
OVERCOMING INSTABILITY IN COMPUTING THEFUNDAMENTAL MATRIX FOR A MARKOV CHAINDANIEL P. HEYMAN� AND DIANNE P. O'LEARYyApril 5, 1996Abstract. We present an algorithm for solving linear systems involving the probability or ratematrix for a Markov chain. It is based on a UL factorization but works only with a submatrix ofthe factor U. We demonstrate its utility on Erlang-B models as well as more complicated models ofa telephone multiplexing system.Key words. Markov chains, fundamental matrix, decision process.1. Introduction. Markov chain models can lend insight into the behavior ofmany physical systems, such as telephone networks, highway systems, and ATMswitching networks. These models are based on properties of a matrix P whoseentries depend on the probabilities of transition from one state to another, or on thearrival and departure rates for customers. The matrix P is nonnegative. If we de�neD to be a diagonal matrix whose diagonal entries are the rowsums for P , then thematrix D � P has zero rowsums. In other words,(D � P )e = 0;where e is the column vector of all ones. Thus, D � P has a zero eigenvalue, andwe denote its left eigenvector, normalized so that its entries sum to one, as the rowvector �: �(D � P ) = 0T ; �e = 1 :The vector � gives information about the long-term behavior of the system; for ex-ample, if the entries in P are transition probabilities (so that D = I), then � is thestationary vector for the chain.Systems analysts are interested in other computational quantities that give in-formation about the short-term behavior of the chain. The fundamental matrix isde�ned to be F = (D � P � e�)�1;and the group generalized inverse isA# � F � e�:(See, for example, [6].) The entries in these matrices are useful in computing mean�rst passage times, in computing biases in the entries in � as approximations toexpected number of visits, and in determining decision rules to govern the control ofthe system. See [2] and [5] for some discussion of these applications.The GTH algorithm [1] is an e�cient algorithm for determining a factorizationof the matrix D � P . From this factorization, all the other quantities can easily becomputed.� Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701-7020 (dph@bellcore.com).y Department of Computer Science and Institute for Advanced Computer Studies, University ofMaryland, College Park, MD 20742. This work was supported by the National Science Foundationunder Grant CCR-95-03126 (oleary@cs.umd.edu).1



The GTH algorithm can be interpreted as a variant of Gauss-Elimination thatdi�ers from the usual LU form in two ways:1. The elimination proceeds from the bottom of the matrix to the top (ratherthan top-to-bottom) and thus produces factorsD � P = UL;where U is an upper triangular matrix with diagonal elements equal to �1,and L is a lower triangular matrix, with l11 = 0.2. Since the rowsums of D � P are zero, so are the rowsums of the matrix L.We compute the main diagonal elements of L to satisfy this constraint, ratherthan using the usual Gaussian elimination formulas. This modi�cation hasbeen shown to provide a very strong form of numerical stability when makinguse of these factors to compute the stationary vectors [7].We assume that the rows of the matrix (one for each state of the chain) arenumbered f0; 1; : : : ; ng, we let P(i:j,k:l) denote the submatrix of P consisting ofelements in rows i; i+ 1; : : : ; j and columns k; k+ 1; : : : ; l, and we let sum(P(i,j:k))denote the sum of the elements in row i and columns j through k. Then the GTHalgorithm computes UL = D�P . It can be done using no additional matrix or vectorstorage as follows:For i=n, n-1, ... , 1,s=sum(P(i,0:i-1))P(i,i)=-sP(0:i-1,i)=P(0:i-1,i)/sP(0:i-1,0:i-1)=P(0:i-1,0:i-1) + P(0:i-1,i)*P(i,0:i-1)end forP(0,0)=0Then the matrix L is stored in the lower triangular part of P (including the maindiagonal), and U is in the upper triangular, with main diagonal elements understoodto be equal to �1. The entire factorization process takes 2=3n3 +O(n2) operations.Once the UL factors of D�P are determined, it is easy to compute the stationaryvector from �U = z;where z is the �rst row of the identity matrix. Then the fundamental matrix can becomputed from ULF = I � e�;with normalization �F = �, or the group generalized inverse fromULA# = I � e�with normalization �A# = 0T .Clearly, the lower triangular matrix L is singular, since its �rst row is zero. Con-ventional wisdom says that the matrix U is usually well-conditioned, but occasionally,this fails to be true, even if the nonzero singular values of D � P are well behaved.The purpose of this note is to exhibit examples of this phenomenon and to proposea more stable way to use the UL factors to compute the fundamental matrix and otherquantities. 2



Table 2.1Algorithm results on the examples of x2.n rorig rimproved cond(U ) cond(D � P )5 4.2e-15 1.0e-15 2.4e+02 8.1e+0010 3.6e-13 3.0e-15 5.4e+04 2.0e+0115 1.3e-12 9.0e-15 1.1e+07 3.4e+0120 4.4e-09 1.5e-14 1.9e+09 5.0e+0125 1.3e-06 1.7e-14 3.3e+11 6.6e+0130 2.5e-04 2.9e-14 5.6e+13 8.2e+0135 2.8e-02 3.2e-14 9.2e+15 9.9e+0140 2.5e+00 3.3e-14 1.5e+18 1.2e+0245 4.1e+00 3.8e-14 Inf 1.3e+0250 1.1e+05 5.5e-14 Inf 1.5e+022. A Troublesome Family of Examples. Consider an Erlang-B model oftelephone tra�c. Calls arrive as a Poisson process at rate � to be served by n parallelservers at unit rate. A call that �nds all servers busy is discarded.This model yields a continuous-time Markov chain with states f0; 1; : : :; ng. Letrij be the rate of passage from state i to state j. Then the only nonzero rates areri;i+1 = �; for 0 � i < n;ri;i�1 = i; for 0 < i � n:Let the matrix P = (rij) and let D be the diagonal matrix whose entries are therowsums of P .Then it is easy to compute the UL factors of D�P : both U and L are bidiagonalmatrices with nonzero entriesuii = �1; i = 0; : : : ; n;ui;i+1 = �i+ 1 ; i = 0; : : : ; n� 1;lii = �i; i = 0; : : : ; n;li;i�1 = i; i = 1; : : : ; n:The unnormalized steady-state probabilities are�i = �ii! ; i = 0; : : : ; n:If we set � = n and use this data to compute the last column of the fundamentalmatrix, we get the results in Table 1.These results were computed using double-precision IEEE arithmetic (approxi-mately 16 decimal digits) in Matlab.The column labeled rorig gives the norm of the residual vector when the lastcolumn of F is computed using the UL factors: i.e.,rorig = ken � �ne � (D � P )forigk;where en is the last column of the identity matrix and forig is the result of usingforward and back substitution on the linear systemULforig = en � �ne:3



We see that rorig grows rapidly as n grows, although in exact arithmetic rorig wouldbe zero.Such large residuals are a symptom of ill-conditioning, so the table also givesthe condition number of U and the condition number of D � P . Here we de�nethe condition number as the ratio of the largest to the smallest singular value of thematrix, although, since D � P is singular, we leave out its zero singular value incomputing this ratio. Clearly, the matrix U is rapidly approaching singularity, andthus when we use U to solve for the last column of F , accuracy can be lost.In the next section we describe an improved algorithm that produces the residualslabeled rimproved in the table.3. A More Stable Way to use the UL Factors. To see what went wrong,we need to look at the null spaces of our various matrices.Suppose we are solving (D � P )z = b, where b is in the range of D � P . Thenthe solution vector z satis�es Lz = y;where y is the solution to Uy = b:Since the top row of L is zero, the top element of y must also be zero in order forthe system to have a solution. Thus, before we begin the back substitution on U , wealready know the top component of y.If, due to round-o� error and ill-conditioning of U , the top component of thecomputed y fails to be close to zero, then our computation will not produce a goodsolution.This insight also leads to a remedy. Instead of solving Uy = b, we can solve asystem that involves only the last n components of y, knowing that the top one iszero. If we let �U be the matrix formed by deleting the zeroth column of U , and let �ybe the vector formed by deleting the zeroth element of y, then we can compute �y bysolving the linear system �U �y = b:The matrix �U is not upper triangular (In fact, it is zero above the main diagonalfor the examples in x2, since U is bidiagonal). But �U is always upper Hessenberg,with zeroes below the �rst subdiagonal. A sequence of n row operations reduces it toupper triangular form, at a cost of at most O(n2) 
oating point operations. Since thesystem is compatible, the same sequence of operations reduces the last component ofb to zero, permitting back-substitution starting with equation n� 1.We choose to reduce the matrix �U to upper triangular form using the LU algorithmwith partial pivoting. Just as in the GTH algorithm, only additions and divisions arebeing performed and no cancellation can occur, and the factorization can be done in-place, except for an auxiliary integer vector of permutation indices. In the followingcode fragment, we factor the matrix �U = ~L ~U , assuming that �U is stored in the arrayP . We store ~U in the upper triangle of P , rows 1 through n, and we store themultipliers (o�-diagonal elements of the L factor) in the zeroth row of P . None ofthis disturbs the lower triangular factor L stored below the diagonal of P .4



Initialize two row vectors of length n+1:all entries in ipos are zero,and the i-th entry of ind is i.for i=1, ... , n,if |u(0,i)| > 1,Interchange ind(0) with ind(i)and P(0,i:n) with P(i,i:n).Set ipos(i-1)=i.end ifThe pivot element is P(0,i)=-P(0,i)/P(i,i).Update row 0 asP(0,i+1:n)=P(0,i+1:n)+ P(0,i) *P(i,i+1:n).endThis takes n2+O(n) operations. The vector ipos is redundant, butincluded for clarity.We use these factors as follows to solve the linear system ULz = b.First we solve ~Lq = b in O(n) operations, by using the multipliersand the permutation information:Let q be the vector b reorderedas indicated by ind.for i=1, ... , n,Set ispot=ipos(i).Let q(ispot)=q(ispot)+P(0,i)*q(i).endThen we solve ~U �y = q using backsubstitution. This takes n2 +O(n)operations.Finally, we solve Lz = �y, setting z1 = 0. This takes n2 + O(n)operations.Applying this algorithm to the examples in x2 yields the results labeled rimprovedin Table 1. The improved algorithm yields a small residual for all of the examples.Since the residual norm divided by the condition number of D�P is close to machineprecision, we see that we have achieved attainable accuracy using this algorithm.4. An Application. This work was motivated by di�culties encountered incomputing solutions to the telecommunications model described in Krishnan andHuebner [5]. In their model, there are n channels that serve C classes of calls. Class-jcalls arrive according to a Poisson process at rate �j , have exponential service timeswith mean 1=�j, and each call requires rj channels. The classes represent di�erenttypes of applications, such as voice, data and video. The problem is to construct anadmission rule that optimizes a given performance criterion, e.g., minimize the lossrate of calls. To illustrate the nature of the problem, suppose r1 > r2, and exactly r1channels are free when a class-1 job arrives. Accepting this job may preclude accept-ing several class-2 calls that might arrive soon. The class-1 job should be acceptedwhen �1 is su�ciently large and �2 is su�ciently small so that the expected number oflost calls is less than one. This expected value depends on which calls are currently inprogress (because some of them may �nish soon enough to allow some class-2 calls tobe admitted in the near future) as well as on which type of call is under consideration.5



Krishnan and Huebner formulate this problem as a Markov decision process. Thisinvolves constructing a Markov chain to model the number of occupied channels at anytime, so there is an underlying continuous-time Markov chain with states f0; 1; : : : ; ng.The nonzero elements in the rate matrix P for this chain are de�ned bypi;i+rk = �k for 0 � i � C � rk, k = 1; : : : ; C,pi;i�rk = �kE(mkji) = �kq(i�rk)q(i) for rk � i � n, k = 1; : : : ; C.The state probabilities q(i) are computed recursively using a method of Kaufman[4]. The examples of x2 are special cases of this model with C = 1 class.Let cj be the \cost" per unit time of being in state j; e.g., the loss rate if theobjective is to minimize the loss rate of calls. This model is described in continuoustime, but it can be converted into a discrete-time model where transitions occur attimes 1; 2; : : : by \uniformizing" the model; see, e.g., Heyman and Sobel [3, x8-7]for details. Let P be the transition matrix of the discrete-time Markov chain; Pinherits the state space f0; 1; 2; : : :; ng and has elements pij. If some rj = 1, then P isirreducible and aperiodic and has no transient states. Otherwise, some states may notbe reachable (e.g. state 1 when starting empty); these states should be eliminated.Krishnan and Huebner show that when i channels are occupied and a class-j callarrives, that call should be admitted if and only if,t(i) < t(i + rj)where t(k) = nXj=0A#kjcj ; k = 0; 1; : : : ; n :From this equation (a variant of the one used by Krishnan and Huebner) we see thatwe need to compute the jth column of A# when cj 6= 0.Example: Suppose we have n = 100 trunk lines, with C = 3 classes of tra�cde�ned by mean arrival times (�i), mean holding time (1=�i), and ri trunks requiredper call as follows: i �i �i ri1 20 1 12 20 1/2 23 5 1/3 3Using the standard algorithm, we obtain a residual of size 9.4e+12 for j = n. Thecondition number of U is computationally in�nite, even though the condition numberof D � P is only 83. Using the algorithm from x3, however, we obtain a residual ofsize 9.6e-14.5. Conclusions. We have presented an improvement to algorithms that use theUL factors to compute quantities related to Markov chains. For a dense matrix, itrequires only O(n2) additional operations compared to the standard O(n3) algorithmbut improves the accuracy obtained in the results. The same approach could be usedon sparse matrices arising from Markov chains.REFERENCES[1] W. K. Grassmann, M. I. Taksar, and D. P. Heyman, Regenerative analysis and steady statedistributions, Operations Research, 33 (1985), pp. 1107{1116.6
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