
 
 

 

 

 

 

 

ABSTRACT 

 

 

 

 

Title of Dissertation: ONLINE and REAL-TIME 

TRANSPORTATION SYSTEMS 

MANAGEMENT and OPERATIONS 

DECISION SUPPORT WITH INTEGRATED 

TRAVEL BEHAVIOR and DYNAMIC 

NETWORK MODELS   

  

 Zheng Zhu, Doctor of Philosophy, 2018 

  

Dissertation directed by: Lei Zhang, Professor  

Department of Civil  & Environmental 

Engineering 

 

 

The acceleration of urbanization is witnessed all around the world. Both 

population and vehicle ownership are rapidly growing, and the induced traffic 

congestion becomes an increasingly pervasive problem in people’s daily life. In 

2014, transportation congestion caused $160 billion economic loss in 498 U.S. 

urban areas, which is 5.5 more than that in 1982. Without effective reactions, this 

number is expect to grow to $192 billion in 2020. In order to mitigate traffic 

congestion, many transportation demand management (TDM) strategies (e.g. bus 

rapid lanes, and flextime policy), and active traffic management (ATM) strategies 

(e.g. real-time user guidance, and adaptive traffic signal control) have been 

proposed and implemented. 

Although TDM and ATM have proved their values in theoretical 

researches or field implementations, it is still hard for transportation engineers to 

select the optimal strategy when faced with complex traffic conditions. In the 



 
 

science of transportation engineering, mathematical models are usually expected to 

help estimate traffic conditions under different scenarios. There have been a number 

of models that help transportation engineers make decisions. However, many of 

them are developed for offline use and are not suitable for real-time applications 

due to computational time issues. With the development of computational 

technologies and traffic monitoring systems, online transportation network 

modeling is getting closer and closer to reality. The objective of this dissertation is 

to develop a large-scale mesoscopic transportation model which is integrated with 

an agent-based travel behavior model. The ultimate goal is to achieve online (real-

time) simulation to estimate and predict the traffic performance of the entire 

Washington D.C. area. The simulation system is expected to support real-time 

transportation system managements and operations. 

One of the most challenging issue for this dissertation is the calibration 

of online simulation models. Model parameters need to be estimated based on real-

time traffic data to reflect the reality. Literature review of previous relevant studies 

indicates a trade-off between computational speed and calibration accuracy. In 

order to apply the model onto a real-time horizon, experts usually ignore the 

inherent mechanism of traffic modeling but rely on fast converging technologies to 

approximate the model parameters. Differently from previous online transportation 

simulation approaches, the method proposed in this dissertation focuses more on 

the mechanism of transportation modeling. With the fundamental understanding of 

the modeling mechanism, one can quickly determine the gradient of model 

parameters such that the gap between real-time traffic measures and simulation 

results is minimized. 



 
 

This research is one of the earliest attempts to introduce both agent-based 

modeling and gradient-based calibration approach to model real-time large-scale 

networks. The contribution includes: 1) integrate an agent-based travel behavior 

model into dynamic transportation network models to enhance the behavior realism; 

2) propose a fast online calibration procedure that quickly adjusts model parameters 

based on real-time traffic data. A number of real-world case studies are illustrated 

to demonstrate the value of this model for both long-term and real-time applications. 
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Chapter 1: Introduction 

Section 1.1 Background 

The acceleration of urbanization is witnessed all around the world. In today’s 

world, the pace of life is speeding up with technological advancements such that 

people’s desire for travel is increasing rapidly. Meanwhile, due to the growth of 

economy and productivity technologies, vehicles and other transportation tools become 

more and more affordable and necessary. The induced traffic congestion becomes an 

increasingly pervasive problem in people’s daily life. In 2014, transportation congestion 

caused $160 billion economic loss in 498 U.S. urban areas, which was 5.5 times more 

than that in 1982 (in 2014 dollars) (Schrank et al. 2015). The number is expect to 

become $192 billion in 2020 (in 2014 dollars). Travel demand is not only increasing in 

magnitude, but also getting more complex. With the multi-modal design of urban 

transportation systems, people have more alternative modes for their trips. For example, 

they can drive their own car to a transit station, and then take public transit to the 

destination; or, they can call Uber for a ride share. With limited transportation 

infrastructure and people’s diverse desire for travel, it can be challenging for traffic 

management and congestion mitigation. 

There are two ways to deal with traffic congestion: demand side management 

and supply side operation. The first one relies on some policies to either limit the access 

of users to highly demanded transportation infrastructures during peak periods, or 

encourage travelers to switch to lowly demanded infrastructures to avoid unnecessary 
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congestion. These approaches include vehicle plate restrictions (Yang et al. 2014), 

flextime work schedule policy (Zhu et al. 2015), bus rapid transit lane (Levinson et al. 

2002), variable message signs (Mammar et al. 1996), and real time user guidance 

(Kaysi 1993). The second one attempts to adjust transportation infrastructure systems 

to improve urban mobility, e.g. freeway ramp metering (Papageorgiou et al. 1991), 

adaptive traffic signal control (Lowrie 1982), bus signal control, and congestion-based 

road pricing (Ison 1996). With the help of modern detection technology and information 

transformation technology, a number of real time demand or supply side traffic 

management strategies, referred as active traffic management (ATM), have been 

introduced into the field of transportation. As parts of intelligent transportation systems 

(ITS), ATM strategies play important roles to better manage the increasing travel 

demand and improve the reliability of transportation systems. ATM strategies may 

better utilize the capacity or provide additional capacity to accommodate peak-hour 

traffic, improve the detection and response to incidents, reduce delays resulted from 

recurrent congestion, and thus enhance the transportation network’s performance in 

safety, efficiency, reliability, and sustainability. Real-time traffic management 

techniques are currently under operation in many metropolitan areas in the U.S., 

including adaptive ramp metering, hard shoulder running, dynamic lane use control, 

reversible lanes, and variable speed limit. Since transportation systems are getting more 

and more complex with their corresponding traffic transportation demand management 

(TDM) strategies and ATM strategies, advanced transportation modeling systems are 

required to evaluate different congestion mitigation strategies and even take real-time 
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estimations for decision support. 

Section 1.2. Traffic modeling approaches 

In order to evaluate the performance of transportation systems and to 

determine the best strategy for implementation, it is crucial to have a reliable evaluation 

model that fully incorporates human’s travel behavior and traffic flow movement 

mechanism. It is important that such an evaluation model reflects network wide traffic 

condition under the interactions between users and transportation infrastructure. A 

transportation system was first modeled as a network in the 1950s, when Wardrop’s 

equilibrium principle was introduced for static network performance (Wardrop 1952). 

The static equilibrium is usually used in a four-step transportation planning model, 

which assumes static supply and demand conditions for typical days or time periods 

within a day. Such a network model can hardly reflect the dynamic performance of a 

transportation system. Static traffic models can be used for policy oriented analysis, e.g. 

for the impact of vehicle mileage traveled (VMT) fee on traffic congestion, or for the 

effectivity of value of time (VOT) on travel behavior. However, the limitation in 

dynamic traffic analysis impedes its further applications in ATM. In addition, some 

important issues in demand pattern shifts, such as trip chaining and scheduling, are 

difficult to describe by a four-step model due to the lack of solid behavioral foundation 

(Zhang 2007). 

Dynamic traffic assignment (DTA) models have been used to capture time 

dependent traffic phenomena (Janson 1991). DTA models have been a valuable and 
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powerful approach in the transportation modeling. Compared with static traffic 

assignment models, the major benefit of using DTA is its advance in calculating spatial 

and temporal traffic conditions, determining departure time choices, mode choices, and 

time dependent route choices. The capabilities of obtaining time-dependent traffic 

phenomena allow the testing of a multitude of transportation conditions, e.g. bottleneck 

studies (Gentile et al. 2007); integrated corridor management (ICM) strategies (Zhou et 

al. 2008); TDM strategies (Yang et al. 2000); additional capacity and land development 

studies (Zhu et al. 2015); and adaptive control studies (Gartner and Stamatiadis 1998). 

The benefits of using DTA in transportation analysis increase with the size of the study 

area because researchers can obtain the performance under different zooming levels 

(e.g., specific links, intersections, corridors, or even regions).  

With modern computation technologies, DTA models have been developed 

for large-scale network studies. However, the increase of network size also brings up 

computational time issues, so that real-time traffic analysis for large-scale 

transportation networks is very difficult. The calibration of a DTA model can be one of 

the most time consuming and most important processes when applying DTA to real-

world analysis. A DTA model needs calibration and validation to reflect realistic real-

world conditions. For large networks, calibration can be time consuming because the 

number of parameters to adjust grows rapidly with the network size. A sound calibration 

needs to consider both supply parameters and demand parameters in the DTA model 

components. Another limitation of many DTA models lays in their travel behavior 

foundation. The pursuit of user equilibrium (UE) in DTA may not be advanced in 
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depicting how people actually learn about traffic information and make decisions. This 

is because DTA usually relies on the rational behavior foundation, which assumes that 

travelers have perfect information about traffic conditions and are able to make optimal 

decisions. There is still room for improving DTA’s travel behavior foundations to 

reflect people’s actual reactions towards ATMs. In addition, real-time DTA can be a 

promising direction since traffic data is getting more and more abundant. Online 

applications of DTA models can play important roles in real-time transportation 

condition estimation, prediction, and ATM evaluation. 

Section 1.3. Real-time agent-based traffic modeling 

With the development of computational technologies, mathematical models 

and software become increasingly agent-oriented. Agent-oriented computing is one of 

the powerful technologies for the development of distributed complex systems 

(Zambonelli and Parunak 2002). Agent-oriented techniques enable the design, analysis 

and implementation of large and complex systems by providing simpler logics to solve 

complex problems in these systems. The concept of “agent” refers to a single 

component of the distributed system that is operated via some simple rules that will 

interact with other agents as well as the system. An agent is intelligent to learn the 

current system’s condition via the environment and the communication with other 

agents. Then the agent makes decisions and execute its functionality in the system. A 

multi-agent system (MAS) is a modeling system composed of multiple agents. The 

condition of the MAS is obtained via the modeling of the agents and the environment. 
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Figure 1-1 basically illustrates how a MAS works, different kinds of agents (type A, B, 

and C) may have specific functionalities and goals. These agents may have one-

directional information communication (A to B), or two directional information 

exchange (B and C). For instance, in Figure 1-1, type A can be farmers who want to 

sell vegetables to wholesalers (type B); wholesalers will contact factory (type C) to 

make products, and these products can be sold back to wholesalers and brought to the 

market (the environment). Agents work in the environment with the information they 

obtain to pursue their goals, which are to maximize their own profits in the example.  

 

 

Figure 1- 1 How a MAS works 

 

A transportation system, which has geographically distributed nature and 

stochastic operation characteristics, is well suitable to be modeled as a MAS (Chen and 

Cheng 2010). In a transportation modeling system, the demand can be modeled as 

traveling agents; and the supply side infrastructure such as roadway, traffic detectors, 
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traffic signals, traffic management agencies can all be represented by different types of 

agents. Because agents are autonomous, collaboration, and reactivity, applying agent-

based technics is beneficial for both modeling and the implementation of ITS. From the 

traffic and transportation management perspective, agents can operate without the 

direct intervention of humans. This feature helps to model and implement automated 

traffic control and management systems. Agents communicate with other agents to 

collaborate with each other to perform traffic control and management based on real-

time traffic conditions. In a transportation modeling system, advanced demand and 

behavior modeling can be achieved by treating travelers as intelligent agents. These 

intelligent agents can learn knowledge about their travel experience and make pre-trip 

or en-route decisions. Recently, increasingly agent-based traffic and transportation 

models and applications have been developed. In next chapter, a comprehensive 

literature review will show that MAS have been applied to many aspects of ITS, 

including modeling and simulation, intelligent traffic control and management, 

dynamic routing and congestion management, driver-infrastructure collaboration, and 

decision support (Chen and Cheng 2010). 

Although there have been attempts of integrating MAS into traffic modeling 

systems, the illustrations under large-scale networks or real-time applications are rarely 

seen in literature. One major reason is because the computational time required for 

large-scale network is so high for researchers to conduct online (real-time) real-world 

applications. With the motivation of the online application of large-scale agent-based 

transportation modeling systems, this dissertation attempts to propose an online 
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applicable MAS, in which travelers are treated as agents that can adjust their behavior 

via an information updating and learning process. 

Section 1.4. Summary 

Based on the introductions above, I have discussed the limitations of current 

transportation modeling approaches and the advantages of using agent-based 

technologies. Therefore, I would develop an advanced transportation modeling system 

that is able to incorporate agent-based modeling and real-time simulation for both 

transportation planning and operation applications. The objective of this dissertation is 

to develop a large-scale mesoscopic transportation model which is integrated with an 

agent-based travel behavior model. The ultimate goal is to achieve online (or real-time) 

simulation to help estimate and predict the performance of the whole transportation 

system. This integrated model can not only assist in transportation planning impact 

analysis, but also work along with ATM for real-time decision support. 

This research is one of the earliest attempts to introduce both agent-based 

modeling and online network modeling for large-scale networks. The contributions 

include: 1) integrate an agent-based travel behavior model into DTA models to enhance 

the behavior realism; 2) propose a gradient-based fast online calibration procedure that 

quickly adjusts model parameters based on real-time traffic data. The practical value of 

this tool can match its theoretical value because the implementation of the proposed 

tool is straightforward. A number of real-world and real-time case studies are illustrated 

to demonstrate the value of this model for both long-term and real-time applications. 
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The rest of the dissertation is organized as follows. Chapter 2 provides a 

comprehensive literature review on transportation modeling, offline/online calibration, 

and MAS modeling approaches in transportation engineering. Chapter 3 introduces the 

agent-based transportation system model in terms of its components and model 

integration. Chapter 4 proposes a gradient-oriented online calibration approach. 

Detailed methodologies on data processing, demand and supply calibration mechanism 

are discussed. Chapter 5 mainly illustrates the applications of this proposed 

transportation network model. Medium-scale case studies on both general days and 

incident days are conducted to illustrate the performance of the online calibration 

approach. The online modeling of a large-scale network that covers the whole 

Washington D.C. area is also shown in Chapter 5. Different ATMs are evaluated as a 

case study for real-time decision support. Chapter 6 extends the online system model 

to another important application: work zone schedule and operation. This is done to 

illustrate the capability of the model in a transportation planning application. 

Conclusions and future work are discussed in Chapter 7. 
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Chapter 2: Literature Review 

In this chapter, I will provide a comprehensive literature review on different 

topics that are incorporated in this dissertation. Firstly, I will talk about transportation 

modeling approaches; then, the offline and online calibration of transportation models, 

especially the calibration of DTA models will be introduced; finally, transportation 

related MAS will be discussed. 

Section 2.1. Transportation modeling approaches 

Transportation modeling aims at estimating travel demand and the 

performance of transportation systems. Transportation modeling can be used both in 

planning and management applications. Within transportation planning frameworks, 

four-step models are among the earliest transportation modeling approaches. Four-step 

models were introduced during the 1950s by Detroit Metropolitan Area Traffic Study 

(Area 1955) and Chicago Area Transportation Study (Hoch 1959). The four steps are: 

trip generation, trip distribution, mode choice, and route assignment. Trip generation is 

conducted via economic based analysis to estimate the traffic analysis zone (TAZ) 

based trip frequency for different trip purposes (Hoch 1959). Trip distribution matches 

the TAZ to TAZ productions and attractions (Schneider 1959). Mode choice calculates 

the fraction of different travel modes among TAZ to TAZ trips (Ben-Akiva 1974; 

Daganzo 1979). Route assignment assigns the trips to the transportation network via 

Wardrop’s equilibrium principle (Wardrop 1952). Four-step models usually represent 

traffic as a static phenomenon because traditional travel demand is considered to be 
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static during a specific time period; and traffic assignment solves a static programming 

problem. Traffic dynamics such as queuing and routing changes are not adequately 

taken into account.  

DTA, which considers traffic flow based link costs, has been used to address 

the static traffic issue (Daganzo 1977; Merchant and Nemhauser 1978; Janson 1991; 

Wu et al. 1998). The pursuit of dynamic user equilibrium (DUE) enables the analysis 

time-dependent transportation performance. There are three categories of DTA models: 

macroscopic level models, mesoscopic level models, and microscopic models. 

Macroscopic level DTA models formulate traffic as mathematical functions between 

speed, volume and density (Inose 1967). Microscopic level DTA models attempt to 

model individual vehicles’ movements via car following models and lane changing 

models (May 1967). Mesoscopic models utilize macro traffic models to represent 

transportation performance, but they track individual travelers’ trip information (Ben-

Akiva et al 1997). There have been several DTA packages in the academic area for time 

dependent transportation modeling. For macroscopic level DTA models, we have 

TransCAD (Caliper 2005) developed by Caliper, VISUM (PTV 2009) developed by 

PTV, etc. There are also mesoscopic DTA models such as DynaMIT (Ben-Akiva 2002), 

Dynasmart (Mahmassani et al. 2004), and DTALite (Zhou and Taylor 2014). Both 

macroscopic models and mesoscopic models are designed for corridor-level up to 

regional-level analysis of a wide range of transportation planning and traffic 

management applications. VISSIM (PTV 2008), SUMO (Behrisch et al. 2011), and 

TransModeler (Caliper 2009) are widely used in microscopic DTA applications. 
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Even though DTA gains its popularity by presenting detailed traffic dynamics, 

the pursuit of DUE may not be advanced in depicting how people actually learn about 

traffic information and make decisions (Zhang 2007). This is because DTA usually 

relies on the rational behavior foundation, which assumes that travelers have perfect 

information about traffic conditions and are able to make the optimal decisions. In 

addition, some important issues in demand pattern shifts, such as trip chaining and 

scheduling, are difficult to describe by these models due to the lack of solid behavioral 

foundation (Zhang, 2007). The modeling of traffic dynamics in DTA is not equivalent 

to modeling transportation because travelers’ behavior is not fully considered. Chen et 

al. (2016) conducted a comprehensive review on how to apply different transportation 

data for behavior analysis. Chen’s research team also did a several research on activity 

pattern prediction (Kitamura et al. 2000), mode choice prediction (Chen et al. 2008), 

activity duration prediction (Mokhtarian and Chen 2004), etc. However, these studies 

are not integrated with traffic-related models, such that time is still needed for traffic 

modeling to benefit from these behavior findings. 

Activity-based travel demand models (Koppelman and Pas 1980; Carpenter 

and Jones 1983) and agent-based travel behavior models (Zhang 2007) have been 

proposed to enhance the behavior foundation in transportation models. These models 

theoretically promise a stronger behavioral foundation for demand modeling and are 

expected to provide more accurate time-dependent estimates of origin-destination (OD) 

demand than four-step models. The integration between activity/agent-based demand 

models and DTA techniques enhances the time-dependent advantage on both the 
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demand side and the supply side (Lin et al. 2008; Hao et al. 2010), which will be a new 

trend for modeling transportation systems. 

Section 2.2. Calibration of transportation models 

Calibration is one of the most important processes when applying DTA to the 

real-world analysis because the base model needs to reflect real-world conditions. For 

large networks, calibration can be time consuming because the number of parameters 

to adjust grows rapidly with the network size. A sound calibration needs to consider 

both supply parameters and demand parameters in the DTA model components. On one 

hand, the supply model components capture traffic dynamics via detailed 

representations of the capacities and the mobility of transportation facilities. Supply 

parameters include the features (e.g., free flow speed, capacity, and jam density) of 

different types of roadways, timing plans of traffic signals, merging/diverting rules 

when traffic flows arrive at a merging/diverting point, weaving behavior, etc. On the 

other hand, the demand model components provide travel patterns obtained from 

destination choice models, pre-trip departure time choice models, and mode choice 

models. Therefore, time-dependent OD matrices for different modes are obtained as the 

demand parameters. For each application, the supply and demand parameters need to 

be identified so that the model outputs match real-world traffic conditions observed via 

traffic detectors or probe vehicles in the study area. Today’s information technologies 

provide rich sources of real-time and historical traffic data for ITS. As a result, sound 

online calibration approaches are required for large-scale real-time simulations to 
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implement ATMs. 

The calibration of DTA models can be formulated as an optimization problem 

that adjusts the supply and demand parameters so that the gap between available traffic 

measures and the models’ outputs is minimized. Since the DUE condition is already an 

optimization problem, the calibration of DTA can be regarded as a bi-level optimization 

with: 1) the upper level to optimize the supply and demand parameters to reach the 

minimal gap between simulation outputs and real-world data; 2) the lower level to 

converge to DUE given the supply and demand parameters. There are no closed 

formulations for the objective function (i.e. the gap between simulation and real-world 

traffic condition), and the objective value needs to be evaluated through DTA outputs 

under the DUE constraint in the lower level. In addition, large networks make the 

optimization more challenging because it can take from hours to days for large networks 

to converge to DUE.  

DTA calibration began to attract researchers’ attention from the late 1980s, 

when a generalized least-squares model was applied to calibrate the OD matrix based 

on traffic counts (Cascetta and Nguyen 1988; Cascetta 1993). The authors estimated 

the linear relationship between the time-dependent traffic counts and the OD flows. 

This linear relationship could also help the closed formulation of the objective function 

in the DTA OD calibration. Some researchers also attempted to manually adjust the 

model parameters, which could be time consuming for large networks (Chu et al. 2004). 

There was a trend that researchers calibrated supply and demand parameters separately, 

with iterative steps assuming the remaining parameters stayed constant (Doan et al. 
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1998; Hawas 2002). Balakrishna et al. (2005) proposed a systematic calibration method 

that treats different parameters independently and identified supply parameters and 

demand parameters simultaneously. Using the simultaneous perturbation stochastic 

approximation (SPSA) method, they calibrated a mid-size mesoscopic DTA model with 

606 links in Los Angeles (Balakrishna et al. 2006; Balakrishna et al. 2007). Vaze et al. 

(2009) applied SPSA to calibrate over 6,000 demand and supply parameters, and they 

showed the superiority of SPSA over genetic algorithms (GA). In these studies, SPSA 

was proven a fast converging method, but the limitation was that SPSA is a local 

optimization method that might not guarantee global optima (He 2014). Compared with 

calibrating demand parameters and supply parameters separately, the joint calibration 

ignored the presence of interaction among the demand and supply parameters (Omrani 

and Kattan 2012). 

One common issue with DTA calibration is that the number of parameters to 

calibrate is far more than that in traditional optimization problems. Therefore, the 

calibration of medium-scale or large-scale models is usually time consuming. Another 

issue is that the calibrated model may only refer to a “typical” scenario (e.g. typical 

weekday, typical weekend), which impedes its further applications in day-to-day or 

even real-time applications. 

Section 2.3. Online calibration of transportation models 

With the fast development of computational technologies and traffic 

monitoring systems, online calibration of transportation models has drawn increasingly 
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attentions. Online calibrations are necessary for real-time traffic modeling systems in 

terms of current traffic condition estimations and near-future predictions. Unlike 

optimization-oriented offline calibrations, online calibrations usually utilize some 

adaptive approaches to adjust model parameters. 

There have been attempts to make online traffic condition estimations and 

predictions. van Arem and van der Vlist (1992) utilized real-time measurements of 

traffic flow, occupancy and speed to estimate the online capacity of a motorway cross-

section. They first estimated the fundamental diagram via a maximum occupancy that 

may be achieved under free-flow conditions; then calculated the capacity using this 

fundamental diagram and the notion of "maximum" occupancy. Doan et al. (1998) 

proposed a reactive traffic propagation adjustment module to periodically adjust a 

traffic management simulation model, such that the model performed consistently with 

real world network. The module was formulated as a PID (proportional, integral and 

derivative) controller to adjust the inconsistencies between simulated and measured 

densities. He et al. (1999) listed a number of major sources of the inconsistences 

between DTA model outputs and real-world observations, i.e. link travel time functions, 

route choices, and flow propagation models. They attempted to calibrate the outputs of 

a modified Greenshields’ model to make the analytically computed travel times match 

the detected travel times. An iterative approach that sequentially considers the three 

components until convergence was proposed.  

There are some general approaches to estimate real-time traffic conditions 

under DTA frameworks. Tavana and Mahmassani (2000) proposed transfer function 
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methods (bivariate time series) to estimate speed-density relations from typical detector 

data. Time series analysis was used as a basis to estimate speed based on densities. 

Huynh et al. (2002) extended the work by incorporating the transfer function model 

into a DTA simulation-based framework. The parameters were updated periodically 

based on prevailing traffic conditions and nonlinear least squares optimization, making 

it an adaptive process. A similar approach was completed by Qin and Mahmassani 

(2004), who utilized equilibrium/actual speed as the input/output of the transfer 

function, respectively. The objective of building a transfer function is to estimate and 

predict traffic measurements that both considered historical traffic dynamics and real-

time detections. The models demonstrated their accuracy compared with static 

macroscopic models. Wang and Papageorgiou (2005) conducted real-time traffic 

estimation by formulating a stochastic macroscopic traffic flow model as a state-space 

model. The model considers traffic model’s parameters as time-varying state variables. 

All these works are about supply side online calibration, i.e. estimating real-time free-

flow speed, critical density, and capacity. State-space models were also used for online 

OD matrices estimation and prediction problems (Ashok and Ben-Akiva 1993; Ashok 

1996; Ashok and Ben-Akiva 2000). A Kalman Filtering algorithm was used to solve 

these state-space models, making it computational effective for real-time applications. 

The model was extended to calibrate both OD matrices and supply parameters by 

incorporating a nonlinear Kalman Filtering Algorithm (Antoniou et al. 2007). Hashemi 

et al. (2017) utilized Q-learning to formulate consistency checking and online 

calibration procedure. The procedure will estimate whether or not to adjust the DTA 
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parameters under the reinforcement learning framework. If the procedure determines to 

calibrate the model, least square method will be used to estimate the new OD tables. 

However, these research did not consider much about historical data.  

Cantelmo et al. (2014) used modified SPSA to estimate dynamic OD under a 

bi-level DTA framework. Cantelmo et al. (2017) also proposed a bi-level dynamic OD 

estimation model for DTA demand calibration. The model embedded utility 

optimization into the formulation of the optimization problem. However, due to the 

computational speed issue, only a small network was illustrated in the paper. Zhou and 

Mahmassani (2005) developed an online OD matrices estimation approach that 

minimizes the deviation between simulated information and real-world information as 

well as demand adjustment magnitude. In their paper, only real-time deviation was 

considered, such that historical data was not adequately considered to save 

computational time. Zhou and Mahmassani (2007) enhanced their method by using a 

polynomial trend filter to estimate deviation from a prior estimated demand. Day-to-

day updating was also incorporated. A possible issue is that it can hardly consider the 

differences in demand patterns on weekdays and weekends.  

Currently, the focus of online calibration of DTA models is still on how to 

estimate the current traffic condition via fast linear or non-linear state models. The 

advantage of these methods is fast computation, but there is still room to improve the 

calibration accuracy as well as efficiency, especially for large-scale networks. In 

addition, historical data and “typical” (or prior) models may play more important roles 

in online calibration approaches. 
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Section 2.4. Multi-agent technologies and models 

Today’s computational and information technologies make it possible to 

utilize large-scale DTA models and advanced travel demand models for transportation 

system analysis. The transportation modeling platforms provide a testbed for many 

ATM strategies and transportation oriented policies under ITSs. As a complex system, 

an ITS is suited for agent-oriented technologies. The concept “agent-based” was first 

proposed in the 1970s during the dynamic modeling of segregation process (Schelling 

1971), in which autonomous agents interacted with each other in a shared environment. 

In a MAS, agents learn and accumulate knowledge under the environment and make 

decisions to pursue their own goals. In ITSs, the environment can be the transportation 

system, and agents can vary from travelers to ATM facilities. In the academic field of 

transportation, MAS have been applied to many aspects of traffic and transportation 

systems. 

Agent technology enhances interoperability and distributed computing 

capability of existing centralized information systems in ITSs. The distributed agent 

systems can combine information from multiple detection stations and systems, 

evaluate traffic flow, respond to traffic flow changes, and evaluate operational responses 

to traffic flow changes in real-time (Chen and Cheng 2010). In the field of ATM, 

Roozemond (2001) applied a MAS for urban real time traffic signal control. The MAS 

consists of signal agents, segment agents and authority agents, such that they make 

reactions to the change of traffic condition by coordinating with each other to reach the 

global optimal performance. Similar agent-based methods were proposed to achieve 
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urban signal adaptive coordination and control (Kosonen 2003; France and Ghorbani 

2003; Yang et al. 2005; Grégoire et al. 2007). Logi and Ritchie (2002) proposed 

freeway agents and arterial agents to help manage traffic facilities (e.g. signals, ramp 

metering, dynamic massage signs) to mitigate local congestion. Some researchers 

proposed routing agents to help with real time road guidance or assistance to avoid 

traffic congestion (Shi et al. 2005; Weyns et al. 2007; Rothkrantz 2009). There is also 

integration between traffic facility control and road guidance. Li and Shi (2003) 

proposed a MAS that integrated signal control with real time road guidance.  

The research motioned above usually regards the infrastructures of 

transportation systems as intelligent agents. Another trend is to model travelers as 

agents. Rossetti et al. (2000) model drivers as learning agents to extend a microscopic 

traffic simulation model called dynamic route assignment combining user learning and 

microsimulation. Wahle et al. (2002) utilized a tactical layer and a strategic layer to 

model drivers’ reactions under dynamic traffic information. Panwai and Dia (2007) 

applied neural agents to model car-following behavior. Doniec et al. (2008) proposed a 

multi-agent behavior model to coordinate drivers’ actions at intersections. Zhang (2007) 

developed a searching, information, learning, and knowledge (SILK) theory to model 

travelers’ long term behavior on route choice. Xiong and Zhang (2013) extended this 

SILK for departure time choice. Zhu et al. (2015) applied this departure time agent-

based model to analyze the impact of flextime schedule policies and cumulative land 

development (Zhu 2014). 
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Section 2.5. Summary 

This chapter provides a comprehensive literature review on transportation 

modeling, offline line and online calibration of transportation models, and agent-based 

systems in transportation engineering. Firstly, it is found that a comprehensive 

transportation system modeling approach is difficult to build, especially when 

incorporating individual travel decision making process with network modeling. The 

ongoing activity-based models usually take days or weeks to model a typical day’s 

demand pattern and the corresponding traffic performance. Secondly, even though there 

are successful large-scale transportation models, it is still unrealistic to apply these 

models for real-time applications. The computational speed of online calibration 

methods is the major bottleneck that prevents the models from real-time applications.  

With these two concerns, this dissertation aims at developing an agent-based 

transportation modeling system that is capable for online applications. Compared with 

machine learning or data driven methods, transportation network models may not be 

the most accurate in predicting near future traffic conditions. However, an online 

transportation model system allows agency planners to evaluate different traffic 

management strategies, which is infeasible for machine learning or data driven 

prediction methods. One major contribution of this dissertation is to develop a fast 

enough online system model calibration approach. Based on the online calibration 

approach and an agent-based system model, one can achieve real-time simulation for 

even large-scale transportation networks for traffic management decision supports. The 

practical value of this tool can match its theoretical value because the implementation 
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of the proposed tool is straightforward. And there is still room for improvements once 

more advanced simulation or computation technologies are ready. 
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Chapter 3: Multi-Agent Transportation Simulation System 

The major approach of this chapter is to explain the model components, and 

procedures required to build the multi-agent transportation modeling system. I will 

introduce an open source DTA model and an agent-based behavior model, then 

integrate them as a system model to overcome the limitations of the traditional travel 

demand modeling. The integrated model can be viewed as a convenient transportation 

modeling tool for agencies and planners to investigate future demand forecasting issues 

such as peak spreading, route shifts under recurrent congestion, etc. It can also be used 

for real-time decision support once the online calibration issue has been addressed. 

Section 3.1. Regional planning model 

In the Northern Washington, D.C. area, there is a regional planning and traffic 

demand model called the MWCOG model. The model is developed to forecast travel 

demand and its impacts from the base year (2010) to decades in the future (2030). It is 

able to analyze land activities on the TAZ level, and assess transportation network 

development plans and transportation policy assumptions to estimate the travel demand 

for different modeling years and scenarios. The TAZ level land activity is forecasted 

through the cooperative forecasting program called “Round”. Round estimates TAZ 

level activities based on the econometric projections of employment, population and 

household information from local governments. Local governments offer their land 

development details to “Round” to provide these social demographic data. The 

transportation network data, which cover freeways, most major/minor arterials, some 
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connectors, and transit-only links (e.g., rail), are developed by the COG staff. The 

transportation policy assumptions include the change in transit fare/auto operating costs 

over years, the change of parking cost and the amount of through traffic from other 

regions. As a trip-based, four-step travel demand model, the MWCOG model produces 

several outputs at both the aggregate level and disaggregate level. For aggregate level 

outputs, the trip generation module estimates the trip production and attraction for each 

TAZ. Disaggregate level outputs include TAZ-to-TAZ trips (OD matrices) for different 

travel modes from the trip distribution module and mode choice module, auto 

trips/volumes on road links from the static traffic assignment module, and transit person 

volumes on transit links from the transit assignment module. The proposed system 

model takes the network and the demand outputs of MWCOG to develop the DTA 

model. Therefore, the TAZ level travel demand is still modeled by MWCOG, but the 

travel behavior and traffic dynamics can be modeled by using the proposed integrated 

system model.  

Section 3.2. Mesoscopic DTA model 

Many DTA integrated traffic simulators, such as DYNASMART, 

TRANSIMS and DTALite (Zhou and Lu 2010) have been used in previous studies. 

They are all equipped with good features for real-world applications, and there is no 

consensus on the superiority of any single simulator. DTALite is selected in the system 

model for four reasons: 1) it is able to generate a simulation network directly from the 

network file of a regional planning model or a geographical information system (GIS) 
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database; 2) it is a mesoscopic simulator with parallel computing that increases the 

speed of the simulation-based DTA; 3) the embedded OD calibration module and the 

subarea cut module allow a detailed analysis for zooming into specific subareas; and 4) 

it is well-supported for agent-based modeling.  

Agent-based modeling means the TAZ-to-TAZ demand input (OD matrices) 

for DTALite is not necessary. One can also provide an input agent list file for the traffic 

assignment. The agent list contains every traveler’s detailed travel information, 

including origin, destination, departure time, and VOT. After producing traffic 

assignment, DTALite will also generate an output agent list that provides each 

traveler’s trip information (e.g., origin, destination, departure time, arrival time, and 

trip trajectory). Therefore, the integration between DTALite and agent-based behavior 

models can be implemented via these agent list files. The output agent list from 

DTALite can be used as travel experience to update travelers’ knowledge, then the 

behavior model is employed to forecast behavior changes; based on the forecasted 

behavior changes, one can modify the input agent list to conduct traffic assignment 

again to investigate the traffic impact. 

Supported by Maryland State Highway Administration (SHA), a mesoscopic 

DTALite model has been developed for the entire Montgomery County, MD, including 

all freeways, most major/minor arterials, and some local connectors/streets. The major 

commuting corridors—I-270, North I-495 and MD 355—are located in the middle of 

this study area, as shown in Figure 3-1. This large-scale network is taken as an example 

to illustrate how to integrate the proposed agent-based travel behavior model (AgBM) 
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with DTA. The simulation network, which contains 470 TAZs, 5,481 links and 1,921 

nodes, is directly obtained from the MWCOG traffic demand model via the DTALite’s 

subarea cut procedure. I transform MWCOG’s static OD to time-dependent OD as seed 

OD matrices for calibration. Section 3.4 will illustrate how the subarea cut procedure 

works, and how the time-dependent seed OD is obtained. 

 

 

Figure 3- 1 Mesoscopic simulation network with traffic count stations 

 

The base year model (2010, typical weekday morning peak period from 5:00 

AM to 10:00 AM) is calibrated with hourly volume data measured by 160 sensors from 

the Maryland SHA’s traffic monitoring system (denoted by green points in Figure 3-1). 
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The calibration is conducted via the “OD estimation” procedure (called ODME) in 

DTALite, which adjusts the time-dependent seed OD matrices based on the volume 

differences of the 160 sensors. That is, the “OD estimation” procedure first conducts 

DTA with the seed OD to obtain DUE, and then begins to adjust the seed OD based on 

the route choice under DUE. If the assigned flow on a link with sensor is higher than 

the real-world counts, the procedure will decrease the demand of the corresponding OD 

pairs; otherwise, it will increase the demand. After comparing all the sensors, the 

adjusted OD matrices are set to be new seed OD matrices for the next iteration of 

calibration. The calibration process will terminate when there is no improvement in 

terms of the matching of the sensor counts. Readers may refer to Lu et al. (2013) for 

more detailed information for this OD calibration procedure. More details about ODME 

will be discussed in Chapter 4. Since the OD estimation procedure only makes OD 

adjustments, we also need to calibrate the supply parameters (e.g., link capacity, jam 

density, speed limit, and congestion wave propagation speed) by trial and error. After 

the calibration, the weighted mean squared error (WMSE) is 0.162. The WMSE, which 

is a measurement usually used for DTA calibration (Xiong et al. 2015a), is defined as: 
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where ,i hx  is field detected counts of station i during hour h, *

,i hx  is the simulated 

counts.  
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Figure 3- 2 Calibration results of the simulation-based DTA. 

 

Except for WMSE, I also check the GEH statistic which is used to compare 

two sets of traffic volumes (Chitturi et al. 2014). 
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where ,i hG  is the GEH statistic of station i during hour h, and 
,i hx  denotes the 

average field detected counts across all the sensors and time intervals. The average 

value of all the 160 sensors across 5 hours’ time intervals (800 ,i hG  in total) is 3.18; 

and 703 (87.9%) of the GEH statistics are under 5, which indicates a good match. In 

the calibrated model, there are 426,958 total trips, including a warm-up period from 

4:00 AM to 5:00 AM and a clear-up period from 10:00 AM to 11:00 AM. 

Section 3.3. Agent-based travel demand model 

The positive agent-based travel behavior model is integrated with DTALite 

to incorporate travelers’ cognition in the mesoscopic DTA model. In this dissertation, 
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I try to model the departure time dimension in one’s travel decision making process, 

other dimensions e.g. mode choice, destination choice can also be included. The 

framework of the positive departure time model was developed by Zhang and Xiong 

(2012). The model attempts to estimate how people actually behave without the 

assumption of perfect rationality. In the positive departure time model, each traveler is 

described as a learning agent. Each agent in the model has an initial subjective belief 

on his/her trip, which is the ideal travel condition with free-flow travel time (FFTT) and 

zero schedule early arrival/delay. While it is almost impossible to reach the ideal 

condition in reality, the positive model forms a perception and learning process to 

model agents’ learning and behavior adjustments toward their actual experience and 

beliefs, see Figure 3-3. Agents are able to acquire and learn traffic information from 

their travel experience (or other sources, such as traveler information systems) and then 

update their knowledge. Both the subjective belief and the learnt knowledge are 

quantified to determine personal attitudes towards his/her current experienced traffic 

conditions: 

       TT ASDE ASDLP TT ASDE ASDL                        (3-3) 

    max 0,ASDE PAT TT                 (3-4) 

    max 0,ASDL TT PAT                 (3-5) 

where   is the departure time,  P   is the quantified attitude (also called payoff) 

towards the current traffic condition,  TT   is the travel time,  ASDE  and 

 ASDL   are the schedule early arrival/delay, respectively, and PAT denotes preferred 

arrival time, TT , ASDE , and ASDL  are the coefficients in payoff function. The gap 
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between the experienced best situation and the ideal situation is theorized as subjective 

search gain, given by: 

   , / 1s

T weight Tg p p T                                  (3-6) 

where 
Tg  is the search gain on day T, sp  is the ideal payoff under the subjective 

belief (payoff under FFTT with zero schedule early/delay), 
,weight Tp  is the payoff under 

the best traffic condition the agent has ever met up to day T. This subjective search gain 

measures how much the agent expects to benefit if he/she shifts departure time. Here, 

the model uses ( 1)T   as the denominator, because agents’ expectation of finding a 

more desirable departure time will decrease as they keep searching and continue 

making decisions in the system. Since individuals can select from all tried departure 

times and pick the one with the highest weight (impression), the weight of day t’s travel 

experience is calculated as follows: 
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 weight, 1 2,1 m , max , ,...,T m m Tp p T w w w w            (3-7d) 

 

where tw  denotes the weight for day t among T days that has passed. The weight is 

determined by a representativeness weight t  and a recentness weight t ; tp  is the 

payoff on day t; 1  and 2  are factors for representativeness and recentness. Thus,  

,weight Tp  is the payoff of the day with the highest weight (3-7c). 

This captures agents’ satisfying behavior, meaning that agents will become 

satisfied and stop the search for new, alternative departure times. Correspondingly, 

since agents may take effort to search, e.g., time, monetary, mental efforts, and risk, the 
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search cost is proposed to measure their perceived loss in each round of search, given 

by 

   max, / 1s

LOW T Tc g p p T                                 (3-8a) 

 1 max, 1 /s

HIGH T Tc g p p T                                   (3-8b) 

  / 2LOW HIGHc c c                                        (3-8c) 

where 
LOWc  and 

HIGHc  are the lower and upper boundaries of the search cost of an 

agent, respectively. 

To investigate these two boundaries, a local survey was conducted, where 

every respondent was asked to search repeatedly until he/she was satisfied with the 

most recent departure time (Zhang and Xiong, 2012). If T is the total time of this 

searching process for the respondent, then it is reasonable to assume the search cost is 

between the gain of the last search (
LOWc ) and the second-to-last search (

HIGHc ). Thus, I 

assume the cost to be the average of 
LOWc  and 

HIGHc . The start and termination of an 

agent’s searching process are determined by the trade-off between the subjective search 

gain and the perceived search cost. 

In the aforementioned explanations, I have illustrated how travel experience 

is converted to a quantified attitude by using subjective belief, search gain and search 

cost. Assume that one has a traffic simulation model or travel information system so 

that every agent’s travel conditions, such as origin, destination, shortest travel time, 

departure time and actual arrival time on day t, are known. Then, one is able to estimate 

the departure time choice on day (t + 1) for all the agents in the network via the 

flowchart in Figure 3-3. 
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Figure 3- 3 Flowchart of the positive departure time model for one agent 

 

After generating the agents’ subjective beliefs and search cost based on their 

travel information, the departure time decision-making process begins with updating 

the agents’ travel experience from the output of the simulation model on day t. For each 

agent, the positive model calculates the search gain from his/her updated travel 

condition and his/her subjective beliefs. If search gain is greater than search cost, the 

searching begins; the agent then follows a series of searching rules and decision rules. 

The searching rules guide the identification of an alternative departure time for each 

agent. The decision rules govern the switching behavior between the new alternative 

and the original departure time. Once the search gain is smaller than search cost, the 

agent will stop searching, and he/she would repeat his/her current departure time for 
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the rest of the simulation. After all the agents have made decisions on day t, the 

individual-level behaviors are aggregated as the demand for day (t + 1) to the traffic 

simulation model. The simulation output for day (t + 1) is updated again for agents to 

estimate the departure time decisions for day (t + 2). This loop process will continue 

until all agents stop searching and changing departure times, which is referred as 

behavior user equilibrium (BUE) (Zhang 2007). 

The parameters of the travel time and schedule early arrival/delay in the 

search gain function are taken from the departure time study done by Small (1982). The 

search rules and decision rules have been estimated using decision tree algorithms and 

were cross-validated with stated preference survey data (Zhang and Xiong, 2012). 

Given the framework of the proposed agent-based behavior model, one can conduct 

local travel behavior surveys and use decision trees or other technologies to estimate 

search/decision rules or reformulate the payoff functions. 

Section 3.4. Model integration 

This section presents the integration of the aforementioned model 

components (regional planning model, mesoscopic DTA model, and positive agent-

based behavior model) into a system network modeling tool for transportation planning 

and management applications. Unlike traditional trip-based transportation models, this 

integrated model treats every traveler in the network as an intelligent agent who can 

update knowledge and make decisions. Agents follow the positive model and make 

travel decisions based on their previous travel experience and subjective beliefs. After 
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modeling travelers’ behavior change, the individual decisions are aggregated as a new 

demand pattern for traffic impact modeling. The integration flowchart is shown in 

Figure 3-4.  

 

 
Figure 3- 4 Flowchart of the integrated system model 

 

The integration of the proposed MAS simulation tool in this dissertation starts 

with the MWCOG regional planning model. The “Round” model first takes land 

development inputs and estimates TAZ based travel demand, then, using the four-step 

travel demand model in MWCOG, obtains static OD matrices. The static OD matrices 

are converted to time-dependent OD matrices, based on the departure time distribution 

in the 2007-2008 Transportation Planning Board (TPB)/Baltimore Metropolitan 

Council (BMC) Household Travel Survey. Let hS  denote the number of auto trips 

departing during hour h, summarized from the TPB/BMC survey, kOD  denotes the 
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static demand for OD pair k from MWCOG, then the time-dependent OD is: 

,

'

' 1

= h
k h k H

h

h

S
OD OD

S





                  (3-9) 

where ,k hOD  is the trips for OD pair k during hour h, H is the total traffic assignment 

horizon. 

The open source mesoscopic DTA package DTALite involves a network 

converting procedure that coverts and imports the MWCOG transportation planning 

network to a simulation-based DTA network. With the MWCOG DTA network and the 

time-dependent OD matrices, I conduct DTA to assign the regional auto demand onto 

the MWCOG network. Since the study area is a subarea within the MWCOG network, 

I derive the subarea network and its time-dependent OD matrices via the subarea cut 

procedure in DTALite. The subarea cut procedure defines the boundary of the study 

area and summarizes its internal and through demand, based on traffic assignment 

results of the entire MWCOG network. The cut DTA model is then calibrated via the 

traffic counts data mentioned in the previous section. Until now, one has already 

developed a mesoscopic DTA model from the regional planning model. 

To integrate such a traditional DTA model with a positive agent-based 

behavior model, one needs to take advantage of the output agent list mentioned in the 

mesoscopic DTA model subsection. The travelers in the output agent list of this subarea 

DTA model are considered all the agents to model. Therefore, one knows the origin, 

destination, departure time, arrival time and other detailed travel information for these 

agents. For each agent, his/her payoff under the ideal travel condition can be found by 
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capturing the FFTT of the shortest path connecting his/her OD pair, assuming the 

schedule early arrival/delay to be zero. Based on the social demographic distributions 

in 2007-2008 TPB/BMC survey, each agent in the output list is assigned with 

demographic information such as income, and gender. The social demographic 

attributes are necessary because they are included as explanatory variables for searching 

and decision rules in the positive behavior model (Zhang and Xiong 2012). This process 

can be regarded as the initialization of the AgBM-DTA model. 

Under the initialization, DTA is conducted to simulate agents’ travel 

experience for the daily traffic knowledge learning process. One can take the output 

agent list from DTALite to update each agent’s travel experience, and follow the 

flowchart in Figure 3-3 to model the knowledge learning, searching and decision-

making process. After predicting each agent’s departure time change, one can update 

the input agent list with the new departure times. DTA is conducted again to simulate 

agents’ travel experience for a new day. For long-term transportation planning impact 

studies, the iterative loops of departure time prediction and DTA will not finish until 

only a small portion of individuals (5% in this dissertation) are still searching for 

alternative departure times; or, for day-to-day real-time transportation simulations, 

there is no need to stop the iterative loops. The AgBM is not only targeted on day-to-

day behavior shifts, but also allows agents to make en-route behavior adjustments, 

which will be fulfilled in future research. 
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Section 3.5. Model calibration via surrogate-based optimization (SBO) 

The positive departure time model aims at estimating how travelers adjust 

departure times via day-to-day learning and knowledge updating process. The 

integrated model requests calibration so that the BUE can reflect travelers’ actual 

choices in reality. It is assumed that the framework of this positive departure time choice 

model correctly describes how people change their departure time as they obtain more 

knowledge. It is also assumed that travelers in a real-world network have no knowledge 

at the beginning. Then it is reasonable to deduce that the process of approaching BUE 

correctly describes how people switch to today’s departure time from an initial zero-

knowledge departure time. The initial zero-knowledge departure time is assumed to be 

the preferred arrival time minus FFTT, which is estimated as the arrival time minus 

FFTT in the integrated flowchart (Figure 3-4). In this way, the goal of the calibration is 

an optimization solving process to find the best decision variables so that the departure 

profile of the BUE condition matches the real world data. Surrogate-based optimization 

(SBO) is applied to achieve the calibration work (Chen et al. 2015). 

SBO is an optimization method that mainly deals with optimization problems 

that do not have an analytical solution and request simulation to obtain the value of 

objective function. In these optimization problems, the relationship between decision 

variables and objective function is not derivable directly through mathematical 

formulations. Once a vector of decision variables 1 2(x , x ,..., x )lX   is given, 

simulation approach is usually required to observe the performance of X  on the 

objective variable Y . In SBO, a list of initial decision variables ( 1 2, ,..., NX X X ) will 
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be tested to approximate a list of objective variables ( 1 2, ,..., NY Y Y ). These N initial 

sample points will be utilized via the SBO algorithm to regress the black-box 

relationship between X  and Y  to some parameterized basis functions. Once this 

relation is built, a new vector of decision variables 1NX  , which may have increased 

potential to reach better objective function values, will be generated. With the existing 

N initial points and one (or more) infill point, the relationship will be regressed once 

again to generate infill vector 2NX   and more infill vectors. The termination criterion 

of this infill process is often set as a maximum infill number (M) of evaluations of 

objective function. 

In this research, the reason to select SBO is that the optimal solution cannot 

be obtained in analytical ways; one must rely on the integrated model framework to 

obtain the travel departure profile under BUE. Once the real-world traffic network and 

an initial demand have been obtained, I will utilize the integrated model to simulate 

every traveler’s travel experience and estimate their departure time switching process 

until reaching a BUE. The outputs from DTALite can provide the detailed travel data 

to calculate the objective function. 

Since the search cost, search gain, and decision rules have been validated in 

previous work (Zhang and Xiong 2012), this SBO calibration mainly considers 

representativeness factor ( 1 ) and recentness factor ( 2 ) mentioned in Section 3.3. 

There are five parameters to calibrate in this section: 

1) representativeness factor (commuting trips), ranges from 0 to 1  

2) recentness factor (commuting trips), ranges from 0 to 1 
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3) representativeness factor (non- commuting trips), ranges from 0 to 1 

4) recentness factor (non- commuting trips), ranges from 0 to 1 

5) search Scale factor (commuting trips), ranges from 0.6 to 1 

The first four parameters are the factors in experience weight function in 

equation (3-7) for both commuting trips and non-commuting trips; the last parameter is 

a scale factor for commuting trips, which means the commuting travelers will have 

smaller switches in search rules. Details about search rules can be found in Zhang and 

Xiong (2012). The objective function is shown below: 

2 2

1 1

2 2

1 1

( ) ( )
H H

BUE BUE

h h h h

h h

H H

h h

h h

d d cd cd

Y

d cd

 

 

 

 
 

 
         (4-10) 

where the simulation horizon is divided to H time periods; hd  is the demand 

percentage of period h over the whole horizon in real-world data; icd  is the cumulative 

demand percentage from period 1 to period h in real world data;  
BUE

hd  and 
BUE

hcd  

are the corresponding percentages of the BUE condition from the integrated model.  

Another point of calibrating these five parameters is for the transferability of 

this TIA tool. Since the searching rules and decision rules were obtained and validated 

based on a local survey in Zhang and Xiong (2012), repeating such a survey in other 

study areas may be difficult; it is easier for agencies to obtain the departure profiles of 

their own study areas. Therefore, different agencies and experts can calibrate and 

validate the behavior model for their own studies without re-estimating the searching 

and decision rules by adjusting these five parameters. 

The flowchart of the SBO calibration is shown in Figure 3-5. First, N initial 
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decision vectors will be generated by using the Latin hypercube sampling method 

(Chen et al., 2015) to fill the five-dimensional range space of the decision variables. 

These initial vectors of behavior parameters will be loaded into the integrated AgBM-

DTA model to approximate the objective functions one-by-one. Then I apply the 

surrogate model improved by Chen et al. (2015) to regress the relation between X  

and Y . Based on the estimated relation, a new infill point with a large potential to 

reach better objective value will be generated for the integrated TIA tool to approximate 

its performance. After re-estimating the relationship with the infill point, the system 

will generate one more infill point and repeat the infill process until the number of total 

infill points reaches M. After the termination of this SBO process, the system will pick 

the point with the lowest objective value to be the optimal solution. The capability of 

SBO to obtain the global optimal decision variables has been explained in this article. 

 

 

Figure 3- 5 Flowchart of SBO integrated model calibration 

 

The integrated model (Montgomery County network) with the transportation 

network presented in Section 3.2 is calibrated and validated following the framework 
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above. The calibration horizon is from 5:00 AM to 10:00 AM. The real-world departure 

profile is obtained from the 2007-2008 TPB/BMC survey, as well as the ratio of 

commuting and non-commuting travelers. I assign the demand calibrated (agent list) in 

Section 3.2 randomly to be commuters or non-commuters based on this ratio. I then 

generate 80 initial points and 40 infill points to complete the calibration. For each point, 

it takes around 20 simulation days (AgBM iterations) to reach BUE. Before calibration, 

when the 5 parameters are all set to 1, the value of objective function is 7.559. After 

120 iterations of SBO, the objective value drops down to 3.211 with the optimal 

decision vector [0.9925, 0.7724, 0.0247, 0.6123, 0.9953]. This calibration result 

indicates that commuting travelers pay more attention to representativeness; and non-

commuting travelers care more on recentness. The search scale factor is closed to 1, 

indicating that the search rules are well-validated in previous research (Zhang and 

Xiong 2012). The comparisons of the departure profiles are shown in Figure 3-6 (a) and 

Figure 3-6 (b). 
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(a) Timely demand percentage profile 

 

(b) Cumulative demand percentage profile 

Figure 3- 6 AgBM calibration results 
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The calibrated model has been used to analyze the traffic impact due to 

cumulative land developments in my master thesis (Zhu 2014). The details of this traffic 

impact study will not be presented in this dissertation. 

Section 3.6. Large-scale network application 

The ultimate goal of this dissertation is to develop an online agent-based 

simulation tool for large-scale networks. Supported by Advanced Research Projects 

Agency-Energy (ARPA-E) of the department of energy, a large-scale simulation model 

has been developed. Figure 3-5 displays the entire system model network, which covers 

the whole of Washington, D.C.; Montgomery, Prince George’s and Frederick Counties 

in Maryland, as well as parts of Baltimore County; and Arlington and Fairfax Counties 

in Virginia. All the geographic information and traffic infrastructure information of this 

network comes from the Maryland Statewide Transportation Model (MSTM), which is 

another planning four-step model similar with MWCOG. The large-scale DTA network 

contains 1,228 traffic analysis zones, 16,563 nodes, and 42,240 links. All the interstate 

freeways, highways, most of the major and minor arterials, and some of the connectors 

and local roadways are included in this network. The DTA model is also coded in 

DTALite due to its built-in parallel computing capability dramatically speeds up the 

traffic assignment and OD estimation process when using multi-core CPU hardware. 

At the current stage, the University of Maryland (UMD) research team has been 

working on the calibration for the morning peak, mid-day, and afternoon peak period 

(6:00 AM to 7:00 PM).  
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Figure 3- 7 Washington D.C. system model transportation network 

 

The traffic counts calibration of this large-scale DTA model is an offline 

process with hourly volume data of 182 loop detectors located on most of the freeway 

corridors of the network (green points in Figure 3-7, 88 on freeways, 94 on other 

roadways). The data is obtained from the Maryland SHA internet traffic monitoring 

system (I-TMS). I-TMS provides volume data and turning movement data that covers 

freeway and major/minor arterials within the state of Maryland. The counts data is 

historical data detected during the continuous 48 hours of Tuesday and Wednesday. For 

the 182 detectors, I select the volume data detected near April 2015 for the base DTA 

model. The seed demand comes from MSTM planning model. The total demand is 

around 14,138,294 trips, including a warming up period from 5:00 to 6:00 AM. 

      Legend

Count Sensors

Speed Sensors

Freeways

Other Links
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DTALite’s built-in procedure ODME is applied for the OD calibration. The ODME 

procedure performs a dynamic assignment to pursue the UE condition, then adjusts the 

OD table based on route choices under UE. For such a large network, the ODME 

requires 26 hours for 100 iterations (20 iterations for UE, 80 iterations for OD 

adjustment) under a 2-core, 24-CPU, 84-GB memory server. It takes numerous rounds 

of demand calibrations to match hourly counts. More details about ODME will be 

discussed in Chapter 4. 

After adjusting demand parameters in traffic counts calibration, the research 

team applies historical speed data and adjusts supply side parameters for supply 

parameters calibration and validation. The regional integrated transportation 

information system (RITIS) commercial traffic dataset from analytics company INRIX, 

which includes link-based speed and travel time data, is collected and used for supply 

parameters validation. The links selected for supply parameters calibration and 

validation is marked with red points in Figure 3-7. After collecting the hourly average 

speed of these links for the afternoon peak period in April 2016, the research team 

compares real-world data with the DTA output and adjusts link capacity and link jam 

density to improve the accuracy. 
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(a) AM peak freeway counts plot (22.4% to 9.2%) 

 

(b) AM peak other roadways counts plot (24.4% to 12.1%) 

 

(c) Off peak freeway counts plot (24.8% to 9.9%) 
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(d) Off peak other roadways counts plot (26.9% to 13.5%) 

 

(e) PM peak freeway counts plot (18.8% to 9.4%) 

 
(f) PM peak other roadways counts plot (28.4% to 14.1%) 

Figure 3- 8 Traffic counts calibration results of DTA simulation model 

 

WMSE indicates that the normalized relative errors between simulated and 

observed traffic counts decrease significantly after the calibration, as shown in Figure 

3-8. Additionally, the model confirms its validity by adjusting supply parameters based 
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on speed comparison. Figure 3-9 shows that the WMSE between the simulation speed 

and historical average speed decrease from 19.7% to 11.4%.  

 

 
Figure 3- 9 Traffic speed calibration results of DTA simulation model 

 

I have already finished on collecting historical traffic data for the test of a 

gradient-based online calibration approach. Details on the methodology for online 

calibration and the case study using this large-scale network will be introduced in 

Chapter 4 and Chapter 5, respectively. 

Section 3.7. Summary 

This chapter integrates a mesoscopic DTA with the agent-based positive 

travel behavior model as a system transportation network model (AgBM-DTA). In the 

proposed framework, travelers no longer have perfect network knowledge to maximize 

their travel utility. Instead, they are learning and searching for better choices to decrease 

their costs due to delay by scheduling early and scheduling late. The integration with 

the positive model enhances the behavior realism of DTA, resulting in the capability to 
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capture dynamic travel behavior pattern changes. This integration can be a valuable 

approach for planning agencies to conduct studies on land developments, traffic-related 

policies, and even a combination of the two. SBO is used to calibrate the AgBM-DTA. 

A large-scale network model is developed and calibrated via historical data. The 

application of this model for online calibration and decision support will be illustrated 

in Chapter 5. 
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Chapter 4: System Model Online Calibration 

Section 4.1. DTA online calibration versus offline calibration 

In Chapter 2, the focuses of offline DTA calibrations and online calibrations 

have already been mentioned. On one hand, offline calibrations usually need a rich 

source of historical data to make sure the model can represent typical real-world 

scenarios (e.g. general weekday) as much as possible. The estimations of demand and 

supply parameters, which usually utilize optimization algorithms or heuristic 

algorithms, may take a long time to converge. On the other hand, online calibrations 

want to capture the dynamic change of traffic conditions. The pursuit of “optimal” 

parameters may not be applicable due to computational efficiency, especially for large-

scale networks. Therefore, online calibrations are more like “parameter adjustment” 

processes rather than “parameter optimization” processes. 

Many of the online DTA calibration approaches discussed in Chapter 2 

consist of two processes: 1) offline calibration of one or different DTA scenarios as 

typical models; 2) using adaptive algorithms to adjust parameters via real-time data. 

For large-scale real-time applications, the computational speed is a critical issue for 

online calibrations. Concerning this, I propose a gradient-based online calibration 

procedure that quickly estimates the gradients for demand and supply parameter 

towards the gap between real-world observations and simulated measurements. 



- 51 - 
 

Section 4.2. A gradient-based fast online calibration approach 

This section provides a brief introduction of the proposed online calibration 

approach. Like other approaches, the general idea of the proposed gradient-based online 

calibration approach is to utilize a number of offline models, which can represent 

different scenarios, as the basis to save computational time. These offline models are 

treated as base models, the route choice of the base models will be used to estimate the 

gradients of demand and supply parameters towards the calibration objective (the gap 

between the simulated and observed traffic measures). Based on the deviation between 

the offline simulation performance and the real-time traffic data, one will estimate the 

gradients and adjust demand and supply parameters online. 

 

Figure 4- 1 Gradient-based online calibration approach 

 

The flowchart of the proposed online calibration approach is shown in Figure 
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4-1. Before conducting the online approach, a rich source of historical traffic data is 

required for offline calibrations to seek typical model parameters for different times of 

the day. These offline model parameters (e.g. OD matrices and supply side parameters) 

are regarded as the basis for online adjustments. DTALite’s demand calibration module 

ODME is utilized for this process. More detailed about the offline calibration will be 

covered in Section 4.3. In order to achieve a fast and reasonable online parameter 

adjustment, I develop a network performance checking method that uses some state 

vectors to describe the real-time condition of the transportation system compared with 

the historical average condition. 

In demand parameter adjustment, I first check the difference between real-

time traffic counts and historical average counts, which will be presented by the 

deviation of some state vectors. The DTA demand parameters will be adjusted based on 

both the deviation of these state vectors and some pre-defined adjustment rules. I 

propose a two-level travel demand performance checking method. The performance of 

transportation system model is described by two indicators: pattern indicator and sensor 

indicator (or sensor vector). Pattern indicator illustrates the overall difference between 

the historical counts and the real-time observed counts for the entire network; while, 

sensor indicator explains the consistency between historical average and real-time 

counts data for individuals or groups of counts sensors in the transportation modeling 

system. The correlations of the counts sensors are considered to describe the traffic 

conditions. The sensor indicator is a vector with dimensions fewer than the original 

number of counts sensors, so that some sensors are grouped together as one dimension 
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in the sensors indicator vector. Details on how to group sensors to decrease 

measurement dimension are illustrated in Section 4.4. Once sensors’ counts are mapped 

to a sensor indicator vector, one can compare the difference (deviation) between the 

real-time sensor indicator vector and the historical average sensor indicator vector. The 

historical average vector for the modeling time period is associated with an offline 

model with calibrated OD matrices, supply parameters and route choices. Thus, based 

on the deviation, one knows which dimensions in the sensor indicator (groups of 

sensors) are different from the historical average values. Their associated OD pairs can 

be identified from the route assignment of the offline model. Therefore, OD volume 

adjustments can be made. More details on this online OD matrices adjustment method 

will also be discussed in Section 4.4. 

Supply parameters are adjusted right after demand adjustment. The gradients 

of supply parameters towards the gap between simulated and observed speeds will be 

estimated based on the queueing diagram estimated from the demand calibrated model. 

The basic idea is to adjust free flow speeds if the link is uncongested, while adjusting 

the capacity if the link is congested. I should admit that this is a strong but reasonable 

assumption, because capacity will not affect simulated speeds once there is no queue 

on the link; and free flow speed will not make a difference once the link is congested. 

More details on this online supply parameter adjustment method will be illustrated in 

Section 4.5. DTA will be conducted again for speeds validation and near-future traffic 

condition predictions. In the future, a real-time incident information module will be 

used to detect and predict incidents that may cause huge capacity reduction in the 
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network. The incident information module will provide the transportation model with 

real-time incidents in terms of locations, begin time, and number of lanes blocked. 

Statistical or machine learning models will be used to predict the duration and impact 

of incidents to adjust link capacity and speed limit. This real-time incident data and 

duration prediction, which has not been completed at the current stage, will be fulfilled 

in future research. With the online calibrated model, one is able to conduct near-future 

traffic predictions for real-time traffic management or other ITS. 

With the idea above, I decide to use one hour as the model time interval. For 

each hour of the day, an offline DTA model is calibrated as the basis. Real-time traffic 

counts data is collected and gathered hourly for consistence checking, then used for 

demand adjustment; speeds data is also gathered hourly for supply parameters 

adjustment. The proposed online parameter adjustment method is then applied to 

estimate real-time DTA parameters. The last hour’s calibrated model can be used for 

network warm-up, and historical offline parameters for the next hour is used to predict 

near-future traffic. One can update the offline calibration dataset over time to 

incorporate the changes of travelers’ driving behavior, the transportation network, and 

other variables in the long run. 

Section 4.3. Offline calibration 

The DTA package DTALite used in this dissertation has a built-in OD 

matrices estimation module called “ODME”. ODME is a fast path-flow based 

optimization model which utilizes sensor counts, seed OD matrices, and DUE 
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assignment results to estimate a set of path flow volumes. Under the ODME module, 

DTALite will first run U DTA iterations (e.g. 20) to seek a path assignment under DUE, 

and then it will conduct anther V iterations (e.g. 40) to adjust OD tables based on the 

DUE path flows. 

Similar with other offline OD calibration methods, ODME attempts to 

minimize the combined term of simulated errors and the difference between seed OD 

and target OD: 

   
2 2

*

, , , ,min : Seed

k h k h i h i h

k h i h

OD OD x x             (4-1) 

where   is a predetermined coefficient, 
*

,i hx  is the simulated link flow, ,i hx  is 

observed flow. An approximate gradient method, which utilizes a queue model to 

calculate link flow–density change due to incoming path flow change, is used to solve 

this optimization problem. The detailed mathematical formulation and solution 

algorithm can be referred to a recent paper by Lu et al. (2013). 

After OD matrices calibration, historical average speeds data is used to 

calibrate the supply parameters (e.g. capacity and free flow speed). The methods for 

supply parameter adjustment is the same with the proposed online algorithm, which 

will be introduced in Section 4.5. 

Section 4.4. Counts consistency checking and online demand adjustments 

The counts consistency checking includes two parts: 1) pattern level checking; 

and, 2) sensor level checking. Here consistency refers to the differences between real-

time traffic counts data and historical average counts data. The differences and offline 
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calibrated models will be used for online demand (OD matrices) adjustments. This 

section talks mainly about the consistency checking and online OD adjustment 

procedure. 

4.4.1. Pattern level checking 

Pattern level checking aims at detecting whether the entire system demand is 

higher or lower than the historical average demand. This compares real-time data with 

historical average data. Suppose  1, 2, ,= , ,...,h h h p hx x x x  to be the vector of all the 

sensors’ hourly counts at hour h,  1, 2, ,= , ,...,H H H H

h h h p hx x x x  is the historical average count 

vector. The pattern level checking attempts to obtain the ratio between the summations 

of the two vectors’ elements. 
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                 (4-2) 

The demand factor hdem  will be used to online adjust the overall demand for hour h. 

4.4.2. Principal component-based sensor level checking 

A medium or large-scale DTA network usually needs numerous sensors for 

calibration. Compared with historical average counts, real-time sensors will tell traffic 

managers living traffic information. While, it is obvious to notice that the sensors’ 

volumes are not independent from each other. That is, in some cases, two or more 

sensors are located along the same corridor with upstream and downstream 

relationships, resulting in positive correlations; in some cases, the sensors are on 
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parallel corridors that may be negatively correlated due to route choice. In order to use 

some measure to describe local traffic conditions, as well as incorporate the correlations 

among the sensors, the author uses Principal component analysis (PCA) to linearly map 

the sensor counts onto a lower dimension vector. 

PCA is a statistical procedure that uses a linear orthogonal transformation to 

convert a dataset of observations of possibly correlated variables into a set of values of 

linearly uncorrelated variables called principal components (PC). The number of PCs 

is less than or equal to the smaller of the number of original variables or the number of 

observations. This transformation is defined in such a way that the first PC has the 

largest possible variance (i.e. it accounts for as much of the variability in the data as 

possible), then each succeeding component in turn has the highest variance possible 

under the constraint that it is orthogonal to the preceding components. The resulting 

vectors formulate an orthogonal basis set. Since PCA is sensitive to the relative scaling 

of the original dataset, one usually scales the data before conducting PCA. Suppose X  

is a n by p matrix, in which n denotes the number of data records and p denotes the 

original dimension of the data, P  is a p by p transfer matrix, and Y  is the result 

matrix, such that 

=Y X P                    (4-3) 

PCA aims at seeking a P such that the entries of Y are independent with 

each other. That is, the covariance of Y , which is 
1

1

T

YS Y Y
n




, is a diagonal 

matrix. Substituting equation (4-3) into YS , one has: 

     
1 1

=
1 1

T T T

YS XP XP P X X P
n n


 

           (4-4) 
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Since TX X  is a symmetric matrix, we know from linear algebra that it can be 

decomposed as: 

=T TX X EDE                   (4-5) 

where D  is a diagonal matrix and E  is a matrix of eigenvectors of TX X  arranged 

as columns. Therefore, substitute equation (4-5) into equation (4-4), one has: 

 
1

1

T T

YS P EDE P
n




                (4-6) 

Since E is orthogonal matrix, it is noticeable that =TEE I . Therefore, if one takes P to 

be E , then 

 
1 1

=
1 1

T T

YS E EDE E D
n n


 

              (4-7) 

is a diagonal matrix. Therefore, PCA can be achieved by making the transfer matrix to 

be the eigenvectors matrix of TX X . 

After PCA, the n by p sensor counts matrix has been linearly transferred to 

another n by p matrix ( Y ). This time, since the p dimensions of vector Y are 

independent with each other, one can rank their variances and pick the dimensions 

whose variances can represent the majority of the total variance to decrease dimensions. 

That is, one can do column exchange of P  such that the diagonal values of D , 

which is denoted as di (i from 1 to p) is decreasing. In this dissertation, I select first q 

entries of Y such that 1 2, ,..., qy y y  can represent at least 95% of the total variance of 

the data. I will utilize the new vector 1 2, ,..., qy y y  as the sensor level vector to describe 

the network performance. 
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4.4.3. Gradient-based online demand adjustment approach 

Based on the consistency check procedure, I proposes a fast OD matrices 

adjustment method. I would like to emphasize on “fast” because most of the work is 

supposed to be finished during the offline typical model calibration. Unlike space-state 

models (Antoniou et al. 2007), or transfer equation models (Tavana and Mahmassani, 

2000), the proposed method does not need to iteratively estimate traffic states; Instead, 

I attempt to straightforwardly make online adjustments to save computational time.  

The flowchart of the proposed online DTA demand parameter adjustments 

approach is shown in Figure 4-2. This OD matrices adjustment procedure request two 

assumptions: 

1) the summation of sensor counts are positive related to the overall demand. 

2) the route choice under offline model is similar to real-time scenarios during the same 

time period, unless there are non-recurrent congestions. 

One critical issue in the two assumptions is that once the travel demand is 

much over normal level, the increasing of demand may have negative effect on sensor 

counts due to congestion. In order to fill up this weakness, I take into account real-time 

speed information into the supply parameter calibration and validation. 



- 60 - 
 

 

Figure 4- 2 Flowchart of online DTA OD matrices adjustments 

 

From the consistency checking process discussed in previous sections, one is 

able to obtain two state indicators hdem  and hy . hdem  reflects the overall real-time 

demand compared with historical level; while hy  provides local network condition. 

Let ,

H

k hOD denote the historical demand for OD pair k during hour h,   be a pre-

defined overall adjustment coefficient. The overall demand is adjusted via: 

 1

, ,= 1+ 1H

k h k h hOD OD dem                  (4-8) 

where 
1

,k hOD  denoted the temporary demand before local adjustments. 

Suppose we only keep the first q dimensions of hy  in the PCA process such 

that these dimensions make up 95% of the total variance. Thus the transfer matrix is a 

p by q matrix and the hy  can be expressed as: 
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=h hy x P                    (4-9) 

Let 
H

hy  denote the historical average sensor vector, the difference can be written as: 

= H

h h hy y y                     (4-10) 

Before online local adjustments, I need some preparations offline. Let iP  

denote the ith row of matrix P , ijP  denote the jth element of that row. Then, it is 

reasonable to suppose ijP  can represent the contribution of sensor i on the jth PC in 

vector hy . For each iP  I conduct a rank based on the absolute value of ijP  (
ijP ); 

if for some 
*j , *ij

P  is the largest, I assume sensor i has the most significant impact 

on PC 
*j . Based on the historical data, I first conduct PCA; then for the p by q transfer 

matrix, I attempt to find the significant PC for every sensor; if sensor i has the most 

significant contribution to PC j, then I put sensor i into set jS , which contains all the 

significant sensors to PC j. This process is illustrated in Figure 4-3. 

 

Figure 4- 3 Find significant PC for every sensor 

 

The purpose of defining jS  is to know which sensors will be involved if 

dimension j in hy  is significant. While, one still needs to know which OD pairs 

should be adjusted based on hy  and jS . After I obtain jS  for all the q dimensions 
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(PCs), another offline preparation is to get the route choice and path assignment based 

on historical calibrated models. Let ,

H

i hR  denote a set of OD pairs, such that all the OD 

pairs that passed sensor i during hour h are contained in the set. ,

H

i hR  can be easily 

obtained by summarizing the trip trajectories from the output of the offline calibrated 

models. Let , ,

H

i k hC  be the counts that OD pair k is contributing to sensor i during hour 

h from the offline model, and   is a predefined coefficient. 

After getting P , ,

H

i hR , , ,

H

i k hC  and 
H

hy  during the offline process, the 

online local OD adjustments are preformed based on the following algorithm (Figure 

4.4) and equations: 

 

Figure 4- 4 Local OD matrices adjustment algorithm 

,=
j

j i j

i S

TP P


                  

(4-11) 

,

, , ,=
H
i h

H H

i h i k h

k R

TC C


                 (4-12) 

, , ,2 1

, , ,

,

= +

H

i j i k h

k h k h h j H

j i t

P C
OD OD y

TP TC
             (4-13) 



- 63 - 
 

Equation (4-11) to (4-13) means the local OD flow will be adjusted considering the 

contribution of the OD pairs to the sensor counts, as well as the contribution of the 

sensors to the PC dimension. After overall adjustments and local adjustments, the new 

demand will be loaded into the system model for traffic condition validation and 

prediction. 

Section 4.5. Gradient-based online supply parameter adjustment approach 

Currently, a lot of supply parameter calibration work has been done based on 

optimization approaches that attempts to search for an optimal combination of 

parameters to minimize the gap between real-world observations and simulation 

outputs. Although some researchers utilize state-space approaches to save 

computational time to make online calibration applicable, such filter-based methods are 

not perfect for mesoscopic model calibration (Ashok and Ben-Akiva 1993; Ashok 1996; 

Ashok and Ben-Akiva 2000; Antoniou et al. 2007). This is because any state-space 

models, transfer function models, or related filtering methods are trying to estimate the 

relation between supply parameters and simulation outputs. While, in mesoscopic DTA 

models, there is already predefined relation between the supply parameters and the link 

performance due to the macroscopic traffic model used in the DTA simulator. For 

instance, some simulators use BPR functions, some simulators use point queue models, 

and some simulators use more complex traffic models (Zhou and Taylor 2014). As a 

result, the estimated relation via state-space approaches can at most be the same 

accurate compared with the predefined models to describe the relation between supply 
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parameters and simulation outputs. With such concerns, the proposed online supply 

parameter adjustment approach will not “estimate” the relation between model inputs 

and outputs; instead, I propose an idea of estimating the gradient of supply parameter 

adjustment directly from the queueing and discharging process.  

I assume the free flow travel speed and capacity will not be constants but may 

change with different factors, e.g. weather, time of day, incidents, etc. Link travel speed 

will be affected by demand, free flow travel speed and capacity at the same time. Once 

the demand is properly adjusted, the free-flow travel speed and capacity will be adjusted 

during this online supply calibration process to ensure the validity of the system model 

in terms of speed performance. I will estimate the simulated speed via the departure-

arrival diagram obtained from the simulation model; and make adjustments based on 

the deviation between observed real-time link speeds and simulated speeds. 

4.5.1. Queueing diagram under uncongested and congested scenarios 

Once the demand adjustment has been done, the demand pattern for each link 

is determined because in DTA models demand calibration usually refer to both time 

dependent OD matrices and their corresponding time dependent route choices. Thus, 

for one link with speed sensor, the departure-arrival diagram can be obtained from the 

model with the calibrated demand. 

Under uncongested case, i.e. there is no queue at all, the queueing diagram is 

like Figure 4-5. In this figure, the horizontal axis denotes time, the vertical axis denotes 

cumulative link counts, the solid blue curves denote cumulative arrival and departure 
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vehicles, the solid red line denotes the simulated travel time, which is also free-flow 

travel time (uncongested case). If the simulation is under estimating travel time (the 

real-world travel time is denoted by the dash red line), then one can adjust the free flow 

travel speed and obtain a new departure curve (dash gray line). In other words, I assume 

under uncongested condition, link speed (or travel time) is only affected by free-flow 

travel speed. Another way to calculate the average travel time is to use the total vehicle 

delay (the pink area, denoted as VT ) divide the total number of arrivals between time 

1h  and 2h  (denoted as 12A ): 

*

12

VT
mt

A
                  (4-14) 

* 12

*

l Al
s

mt VT
                  (4-15) 

where *mt  denotes the simulated link travel time (average travel time), *s  denotes 

the simulated link speed, l  denotes the link length. 

 

Figure 4- 5 Queueing diagram under uncongested condition 

 

If the demand is over capacity, I assume the capacity needs to be adjusted for 
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online calibration. For instance, if the link travel speed is over estimated via the 

simulation, one needs to decrease the capacity. After decreasing link capacity, there will 

be a difference in terms of total vehicle travel time. This is shown in Figure 4-6, where 

the dash gray line denotes the departure curve after capacity change, and VT  

denotes the change in terms of total vehicle delay. The deviation between detected travel 

speed and simulated speed provide us the gradient to decrease link capacity. The 

adjusted capacity can be determined via equation (4-14) and equation (4-15).  

 

 

Figure 4- 6 Queueing diagram under congested condition 

 

Given the general ideas above, detailed algorithm of the proposed online 

supply parameter adjustment approach will be introduced in next subsection. 

4.5.2. Gradient-based online supply parameter adjustment approach 

From previous subsections, I have discussed the way to estimate simulated 
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link speed (or travel time) based on queueing diagram for both uncongested and 

congested traffic condition. The proposed online supply parameter adjustment 

algorithm is developed on the behavior of queuing and discharging process. Before 

applying this algorithm, one should apply the demand adjustment algorithm to ensure 

the validity of the demand for the model. Then, the cumulative arrivals and departures 

based on the calibrated demand can be used for supply parameter adjustments. 

 

 

Figure 4- 7 Online supply adjustments under congested condition 

 

In Figure 4-7, suppose 0h  denotes the beginning of the link discharging 

process, 01A / 02A  denotes the total arrivals between the beginning of arrivals at 1h /

2h , 1h / 2h  measures the difference of time after the capacity adjustments, HC /

1C  denotes the historical/adjusted capacity, *s / s  denotes the simulated/real-world 

link travel speed, 
Hffs /

1ffs  denotes the historical/adjusted free flow travel speed. 

Notice that in this dissertation, I assume the historical parameters to be the same as 
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offline models’ parameters. *s , 01A , 02A , 12A , can be obtained from simulation 

outputs. Firstly, one needs to check whether the link is congested or not. If *s  is closed 

to the predefined 
Hffs  in the DTA simulator (

* 0.95 Hs ffs ), one can say there is no 

queue and the link is uncongested; otherwise, the link is congested. The online supply 

parameter algorithm is as follows: 

1) If the link is uncongested: 

1ffs s                      (4-16) 

2) If the link is congested, assume 
1 HC C , where   is the adjustment ratio. By the 

definition of capacity, one has: 

01 01
01 H H

A A
h

C C
                 (4-17a) 

02 02
02 H H

A A
h

C C
                 (4-17b) 

   01 02 12 12 01 02

1 1 1
+ 1

2 2 H
VT h h A A A A

C 

 
       

 
       (4-18) 

Since one also knows *s  and s , another expression of VT  can be: 

12 12*
=

l l
VT A A

s s
                  (4-19) 

Substitute equation (4-19) into equation (4-18), one has: 

*

01 02

1 1
2

1
1=

HC l
s s

A A

 
 

 


              (4-20) 

One can notice that if the simulation under estimates link speed, then   is 

greater than 1 and the adjusted capacity is greater than original capacity from the offline 

model; on the contrary, if the simulation over estimates link speed,   is smaller than 

1. Compared with state-space approaches, this algorithm tries to estimate the gradient 
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of supply parameter via an analytical way. The linear calculation can be fast and easy 

to implement for online DTA applications, even if the network is large.  

One needs to know that this online supply parameter adjustment happens 

right after demand parameter adjustment, such that 01A  and 02A  are the estimated 

values after OD matrices adjustments. 

Section 4.6. Integration with DTALite system model 

The final step is to make this algorithm work smoothly with DTA simulators. 

In this dissertation, I select DTALite as the simulation engine because of its parallel 

computation feature for online applications. DTALite’s agent-oriented feature makes it 

easier to achieve a fast online DTA modeling tool. Agent-oriented means it can read a 

list of travelers as its demand input. This list contains the origin, destination, departure 

time, and route choice of each traveler in the network. After preparing this list, DTALite 

can run one simulation-based DTA to model the traffic condition, with travelers 

departing and choosing routes exactly the same as the list. I utilize this agent list design 

of DTALite for the online calibration integration. 

The integration flowchart is shown in Figure 4-8. From the offline calibrated 

models, one can obtain detailed travel information and the path assignment results for 

each traveler (contained in the output agent list). Based on the demand adjustment 

algorithm, I will directly modify the agent list for overall and local demand adjustment. 

That is, the agents associated with increasing OD pairs will be copied in the new agent 

list with the same travel pattern (i.e. departure time, trajectory); and the agents 
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associated with decreasing OD pairs will be deleted in the new agent list. With the new 

agent list, one can summary the agents’ trajectory such that the queueing diagram for 

the links with real-time speed data can be estimated. Supply parameter adjustment then 

takes place with respect to the departure-arrival diagram. The new agent list and supply 

parameters are regarded as real-time inputs for the system transportation network model. 

Another path fixed assignment will be run for both traffic counts and speeds validation, 

as well as near future prediction. I need to admit that the path fixed assignment is too 

strong to capture real-time travel behavior shifts. While, due to the limit of 

computational power on large-scale networks, this is one feasible way to achieve real-

time applications. This path fixed assignment can be replaced by pursuing DUE when 

more powerful DTA models or computers are ready in the market (Qu and Zhou 2017). 
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Figure 4- 8 Integrating online calibration method with DTALite 

Section 4.7. Summary 

This chapter attempts to propose a fast gradient-based online calibration 

approach. Based on historical data, hourly (or other time interval) models are calibrated 

offline. These offline models are treated as base models. Once real-time traffic 

measures are available, the deviation between the real-time data and historical data will 

be used to estimate the gradient of model parameters towards the calibration objective 

function. Both demand parameters (OD matrices) and supply parameters can be 

calibrated in the proposed approach. The gradients of demand parameters are estimated 

based on historical traffic assignment; and supply side gradients are calculated through 

queueing diagram.  

The integration between the proposed approach and the system model (with 



- 72 - 
 

DTALite as engine) is discussed, too. One limitation is that with the current 

computational power, I need to run path fixed DTA to achieve real-time applications. 

This issue is expect to solve using more powerful computational technologies (Qu and 

Zhou 2017). Next chapter will focus on real-world applications via this online 

calibration approach. 
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Chapter 5: Applications and Real-Time Decision Supporting via System Model 

Section 5.1. Introduction 

This chapter talks mainly about the application of the proposed online 

calibration approach on a medium-scale real-world network and a large-scale real-

world network. Supported by ARPA-E from the Department of Energy, a large-scale 

mesoscopic agent-based DTALite model has been developed for the majority of 

downtown areas of Washington. D.C. The geographical database of the network comes 

from HERE Chicago, which is a geodatabase and transportation company that provides 

true shape geographical data and transportation related applications. The GIS 

information has been converted to DTALite transportation network. The OD 

information comes from MWCOG directly, and has been transformed from static OD 

to time-dependent OD (the same method mentioned in Chapter 3) as seed ODs for 

calibration. The reason of using the true shape transportation network rather than 

MWCOG’s planning network is that it can be more accurate for implementing real-

time traffic management strategies, online guidance, the display of near future traffic 

conditions, and other applications. I use a subarea of the true shape DTA model for the 

medium-scale case study; while, for the large-scale case study, I still use the model 

developed in Section 3.6. This is because the computational speed is not high enough 

to model large-scale true shape networks which have a lot more links and nodes. 
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Section 5.2. Medium-scale general day case study 

This section discusses the application of the proposed online calibration 

approach on a medium-scale real-world network. Since true shape network has much 

more nodes and links than planning networks (e.g. MWCOG network), its 

computational speed for real-time applications remains a critical issue. In order to test 

the proposed online calibration approach, I test a medium-scale true shape network in 

terms of the computational speed and accuracy. The network is shown in Figure 5-1, 

which covers the transferring area between I-95 and I-495 in north College Park, 

Maryland. It contains 7 TAZs, 278 links, and 242 nodes, 25 counts sensors, and 18 

speeds sensors, which is directly obtained from the HERE Chicago network with 

MWCOG’s demand via the DTALite’s subarea cut procedure. All freeways, most 

major/minor arterials, and some local connectors/streets with true shapes are included 

in this network.  

 

 

Figure 5- 1 Medium-scale true shape network 
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The first procedure is to obtain historical data for offline calibrations. The 

data used is from Center For Advanced Transportation Technology (CATT) lab’s real-

time traffic data application programming interface (API), which can provide sensor’s 

real-time information (e.g. count, speed, and occupancy) on a 5-minute’s basis. CATT 

lab has purchased RITIS data source that covers many sensor detectors on freeways 

operating by the state government. There are 41 sensors (green points in Figure 4-5) in 

the network, and the author collect two weeks’ weekday data (from May 15th to May 

19th, and from Jun 12nd to Jun 16th) as the historical data. The API’s data, which is 

updated and requested for every 5 minutes, can also be used as real-time online data. 

These 5-minute interval counts are aggregated to one-hour interval to obtain hourly 

based offline models. It should be noted that in ideal cases, once there is enough time 

and data, one had better have offline models for each hour and for each day of week 

(Monday, Tuesday, etc.). In a demonstration purpose, I only consider all the five 

weekdays together as a “general weekday” model. I consider 7 hours’ models, i.e. 4:00 

to 5:00 AM, 5:00 to 6:00 AM, 6:00 to 7:00 AM, 7:00 to 8:00 AM, 8:00 to 9:00 AM, 

9:00 to 10:00 AM, and 10:00 to 11:00 AM. Thus, free-flow condition, peak condition, 

and normal condition can all be tested. The average pattern of the summation of the 41 

sensors’ hourly counts are displayed in Figure 5-2, from which one can see the demand 

from 6:00 to 10:00 AM stays high due to commuting trips. 
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Figure 5- 2 Historical total counts pattern 

 

Each hour’s average historical counts and speeds are used to calibrate an 

offline typical model for that specific hour. DTALite’s ODME module has been used 

for this offline demand calibration process, and the supply parameters are calibrated 

manually by similar approach compared with the proposed online adjustment algorithm 

(Section 4.5). Even though the network scale is not very big, it still takes around two 

weeks to finish the calibration of the 7 models. The observed counts and simulated 

counts for the calibrated off-line models for all the 7 hours are shown in Figure 4-7. 

WMSE, which is defined in Chapter 3, is used to indicate the performance of the offline 

demand calibration (Table 4-1). Similarly, the diagram and WMSE for observed speeds 

and simulated speeds are shown in Figure 5-3 and Table 5-1. 

8864.9 

15854.8 

58628.0 

62958.5 

59292.0 

57426.1 

55607.1 

0

10000

20000

30000

40000

50000

60000

70000

4 5 6 7 8 9 10

C
o

u
n

ts

Hour

Historical Counts



- 77 - 
 

 

(a) Counts validation 

 

(b) Speeds validation 

Figure 5- 3 Offline calibration performance for the medium-scale network 
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Table 5- 1 WMSE for offline calibration 

Model 
Counts 

WMSE 

Speeds 

WMSE 

4:00 to 5:00 AM 8.53 6.26 

5:00 to 6:00 AM 9.53 8.73 

6:00 to 7:00 AM 11.94 14.85 

7:00 to 8:00 AM 11.02 17.54 

8:00 to 9:00 AM 11.65 14.08 

9:00 to 10:00 AM 9.33 13.34 

10:00 to 11:00 AM 10.03 13.32 

 

The 7 hours by 10 days’ data (n equals to 70) has been used for PCA. The 

counts are scaled by the mean and standard deviation before PCA. After ranking the 

PCs by their variances, the author found the cumulative variance for first 14 PCs have 

exceeded 95% of the total variance (Figure 5-4). That is to say, based on the previous 

assumptions, I decide to use 14 PCs (y with 14 dimensions) to represent the network 

condition. 
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Figure 5- 4 Cumulative variance of PCA 

 

The transfer matrix P is shown in Table 5-2. This matrix is used to obtain 
H

hy  

based on the historical average sensor counts of different hours. The dark cells in Table 

5-2 marks the largest absolute value for Pi, which means sensor i belongs to Sj. 
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Table 5- 2 Transfer matrix of PCA 

ID 1  2  3  4  5  6  7  8  9  10  11  12  13  14  

7053900 -0.05  0.14  0.34  -0.42  0.21  -0.10  0.14  -0.05  0.14  0.23  0.02  0.08  -0.29  0.56  

7053901 0.27  0.00  0.03  -0.15  0.05  0.26  0.04  -0.38  -0.25  0.14  0.48  -0.35  0.26  0.10  

7053902 0.06  0.12  -0.10  -0.22  -0.30  -0.63  0.22  0.15  -0.52  -0.10  0.12  0.08  0.05  -0.05  

7053903 0.14  0.08  0.34  -0.29  -0.26  -0.05  0.10  0.33  0.46  -0.16  0.24  -0.15  0.39  -0.12  

7054800 0.23  0.05  0.28  0.19  -0.22  -0.12  0.23  -0.13  0.01  -0.17  -0.47  -0.53  -0.25  0.10  

7055200 0.17  -0.30  0.10  0.03  0.22  -0.05  0.11  0.02  -0.04  0.25  -0.05  0.11  -0.08  -0.28  

7055201 -0.04  -0.35  -0.10  -0.09  0.07  -0.14  0.21  0.00  0.25  -0.01  -0.05  0.08  0.20  0.06  

7056500 -0.14  -0.27  -0.13  -0.04  -0.22  -0.03  -0.42  0.09  -0.14  -0.14  0.11  -0.16  -0.02  0.41  

7058000 0.34  -0.07  -0.15  -0.05  0.07  -0.04  0.11  -0.04  0.00  -0.07  -0.10  -0.05  0.00  -0.18  

7059600 -0.28  -0.07  0.25  0.27  0.17  -0.22  0.01  0.12  -0.13  0.13  0.04  -0.11  0.02  -0.03  

7059900 0.03  -0.36  0.03  0.06  -0.09  -0.03  -0.10  0.14  -0.08  0.21  0.11  -0.25  -0.10  0.16  

7062800 0.25  0.09  -0.23  0.11  0.25  -0.30  -0.25  0.08  0.19  0.05  -0.21  0.05  0.27  0.26  

7064200 -0.16  -0.29  0.00  -0.19  0.01  -0.05  0.21  -0.05  0.03  0.32  -0.09  -0.22  -0.04  -0.19  

7064201 -0.12  -0.19  0.03  -0.23  0.42  0.21  0.07  0.18  -0.36  -0.39  -0.27  -0.21  0.32  0.04  

7064800 0.10  0.09  0.32  -0.44  0.18  -0.05  -0.41  0.00  -0.18  0.03  -0.25  0.13  -0.06  -0.19  

7065201 0.25  0.05  0.25  0.30  0.16  -0.23  -0.13  -0.03  -0.15  0.34  0.09  -0.02  0.29  -0.01  

7066000 -0.04  -0.24  0.21  -0.04  -0.09  -0.25  -0.46  -0.43  0.19  -0.26  0.03  -0.07  -0.03  -0.24  

7066300 -0.33  -0.14  0.01  -0.04  0.11  -0.10  0.10  0.05  0.12  0.02  0.07  -0.05  0.09  -0.12  

7066301 0.27  -0.23  -0.08  0.02  -0.02  -0.05  0.11  -0.08  0.11  -0.01  -0.22  0.13  0.25  0.29  

7066400 0.22  -0.18  -0.07  -0.10  -0.16  0.16  -0.22  0.55  0.02  0.26  -0.06  -0.12  -0.17  -0.08  

7068600 0.23  -0.09  0.18  0.23  0.34  0.00  0.12  0.20  0.02  -0.43  0.35  0.04  -0.31  0.04  

7069500 -0.33  0.06  0.14  0.19  0.12  -0.18  -0.03  0.12  0.07  0.02  0.04  -0.16  0.14  0.10  

7078100 -0.04  -0.08  0.47  0.23  -0.33  0.32  0.04  0.06  -0.20  0.02  -0.18  0.36  0.25  0.09  

7080500 0.18  -0.31  0.14  0.03  0.02  -0.08  0.01  0.05  -0.04  -0.13  0.19  0.28  -0.15  0.04  

7080501 -0.06  -0.34  0.03  -0.10  -0.14  -0.05  0.16  -0.26  -0.03  -0.03  -0.02  0.23  0.00  0.11  

 

With the offline hourly models, PCA and historical average data, I pick three 

days (from July 5th to July 7th) for the case study of the online adjustment approach. 

Four scenarios are compared: 

1) offline: use the offline model directly without online calibration. 

2) demand: based on the real-time counts, historical counts, and offline models, conduct 

the on-line demand adjustment algorithm only for online calibration. 

3) supply: based on the real-time speeds, and offline models, conduct the online supply 

adjustment algorithm only for online calibration. 
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4) both: based on the real-time speeds, counts, historical counts, and offline models, 

conduct the online demand and supply adjustment algorithm for online calibration. 

Table 5-3 shows the average counts WMSE and speeds WMSE for all hours 

of the three days’ test. The best WMSE for each hourly model is marked with bold and 

underline. First, it shows that the counts WMSEs will be larger in the early morning 

hours. This is because in early morning, observed counts are small such that the 

denominators in equation (3-1) will be small as well. Therefore, changes in daily traffic 

pattern will lead to large WMSEs for early mornings. However, speeds WMSEs are 

small since it is almost free flow everywhere. When it comes to peak demand hours, 

counts WMSEs become better because the denominators in equation (3-1) are larger; 

however, speeds WMSEs will be worse due to variations in terms of times and locations 

of bottlenecks. This indicates that even though there is an offline typical model, the 

variation of traffic condition during peak hours still makes it difficult to obtain very 

accurate online models. Second, the “both” scenario is found better than the other 

scenarios in most of the cases, for both counts and speeds validation. The “demand” 

scenario will decrease counts MWSEs compared with the “offline” scenario, but it 

sometimes increases speeds MWSEs during peak demand hours. The “supply” scenario 

dose a good job in speeds validation, but it is no better for counts validation. These 

results indicate both demand and supply parameters need to be adjusted, especially 

during peak demand hours. On average, the proposed online calibration will decrease 

counts/speeds MWSE by 8.5%/12.7%, compared with the offline model. I choose fixed 

  and   (both 0.3) for online demand adjustment in this test. Sensitivity analysis 
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should be conducted in future research to understand whether overall adjustment or 

local adjustment play a more important role. 

 

Table 5- 3 Average WMSE for different online calibration approaches 

 Methods 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10 10 to 11 

Average 

Counts  

WMSE 

offline 0.254 0.210 0.154 0.182 0.140 0.125 0.134 

demand 0.223 0.182 0.144 0.171 0.137 0.113 0.121 

supply 0.253 0.210 0.154 0.183 0.141 0.125 0.134 

both 0.223 0.182 0.144 0.171 0.138 0.112 0.121 

Average 

Speeds 

WMSE 

offline 0.064 0.100 0.165 0.175 0.176 0.178 0.168 

demand 0.064 0.100 0.170 0.181 0.204 0.176 0.173 

supply 0.046 0.065 0.157 0.170 0.164 0.171 0.162 

both 0.046 0.065 0.157 0.163 0.165 0.171 0.161 

 

Table 5-4 summarizes the average running time of the four scenarios. DTA 

running time makes up the majority of the computational time. In the “both” scenario, 

supply parameter adjustment cannot be directly applied after demand adjustment 

because the queueing diagram will change after demand adjustment. Therefore, a 

queueing diagram updating procedure will be conducted to estimate the new queueing 

diagram after demand adjustments. However, in either the “demand” or “supply” 

scenario, it can directly adjust parameters based on the offline model, the gradients, and 

deviations. Even though the “both” scenario takes 45 seconds for online DTA modeling, 

it is still promising for online applications because the time factor (real-world time 

divided by simulation time) is around 240. 
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Table 5- 4 Computational time of different approaches 

 Average Computational Time 

(sec) 
DTA Iterations 

offline 0 0 

demand 39 1 

supply 38 1 

both 45 1 

Section 5.3. Medium-scale non-recurrent day case study 

With the medium-scale model developed in Section 5.2, I also check the 

performance of the proposed online calibration approach for non-recurrent 

transportation scenarios. INRIX, which is one of the largest traffic dataset in the U.S., 

has traffic incident data for most areas in the State of Maryland. By searching for 

incidents that happened within the study area during the morning time, I found there 

was a “vehicle on fire” incident reported on October 18, 2017. The incident happened 

from 9:02 AM to 9:48 AM at the segment marked with a red triangle in Figure 5-1. The 

timeline and number of lane closure are shown in Figure 5-5. During the incident, two 

right lanes of the freeway segment were closed (Figure 5-5). 
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Figure 5- 5 Timeline of the selected incident 

 

INRIX also provides the traffic congestion map for the incident. Figure 5-6 

illustrates that a bottleneck will occur because of the incident from around 9:00 AM, 

and the traffic will return to normal at around 10:00 AM. In order to test the online 

calibration approach for this incident, hourly traffic counts data and speeds data on 

October 18th 2017 have been downloaded from INRIX. The validation counts and 

speeds sensors are the same for the offline models in Section 5.1. 
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Figure 5- 6 Traffic congestion diagram for the incident 

 

Table 5- 5 WMSE for different online calibration approaches for incident scenario 

 Methods 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10 10 to 11 

Counts  

WMSE 

offline 0.385 0.253 0.225 0.188 0.155 0.194 0.257 

demand 0.241 0.242 0.215 0.176 0.153 0.178 0.229 

supply 0.385 0.253 0.226 0.188 0.154 0.178 0.257 

both 0.236 0.234 0.218 0.175 0.153 0.179 0.187 

Speeds 

WMSE 

offline 0.086 0.102 0.193 0.195 0.178 0.256 0.219 

demand 0.086 0.101 0.181 0.192 0.189 0.296 0.265 

supply 0.066 0.062 0.175 0.162 0.164 0.226 0.214 

both 0.065 0.062 0.169 0.182 0.159 0.218 0.196 

 

Table 5-5 shows the results for all the 7 hours for October 18th 2017 in terms 

of WMSE. Still, the four scenarios (i.e. offline model, demand calibration only, supply 

calibration only, and both demand and supply calibration) are compared. As expected, 

the WMSE for the online model after 9:00 AM is high because of the incident. The 

WMSE for counts is high before 7:00 AM because the observed counts are small, which 
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will make the relative error high. If one only applies demand online calibration, the 

WMSE for speeds after 9:00 AM will be even higher than without any online 

calibration (the offline model scenario); and the counts WMSE will increase compared 

with the offline model for 10:00 to 11:00 AM. This may be because that without 

considering incidents, the demand adjustment will overlook the impact of capacity 

decrease due to the incident. Similarly, the performance is poor for scenario “supply”. 

The results of this non-recurrent day case study indicates there is interaction 

between capacity drop and travel demand. Under non-recurrent days, both supply and 

demand parameters should be calibrated to reflect the capacity drop as well as its impact 

on drivers travel decisions. 



- 87 - 
 

Section 5.4. Large-scale network example 

 

Figure 5- 7 Large-scale online system model 

This section will show the on-line simulation model for the large-scale 

network in Section 3.6. The offline calibration has been discussed in Chapter 3, in 

which the counts data is obtained from Maryland SHA I-TMS. Since I-TMS does not 

provide real-time traffic data, I use RITIS data obtained from CATT lab’s real-time 

traffic data API for both counts and speeds calibration. Since the data source has 

changed, a recalibration process is required before testing online calibration. I still 

consider 4:00 to 11:00 AM as the model horizon. 120 sensors from the CATT lab’s API 

are selected (Figure 5-7), and each sensor provides both counts and speeds data. Traffic 
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data from December 20th 2017 to January 25th 2018 has been collected as historical 

data to recalibrate the offline models. The recalibration of the offline models takes 

around two weeks to finish. The WMSE for the offline calibration is shown in Table 5-

6. Compared with the medium-scale network, the WMSE for both counts and speeds 

trend to be higher because it is more difficult to calibrate large-scale networks. I still 

choose  

 

Table 5- 6 WMSE for offline calibration 

Model 
Counts 

WMSE 

Speeds 

WMSE 

4:00 to 5:00 AM 13.24 11.67 

5:00 to 6:00 AM 12.90 11.53 

6:00 to 7:00 AM 13.40 13.85 

7:00 to 8:00 AM 12.62 16.42 

8:00 to 9:00 AM 13.54 17.22 

9:00 to 10:00 AM 13.90 15.86 

10:00 to 11:00 AM 12.01 17.37 

 

With these offline hourly models, PCA and historical average data, the I test 

three days (from January 5th to January 7th) for the case study of the online calibration 

approach. I also consider the four scenarios discussed in Section 5.2: offline, demand, 

supply, and both. Table 5-7 shows the average counts WMSE and speeds WMSE for 

all hours of the three days’ test. The best WMSE for each hourly model is marked with 

bold and underline. Compared with Table 5-3, the improvement in terms of WMSE is 

less significant, especially during non-peak hours (4:00 to 6:00 AM, and 9:00 to 11:00 

AM). This may be because large-scale networks have far more traffic sensors than 

smaller networks, so that the temporal and spatial correlations among the sensors are 
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more complex. As a result, online adjustments can hardly satisfy the matching of every 

traffic sensor. This also reflects the difficulties of calibrating large-scale DTA models, 

because the offline calibration can be a multiple solution problem; even though the 

offline calibrated model matches real-world counts and speeds, it could not have 

“correct” ground truth demand and supply model parameters to capture real-time 

change of traffic conditions. The “both” still provides the lowest WMSEs in most of 

the cases. Similar with the results in Section 5.2, the “demand” scenario will decrease 

counts MWSEs compared with the “offline” scenario, but it sometimes increases speeds 

MWSEs during peak demand hours; while, the “supply” scenario dose a good job in 

speeds validation, but it is no better for counts validation. To summarize, the proposed 

online calibration (the both scenario) will decrease counts/speeds MWSE by 

14.0%/9.8%, compared with the offline model. 

 

Table 5- 7 Average WMSE for different online calibration approaches 

 Methods 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10 10 to 11 

Average 

Counts  

WMSE 

offline 0.191  0.240  0.251  0.264  0.249  0.243  0.162  

demand 0.188  0.203  0.188  0.184  0.196  0.239  0.157  

supply 0.191  0.240  0.250  0.264  0.249  0.243  0.161  

both 0.189  0.202  0.188  0.184  0.196  0.239  0.157  

Average 

Speeds 

WMSE 

offline 0.124  0.119  0.156  0.230  0.274  0.225  0.150  

demand 0.124  0.119  0.158  0.232  0.273  0.225  0.150  

supply 0.123  0.113  0.151  0.218  0.223  0.181  0.135  

both 0.122  0.114  0.150  0.219  0.222  0.182  0.135  

 

 

The average running time of the four scenarios of online calibrating this 

large-scale DTA model is shown in Table 5-8. Compared with the medium-scale 

network case, the additional time required for the “both” scenario is much lower. This 



- 90 - 
 

is because as the network size and demand increase, running DTA is dominating the 

total online simulation time. The time factor for this large-scale online system model is 

around 9.3. 

 

Table 5- 8 Computational time of different approaches 

 Average Computational Time 

(minutes) 
DTA Iterations 

offline 0 0 

demand 18.4 1 

supply 18.1 1 

both 19.3 1 

 

Section 5.5. Real-time decision support with the large-scale network model 

5.5.1. Background 

This section discusses the application of the proposed online transportation 

network model on real-time decision support. ICM and ATM are among the most 

effective approaches to corridor traffic operations and planning. These strategies, 

implemented individually or jointly, could provide additional effective capacity to 

peak-hour users, improve the detection and response to incidents and other adverse 

conditions, produce smoother traffic flows, and achieve more efficient use of 

multimodal corridor travel alternatives, and consequently enhance transportation 

system performance in safety, efficiency, reliability, and sustainability. Successful 

implementations ICM and ATM strategies can be found worldwide and in the U.S. 

Some famous strategies include: 

1) ramp meters. Ramp meters are traffic signals placed at freeway entrance ramps to 
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control the flow rates at which vehicles enter the freeway mainline traffic stream. 

Almost all empirical evaluation studies have shown that ramp metering has been very 

effective in enhancing freeway speed, throughput, and safety. At times, ramp meters 

may cause certain drivers to wait long periods of time before granted freeway mainline 

access. This problem can be addressed in the design of metering algorithms.    

2) managed lane. Managed lane facilities include but are not limited to high occupancy 

vehicle, high occupancy toll, transit only lanes, express lanes, and reversible lanes. 

They are widely seen in a pre-time manner with the exception of dynamically priced 

managed lanes. U.S. metro areas with successful implementation of managed lanes are 

too many to list.  

Other important applications of ICM and ATM include junction control (e.g. 

applications in Washington State), speed harmonization (e.g. variable speed limit 

applications in New Jersey’s NJ Turnpike), and corridor travel demand management 

(e.g. real-time ride sharing, early-warning traveler information system for flexible-

schedule commuters). Developing appropriate modeling tools with the capability of 

analyzing traffic pattern, travel demand, and traveling/driving behavior along major 

corridors is the prerequisite to successfully testing, evaluating, and eventually 

implementing effective traffic operations and planning strategies. One important 

purpose of this dissertation is to apply the system model to model different ICM and 

ATM for large-scale network on the real-time basis. 
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5.5.2. Scenarios design of real-world large-scale application 

Real-time evaluation of ATM and ICM strategies are still missing in current 

modeling systems. Utilizing the proposed online AgBM-DTA model, I test these traffic 

management strategies under real-time scenarios. The integration between AgBM-DTA 

and real-time traffic management decisions can be illustrated in Figure 5-8. The real-

time data source provides online information to calibrate the system model; real time 

data can also be considered by traffic management agencies to design congestion 

mitigation strategies. These strategies will be simulated via the calibrated system model 

based on which the final decision can be made. Finally, the traffic management 

decisions will affect travelers’ behavior and traffic conditions which will be reflected 

in the real-time data.  

 

 

Figure 5- 8 System model integration for real-time decision supports 
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From both historical traffic data and the online large-scale system model 

presented in Section 5.4, we notice that I-495 westbound (WB) has recurrent congestion 

during morning commuting time, especially the freeway segments between I-95 and 

MD 185 (Figure 5-9). In order to provide decision supports to transportation operation 

agencies to mitigate traffic congestions, I have tested four ATM scenarios via the online 

system model: 

1) base scenario. Calibrate the model online for 7:00 to 8:00 AM, and use the calibrated 

model to predict traffic condition for 8:00 to 9:00 AM. 

2) ramp metering scenario. Calibrate the model online for 7:00 to 8:00 AM, implement 

ramp meter on the calibrated model, and predict traffic condition for 8:00 to 9:00 AM.  

3) lane addition scenario. Calibrate the model online for 7:00 to 8:00 AM, consider to 

open hard shoulder of congested freeways to increase capacity. Simulate the traffic 

condition for 8:00 to 9:00 AM.  

4) both scenario. Calibrate the model online for 7:00 to 8:00 AM, jointly consider ramp 

metering and hard shoulder running to predict traffic condition for 8:00 to 9:00 AM. 
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Figure 5- 9 I-495 westbound congestion pattern based on Google Map 

 

The online calibration model for January 6th from 7:00 to 8:00 AM is used 

for this real-time decision support application. I choose this specific modeling period 

because the WMSEs for counts and speeds for 7:00 to 8:00 AM are 0.190 and 0.154, 

respectively, which are lower compared with the other days and modeling periods. 

Based on the historical offline models and the online calibration approach, I first use 

the model to predict traffic conditions for 8:00 to 9:00 AM. Based on the prediction, 

one is able to identify potential major bottlenecks. Figure 5-10 illustrates the predicted 

traffic condition at 8:30 AM on January 6th, 2018 based on the 7:00 to 8:00 AM model. 

It indicates the traffic on I-495 WB will get congested from MD 355 to MD 97. Based 

on this prediction, I decide to test ATM on the congested segments. In “ramp metering” 

scenario, the on-ramps to I-495 WB from US-29 to MD 285 will be metered. I use a 

fixed meter rate for simplification, and the capacity for all the associated ramps are 

decreased by 50% to model ramp metering. In “lane addition” scenario, I assume the 
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hard shoulder (left emergency lane) are open to improve traffic mobility on I-495 

westbound. In order to model this lane addition scenario, I increase the number of lanes 

by 1 (from 4 to 5) for freeway mainline segments between the interchange with US-29 

and the interchange with MD 355. The “both” scenario will be the combination of the 

ramp metering scenario and the hard shoulder scenario. 

 

 

Figure 5- 10 Prediction based on calibrated model 

 

5.5.3. Results of the online ATM application 

The goal of this large-scale online ATM application is to provide 

transportation managers real-time decision supports on what strategies can be used to 

address near future traffic congestions. The benefit of using a DTA model is that it has 

a visualizable traffic network and can summarize both system level and corridor level 

traffic performance. 

Table 5-9 illustrates the overall performance of different scenarios. Measures 
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such as system average travel time, average travel time index (mean travel time over 

free-flow travel time), average speed, and total delay are summarized. The red numbers 

is in bracket in Table 5-9 denote the total travel time saving (negative) or losing 

(positive) due to the implementation of the ATM. An interesting finding is that ramp 

metering will make the overall system more congested. With some 1.5 million demand, 

ramp metering will increase average travel time by 0.05 minutes, leading to additional 

1180 hours of traffic delay. While, open the hard shoulder lane is shown to be an 

efficient way to mitigate congestion, such that the total delay will decrease by 260 hours. 

The combination of ramp metering and lane addition does not make any improvement 

due to the significant negative side effects of ramp metering. 

 

Table 5- 9 Overall performance of different scenarios 

Scenario Avg. Travel 

Time (min) 

Avg. Trip Time 

Index 

Avg. Speed 

(mph) 

Total Delay 

(K hr) 

base 22.37 1.150 37.58 73.66 

ramp metering 22.42 1.153 37.50 74.84 

(+1.18) 

lane addition 22.36 1.150 37.59 73.40 

(-0.26) 

both 22.42 1.152 37.50 74.71 

(+1.05) 

 

In order to understand why ramp metering leads to more congestion, I plot 

both mainline corridor travel time (Figure 5-11) and ramp travel time (Figure 5-12). 

The travel time on freeway mainly has decreased significantly under all the three ATM 

strategies. This is reasonable because ramp metering will restrict on-ramp volume, lane 

addition will increase mainline capacity, and the combination of these two are further 
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improving the mobility of freeway mainline. While, since ramp metering is restricting 

on-ramp volume, it can bring in new bottlenecks at the entrance of freeway mainlines. 

The queue may spillback to major arterials and cause more congestion on local streets.  

 

Figure 5- 11 I-495 WB travel time 

 

In Figure 5-12, I give an example of ramp travel time under the four scenarios. 

I pick the on-ramp from MD 185 southbound (SB) to I-495 WB, and the other four on-

ramps have similar travel time patterns. The travel time trends of “base” scenario and 

“lane addition” scenario are overlapped, so as to “ramp metering” scenario and “both” 

scenario. The fact that “ramp metering” scenario and “both” scenario will cause the 

same delay to on-ramp trips indicates there is a high demand from local streets to WB 

I-495 during morning peak hours. In such cases, ramp metering may not be as good as 

other ATMs because the remission of freeway congestion is based on the loss of 

travelers who would like to enter freeways at congested ramps.  
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Figure 5- 12 On-ramp travel time (MD 185 SB to I-495 WB) 

 

Based on the results of the online ATM evaluation, traffic managers can 

obtain valuable empirical views on what strategies can be applied for congestion 

mitigation. Since the time factor is around 10, real-time evaluation can be achieved by 

letting four computers to run these scenarios. I should admit that one weakness of this 

system model is that it has to conduct path fixed traffic simulation for different ATMs; 

therefore, the impact of ATMs on route choices are ignored. This issue can be solved 

given more advance traffic simulation methods or computational technologies. 

Section 5.6. Summary 

This chapter talks mainly about the application of the proposed online 

calibration approach. The online transportation network model has been tested on a 

medium-scale network with several freeway interchanges, the results indicates a time 

factor of 240 for real-time applications. I also test the performance under a non-
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recurrent congested network. A large-scale network that covers the whole Washington 

D.C. area has also been tested. By calibrating hourly modeling horizon, the time factor 

can reach around 10, which is enough for real-time applications. A case study on using 

the online large-scale model to evaluate different ATM scenario has also been 

conducted, demonstrating the value of this modeling tool for real-time decision 

supports. 
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Chapter 6: Large-Scale Real World Application in Work Zone Scheduling 

The developed system model is ready to be integrated with other models for 

transportation planning and operation applications. With the framework mentioned in 

Chapter 3, it will be interesting to apply the system model for more complex design and 

operation scenarios. This chapter aims at integrating the modeling system developed 

with another transportation planning related issue—work zone scheduling problem. 

Section 6.1. Background of work zone scheduling research in Maryland 

Road transportation has been a national travel mode for the United States: 

passenger transportation is dominated by a network of over 3.9 million miles of 

highways (DOT, 1997); around 60% of US freight is carried by trucks (DOT 2006). 

The growth on economic and people’s living standard dependent highly on the 

performance of existing surface transportation systems. However, since the majority of 

national highway system has been completed for decades, a large fraction of today’s 

road transportation infrastructure has reached the end of the design life. There are 

numerous direct negative effects due to the deterioration of roadways, e.g. damage to 

vehicle wear-and-tears, higher fuel consumption, more travel time, and travel safety. 

Therefore, state and federal transportation agencies have shifted their focus from 

constructing new roadways to maintain the existing highway infrastructure to maximize 

the performance of national highway systems. Highway maintenance and 

reconstruction activities are likely to increase in number, duration, and scope in the near 

future. The budget from Federal Highway Administration (FHWA) for highway 
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construction and maintenance increased from 34 million dollars to 48 million dollars 

from 2005 to 2015 (FHWA 2015). The budget merely included highway systems, and 

there were many local streets under reconstruction, too. 

The maintenance of roadways usually need to close segments of lanes and 

shoulder lanes to form work zones. Drivers’ travel experience can be greatly affected 

by work zones. The reduction of capacity because of lane closure may cause severe 

congestions. Since the lanes remaining open will be narrower due to the barriers, traffic 

safety can also be affected. For a single maintaining roadway, the design of 

characteristics of work zone, such as lane closure configuration, working schedule, and 

traffic control strategies can significantly reduce traffic congestion, improve safety, and 

increase maintenance efficiency. For long-term maintenance projects that will 

reconstruct a number of roadways, the maintenance order can greatly affect the overall 

projects efficiency and traffic impacts. Decision makers need to find an appropriate 

design that balances agency cost and user cost. Therefore, it is worthwhile to develop 

appropriate work zone analysis methods which can aid highway agencies in developing 

cost-effective highway maintenance or reconstruction plans. 

The Maryland research team has been working on a work zone scheduling 

research project. This research project is performed under the Implementation 

Assistance Program (IAP) of the second Strategic Highway Research Program 

(SHRP2). The IAP is developed to help State and local departments of transportation, 

metropolitan planning organizations, and others interested in deploying products and 

solutions researched under SHRP2. The SHRP2 product pilot tested through this 
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initiative was the work zone impacts and strategies estimator (WISE) Software.  The 

intent of the WISE software tool is to help agencies assess the optimal sequencing of 

renewal projects and help determine the cost-effectiveness of strategies to minimize, 

manage, and mitigate road user costs from safety or operational perspectives. A team 

comprised of the Maryland SHA and researchers from the UMD has been awarded this 

project under the SHRP2 IAP to conduct this WISE software tool implementation 

research. As the project manager from the UMD team, this work zone scheduling 

research is one of the major parts in the applications of my dissertation. 

Work zones are a primary cause of unexpected delays and one of few types 

of traffic incidents that can actually be controlled by transportation agencies. The 

underlying notion of the SHRP2 research on WISE is that planning and scheduling of 

work zones can mitigate some of these delays, and also improve the travel reliability 

and safety of the overall transportation system. To help transportation agencies with 

this task, the WISE tool was created to support work zone planning and scheduling 

decisions at the regional level. The WISE tool currently relies on existing traffic data 

and DynusT (Chiu et al. 2011) to evaluate impact of different projects on traffic delays. 

The WISE tool is primarily intended for planning projects that impact traffic for at least 

a few weeks, while the expected benefits from its application are reduced negative 

mobility, safety, and economic impacts of highway renewal activities. In terms of 

methodological contributions, this project as allowed the UMD team to extend WISE 

capabilities by introducing travel behavior models that consider possible modal shift 

and peak spreading effects due to work zones. Also, the UMD team has successfully 
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demonstrated the feasibility of replacing DynusT with AgBM-DTA (proposed in 

Chapter 3). The most significant outcome of this research is the production of an 

application-ready, integrated transportation model and work zone schedule 

optimization tool that can help schedule work zone projects on a planning horizon of 

1-5 years; and in the future, work zone operations coordination in real-time based on 

the ongoing development of this tool for real-time modeling applications. 

Section 6.2. Work zone schedule and management with system model 

As noted previously, the WISE software tool was developed to be a decision 

support system used by planners and engineers to evaluate the impact of work zones 

and determine strategies to reduce these impacts (Ismart et al. 2014). WISE can evaluate 

the impact of multiple projects that have been incorporated into the transportation 

improvement program and the network. The software package has a relatively user 

friendly graphical user interface (GUI) to link different modules together (e.g., WISE 

planning module, WISE operation module, and DynusT). The original WISE tool 

utilizes the mesoscopic traffic simulator DynusT to evaluate the impact of work zone 

projects and operations applications. However, Maryland SHA has been looking for 

ways to incorporate this work zone scheduling tool into Maryland transportation 

modeling system. The major contribution towards this project is to integrate the WISE 

work zone scheduling algorithm within AgBM-DTA to provide a more comprehensive 

tool for use by Maryland SHA. 



- 104 - 
 

6.2.1 Model integration 

This section provides additional detail on the integration of WISE and SILK 

AgBM-DTA. Using WISE source code obtained for this research project, I have 

modified and extended this code to work with AgBM-DTA. The WISE work zone 

schedule optimization module utilizes a meta-heuristic algorithm to search for the 

optimal schedule to minimize total cost. The total project cost contains both agency 

cost from construction and user cost from delay. A Tabu search algorithm is applied to 

find the optimal sequence of projects with defined starting time and construction mode 

(daytime, nighttime, or both). In the original WISE software, WISE reads an initial 

traffic assignment result from DynusT, and then searches for an optimal schedule based 

on its meta-heuristics algorithm. For each project and each month, if construction is 

feasible (mode and start time), the work zone schedule optimization module estimates 

the traffic performance after travelers detour due to work zones. If the result reduces 

total cost, WISE schedules this project and updates the current solution. The algorithm 

stops if a predefined maximum iteration number is reached, or if in the most recent five 

continuous iterations, the algorithm does not find a solution with improved objective 

function value. Once the final schedule is obtained, a user can run DynusT again for 

more accurate evaluation and operational use. 
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Figure 6- 1 AgBM-DTA integration flowchart 

 

Agent-based travel behavioral models have the capability of mimicking and 

simulating the travel behavior changes of each user in the system. In order to enhance 

the capability of traditional travel demand modeling, this modeling tool has been 

efficiently interfaced with a dynamic traffic assignment model, such as DTALite. Once 

integrated with a traffic simulator, the system can be complete, given that all traffic 

conditions in the transportation network can be imitated by the simulator. This 

motivates the proposed integration of agent-based models and the DTA simulator, as 

illustrated by the flowchart above. There are two levels of integration (Figure 6-1): 

1) between-day integration: on one particular simulation day, agents are able to acquire 

information from previous days and accumulate knowledge about the transportation 

system. For instance, when an autonomous vehicle is introduced to a household in a 

future year, members of the household will respond and rearrange their trips. Seniors 
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and juveniles who previously relied on non-auto modes now may consider riding in the 

vehicle. Working adults may need to readjust departure time to accommodate the 

foreseeable increase in vehicle usage. These changes to each agent are modeled and 

outcomes are fed into DTALite to simulate dynamic traffic conditions, based on which 

agents will adapt their behaviors again. 

2) within-day integration: within the same day, information is conveyed between 

AgBM and DTALite. Real-time information on congestion and different non-recurrent 

incidents has been made available to a certain percentage of agents, which reflects the 

fact that advanced traffic information system (ATIS) subscribers and Google/INRIX 

users have access to timely estimates of traffic congestion. This type of information 

exchange would trigger dynamic behavior adaptation. En-route diversion is a likely 

reaction and is incorporated in this integration. Future studies may also internalize 

dynamic modal shifts (park-and-ride options along major freeways, ridesharing, etc.). 

The between-day integration allows the system model to capture travelers’ 

long-term travel behavior shifts due to the capacity reduction from work zone projects; 

within-day integration can be used to evaluate different operation strategies for work 

zone managements. In the dissertation, my contribution of the AgBM-DTA is to 

integrate the between-day departure time choice model with DTALite (as discussed in 

Chapter 3). The rest AgBM-DTA integration work was done by my colleagues, and my 

job in this work zone scheduling work is to integrate WISE scheduling algorithm into 

this AgBM-DTA system model. 

 



- 107 - 
 

 

Figure 6- 2 Integrating WISE with SILK AgBM-DTA 

 

The flowchart in Figure 6-2 shows the integration between WISE and SILK 

AgBM-DTA model. The upper level denotes the functionality for work zone schedule 

optimization; the lower level denotes the work zone operation applications. In the work 

zone schedule optimization horizon, the original WISE algorithm is coded to interface 

with DTALite. That is, the data structure of work zone projects, planning characteristics, 

and strategies are coded within DTALite’s format. The outputs of AgBM-DTA can be 

directly imported to the WISE algorithm for schedule optimization. After the upper 

level modeling, the optimal schedule will be coded into a real-time system model under 

development. With real-time detected data and online calibration technics, AgBM-DTA 

is able to simulate and evaluate the performance of different operation strategies (e.g., 

variable speed limit, ramp metering, etc.) to improve traffic conditions under work zone 

scenarios. Based on the scope of work, the upper level integration has been finished by 

the UMD team; the lower level, with the help of the proposed online calibration 
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approach in Chapter 4, is also feasible in future work. 

 

Figure 6- 3 Flowchart of work zone schedule optimization 

 

Details about the upper level integration are illustrated in Figure 6-3. First, 

the AgBM behavior model is integrated with DTALite to simulate between-day and 

within-day travelers’ behavior shifts and the corresponding traffic conditions. This 

AgBM-DTA system model will replace the previous WISE DynusT for traffic 

performance estimation. The work zone schedule optimization begins with a list of 

work zone projects with their schedule constraints. Then, the AgBM-DTA system 

model will be run for a general day base scenario without any work zone projects. WISE 

will read the assignment results and use its own heuristic algorithm to estimate the cost 

of different combinations of schedules. Once WISE has finished running, the optimal 

schedule will be obtained, and AgBM-DTA is conducted again to accurately estimate 

the user costs under the WISE optimal work zone schedule. 
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6.2.2. Inputs & outputs for the integrated model 

The AgBM-DTA model attempts to simulate the interaction between travelers 

and traffic infrastructures. It has two types of inputs: demand-side inputs and supply 

side inputs. Demand side inputs are the information of travelers to be modeled in the 

system. For agent-based modeling, we need the trip origin, destination, departure time, 

preferred arrival time, and social demographical information. DTALite can convert OD 

matrices to an agent list with trip origin, destination, and departure time through traffic 

assignment. Travelers’ social demographical information and preferred arrival time can 

be generated through a population generation algorithm developed from previous work, 

such that, to integrate with WISE, the research team only needs to obtain reliable OD 

matrices as demand-side input. Supply-side inputs are the transportation network 

information (e.g. nodes, links, and zones). Node information covers the coordinates and 

signal control types; link information comprises link attributes such as capacity, free 

flow speed, jam density, etc.; zone information is used to load demand from OD 

matrices to the network. 

The outputs of AgBM-DTA are comprehensive, spanning from network level 

to link level, and then to individual traveler level. Since DTALite is a mesoscopic traffic 

simulator, it records detailed information for each traveler (e.g., origin, destination, 

departure time, demand type, arrival time, trajectory). For link-level outputs, AgBM-

DTA can restore time-dependent link performance in terms of volume, speed, and 

density, which can be used to evaluate the impact of work zone projects on certain 

roadways. Network level outputs provide the total delay, average travel time, and total 
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number of travelers. Network level model outputs is useful to evaluate overall traffic 

performance on work zone scenarios. 

The WISE work zone schedule module requires four kinds of inputs: 

planning inputs, project inputs, strategy inputs, and traffic assignment inputs. Planning 

inputs are used to specify the entire time horizon for scheduling all the work zone 

projects. Each month needs a preference (i.e., whether to allow construction for that 

month) and demand factor. Project inputs involve the information of all the work zone 

projects to be scheduled. Information includes location (link ID, from/to nodes), 

construction cost, construction duration, earliest start month, latest finish month, and 

capacity/speed limit reduction. WISE allows users to specify some predefined work 

zone operation strategies to either save construction time or decrease travel demand. 

Strategy inputs are used to provide such operation strategies to WISE. Finally, before 

running the scheduling algorithm, WISE needs to read traffic assignment results from 

DTALite as the without work zone scenario. Link volume and speed information are 

used in WISE to estimate the additional user cost due to work zone construction. The 

output of WISE is simple, which provides the optimized starting month for each work 

zone project. 

Section 6.3. Integrated model application 

6.3.1. Future planned work zone projects in the consolidated transportation program 

(CTP) 

Information regarding future planned work zone projects in the Consolidated 
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Transportation Program (CTP) was obtained from Maryland SHA. The location of the 

projects are shown in Figure 6-4. The circles show the location of minor projects and 

the triangles show the location of major ones. There are 226 minor projects and 83 

major projects in the CTP. In our case study 10 of these projects have been considered 

for scheduling optimization. 

 

 

Figure 6- 4 Location of major and minor projects in CTP 

6.3.2. Work zone schedule application 

In this large-scale application, the system model presented in Section 3.5 is 

integrated with WISE work zone scheduling algorithm. 10 major work zone projects 

planned in the near future are considered. These projects are obtained and selected from 

the CTP dataset, the locations of which are displayed in Figure 6-5. Table 2 summarizes 

descriptions of these projects. Since there is no detailed information on the number of 

lane closures or speed limits for these projects, the UMD team assumes the capacity 
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and speed limit will drop 50% during construction periods. The construction duration 

of each project is obtained in the CTP dataset and shown in Table 2. 

 

 

Figure 6- 5 Locations of the projects in the real-world application 
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Table 6- 1 Future work zone projects in study area 

ID Route Description Duration (Months) 

1 MD 355 Replace bridge 10086 over Bennett Creek. 12 

2 MD 355 Replace bridge 15053 over Little Bennett Creek. 12 

3 I-270 Resurface/rehabilitate 24 

4 MD 355 Intersection capacity improvements 6 

5 I-270 

Construct a new I-270 interchange at Watkins Mill Road. 

Bicycle and pedestrian improvements will be included where 

appropriate. 

36 

6 I-270 Traffic management 24 

7 I-270 Safety/spot improvement 24 

8 I-495 Replace bridge 15136 over I-495. 36 

9 

I-495 Construct a full interchange along I-95/I-495 at the Greenbelt 

Metro Station. 

6 

10 I-495 Phase 2 Access improvements from MD 5 (Branch Avenue) 

and I-95/I-495 to the Branch Avenue Metro Station.  

12 

 

The planning horizon for the real-world application is from the beginning of 

2017 to the end of 2020, during which we assume no construction can be undertaken in 

January or December. For comparison purposes, two scenarios are considered: 1) a 

naïve case that randomly decides the starting time for each project and; 2) a WISE case 

that utilizes WISE to obtain the optimal schedule. In the naïve case, the performance of 

the schedule will be evaluated via AgBM-DTA directly; in the WISE case, it follows 

the flowchart in Figure 6-3 to reach WISE optimal first, and then utilizes AgBM-DTA 

to estimate the traffic performance. 
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(a) Naïve schedule for the 10 projects 

 

(b) WISE optimal schedule for the 10 projects 

Figure 6- 6 Naïve schedule and WISE optimal schedule 

 

It takes approximately one hour to run the WISE optimization module; the 

AgBM-DTA model takes longer to complete because it must run 40 “monthly” traffic 

conditions with different combinations of work zone projects for both the naïve case 

and the WISE case. The final schedules of the two cases are shown in Figure 10. In 

Figure 6-6 (a), the yellow cell means the month is scheduled for construction for the 

corresponding project for the naïve case, and the green cell means the month is feasible 

to schedule for the corresponding project. Figure 6-6 (b) shows the WISE case schedule, 

and the difference from the naïve case. 

The traffic performance after running AgBM-DTA is shown in Table 6-2. 
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Comparing the WISE case with the naïve case, work zone cost totals have savings of 

approximately $ 4.0 million during the 40-month work zone period. One can also 

observe that WISE gives a heuristic schedule where the single work zone delay is 

minimized, while the dependencies among projects are not perfectly considered (e.g., 

project 1,2 and project 5, 7, 8). The application shows WISE is helpful in decreasing 

the total delay cost. 

 

Table 6- 2 Traffic performance summary 
 

Naïve WISE Change 

Average Speed 

(mph) 

33.723 33.725 +0.002 

Total Delay 

(M Hours) 

1,069.09 1,068.82 -0.279 

Total Delay Cost 

(M $) 

16,036.37 16,032.33 -4.03 

 

Section 6.4 Conclusions and recommendations 

6.4.1 Current work summary 

The research team has extended the original WISE algorithm to work with 

SILK AgBM-DTA model to enhance work zone planning and operation applications in 

Maryland. At the current stage, the research team has integrated the original WISE work 

zone schedule optimization algorithm into AgBM-DTA. The integration is done using 

python code to: read and write work zone schedule inputs; read DTA model outputs; 
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and call the WISE optimization algorithm to provide optimal schedules as inputs for 

the DTA model for planning and operation applications. One small network and one 

large-scale, real-world DTA model have been tested to show the capability of the 

integrated tool. The real-world application is based on planned work zone projects 

obtained and selected from the CTP dataset. The DTA model has been well calibrated 

and validated via field detected traffic data. The results indicate WISE can provide a 

cost-saving schedule compared with a naïve scenario. 

6.4.2 Improvements and future work 

There are still limitations that can be addressed by future improvements. The 

WISE algorithm, based on the Tabu search algorithm, can be improved with advanced 

SBO methods in future research to further decrease the total work zone-related cost. 

SBO is an optimization method that can work well with problems whose objective 

functions can only be calculated via simulations (Chen et al. 2015; Chen et al. 2016). 

Moreover, the current SILK AgBM-DTA is an off-line model that simulates 

travelers’ behaviors and traffic conditions for typical scenarios. That is, the integrated 

WISE tool is for off line scheduling, but cannot be used to support work zone operations 

and real-time decision-making. The UMD research team is currently working on the 

online version of SILK AgBM-DTA. Once complete, the online AgBM-DTA can be 

applied to support work zone traffic operations. The integrated tool will not only be 

useful for planning applications, but also applicable  to support real-time simulation 

for work zone traffic and demand management, ATM strategies, and travel demand 
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management and ATIS guidance. It’s also possible that an on-line AgBM-DTA 

simulation tool could be used as a decision support engine for real-time integrated 

corridor management strategies (as was identified in the recently completed I-95 

Integrated Corridor Management Concept of Operations). 

Another possible improvement relates to performance measures. The current 

performance measures are from the original WISE SHRP2 project, and may not be 

specific to Maryland. The research team will consider integrating Maryland DOT/SHA 

work zone performance measures with WISE. 

6.4.3. Tool implementation 

The research team has integrated and demonstrated the WISE work zone 

schedule tool for applications in the state of Maryland. To implement this tool, the 

research team proposes to package all the modules into SILK AgBM-DTA as an easy-

to-use software application. Currently, DTALite already has a GUI which can display 

and edit a traffic network, conduct traffic simulation, visualize simulation outputs, and 

define incidents/tolls/work zones, etc. The research team is working on building an 

AgBM modeling approach into the GUI. That is, the integrated AgBM-DTA can be 

easily run by clicking some GUI buttons. In future research, the UMD team will also 

build the WISE work zone optimization module into the DTALite GUI. 
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Figure 6- 7 Implementation of the integrated tool 

 

This idea recommends adding a group of buttons in the DTALite GUI for 

WISE (Figure 6-7). Three input buttons are designed: “planning inputs”, “project 

inputs”, and “strategy inputs”. Once the “planning inputs” button is clicked, users are 

able to specify the planning inputs such as scheduling horizon, value of time, and 

demand factors. The “project inputs” is used to type in work zone project information, 

in terms of earliest begin time, latest end time, strategies, duration, and construction 

cost. With the help of DTALite GUI, users can define the link ID, capacity reduction, 

and speed limit reduction of the work zone projects. The “strategy inputs” button can 

help the users define work zone construction strategies for WISE. After preparing these 

inputs, users can just click the “WISE” button to conduct work zone scheduling. The 

built-in program will start by reading WISE inputs, followed by the base case DTA 

results, and then run the WISE scheduling module to optimize work zone schedules. 



- 119 - 
 

Finally, the optimal schedule will be taken into AgBM-DTA to estimate accurate work 

zone cost as well as to conduct operational applications. 

Section 6.5 Summary 

Transportation network modeling can be used for both planning and 

operation applications. This chapter aims at showing the capability of the developed 

AgBM-DTA model on a specific planning application—work zone. Work zones are a 

primary cause of unexpected delays and one of the few types of traffic incidents that 

can actually be controlled by transportation agencies. The underlying notion of the 

research on WISE is that planning and scheduling of work zones can mitigate some of 

these delays, and also improve the travel reliability and safety of the overall 

transportation system.  

The most significant outcome of this research is the production of an 

application-ready, integrated transportation model and work zone schedule 

optimization tool that can help schedule work zone projects on a planning horizon of 

1-5 years; and in the future, work zone operations coordination in real-time based on 

the ongoing development of this tool for real-time modeling applications. This research 

effort benefits heavily through the leveraging of ongoing work to develop Maryland 

agent-based mesoscopic transportation modeling system. 

In a large-scale, real-world application of the integrated transportation and 

work zone schedule optimization tool (AgBM-DTA with WISE) developed under this 

project, 10 major work zone projects from the Maryland CTP have been considered. 
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Integrating AgBM-DTA with WISE to optimize the scheduling of these 10 major 

projects resulted in a total user delay cost savings of $ 4 million over a 40-month 

construction period.   
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Chapter 7: Summary and Conclusions 

Section 7.1 Work summary and conclusions 

This dissertation play with a complex transportation modeling system. The 

first part attempts to integrate DTA with the SILK agent-based positive travel behavior 

model as a system model that is capable to evaluate transportation planning and traffic 

management related scenarios. In the proposed framework, travelers no longer have 

perfect network knowledge to maximize their travel utility. Instead, they are learning 

and searching for better choices to decline their costs due to delay, schedule early, and 

schedule late. The integration with the positive model enhances the behavior realism of 

DTA, resulting in the capability to capture dynamic travel behavior pattern changes. I 

also discuss the calibration of behavior parameters for the integrated system model via 

SBO. A county level scale system model has been developed to study the traffic impact 

of cumulative traffic analysis. Since the traffic impact study has already been covered 

in my master thesis (Zhu 2014), in this dissertation I mainly focus on the calibration of 

the integrated AgBM-DTA model. 

 



- 122 - 
 

 

Figure 7- 1 Summary of the online modeling approach 

 

In the second part, a gradient-based fast online calibration procedure has been 

proposed to enable the system model for real-time decision supports. This research is 

one of the earliest attempts to introduce both agent-based modeling and online network 

modeling for large-scale networks. In order to achieve real-time simulation, I use 

historical data to obtain a series of offline models; then I use the offline model’s path 

assignment and queueing diagram to estimate the gradient of DTA (both demand and 

supply) parameters towards the gap between simulation outputs and real-time traffic 

observations. For demonstrative purposes, a true shape medium-scale simulation model 

has been developed and tested. I design and conduct case studies to evaluate the 

performance of the proposed online calibration approach under both recurrent and non-

recurrent conditions. The results indicate the proposed model is fast for online 

transportation modeling. In addition, I also test the online modeling approach on a 

large-scale network that covers the whole Washington D.C. area. After reviewing 

different ATM strategies, I conduct an online case study to show the value of this 
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proposed tool for real-time decision supports. 

In the last part, I integrated the system model into an existing work zone 

scheduling optimization module. The purpose of this integration is to show the 

capability of the system model on planning applications. As an open source tool, it can 

be integrated with different modules for a more variety of applications. The whole 

framework of the proposed transportation network modeling system is illustrated in 

Figure 7-1. 

The contribution of this dissertation includes: 1) integrate an agent-based 

travel behavior model into DTA models to enhance the behavior realism; 2) propose a 

gradient based fast online calibration procedure that contains a principal component 

based consistency checking process, a linear adjustment process, and an optimization-

oriented parameter estimation process; 3) demonstrate the practical value of the 

proposed system model on both planning side and real-time operation side. The 

practical value of this tool can be as much as the theoretical value of this dissertation 

because the implementation of the proposed tool is straight forward.  

To conclude, I have learnt the entire process to integrate different model 

components as a whole system. It is feasible to apply this system model for offline or 

online applications. The time factor for online applications is over hundreds for 

medium-scale networks, and around 10 for large-scale models. Future work is required 

to consider enroute travel behavior shifts for ATM evaluations. 
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Section 7.2. Future Work 

There are still limitations in the system model. The AgBM part may request 

more ground truth data for further calibration. In the online calibration part, future 

research could include the real-time incident detection and prediction procedure into 

the online framework for non-recurrent scenario calibration. For now, one can only 

detect non-recurrent scenarios by outliers in terms of real-time counts and speeds data. 

Moreover, different   and  need to be tested for sensitivity analysis to understand 

whether overall adjustment or local adjustment play a more important role. Future 

research could also include parallel computation for both DTA and online parameter 

adjustments.  
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