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Abstract. In this paper, rules for a fuzzy logic based PID tuner (expert) for stable
dominant pole plants with large rise times are derived. Applications of the expert to
separator temperature control, and to pH control are presented. Tt is observed that the
expert can successfully tune the PID gains without requiring any process identification.
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1. INTRODUCTION

It is often seen that control experts tune the pa-
rameters of a controller according to error ver-
sus time curves based on their knowledge and
experience, rather than on complicated control
algorithms. Their tuning actions seem to be
based on relations between the shape of the re-
sponse curve and the parameters of the con-
troller, rather than on explicit process models.
This kind of tuning, if realizable, is captivat-
ing because of its independence from an accurate
process model.

Following Tolle and Ersii (1992), one identi-
fies two performance criteria that the expert
needs to satisfy: (1) As with humans, satisfac-
tory learning requires frequent repetition of the
same effort, so the system is improved by being
restarted from the same initial conditions again
and again; (2) Important for technical control
problems is the ability to stabilize the control
loop in the first trial, however, with relatively
bad performance in general.

2. STATEMENT OF THE PROBLEM

The problem can be stated as follows. Given a
stable plant
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develop a strategy to instantaneously tune
Kc,Kr and Kp, based on observation of the
plant output y(¢), and the set-point s(t), to get
a good response to setpoint changes. A good
response, means that the closed-loop response
approximates a given reference response. The
latter is specified by two parameters, 77 and
T5, and is illustrated in Fig. 1. Here T} can be
thought of as dead time and 7% as the open-loop
response time.



This strategy deviates from the current trend,
where effort is made to obtain information about
the plant by carrying out data analysis and mod-
elling. A review of these techniques can be found
in Koivo and Tanttu (1991). Note that gain
scheduling is an immediate consequence of the
proposed tuning strategy.

3. DERIVATION OF THE RULE BASE

In the current context, one wants to compensate
for rise time, and the settling time of the closed-
loop response while ensuring that the system re-
mains stable. Hence, it is natural to consider two
sets of rules. The first set (R;) deals with rise
time compensation, whereas the second set (Rg)
deals with reducing the settling time and stabi-
lizing the closed-loop system. When a set-point
change is detected, R, is activated. Once the re-
sponse reaches the steady state, R, is switched
off, and R is activated. The input to Ry is the
error ey(t). The inputs to Ry are: (i) the er-
ror ez(t) and (ii) the rate of change of the error
4 es(t). e1(t) and ex(t) are calculated as

e1(t) = gros (1) - Y= (g

Snew — Sold

82(t) = Snew — y(t) (4)

where y(t) is the observed plant response, yres (%)
is the reference response, s,q is the previous set-
point value, and spew is the current set-point
value.

Based on classical control theory (see Kuo,
1991), the following rules are postulated for the
manipulation of the dominant closed-loop poles.

R1:

1. If ey(t) is positive, move the dominant
closed-loop poles towards the imaginary
axis, and away from the real axis.

2. If ey(t) is negative, move the dominant
closed-loop poles away from the imaginary
axis and towards the real axis.

Rg:

1. If e2(2) is not small, or if f—tez(t) is not zero,
move the dominant closed-loop poles away
from the imaginary axis, and towards the
real axis.

2. If e3(t) is small, and if Sey(t) is zero, move
the dominant closed-loop poles away from
the real axis, and towards the imaginary
axis. This rule is incorporated to prevent
the response from getting overdamped.

3.1. Variation of the Controller Zeroes

Consider the relationship between the controller
zeroes, and the dominant closed-loop poles.
Note that the characteristic equation of the
closed-loop system is given by
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where —z;, —z3 are the controller zeroes; —A;,
¢ = 1...n are the open-loop plant poles; and
N = KKp is the loop gain, where K is the
plant gain, and Kp is the derivative mode gain.

First order plant:
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Let 2y, zo = a4 73, and the roots of equation(7)
be 51, 85 = v 4 ju.
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Second order plant:
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Let z1, z9 = a % j5, and the closed-loop poles
besi,ss=vtjpand ss=ywithy<v<0.
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A sufficient condition for the above is o = 0, and
/12 + 1% < —vhs.

Higher order plants: Similar relations hold for
higher order plants. For example, in the case of
a third order plant with real poles one gets

vy

do

dl‘l dVl d/l-l
1o <0, 5 >0, 43 >0 (20)

provided i + p} < =422, and ¢ =~ 0; where
vy = juy are the dominant closed-loop poles and
—A; is the middle plant pole.

<0,

Since one is dealing with dominant pole plants
having large rise times, one expects these rela-
tionships in equations(12), (19) and (20) to hold.
Based on these, the rules for manipulating the
controller zeroes(z;) are derived.
Rll :

1. If ey (t) is positive, then increase Re(z;), and

increase Im(z;) in magnitude.

2. If ey(t) is negative, then decrease Re(z),
and decrease Im(z;) in magnitude.

1. If ex(t) is not small or zero, or ez (t) is not
zero, then decrease Re(z;).

2. If e5(t) is small, and $es(t) is zero, then in-
crease Re(z;), and increase Im(z;) in mag-
nitude.

3.2. Variation of the Loop Gain (N)

As observed above, Rs stabilizes the system with
respect to unstable dominant poles by decreas-
ing Re(z;). Another cause of instability could
be dead-time. To stabilize the system with re-
spect to dead-time, one needs to reduce the loop
gain (N). Based on this observation, and the
fact that a larger loop gain forces the dominant
closed-loop poles towards the controller zeroes,
the following rules are proposed for manipulat-
ing the loop gain.

Rli

1. If e1(t) is positive large, increase N.

2. If e1(t) is negative large, decrease N.

1. If e3(t) is greater than small, or Les(t) is
not zero, then decrease N. This rule stabi-
lizes the system against dead-time.

2. If ey(t) is small, and Fey(t) is zero, then
increase N. This rule aids in decreasing the
damping.

Next consider the manipulation of the PID gains
to obtain the proposed variations in the con-
troller zeroes and the loop gain.

3.3. PID Gain Variation

The variation in the PID gains is derived under
the following assumptions:

1. The PID gain variation AK¢g, AKp, and
AK| can be expressed as

AI{C = ch [I<Cma: - I{:Cmin](sKC

= pkoRicbkc

AKD = pkp[KDmer = KDpinlbkp
= prpRKpbKp

AKy = pg,[Kr1,ee — K1, 18K,
= pr; Rr, bk,

where ég., 6k, 8k, are the defuzzified
output from the fuzzy logic controller.

2. The output scaling factors are equal i.e.
PKc = PKp = PK; = P-

3. The PID gains are of the same order of mag-
nitude as their ranges (Rk., Rk, Ri,)-

Influence on N:
N =KKp (21

AN ~ KAKp = pKRx, 6k,  (22)

Influence on the controller zeroes: An order of
magnitude analysis is presented here. Let z; =

a+jp.
= K
= 23
= 9% (23)
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Table 1 Rule set R;

ei(t) Ax. Ag, Ak,
PL NL PS PL

PM NM Z PM
PS NS Z PS
Y/ Y/ Z Z
NS PS Z NS
NM PM Z NM
NL PL NS NL

. KRy
By assumption 3, one has _Cﬁp_ ~ Rg..

Hence
. PRk (6kp — 6kc)

Ao = 2K (26)

Similarly
1 pRKc

/if_(l%lﬁz. _ 1{ 2Kp

R
+ 5 6k, — ko)) (2D)
r\C

AB =~ (8kp — OKc)

Since, the rules for manipulating N, «, and 8
have been determined, one can relate ég, 0k,
and 8k, from equations(22), (26) and (27).

The inputs and the outputs are divided into 7
fuzzy classes. Namely, 1)Positive Large(PL),
2)Positive Medium(PM), 3)Positive Small(PS),
4)Zero(Z), 5)Negative Small(NS), 6)Negative
Medium(NM), and 7)Negative Large(NL). Fur-
thermore, let the the outputs share a common
fuzzy membership function A, and denote by
Ag., Ak, and Ak, their individual output
classes obtained after rule evaluation from which
Skc, 6k, and §g, are obtained after defuzzifi-
cation.

Based on the analysis presented above, one ob-
tains the rule bases, shown in table 1 for R,
and in table 2 for Rs. The number of rules on
R have been almost halved, by requiring that
the expert take action only when the response is
returning to it’s steady state value. The mem-
bership functions were determined after simula-
tion studies with a second order plant. These are
shown in Fig. 2. It should be noted that the ab-
scissas of the membership functions have been
normalized to lie between -1 and +1. Hence,
the inputs to the fuzzy logic controller should
be scaled accordingly. Suggested scaling factors
are 1 for e;(t), ;‘;3%;; for e;(t), and QT'—f for

deez(t). However, these values are not binding.

4. APPLICATIONS

To verify the validity of the rule base, two appli-
cations are presented.

Table 2 Rule set Ra
deo(t
e2(t) "PL PM PS 7 NS "NM N

PL Z Z Y/ Z PS PS PM
PM Z Z Z Z PS PM PM

PS Z 4 Z NS PS PM PM
Z Z Z Z Z Z 7 Z
NS PM PM PS NS 7 Z Z
NM PM PM PS Z Z Z Z
NL PM PS PS Z Z Z Z
Ak,
dey ()

e2(t) PL  PM PS Z NS NM NL

PL Z Z Z Z NM NM NL
PM Z Z Z Z NM NL NL
PS Z Z Z PS NM NL NL
Z
Z
Z
Z

A Z Z Z VA 7 Z
NS NL NL NM PS yA Z
NM NL NL NM Z Z Z
NL NL NM NM Z % Z

Axp
Tea(t)

e2(t) PL__PM PS Z NS NM NL

PL Z Z Z Z NS NS NM
PM Z Z Z Z NS NM NM
PS Z Z Z PS NS NM NM

NS NM NM NS PS 7Z
NM NM NM NS Z /
NL NM NS NS Z Z

4.1 Separator Temperature Control

The separator is part of a larger plant (Tennessee
Eastman Test Problem, Vogel and Downs 1990)
comprising of a reactor, condensor, separator,
stripper and a recycle compressor. It should be
noted that 1) there is dead time present, ii) the
plant has an unknown number of poles, iii) there
Is measurement noise, and iv) there are restric-
tions on the manipulated variable i.e. the con-
densor cooling water flow valve. The reference
response has 7) = 80 seconds, and 75 = 300 sec-
onds. A step change from 80.109 deg C to 85
deg C is chosen.

Two initial responses are considered: (i) The ini-
tial PID settings give a very large rise time; and
(i1) the initial settings result in an oscillatory
response. Figure 3(top) illustrates the initial
response for the case of large rise time. Fig-
ure 3(bottom) illustrates the response after the
expert has tuned the PID gains. Figure 4 il-
lustrates the variation in the steady state gains
from iteration to iteration.

Similarly, Fig. 5(top) illustrates the initially os-
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Fig. 2: Fuzzy membership functions

cillatory response. Figure 5(middle) shows the
response during the first application of the ex-
pert, and Fig. 5(bottom) shows the final re-
sponse.

Thus, it is observed that the expert correctly
tunes the gains of the PID controller.

4.2 pH Control

Consider an application of the expert to a plant
with nonlinearity in its output. The system
chosen is the one considered by Tolle and Ersi
(1992). The reference response has 77 = 20 sec-
onds, and T = 200 seconds. A step change in
the pH from 1 to 9 is considered. Figure 6(top)
shows the initial response, and Fig. 6(bottom)
shows the response after the expert has tuned

the PID gains.

5. BUILDING ON THE EXPERT

The behaviour of the expert maybe modified to
suit one’s needs. One such modification is con-
sidered here.

5.1. OQOvershoot Control

So far, no attempt has been made to control the
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Fig. 3: Separator: very slow initial response
(top), final response(bottom)

amount of overshoot. In fact, the rules have been
developed so that there is a greater emphasis on
rise time compensation. For some applications,
the control of overshoot maybe more important.

As an application, consider separator tempera-
ture control with the liquid level in the separa-
tor increased by 20%. the reference response is
not modified. In order to meet the rise time re-
quirement, the response is highly underdamped.
Figure 7 illustrates the final response obtained
when the expert was applied with overshoot con-
trol, with a maximum allowable overshoot of 5%.
It is observed that the response meets the over-
shoot and rise time specifications.

6. CONCLUSION

Although, a lot of work has been done in the area
of tuning PID gains, most of it is based on the
analysis of the plant response, and on parameter
estimation. In this paper, it is shown that for the
class of stable, dominant pole plants with large
rise times, it is not necessary to carry out data
analysis and parameter estimation. There are
inherent properties of this class that can be ex-
ploited to design a learning controller which can
learn on-line. This could be thought of as being
analogous to humans, who possess the ability to
tune PID parameters without necessarily carry-
ing out data analysis or identification. The re-
sults show that the rule base derived performs
as required. Furthermore, one could also derive
a similar rule base for PI controllers, since these
are the controllers most commonly found in the
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chemical process industry.
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