d-dimensional Fourier transform and inverse Fourier

transform of a function f as

f̂(k) =

∫
dre−ik·rf(r)
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and

f(r) =
1

(2π)d

∫
dkeik·rf̂(k),

respectively.

Now we want to examine the asymptotic behavior as k → 0, so we Tayor

expand the smoothed charge densities about k = 0 as

ρ̂qσi (k) =
∑
ni

1

ni!
kni · ∇ni

k ρ̂
qσ
i (0), (E.4)

where ∇k is the d-dimensional gradient with respect to k. We can then insert E.4

into E.3 to obtain

w(rij) =
∑
ni,nj

1

ni!nj!
[∇ni

k ρ̂
qσ
i (0) · (−i∇r)

ni ] ·
[
∇nj

k ρ̂
qσ
j (0) · (i∇r)

nj
] 1

εr
(E.5)

Now, we can define

ini

ni!
∇ni

k ρ̂
qσ
i (0) ≡Mσ

i (ni), (E.6)

such that

Mσ
i (ni) =

1

ni!

∫
drρqσi (r)rni , (E.7)

and Mσ(n) is the nth multipole moment of the smoothed charge distribution. Fi-

nally, we can rewrite E.5 as

w(rij) =
∑
ni,nj

[Mσ
i (ni) · (−∇r)

ni ] ·
[
Mσ

j (nj) · ∇nj
r

] 1

εr
(E.8)

so that the energy is now expressed in terms of the multipole moments of the

smoothed charge distributions.

One may then inquire into how these multipole moments relate to those of the

bare charge densities, ρq(r). In order to evaluate these expressions, we first consider
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the Fourier transform of the smoothed charge density, which, using the convolution

theorem, can be written as

ρ̂qσ(k) = ρ̂q(k)ρ̂G(k), (E.9)

where

ρ̂G(k) = e−
k2σ2

4 . (E.10)

In general, the nth order multipole moment Mσ(n) is given by

Mσ(n) =
in

n!

n∑
m=0

(
n

m

)
ρ̂q(n−m)(0)⊗ ρ̂(m)

G (0), (E.11)

where f̂ (n)(0) =
[
∇n

kf̂(k)
] ∣∣∣∣

k=0

is a tensor of rank n, ⊗ indicates a symmetric outer

product, and (
n

m

)
=

n!

m!(n−m)!

is the binomial coefficient.

The gradients of the k-space Gaussian function are given by

ρ̂
(n)
G (k) = (−1)ne−k

2σ2/4Hn

(
kσ

2

)
, (E.12)

such that Hn (ax) is a rank n tensor-analog of the Hermite functions with elements

Hij···v(ax;n) = (−1)nea
2x2 ∂n

∂xi∂xj · · · ∂xv

(
e−a

2x2
)
, (E.13)

where a is a constant and x = (x1, x2, ..., xd) is a general d-dimensional vector.

All odd derivatives of ρ̂G(k) will vanish at k = 0 due to symmetry, therefore,

we can rewrite E.11 as

Mσ(n) =
in

n!

n∑
m=0
m∈E

(−1)m
(
n

m

)
ρ̂q(n−m)(0)⊗Am

(σ
2

)
, (E.14)
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where Am(a) ≡ [Hm (ak)]
∣∣
k=0

and E = {x | x is an even whole number}. Equa-

tion E.14 can be written in the equivalent form

Mσ(n) =M(n) +
n∑

m=2
m∈E

(−1)mim

m!
M(n−m)⊗Am

(σ
2

)
, (E.15)

making the relation between Mσ(n) and M(n) apparent.

In order for the condition Mσ(n) = M(n) to hold, where M(n) is the nth

multipole moment of the bare charge distribution ρq, all multipoles of order less

than n − 1 and of even (odd) order, for n even (odd), of the bare charge density

must be identically zero,

Mσ(n) =M(n) ⇐⇒ M(s) = 0 ∀ s = n− l, (E.16)

where

l =

{ 2, 4, 6, ..., n; for n even

2, 4, 6, ..., n− 1; for n odd.

(E.17)

Now, we present the first few multipole moments of the Gaussian-smoothed

charge density in order to explicitly illustrate their relation to that of the bare

charge density. The monopole moment of ρqσ is trivially given by Mσ(0) =M(0),

and note that for neutral charge distributions the monopole moment is zero. The

dipole moment, n = 1, is also trivially given by

Mσ(1) =M(1),

illustrating that the dipole moment of ρq is conserved upon Gaussian-smoothing. In

addition, the quadrupole moment is given by

Mσ(2) = M(2)− 1

2
M(0)⊗A2

(σ
2

)
= M(2) +

σ2

4
M(0)I3, (E.18)
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where In is the n × n identity matrix. For neutral charge distributions, like non-

ionic molecular charge distributions, both the dipole and quadrupole moments are

conserved upon Gaussian-smoothing.

E.2 Multipole Moment Expansion of SR Charge Densities

The multipole expansion of the SR charge density ρqc(r) proceeds in a manner

analogous to the previous section. In order to keep this section brief, only the main

points of the derivation are quoted herein.

The nth order multipole of ρqc(r) is given by

Mc(n) =
in

n!

n∑
m=0

(
n

m

)
ρ̂q(n−m)(0)⊗ ρ̂(m)

c (0), (E.19)

where ρ̂c(k) = 1 − ρ̂G(k). Now, note that ρ̂c(0) = 0, and the gradients of ρ̂c are

given by ∇n
kρ̂c(k) = −∇n

kρ̂G(k) for n > 0.

The multipoles of the SR charge density can finally be written as

Mc(n) =
n∑

m=2
m∈E

(−1)m+1im

m!
M(n−m)⊗Am

(σ
2

)
, (E.20)

where the reader should note that the sum runs from m = 2 to n, illustrating that

the SR charge density distribution contains no monopole and dipole moments. The

first three moments are given by Mc(0) = 0, Mc(1) = 0, and

Mc(2) = −σ
2

4
M(0)I3, (E.21)

illustrating that the moments Mc(n) contain the portions of the multipoles that

modify the bare multipoles upon Gaussian smoothing, as detailed in the previous

section.
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E.3 Gaussian Smoothing of a Molecule of SPC/E Water

In order to illustrate the conditions derived above, we consider Gaussian

smoothing a single SPC/E water molecule, something that can be done analyti-

cally. The SPC/E model of water consists of three charged sites, all in the same

plane, such that the coordinates of the oxygen, hydrogen 1, and hydrogen 2 are given

by ~r = (0, 0, 0), ~rH1 = (rOH sinφ, 0, rOH cosφ), and ~rH2 = (−rOH sinφ, 0, rOH cosφ),

respectively, where φ = θ/2 is half of the H-O-H angle θ = 109.47◦. The hydrogen

sites each have charge q, while the oxygen has charge −2q, such that the molecule

is neutral.

The charge density is given by

ρq(r) = qδ(~r − ~rH1) + qδ(~r − ~rH2)− 2qδ(~r), (E.22)

which has the corresponding Gaussian smoothed charge density

ρqσ(r) =
1

σ3π3/2

{
q exp

[
−
(
|~r − ~rH1|

σ

)2
]

+ q exp

[
−
(
|~r − ~rH2 |

σ

)2
]
− 2q exp

[
−
(
|~r|
σ

)2
]}

. (E.23)

Knowing the charge densities, we can evaluate the bare and smoothed multi-

poles. The zeroth moment, or total charge, is trivially given by

M(0) =

∫
drρq(r) = 0 =Mσ(0). (E.24)
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The dipole moment, M(1) = (Mx,My,Mz), has components

Mx =

∫
dxx

∫
dy

∫
dzρq(x, y, z) = q(xH1 + xH2) = 0

My =

∫
dx

∫
dyy

∫
dzρq(x, y, z) = 0

Mz =

∫
dx

∫
dy

∫
dzzρq(x, y, z) = q(zH1 + zH2) = 2qzH ,

where zH ≡ zH1 = zH2 and xH1 = −xH2 ≡ xH . Performing the same integrations

for ρqσ yields Mσ
x = Mx, Mσ

y = My, and Mσ
z = Mz. Similarly, the bare and

smoothed quadrupole moment tensors are found to be equivalent. The first moment

that is modified by smoothing is the octupole, and therefore we focus on that now.

Two nonzero components of the bare octupole tensor M(3) are given by

Mxxz =
1

6

∫
dxx2

∫
dy

∫
dzzρq(x, y, z) =

q

3
x2
HzH

Mzzz =
1

6

∫
dx

∫
dy

∫
dzz3ρq(x, y, z) =

q

3
z3
H . (E.25)

The same moments of the smoothed octupole tensor Mσ(3) are given by

Mσ
xxz =

1

6

∫
dxx2

∫
dy

∫
dzzρqσ(x, y, z) =

q

3
x2
HzH +

qσ2zH
6

= Mxxz +
σ2

4

Mz

3
, (E.26)

and

Mσ
zzz =

1

6

∫
dx

∫
dy

∫
dzz3ρqσ(x, y, z) =

qz3
H

3
+
σ2qzH

2

= Mzzz +
σ2

4
Mz. (E.27)

This illustrates that the octupole moment is indeed modified nontrivially in terms

of the dipole moment upon Gaussian smoothing of the charge density, but is this

modification consistent with the general form of Mσ(n) presented above?
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From Equation E.15, we can write

Mσ(3) =M(3)− 1

2
M(1)⊗A2

(σ
2

)
, (E.28)

where A2(a) = −2a2I3. Now we define T ≡ M(1) ⊗ A2

(
σ
2

)
as the rank 3 tensor

formed by the symmetric outer product of M(1) and A2

(
σ
2

)
. The xxz and zzz

components of this tensor are given by

Txxz =
1

3
MzAxx = −σ

2

2

Mz

3

Tzzz = MzAzz = −σ
2

2
Mz. (E.29)

Inserting these expressions for the components of T into the relation for Mσ(3)

yields the smoothed octupole components

Mσ
xxz = Mxxz +

σ2

4

Mz

3
(E.30)

Mσ
zzz = Mzzz +

σ2

4
Mz, (E.31)

consistent with the results presented above.

E.4 Point Charge Distribution

In this section, we further illustrate the above conclusions by considering a

single point charge of magnitude Q, such that the bare charge density of interest is

given by

ρq(r) = Qδ(r). (E.32)

The point charge density is split into SR and LR portions, then the multipole

expansion is performed. The SR and LR portions of a point charge are given by

ρqc(r) = Qδ(r)−QρG(r) (E.33)
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and

ρqσ(r) = QρG(r), (E.34)

respectively, where

ρG(r) =
1

σ3π3/2
e−

r2

σ2 (E.35)

is a normalized Gaussian distribution (
∫
drρG(r) = 1).

In general, we can use the results of Appendix E.2 to determine the multipole

moments of ρqc(r), but the charge density is simple enough to readily evaluate the

first three moments. The monopole moment of ρqc(r) is given by

Mc
PC(0) =

∫
drρqc(r) = Q

∫
drδ(r)−Q

∫
drρG(r) = Q−Q = 0, (E.36)

illustrating that the SR charge density is neutral. The dipole moment is also zero:

Mc
PC(1) = Q

∫
drrδ(r)−Q

∫
drrρG(r) = 0− 0 = 0. (E.37)

As can be expected from Appendix E.2, the first nonzero moment will be the

quadrupole moment. The diagonal components of the quadrupole tensor are given

by

Mc
ii =

Q

2

∫
drx2

i δ(r)− Q

2

∫
drx2

i ρG(r) = 0− σ2

4
Q, (E.38)

and the off-diagonal elements are zero, such that the components of the quadrupole

tensor are given by Mc
ij = −δijQσ2/4, where δij is the Kronecker delta function.

Therefore, the quadrupole moment of the SR charge density is

Mc
PC(2) = −σ

2

4
QI3. (E.39)
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All odd multipoles of the SR point charge density ρqc(r) will vanish due to

symmetry, and the even moments are in general given by the m = n term of Equa-

tion E.20, a direct consequence of the only nonzero moment of ρq(r) being the

monopole.

The multipoles of the LR point charge density ρqσ(r) can readily be obtained

following Appendix E.1, but we can readily evaluate the first three moments for

illustrative purposes. The monopole moment is given by

Mσ
PC(0) =

∫
drρqσ(r) = Q

∫
drρG(r) = Q, (E.40)

consistent with the idea that long-ranged electrostatics like neutrality, or in this case

charge, are contained in the LR charge density. The dipole moment is again zero:

Mσ
PC(1) =

∫
drrρqσ(r) = 0. (E.41)

The discussion in Section III, as well as that in Appendix E.1, indicates that

the smoothed quadrupole moment should be modified non-trivially in terms of the

bare monopole. This quadrupole tensor is given simply by the negative of the SR

quadrupole tensor, Mσ
PC(2) = −Mc

PC(2), which is a result specific to the special

case of a bare charge distribution that has a non-zero bare monopole moment, but

a zero bare quadrupole moment, as is the case for a point charge.

In general, for the very special case of taking a point charge as the bare charge

distribution, all LR multipoles of order n ≥ 2 are equal to the negative of the

corresponding SR multipoles:

Mσ
PC(n) = −Mc

PC(n) ∀ n ≥ 2. (E.42)
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Note that this indicates that a Gaussian charge distribution not only has a nonzero

monopole moment, but all even multipole moments of a Gaussian charge distribution

are nonzero.
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Appendix F

Coupling Parameter Integration

We can also obtain the free energy of turning on the Gaussian charge distribu-

tion using coupling parameter integration. We first introduce a parameter λ which

linearly couples to the field of the Gaussian charge,

v
(λ)
Q (r) = λQv1(r) = λvQ(r), (F.1)

so that a potential energy term,

Ψλ(R) =
N∑
i=1

qiv
(λ)
Q (ri(R)) =

∫
drv

(λ)
Q (r)ρq(r; R) (F.2)

appears in the Hamiltonian.

Taking the derivative of the free energy

Gl(λ) ∝ −kBT ln

∫
dRe−βH0(R)e−βΨλ(R), (F.3)

with respect to λ, where H0 is the portion of the Hamiltonian describing solvent-

solvent interactions, we find the well known result

∂Gl

∂λ
=

〈
∂Ψλ(R)

∂λ

〉
λ

(F.4)

We can now integrate over the coupling parameter to arrive at

∆Gl =

∫ 1

0

dλ

∫
dr
dv

(λ)
Q (r)

dλ
ρqλ(r) =

∫ 1

0

dλ

∫
drvQ(r)ρqλ(r), (F.5)

where ρqλ(r) =
〈
ρq(r; R)

〉
λ
.

245



At this point, we can utilize Equation 5.14 to write the charge density in state

λ as

ρqλ(r) = −λQ
(

1− 1

ε

)
1

l3π3/2
e−r

2/l2 . (F.6)

We can now use Equation F.6 in Equation F.5, in conjunction with Parseval’s the-

orem, to arrive at our final result

∆Gl = −Q
(

1− 1

ε

)∫ 1

0

dλλ

∫
drvQ(r)

e−r
2/l2

l3π3/2

= −Q
2

2

(
1− 1

ε

)
1

(2π3)

∫
dke−k

2l2/2 4π

k2

= − Q2

l
√

2π

(
1− 1

ε

)
. (F.7)

Appendix G

Further Consequences of Equation 5.7

Within the Gaussian approximation, a cumulant expansion of Equation 5.2

yields

∆Gl =
〈
Ψ(R)

〉
0
− β

2

〈(
δΨ0(R)

)2
〉

0

=
〈
Ψ(R)

〉
Q

+
β

2

〈(
δΨQ(R)

)2
〉
Q
, (G.1)

where δΨ0/Q(R) ≡ Ψ(R)−
〈
Ψ(R)

〉
0/Q

. When this approximation is valid,〈(
δΨ0(R)

)2
〉

0
=
〈(
δΨQ(R)

)2
〉
Q
≡
〈(
δΨ(R)

)2
〉
, (G.2)

where we will leave off the subscript due to the equality. Now, if we use the above

result
〈
Ψ(R)

〉
0

= 0, we arrive at the following relation between the first and second

cumulants, 〈
Ψ(R)

〉
Q

= −β
〈(
δΨ(R)

)2
〉
. (G.3)

246



This result can also be obtained utilizing Equation 5.8. We can write the

energy in the presence of the field as

〈
Ψ(R)

〉
Q

=

∫
drρqQ(r)vQ(r)

= −β
∫
dr

∫
dr′χqq0 (|r− r′|)vQ(r)vQ(r′)

= −β
∫
dr

∫
dr′
〈
δρq0(r; R)δρq0(r′; R)

〉
0
vQ(r)vQ(r′). (G.4)

Upon noting that δρq0(r; R) = ρq(r; R)−
〈
ρq(r; R)

〉
0

= ρq(r; R), we can write

〈
Ψ(R)

〉
Q

= −β
∫
dr

∫
dr′
〈
ρq(r; R)ρq(r′; R)

〉
0
vQ(r)vQ(r′)

= −β
〈
Ψ2(R)

〉
0
, (G.5)

which is a specific form of Equation G.3, upon noting that
〈(
δΨ(R)

)2
〉

0
=
〈
Ψ2(R)

〉
0
.
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Appendix H

Derivation of Equation 6.16 from Mean-Field Approximations to

Equation 6.6

We can begin with Equation 6.14 and make the following mean-field (MF)

approximations: the nonuniform pair density is approximated by

ρ
(2)
R (r, r′) ≈ ρ(2)(r, r′) ≈ ρ(r)ρ(r′), (H.1)

the uniform pair density is given by

ρ
(2)
B,R(|r− r′|) ≈ ρ

(2)
B (|r− r′|) ≈ ρ2

B, (H.2)

and the difference between the chemical potentials of the full and mimic systems is

approximated by

β [µ− µR] ≈ −2βρBa, (H.3)

where a = −
∫
dr′u1(|r− r′|) is the van der Waals constant. Upon making these

MF approximations, the λ integration may be performed over the path discussed in

the text, and Equation 6.6 becomes

βΩsolv[φ]− βΩR,solv[φR] =
β

2

∫
dr

∫
dr′
[
ρ(r)ρ(r′)− ρ2

B

]
u1(|r− r′|)

− β

∫
drρ(r) [φR(r)− φ(r)]

+ 2βρBa

∫
dr [ρ(r)− ρB] . (H.4)
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Now, note that φR(r)− φ(r) =
∫
dr′ [ρ(r′)− ρB]u1(|r− r′|). Equation H.4 can then

be rewritten as

βΩsolv[φ]− βΩR,solv[φR] =
β

2

∫
dr

∫
dr′
[
ρ(r)ρ(r′)− ρ2

B

]
u1(|r− r′|)

− β

∫
drρ(r) [ρ(r′)− ρB]u1(|r− r′|) + 2βρBa

∫
dr [ρ(r)− ρB]

=
β

2

∫
dr

∫
dr′
[
ρ(r)ρ(r′)− ρ2

B

]
u1(|r− r′|) + 2βρBa

∫
drρ(r)

− 2βρBa

∫
drρ(r)− 2β

∫
draρ2

B

− β

∫
dr

∫
dr′ρ(r)ρ(r′)u1(|r− r′|). (H.5)

Inserting the explicit expression for a and grouping like terms, we arrive at

βΩsolv[φ]− βΩR,solv[φR] =
β

2

∫
dr

∫
dr′
[
ρ(r)ρ(r′)− ρ2

B

]
u1(|r− r′|)

− β

∫
drdr′

[
ρ(r)ρ(r′)− ρ2

B

]
u1(|r− r′|)

= −β
2

∫
dr

∫
dr′
[
ρ(r)ρ(r′)− ρ2

B

]
u1(|r− r′|),(H.6)

which is Equation 6.16. Although the desired result is obtained from MF approxi-

mations, making use of such expressions is not justified in general. The derivation of

Equation 6.16 in Section 6.2 involved the use of the LMF equation, which is obtained

independently and is accurate in its own right, with appropriate separation of the

potential into rapidly- and slowly-varying parts. Therefore, the MF approximations

used in this Appendix are only justified when the interaction potential u1(r) satisfies
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the conditions on the LMF equation.

Appendix I

Stable iteration of the LMF equation for systems with a net charge

We first separate the electrostatic LMF VR(r) into its short and long ranged

components,

VR(r) = V0(r) + VR1(r), (I.1)

such that VR1(r) is the slowly-varying portion of the renormalized potential. This

potential is given by

VR1(r) =

∫
dr′ρqR(r′)v1(|r− r′| ;σ) +

∫
dr′ρqion(r′)v1(|r− r′| ;σ)

=

∫
dr′ρqσR (r′)

1

|r− r′|
+

∫
dr′ρqσion(r′)

1

|r− r′|
, (I.2)

where ρqR(r) and ρqσR (r) are the bare and Gaussian smoothed charge densities of the

solvent, and ρqion(r) = Qδ(r) and ρqσion(r) = QρG(r;σ) are the bare and Gaussian

smoothed charge densities of the ion.

Equation I.2 can then be rewritten in the following form

VR1(r) =

∫
dr′ [ρqσR (r′) +QρG(r′;σ)]

1

|r− r′|
. (I.3)

This illustrates that VR1(r) is the electrostatic potential arising from a fixed Gaus-

sian charge distribution of width σ placed at the origin and the charge density of

the mobile solvent charges, after these mobile charges have been convoluted with

Gaussian distributions of charge also of width σ. Therefore, we can consider ρqσR (r)

to be the “response” of the dielectric to the Gaussian charge QρG(r;σ).
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To arrive at a stable iteration scheme, we can simply treat VR1(r) as the total

electrostatic potential in this new system, and employ LMF theory to map this

system onto another mimic system with a smoothing length l. Separating VR1(r)

into its short and long ranged components yields VR1(r) = VAR1(r) + VBR1(r). The

new LMF potential, which is the long ranged component VBR1(r), is given by

VBR1(r) =

∫
dr′ρqσR (r′)v1(|r− r′| ; l) +

∫
dr′QρG(r′;σ)v1(|r− r′| ; l)

≡ VBS (r) + VB1 (r). (I.4)

The portion of VBR1(r) due to the fixed Gaussian charge distribution is readily eval-

uated using the convolution theorem, V̂B1 (k) = 4πk−2Q exp(−k2γ2/4), which in real

space is

VB1 (r) = Qv1(r; γ), (I.5)

such that the long ranged component of the potential arising from a Gaussian charge

distribution of width σ is the potential of Gaussian with width

γ ≡
√
l2 + σ2. (I.6)

We now turn our attention to the evaluation of the solvent component of

the potential, VBS (r). In our analogy to a system comprised of Gaussian charges,

ρqσR (r) is the charge density induced by the Gaussian charge QρG(r;σ). Analytic

approximations for this induced response were derived in Chapter 5, yielding

ρqσR (r) ≈ −Q
(

1− 1

ε

)
e−r

2/σ2

σ3π3/2
. (I.7)

The corresponding solvent portion of the LMF is then given by

V̂ B
S (k) ≈ −4π

k2
Q

(
1− 1

ε

)
exp(−k2γ2/4), (I.8)
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or

VBS (r) ≈ −Q
(

1− 1

ε

)
v1(r; γ) (I.9)

in real space. The total long ranged portion of the renormalized electrostatic po-

tential is then obtained from the sum of the portions due to the fixed and mobile

charges,

VBR1(r) = VBS (r) + VB1 (r) ≈ Q

ε
v1(r; γ), (I.10)

such that VBR1(r)→ Q/εr as r →∞, which is the desired asymptotic behavior.

This stable iteration scheme for systems with a net charge requires solution of

the relatively short ranged portion of the renormalized field

VAR1(r) =

∫
dr′ [ρqσR (r′) +QρG(r′;σ)] v0(|r− r′| ; l) (I.11)

from simulation data, while the long ranged, slowly varying component VBR1(r) is

approximated by Equation I.10 at each iteration. This method of self-consistently

solving the LMF equation is employed when calculating the ion solvation free ener-

gies presented in Section 6.2.3.

Appendix J

LMF Free Energy Calculations with Multiple Equilibrium States

J.1 The Multi-State Bennett Acceptance Ratio in the Full System

We first review the MBAR method in this section before combining it with

LMF theory. Following the work of Shirts and Chodera [67], and Varilly [144],

we consider an equilibrium, Boltzmann ensemble with a configurational partition
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function

Z =

∫
dRe−βU(R) (J.1)

and free energy F = −β−1 lnZ, such that U(R) is the potential energy of the system

in a configuration R. This will be referred to as the unbiased ensemble.

Now, consider a set of K biasing (umbrella) potentials {V1, V2, ..., VK}. For

each biasing potential Vk, Nk statistically independent samples, labeled Rk,n, are

collected, which are Boltzmann-weighted with a potential U(R) + Vk(R). The par-

tition function and free energy in the ensemble defined by the potential Vk are then

Zk =

∫
dRe−β[U(R)+Vk(R)] (J.2)

and Fk = −β−1 lnZk, respectively.

We then define the free energy difference between the ensemble corresponding

to the kth window and the unbiased ensemble as

∆Fk ≡ Fk − F = β−1 ln (Z/Zk) . (J.3)

Now, we construct a model of the probability density of the unbiased ensemble,

P (R), constructed as a sum of Dirac δ-functions centered at each of the N1+...+NK

samples observed, with unknown weights pj,n:

P (R) ≈ Z−1

K∑
j=1

Nj∑
n=1

pj,nδ(R−Rj,n). (J.4)

Analogously, the probability density of the kth biased ensemble is

Pk(R) ≈ Z−1
k

K∑
j=1

Nj∑
n=1

pj,ne
−βVk(R)δ(R−Rj,n). (J.5)
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The normalization constants are given by

Z =
K∑
j=1

Nj∑
n=1

pj,n (J.6)

and

Zk =
K∑
j=1

Nj∑
n=1

pj,ne
−βVk(Rj,n). (J.7)

These are the best estimates to Z and Zk, respectively, up to an undetermined

measure factor, such that Z/Zk ≈ Z/Zk.

An estimate of the free energy differences between biased ensembles and the

unbiased ensemble is enough to estimate the probability of every observed sample in

the unbiased ensemble (this statement will be key to using LMF theory to estimate

averages using biased sampling, as described later). These free energy differences

are obtained by self-consistent iteration using the multi-state Bennett acceptance

ratio (MBAR) as

e−β∆Fi =
K∑
j=1

Nj∑
n=1

e−βVi(Rj,n)∑K
k=1 Nkeβ∆Fk−βVk(Rj,n)

. (J.8)

Once the set of free energy differences {∆Fk} are obtained, ensemble averages

of an observable A(R) can then be estimated as

〈A〉 ≈ Z−1

K∑
j=1

Nj∑
n=1

pj,nA(Rj,n), (J.9)

or equivalently,

〈A〉 ≈
K∑
j=1

Nj∑
n=1

A(Rj,n)∑K
k=1Nkeβ∆Fk−βVk(Rj,n)

, (J.10)

where the approximation only appears because we have a finite number of samples

Nj in each simulation window j.
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J.2 Ensemble Averages in the Full System from Biased Sampling

Performed in the Mimic System

We now consider performing umbrella sampling in the mimic system. Each

of the K biased ensembles will have an associated LMF. Therefore, we will have a

set of renormalized fields {φR,k(r)} associated with each of the K windows. The

partition function in the unbiased mimic ensemble is given by

ZR =

∫
dRe−β[U0(R)+ΦR1(R)], (J.11)

and the partition function of the kth biased window is

ZR,k =

∫
dRe−β[U0(R)+ΦR1,k(R)+Vk(R)], (J.12)

where ΦR1,k =
∑N

i=1 φR1,k(ri). The free energy difference between the kth window

and the unbiased mimic ensemble is given by

∆FR,k = FR,k − FR = β−1 ln

(
ZR

ZR,k

)
. (J.13)

In analogy with the previous section, estimates for the normalization constants

ZR and ZR,k are given respectively by

ZR ≈
K∑
j=1

Nj∑
n=1

p
(R)
j,n (J.14)

and

ZR,k ≈
K∑
j=1

Nj∑
n=1

p
(R)
j,n e

−βVk(Rj,n)e−β∆ΦR1,k(Rj,n), (J.15)

where ∆ΦR1,k ≡ ΦR1,k − ΦR1.
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The set of free energy differences {∆FR,k} can then be obtained in analogy

with those of the full system, Equation J.8, by replacing Vk(R) with Ṽk(R) ≡

Vk(R) + ∆ΦR1,k(R) and pj,n with p
(R)
j,n :

e−β∆FR,i =
K∑
j=1

Nj∑
n=1

e−βṼi(Rj,n)∑K
k=1 Nkeβ∆FR,k−βṼk(Rj,n)

. (J.16)

The ∆ΦR1,k term presents a problem, since we may not know φR1(r) of the unbiased

ensemble in advance (if we could obtain this easily, we would not need to overcome

sampling issues in the first place!). However, the free energy differences obtained

from the MBAR calculation are known up to an undetermined constant. Therefore,

we can choose this constant such that it exactly cancels the ΦR1 term in each window,

and we can write

e−β∆FR,i =
K∑
j=1

Nj∑
n=1

e−β[Vi(Rj,n)+ΦR1,i(Rj,n)]∑K
k=1Nke

β[∆FR,k−Vk(Rj,n)−ΦR1,k(Rj,n)]
, (J.17)

without any loss of generality. Ensemble averages in the mimic system can then be

estimated following

〈A〉R ≈
K∑
j=1

Nj∑
n=1

AR(Rj,n)∑K
k=1 Nke

β[∆FR,k−Vk(Rj,n)−ΦR1,k(Rj,n)]
, (J.18)

where the notation AR emphasizes that the observable A is evaluated over configu-

rations in the mimic system.

However, averages in the mimic system are not of interest, and we want to

calculate averages in the full system. As stated earlier, the free energy differences

between the unbiased full ensemble and the K biased full ensembles is enough to

estimate the probability of every sample in the unbiased ensemble of the full system.

From the LMF theory-based framework for free energy calculations, we know that
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the free energy energy difference between the full and mimic systems is given by

F − FR = FLMF = −1

2

∫
dr [ρR(r) + ρB] [φR(r)− φ(r)] . (J.19)

Therefore, the free energy difference between the kth biased mimic ensemble and

the kth biased full ensemble is given by an analogous expression,

Fk − FR,k = FLMF,k = −1

2

∫
dr [ρR,k(r) + ρB] [φR,k(r)− φk(r)] . (J.20)

Now, note that ∆Fk = Fk − F are the desired free energy differences, and

we can define F̃k ≡ FR,k + FLMF,k to be the LMF theory based estimate of the free

energy in the kth window of the full system. By again taking advantage of the

fact that the free energies determined using MBAR have an undetermined constant,

averages in the full, unbiased ensemble can be obtained from

〈A〉 ≈
K∑
j=1

Nj∑
n=1

AR(Rj,n)∑K
k=1Nke

β[∆FR,k+FLMF,k−Vk(Rj,n)]
. (J.21)

Equation J.21 is the main result of this subsection, and states that averages in the

unbiased, full ensemble can be obtained from calculations in the mimic system by

simply reweighting the free energy differences between windows by a simple, analytic

correction, FLMF,k.

J.3 Ensemble Averages in the Full System from Biased Sampling

Performed in the Strong Coupling System

Within the linear response regime, we can seek to evaluate the full free energy

directly from the SCA system, as was done above in the case of HS solvation in water.
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We again consider K biasing potentials and the corresponding biased ensembles in

the strong-coupling (SCA) system. The unbiased SCA ensemble has a partition

function

Z0 =

∫
dRe−βU0(R), (J.22)

while the kth biased SCA ensemble has the partition function

Z0,k =

∫
dRe−β[U0(R)+Vk(R)]. (J.23)

The free energy difference between the kth biased SCA ensemble and the unbiased

SCA ensemble is

∆F0,k = F0,k − F = β−1 ln

(
Z0

Z0,k

)
. (J.24)

This set of free energy differences can be obtained using MBAR, in analogy

with the full system, as

e−β∆F0,i =
K∑
j=1

Nj∑
n=1

e−βVi(Rj,n)∑K
k=1 Nkeβ∆F0,k−βVk(Rj,n)

, (J.25)

and averages in the SCA system can be obtained following

〈A〉0 ≈
K∑
j=1

Nj∑
n=1

A0(Rj,n)∑K
k=1Nkeβ∆F0,k−βVk(Rj,n)

. (J.26)

where the notation A0 is used to emphasize that the observable A is evaluated over

configurations in the SCA system.

However, as stated above, we are really interested in averages in the full system.

These averages can be calculated if we have an estimate for the set of free energy
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differences {∆Fk}. To obtain this set of free energy differences, we note that

∆Fk = Fk − F

≈ FR,k + FLMF,k − F

= F0,k + FR1,k + FLMF,k − F, (J.27)

where FR1,k is the free energy of turning on the LMF φR1,k(r) in the kth biased

ensemble. Using LRT, we can estimate the set of renormalized fields {φR,k(r)}, and

the free energy of turning on each field in the corresponding biased ensemble is given

by the Gaussian approximation,

FR1,k ≈
1

2

∫
dr [ρR,k(r) + ρ0,k(r)]φR1,k(r). (J.28)

Once the renormalized potentials are determined using LRT, we can also calculate

the LMF free energy term,

FLMF,k = −1

2

∫
dr [ρR,k(r) + ρB] [φR,k(r)− φk(r)] . (J.29)

By again taking advantage of the fact that the free energy differences {∆F0,k}

are determined up to some unknown constant, we can estimate averages in the full

system from umbrella simulations of the SCA system through reweighting,

〈A〉 ≈
K∑
j=1

Nj∑
n=1

A0(Rj,n)∑K
k=1Nke

β[∆F0,k+FR1,k+FLMF,k−Vk(Rj,n)]
. (J.30)

If FR1,k can be obtained accurately with the Gaussian approximation for all k, this

is the most efficient way to estimate 〈A〉. If not, then {∆FR,k} would need to be

determined from biased simulations in the mimic system.

259



Appendix K

Liquid-Vapor Interfaces of Truncated Water Models

In this Appendix, we present details of the structure and height flucutations

of the liquid-vapor interface of several truncated water models. We examine the

structure of these interfaces using the instantaneous interface formalism developed

by Willard and Chandler [145]. The instantaneous density field as function of the

spatial coordinate r and time t is defined as

ρ(r, t) =
∑
i

δ(r− ri(t)), (K.1)

where ri(t) is the position of particle i at time t and the sum is over all particles

of interest. This bare density field is then coarse-grained via convolution with a

truncated and shifted Gaussian density function,

ρG(r; ξ) = (2πξ2)−d/2
[
e−r

2/2ξ2 − e−r2c/2ξ2
]
, (K.2)

where ξ is the width of the Gaussian, |rc| is the distance at which the Gaussian is

truncated and shifted to zero, here chosen to be equal to 3ξ, and d is the dimen-

sionality of the system.

Convolution of the bare density field yields the coarse-grained density field

ρξ(r, t) =
∑
i

ρG(|r− ri(t)| ; ξ). (K.3)

The interface at space-time point (r, t) is then defined as the (d − 1)-dimensional

manifold r = s along which the coarse-grained density field is a specified constant,
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Figure K.1: Snapshot of a single configuration of the liquid-vapor slab of water (red
oxygen sites and white hydrogen sites) with its instantaneous interface (pink). Note
that there are two interfaces present in the system.

ρξ(s, t) = ρc. Note that s = s(t) is a time-dependent quantity which varies with

the set of coordinates of the particles. Following Willard and Chandler, we utilize

a smoothing length of ξ = 2.4 Å and a density cutoff of approximately half the

bulk number density, ρc = 0.016 Å−3. A typical configuration of this interface for

a slab of water in equilibrium with its vapor is illustrated in Figure K.1, where the

non-planar, fluctuating nature of this interface is readily apparent.

The nonuniform density with respect to the instantaneous interface is given

by

ρs(z) =
1

L2

〈∑
i

δ(ai − z)

〉
, (K.4)
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where the proximity of particle i to the instantaneous interface is

ai(t) = {[s(t)− ri(t)] · n̂(t)}
∣∣
s(t)=s∗i (t)

, (K.5)

such that 〈·〉 indicates an equilibrium average, n̂(t) is the unit vector normal to

interface at s(t), and s∗i (t) is the point on s(t) nearest to ri(t). Analogously, the

density profile with respect to the mean interface can be written as

ρ(z) =
1

L2

〈∑
i

δ(bi − z)

〉
, (K.6)

where

bi(t) = [〈s〉 − ri(t)] · 〈n̂〉 . (K.7)

The nonuniform densities ρ(z) and ρs(z) are shown in Figures K.2a and K.2b,

respectively. The density ρ(z) for SPC/E and GT is typical of that for a liquid-

vapor interface; ρ(z) monotonically decreases from the liquid to the vapor due to

broadening by interfacial fluctuations. The ρ(z) obtained for the GTRC model is

qualitatively similar to that of the SPC/E and GT models, albeit that interfacial

width is significantly larger. In addition, the bulk density of the GTRC is roughly

15 percent lower than that of the SPC/E model.

Mean-field theories, LMF theory included, cannot capture capillary wave fluc-

tuations. Therefore, we would expect to observe layering at the liquid-vapor inter-

face of the GTRC model in the presence of the LMF φLJ
R (z). Indeed, ρ(z) obtained

for the system (GTRC-LMF in Figure K.2a) displays a small peak at the interface,

indicative of layering. However, there still exists some broadening of ρ(z) due to the

presence of small wavelength fluctuations in the system.
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Figure K.2: Nonuniform density with respect to (a) the mean liquid-vapor interface
and (b) the instantaneous liquid-vapor interface for the four systems under study.
Note the difference in scales of the y-axes.

We now turn our attention to the nonuniform density with respect to the

instantaneous interface, ρs(z), shown in Figure K.2b. The profiles obtained for the

SPC/E, GT, and GTRC-LMF systems are nearly identical, illustrating that layering

at the interface is the same in all three systems and is independent of the amount of

interfacial fluctuations present in the system. Analogous to the results obtained for

ρ(z), ρs(z) for the GTRC model is qualitatively similar to that of the other systems.

However, the features of ρs(z) are broadened due to the more diffuse interface and

lower bulk density.
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Table K.1: Mean Squared Interfacial Height Fluctuations

System 〈(δh(x))2〉 (Å2)

SPC/E 1.14±0.09

GT 1.31±0.15

GTRC 3.1 ±0.7

GTRC-LMF 0.34±0.03

Finally, we conclude this Appendix by using the instantaneous interface to cal-

culate the average fluctuations in the interfacial height, 〈(δh(x))2〉, where δh(x) =

h(x) − 〈h(x)〉 is the deviation in the interfacial height from its mean. The mean

squared height fluctuations are listed in Table K.1. The results for SPC/E and its

truncated variants are consistent with their respective surface tensions, 〈(δh(x))2〉GTRC
>

〈(δh(x))2〉GT
> 〈(δh(x))2〉SPC/E

. In addition, the interfacial fluctuations of the

GTRC model in the presence of the LJ-LMF φLJ
R (z) are significantly significantly

damped, and 〈(δh(x))2〉GTRC−LMF
is nearly 70 % smaller than that of the SPC/E

model.
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