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Due to their high degree of controllability and precise measurement capabilities,

ultracold ensembles of neutral atoms are a leading platform for performing quantum

simulations. In this thesis, I will describe the design and construction of an analog

quantum simulator based on 23Na Bose-Einstein Condensates (BEC). Our system can

produce and trap BECs in arbitrary-shaped quasi two-dimensional optical dipole traps,

which can be dynamically altered during an experimental sequence. Such controlled

variation of the BEC’s spatial mode enables exploration of open questions in superfluidity,

atomtronics, and analogue cosmology. I will describe the implementation of our system

to study the inflationary dynamics of the early universe and report our recent results on the

simulation of cosmological Hubble friction. We expand and contract a toroidally shaped

BEC and analyze the time evolution of its collective phonon modes. These excitations are

analogous to fluctuating scalar fields in an expanding universe. The changing metric of the

expanding or contracting background BEC results in dilation of the phonon field through

a term dependent on the expansion speed, similar to Hubble friction in inflationary models



of the universe. We conclusively demonstrate the analogy by experimentally measuring

Hubble attenuation and amplification. Our measured strength of Hubble friction disagrees

with recent theoretical work [J. M. Gomez Llorente and J. Plata, Phys. Rev. A 100

043613 (2019) and S. Eckel and T. Jacobson, SciPost Phys. 10 64 (2021)], suggesting

inadequacies in the current model.
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Chapter 1: Introduction

Since their first realization in 1995 [6, 7], Bose-Einstein Condensates (BEC) have

emerged as an ideal platform for performing quantum simulations. Early efforts in simulating

the Bose-Hubbard model in 3D optical lattices [8, 9] and tuning atomic interactions via

Feshbach resonances [10–13] have illustrated the ability of such systems to simulate

defect-free and fully configurable synthetic materials. Moreover, the coherent manipulation

of BEC matter waves has opened up the fields of atomtronics [14–19], atomic wave

interferometry [20], and laboratory simulations of cosmological phenomena [21–25], to

name a few.

Bose-Einstein condensation occurs due to the macroscopic occupation of the single-

particle ground state. The phenomenon was first predicted in 1925 by Albert Einstein [26]

using methods of quantum statistics developed by S.N. Bose [27]. At a temperature T ,

atoms of mass m can be regarded as wavepackets with a spatial extent corresponding to

the thermal de Broglie wavelength λdB =
√

2πh̄2/mkBT . As these atoms are cooled, λdB

increases, and at extremely low temperatures, it exceeds the inter-atomic spacing. These

individual wavepackets at ultracold temperatures coherently superimpose to form a single

collective matter wave. If the atoms are bosonic, all of them occupy the lowest quantum

state to form a BEC, thereby serving as a macroscopic lens into quantum phenomena.
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Attaining quantum degeneracy requires cooling atoms to sub 100 nK temperatures, making

the production of BEC technically challenging. With the availability of tunable wavelength

lasers, significant progress in laser cooling [28–30] in the 1980’s and forced evaporation

techniques [31, 32] in the early 1990’s resulted in the laboratory realization of BECs, 70

years after the first prediction.

Depending on the system, quantum effects become apparent at different temperatures.

For example, metal electrons exhibit strong quantum phenomena below the Fermi temperature

(104 − 105 K), liquid helium around 1K, and atomic nuclei around 1011K [33]. These

temperatures are significantly higher than those required for Bose condensing neutral

atoms. However, despite their technically challenging production, quantum-degenerate

gases are superior for performing quantum simulations due to the unprecedented control

and measurement capabilities they offer. Almost all atoms in a BEC occupy the same

quantum state, allowing the interactions between the component atoms to be described

by an effective mean-field interaction potential [33,34]. This approach reduces the many-

body problem into a single-body problem which is much easier to model. Furthermore,

the inter-atomic interactions can be tuned by orders of magnitude using Feshbach resonances [35].

In addition to the interaction potential, BEC systems offer tunability in terms of the

condensate fraction, temperature, and shape of the atomic cloud. Because of the dilute

nature of these atomic samples, they can be probed via optical means, thereby facilitating

an ease of measurement.

The process of Bose condensation is a purely statistical one and has nothing to

do with inter-atomic interactions. When gases are cooled, they liquify and eventually

solidify, at which stage the interactions become dominant. Avoiding this solidification is
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a major challenge in producing quantum degenerate gases. Usually, atoms have a very

high molecular binding energy which energetically favors solidification [36]. However,

since it occurs at a rate proportional to the gas density, molecular binding is avoided by

reducing the atomic density.

In this thesis, I will describe the construction of our 23Na BEC apparatus, aimed

at performing quantum simulations. Historically, our group has used BECs to study

superfluidity [17,37–40], atomtronics circuits [18,19] and perform cosmological simulations [41].

In 2007, the old Sodium Rings lab at the National Institute of Standards and Technology

(NIST) observed superflow in the form of persistent currents in a toroidally shaped BEC [37].

Since then, many of our experiments have focused on exploring the persistent current’s

decay mechanism [17,39,40] and using them for atomtronic circuits [18,19]. Towards the

old apparatus’s end of life, the group performed some experiments to simulate cosmological

analogues in BECs [41]. In 2015, we started building a new apparatus to make a dual-

species BEC with Sodium and Erbium. The old apparatus had many limitations, which

were addressed in this new system. Additionally, we decided to add highly magnetic

Erbium with a magnetic moment 7µB, to exploit its long-range interactions for studying

strongly correlated many-body systems. In 2018, we Bose condensed 23Na, and after that

developed capabilities to confine the BEC in arbitrary-shaped two-dimensional Optical

Dipole Traps (ODT). Significant advances have been made on the Erbium front as well.

In this thesis, I will describe our apparatus, our approach to simulate analogue cosmology

using BECs, and a specific example where we simulate the cosmological phenomena of

Hubble friction. Since many references describe laser cooling, forced evaporation, and

production of BECs [42, 43], I will only briefly touch upon these topics. In the next two
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chapters I will describe collective modes in a BEC, introduce the idea of analogue gravity

and explain how a BEC’s collective modes can be used to develop experimental systems

for analogue gravity.

1.1 Outline of the Thesis

In 2015, after decommissioning the NIST Sodium Rings apparatus, we embarked

on the journey of constructing the new Sodium-Erbium BEC laboratory. The rest of

the thesis describes the construction and working of this new apparatus and explains an

analogue cosmology experiment performed on it. It is structured as follows. In Chapter 2

I start with describing the theory of Bose-Einstein condensation and follow it with a

discussion on the origin and nature of collective excitations in BECs. Chapter 3 introduces

the idea of Analogue Gravity and explains how collective excitations in BECs could be

used for simulating cosmology. Chapter 4 describes the experimental apparatus, and

Chapter 5 explains the procedure employed for producing BEC and further transferring

them into arbitrary 2D Optical Dipole Traps (ODT). Chapter 6 reports the simulation of

Hubble attenuation and amplification in a toroidal BEC. Though these experiments were

performed with 23Na BEC, we have made significant progress towards trapping Erbium in

a Magneto-Optical trap (MOT). Chapter 7 describes a Scanning Transfer Cavity scheme

used for locking Erbium lasers in our laboratory. Finally, I end with with an outlook in

Chapter 8.
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Chapter 2: Theory of Bose Gas

2.1 Ideal Non-interacting Bose Gas

Bose-Einstein condensation is a quantum-statistical phenomenon that occurs due to

the macroscopic occupation of the ground state. This section will discuss the behavior of

an ideal non-interacting ensemble of bosons and highlight the role of quantum statistics

in Bose condensation as the ensemble’s phase space densities approach unity. It follows

the discussion in Ref. [44].

Consider an system of N bosons with chemical potential µ and temperature T . The

occupancy of a state n(ε) with energy ε is described by the Bose-Einstein statistics, given

by

n(ε) =
1

exp((ε− µ)/kBT )− 1
, (2.1)

where kB is the Boltzmann constant. The density of states for a 3D homogeneous system

a(ε) is given by

a(ε) dε = (2πV/h3)(2m)3/2ε1/2dε, (2.2)

where V is volume, m is the mass of the atoms, and h is Plank’s constant. Using Eq. (2.1)

5



and (2.2), it can be shown that the number of atoms in all the excited states Ne is given by

Ne =
V

λ3
dB

g3/2(z), (2.3)

where gν is the Bose-Einstein function1, and z = eµ/kBT lies between 0 and 1. Since

g3/2(z) increases monotonically with z, the total number of atoms in the excited state

satisfies the inequality

Ne ≤
V

λ3
dB

g3/2(1). (2.4)

Since Eq. (2.4) sets an upper limit on the maximum number of atoms in the excited state,

the remaining atoms are in the ground state. If the phase space density (N/V )λ3
dB exceeds

g3/2(1), the only way to satisfy Eq. (2.4) is if all the excess atoms are in the ground

state. This results in a macroscopically large number of atoms occupying the ground

state, marking the onset of Bose-Einstein condensation. As evident from Eq. (2.4), the

necessary condition for Bose condensation is (N/V )λ3
dB > g3/2(1) ≈ 2.612. In terms

of the density n = N/V , and phase space density PSD = nλ3
dB, the condition for Bose

condensation is expressed as

PSD > 2.612. (2.5)

2.2 Mean Field Dynamics of Weakly Interacting BECs

Though the non-interacting picture of ideal Bose gases describes the phenomena

of Bose condensation, weak atom-atom interactions in a BEC lead to several interesting

1gν(z) =
1

Γ(ν)

∫∞
0

xν−1

z−1ex−1 dx = z + z2

2ν+ z3

3ν +...
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phenomena. This section derives the time evolution of the BEC wavefunction. Starting

from the many-body hamiltonian in the second quantization, a mean-field approach is

applied to model the atom-atom interactions. The discussion here follows that in Ref. [33,

34, 45], where detailed derivations can be found.

The second quantization many-body Hamiltonian describing N interacting bosons

in an external potential V (r) is given by

Ĥ =

∫
dr Ψ̂†(r)

[
− h̄2

2m
∇2 + V (r)

]
Ψ̂(r)

+
1

2

∫
dr dr′ Ψ̂†(r) Ψ̂†(r′) Vint(r− r′) Ψ̂(r) Ψ̂(r′),

(2.6)

where m is the mass of the atom, and Vint is the two body interaction potential, and Ψ̂†(r)

and Ψ̂(r) are the the boson field operators corresponding to the creation and annihilation

of particles at position r, respectively. The field operator Ψ̂(r, t), can be expressed as

Ψ̂(r, t) = ψ(r, t) + Ψ̂′(r, t), (2.7)

where ψ(r, t) is a complex function defined as the expectation of Ψ̂(r, t) such that

ψ(r, t) =
〈

Ψ̂(r, t)
〉
, (2.8)

and Ψ̂′(r, t) represents a small perturbation. The complex function ψ(r, t) is a classical

field representing the BEC wavefunction with |ψ(r, t)|2 equal to the condensate density.

This serves as the order parameter for Bose condensation. Since we wish to derive the

time-evolution of condensate wave function ψ(r, t), we write the Heinsenberg equation
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of motion for the operator Ψ̂(r, t)

ih̄
∂

∂t
Ψ̂(r, t) = [Ψ̂, Ĥ]

=

[
− h̄2

2m
∇2 + V (r) +

∫
dr′Ψ̂†(r′, t)Vint(r′ − r)Ψ̂(r′, t)

]
Ψ̂(r, t).

(2.9)

Due to its diluteness and low temperature, the atom-atom interactions in an alkali BEC

can be described by elastic two-body s-wave scattering processes [33, 45]. This allows

for the introduction of an effective mean field approach to model these interactions such

that the short wavelength degrees of freedom are integrated out. For dilute Bose gases, the

effective mean field interaction potential Vint = gδ(r−r′) is a contact interaction between

two atoms at r and r′, where g = 4πh̄2as/m, and as is the s-wave scattering length.

Applying this mean field interaction potential in Eq. (2.9) and neglecting the perturbing

operator Ψ̂′(r, t) in Eq. (2.7), we get the time-dependent Gross-Pitaevskii (GP) equation

[
− h̄2

2m
∇2 + V (r) + g|ψ(r, t)|2

]
ψ(r, t) = ih̄

∂ψ(r, t)
∂t

, (2.10)

which describes the time evolution of the BEC wave function ψ(r, t). It should be noted

that since the operator Ψ̂(r, t) has been approximated to the complex valued scalar field

ψ(r, t), Eq. (2.10) is simply the zeroth order approximation of Eq. (2.9). The first order

approximation developed by Bogoliubov, involves retaining terms in the interaction which

are at most quadratic in Ψ̂′(r, t), and treating the resulting interaction as a perturbation on

the BEC wavefunction ψ(r, t). This first order analysis reveals the existence of collective

excitations, which have a phonon-like linear dispersion relationship for long wavelengths.

Sec. 2.2.3 covers details of the first order analysis useful for understanding concepts in this
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thesis. Higher order corrections, which involve retaining terms proportional to Ψ̂′3(r, t)

and Ψ̂′4(r, t), result in damping of the collective excitations. These are finite temperature

effects. Sec. 2.2.3 touches upon some of the commonly observed damping mechanisms

in BEC experiments.

The stationary solutions of ψ(r, t) are obtained by considering the form ψ(r, t) =

ϑ(r) exp(iµt/h̄), where ϑ depends only on the spatial coordinate r. This gives the time-

independent GP equation

[
− h̄2

2m
∇2 + V (r) + g|ϑ(r)|2

]
ϑ(r) = µ ϑ(r) (2.11)

The first term in Eq. (2.10) and Eq. (2.11) correspond to the kinetic energy, the second

corresponds to the external potential energy V , and the third term is the inter-atomic

interaction energy.

2.2.1 Thomas Fermi Approximation

Eq. (2.11) is not exactly solvable and requires the implementation of numerical

methods. However, for a BEC with large number of atoms and repulsive inter-atomic

interactions (as > 0), the kinetic energy term − h̄2

2m
∇2ϑ(r) can be neglected with respect

to the interaction and potential energy terms. This, known as the Thomas Fermi (T-F)

approximation modifies Eq. (2.11) to

V (r)ϑ(r) + g|ϑ(r)|2ϑ(r) = µ ϑ(r), (2.12)
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which is exactly solvable. The solutions for ψ are given under the T-F approximation are

given by

|ϑ(r)|2 =


µ−V (r)

g
, if V (r) < µ

0, if V (r) > µ,

(2.13)

where |ϑ(r)|2 = n(r) is the volume density.

2.2.2 Collective Excitations: Phonons

As mentioned in Sec. 2.2, a first-order correction to the hamiltonian in Eq. (2.9)

reveals the existence of collective excitations or phonons. In this section, starting from

the time-dependent GP equation, I will show how slight variations of ψ(r, t) leads to

collective excitations, which appear as oscillations in the background condensate density

and phase.

The wavefunction ψ(r, t) can be expressed in terms of the atomic density n(r, t) and

phase φ(r, t) as ψ(r, t) =
√
n(r, t)eiφ(r,t). Substituting this in Eq. (2.10) and comparing

the real and imaginary parts gives the continuity equation

∂n

∂t
+∇ · (nv) = 0, (2.14)

and an equation analogous to Euler equation of fluid dynamics,

m
∂v

∂t
+∇

(
1

2
mv2 + µ̃

)
= 0, (2.15)
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where the velocity of the condensate v of the condensate is defined as v = (h̄/m)∇φ, and

µ̃ = V + gn− h̄2

2m
√
n
∇2
√
n. (2.16)

The term ∝ h̄2

2m
√
n
∇2
√
n in Eq. (2.16) depends on spatial variations in the BEC density

and is known as the ‘quantum pressure’ [33]. It arises due to the kinetic energy term of

the GP equation. Neglecting this is equivalent to the T-F approximation, as described in

the previous section. Collective excitations can be expressed as small variations of the

density n, as

n(r, t) = n0(r, t) + δn(r, t), (2.17)

where δn are small fluctuations about the background condensate density n0. Linearizing

Eq. (2.14) and (2.15) with (2.17) and treating δn and v as small, gives the following set

of coupled differential equations.

∂ δn

∂t
+∇ · (n0v) = 0 (2.18)

m
∂v

∂t
+∇δµ̃ = 0. (2.19)

where δµ̃ is obtained by linearizing µ̃. Differentiating Eq. (2.18) and substituting the

value of ∂v/∂t from Eq. (2.19), we get

m
∂2 δn

∂t2
= ∇ · (n0∇ δµ̃) (2.20)

Under the T-F approximation, the quantum pressure term in Eq. (2.16) can be neglected.

11



Furthermore assuming |∇n0| << |∇ δn|, Eq. (2.21) can be expressed as

∂2 δn

∂t2
= ∇ · (c2∇ δn) (2.21)

where c2 = gn0/m. Eq. (2.21) is a wave equation representing sound waves or phonons

propagating in the BEC with a local velocity c(r) which depends on the local density

n0(r).

2.2.3 Damping of Low-energy Excitations

Starting from the mean-field time-dependent GP equation (Eq. (2.10)), Sec. 2.2.2

derives the propagation of collective excitations as solutions to an undamped wave equation

(Eq. (2.21)). Due to absence of a damping term (∝ ∂ δn/∂t) in Eq. (2.21), one expects

the phonons to be long lived. However, collective excitation in a finite temperature BEC

always damp with time [39, 46, 47]. To understand the mechanisms of phonon decay, we

need to look beyond the mean-field GP approach and consider interactions between the

different collective and thermal excitations. Eq. (2.9) describes the time-evolution of the

condensate. A full solution to Eq. (2.9) would involve coupling between the different

excitations, which becomes apparent as one retains terms proportional to Ψ̂′3(r, t) and

Ψ̂′4(r, t) in the hamiltonian H [33, 46]. The system could no longer be described as a

closed system and finite temperature effects need to be considered.

Two mechanisms for phonon decay in BECs are Landau [46] and Beliaev [48]

damping. While Beliaev damping is four-wave mixing process where an elementary

excitation decays into two or three lower energy excitation, Landau damping results from
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the interaction of phonons with thermal excitations. Since the available final state phase-

space is very restricted for low-energy initial excitations, Beliaev damping is usually not

the dominant mechanism. Landau damping occurs due to scattering of a low energy

phonon with thermal excitations , which leads to phonon creation or anhilation. This

form of damping depends on the temperature and arise due to presence of thermal atoms

in the system.

In the next chapter, I will describe how collective excitations in a BEC can be

used to simulate analogous systems for studying cosmological phenomena. The concepts

developed in this chapter will be useful in establishing the analogy between fields in

cosmology and phonons in a moving BEC.
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Chapter 3: Analogue Gravity

The broad goal of analogue gravity experiments is to mimic cosmological processes

involving general relativity and field theory in controllable systems [49, 50]. The genesis

of this field can be traced back to Unruh’s seminal paper [51] from 1981, where he

established an analogy between fields at a black hole event horizon and sound waves in a

moving fluid. His focus was to study mechanisms and assumptions involved in Hawking’s

prediction of black hole evaporation [52, 53]. Since the experimental investigation of

Hawking radiation is virtually impossible, developing analogous systems to study quantum

thermal radiation could improve our understanding of the evaporation process at trans-

Planckian length scales, where many of Hawking’s assumptions might not hold.

Unruh argued that analogous to light at a black hole event horizon, sound waves

with speed cs traveling in a fluid flowing at supersonic velocities v > cs will not be able

to travel upstream. Fig. 3.1 schematically illustrates this idea by displaying the time-

evolution of acoustic wavefronts on a 2D space as the fluid velocity v and sound speed

cs are varied. The colored circles represents acoustic wavefronts on the ex − ey spatial

plane. The different colors correspond to different times, as indicated by the color bar

to the left. Fig. 3.1 (a) shows the time evolution for four different values of the fluid

velocity v with the same speed of sound cs across all four situations. The horizontal axis
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Figure 3.1: A moving fluid creating an acoustic horizon when supersonic flow avoids
upstream movement of sound waves. The colored circles represent time-evolution of
acoustic wavefronts in the fluid space-time. ex − ey plane represents spatial coordinates.
Time is expressed in different colors according to the color bar to the left. The vertical
red lines denotes the sonic horizon. (a) and (b) depict how the wavefront time-evolution
changes with varying fluid velocity v and sound speed cs, respectively.

represents the control parameter v. The leftmost ex − ey panel in Fig. 3.1 (a) corresponds

to v = 0, where acoustic waves expand uniformly in all directions. However, as the

fluid attains a non-zero velocity, this is no longer true. Beyond the sonic horizon (vertical

red line), where the fluid velocity equals the speed of sound, the acoustic waves can no
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longer travel upstream, creating causally disconnected regions in the fluid space-time.

Fig. 3.1 (b) shows a similar situation where the fluid velocity v is the same across all the

panels, but the speed of sound cs is varied. Here the panels are in reverse order because

now the region left of the red line represents supersonic behavior. In this chapter I will

introduce the idea of simulating cosmological phenomena in BECs and formally establish

the analogy in terms of a wave equation in curved space-time.

3.1 Previous Experiments

Due to their high degree of quantum coherence and ease of control and manipulation,

BECs were always considered a promising candidate for developing Unruh’s sonic analogues

of Hawking radiation. Early proposals for BEC analogues involved creating sonic horizons

in long and thin quasi 1D condensates by explosively expanding them or tuning interactions

via Feshbach resonances [54,55]. In addition, several proposals involved the implementation

of the de Laval nozzle in linear traps to obtain regions of supersonic and subsonic flows in

the same condensate, thereby creating a sonic horizon [21,56–58]. A detailed description

of the proposed de Laval nozzle implementation can be found Ref. [56]. Despite these

theoretical proposals, major experimental progress wasn’t made until 2010, when Jeff

Steinhauer’s group realized a sonic black hole for the first time in a BEC [59]. By

accelerating an elongated harmonically-trapped BEC across a step-like potential (also

called “waterfall potential”), they achieved fluid velocities an order of magnitude greater

than the speed of sound. This resulted in the creation of black and white hole horizons in

the same condensate, which they exploited in later experiments to observe self-amplifying
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Hawking radiation [23] and spontaneous Hawking radiation [24, 60].

Apart from simulating Hawking radiation, several BEC experiments have exploited

the sonic analogue for simulating other cosmological phenomena. Notable among them

is the observation of Sakharov oscillations, where synchronously generated sound waves

were created by quenching the atomic interactions via Feshbach resonances [22]. Another

interesting experiment was the observation of sonic analogue of dynamical Casimir effect,

which was performed by modulating the density of a BEC [61]. The goal of our experiments

is to simulate cosmological phenomena associated with the inflationary dynamics of the

early universe. In particular, we wish to study the evolution of scalar fields in expanding

and contracting universes. We use a toroidally shaped BEC, which serves as our analogous

universe. We expand and contract our BEC universe by dynamically varying the radius of

the toroid during an experiment. Such a toroidal BEC has azimuthally traveling collective

phonon modes, which serve as our fluctuating scalar fields. These phonon modes can

be created either by intentionally imprinting them or they could also be spontaneously

generated. Our experiments study the evolution of these phonon modes as the BEC

universe is expanded or contracted.

3.2 BEC Phonon Wave Equation and the Space-time Metric

Unruh’s analogy relies on the condition that acoustic scalar fields satisfy the wave

equation in curved space-time. Formally the geometric and causal structure of space-time

is expressed in the form of metric tensors. For Unruh’s analogy to hold, the metric tensor

associated with acoustic waves in fluids should algebraically depend on sound speed and
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the medium’s velocity. Ref. [49] derives the metric related to the phonon field in a BEC.

This section follows that derivation and show that the phonon’s metric represents a curved

space-time.

The time evolution of a BEC wavefunction ψ(r, t) is given by the time-dependent

GP equation, given by Eq. (2.10). We re-write the equation here.

− h̄2

2m
∇2ψ(r, t) + V (r)ψ(r, t) + g|ψ(r, t)|2ψ(r, t) = ih̄

∂ψ(r, t)
∂t

, (3.1)

m is the atomic mass, V (r) is the external potential and g is the GP interaction constant.

The wavefunction can be expressed in terms of the atomic density n(r, t) and phase φ(r, t)

as ψ(r, t) =
√
n(r, t)eiφ(r,t). Substituting this in Eq. (3.1) and comparing the real and

imaginary parts gives the continuity equation

− ∂n

∂t
=

h̄

m
∇ · (n∇φ), (3.2)

This equation is same as Eq. (2.14) with v replaced by (h̄/m)∇φ. We also obtain an

equation analogous to Euler equation of fluid dynamics,

− h̄∂φ
∂t

= − h̄2

2m
√
n
∇2
√
n+

h̄2

2m
(∇φ)2 + V + gn. (3.3)

Since we are dealing with only low-energy and long-wavelength collective excitation, the

relevant length scales are larger than the healing length ξ = h̄/
√
mgn. As a result the

first term in Eq. (3.3) can be neglected, resulting in the hydrodynamic approximation. We
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express the condensate density and phase as

n(r, t) = n0(r, t) + δn(r, t), and φ(r, t) = φ0(r, t) + δφ(r, t), (3.4)

where δn and δφ are small fluctuations about the background condensate density n0 and

phase φ0. Linearizing Eq. (3.2) and (3.3) with (3.4) gives the following set of coupled

differential equations.

∂ δn

∂t
= − h̄

m
∇ · [n0∇δφ+ δn∇φ0] (3.5)

− h̄∂ δφ
∂t

=
h̄2

m
∇φ0 · ∇δφ+ g δn− h̄2

2m
D̂2 δn, (3.6)

where D̂2 represents a second order differential operator. By substituting the value of

δn from Eq. (3.6) into Eq. (3.5), we obtain a partial differential equation (PDE) for δφ.

This PDE can be expressed in terms of the (3+1) dimensional space time coordinates

xµ ≡ (t;xi) as

∂µ(fµ,ν ∂ν δφ) = 0, (3.7)

where the tensors fµ,ν are given by

f 0,0 = −
[
g − h̄2

2m
D̂2

]−1

f 0,j = −
[
g − h̄2

2m
D̂2

]−1
h̄

m
∇j φ0

f i,0 = − h̄
m
∇i φ0

[
g − h̄2

2m
D̂2

]−1

f i,j =
n0 δ

i,j

m
− h̄

m
∇i φ0

[
g − h̄2

2m
D̂2

]−1
h̄

m
∇j φ0

(3.8)
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The acoustic compton wavelength λc = h̄/mcs sets a lower limit on the length scale

of the problem, where cs =
√
gn/m is the speed of sound. Since λc corresponds to

the BEC healing length ξ, the contribution of the second order differential operator D̂2

can be neglected as is done in the Thomas-Fermi (T-F) approximation. The tensors fµ,ν

can now be represented by just numbers. By introducing a tensor gµ,ν which satisfies

√
−g gµ,ν = fµ,ν , Eq. (3.7) can be expressed as

1√
−g

∂µ(
√
−g gµ,ν ∂ν δφ) = 0, (3.9)

where g is the metric gµ,ν’s determinant. This effective metric gµ,ν describes a curved

Lorentzian geometry. The effective wave equation (3.9) for the scalar field φ is analogous

to that observed by a massless scalar field over curved space-time. It is important to note

that even though the underlying fluid motion is Newtonian and non-relativistic with a

space-time metric ηµ,ν ≡
(
diag[−c2

light, 1, 1, 1]
)
µ,ν

, the phonon scalar field φ evolves on a

curved space-time given by the metric gµ,ν . This establishes an analogy between phonons

in a flowing BEC and scalar fields in the curved space-time of the universe.

3.3 Wave Equation in a Toroidal BEC

The previous section dealt with deriving the wave equation for phonons in a BEC

of arbitrary geometry. For our analog cosmology experiments, we use a toroidally shaped

BEC. This section focuses on that and derives the corresponding wave equation. It is

based on Ref. [62] which derives the wave equation starting from the action of the GP

equation and then applying Hamilton’s principle of least action. Ref. [62] represents the
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action of the GP equation S for a condensate with density and phase variations given by

Eq. (3.4) in the T-F approximation. The resultant action can be expressed as

S =
h̄2

2g

∫
dt d3x

√
h

[[
∂

∂t
+∇φ · ∇δφ

]2

− c2hij
∂ δφ

∂xi

∂ δφ

∂xj

]
, (3.10)

where hij is the eucledian metric, such that hijxixj is the spatial line element and h =

det(hij). When applied to co-moving cylindrical coordinates (ρ, θ, z), such that ρ =

r −R(t), where R(t) is the time-varying mean radius, Eq. (3.10) becomes

S =
h̄2

2g

∫
dt dθ dz dρ (R(t) + ρ)[[(

∂

∂t
+∇ρφ

∂

∂ρ
+∇zφ

∂

∂z

)
δφ

]2

− c2hij
∂ δφ

∂xi

∂ δφ

∂xj

]
.

(3.11)

Since we are concerned only with the low-energy azimuthal excitations, Eq. (3.11) is

integrated along the radial (ρ) and azimuthal (θ) directions. This gives

S =
h̄2

4πg

∫
dt dθ V

[(
∂ δφ

∂t

)2

− c2
θ

R2

(
∂ δφ

∂θ

)]
, (3.12)

where the volume of the condensate V and azimuthal speed of sound cθ is given by

V = 2π

∫
dz dρ (R + ρ), and c2

θ =
2πR

V

∫
dz dρ

c2

1 + ρ/R
. (3.13)

Note that the term containing ρ doesn’t contribute to V because of its odd symmetry.

Under a thin ring approximation (ρ/R << 1) it doesn’t contribute to cθ as well. By

applying Hamilton’s principle of least action to the action in Eq. (3.12), we get the wave
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equation (
∂2
t +
V̇
V
∂t −

c2
θ

R
∂2
θ

)
δφ = 0. (3.14)

Eq. (3.14) describes the evolution of scalar fields in a toroidal BEC. The term proportional

to the change in volume V̇
V is analogous to the cosmological phenomenon of Hubble

friction which is responsible for exponentially attenuating scalar fields in an expanding

universe. In Chapter 6, I will discuss an experiment where we exploit this analogy and

simulate Hubble friction in a toroidally shaped BEC.
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Chapter 4: Experimental Apparatus

Every successful run of our experiment involves cooling gaseous sodium atoms to

quantum degeneracy, shaping them using arbitrary two-dimensional (2D) Optical Dipole

Traps (ODT), and acquiring data by directly imaging the atomic sample. In this chapter,

I will describe the apparatus we built to perform the above steps. Compared to the

previous version of this experiment at NIST, we made significant modifications in this

setup. The NIST experiment used a glass cell, but we designed this experiment using

a stainless steel vacuum chamber. Fig. 4.1 shows a Computer Aided Design (CAD)

diagram of our vacuum chamber. It consists of a source and science chamber maintained

at high and ultra-high vacuum, respectively. Atoms are pre-cooled in the source chamber

in a 2D Magneto-Optical Trap (MOT). Design details of our 2D MOT are covered in

Chapter 5. As shown in Fig. 4.1, the pre-cooled atoms are then transferred from the source

to the science chamber using a push beam. I will first give an overview of the vacuum

system, then describe the laser cooling setup, followed by a detailed description of the

optical system design used for creating arbitrary shaped quasi 2D BECs. Finally, I will

examine some of the imaging challenges particular to our experiment and our techniques

to overcome them.

23



Push Beam

Science Chamber

Source Chamber
(2D MOT)
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Figure 4.1: Schematic of the vacuum chamber. The source chamber, science chambers,
and the sodium oven are indicated. The blue circle points to the location of the differential
pumping tube, with the inset showing a schematic of the tube. The yellow line indicates
the push laser beam used for transferring atoms from the source to the science chamber.

4.1 Vacuum Chamber

In the absence of vacuum, atoms collide with air molecules gaining enough energy

to escape their trapping potentials. This problem worsens if the traps are shallow, as is

often the case in ultracold atom experiments, our final ODTs being less than 1 µK deep.

Moreover, in our experiments, we attain quantum degeneracy by forced evaporation in a

24



magnetic and optical dipole traps. The efficiency of this technique relies on having long

vacuum-limited trap lifetimes. Because of these reasons, quantum degenerate gases can

only be produced in Ultra High Vacuum (UHV) conditions.

We perform our experiments in a stainless steel UHV chamber pumped with getter,

ion, and titanium sublimation pumps. Since we plan on adding highly magnetic Erbium

(magnetic moment 7 µB) to this system, the chamber is custom-made by Kimball Physics

with non-magnetic 316L stainless steel. The vacuum chamber is divided into two sections,

source and science chamber, as shown in Fig. 4.1. The source section contains the atomic

source, which is heated to about 250 °C, to obtain a vapor of sodium atoms. Given

the metal outgassing at these temperatures, maintaining UHV conditions is not possible.

Therefore we separate the source section from the science chamber using a differential

pumping tube. Fig. 4.1 denotes the location and shows a schematic of the differential

pumping tube. Fig. 4.2 is a mechanical drawing of the tube’s cross section. The source

side is maintained at a pressure of about 10−8 torr while the science chamber is maintained

at 1.2 ×10−10 torr. Due to its small conductance, the differential pumping tube can hold

this pressure differential in steady state. We monitor these pressures with two Agilent

UHV 24P ion gauges, one on the source chamber and the other on the science chamber.

The science chamber is pumped using a SAES D-500 getter and a Gamma Vacuum 45S

ion pump in steady-state. In addition, we have a titanium sublimation pump which is

occasionally activated to counter a gradual increase in the science chamber pressure. On

the source side, pumping is achieved using a SAES D-100 getter pump.

Gases adsorbed in the metallic chamber limit the vacuum’s quality. Therefore,

while constructing this chamber, we baked it in two stages. First, we performed a week-
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Figure 4.2: Cross-section of the differential pumping tube.

long high-temperature bake at 400 °C without any vacuum viewports. This was performed

in a kiln while a turbo pump pumped out most of the adsorbed hydrogen. The second

stage was a month-long bake with the vacuum viewports at around 180 °C to outgas water

vapor absorbed in the chamber walls. This brought the pressure down to low 10−8 torr.

After the two bakes, we activated the getter and ion pumps which decreased the pressure

to 2.8 ×10−10 torr, followed by titanium sublimation pump activation, which achieved

1.2 ×10−10 torr. The goal of maintaining UHV in the science chamber is to minimize

collisions of cold atoms with air molecules. Therefore, the vacuum limited lifetime of an

atomic trap serves as a metric to quantify experimental limitations. We measure the drop

in atom number in a magnetic trap as a function of the hold duration and measure the

lifetime to be 23 s.

4.2 Laser Frequency Stabilization

In our experiment, we perform laser cooling of 23Na atoms along the D2 line

of atomic sodium. Fig. 4.3 shows the various hyperfine levels of the sodium ground
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Figure 4.3: Energy levels for the 23Na D2 transition [2]. The yellow and green lines
indicate the cooling and repump transitions separated in frequency by 1.7 GHz.

state
∣∣32S1/2

〉
and the excited state

∣∣32P1/2

〉
corresponding to the D2 transition [2]. We

perform Doppler and sub-Doppler cooling along the
∣∣32S1/2, F = 2

〉
to
∣∣32P1/2, F

′ = 3
〉

transition with laser light at 589 nm, as shown by the yellow line in Fig. 4.3. To recycle the

atoms which spontaneously decay from the excited state into the F = 1 ground state, we

add a repump beam corresponding to the
∣∣32S1/2, F = 1

〉
to
∣∣32P1/2, F

′ = 2
〉

transition,

as shown by the green line in Fig. 4.3. This beam is roughly 1.7 GHz blue detuned to the

cooling line.

For laser cooling, we use two commercial Toptica DL-Pro 589 nm laser systems,

one at the cooling transition and the other at the repump transition. Fig. 4.4 shows

a schematic of these commercial lasers [3]. It consists of an External Cavity Diode

Laser (ECDL) followed by a Tapered Amplifier (TA) and a Second Harmonic Generation

(SHG) crystal in a ring cavity. The diode emits light in the infrared (IR), which upon
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Figure 4.4: Schematic of the optical setup inside the Toptica DL-pro laser [3]. The inset
shows a magnified view of the ECDL, indicating the piezo actuated grating, which can be
externally controlled via the voltage Vpiezo.

amplification through the TA, is frequency-doubled to 589 nm. The ECDL has a piezo

actuated diffraction grating in the Littrow configuration, as shown in the inset of Fig. 4.4.

To control the laser frequency, we provide a feedback signal to this piezo and the diode

current. The overall feedback signal is represented by Vpiezo

The linewidths of the two Toptica DL-Pros lasers is about 2π 30 kHz, estimated

by a self heterodyne measurement with 2 km long optical fiber and an Acousto Optical

Modulator (AOM). Though these linewidths are much smaller than the 2π 9.8 MHz

natural linewidth of the sodium D2 line, the lasers have a long-term frequency drift of

0.8 MHz over 30 minutes, measured on an Angstrom WSU2 wavemeter. To correct

these drifts, we feedback the cooling transition Toptica laser and lock it to the D2 line

obtained via Saturation Absorption Spectroscopy (SAS). Fig. 4.5 is a schematic of the
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Figure 4.5: Optical schematic of the SAS setup. The yellow lines indicate light from a
Toptica DL-pro laser which is first upshifted by 150 MHz and then split into pump and
probes. The signal from a balanced photodetector, as shown in the rectangular box, is
sent to a lock-in amplifier.
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(a) SAS lock feedback loop (b) SAS signals

Figure 4.6: (a) Lock-in scheme to obtain the derivative of the SAS absorption signal VPD.
The blue and purple lines represent VPD and the derivative signal Vlockin respectively. The
dashed box indicates the components of a lock-in amplifier. The local oscillator is a
Voltage Controlled Oscillator (VCO) that drives the AOM. The servo generates the signal
Vpiezo to control the laser frequency. (b) VPD and Vlockin indicated in blue and purple,
respectively.
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SAS setup. We perform SAS on the crossover of the
∣∣32S1/2, F = 2

〉
to
∣∣32P1/2, F

′ = 2
〉

and
∣∣32S1/2, F = 2

〉
to
∣∣32P1/2, F

′ = 3
〉

transitions. Light from the bare laser is up-

shifted by double passing through a 75 MHz AOM and then sent to the vapor cell heated

to 150 °C. This beam is split into two low-intensity 40 µW probe beams and a 1.1 mW

pump beam. One of the probe beams is used to obtain a Doppler-free signal. The other

probe is subtracted from the Doppler-free signal to eliminate the Doppler broadened dip

on a balanced photodetector. The Doppler-free spectroscopy signal VPD thus obtained is

shown in the inset of Fig. 4.5. This signal is symmetric about the transition, and therefore,

does not give any information about which direction the piezo voltage needs to be driven

to correct the drift. However, the phase of the electric field associated with the transmitted

probe has odd symmetry about the atomic resonance. To extract this phase information,

we perform frequency modulation of the SAS laser beam and use a lock-in amplifier

to get a signal proportional to the derivative of the SAS absorption signal Vlockin [63].

Fig. 4.6 shows a schematic of the frequency modulation and lock-in scheme used. For

the frequency modulation, we dither an AOM at a modulation frequency of 50 kHz. Once

the cooling laser is locked to the atomic transition, the repump laser is beatnote locked

to the cooling laser in a master-slave configuration. Light from the two locked lasers

is frequency shifted using AOMs and then sent to the experiment table via single-mode

optical fibers. Tab. 4.1 lists the frequency and intensities of the different beams used to

address the atoms.
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Table 4.1: Detunings and intensities of the different laser cooling beams. For the first
five entries, detunings are from the cooling transition. For the last three entries, detunings
are from the repump transition. For reference, the saturation intensity for the cooling
transition is Isat = 6.26 mW/cm2

Laser Beam Detuning from transition
(MHz)

Intensity (mW/cm2)

2D MOT cool -12 0.98
3D MOT cool -16 1.13
Zeeman Slower(ZS) -219 20
Push +9 9
Polarization Gradient
Cooling (PGC)

-39 to -16 1.13

2D MOT rep. -8 30
3D MOT rep -8 3
Spin Polarization -26 0.005

4.3 Optical Dipole Traps

We use three far-detuned laser beams to generate ODTs for our experiment. Fig. 4.7

shows the propagation of the three ODT beams with respect to the science chamber. One

of them is red-detuned to the atomic transition and is used for evaporative cooling. The

other two are blue-detuned and are used in combination to trap atoms in arbitrary 2D

potentials. The subsections below discuss the optical setup for all three laser beams.

4.3.1 Red-detuned Optical Dipole Trap

We use a red-detuned ODT for evaporatively cooling atoms to quantum degeneracy.

The forced evaporation scheme will be discussed in Chpt. 5. For this ODT, we use a

1064 nm single beam from an IPG ‘YLR30-1064-LP-SF’ Ytterbium fiber laser. 10 W

of 1064 nm power is fiber-coupled into an NKT Photonics ‘aeroGUIDE 15 PM SMA-
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Figure 4.7: Propagation of ODT beams in the science chamber. The main figure shows
the red-detuned ODT propagating along positive ex and being focused down at the center
of the chamber. The blue-detuned sheet ODT propagates along positive ey. The inset
shows beam propagation on the ey − ez plane. The blue-detuned DMD ODT propagates
along negative ez. Gravity acts along negative ez.

905’ photonic crystal fiber and sent to the experiment table. The light out of the fiber is

collimated into a 800 µm beam using a LMH-10X-1064 microscope objective with 10×

magnification and 0.25 numerical aperture. A 1:5 telescope expands the beam into a 4

mm waist, which is then focused by a 300 mm focal length spherical lens into a beam
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waist of w0 = 25 µm at the plane of the atoms.

4.3.2 Blue-detuned Optical Dipole Trap

Our experiments rely on creating arbitrary shaped 2-dimensional ODT. For this, we

use two blue-detuned lasers beams from a 532 nm IPG GLR-30 fiber laser. Blue-detuned

laser beams create repulsive potentials and can achieve smaller diffraction limited spot

sizes dspot. The diffraction limited spot size is given by dspot = πλ/NA, where λ is

the wavelength and NA is the numerical aperture of the optical system. Due to their

smaller wavelength, blue-detuned ODTs allow us to achieve tighter confinements than

red-detuned light. One of the two 532 nm beams is used for vertical confinement (along

ez) and the other for confinement on the horizontal plane (ex − ey). Fig. 4.8 shows

a schematic of the optical system used for vertical confinement. With the help of a

cylindrical lens, two spherical lenses, and a π phase plate, we shape the TEM00 mode out

of a single-mode SM460 optical fiber into an elongated TEM01 mode, providing sheet-like

confinement for atoms in between the two lobes of the TEM01 mode. The vertical width of

this sheet trap is about 9 µm at the focus of the final lens L3. For the planar confinement,

we project arbitrary patterns from a Digital Micrometer Device (DMD) onto the plane of

atoms through an objective lens stack [64], as shown in Fig. 4.10 (a). The two beams are

slightly shifted (≈ 10 MHz) in frequency to avoid any interference effects. Together, they

provide arbitrary shaped quasi 2D confinement for BECs.

33
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(c) Collimated beam
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Figure 4.8: Schematic for the sheet trap optical setup. Blue-detuned laser light from
a single-mode fiber is collimated and propagated through lenses L1, L2, L3 and a π
phase plate along the ey direction. (a) and (b) shows the beam profile in the ez − ey
and ex − ey planes, respectively. Figures (c) and (d) show the simulated ez − ex beam
intensity profiles at indicated Y positions, with ez along the vertical axis and ex along the
horizontal. The color bar encodes the relative beam intensity for figures (c) and (d). The
atoms, as depicted by the yellow dots, lie close to the front focal plane of lens L3. Gravity
acts along negative ez.

4.3.2.1 Vertical Confinement

The sheet trap is generated using a cylindrical (L1) and two spherical lenses (L2

and L3) and a π phase plate placed at positions, as indicated in Fig. 4.8. The TEM00 beam

from a single-mode fiber is first collimated into a uniform beam with a 1/e2 diameter of

1360 µm. This then passes first through the cylindrical lens L1 followed by the spherical

lens L2. L1 and L2 together form a telescope along the vertical direction ez thereby

magnifying the vertical beam waist by |f2/f1| = 7.5, where f1 =-40 mm is the focal

length of L1 and f2 =300 mm is the focal length of L2. As a result, the beam at L2’s front

focal plane has a vertical waist wz = 5.1 mm, while the horizontal waist gets focused

down to a small spot. This elongated beam passes through a π phase plate, which adds
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Figure 4.9: Simulations exploring slight vertical misalignment between laser spot and π
phase plate. The top panel is a schematic depicting the relative vertical distance between
the laser spot and the π phase plate. The elongated beam has a 1/e2 beam waist of
5 mm on a phase plate of clear aperture radius 25 mm. The middle panel shows the
ez − ex intensity profile of the beam at the front focal plane of L3. The color bar encodes
the relative beam intensity for the middle panel. The bottom panel is a vertical cut-out
showing the intensity profile along the ez axis from the middle panel. (a), (b), and (c)
correspond to 0, 3, and 5 mm misalignments, respectively.

a π phase difference between its top (Z > 0) and bottom (Z < 0) halves [40]. Finally,

the beam goes through the final lens L3 of focal length f3 =200 mm. L2 and L3 form a

telescope for the beam along ex, while it focuses the ez waist into a tight spot. Exploiting

the Fourier transform property of lenses, the beam’s intensity pattern is determined at the

front focal plane of L3, as shown in Fig. 4.8 (d) and Fig. 4.9 (a).

The bottom panel of Fig. 4.9 (a) shows that along Z, the intensity has a minimum

at z = 0, thereby providing vertical trapping. However, along the beam propagation

35



direction ey, the TEM01 intensity gradient introduces a not-so-intuitive antitrapping potential,

which pushes the atoms away from the focus of the imaging system. Even though the

dipole trap potential along the ey axis is zero, atoms trapped away from the ey axis

experience an intensity gradient along ey, pushing them away from L3’s front focal plane.

This problem is further exacerbated by slight misalignment in the beam shaping optics.

Fig. 4.9 is a simulation of how small misalignments in the π phase plate relative to the

beam center can result in blue-detuned light leaking into the dark regions of the sheet trap.

As evident from these simulations, a 3 mm misalignment can cause significant distortions

to the trapping potential. In our experiment, we use a phase plate with a radius of 25 mm.

It is challenging to center this π phase plate on the 5 mm (1/e2 radius) elongated beam to

better than 1 mm. Because of these reasons, our final system has some antitrapping, not

allowing us to place the BEC at the focus of the sheet trap. Instead, we place the BEC at

about a Rayleigh length away from the focus where the antitrapping force is not strong

enough to significantly distort the homogeneity of the sheet BEC. Since we do not sit at

the beam focus, the resulting trap frequencies are smaller for a given laser power. Taking

inspiration from [65], we plan to add a red detuned dipole trap to compensate for this

antitrapping potential in future designs.

4.3.2.2 Planar Confinement

For the 2D planar confinement, we use a Texas Instrument DLP7000 DMD. It has

a 1024 × 768 array of individually addressable aluminum micromirrors arranged over a

rectangular grid. The DLP7000 has a micromirror pitch of 13.68 µm and a maximum
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Figure 4.10: (a) Schematic of the DMD optical setup. Po and Pi refer to the DMD and
atom planes, respectively. The purple lines are rays representing imaging of the DMD
pattern onto the plane Pi. The blue lines indicate the spatial profile of the collimated
laser beam as it travels through the optics. (b) DMD being used as a binary amplitude
grating. The top panel shows binary patterns imprinted onto the DMD plane Po. The dark
and bright regions represent micromirrors in the OFF and ON positions, respectively.
The bottom panel shows the resultant atomic density distribution on the atom plane Pi.
(c) DMD being used as an analog amplitude grating using halftoning. The right panel
shows the overlap between the images of adjacent DMD pixels when projected through
the imaging system. The right panel shows halftoning implemented in our system.

pattern projection rate of 32 kHz, allowing for a fast dynamic display of patterns essential

for our experiments. This is in contrast to phase Spatial Light Modulators (SLM) which

have a maximum update rate of a few hundred hertz, making them too slow for our

purposes. Fig. 4.10 (a) shows a schematic of the optical imaging system used for the

projection of DMD patterns. These micromirrors are bi-stable, limiting the DMD to a

binary amplitude grating, as shown in Fig. 4.10 (b). However, one can perform analog
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modulation of the dipole trap beam’s spatial intensity profile using halftoning techniques.

Fig. 4.10 (c) shows how halftoning exploits the limited resolution of the projection optics

to create continuous gradients of intensity. Due to the finite size of the Point Spread

Function (PSF), the projection of the individual DMD pixels overlaps, creating a continuous

gradient in intensity. We use the Jarvis Halftoning algorithm [66] to choose the appropriate

binary DMD patterns to achieve this.

Since the DMD is a 2D array of micromirrors, it acts as a diffraction grating.

Therefore, care needs to be taken while aligning the DMD optics, to maximize the laser

power in only one of the diffraction orders. In our system, the blaze condition is achieved

for a 42° incidence angle with respect to the DMD surface. This reflects the first order at a

66° angle. Given our space constraints, such steep angles makes aligning optics difficult.

Since we are not starved for 532 nm laser power, we do not operate the DMD in the blaze

condition but at a 24° incidence angle which results in a reflection normal to the DMD

surface. The normal reflection additionally ensures that the DMD pattern is normal to the

optical axis of the imaging system, as shown in Fig. 4.10 (a).

4.4 Imaging

In ultracold atom experiments, observations are made by directly imaging the atomic

sample. Our experiments rely on the accurate estimation of the in-situ column density

n2D(x, y). These column densities are typically obtained via absorption imaging, where a

probe laser beam with detuning δ is made to pass through the atomic sample. The atomic

sample with a volume density n(x, y, z) absorbs the probe light, resulting in a decrease in
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the transmitted intensity I(x, y, z) given by the Beer-Lampert’s law [42, 67]

dI

dz
= −n σ0

I

1 + I/Isat + (2δ/Γ)2 , (4.1)

where Isat is the saturation intensity, Γ is the natural linewidth, and σ0 is the absorption

cross section. We perform resonant absorption imaging between the stretched states of∣∣32S1/2, F = 2
〉

and
∣∣32P1/2, F

′ = 3
〉

levels using a σ− polarized probe. As a result, δ =

0, and σ0 = 3λ2
0/2π, where λ0 is the resonance frequency of the transition. Integrating

Eq. (4.1) along ez gives

n2D(x, y) σ0 = − ln

(
Ia

Ip

)
+
Ip − Ia

Isat

, (4.2)

where n2D(x, y) =
∫
n(x, y, z) dz is the column density, Ip(x, y) and Ia(x, y) are the

cross-sectional probe intensities before and after absorption, respectively. We use Eq. (4.2)

to estimate the column density n2D. The optical density (OD) is defined as OD = n2D(x, y) σ0.

Typically, the intensities Ia and Ip are measured by capturing the probe intensities in the

presence and absence of atoms. Since Ia and Ib are measured in terms of the camera’s

photoelectron counts, Isat is calibrated in the same units as well.

4.4.1 Partial Transfer Absorption Imaging

As evident from Eq. (4.2), the transparency of the atomic cloud has a non-linear

dependence on the atomic density (n or n2D). Consider the situation of resonant (δ =

0) absorption imaging when Ip << Isat. The transmitted probe intensity Ia decreases
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Figure 4.11: Partial Transfer Absorption Imaging. (a) The atomic levels involved in
imaging the atomic sample. The inset shows a magnified view of the transitions induced
by microwaves. The splitting in the hyperfine levels of the ground state is caused by a
constant magnetic field applied throughout the experiment. (b) Rabi oscillations for the
transition |F = 1,mF = −1〉 to |F = 2,mF = −2〉. (c) Smith chart for the impedance
matched microwave antenna.

exponentially with an increase in the column density n2D given by

Ia = Ip e
−σ0 n2D . (4.3)

BECs when imaged in-situ have large column densities (σ0 n2D > 4). As a result,

small density variations lead to a negligible change in Ia. Due to the camera’s limited

dynamic range, it is often difficult to resolve small density variations in traditional in-

situ absorption imaging. For our experiments, we excite collective modes in a BEC and

monitor its time evolution. As such, the precision of our measurements relies heavily on

being able to resolve small density perturbations accurately. To this end, we image only
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a fraction of our atomic sample, thus ensuring that we are far away from the saturation

conditon of Eq. 4.3 [68]. While the BEC is prepared in the ground state
∣∣32S1/2, F = 1,mF = −1

〉
,

by applying microwaves pulses close to the sodium clock transition of 1.77 GHz, we

transfer a small fraction (typically 5%) of the atoms to the
∣∣32S1/2, F = 2,mF = −2

〉
state. These atoms are then imaged with a probe beam resonant to the

∣∣32S1/2, F = 2
〉

to
∣∣32P1/2, F

′ = 3
〉

transition. The energy levels and associated transitions are shown in

Fig. 4.11 (a). The microwave pulse duration provides a convenient handle on the fraction

of atoms imaged as shown in Fig. 4.11 (b). This method has the additional advantage of

being minimally destructive, since the atoms which are not transferred to
∣∣32S1/2, F = 2

〉
do not interact with the probe laser.

For exciting these microwave transitions, the old NIST experiment used a half-wave

dipole antenna. Unlike our metallic vacuum chamber, the NIST BEC was produced in a

glass cell. Switching from a glass cell to a metallic chamber poses two problems. First,

metal surfaces alter the radiation pattern of an antenna. Second, a dipole antenna needs

to be placed farther from the atoms than in a glass cell due to the chamber’s geometry.

As a result, with the NIST half-wave dipole antenna and a 10W amplifier (ZHL-10W-

2G+), we obtained an order of magnitude smaller rabi frequency, therby making our

experiment sensitive to decoherence effects due to electronic noise on our bias magnetic

fields. The solution to this problem would be a more directional source of microwaves.

Commercial horn antennas have excellent directional properties. However, 1.7 GHz horn

antennas, such as the RF-Lambda RW430HORN15A, are much bigger than any of our

chamber viewports. With these limitations in mind, we decided to use a full-wave loop

antenna. This has three advantages. First, a loop antenna can be wound around a viewport,
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thereby not restricting optical access. Second, such an antenna can be placed around our

recessed top or bottom viewports, closer to the atoms. Third, loop antennas are much

more directional than half-wave dipole antennas. Overall, these factors help increase

the radiation intensity at the location of the atoms. We measured a rabi frequency of 5

kHz with the loop antenna, which was five times larger than that with a half-wave dipole

antenna. Fig. 4.11 (b) shows the Rabi oscillations obtained in our experiment with a

full-wave loop antenna. To harness the full power of the microwave amplifier, the loop

antenna was impedance matched to the 50 Ω output impedance of the amplifier, using a

triple stub tuner. Fig. 4.11 (c) is a smith chart of the frequency response of the antenna

after being impedance matched at 1.748 GHz with the stub tuner.

4.4.2 Probe Reconstruction

As described in the previous sub-sections, absorption imaging involves measuring

the cross sectional intensities Ia and Ip using a camera. Fig. 4.12 is a schematic describing

the process. As the probe moves through the atomic sample, atoms absorb light and

cast a shadow on it. The intensity pattern obtained from this image Ia is compared with

the reference intensity pattern Ip, to infer the column density information according to

Eq. (4.2). Therefore, conventional absorption imaging involves acquiring two images1,A

and P for estimating Ia and Ip, respectively.

Ideally, these two images should be identical except for the shadow formed by the

atoms. However, in practice, no two shots are the same. This happens due to many

1A third image is acquired to estimate the background noise, which is then subtracted from the two
primary images.
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Figure 4.12: (a) Schematic of absorption imaging optical setup. The dark field created by
the atoms cast a shadow on the probe.
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0.5

0
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Figure 4.13: Optical densities obtained via absorption imaging without (a) and with (b)
PCA. The gray bar indicates optical densities for both (a) and (b).

reasons, including mechanical vibrations. As a result, due to an inaccurate estimation

of the reference intensity Ip, traditional absorption imaging results in optical densities

with a noisy background, as shown in Fig. 4.13 (a). To get a more accurate estimate
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Figure 4.14: Principal Component Analysis. (a) The variance along each of the principal
components. (b) σA−P as a function of the number of principal components used for
reconstructing the reference image P .

of Ip, we reconstruct the reference image P from A by projecting it onto an eigenbasis

generated by many previously acquired reference images. This basis spans all possible

reference images. We use the orthogonalization technique Principal Component Analysis

(PCA) to convert the set of reference images into an eigenbasis. PCA has the advantage

of sorting eigenvectors in order of decreasing variances such that most of the shot-to-shot

variation is captured by the first few principal components, as shown in Fig. 4.14 (a).

This reduces the dimensionality of the image reconstruction process. For Fig. 4.13, we

have used 45 reference images to generate an eigenbasis. The optical densities obtained

via PCA are less noisy, as shown in Fig. 4.13 (b). For the difference image A − P , we

evaluate the standard deviation across all pixels, as more and more principal components

are included in the reconstruction. This is plotted as σA−P in Fig. 4.14 (b). As evident
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from this plot, the standard deviation saturates by the time seven principal components are

included, thus demonstrating the dimensionality reducing of the reconstruction process.

The higher-order principal components are just one-pixel wide, representing photon shot

noise.
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Chapter 5: Production of BEC

In the previous chapter, I gave a detailed layout of our apparatus and a brief overview

of typical experimental techniques used. This chapter describes the procedure employed

to cool Sodium atoms to Bose-Condensation and further shape the BEC into arbitrary

2D patterns. Like most alkali atoms, Sodium is typically cooled by laser cooling and

forced evaporation techniques. Our experiment employs laser cooling followed by forced

evaporation in magnetic and hybrid magnetic and optical traps. Our new apparatus uses a

2D MOT as a high-flux source of cold sodium atoms, as opposed to the previous version

of this apparatus [4, 38, 39], which used a Zeeman slower. First, I describe our 2D MOT

pre-cooling procedure, followed by the various laser cooling steps in the science chamber.

Then, I detail our forced evaporation scheme, which combines cooling in magnetic and

optical trap to exploit the best of both traps. Finally, I end by describing the steps involved

in efficiently transferring the BEC into a purely optical trap. For each of these procedures,

wherever possible, I provide a time trace of experimental parameters that are critical to

that step.
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Figure 5.1: Flux vs. sodium atomic velocity at different temperatures. The blue, orange
and green curves correspond to 150°C, 200°C, and 230°C, respectively. As a point of
reference, 3D MOT velocities are usually less than 100 m/s.

5.1 2D MOT Source

To start the cooling process, a source capable of producing a high flux of cold

sodium atoms is needed. Since these atoms are eventually captured in a 3D MOT, the 3D

MOT capture velocity (typically less than 100 m/s) sets an upper limit on the temperature

of the captured atoms. To create sodium vapor, solid sodium metal is resistively heated.

The oven temperature determines the flux and velocity distribution of atoms in this vapor.

Fig. 5.1 depicts the flux of gaseous Sodium atoms at three different oven temperatures.

Here, the velocity distribution is determined using the Maxwell Boltzmann function, and

the temperature-dependent vapor pressure of sodium [2], which gives the overall flux.

Fig. 5.1 shows that only a tiny fraction of the atoms effusing out of the oven are within

the 3D MOT capture velocity. As a result, faster atoms need to be cooled before being
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loaded into the 3D MOT.
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Figure 5.2: (a) Schematic of the old NIST experiment [4]. The main chamber is separated
from the sodium source by a long Zeeman slower tube wound by magnetic field coils
creating a space-varying magnetic field. (b) and (c) are two orthographic views of the
2D MOT chamber. The cooling arms cool atoms in the ex − ey plane, as shown in (b).
The push beam pushes atoms into the main chamber along the ez direction, as shown in
(c). Sodium atoms effuse out of the oven in the positive ey direction. The slower beam is
propagated along negative ey. The black bars at the top right and bottom center are scale
bars for (a) and (b)/(c), respectively.

To this end, the previous version of this experiment used a Zeeman Slower [4, 38].

Zeeman Slowers slow faster atoms into a much slower range of velocities by Doppler

cooling along a spatially varying magnetic field [28]. However, they have two significant

disadvantages. First, they are complex and bulky as they have carefully engineered
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electromagnets that span about a meter. Fig. 5.2 (a) shows the Zeeman slower apparatus

used in the NIST lab. Second, the electromagnets require large currents with millisecond

turn-off times, limiting control and detection sensitivities for magnetic field-sensitive

experiments. Since we plan on making a dual-species BEC with Erbium which has

a relatively high magnetic moment (7µ0), a Zeeman Slower is not ideal. Therefore,

in the current version, we have replaced the Zeeman Slower with a 2D MOT [69–71].

Fig. 5.2 (b) and (c) shows a schematic of our 2D MOT setup. The working principle of a

2D MOT is the same as a 3D MOT, with the difference that it cools and traps only along

two dimensions, as shown in Fig. 5.2 (b). Along the third dimension, a blue detuned laser

beam pushes the pre-cooled atoms into the 3D MOT, as shown in Fig. 5.2 (c). We based

our 2D MOT on the design in [71]. Permanent magnets generate a quadrupole magnetic

field with a 36 G/cm linear field at the center of the 2D MOT. A unique feature of the

design in [71] is the introduction of a Zeeman Slower beam which provides additional

Doppler cooling for high-velocity atoms effusing out of the oven. We observe a five-

fold increase in the 3D MOT atom number due to the introduction of this beam. This

beam enters the chamber through a vacuum viewport exactly opposite to the oven, as

shown in Fig. 5.2 (b) and (c). Thus, the window has a direct line of sight with the oven.

At oven temperatures above 170 °C, it gets coated with a layer of shiny sodium metal.

Therefore, we heat the window to a temperature of 150 °C by placing a 3” long and 1”

wide Thorlabs lens tube in front of the window and heat it using resistive heating tapes.

Due to space constraints, our sodium crucible is installed horizontally, thus increasing the

risk of molten sodium migrating to other parts of the chamber. We installed an additional

nozzle between the crucible and the rest of the 2D MOT chamber to avoid this migration.
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5.2 Laser Cooling
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Cooling Beams
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Figure 5.3: Cross-sectional views of the science chamber with the 3D MOT cooling
beams depicted in yellow and quadrupole coils in purple.

Once the atoms are pre-cooled in the 2D MOT, a push beam transfers these atoms

into the science chamber through the differential pumping tube. The push beam is 9 MHz

blue-detuned from the cooling transition to address atoms with positive velocities relative
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to the beam’s wave vector. It is carefully aligned to the differential pumping tube to ensure

that the atoms reach the center of the science chamber, where they are trapped in a 3D

MOT. The push beam is not perfectly collimated but made to diverge slightly so that by

the time it reaches the center of the chamber, its intensity drops enough to not push atoms

out of the 3D MOT. The powers and detunings of the different 2D and 3D MOT beams

can be found in Tab. 4.1.

Fig. 5.3 shows a schematic of our 3D MOT setup. Six circularly polarized laser

beams intersect orthogonally at the center of the science chamber. These 3D MOT

cooling beams are 16 MHz red detuned to the cooling transition and just 1.13 mW/cm2 or

0.18 ×Isat in intensity. These intensities are significantly lower than most ultracold atom

experiments and can be attributed to an inefficient Polarization Gradient Cooling stage,

limiting the 3D MOT capture velocity. This also results in a larger mismatch between the

3D and 2D MOT capture velocities, leading to much slow loading rate of the 3D MOT.

Currently it takes around 10 s to load our 3D MOT to saturation, which is more than three

times the ≈ 3 s loading rate of the NIST experiment.

To generate the 3D MOT magnetic field, a pair of coils in the anti-Helmholtz

configuration is used to produce a linear magnetic field gradient of 10.3 G/cm at the

center of the science chamber. The magnetic field and the six laser beams form the 3D

MOT providing a velocity and position-dependent force that cools and traps atoms close

to the center of the chamber. In addition to the gradient coils, we have three pairs of

Helmholtz coils along the three directions ex, ey and ez. These are capable producing

constant bias magnetic fields at the center of the chamber. We use them to correct for the

residual magnetic field or generate known magnetic fields whenever needed. We operate
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Figure 5.4: 3D MOT 1/e2 diameter D vs. time of flight tflight. The red curve is a fit to the
blue data points according to Eq. (5.1). The temperature of the thermal atomic cloud is
estimated to be T = 294(25) µK by measuring the rate of expansion, as described in the
text.

the experiment with a “dark SPOT” MOT [72] which gives us atomic densities higher

than a traditional MOT. We place a glass plate with a black dot in the repump’s path. The

dark spot is imaged onto the center of the 3D MOT, creating a region with no repump. As

a result, atoms in the dark region decay into the F = 1 state and fall out of the cycling

cooling transition, thereby shielding them from the re-radiation forces that limit densities

in traditional MOTs. In our experiment, we image a black dot of radius ≈ 5 mm onto the

chamber’s center. The repump beam with the dark spot has 5 mW of power spread in a

ring around the dark region. We trap 370× 106 atoms cooled to a temperature of 294(25)

µK in the 3D MOT. The temperature T is measured by releasing the atomic cloud in time

of flight (TOF) and looking at its diameter D as a function of TOF, tflight, as shown in

Fig. 5.4. The sudden release of the atomic cloud converts all its energy kBT into kinetic

energy 1
8
m d

dt
D, where kB is the Boltzmann constant, andm is the mass of a sodium atom.
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As a result, fitting the data to the equation,

D =

√
8kBT

m
t+D0, (5.1)

gives us an estimate of the atomic temperature. Here, D0 is the in-situ diameter of the

atomic cloud.
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Figure 5.5: Critical laser cooling parameters vs. time t. Magnetic field gradient B′,
cooling laser beam detuning δcool and power Pcool during 3D MOT and PGC stages. The
vertical dashed red lines separate the laser cooling steps into three sections. The first 10
s long section is the 3D MOT loading. PGC is performed for the remaining 2.25 ms and
1.5 ms sections.

After cooling atoms in the 3D MOT, the magnetic field gradient is turned off, and

the atoms are subjected to Polarization Gradient Cooling (PGC) [30,73]. The cooling light

is detuned linearly from -16 MHz to -39 MHz in 2.25 ms and then held at -39 MHz for 1.5

ms. Even though PGC reduces the temperature of the atoms to 178 µK, it is significantly

higher than most Sodium BEC apparatuses [30]. Our current protocol to tune the cooling
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light frequency is by varying an AOM’s frequency, whose operational bandwidth limits

the detunings we use for PGC. In the future, we plan to programmatically vary the laser

lock point instead, allowing for a frequency sweep of more than 200 MHz, hopefully

leading to a more efficient PGC. PGC marks the end of the laser cooling process. Fig. 5.5

summarizes the variation of different experimental parameters throughout the laser cooling

process.

5.3 Forced Evaporation
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Figure 5.6: Schematic of the transfer of atoms from a quadrupole magnetic trap to a hybrid
magnetic and optical trap. (a), (b), and (c) depict three snapshots during the transfer
process as the magnetic field gradient is reduced from 228 G/cm (a) to 120 G/cm (b) and
finally dropped to 7.3 G/cm (c). Gravity acts along the negative ez direction. The gravity
compensation field gradient is 8 G/cm. The top row is a schematic of the single IR beam
dipole trap. The origin marks the center of the magnetic trap. Atoms are adiabatically
transferred into the hybrid trap as the field gradient is lowered. The bottom panel shows
the change in potential energy landscape U along ez at (x, y) = (0, 0), as the field gradient
is reduced.

Unlike laser cooling, forced evaporation doesn’t have a fundamental lower limit on
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temperature, which makes it an ideal choice for attaining extremely cold atomic samples

[6,32]. At a given temperature, there are always some atoms in the high energy tail of the

Maxwell-Boltzmann distribution. Forced evaporation is a process where these energetic

atoms are ejected out of the system, thereby reducing the average energy of the ensemble

[74, 75]. The remaining atoms thermalize via inter-atomic collisions, resulting in net

cooling. Since the technique relies on collisional thermalization, atomic densities need to

be high enough such that thermalization times are shorter than the vacuum-limited sample

lifetime or other inelastic collision processes. Typically forced evaporation is performed

in a magnetic trap or an ODT. While magnetic traps are tunable to large volumes, ODTs

can confine atoms to tiny dimensions, limited only by a laser beam’s diffraction-limited

spot size. As a result, magnetic traps are ideal for mode matching low-density and high-

volume 3D MOTs, whereas ODTs help attain high densities for speedier evaporation.

Ref. [76] uses a hybrid magnetic and optical trap to exploit the best of both techniques

for Bose condensation of Rubidium atoms. In our experiment, we implement a similar

scheme to achieve a Sodium BEC.

For the magnetic trap, we use a pair of current-carrying coils in the anti-Helmholtz

configuration to generate a quadrupole trap. At the trap center, these coils produce a 1.30

G/cm linear field gradient for every ampere of current. A Lambda EMI 20-500 power

supply powers the coils in constant voltage mode. This power supply is voltage limited

at 20V. Since the coil circuit has a resistance of 103 mΩ, the power supply limits us to

a maximum current of 190 A or a field gradient of 252 G/cm. In addition to the high

field gradients, specific steps of the experiment require faster switching. The huge coils

make the circuit highly inductive, resulting in long switching times from one state to
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another. Therefore we connected a bank of nine IXYS IXFN230N20T power MOSFETs,

in series to the coil, to quickly turn off the current. As a result, the turn-off time is limited

only by the 200 ns response time of the MOSFETs. These MOSFETs are connected

in parallel to each other to distribute the power dissipation equally, also water-cooled.

A proportional integral (PI) servo controls the MOSFET gate voltage to open or close

the circuit by monitoring the difference between the desired and the measured current

through the coils. To measure the coil current, we use an Ultrastab LEM-IT-500-S hall

probe sensor. For the ODT, we use a far red-detuned, 1064 nm single beam, focused to

a spot size of w0 = 25 µm, as described in Sec. 4.3.1. Fig. 5.6 (c) shows a schematic of

the hybrid trap indicating the relative spacing between the IR beam and the center of the

magnetic trap. While the IR beam provides confinement along its radial direction, a weak

magnetic field gradient ensures confinement along the beam’s longitudinal axis ex.

Our forced evaporation scheme starts with radio-frequency (RF) evaporation in

the magnetic trap, followed by an adiabatic transfer into a hybrid magnetic and optical

dipole trap, and finally ends with evaporation in the hybrid trap. Of the three magnetic

sublevels of the F = 1 state, only the mF = −1 is magnetically trappable. Therefore

to capture most of the atoms into the magnetic trap, atoms are spin-polarized into the

|F = 1, mF = −1〉 ground state by first applying a DC magnetic field and then shining a

σ− polarized laser beam propagating along the magnetic field. The magnetic field defines

a quantization axis and lifts the degeneracy between the various hyperfine magnetic sublevels.

On application of the σ− polarized light, atoms are transferred into the stretched state

|F = 1, mF = −1〉. This light is 26 MHz red detuned to the repump transition. After

spin-polarization, we quickly turn on the magnetic field gradient to a relatively low value
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Figure 5.7: Critical forced evaporation parameters vs. time t. Magnetic field gradient B′

(a), RF frequency ωRF (b), and IR ODT power Pir (c) during RF evaporation, adiabatic
transfer and hybrid trap evaporation stages. The vertical dashed red lines indicate the
separation of the three stages.

of 68 G/cm in 2 ms. The smaller field gradient results in a larger trap volume, enabling

efficient atom transfer into the magnetic trap. We capture 250 M atoms of the 370 M

laser-cooled atoms (67 %) into the magnetic trap. Once captured, we compress the trap by

ramping the magnetic field gradient to 228 G/cm in 100 ms, resulting in higher densities

and a shorter re-thermalization time. RF evaporation is then performed by addressing

atoms in the high energy tail, providing enough energy to spin-flip to the magnetically

untrappable |F = 1, mF = 1〉 state. Fig. 5.7 plots the variation of critical parameters

during the forced evaporation process. We start with addressing higher energy atoms

with RF at 60 MHz and gradually sweep the frequency down to 10 MHz in 9.5 s, as

shown in Fig. 5.7 (b). The initial sweep from 60 to 25 MHz is performed in a 1.5 s linear
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ramp, followed by three exponential ramps for 25 to 20 MHz, 20 to 13 MHz, and 13 to

10 MHz in 3, 3, and 2 s, respectively. The RF radiation is generated using an Agilent

33250A function generator that goes through an RF amplifier and is then applied to the

atoms using a loop antenna wound around a 2” lens tube placed near the bottom recessed

window. Due to Majorana spin flips near the center of the quadrupole field [77–79], we

see a significant loss of atoms if the RF frequency is swept below 10 MHz. Therefore we

stop here and perform the rest of the evaporation in the hybrid trap.

During the last 5 s of RF evaporation, we turn on the IR beam to full power. Once

the RF sweep is complete, we perform an adiabatic relaxation of the magnetic trap to

transfer atoms into the hybrid trap in 5 s. The vertical red dashed lines in Fig. 5.7 indicate

the start and end of the adiabatic expansion process where the field gradient is linearly

ramped from 228 G/cm to 7.3 G/cm in 5 s. This adiabatic expansion results in cooling

of the atomic ensemble, as shown in Fig. 5.6. As the field gradient is lowered, the more

energetic atoms are initially held in the quadrupole trap’s low-density tail away from the

dense cloud of colder atoms. Once the gradient falls below the gravity compensation

value of 8 G/cm, the hot atoms are ejected out of the trap resulting in a net cooling of

the ensemble. Lowering the gradient below gravity compensation lets us perform forced

evaporation by lowering the IR power since the magnetic trap will no longer trap the

ejected hot atoms. We achieve quantum degeneracy by ramping the IR power from 10 W

to 50 µW in 12 s as shown in Fig. 5.7 (c). The IR power is dropped in two exponential

ramps: the first being 10 W to 2 W in 2 s, followed by 2 W to 50 µW in the remaining 10 s.

Fig. 5.8 (e) and (i) shows an in-situ image of the atomic cloud at the end of IR evaporation.

The resulting cloud is cigar-shaped and expands anisotropically when released from the
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hybrid trap, confirming that the evaporation results in Bose condensation.

5.4 Transfer to Purely Optical Traps

Once the sodium atoms are Bose condensed, we shape the BEC into arbitrary 2D

patterns using two blue detuned beams from a 532 nm IPG GLR-30 fiber laser. Sec. 4.3

describes the construction of these ODTs. Fig. 5.8 (a)-(d) plots the time variation of

experimental parameters critical to the transfer process. The sheet trap is turned on at

full power during the final 10 s of evaporation in the hybrid IR trap. This is followed

by linearly ramping the IR power to zero in the next 100 ms while the magnetic field

gradient is still maintained at 7.3 G/cm. I will refer to this sheet and weakly confining

field gradient as the ‘hybrid sheet trap’. The region between the first two vertical dashed

lines depict the transfer from the hybrid IR to the hybrid sheet trap. Fig. 5.8 (e)-(l) are

in-situ ODs of the BEC at different stages of the transfer process. The hybrid sheet is

significantly shallower than the hybrid IR trap at full power. As a result, turning the sheet

beam on during IR evaporation doesn’t alter the BEC’s shape in the ex − ey direction,

as shown in Fig. 5.8 (i). However, it helps efficiently transfer atoms from the hybrid IR

to the hybrid sheet trap. Fig. 5.8 (f) and (j) shows an in-situ image of the hybrid sheet

trap, where the weak field gradient provides the planar ex − ey confinement. The radial

confinement of this disk can be altered by either changing the field gradient or the bias

magnetic field in the ez direction. Since the field gradient is a crucial parameter affecting

evaporation, we tune the ez magnetic field bias to alter the disk size.

Once in the hybrid sheet trap, we switch the DMD beam on and project a dark
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circular disk with a radius similar to the BEC in the hybrid sheet trap. Fig. 5.8 (g) and

(k) show the in-situ ODs of the BEC at the end of this step. The third (from left) vertical

line also denotes this in Fig. 5.8 (a)-(d). We then linearly turn the field gradient to zero

in 500 ms. The BEC is now trapped in a purely optical trap and has an OD as shown

in Fig. 5.8 (h) and (l). Throughout the transfer of atoms across different magnetic and

ODTs, we maintained a small non-zero magnetic field bias. As a result, the trapped

atoms are maintained in the |F = 1, mF = −1〉 state. Once we transfer atoms into this

purely optical disk trap, we can project different patterns on the DMD and obtain arbitrary

shaped quasi 2D BECs. Once the BEC is shaped in this purely optical trap, we are ready

to perform experiments on it. For example, Chapter 6 describes one such experiment,

where the shape of the BEC is altered dynamically during an experiment to simulate the

expansion of universe.
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Figure 5.8: Transfer of BEC into purely optical traps. Critical parameters, magnetic field
gradient B′ (a), IR ODT power Pir (b), sheet trap ODT power Pgs (c), and DMD ODT
power Pdmd (d) vs. time t. The vertical dashed lines indicate the instant when the in-situ
ODs (e)-(l) were imaged. (e)-(h) are ODs on a vertical plane, with the horizontal axis
pointing along the IR beam (ex) and gravity acting along the vertical axis (ez). (i)-(l) are
ODs on a horizontal plane, with the horizontal axis pointing along the sheet trap beam
(ey) and the vertical axis pointing along the IR beam (ex). The black bars in (e) and (i)
correspond to 50 µm, the length scales being same for all horizontal and vertical images
separately. The color bar at the bottom depicts the OD scale for (e)-(l).
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Chapter 6: The Hubble Friction Experiment

The massive scale of the universe makes the experimental study of cosmological

phenomena difficult. Moreover, since performing controlled experiments is mostly impossible,

experimental verification of cosmological hypotheses relies on few naturally occurring

test cases. This has resulted in the emergence of the field of Analogue Gravity which

deals with developing analogous table-top experiments to simulate cosmological systems.

Unruh established one such analogy in 1981, where he demonstrated the similarity between

sound waves in a moving fluid and fields at a black hole event horizon, thereby hinting

at the possibility of simulating Hawking radiation in a moving fluid [51]. Since then,

analogous systems have been realized in various physical platforms ranging from classical

fluids to cold atomic systems. In this chapter, I will describe our approach towards

creating an analogous system for studying the inflationary dynamics of the early universe.

Our table-top setup comprises a toroidally shaped BEC of 23Na atoms, which we

use to simulate the universe’s expansion and contraction. The toroidal BEC is shaped

using the sheet and DMD traps, as described in Sec. 4.3, and serves as our analogous

universe. Since the DMD has a maximum frame update of 32 kHz, we can dynamically

vary the radius of this toroid during the experiment, hence simulating expansions and

contractions of our BEC universe. Finally, we wish to study the evolution of scalar fields
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in the early universe. Analogous to fluctuating scalar fields, our quasi-2D BEC system

can have azimuthally traveling collective modes or phonons. In a typical experimental

sequence, we imprint phonons by creating density perturbations on the toroidal BEC by

halftoning binary patterns on the DMD, as described in Sec. 4.3. Because of the aspect

ratio of the toroid, the energy needed to excite non-azimuthal phonon modes is much

higher, thereby limiting our system to primarily have azimuthal phonons.

Exploiting the above analogy, in a previous work [41], our group simulated elements

of an expanding universe, including the redshifting of phonons in analogy to the redshifting

of photons. In a recent work [80], we have simulated and studied the cosmological

phenomenon of Hubble friction in detail. Hubble friction is the phenomenon responsible

for exponential decay of scalar fields in an expanding universe. This chapter starts with

a pre-print version of our recent work [80] in Sec. 6.1, followed by some supplemental

material that was instrumental in designing and understanding the experiment. All authors

significantly contributed towards the publication. The experimental setup was designed

and constructed by me, Monica Gutierrez Galan, Madison Anderson, and Hector Sosa

Martinez. The data acquisition was done by me, Monica, and Hector. I performed the

data analysis.
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6.1 Publication: Hubble Attenuation and Amplification in Expanding

and Contracting Cold-Atom Universes

6.1.1 Abstract

In the expanding universe, relativistic scalar fields are thought to be attenuated by

“Hubble friction”, which results from the dilation of the underlying spacetime metric. By

contrast, in a contracting universe this pseudo-friction would lead to amplification. Here,

we experimentally measure both Hubble attenuation and amplification in expanding and

contracting toroidally-shaped Bose-Einstein condensates, in which phonons are analogous

to cosmological scalar fields. We find that the observed attenuation or amplification

depends on the temporal phase of the phonon field, which is only possible for non-

adiabatic dynamics, in contrast to the expanding universe in its current epoch, which

is adiabatic. The measured strength of the Hubble friction disagrees with recent theory

[J. M. Gomez Llorente and J. Plata, Phys. Rev. A 100 043613 (2019) and S. Eckel and

T. Jacobson, SciPost Phys. 10 64 (2021)], suggesting that our model does not yet capture

all relevant physics. While our current work focuses on coherent-state phonons, it can

be extended to regimes where quantum fluctuations in causally disconnected regions of

space become important, leading to spontaneous pair-production.

6.1.2 Introduction

During the early universe’s rapid expansion, primordially fluctuating scalar fields

are thought to have been exponentially redshifted and attenuated by the expanding spacetime
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metric, where “Hubble friction” contributes to the latter [81]. Unlike true friction, Hubble

friction is non-dissipative and therefore, while it attenuates scalar fields in an expanding

universe, it would amplify them in a contracting universe. In previous work [41], our

group showed that an atomic Bose-Einstein condensate (BEC) in an expanding toroidal

trap could simulate elements of an expanding universe, including the redshifting of phonons

in analogy to the redshifting of photons. Here, we build upon these studies by: including

contracting universes; measuring both Hubble attenuation and amplification with five-

fold increased precision; and showing that the magnitude of Hubble friction disagrees

with recent theoretical work [62, 82].

While the study of astrophysical systems is ordinarily limited to observations, the

development of well-controlled laboratory systems has enabled tabletop realizations of

general relativistic phenomena. Examples from a variety of physical platforms ranging

from classical fluids to cold atomic systems include: the realization of acoustic black

hole horizons [83–85]; stimulated and spontaneous Hawking radiation [24, 86, 87]; and

scattering processes around rotating black holes [88]. With their unprecedented control

and measurement capabilities, ultracold atoms are an emerging platform for realizing

minimal models relevant to high energy physics [89], astrophysics [23, 51, 90, 91], and

cosmology [21, 41, 54, 92].

In BECs, phonons are scalar fields that evolve approximately according to an effective

spacetime metric defined by the background BEC [21]. For toroidally-shaped BECs,

expanding or contracting 1D universes can be simulated by dynamically changing the

BEC’s radius and observing the evolution of azimuthal phonons. Unlike the expansion

observed in the photon-dominated epoch of the universe, we explore non-adiabatic expansions
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and contractions where the rate of the metric change exceeds the oscillation frequency.

Figure 6.1: Ring-trapping potential and resulting atomic density. The green surface
schematically depicts the trapping potential; the orange lines mark the typical chemical
potential µ. The blue-dashed curve shows a power law fit to the potential (up to µ) around
ρ = 0 giving exponent 2.02(3) for this example. The measured 2D density n2D(ρ, θ) is
shown in the ex−ey plane (with peak density 165 µm−2) and the white dashed arc marks
the mean radius R. Because of the short 500 µs TOF, the observed width of the ring is
slightly in excess of that anticipated from the in-situ T-F approximation.

Phonons are predominately phase excitations with respect to the BEC’s order parameter.

For a toroidal BEC with radius R(t) (see Fig. 6.1), azimuthal phonons with mode number

m, have an approximate phase profile δφ1D(θ, t) ≡ δφ(t) sin(mθ) independent of r and z

and obey the wave equation [62] 1

{
∂2
t +

[
2γ +

V̇(t)

V(t)

]
∂t + ω2

m(t)

}
δφ(t) = 0 (6.1)

at low energy (i.e., smallm). Here, the instantaneous angular frequency is ωm = mcθ(t)/R(t),

for speed of sound cθ(t). Because this manuscript focuses exclusively on them = 1 mode,

we omit the m subscript in what follows. The quantity in square brackets is reminiscent

1Eq. (3.14) derived in Chapter 3
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of damping because it multiplies the first derivative of time. It includes two terms: a

phenomenological damping constant γ 2 and the non-dissipative “Hubble friction” V̇/V

arising from the changing metric defined by the background condensate. We model

the external potential (see Fig. 6.1) as quadratic in z and power law in ρ = |r − R|;

in the Thomas-Fermi (T-F) and thin-ring approximations, these lead to the BEC’s 3D

volume V ∝ Rα and speed of sound cθ ∝ R−α/2, where the value of the constant α

depends on the potential [62]. Rather than detecting δφ1D, we measure the associated

density perturbation δn1D(θ, t) = δn(t) sin(mθ). The relationship between δφ and δn

is ∂tδφ = −(g/h̄)(δn/Rα), in terms of the Gross–Pitaevskii equation [45] interaction

constant g.

In our experiments, the potential V (ρ) is nominally fixed during expansion or

contraction, predicting V̇/V = γHṘ/R with strength γH = α. In expanding systems

(Ṙ > 0) the Hubble friction term attenuates phonons, while in contracting systems

it amplifies them. In the non-adiabatic regime Ṙ/Rωm, the timing of expansion or

contraction relative to the phonon’s temporal phase becomes important for subsequent

dynamics. We show this enhances or diminishes the impact of Hubble friction: because

the Hubble friction term includes the product of Ṙ/R and δn(t) ∝ ∂tδφ(t), tuning

the timing of expansion or contraction relative to the oscillation changes the degree of

amplification or attenuation.

2This phenomenological damping term can account for Landau and Beliaev damping mechanisms [93]
as well as imperfections in the confining potential.
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Figure 6.2: Phonon evolution in a contracting toroidally-shaped BEC, averaged over
three measurements. (a) Density perturbations for a ring with Ri = 38.4(6)µm at
10 ms and 35 ms, and Rf = 11.9(2)µm at 45 ms and 53 ms. The density scale of
images before contraction is multiplied by 2. The horizontal bar corresponds to 80 µm.
(b) Experimental measurements and (c) fit to Eq. (6.1) of angular density perturbation
δn1D as a function of azimuthal angle θ and time t, where the ring contraction occurs
at ti. (d) Phonon amplitude δn as a function of time. The circles plot the phonon
amplitude obtained from fitting each time-slice of (b) to a sinusoid. The red curve is
the instantaneous amplitude from the fit in (c). The diamonds are the measured mean
radius of the BEC and the blue line is the programmed radius of the trap. The grayscale
bar encodes the value of |Ṙ/R|, with a maximum of 328(11) s−1 at tpeak = 41 ms. The
arrow indicates ti = 38.2 ms.
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(a) Expansions (b) Contractions

Figure 6.3: Phonon amplitude δn as a function of time t for (a) expanding and (b)
contracting tori. The symbols, curves, and grayscale bars are all as notated in Fig. 6.2(d).
The expansion data (a) used Ri = 11.9(2) µm and Rf = 38.4(6) µm, and vice versa for
contraction (b). ti is varied from 6.5 ms to 23 ms for expansion and from 27 ms to 70 ms
for contraction. Here, the red curves show simultaneous fits to our complete data set, as
discussed in the text.

6.1.3 Experiment and Results

Our experiments [39, 76] begin with quasi-2D BECs with N ≈ 1 × 105 atoms

confined in a pair of blue-detuned (λ = 532 nm) optical dipole traps. The chemical

potential is µ ≈ h × 2.7 kHz. The harmonic vertical confinement, with frequency

ωz/2π ≈ 1.2 kHz, is provided by a horizontally propagating Hermite-Gauss TEM01

beam. We generate nearly arbitrary space and time-dependent potentials in the r-θ plane

by imaging λ = 532 nm laser light reflected by a digital micro-mirror device (DMD)

onto the BEC. We use these potentials to create toroidal traps with radius R (see Fig. 6.1)

ranging from 12 µm to 39 µm and radial width ≈ 5 µm.
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An azimuthal phonon excitation with mode numberm = 1 is generated by perturbing

the toroidal BEC with a potential Vph sin(mθ) 3. This repulsive potential—generated by

the DMD—is applied for 2 ms, imprinting the phonon’s phase modulation onto the BEC.

After imprinting, the phonon evolves for an initial time ti from 6.5 ms to 70 ms, at which

point the torus is expanded or contracted using an error function profile [41], with 10 %-

90 % rise time 3.6 ms, and continues to evolve for up to ≈ 150 ms. For expansion, the

initial and final radii are Ri = 11.9(2) µm and Rf = 38.4(6) µm; these are reversed for

contraction 4. We detect the phonon at various points during the complete evolution using

partial transfer absorption imaging (PTAI [68]) after a short 500 µs time of flight, giving

the 2D density n2D(ρ, θ) [see Fig. 6.1].

The phonon excitation’s density perturbation [see Fig. 6.2(a)] is δn2D = n2D−n0
2D,

where n0
2D is the density with no phonon present. Integrating along r gives the azimuthal

density perturbation δn1D(θ, t). Figure 6.2(b) shows the time evolution of δn1D, and

Fig. 6.2(c) shows the resulting fit to Eq. (6.1), from which we obtain both the red- or

blueshift (via cθ) and the Hubble friction (from γH). In our system, the phenomenological

damping γ is observed to depend on radius, and we parameterize γ in terms of the quality

factor Q = ω/2γ = cθ/2Rγ, which eliminates most of the radial dependence present in

γ, (see [39, 47]).

Because the 3.6 ms expansion or contraction is a small fraction of the phonon

oscillation period, the overall fit is insensitive to how Q interpolates between Qi to Qf .

We therefore assume a simple linear dependence of Q on R. As shown in Fig. 6.2(b), our

3Vph is set to 0.8 times the overall potential depth.
4All uncertainties in this paper are the uncorrelated combination of 1-σ statistical and systematic

uncertainties.

70



data typically has less than one oscillation before R changes; to reduce the uncertainty in

Qi and ω(Ri), we include fixed-radius rings in a simultaneous fit. These fits include as

free parameters γH, Qi, Qf , α as well as the initial amplitude δni, temporal phase ϕ0, and

speed of sound cθ,i. cθ(t) = cθ,i (R(t)/Ri)
−α/2 follows the expected scaling.

Figure 6.2(d) summarizes the outcome of this fit. The red curve is the time-dependent

density perturbation δn obtained from the full fit, while the circles plot δn from independent

fits to δn sin(θ) of each time-slice in Fig. 6.2(b). The blue curve displays the radius of the

DMD pattern while the diamonds plot R obtained from a 2D T-F fit to the observed

density distribution 5. The gray band plots Ṙ/R during contraction, with maximum

Ṙ/R ≈ 1.53× ω.

We study the hypothesized impact of the phonon phase on the Hubble friction

during expansion or contraction by changing ti [see Fig. 6.2(d)], thereby phase-shifting

the phonon by (cθ,i/Ri)ti. We define tpeak as the time when the Hubble friction reaches

its peak strength, i.e., when |Ṙ/R| is maximal. The phase of the phonon at tpeak is

ϕpeak ≡
∫ tpeak

0
dt ω(t) + ϕ0. Figure 6.3 shows example time-traces with multiple ti for

both expansion and contraction, providing a complete picture to investigate the strength

of Hubble friction . The black circles show the time evolution of the phonon amplitude

δn(t) for a range of ti for both expansions (a) and contractions (b).

The red curves in Fig. 6.3 show the results of global fits of Eq. (6.1) to our complete

dataset, which includes 17 contractions and 11 expansions. The parameters γH, α, Qi, Qf ,

cθ,i and δni are global, i.e., they are shared across all time traces. For each time trace, δni

5By contrast with Ref. [41], the BEC follows the contraction profile without overshoot or oscillation
because of tighter radial confinement.
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is scaled by the atom number N(t) for that trace, and cθ,i is correspondingly scaled by

∝ N(t)α/2 6; this accounts for both atom loss during and after expansion or contraction

and for overall drifts in atom number during data acquisition. Each global fit includes 7

additional time-traces, each with constant R, roughly from Ri to Rf . Because cθ(R) ∝

Rα/2 in stationary rings, these additional datasets further constrain α. We performed

separate global fits for expansion and contraction data, giving an independent measure of

their Hubble friction coefficients. Finally, we perform these global fits in eight different

ways, with the number of fit parameters varying between 32 and 101. Each fit yields

different best-fit values, but generally they agree within 2-σ. These fitting methods differ

on whether the temporal and azimuthal phases are shared across the time traces and if

atom number varies within each time trace. Due to the large number of data points, the

degrees of freedom, in excess of 1 × 104, do not vary significantly between the different

methods. We take the mean of the values obtained from the eight methods as the best

fit value. Their standard deviation is added in quadrature to the average 1-σ uncertainty

from the fit to obtain the final uncertainty in the measurement.

Table 6.1: Best fit global parameters.

Qi Qf α γH cθ,i δni

(mm/s) (rad−1)
Expansion 3.5(1) 4.4(2) 0.47(1) 0.28(4) 5.42(2) 7.47(13)
Contraction 7.8(3) 3.5(1) 0.52(3) 0.36(3) 4.36(4) 4.50(5)

Table 6.1 lists the best-fit values, with γH different for contraction and expansion.

The values of α are in agreement with each other and are about 1/2. For our power-law

6This can be derived from Eq.(4.8) and Eq.(4.20) of [62]
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(b)

(a)

Figure 6.4: Phonon amplitude vs. phase. (a) Data (black circles), fit (red curve), and
oscillation envelope (blue curve) used to extract the amplitude Af at tpeak. The grayscale
bar is as notated in Fig. 6.2(d). (b) Ratio of amplitudes Af/Ai vs. ϕpeak, the oscillation’s
phase at tpeak. The black circles plot the data. The gray dashed, blue solid, and gray
dashed-dot curves show the prediction of Eq. (6.1) for γH = 0, 0.36, and 1, respectively,
with α = 0.52. The red line indicates the prediction for an adiabatic contraction.

potential model [62], α ranges from 1/2 (for a harmonic potential) to 1 (for a hard-wall

potential). Our average value of α ≈ 0.495 suggests that we have a harmonic potential in

both z and r.

Lastly, we confirm our expectation that the phonon phase ϕpeak has a marked impact

on the amplitude following expansion or contraction in the non-adiabatic limit. Our

experiments probe 1.3 < ϕpeak/π < 2.9. Fig. 6.4(a) illustrates our process for obtaining

the final amplitudes Af where we fit the oscillatory behavior to an exponentially decaying

sinusoid with the amplitude and temporal phase as free parameters (the remaining parameters
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are drawn from the global fits). By contrast, the initial amplitude Ai is obtained from our

global fit, from the envelope of the decaying sinusoid evaluated at tpeak. Figure 6.4(b)

plots the fractional change in amplitude Af/Ai versus ϕpeak with black circles, and the

solid blue curve depicts Af obtained from our global fits 7. Our simulations (grey curves)

show that the significant oscillations for γH = 0, give way to more uniform gain with

increasing γH. The measured values ofAf/Ai are generally larger than would be expected

for γH = 0, showing Hubble amplification due to contraction. Unlike Ref. [41], which

probed 1.8 < ϕpeak/π < 2.1, where Af/Ai has little dependence on Hubble friction,

our greater range of ϕpeak allows us to better constrain γH . In addition to the overall

oscillation, there appears to be some additional dependence on φpeak not captured by our

model (data below φpeak/π < 2 generally lie above the γH = 0.36 curve, and above for

φpeak/π > 2). This additional dependence may indicate a more complicated damping

process for our phonons that could obscure our fitting for γH .

The observed oscillatory dependence of Af on ϕpeak results from the rapid non-

adiabatic, i.e. superluminal, contraction in this experiment. The solid red curve emphasizes

this point by plotting the simulated behavior for a slow adiabatic contraction, computed

with γ = 0. No dependence on ϕpeak is present in this limit, as the phonon would undergo

many oscillations during expansion and therefore lose any dependence on initial phase.

The deviation from the adiabatic curve is associated with “classical” stimulated emission

or absorption into or out of the phonon field, in much the same way that these processes

have been observed in acoustic black holes [23]. Direct observation of spontaneous

7The phenomenological damping term in Eq. (6.1) leads both Ai and Af to decrease in a common-mode
manner with increasing ϕpeak, but that decrease is absent in the ratio Af/Ai.
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processes, i.e. pair production [25], would require an increase in our detection threshold.

While here we averaged three images per time point, the observation of spontaneous

Hawking radiation in Ref. [91] required a ≈ 104 image dataset.

Our data generally agrees with the predictions of Refs. [62, 82], with the notable

exception γH 6= α. Because we create large-amplitude phonons to maximize our detection

signal, it is possible that this leads to non-linear damping effects [48], compromising

our measurement of γH, and potentially causing the additional dependence on φpeak seen

in Fig. 6.4(b). Likewise, the simple scaling of cθ with R holds only in the thin-ring

approximation, and our smallest rings have thickness to mean radius ratio of 0.45. For

future experiments, our system is flexible enough to explore different metric scalings: to

date we focused on quasi-one-dimensional universes, we could also potentially simulate

two-dimensional (disc or square condensate) expansions or contractions where γH > 1, as

suggested in Ref. [62]. Our experimental setup could also readily explore other analogue

gravity systems such as black hole horizons in 2D systems, where, for example the

acoustic metric resulting from quantized vortices could open new directions [94].

6.2 Model for the Toroidal Potential and Scaling Laws

The analysis in Sec. 6.1 assumes a power-law model for the trap potential. This

section defines the trap potential V and derives relevant scaling laws essential for data

analysis. The discussion here follows Ref. [62]. A cylindrically symmetric trap potential
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V (ρ, z) can be described by the power-law

V (ρ, z) := µ [(ρ/ρµ)nρ + (z/zµ)nz ] , (6.2)

where µ is the chemical potential of the BEC, nρ and nz are the power-law exponents,

and ρµ and zµ are the T-F widths along eρ and ez, respectively. Since the volume V is

independent of the chemical potential µ, the T-F widths scale according to

ρµ ∝ µ1/nρ and zµ ∝ µ1/nz (6.3)

The time evolution of a cylindrically symmetric BEC wavefunction ψ(ρ, z, t) is

given by the time dependent GP equation

− h̄2

2m
∇2ψ + V ψ + g|ψ|2 ψ = ih̄

∂ψ

∂t
. (6.4)

Under the T-F approximation, the spatial derivatives can be neglected. Assuming a

stationary time dependence ih̄ ∂tψ(r, t) = µ ψ, Eq. (6.4) can be expressed as

µ = g|ψ|2 + V, (6.5)

where |ψ|2 is the atomic density. Integrating Eq. (6.5) over the entire BEC volume gives

the expression

gN =

∫
dρ dz (R + ρ) [µ− V (ρ, z)] , (6.6)
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where N is the total atom number. Solving the integral on the LHS of Eq. (6.6), it can be

shown (see Ref. [62] for details) that

µ ∝ (Rρµzµ)−1. (6.7)

Using Eq. (6.7) and (6.2),

µ ∝ R−α, (6.8)

where

α =
1

1 + 1/nρ + 1/nz
. (6.9)

This further gives rise to two other scaling laws for the volume V and azimuthal speed of

sound cθ

V ∝ Rρµzµ ∝ Rα and c2
θ ∝ R−α (6.10)

These scaling laws were used for data analysis.

6.3 Simulation: Impact of Phonon Phase on Hubble Friction Strength

One of the goals of this project was the precise determination of Hubble friction

strength. We performed multiple simulations of the differential Eq. (6.1) to estimate the

impact that different experimentally controllable parameters would have on the strength

of Hubble friction. To better understand how these parameters affect the Hubble friction,
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I will rewrite Eq. (6.1) by making the substitutions V̇/V = γH Ṙ/R, and ωm = mcθ/R.

The resulting differential equation is

{
∂2

∂t2
+

[
2γ(t) + γH

Ṙ(t)

R(t)

]
∂

∂t
+
mcθ(t)

R(t)

}
δφ(t) = 0, (6.11)

where the phase perturbations δφ are related to the density perturbations δn by

∂ δφ

∂t
= −g

h̄

δn

Rα
. (6.12)

As evident from Eq. (6.11), the Hubble friction strength depends on the value of

γH Ṙ/R(t), and therefore its magnitude increases as the rate of change of radius Ṙ

increases. Our radial trap frequency is about 500 Hz which sets an upper limit on |Ṙ/R|.

Due to trap inhomogeneities, we cannot make a uniform ring larger than 40 µm in radius.

Even though we can make rings with very small radii, doing so would violate the thin-ring

approximation assumed in the derivation of Eq. (6.1) and (6.11). Therefore, we limit our

ring radii between 12 and 44 µm and perform expansions and contractions with |Ṙ/R|

less than 328 s−1.

The other quantity that affects Hubble friction strength is the phase of δn when

|Ṙ/R| achieves its maximum value (ϕpeak). From Eq. (6.11) and (6.12), the third term

can be shown to be proportional to Ṙ/R(t) δn. Hubble friction results in maximum

attenuation or amplification if the phase of δn is such that it attains its maximum value

when |Ṙ/R(t)| is maximum. To investigate this hypothesized impact we solved the

differential Eq. (6.11) for different phonon phases ϕpeak. The remainder of this section
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discusses simulations that were performed to understand the impact of the phonon phase

ϕpeak.

6.3.1 Simulation Model

To determine the time evolution of δφ or δn, in addition to Eq. (6.11) and (6.12),

we need the time-evolution of R, cθ, and γ. Both in the experiment and the simulations,

radius R is varied according to

R(t) =



Ri, if t < ti

Ri + Rf−Ri

2

[
1 + erf

(
5
(
t−ti
texp
− 0.5

))]
, if ti < t < ti + texp

Rf , if t > ti + texp,

(6.13)

where ti denotes the start of ring dynamics and texp = 10 ms is the duration of ring

dynamics. Since, cθ ∝ R−α/2 (see Eq. (6.10)), we assume

cθ(t) = cθi

(
R(t)

Ri

)−α/2
, (6.14)

where cθi is the azimuthal speed of sound in the initial ring of radius Ri. As described in

Sec. 6.1, γ is expressed in terms of the quality factor as

γ(t) = m cθ(t)/2 R Q(t), (6.15)

79



where we assume a linear dependence of Q on radius R given by

Q(t) =
Qi −Qf

Ri −Rf

R +
QfRi −QiRf

Ri −Rf

, (6.16)

where Qi and Qf are quality factors in the initial and final rings. We use equations (6.13),

(6.14), (6.15), and (6.16) along with the differential equation (6.11) and the density phase

relationship (6.12) to determine the time evolution of δn.

6.3.2 Simulation Results

We solve the differential equation as described in the previous sub-section, to determine

the impact of ϕpeak on Hubble friction strength. Fig. 6.5 is one such simulation for

contraction experiments. In Fig. 6.5 (a), we start with a ring with initial radius Ri =

38 µm and then contract it to a final radius Rf = 12 µm according to Eq. (6.13). The

initial and final quality factors are assumed to be Qi = Qf = 10. The contraction starts

at time ti. The blue line indicates the ring radius as a function of time t. As the ring

contracts, phonons evolve according to Eq. (6.11). We plot the amplitude of the phonon’s

density perturbation δn as the black curve in Fig. 6.5 (a). As is evident from the frequency

of oscillations, phonons experience a blue-shift in frequency upon contraction. The time

tpeak refers to the time when
∣∣∣Ṙ/R∣∣∣ attains its maximum value. The phase of the phonon at

tpeak is given by ϕpeak ≡
∫ tpeak

0
dt ω(t) + ϕ0. We determine the amplitude of the decaying

phonon envelope for both the initial and final phonons at the instant t = tpeak. These

amplitudes are referred to as Ai and Af respectively, as shown in Fig. 6.5 (a).

We study the hypothesized impact of the phonon phase ϕpeak on the Hubble friction
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(a)

(b)

Figure 6.5: Simulations to study the impact of phonon phase ϕpeak on Hubble friction
strength. (a) Phonon amplitude (solid black curve), and oscillation envelope (dashed red
curve) used to extract the amplitude Ai and Af at tpeak. The blue curve denoted the radius
R as a fucntion of time t. The grayscale bar is as notated in Fig. 6.2 (d). tpeak is the
time when |Ṙ/R| attains maximum value. (b) Ratio of amplitudes Af/Ai vs. ϕpeak, the
oscillation’s phase at tpeak. The solid red and dashed black curves correspond to a value
of γH of 0.5 and 0, respectively.

by changing ti [see Fig. 6.5 (a)], thereby phase-shifting the phonon by (cθ,i/Ri)ti. Fig. 6.5 (b)

summarizes this result where we plot the ratio Af/Ai as a function of the phonon phase

ϕpeak. The dashed black and solid red lines are obtained by setting the value of γH to 0

and 0.5, respectively. As a result, the black line represents the situation in the absence

of Hubble friction and contrasts it to the red curve which represents a non-zero Hubble

friction. As evident from Fig. 6.5 (b), there is a significant difference between the black

and red ratiosAf/Ai only for certain specific values of the phase ϕpeak. At all other phases,

the difference is small, indicating a strong dependence of the Hubble friction strength on
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the phase ϕpeak. This simulation served as our motivation for varying the phase ϕpeak in

the experiment.

6.4 Mode Purity of the Phonons

The experiments in this chapter are performed with m = 1 azimuthal phonons

imprinted by halftoned binary patterns on a DMD. Though the patterns were selected to

imprint only m = 1 phonons, due to imperfections in the projected optical perturbation,

the excited phonons should be a linear combination of all possible phonon modes m.

These experiments follow the trap loading procedure described in Sec. 5.4. The final

ODT in Sec. 5.4 was a disk-shaped trap, as shown in Fig. 5.8 (h) and (l). Once the atoms

are transferred into this purely optical trap, the disk DMD pattern is adiabatically changed

to a ring of radius Ri. Atoms are then allowed to rest for 500 ms before the perturbation

is applied.

To project azimuthal phonons, we impart a perturbing potential Vph sin(θ) using

a DMD [39]. While smaller Vph results in long-lived phonons with weaker density

perturbations δn, large Vph results in stronger density perturbations that decay quickly.

For our experiments, we wish to detect δn with large signal-to-noise ratio over multiple

oscillation periods. Therefore the value of Vph was a trade-off between the long decay

times and large signal-to-noise ratio. It was empirically determined to be 0.8 times

the overall potential depth. Sec. 2.2.3 discusses typical damping mechanisms for BEC

collective excitations. Since we mostly imprint the lowest order azimuthal modes, we

expect Landau damping to be the primary mechanism for decay. Landau damping is a
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finite temperature effect which thermalizes BEC phonons by scattering with other thermal

phonons [46].
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Figure 6.6: Relative contributions of different azimuthal modes in the imprinted phonon.
(a) Raw data n1D for phonons in a torus of radius R = 31.8 µm. (b) The black dots, red
open circles and blue crosses show the time evolution of =[Am] for modes with m = 1, 2,
and 3, respectively. The colored solid lines represent decaying sinusoidal fits according
to Eq. (6.18). Each colored fit curve corresponds to the data points of the same color. (c)
The amplitude Bm (see Eq. (6.18)) for the three modes evaluated from the fits in (b).

Since the DMD is a binary amplitude grating, we use Jarvis halftoning [66] to create

smooth intensity gradients for imprinting phonons with mode number m = 1. Fig. 6.6

demonstrates the purity of the modes generated by this process. Fig. 6.6 (a) is the raw

data corresponding to azimuthal density perturbation δn1D(θ, t) as a function of time t

and azimuthal angle θ for phonons in a torus with fixed radius R = 31.8 µm. To estimate

the relative contribution of the different phonon modes, we evaluate the azimuthal spatial

Fourier coefficient Am(t) for the three lowest energy modes (m equal to 1, 2, and 3),
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according to

Am(t) =

∫
δn1D(θ, t) exp(i m θ) dθ∫

δn1D(θ, t) dθ
. (6.17)

Fig. 6.6 (b) plots the time-evolution of the imaginary part of Am for the three modes. We

fit =[Am] with a decaying sinusoidal function

Bm exp(−ωmt/2Q) sin(ωmt+ ϑ), (6.18)

where ϑ is the temporal phase at t = 0, Q is the quality factor, and Bm is the initial

amplitude. The solid lines in Fig. 6.6(b) indicate these fits. Fig. 6.6(c) shows the initial

amplitude Bm for the three modes. The error bars correspond to the 95% confidence

interval in the fitted values of Bm. Bm of the desired m = 1 mode is 6.5(9) and 6.9(8)

times larger than the m = 2 and m = 3 modes, respectively, indicating that while our

oscillations are primarily m = 1, we may have a small admixture of other modes.

Expansion and contractions are performed by dynamically varying the ring radius in

subsequent DMD frames. Leveraging the DMD’s 32 kHz frame update rate, we smoothly

transition from the initial to final radii in 90 frames, such that the ring radius changes by

a distance corresponding to at most one DMD pixel in consecutive frames. To resolve

small density variations, we detect the phonons at different evolution times using PTAI,

where only 5-12% of the atoms are imaged. The transferred fraction is varied based on

the overall density of the sample to maintain similar levels of signal-to-noise ratio. Even

though we use the minimally destructive PTAI, only one image is acquired per repetition
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of the experiment.

6.5 Fitting Method

In this section, we give a detailed description of our fitting methods. Our raw

data comprises of azimuthal density perturbations δn1D(θ, t) corresponding to expanding,

contracting, and fixed-radii tori. As mentioned in Sec. 6.1.3, we perform the global

fits in eight ways to mitigate potential systematic biases introduced by a fit parameter.

Performing fits in eight different ways allowed us to investigate any potential systematic

bias that 85 (i.e. 85 = 117 − 32) of the 117 fit parameters might have caused. These

methods enumerated in roman numerals I-VIII vary in the number of fit parameters

νfit. Methods I and V assume the same temporal and azimuthal phases, methods II and

VI assume same azimuthal but different temporal phases, methods III and VII assume

same temporal but different azimuthal phases, and methods IV and VIII assume different

azimuthal and temporal phases across the datasets. Methods I to IV assume a constant

atom number throughout the ring dynamics. Since we observe an atom number loss

of up to 20 % during ring dynamics, we analyze the data with fitting methods V to

VIII, which fit the atom number N(t) to an exponentially varying function of time and

accordingly accounts for a change in cθ(t) ∝ N(t)α/2. These differences in the fit

methodology are reflected in the number of fit parameters νfit. Tab. 6.2 and Tab. 6.3 list the

fit results obtained from each of the eight fitting methods for expansions and contractions,

respectively. For both tables, the fit values corresponding to the eight methods agree

within 2-σ.
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Table 6.2: Fit results of the eight different techniques when applied to the expansion data
sets.

Mtd. νfit Qi Qf α γH cθ,i δni

(mm/s) (rad−1)
I 32 3.5(1) 4.3(2) 0.48(1) 0.30(3) 5.44(1) 7.47(11)
II 43 3.5(1) 4.4(2) 0.47(1) 0.32(3) 5.44(1) 7.50(11)
III 43 3.5(1) 4.4(2) 0.47(1) 0.28(3) 5.42(1) 7.41(11)
IV 54 3.5(1) 4.5(2) 0.47(1) 0.29(3) 5.42(1) 7.41(11)
V 55 3.5(1) 4.3(2) 0.47(1) 0.26(3) 5.42(1) 7.52(11)
VI 66 3.5(1) 4.4(2) 0.46(1) 0.29(3) 5.41(1) 7.54(12)
VII 66 3.5(1) 4.5(2) 0.46(1) 0.24(3) 5.41(1) 7.44(11)
VIII 77 3.5(1) 4.5(2) 0.46(1) 0.27(3) 5.40(1) 7.45(11)

Table 6.3: Fit results of the eight different techniques when applied to the contraction
data sets.

Mtd. νfit Qi Qf α γH cθ,i δni

(mm/s) (rad−1)
I 32 7.7(2) 3.6(1) 0.51(1) 0.34(2) 4.38(1) 4.45(4)
II 49 7.6(2) 3.4(1) 0.49(1) 0.37(2) 4.40(1) 4.48(4)
III 49 7.7(2) 3.6(1) 0.51(1) 0.33(2) 4.38(1) 4.47(4)
IV 66 7.7(2) 3.5(1) 0.49(1) 0.37(2) 4.41(1) 4.49(4)
V 67 7.7(2) 3.6(1) 0.55(1) 0.37(2) 4.31(1) 4.53(4)
VI 84 7.9(2) 3.5(1) 0.53(1) 0.40(2) 4.33(1) 4.52(4)
VII 84 7.8(2) 3.7(1) 0.55(1) 0.35(2) 4.32(1) 4.55(4)
VIII 101 8.1(2) 3.5(1) 0.53(1) 0.39(2) 4.34(1) 4.54(4)

The large number of fit parameters result from including seven datasets corresponding

to fixed-radius tori in the simultaneous fits. As mentioned in Sec. 6.1.3, dynamic datasets

typically have less than one oscillation before the radius changes. Therefore we include

the fixed-radius datasets to reduce the uncertainty in Qi and ω(Ri). In addition to the

global fit parameters listed in Tab. 6.1, the fit includes the amplitude, quality factor,

azimuthal and temporal phases of the seven fixed-radius tori datasets as fit parameters.

This sets the minimum value of fit parameters νfit to 32; 6 corresponding to the global
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parameters listed in Tab. 6.1, 14 corresponding to the temporal and azimuthal phases of

the seven stationary tori, and 12 corresponding to the amplitude and quality factor of six

of the seven fixed-radius tori. The phonon in one of the seven fixed-radius tori is identical

to the initial phonon of each dynamic dataset. Therefore its amplitude and quality factor

are assumed to be the same as the global parameters δni and Qf , respectively. Since the

dynamic datasets typically have less than one oscillation before the radius changes, this

allows us to constrain the value of δni and Qf . Fig. 6.7 shows the phonon evolution in

the stationary ring. The black circles denote the measured value of δn, and the red curve

corresponds to the simultaneous fits. Given the variation in amplitude, quality factor,

azimuthal and temporal phases across the seven fixed-radius datasets, these had to be

included as independent fit parameters.
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Figure 6.7: Phonon amplitude δn as a function of time t for stationary tori of radii 11.9,
14.3, 16.7, 24.0, 31.2, 38.4 and 43.2 µm from top to bottom. Here, the red curves show
simultaneous fits to the complete data set, as discussed in Sec. 6.1.3.
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Chapter 7: Towards Erbium BEC: Scanning Transfer Cavity Lock

One of the goals when designing and building the new apparatus was to make a

dual-species degenerate gas mixture with Sodium and Erbium. Even though we haven’t

produced an Erbium BEC, significant progress has been made. For example, in 2017,

we successfully demonstrated an Erbium 2D MOT in the same vacuum chamber as

the sodium 2D MOT, thereby creating a single compact source of cold atoms for both

species. In addition, my colleague Madison Anderson has constructed an inductive oven

for producing a high flux of Erbium atoms. You can find more about that in her thesis,

expected shortly.

Erbium is a rare-earth metal from the lanthanide series with atomic number 68.

It has relatively high melting and boiling points of 1529° C and 2900° C, respectively.

Atomic Erbium has six stable isotopes 162Er, 164Er, 166Er, 167Er, and 168Er. 167Er is a

fermion while all others are bosons. Since the first experimental realizations of BECs [6,

7] and Fermi degenerate gases [95–97], the community of quantum gas researchers have

laid significant emphasis on tuning inter-atomic interactions to build fully controllable

quantum systems. Usually, for ultracold atoms, the interatomic interactions occur via

89



s-wave scattering, resulting in a mean-field contact potential Ucontact, given by

Ucontact(r) =
4πh̄2a

m
≡ g δ(r), (7.1)

where a is the s-wave scattering length, m is the mass of the atom, g is the GP interaction

constant, and δ(r) is the kronecker delta function [98]. As evident from Eq. (7.1), Ucontact

is isotropic and short range. With the use of Feshbach resonances, the scattering length

a can be tuned by orders of magnitude [35], thereby giving us a convenient handle on

interactions. Since its first realization, Fesbach resonance have been used for many

applications [10–13, 99]. In addition to the above interactions, elements with high dipole

moment interact via a dipole-dipole potential given by

Udd(r) =
Cdd

4π

1− 3 cos2 θ

r3
, (7.2)

where θ is the angle between the direction of polarization and the relative position of

the particles r, and Cdd is a constant proportional to the magnetic moment squared in

the case of magnetic dipole dipole interactions [98]. As evident from Eq. (7.2), unlike

Ucontact, Udd is anisotropic and long-range, making dipolar atoms like Erbium an exciting

candidate for studying quantum phases, otherwise not possible with alkali atoms. Erbium

has a relatively high permanent magnetic dipole moment of 7 µB, where µB is the Bohr

magneton. In contrast, alkali metals such as Sodium have a dipole moment of about 1

µB. In addition to the high magnetic moment, bosonic Erbium has multiple Feshbach

resonances densely packed into a small range of magnetic fields. Recent results from the
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Ferliano group have revealed that 168Er and 166Er have 190 and 189 resonances over a 70

G range [100]. Compare this with 23Na, which is known to have just three resonances at

853, 907, and 1195 G [101, 102].

In 2005, the experimental realization 52Cr (dipole moment = 6 µB) BEC, opened up

the field of ultracold mixtures of dipolar atoms [103]. This was soon followed by 164Dy

(dipole moment = 10 µB) [104] in 2011 and 168Er [105] in 2012. Given its potential for

studying strongly correlated many-body systems, we wish to add an Erbium BEC to our

system and exploit these long-range and anisotropic interactions. The first step towards

Bose condensing Erbium atoms is to laser cool them. For this, we need a laser that is

frequency stabilized to the atomic transition of interest. The rest of this chapter will

first give a quick overview of the Erbium atomic structure and then describe the design

and implementation of a locking scheme to frequency-stabilize a 583 nm laser for laser

cooling Erbium in a 3D MOT.

7.1 Laser Cooling of Erbium

+3+2+10-1-2-3

0

4f

6s

Figure 7.1: The Erbium ground state.

Early cold atom experiments focused on Bose-condensing alkali metals due to
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their relatively simple energy level structure and high elastic to inelastic collision rate

constants. The energy diagram for Erbium is much more complex and has multiple

transitions that could be used for laser cooling [1]. The ground state of Erbium has

the electronic configuration [Xe] 4f12 6s2, where [Xe] represents the fully-filled atomic

Xenon electronic configuration. Fig. 7.1 shows how the 4f and 6s shells of atomic

Erbium are filled with electrons in the ground state. The two unpaired 4f electrons

have angular momentum magnetic quantum number ml = +2,+3, resulting in a large

magnetic moment with orbital angular momentum quantum number L = 5. The total

electronic spin S = 1 and the total angular momentum quantum number J = 6. As a result,

the Erbium ground state can be expressed as 3H6 in the term notation. In the case of

heavier elements, the spin-orbit interaction is no longer small compared to interactions

of spin and angular moments individually, thereby resulting in a breakdown of the L-S

coupling scheme. All inner and outer electrons independently couple via the L-S coupling

scheme, resulting in two total angular momentum quantum numbers J1 and J2. The

electrons in [Xe] and the 4f shell qualify as inner electrons, while all others are considered

outer. As a result, the atomic states are represented as coupling between these two J states

via jj coupling scheme. Fig. 7.2 is the energy level diagram of Bosonic Erbium. Since

Bosonic Erbium has zero nuclear spin, there is no hyperfine splitting.

Erbium has five possible laser cooling transitions [1], each with J = 7. Of these, we

use the broad 27 MHz, 401 nm line for 2D MOT and the narrow 583 nm transition for 3D

MOT. The excited state for the 2D and 3D MOT transitions are [Xe] 4f (3H6) 6s 6p (1Po1)

and [Xe] 4f (3H6) 6s 6p (3Po1), respectively. The terms in parenthesis indicate the L-S

coupling between the inner and the outer electrons, separately. The linewidth and other
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Figure 7.2: Laser cooling transitions in atomic Erbium [1]. The purple and green arrows
indicate the cooling transitions used for the 2D MOT and 3D MOT, respectively.

parameters for these transitions are tabulated in Table 7.1. Below the 3D MOT excited

state [Xe] 4f (3H6) 6s 6p (3Po1), Erbium has two metastable states. However, [1] estimates

the transition rates to these states to be 0.017 s−1 and 0.0049 s−1, which is much smaller

than the fluorescence decay rate of the 3D MOT excited state to the ground state (106 s−1).

As a result, there is practically no leakage to dark states, and a re-pump is not needed. All

we need is a laser locked at the 583 nm atomic transition with a line width and frequency

stability better than 170 kHz. For the rest of the chapter, I will describe a simple and

robust method to achieve such a lock by utilizing available frequency stabilized lasers in

the lab.
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Table 7.1: Erbium laser cooling transitions [1].

λ (nm) Γ (s−1) ∆ν (MHz) Isat (mW/cm2)
2D MOT 400.91 1.7 ×108 27 56
3D MOT 582.84 1.0 ×106 0.17 0.11

7.2 Frequency Stabilization of 583 nm Laser

We use a 583 nm, frequency-doubled semiconductor laser (Toptica SHG DL-Pro)

for the Erbium 3D MOT. The linewidth of this laser is supposed to be less than 2π 30

kHz when measured over a 1 s period. We verified it to be 2π 48(2) kHz by a delayed

self heterodyne measurement with a 2 km long optical fiber and an80 MHz AOM. Since

the Erbium 3D MOT transition has a 2π 170 kHz natural linewidth, the short-term laser

linewidth is good enough, and there is no need to narrow it further. However, over longer

durations, the laser frequency drifts at an approximate rate of 33 kHz/s (measured on an

Angstorm High Finesse WSU2 wavemeter), under typical laboratory conditions. This

corresponds to a drift equal to the Erbium 3D MOT transition linewidth in about 5 s.

Therefore, we need to frequency stabilize this laser with a locking scheme capable of

responding faster than 5 s or a bandwidth greater than 200 mHz.

Typical laser frequency stabilization schemes such as Saturation Absorption Spectroscopy

(SAS) lock the laser to the atomic transition by generating the corresponding signal in a

heated vapor cell (for example, see Sec. 4.2). However, these methods rely on significant

light absorption by the atomic gas. Erbium with a melting point of 1529°C has a very

low vapor pressure at temperatures typically used for heating glass vapor cells. Fig. 7.3

contrasts Erbium vapor pressures with Sodium, for which SAS is used as a locking
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Figure 7.3: Vapor pressure of Sodium and Erbium as function of temperature [5].

scheme (see Sec. 4.2). At a relatively high temperature of 400°C, Erbium has a vapor

pressure less than 10−10 torr, while for Sodium, it exceeds 103 torr. As a result, very

few Erbium atoms are vaporized, resulting in a weak absorption and low signal-to-noise

ratio. A possible solution is using a heat pipe to heat Erbium to very high temperatures.

However, such systems are cumbersome and occupy significant optical table real estate.

An alternative could be using an ultra-stable reference such as an Ultra-Low Expansion

(ULE) cavity with frequency drifts in the order of tens of milli-hertz per second [106].

However, these are expensive, need special care such as vacuum engineering, and are

overkill for our problem.

Since we already have a 589 nm laser locked to the D2 transition of 23Na, we

developed a scheme to use this laser to frequency stabilize the Erbium 583 nm laser in

a master-slave configuration. The locked master laser frequency drifts should be much

smaller than the Sodium natural linewidth of 2π 9.8 MHz. We measured this drift to be
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about 100 kHz over a 30 min period (using an Angstorm High Finesse WSU2 wavemeter),

which could be further improved by simply increasing the bandwidth of the master laser

locking electronics. One way of transferring this stability is by locking the length of

an optical cavity to the master and then locking the slave to this cavity using a Pound

Drever Hall (PDH) scheme [107]. Such a scheme can provide sub 100 Hz stability but

involves setting up an entire locking apparatus, including cavity and electronics, for each

slave laser. We decided to implement a Scanning Transfer Cavity (STC) scheme, which

is bandwidth limited due to the piezo’s slow scan rate but offers a much simpler system

for locking multiple slave lasers to the same master. An STC is a Fabry Perot with piezo

actuated length tunability. A beam from the master and each slave laser is sent into

the cavity, while its length is scanned periodically. As the length scans, each of these

beams resonates with the cavity’s natural frequency and result in a transmission peak at

the output. The time difference between these peaks gives an estimate of the frequency

difference between the different lasers. This information is then used to generate a

feedback signal using a servo to stabilize the slave frequency to the master. The scan

rate of the STC piezo limits the bandwidth of such a locking scheme. Standard piezos are

adequate for achieving our modest bandwidth requirements (200 mHz). In the following

sections, I will first explain some of the basics of how Fabry Perot (FP) etalons work and

then describe the design and construction of our STC.
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Transmitted  Beams

Figure 7.4: Interference in a simple Fabry Perot cavity. The beam on entering the cavity
undergoes multiple reflections. These when constructively interfere lead to a maximum
in transmission intensity.

7.3 Fabry Perot Etalons

In its simplest form, a Fabry Perot (FP) etalon consists of two parallel mirrors placed

at a separation L, as shown in Fig. 7.4. Light enters the cavity from one of the mirrors,

reflects multiple times, and eventually transmits through the other mirror. If the frequency

of this light is in resonance with the cavity, the multiple paths constructively interfere and

result in increased transmission intensity. Fig. 7.4 describes the amplification of light in a

plane mirror FP cavity. Consider a monochromatic beam travelling along ez with electric

field Ei ∝ eiωt−kz, incident on the front surface of the plane mirror cavity. Here t is time,

ν is the frequency, and k ez = 2πν/c ez is the propagation constant. The phase delay in

each round trip is given by δ = 4πνL/c, where L is the length of the cavity. Transmitted
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beams from the different reflections add up to give a total transmission Et, given by

Et = Eit1t2(1 + r1r2e
iδ + (r1r2)2e2iδ + ..) =

T

1−Reiδ
Ei, (7.3)

where t1, t2 and r1, r2 are the transmission and reflection coefficients of the two mirrors,

respectively, and T andR are defined as T = t1t2 andR = r1r2. The intensity corresponding

to the transmitted electric field It is given by

It = EtE
∗
t = Ii

(1−R)2

(1−R)2 + 4R sin2 δ/2
. (7.4)

From Eq. (7.4), we see that the transmitted intensity It achieves its maximum value when
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Figure 7.5: Cavity transmission peaks with varying mirror reflectivity R , according to
Eq. (7.4). The red, green and purple curves correspond to a reflectivity R of 0.6, 0.8 and
0.995, respectively.

the round-trip phase delay δ = 2qπ, where q is an integer. This corresponds to frequencies

ν = q νfsr, where νfsr = c/2L is the free spectral range of the cavity. Fig. 7.5 shows the
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transmitted intensity as a function of laser frequency ν for different reflectivities R. As

R increases, the linewidth of the transmission peak δν decreases, thereby improving the

frequency resolution of the cavity. The ratio of free spectral range νfsr to linewidth δν is

called finesse F . It can be shown that in the absence of other losses, the finesse is simply

a function of the reflectivity of the mirrors and is given by F = π
√
R/(1−R) [108,109].

Since the linewidth δν is given by δν = νfsr/F , a high finesse helps achieve a narrow

linewidth for a fixed free spectral range.

The finesse of a cavity is degraded by factors such as diffraction and mirror surface

irregularities. Additionally, the finesse of a simple plane mirror FP is very sensitive to

mirror alignment as small angular misalignments are equivalent to corresponding surface

imperfections. In contrast, curved mirrors leave much more room for error as an angular

misalignment merely redefines the optical axis [110]. Given the many advantages of

resonators with curved mirrors, I will now formally explore the stability of modes in a

cavity with mirrors of different curvatures.

Mirror 1 Mirror 2

Figure 7.6: Schematic of a Fabry Perot with curved mirrors. The mirrors with radii of
curvature R1 and R2 are separated by a distance d.

Resonance in a FP is achieved by ensuring the same field distribution after each
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round trip. Consider a cavity of length L, made with mirrors of radius of curvatures R1

andR2, as shown in Fig. 7.6. It can be shown that for an electromagnetic wave to replicate

itself after each round trip, the geometry of the cavity should satisfy Eq. (7.5) [108, 109]

0 ≤ (1 +
L

R1

)(1 +
L

R2

) ≤ 1, (7.5)

Fig. 7.7 graphically depicts the stability condition (Eq. (7.5)) as a function of g1 and

g2, where g1 = 1 + L
R1

and g2 = 1 + L
R2

. The white region indicates the region of

stability where Eq. (7.5) is satisfied. As evident from Fig. 7.7, plane parallel (point 1)

and concentric (point 3) configurations lie at the edge of the stable region resulting in an

fairly unstable modes. A symmetric confocal configuration (point 2) lies within the stable

region and is very common for commercial FP cavities. Point 4 indicates the position of

our STC which is made using a plane and curved mirror.

To find the resonance condition, we consider eigenmodes of a FP cavity with mirrors

of arbitrary curvature. These eigenmodes can be described as Hermite Gauss modes of

order (l,m) given by

U(x, y, z)l,m =
w0

w(z)
Hl

(√
2x

w(z)

)
Hm

(√
2y

ω

)
exp

(
−i(kz − Φ(l,m; z))− i k

2R
(x2 + y2)

)
,

(7.6)

where Hn,m are Hermite polynomials, w(z) is the waist of the beam as a function of

distance z from the focus in the direction of propagation, and w0 is the minimum waist

at the focus. The phase term Φ(l,m; z), called the guoy phase is given by Φ(l,m; z) =

kz−(l+m+1) ζ(z) where ζ is given by ζ(z) = tan−1(z/z0), z0 = πw2
0/λ is the Rayleigh
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Figure 7.7: Stability diagram for a two mirror cavity based on Eq. (7.5). The red points
(1), (2), and (3) indicate positions of plane parallel (R1 = R2 =∞), symmetric confocal
(R1 = R2 = L/2), and concentric (R1 = R2 = L) mirror configurations. The blue point
(4) indicates the position of the STC.

length, and l and m are integers. The phase accumulated in each round trip is given by

2kL − 2(l + m + 1) ∆ζ , where ∆ζ can be approximated to ∆ζ ≈ cos−1(±√g1g2).

Resonance in such cavities occurs for frequencies νlmq given by

νlmq =

(
q + (l +m+ 1)

cos−1(±√g1g2)

π

)
c

2L
. (7.7)

As evident from Eq. (7.7), geometries with cos−1(±√g1g2)/π equal to 0, 1/2 or 1 exhibit

a great deal of degeneracy between axial and transverse modes. These correspond to

plane-parallel, confocal and concentric arrangements, respectively. In cavities with degenerate

modes, slight geometric deviations cause broadening of the cavity linewidth. Though

such broadening eases coupling light into the cavity, it is not ideal for laser stabilization
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purposes. For our STC, we use one plane and a R = 500 mm concave mirror separated

by 210.5 mm. Such a plane-concave mirror configuration not only satisfies the stability

criteria of Eq. (7.5) but also avoids degenerate modes. Point 4 in Fig. 7.7 depicts our STC.

7.4 Construction of the Setup

The setup for the STC lock includes a homemade Fabry Perot cavity, an electronic

board for converting the analog cavity transmission peaks into digital pulses, and a microprocessor

to generate the feedback to control the laser frequency. This section describes the construction

of all three parts.

7.4.1 Cavity Construction

The FP cavity acts as a tunable, narrow bandpass filter capable of detecting the

master-slave frequency difference with a precision better than the 583 nm Erbium transition

natural linewidth. The time difference between the resonance peaks gives an estimate of

the frequency difference. As a result, key considerations in its design are [110]

• mechanical stability and isolation from temperature and pressure fluctuations

• attainment of high finesse to obtain a narrow linewidth

• and an optimal optical layout to achieve mode matching.

We will touch upon these aspects in the following sections.
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Figure 7.8: Schematic of the scanning Fabry Perot cavity. The curved mirror is attached
to the piezo which is epoxied to the invar spacer via a macor ring. The plane mirror is
attached on the other end of the spacer.

7.4.1.1 Mechanical and Thermal Stability

Fig. 7.9 is a schematic of the STC. It comprises a ’Invar36’ metallic spacer, a piezo

to scan the separation between the two resonator mirrors, and a macor ring between the

piezo and spacer surfaces. Macor being an insulator avoids short-circuiting the inner and

outer electrodes of the piezo. The two mirrors are glued to the ends of this assembly

using ’Torr-Seal’ epoxy. An important consideration for the cavity design is the drift in

its free spectral range with ambient temperature changes. The length L in the expression

νfsr = c/2L is the distance between the mirrors. In our case, it is the sum of the lengths

of the invar spacer (Lin), macor ring (Lm) and piezo (Lp). For a 1°C rise in temperature,
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the change in FSR, ∆νfsr is given by

∆νfsr =
c

2L

∆Lin + ∆Lm + ∆Lp
L

, (7.8)

where ∆Lin/m/p are the corresponding change in lengths. Since, for a 1° C rise in

temperature, the fractional change in lengths are given by coefficients of thermal expansion

(CTE), the above expression can be re written as

∆νfsr = νfsr (αin + αm
Lm
Lin

+ αp
Lp
Lin

), (7.9)

where αin/m/p are the corresponding CTEs. Here, the length of the invar spacer is

assumed to be very large compared to the macor and piezo. The CTE and dimensions

of the different parts that make up the cavity are tabulated in Table 7.2.

Table 7.2: Thermal expansion of cavity parts.

Part Material CTE
(10−6/°C)

Length
(mm)

αx
Lx
Lin

(10−6/0C)
Spacer (in) Invar 36 1.2 190.5 1.2
Piezo (p) APC Material- II – 20 –
Insulating Ring (m) Macor 5.2 2.54 0.069

It is evident from Table 7.2 that despite macor having a higher CTE, the invar

spacer’s expansion limits the thermal stability of cavity free spectral range. Invar was

chosen for its low CTE. For a cavity with νFSR = 712 MHz, ∆νfsr ≈ 903 Hz/°C, much

smaller than the linewidth of the Erbium 583 transition. The piezo used is a standard, off-

the-shelf ring piezo from ’APC International’. It is 20 mm long and has outer and inner
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diameters 19 mm and 16 mm, respectively. The piezoelectric coefficient d31 = -175,

resulting in an axial elongation of 0.467µm for every 200 V applied across the inner and

outer electrodes. For a 200 mm long cavity, this corresponds to a frequency scan greater

than 1.5 × νFSR.

7.4.1.2 Finesse and Linewidth

-10 100
0

0.2

0.4

0.6

0.8

1

Lorentzian fit

Data

Figure 7.9: Linewidth measurement of the constructed STC. The blue points correspond
to measured transmitted intensity It as the cavity piezo is scanned. The horizontal axis
is the cavity resonance frequency νcav relative to the master laser frequency νmaster which
serves as a reference. The black line is a Lorentzian fit to the data giving a linewidth of
1.14 MHz.

Our goal is to make a FP with the smallest possible linewidth. This can be achieved

by either using mirrors with high reflectivity or by increasing the length of the FP. While

higher reflectivities lead to larger finesse F , large cavity lengths decrease the free spectral

range νfsr. We use mirrors with 99.5% reflectivity, with an expectation of an ideal finesse

of 625. Mirrors with reflectivities higher than this are very expensive. We decided to

go with a cavity length of 210.5 mm; any longer would make aligning the laser beam
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through the cavity challenging. This gives us a νfsr = 712 MHz. Based on the ideal

finesse of 625, we expected to get a cavity linewidth of 1.14 MHz. Fig. 7.9 shows one of

589 peaks as the cavity’s natural frequency νc is varied. By fitting the transmission peak

to a Lorentzian line-shape and assuming a 712 MHz FSR, we obtain a linewidth of 1.5(2)

MHz, corresponding to a finesse F = 469.

7.4.1.3 Mode matching

Figure 7.10: Optical setup of the scanning transfer cavity. Light from the two lasers
are couple into a fiber and sent to the STC. Lenses with focal length f1 = 150mm and
f2 = 100mm are used to mode match to the cavity.

Fig. 7.10 shows a schematic of the STC and associated optics. To couple maximum

light into the (0,0) Hermite gauss cavity mode, the beam’s wavefront curvature should

match that of the mirrors at their respective locations [111, 112]. This corresponds to a

500 mm curvature at the curved mirror and minimum waist at the flat mirror. Since the

length of the cavity (L) is 210.5 mm, the required waist size at the plane mirror can be
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Figure 7.11: Mode matching optics for the cavity. The Gaussian beam from the fiber is
collimated using an asphere. Lenses f1 and f2 are placed appropriately to achieve mode
matching. di’s are the distances between the various components. d0, d1, d2 and d3 are
127, 150, 120 and 317.5 mm respectively.

estimated using Eq. 7.10.

R(L) = L(1 + (
zR
L

)2) =⇒ zR = L

√
R

L
− 1

zR = πw2
0/λ =⇒ w0 =

√
λzR
π

(7.10)

where zR is the Rayleigh length. This turns out to be 215.133 µm. We achieve this using

two lenses of focal lengths f1 and f2. We perform a ray matrix analysis to determine

appropriate placement of these lenses [109, 111, 112]. The optical setup is as shown in

Fig. 7.11 where capital letters indicate the ray transfer matrix of each optical element.

Matrices for the two lenses with focal length f1 and f2 are given by Eq. 7.11. C,D,E

and F are the matrices for propagation in free space.
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A =

 1 0

− 1
f1

1

B =

 1 0

− 1
f2

1



C =

 1 0

d0 1

D =

 1 0

d1 1

E =

 1 0

d2 1

F =

 1 0

d3 1


(7.11)

When solved we obtain the following results.

wB =
2f1wA√

4d2
0 − 8d0f1 + 4f 2

1 + k2w4
A

d1 = − f1(−4d2
0 + 4d0f1 − k2w4

A)

4d2
0 − 8d0f1 + 4f 2

1 + k2w4
A

d2 =
2f2w

2
0 +
√

4f 2
2w

2
0w

2
B − k2w4

0w
4
B

2w2
0

d3 =
2f2w

2
B +
√

4f 2
2w

2
0w

2
B − k2w4

0w
4
B

2w2
B

(7.12)

In our setup, light out of the fiber is collimated into a beam of 430 µm 1/e2 radius, using

an aspheric lens. The first spherical lens is placed 127 mm (d0) away from the asphere.

The two lenses have focal lengths f1 = 150 and f2 = 100 mm. This gives a value of

150, 120 and 317.5 mm for d1, d2 and d3 respectively. Once mode matched, we perform

a two-mirror walk with mirrors M1 and M2 (see Fig. 7.10) to maximize coupling. This

step is tricky as the cavity is single mode. Two things make this process slightly easier.

First, we try to align the beam reflected off the first cavity mirror with the input beam.

Second, we look at the transmitted cavity mode on a camera while walking the mirrors

and scanning the cavity. When roughly aligned, we see multiple modes on the camera

as the cavity scans. A photodetector will capture these different modes as multiple peaks

for a single free spectral range scan. The rest of the alignment is done with the goal of
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eliminating all but one mode.

7.4.2 Electronics

7.4.2.1 Pulse Detection Board

The photodetector at the output of the cavity (see Fig. 7.10) detects the transmitted

light. We designed an electronics board to detect peaks in transmission intensity and

generate digital pulses whenever they occur. Fig. 7.12 is a schematic of this circuit. The

photodetector signal is sent through two channels. One detects voltage values greater than

a certain threshold using a commercial comparator. The other detects a local maximum

in voltage using a differentiator and comparator in series. The differentiator generates a

derivative of the signal, which is compared against a reference. A NAND gate takes the

output of these channels and goes to a digital LOW when both conditions are satisfied.

Fig. 7.12 depicts how the different components in the circuit work. The LOW pulses

generated by the NAND gate serve as the digital input to the microprocessor.

7.4.2.2 Microprocessor

The microprocessor used is a Teensey 3.2 board. An Arduino IDE code evaluates

the time difference between two consecutive peaks as the cavity scans. This code also

eliminates spurious peaks detected by the photo-diode at the exit of the cavity. We

generate an analog feedback signal using the Audrino PI library, which is fed to the

slave laser’s ECDL grating piezo. While implementing this code, we realized that each

cavity transmission peak generates multiple digital pulses, as shown in Fig. 7.13. The
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Figure 7.12: Pulse Detection action by the analog board. A voltage pulse (a) detected in
the photo diode is sent through a number of electronic components which ultimately drive
the NAND gate signal (f) LOW. This digital pulse is fed to the micro controller.

yellow curve in Fig. 7.13 is a transmission peak, and purple pulses are digital inputs

generated by the analog pulse detection board. Due to non-uniform motion of the cavity
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Figure 7.13: Non-uniform motion of the piezo leads to multiple kinks on the cavity
transmission peak. The yellow curve is the transmission peak and purple is the digital
signal sent to the microprocessor, signaling a transmission peak’s occurrence. Each
vertical division is 500 mV for yellow and 2V for purple. Each division on the horizontal
axis is 250 µs.

piezo, the transmission peaks have multiple kinks, resultingin multiple digital pulses. The

analog board interprets these kinks as separate peaks and sends out false signals to the

microprocessor. We get around this problem by rejecting inputs that are spaced closely in

time.

7.5 Results and Outlook

The microprocessor’s Proportional Integral (PI) output controls the slave’s ECDL

grating piezo voltage as the cavity scans. PI gains and set-points are digitally controlled

by turning rotary encoders on the analog electronics board. We were successful in locking

the 583 nm slave to the locked master. Also, we were able to scan the slave by scanning

the master laser frequency by 5 MHz in 0.5 s, indicating qualitative stability of the lock

for slow drifts, as shown in Fig. 7.14. The frequency stability of the locked laser was
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Figure 7.14: Master and slave frequency drifts δν as the master oscillates and drifts. The
master SatAbs lock was dis-engaged and the master laser frequency was modulated by
5MHz in a period of 0.5 s. The top panel is data acquired over long periods and shows
the overall drift in the mean frequency. The bottom panel is a zoomed-in version of the
top panel. Measurements were made using the ’Angstorm WSU2’ wavemeter via a fiber
switch.

measured using an ’Angstorm high finesse WSU2’ wavemeter. Fig. 7.15 is a histogram

of the slave frequency measured over 1 minute of it being locked and unlocked. The

locked laser clearly has a smaller spread in frequencies than when it’s unlocked. However,

the frequency spread is roughly 1.5 MHz, similar in magnitude to the cavity linewidth.

Ideally, we expect the cavity to resolve frequencies much smaller than its linewidth. In

this case, the sub-optimal resolution can be attributed to the non-uniform motion of the

cavity piezo, as shown in Fig. 7.13. The analog board reads these kinks as individual

peaks and sends the information to the microprocessor. Though the microprocessor code
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Figure 7.15: Histogram of the slave frequencies as it is locked (red) and unlocked (blue).
Measurements were made using the ’Angstorm WSU2’ wavemeter via a fiber switch.

picks only one of the many digital pulses, this could correspond to any position on the

cavity peak. As a result, we should expect uncertainty in frequency estimation equal to

the cavity linewidth. To investigate this hypothesis, we look at the cavity transmission

peaks as we scan the laser frequency but hold the piezo stationary. Fig 7.16 (a) shows

the cavity transmission peaks when the cavity is scanned, but the laser frequency is held

constant. Fig 7.16 (b) corresponds to the opposite case where the laser is scanned, but

the cavity is held stationary. The kinks in the transmission peaks appear only when the

cavity is scanned, thereby indicating a non-uniform piezo motion. Even though this STC

setup has failed to stabilize the 583 nm slave laser within the Erbium atomic transition

natural linewidth (2π 170 MHz), we have successfully identified a major shortcoming in

the scanning motion of the piezo. A possible reason for the non-uniform motion could

be the excessive weight of the piezo. By replacing this with a lighter piezo and stacking

the cavity vertically we might be able to relieve some of the strain in its free movement,
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thereby eliminating the kinks in the cavity transmission peaks.

(a) (b)

Figure 7.16: Cavity transmission peaks (yellow curve) and corresponding pulses
generated by analog board (purple) as the cavity (a) or laser (b) is scanned in frequency.
Each vertical division is 500 mV for yellow and 2V for purple. Each division on the
horizontal axis is 250 s. The above data was taken by scanning the cavity and laser at 3.4
GHz/s.
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Chapter 8: Conclusions and Outlook

While building this new apparatus, we made several improvements to alleviate

many of the problems faced in the previous setup. For example, the imaging system

in the previous experiment had a numerical aperture of 0.09 and the response was heavily

aberrated [38]. The current experiment has an improved imaging system with a numerical

aperture of 0.28 and is designed for minimal aberrations [64]. One can gauge the degree

of improvement by comparing the typical radial trap frequencies of the toroidal traps. In

this apparatus, we make rings with radial trap frequencies ωr = 2π 500 Hz, a factor of five

better than the NIST experiment. Moreover, for the NIST experiment, it was impossible

to create uniform rings without making significant corrections to the spatial mode of the

DMD ODT beam. For the analogue cosmology experiment, tighter radial confinement has

allowed us to explore rapid expansion and contractions without exciting collective modes

in the radial direction, thereby making our system more 1D than the NIST version. In

future, we plan to exploit this improved resolution for a better phonon detection threshold

and attempt to observe spontaneous pair production. Some progress has been made in this

direction (see Appendix A). Additionally, the improved resolution will help create weak

links of much smaller dimensions, enabling the study of tunneling effects in a superfluid

ring and building upon our previous work in atomtronic circuits [17–19].
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Another significant improvement was switching the Zeeman slower source with a

more compact 2D MOT. This source is at least three times smaller in volume and doesn’t

have large electromagnets with long tun-off times. Since we plan on making a dual-

species BEC with highly magnetic Erbium, this is particularly useful. The long-range and

anisotropic nature of dipole-dipole interactions in Erbium makes it an exciting candidate

for strongly correlated many-body physics. Erbium has many Feshbach resonances which

are densely packed. Its bosonic isotopes 168Er and 166Er, have respectively 190 and 189

resonances over 70G [100]. This makes Erbium a promising candidate for applications

involving tuning interactions, not limited to but including analogue cosmology.
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Appendix A: Characterizing Imaging Aberrations

To extend the cosmological analogy to the quantum domain, we plan on exploring

the phenomena of pair production in the early universe [21, 92, 113–116]. As illustrated

by our previous work [41], this involves the precise detection of spontaneously generated

excitations, which relies on the ability to resolve spatial correlations caused by them.

The healing length of condensates ξ determines the length scale of these correlations.

Eq. (A.1) defines the healing length [33] as

ξ =

√
h̄2

2mµ
, (A.1)

where m is the mass of an atom, and µ is the chemical potential of the BEC. Fig. A.1

helps in visualizing these length scales in the context of imaging systems with different

resolutions. Fig. A.1 (a) corresponds to a system whose spatial resolution is limited by

the pixel size lmin, as indicated by the grid. Fig. A.1 (b) corresponds to a system whose

resolution spot size is significantly larger than the camera pixel size. The solid and dashed

circles represent atoms as imaged by the two imaging systems. The thermal De-Broglie

wavelength λdB represents the spatial extent of atoms. These appear as objects of size R

when imaged through an imaging system with a finite resolution, as shown in Fig. A.1 (b).

Fig. A.1 (c) depicts these length scales in the Fourier domain, indicating the spatial
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Figure A.1: Comparison of length and spatial frequency scales for imaging BECs. (a)
and (b) correspond to imaging systems with spatial resolutions lmin and R. The grid
represents camera pixels. Thermal De-Broglie wavelength λdB and healing length ξ are
indicated. The dashed circles in (b) correspond to (a)’s solid circles of the same color. (c)
Length scales in (a) and (b) in the Fourier domain.
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frequencies resolved by the two imaging systems. Ideally, we wish to have an imaging

resolution much smaller than ξ so that resolving spatial correlations for frequencies near

and smaller than ξ−1 is straightforward. However, since our typical chemical potentials

are of the order of 1 kHz, ξ < 1 µm, which is of the same order as our imaging system’s

diffraction-limited resolution. As a result, imaging systematics such as diffraction and

aberrations obscure the correlation information. Ref. [117, 118] derives a method to

determine these systematic effects in an uncorrelated atomic sample experimentally. We

employ the same technique to characterize the modulation transfer function (MTF) of our

imaging system.
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Figure A.2: (a) Atomic density of weakly interacting disk-shaped BEC nexp(rl). (b)
Density variation of (a) δnexp(rl) about the average 50 shots. The densities in both (a)
and (b) are in the same arbitrary units.

We start by acquiring images of 50 similar atomic samples of weakly interacting

BECs. The 2D column densities corresponding to each of the 50 samples are similar

but not identical. Fig. A.2 (a) is the density corresponding to one of these samples
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nexp(rl), and Fig. A.2 (b) is its density fluctuation about the mean density evaluated

across the 50 samples δnexp(rl) = nexp(rl) − 〈nexp(rl)〉, where 〈..〉 denotes averaging

across the 50 samples. These fluctuations in the atomic density δnexp are a result of

shot-noise. Therefore for an ideal imaging system, we expect the density fluctuation

power spectrum
∣∣∣δ̃nexp(kl)

∣∣∣2 to be spectrally flat, where .̃. represents spatial Fourier

transform. However, due to the finite resolution of the imaging system, diffraction and

imaging aberrations result in stronger density-density correlations for spatial frequencies

less thanR−1, conveniently giving a measure of the MTF. According to [117], the Fourier

transform of the MTF, M(kl) is related to the average of the density fluctuation power

spectrum
〈∣∣∣δ̃n(kl)

∣∣∣2〉 by the equation

M2(kl) =

〈∣∣∣δ̃n(kl)
∣∣∣2〉 . (A.2)

Fig. A.3 (a) is the experimentally obtained RHS of Eq. (A.2) estimated by averaging∣∣∣δ̃nexp(kl)
∣∣∣2 across the 50 images. The strong DC component arises due to the finite extent

of the atomic cloud and needs to be removed for accurate determination of the MTF. For

this, we refer to the relationship between the Fourier transformed MTF M(kl) and the

resonant absorption imaging pupil function p, derived in [117]. The relationship is given

by

M2 =

〈∣∣∣δ̃n(kl)
∣∣∣2〉 =

∣∣∣R̃ [p̃]
∣∣∣2 , (A.3)

where the pupil function can be represented in the form of amplitude A and wavefront Θ
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Figure A.3: (a) Experimentally evaluated density fluctuation power spectrum as a function
of the spatial frequency kl. (b) Result of fitting (a) to Eq. A.4. The dashed circles enclose
resolvable spatial frequencies for an imaging system with NA = 0.28. The color bar holds
for both (a) and (b).

aberrations as

p(r) = A(r) ei2πΘ(r). (A.4)

We fit the experimentally obtained
〈∣∣∣δ̃nexp(kl)

∣∣∣2〉 (see Fig. A.3 (a)) to the pupil function

(A.4) with the wavefront aberration represented by an even polynomial of order six.

Fig. A.3 (b) shows the fitted
〈∣∣∣δ̃n(kl)

∣∣∣2〉, which according to Eq. (A.2) is equal to

M2(kl). This fitted MTF doesn’t have the spurious DC component. Fig. A.4 (a) shows the

wavefront aberration Θ obtained from the fit. As a sanity check, we go a step further and

estimate the types of aberrations present in our imaging system, which involves projecting

the wavefront aberration Θ onto a Zernike polynomial basis [119], to obtain the first 10
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Zernike coefficients. Fig. A.4 (b) is the wavefront aberration reconstructed from these

Zernike coefficients.

(a) Polynomial fit (b) Zernike fit

-1
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10-110-1

-2 2

Figure A.4: (a) Wavefront aberration determined by fitting Fig. A.4 (a) to Eq. A.4. (b)
Wavefront aberration reconstructed by projecting (a) onto a Zernike polynomial basis.

Our next goal is to intentionally introduce an aberration in our system and then

look for the desired effect, serving as a sanity check for the above scheme. Since we have

complete control over the system defocus, we now concentrate on the Zernike defocus

coefficient Z2
0 . Fig. A.5 (a) is a schematic of the imaging system where zi is the distance

between the exit pupil and the camera. We intentionally defocus the system by varying

zi and record the Zernike defocus coefficient Z2
0 . Fig. A.5 (b) plots Z2

0 as a function of

∆zi. ∆zi = 0 represents the optimal focal position. As zi is varied on either side of this

optimal value, Z2
0 increases in magnitude, thereby confirming optimal focus at ∆zi = 0.
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Figure A.5: Experiment to deterministically change the system defocus. (a) The imaging
system with image distance zi as indicated. (b) Variation of Zernike defocus coefficient
Z2

0 as a function of ∆zi.
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Universal quantum viscosity in a unitary fermi gas. Science, 331(6013):58–61,
2011.

[90] Y. Ohashi, H. Tajima, and P. van Wyk. Bcs–bec crossover in cold atomic and in
nuclear systems. Progress in Particle and Nuclear Physics, 111:103739, 2020.

[91] Victor I. Kolobov, Katrine Golubkov, Juan Ramón Muñoz de Nova, and Jeff
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[118] Emine Altuntaş and I. B. Spielman. Self-bayesian aberration removal via
constraints for ultracold atom microscopy. Phys. Rev. Research, 3:043087, Oct
2021.

[119] Augustus J. E. M. Janssen. Extended nijboer–zernike approach for the computation
of optical point-spread functions. J. Opt. Soc. Am. A, 19(5):849–857, May 2002.

133


	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Outline of the Thesis

	Theory of Bose Gas
	Ideal Non-interacting Bose Gas
	Mean Field Dynamics of Weakly Interacting BECs
	Thomas Fermi Approximation
	Collective Excitations: Phonons
	Damping of Low-energy Excitations


	Analogue Gravity
	Previous Experiments
	BEC Phonon Wave Equation and the Space-time Metric
	Wave Equation in a Toroidal BEC

	Experimental Apparatus
	Vacuum Chamber
	Laser Frequency Stabilization
	Optical Dipole Traps
	Red-detuned Optical Dipole Trap
	Blue-detuned Optical Dipole Trap

	Imaging
	Partial Transfer Absorption Imaging
	Probe Reconstruction


	Production of BEC
	2D MOT Source
	Laser Cooling
	Forced Evaporation
	Transfer to Purely Optical Traps

	The Hubble Friction Experiment
	Publication: Hubble Attenuation and Amplification in Expanding and Contracting Cold-Atom Universes
	Abstract
	Introduction
	Experiment and Results

	Model for the Toroidal Potential and Scaling Laws
	Simulation: Impact of Phonon Phase on Hubble Friction Strength
	Simulation Model
	Simulation Results

	Mode Purity of the Phonons
	Fitting Method

	Towards Erbium BEC: Scanning Transfer Cavity Lock
	Laser Cooling of Erbium
	Frequency Stabilization of 583 nm Laser
	Fabry Perot Etalons
	Construction of the Setup
	Cavity Construction
	Electronics

	Results and Outlook

	Conclusions and Outlook
	  Characterizing Imaging Aberrations
	Bibliography

