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Foodborne diseases caused by undercooked poultry products are noteworthy 

problems that have motivated research into the assessment of the endpoint 

temperature in meat. In this research, a novel infrared and laser range imaging 

system was proposed to estimate the internal cooking temperature of chicken 

breasts. It consisted of three subsystems: an IR imaging system, a laser range 

system, and an artificial neural network modeling system. Our experiments 

showed that geometric variables played an important role in the endpoint 

temperature estimation. The accuracy achieved by our system was 1.54° C for 

mean absolute error, 2% for mean absolute percent error, and 3.08(° C)2 for 

mean square error. The combined IR and laser range imaging system showed 



the potential for real-time, non-contact and non-invasive estimation of the 

internal cooking temperature in meat for enhanced food quality and safety. 
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CHAPTER 1 INTRODUCTION 
 

 

Food safety issues, particularly those associated with meat and poultry 

products, have been of serious concerns to the United States Federal 

Government for the last thirty years. To address these concerns, there are 21 

federal agencies that work on food safety research under approximately 50 laws 

that directly and indirectly authorize such research (Acker, 1993). The Centers 

for Disease Control and Prevention (CDC) documented that there were 5,174 

outbreaks of foodborne disease reported from 1988 to 1997 and these outbreaks 

caused 163,431 persons to become ill (Bean et al., 1997; Olsen et al., 2000).  

 

Obviously, foodborne poisoning is noteworthy. It threatens a person’s health 

and life. The elderly, children, and pregnant women are at heightened risk of 

illness or death if they eat contaminated meat or poultry products. Also, the 

cost of foodborne diseases is considerable. For meat and poultry products, the 

costs associated with medical treatment and losses in productivity caused by six 

of the most common bacterial pathogens are estimated at $1.8 to $4.8 billion 

annually (Buzby, 1996). “Preventing meat and poultry products from becoming 

contaminated with harmful bacteria like Salmonella or Campylobacter would 
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result in improved health for consumers, as well as significant economic 

benefits” (DeWaal, 1996). 

 

Although the government has proposed a zero-tolerance policy for some 

hazardous bacteria, it is unrealistic. In fact, the “USDA argues that pathogens 

are ubiquitous, both on animal farms and in slaughterhouses” (Nutrition week, 

1987). In addition, they gain entrance to meat and poultry products by 

unsanitary practices and equipment. Even random sampling programs and 

HACCP (Hazard Analysis and Critical Control Point (HACCP) process control 

systems cannot prevent foodborne hazards outbreaks. Furthermore, most 

outbreaks are linked to the inadequate cooking of meat and poultry products 

(Doyle, 1994; Veeramuthu et al., 1997; Bean et al., 1997; Olsen et al., 2000). Thus, 

the meat and poultry industry has changed its strategy. Instead of only 

reducing the bacteria multiplying in raw meat and poultry products, the 

industry coupled the reinforcement of hygienic handling practices with cooking 

meats sufficiently. 

 

What does sufficiently mean? Clearly, if undercooked, disease-causing bacteria 

contained in tainted poultry will survive and threaten a consumer’s health; if 

overcooked, the disease-causing bacteria are cooked away, as well as meat 
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tenderness and juiciness. To make meat and poultry products enticing for the 

consumer to eat, and at the same time ensuring food safety, the USDA requires 

minimum internal cooking temperatures for all meat and poultry products. The 

minimum internal cooking temperature for a chicken breast is 76.7° C (FSIS, 

2001).  

 

Currently, the concern is how to confirm that the internal cooking temperatures 

of meat and poultry products have reached the requirements. The purpose of 

this research was to solve the problem by developing an imaging system for 

evaluating the internal cooking temperature in chicken breasts. In addition, the 

system can also be used as a platform for other types of meat and poultry 

products. We are interested in the chicken breast, because the demand for it is 

high in the United States. Moreover, poultry is one of the top five single-food 

vehicles of outbreaks according to the report given by the Center for Science in 

the Public Interest (CSPI) that tracked a total of 2,472 outbreaks involving 

90,355 cases from 1990 to 2002 (DeWaal and Barlow, 2002). During that period, 

there were 235 outbreaks with 9,612 cases linked to poultry, with chicken 

comprising about 37 percent of those poultry outbreaks. 
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Many of the problems associated with developing an imaging system result 

from the unpredictable thickness and shape of chicken breast specimens. This 

geometric variation has made it difficult to evaluate the internal cooking 

temperature in chicken breast. Ibarra et al. (1999) have developed an infrared 

(IR) imaging system to predict the internal cooking temperature in chicken 

breast. Furthermore, they combined an artificial neural network (ANN) with 

the IR imaging method to model the complicated nonlinear heat transfer 

process (Ibarra et al., 2000). However, the IR imaging system did not consider 

the chicken breasts’ geometric influence and all tested samples had almost the 

same size and shape. In this research, a non-invasive internal cooking 

temperature estimation system for chicken breasts was proposed, as shown in 

Figure 1. Given the surface temperature and the geometric information, the 

ANN can instantly estimate the internal cooking temperature. It was 

demonstrated that 3D information played an important role in predicting the 

internal cooking temperature. Our contributions include: 

• Instead of only relying on IR imaging, a laser range system was 

incorporated to extract 3D information of the chicken breast; 

• A new neural network structure was defined and a better algorithm than 

the previous one used in Ibarra et al.’s (2000) study was used; 
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• The required time for the estimation of endpoint temperature was 

significantly shortened to twenty seconds. 

 
Figure 1. The structure of an internal cooking temperature estimation system.  

Monitoring System

Cooking System

Laser Range ImagingIR Imaging

ANN 
Modeling

Internal Cooking 
Temperature 
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CHAPTER 2 LITERATURE REVIEW 
 

 

An imaging system was proposed for this research. The research focused on 

non-invasive, continuous, and real-time evaluation of the internal cooking 

temperature in chicken breast. To better understand this research, a brief 

background of foodborne diseases associated with undercooked poultry 

products is first introduced. Then, several approaches for measuring the 

internal cooking temperature in poultry meat are briefly discussed. Finally, the 

applications of IR imaging in food analysis and an overview of laser range 

imaging are presented. A brief introduction to ANN modeling is also included.  

 

2.1 Background: Foodborne Diseases Related to Poultry Products 

There are more than 40 foodborne pathogens. Four of them: Salmonella, 

Campylobacter, Clostridium perfringens (C. perfringens), and Staphylococcus aureus 

(S. aureus), are commonly harbored in poultry products (Buzby, 1996). Chicken 

has the greatest risk of contamination by Salmonella and Campylobacter 

compared to other poultry products (Doyle, 1994; DeWaal, 1996). Most 

outbreaks of these four bacteria in poultry are associated with the consumption 

of undercooked products.  
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Raw poultry meats are frequently tainted with pathogens. Proper handling of 

raw meats can reduce contamination, but cannot eradicate them. Greater than 

30% of chickens processed in the United States are contaminated with 

Salmonella (Nutrition Week, 1987) and more than 75% of chickens and turkeys 

carry Campylobacter in their intestinal tracts (Beery et al., 1988).  

 

Traditionally, cooking is done to improve the palatability of foods, but also it is 

the most effective way to destroy existing bacteria and minimize the chances of 

additional bacteria being introduced. The growth temperature and heat 

resistance of the four most common bacteria in poultry products are as follows: 

• Salmonella 

Salmonella is the main cause of documented foodborne illnesses (CAST, 

1994). It will grow at temperatures from 5 to 45° C, and the optimal growth 

temperature range is from 35 to 37° C (Doyle and Cliver, 1990). Storage of 

foods above 60° C effectively inhibits Salmonella growth (D’Aoust, 1989). 

Heat is one way to kill Salmonella in foods. The thermal resistance of 

Salmonella is mainly influenced by three factors: the strain of Salmonella, 

the composition of the food or the heating medium, and the water activity 

(Doyle and Cliver, 1990). Salmonellosis is the typical disease caused by 

Salmonella infections.  
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• Campylobacter 

Poultry is the predominant source of Campylobacter jejuni (C. jejuni), one of 

the Campylobacter species, which is frequently associated with 

campylobacteriosis in humans (Buzby et al., 1996). The growth temperature 

for C. jejuni is very narrow, from 30 to 47° C and its optimal growth 

temperature ranges between 42 and 45° C (Doyle, 1990). The thermal 

inactivation of C. jejuni occurs at 48° C in laboratory media (Stern and Kazmi, 

1989). C. jejuni is highly susceptible to heat and cooking procedures 

adequate to kill Salmonella will also inactivate C. jejuni (Doyle, 1990).  

 

• C. perfringens 

C. perfringens is one of the fastest multiplying bacteria. It can grow at 

temperatures between 15 and 50° C with an optimal growth temperature 

from 43 to 45° C (Labbe, 1989). The thermal inactivation of C. perfringens 

occurs at 60° C (Labbe, 1989). Furthermore, Labbe (1989) stated that C. 

perfringens is temperature tolerant, because it forms spores that can recover 

from temperature injury. Nevertheless, “the spores of C. perfringens will 

often germinate optimally only if they are mildly heated” (Labbe, 1989).  
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• S. aureus 

Staphylococcal food poisoning is an intoxication. The temperature for the 

growth of S. aureus in foods ranges from 6.7 to 47.8° C with the optimum at 37° 

C. Enterotoxins are produced in the temperature range from 10 to 45° C and its 

optimal range is between 37 to 40° C. Above 47.8° C, staphylococci do not grow. 

“Heating is the most effective way to inactivate S. aureus in food. Heating meat 

to an internal temperature of 73.9-76.7° C should be sufficient to inactivate any 

staphylococci present” (Wong and Bergdoll, 2002). 

 

Therefore, the endpoint temperature for chicken breasts recommended by the 

USDA is well above those required to inactivate the four common bacteria. 

According to the thermal resistance properties, poultry products should be free 

of bacteria if adequately cooked. Also, the rate of growth and survival of 

bacteria depends on pH, water activity, oxygen activity, and media nutrient 

level. In this study, temperature condition is the main focus.  

 

2.2 Methods for Measuring Internal Cooking Temperature 

To comply with the USDA regulations, current industrial practice is to 

periodically sample the endpoint temperature of meat by inserting a food 

thermometer immediately after cooking (Ibarra et al., 1999). This practice 
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measures the internal cooking temperature directly. However, it is sporadic at 

best, and is constrained to the exact point the thermometer is inserted, which 

does not ensure that all parts of the meat reached the required minimum 

internal cooking temperature. Additionally, the process is slow, invasive and 

susceptible to cross-contamination. To date, no technique has been available to 

inspect in real-time whether every meat product has been cooked sufficiently.  

 

The increasing number of foodborne poisonings associated with undercooked 

poultry products has stimulated research to evaluate the internal cooking 

temperature of meat products. Several approaches have been proposed to 

verify that the internal cooking temperature of poultry meat has reached 

USDA’s requirement.  

 

Headspace gas chromatography (GC) analysis has been reported as a method to 

assess the adequacy of the heat treatment of chicken breasts. Ang et al. (1994) 

found that under the specific experimental conditions, the endpoint 

temperature in ground chicken breast could be expressed as a function of 

headspace volatile compounds using multiple correlations. To evaluate cooking 

history, quantitative relationships between the endpoint temperature and 

headspace volatiles were established at different purge temperatures of 35° C 
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and 50° C, respectively. At 50° C, a higher correlation was reported, because at 

the higher temperature, more volatiles were released from the samples. The 

dynamic range for that model was between 60 and 80° C. However, the 

headspace GC method can not be applied in food processing plants. The 

method is very sensitive to the sample weight, sample conditioning time and 

temperature, and purge time and temperature. Each variable needs to be 

precisely controlled, and highly trained personnel are required (Ang et al., 

1994).  

 

Many researchers have used immunoassays to determine the endpoint 

temperature of poultry products (Abouzied et al., 1993; Wang et al., 1993, 1994; 

Smith et al., 1996; Veeramuthu et al., 1997). Abouzied et al. (1993) developed a 

sandwich enzyme-linked immunosorbent assay (ELISA) to quantify the 

residual Lactate Dehydrogenase (LDH) in poultry products in order to verify 

the endpoint temperature. They found that additional sensitivity was obtained 

when a monoclonal antibody was used as a capture antibody against LDH and 

a polyclonal antibody was used as a detector antibody. In that assay, turkey 

LDH content decreased as internal cooking temperature increased. The authors 

indicated that turkey LDH was a better processing temperature indicator than 

chicken LDH.  



 12

Besides LDH, serum albumin (SA) and immunoglobulin G (IgG) were 

suggested by Smith et al. (1996) as additional potential indicators in turkey 

hams for determining the endpoint temperature. Turkey hams were processed 

with internal temperatures from 67 to 74° C and ELISA were developed using 

the three marker proteins to monitor the internal cooking temperature. With the 

increase of the processing temperature, the concentrations of all markers 

decreased. However, the authors indicated that the residual concentration of SA 

was too high to be a good indicator. At 68.3° C, the required internal cooking 

temperature for turkey hams based on USDA regulations, they reported that 

the residual concentration for IgG per gram of meat was 1221 ng; for LDH the 

concentration per gram of meat was 330 ng.  

 

Furthermore, comparing turkey and chicken, Veeramuthu et al. (1997) 

investigated the influence of muscle type and temperature on the concentration 

of LDH, IgG, and SA. They found that the concentrations of the three endpoint 

temperature indicators not only varied between chicken and turkey at the same 

internal cooking temperature, but also differed among parts of each species. For 

example, chicken thigh muscle had higher concentrations of IgG than chicken 

breast muscle. Even for four turkey thigh products at the same endpoint 

temperature, the concentrations of each indicator for each product were 
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different. Before the ELISA became a commercial method for determining the 

internal cooking temperature of meats, a specific table containing the residual 

concentrations of protein indicators for each product was required.  

 

However, the main disadvantage of the ELISA is that it is not sensitive enough 

to differentiate small temperature changes within a specific range. Wang et al. 

(1994) reported that the LDH ELISA did not differentiate the internal cooking 

temperatures of turkey thigh rolls from 68.9 to 71.1° C and the IgG ELISA did 

not differentiate the temperatures between 68.9 and 72.2° C. 

 

Moreover, the above two approaches of headspace GC analysis and ELISA are 

complicated and time consuming. Therefore, they are not practical for on-line 

determination of internal cooking temperatures. Also, samples from the meat 

have to be extracted, making these methods invasive, labor intensive and prone 

to human error and variability. 

 

Other researchers have used near infrared reflectance (NIR) and transmittance 

(NIT) spectroscopy to evaluate the thermal processing temperature of 

preheated meat products (Isaksson et al., 1989; Ellekjaer and Isaksson, 1992; 

Chen and Marks, 1997). Studies by Isaksson et al. (1989) suggested that NIR 



 14

was a possible method to determine the endpoint temperature of minced meat. 

During cooking, many physical and chemical changes occur in meat. Between 

50 and 85° C, the major changes are denaturation of proteins and loss of water 

binding capacity. According to Ellekjaer and Isaksson’s findings (1992), the 

absorbance in the NIR spectra (1100 to 2500 nm) was in response to the changes 

that occur during cooking of ground beef, scanned by a screening NIR 

instrument, as well as the absorbance in the NIT spectra (850 to 1050 nm). 

Ground beef was precooked at temperatures between 50 and 85° C at 5-degree 

increments. Both techniques showed equal accuracy at predicting the endpoint 

temperature of ‘wet’ beef. However, NIR predicted the temperature more 

accurately than NIT on freeze dried beef.  

 

Extending the wavelength ranges to the visible spectra, Chen and Marks (1997) 

established a quantitative relationship to evaluate the cooking history of 

chicken breast meat patties by reflectance spectroscopy. This method predicted 

the cooking time and internal cooking temperature. Multilinear regression 

techniques were used to develop calibration equations. Comparing three 

wavelength ranges: visible (400 to 700 nm), near-infrared (1100 to 2500 nm), and 

visible/near-infrared (400 to 2500 nm), the authors concluded that reflectance 

gave better calibrations for prediction of thermal history than transmittance 
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regardless of which spectra. And for reflectance spectroscopy, visible/near-

infrared spectra resulted in the best evaluations. 

 

Reflectance spectroscopy makes it possible to rapidly and nondestructively 

measure the internal cooking temperature of poultry meat. However, 

drawbacks still exist. Well-trained operators are needed to handle the process 

properly and extensive calibration standards are used. Moreover, the method is 

limited to absolutely regular shapes of meat products. All sample patties used 

in the experiments must have the same thickness and diameter. 

 

It is well known that the intensity of IR images is closely related to the sample’s 

surface temperature. This characteristic makes IR imaging a promising 

technique for quickly and non-invasively inspecting endpoint temperatures in 

meat products. Ibarra et al. (1999) developed a method using IR imaging to 

estimate the internal cooking temperature in chicken breasts. An autoregressive 

time series model was proposed to correlate the surface temperature with the 

internal temperature in each chicken breast after cooking. In that study, an IR 

camera was used to capture the IR images of the chicken breast. For calibrations, 

the internal temperatures of the chicken breasts were recorded by 

thermocouples (TCs). Time series observations of simultaneous internal and 
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external temperatures were obtained for 570 seconds at 30-second intervals 

immediately after the cooking process. Figure 2 illustrates the experimental 

setup and shows the IR images of the cooked chicken samples. The 

autocorrelation and the partial autocorrelation of external temperatures and the 

cross-correlation between the internal and external temperatures were 

calculated. The statistical analysis of experimental data indicated that the 

internal temperature could be estimated by using three surface temperature 

lags at times 0, 60, and 150 seconds after cooking. Therefore, this linear 

modeling required three IR images and 150 seconds for estimation of internal 

cooking temperature.  

 

Figure 2. Experimental configuration and thermal images of samples (Ibarra et 
al., 1999). 
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Furthermore, taking into account the nonlinear property of the heat transfer 

process, Ibarra et al. (2000) combined IR imaging with ANN modeling to 

enhance the time series analysis. In that work, a five-layer feed forward ANN 

was proposed and the Levenberg-Marquardt (LM) algorithm was used because 

of its high speed and convergence. The ANN input was a vector composed of 

external temperature lags; the output was the predicted internal temperature.  

 

Assuming that only six lags significantly contribute to the estimation, the 

number of external temperature lags input into the ANN was reduced 

dramatically. And by analyzing the covariance matrix of internal and external 

temperatures within six lags, the number of external temperature lags was 

further reduced to two. To test if two lags were enough for the endpoint 

temperature estimation, two cases were presented. One was case [01] in which 

the inputs were only composed of simultaneous and one-lag (30 seconds after 

cooking) external temperatures; the other was case [012] in which an additional 

second lag (60 seconds after cooking) external temperature was added to the 

inputs. Case [01] with fewer temperature lags resulted in better performance for 

estimation of internal cooking temperature than case [012]. The ANN method 

shortened the required estimation time to 30 seconds and only required two IR 

images.  
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Thus, IR imaging is a potential alternative approach for the real-time 

assessment of the internal cooking temperature in chicken breasts. It ensures all 

chicken meats be inspected thoroughly, quickly, and non-invasively, thereby 

eliminating the possibility of cross-contamination. The chicken samples used in 

Ibarra et al.’s experiments (1999 and 2000), however, had similar shape and 

thickness, which is not the usual case. Variable shapes and thicknesses may 

directly affect the heat transfer process in meats. Therefore, in this research, a 

laser range system was incorporated with an IR imaging system to extract the 

3D information of the chicken breast.  

 

2.3 Infrared (IR) Imaging in Food Analysis 

IR imaging is an emerging technique in the field of food analysis. The 

theoretical foundation behind this technology is described by the Stefan-

Boltzmann law as follows: 

TE 4εσ=           (1) 

where E is the radiation intensity of an emitter; σ is the Stefan-Boltzmann 

constant (= 5.7 X 10-8 W/m2K4); ε is emissivity, a material property of the object, 

which is often available in the literature; and T is the absolute surface 

temperature of the object. The intensity emitted depends on the fourth power of 

the surface temperature of the object.  
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The non-contact characteristic of IR imaging is an obvious advantage. IR 

imaging surpasses conventional thermal sensors for the following conditions: 

• To measure the surface temperature of solid or liquid materials for 

which it is difficult to utilize a probe; 

• To measure the temperature of some material that can erode the 

probe or reduce its usage time; 

• To monitor the temperature of materials inside a closed chamber 

such as a microwave oven. 

Also, the nondestructive, high-speed, automatic monitoring and accuracy make 

IR imaging the preferred method in many cases.  

 

Goedeken et al. (1991) introduced a method to continuously monitor the surface 

temperature of food in a microwave oven. Traditional temperature sensors 

could not be applied in microwave heating. Instead, the authors used an IR 

imaging system to determine the surface temperature distribution in food 

heating in the microwave oven. The top section of the microwave cavity was 

removed and replaced with a hardware cloth screen so that the IR camera could 

see through the screen onto the sample during heating. However, the screen 

interfered with the IR measurement. A multivariable regression model was 

used to calibrate the system. To obtain the dielectric constant of a sample, 
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Cuccurullo et al. (2002) proposed a technique using IR thermography to 

measure the surface temperature of the sample in microwave heating. To 

simplify the analytical model, the sample was confined to a cylindrical box and 

the preliminary experiments were tested using water samples.  

 

Fang and Shah (1998) carried out an IR imaging investigation on the heat 

transfer through air/water and oil/water interfaces. Their aim was to investigate 

the effect of surfactant monolayers on the heat transfer process through the 

interfaces. To do this, an IR camera was used to monitor the surface 

temperature of water and oil. The time required for the surface temperature to 

increase by 1° C was recorded as a criterion to show the effect of surfactant 

monolayers on heat transfer. The experimental data revealed that with a 

monolayer at the air/water interface, the time required for the temperature to 

increase was shorter than without a monolayer, in that the monolayer reduced 

the effect of evaporative cooling. Also, at the oil/water interface, the presence of 

a monolayer increased the heat transfer resistance. Thus, longer time was 

required to increase the surface temperature.  

 

The IR imaging technique was also used to assess the ripeness of fruits. In an 

early work, Danno et al. (1980) used an IR vidicon camera to measure the 
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surface temperature in fruits for evaluation of the grade of maturity. Usually, 

changes in metabolism due to the stage of ripeness caused small surface 

temperature differences. By adjusting the storage temperature, the small 

temperature differences could be detected using an IR camera. Japanese 

persimmon, Japanese pear and tomato were selected for the tests under 

different storage conditions. It was reported that when stored at a lower 

temperature (5° C), the surface temperature of the mature and overripe fruits 

was lower than those of the immature ones; reversely, when stored at a higher 

temperature (30° C), the surface temperature of the mature and overripe fruits 

was higher than those of the immature ones. Using the aid of thermal imaging 

analysis, Hellebrand et al. (2001) explained that the transpiration process was 

related to the surface temperature change of fruits. Mostly, the maximum value 

of transpiration resistance coincided with the stage of ripeness.  

 

Intensive research has been done on detecting defects of fruits using an IR 

imaging technique. Tao (1996) developed an IR imaging system for on-line 

apple defect inspection. The difference in thermal diffusivity between bruised 

and sound tissues caused divergent surface temperatures (Varith et al., 2000). 

Varith et al. used a ThermaCamTM PM390 and indicated that bruises could be 

detected only during the cooling or heating process. After that, the surface 
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temperature of bruised or sound tissues reached thermal equilibrium. In 

general, within 30 to 180 seconds after heating, the bruises of apples were up to 

1-2° C lower than the sound tissues. They found that it was easier to detect the 

bruises using a heating treatment than a cooling treatment. Varith et al. (2001) 

advanced their study by using a finite element model to validate the bruise 

detection by thermal imaging. Their findings determined that: 1) the surface 

temperatures of bruises increased and decreased slower than those of sound 

tissues; 2) the divergent surface temperatures between bruised and sound 

tissues were not only associated with the difference in thermal diffusivity, but 

were also related to an effective convective heat transfer coefficient and time; 

and 3) bruises had a higher thermal diffusivity value than sound tissues; 

Nevertheless, the one problem that still existed for on-line apple defect sorting 

was how to distinguish between true defects and stem-ends/calyxes in IR 

images. To solve that problem, Wen and Tao (2000) presented a combined near-

IR (NIR) and mid-IR (MIR) imaging method. True defects and stem-

ends/calyxes could be detected using a NI camera, while using a MIR camera, 

only stem-ends/calyxes could be detected. Therefore, by subtracting the MIR 

image from the corresponding NI image, only the true defects remained.  
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2.4 Laser Range Imaging 

Laser range imaging is a well-established technique for 3D image 

reconstruction. It is based on the triangulation relationship between two lines 

(DePiero and Trivedi, 1996): one along the laser optical axis and the other along 

the camera sighting direction (see Figure 3).  

 
Figure 3. Geometrical model of the triangulation (y is pointing out from the 
paper). 

 

General equations describing the triangulation were derived by Jalkio et al. in 

1985. As shown in Figure 3, the origin of coordinates is the imaging lens center. 

A single laser light emitted from the laser projector is represented at angles θx 

and θy to the z-axis in the x and y directions, respectively. The object is 

illuminated at the point (xo, yo, zo): 
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where (xs, ys, zs) are the coordinates of the light source. The camera detects this 

point and forms an image on its detector plane at (xi, yi): 
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where f is the distance between the camera’s imaging lens and its detector 

plane, which is nearly equal to the focal length of the camera for long working 

distances. Compared to an image point formed by an object a known distance 

away, the displacements between the two points are ∆xi and ∆yi: 
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where zref, the distance of the reference object, is known. Any one of the 

displacements can be used to calculate the object distance. If the x displacement 

is chosen for calculation, the distance zo is given by 
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If the displacements are restricted only in the x direction, which means ∆yi = 0, 

then ys = zs = 0. Furthermore, equation 5 can be simplified to 

xzx
zz

srefi

ref
o f∆+

=
1

        (6) 

In Figure 3, if the surface of the conveyor platform is chosen as the reference, 

the depth of the object can be calculated by 

( )
θ x

oref zzd
cos

−
=          (7) 

Therefore, once the relative position of the camera and the laser projector are 

known, the distance to the object and the thickness information can be 

calculated. When the object moves (e.g. with the conveyor) under the laser 

range system, the distance of each point on the object is obtained and then the 

3D information of the object is extracted.  

 

The laser line screen scans the object. The conveyor belt and the camera are 

synchronized by an encoder pulse (see Figure 3). The length direction 

resolution rL for the 3D image of the object is equal to the pulse width. The 

height direction resolution rh can be determined by the image pixel resolution.  

In other words, with a 200 x 640 image size, rh = image field length (mm) / 200 
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pixels. The width direction resolution rw, similar to the height direction 

resolution, can be determined by rw = image field width (mm) / 640 pixels.  

 

2.5 Introduction to Artificial Neural Network (ANN) 

There are many modeling methods. In general, one way is to develop a model 

which uses physically meaningful equations or empirical equations to represent 

the system; an alternative is as ANN, which is a system of equations that do not 

have a physical meaning. Each model has its own drawbacks and advantages. 

The first one, mathematically, expresses the physical process, which is its 

strength, but also its weakness. For complex systems, such as heat transfer, the 

cooking process which involves many physical and chemical changes is 

difficult to simulate with a few meaningful equations. 

 

The ANN is composed of nodes. The highly interconnected nodes make the 

ANN capable of adjusting to a specific problem. Also, the ANN can model a 

system without a priori knowledge of the process variable relationships 

(Ramesh et al., 1996). However, without favorable training samples, the ANN 

could result in poor generalizations.  
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Several types of ANNs exist. The Multi-layer perceptron (MLP) network is one 

of the most commonly used neural network architectures. Its structure is shown 

in Figure 4. Nodes in the ANN are loosely based on biological neurons and they 

are highly interconnected. Nodes in the input layer respond to inputs by 

(Hagan et al., 1995) 

( )baWfa
a p

10111

0

+=

=
         (8) 

where a1, f1, W1, and b1 are the outputs,  transfer function, weights and biases of 

the input layer, respectively; and a0 = p are the inputs. Then the signal is 

transferred forward to nodes in the hidden layers in a similar way. Finally, 

outputs are produced from the output layer by (Hagan et al., 1995) 
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where a = aM are the outputs; fM, WM, and bM are the transfer function, weights 

and biases of the output layer, respectively; and aM-1 are the inputs of the output 

layer which are the outputs of the (M-1) layer.  
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Figure 4. Topology of MLP network. 

 

The values of weights and biases are obtained by a training (or learning) 

process using training samples (or training data). For supervised training, the 

training samples come from experiments or an experimentally validated model. 

They are the combination of inputs and true outputs. During the training 

process, a true output is called a ‘target’. The weights and biases are adapted by 

a learning algorithm (or learning rule), which try to optimize the ‘performance’ 

of the network. The ‘performance’ of the network is defined by a performance 

index, such as mean square errors (MSE) or sum of square errors (SSE), which 

can be quantitatively calculated. The smaller the performance index is, the 

better the network performs. Following the training process, the correlation 

between inputs and outputs is obtained and the adapted weights and biases 
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will not change until the ANN is relearned with new training data. Then the 

testing process is implemented to ensure that the trained ANN is not overfit or 

underlearned and still performs well enough with new data.  

 

Learning is an iterative process. It gradually improves the network performance 

by decreasing the performance index value. The performance goal is defined as 

a threshold value. When the performance index is less than performance goal, 

the learning process terminates. The basic procedure for the learning process is 

shown in Figure 5. The first step in the training is to initialize weights and 

biases. With the initial weights and biases, the outputs are calculated by 

inputting all training data into the ANN. The third step is to calculate the 

performance index. Then the performance index is compared to a given 

performance goal. If it is larger than the performance goal, weights and biases 

are adjusted. Subsequently, the outputs and the performance index are 

recalculated using the updated weights and biases. The process is repeated 

until the performance index is less than the performance goal. Numerous 

learning algorithms exist. The key difference among them is how each adjusts 

the weights and biases to reach the predetermined performance goal.  

 

 



 30

 
Figure 5. Flow chart for learning process. 

 
 
Recently, ANNs have been widely used in food processing related problems. 

Mittal and Zhang (2000a, b, c, and 2001) used an ANN method to predict the 1) 

freezing time for food products with any shape; 2) temperature and moisture 

content of frankfurters during smoke-house cooking; and 3) temperature, 

moisture, and fat contents in slab-shaped foods and meatballs with edible 

coatings during deep-fat frying. Lou and Nakai (2001) used an ANN to 

compare with a response surface methodology to estimate the maximum 

specific growth rate and lag phase of Lactobacillus sake in modified-
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atmosphere-packed cooked meat products. Hussain et al. (2002) combined an 

ANN with a regression polynomial-based model to predict pore formation in 

foods during drying.  
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CHAPTER 3 OBJECTIVES 
 

 

The overall objective of this study was to develop a novel non-invasive 

endpoint temperature estimation system for chicken breasts. The developed 

system was composed of three subsystems: an IR imaging system, a laser range 

system, and an ANN modeling system. The IR imaging system was used to 

obtain the surface temperature of chicken samples. The laser range system was 

used to get the 3D information about the samples. The ANN system was used 

for modeling the nonlinear heat transfer process. Given the surface temperature 

and the 3D information, the trained ANN could instantly estimate the internal 

cooking temperature.  

 

The specific objectives were to: 

1. Establish the mapping relationship between the inputs, including surface 

temperature and geometric information, and the output which was the 

internal cooking temperature of meat; and 

2. Examine the effects of external temperature lags and geometric 

information on the estimation performance.  
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CHAPTER 4 EQUIPMENT 
 

 

The imaging system developed in this research consisted of three major parts: 1) 

an IR imaging station; 2) a laser range system; and 3) internal temperature 

recording.  

 

4.1 IR Imaging Station 

The IR imaging station consisted of an oven, an IR camera, and a host personal 

computer (PC) platform. Chicken breasts were cooked inside the oven. 

Following cooking, they were removed from the oven by the conveyor belt, and 

passed through the field of view of the IR camera. A sequence of IR images was 

grabbed and stored in PC memory.  

 

4.1.1 Oven 

An Impinger Conveyor Oven (Model series 1100), produced by Lincoln 

Foodservice Products Inc., was used in the experiment to simulate industrial 

cooking conditions (see Figure 6). A specially designed fan inside the oven 

converts the energy from a heat source (electric) into a high velocity air stream. 

The heating process inside the oven is called “Air Impingement”; where air acts 
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as the medium to heat the food products. The oven is equipped with an 

adjustable speed conveyor belt. The length of the belt can be extended and the 

belt’s transferring direction can be reversed. The cooking temperature inside 

the oven can be set from 121.1 to 301.7° C (250 to 575° F) and is adjustable in five 

degree increments (F mode). The cooking time, which depends on the belt 

speed, has a range from 1 to 30 minutes. As well as cooking temperature, 

cooking time is displayed in real-time. 

 

4.1.2 IR Camera 

A Merlin uncooled thermal camera (Model No. 414-0060-10, Indigo Systems 

Corporation) shown in Figure 7 is the key component of the system. The 

spectrum range of the camera is from 7 to 14 microns. In this waveband, IR 

transmission is minimally affected by the interference of steam and smoke 

during the cooking and cooling processes. The camera has a Focal Plane Array 

(FPA) incorporating a matrix of microbolometer detectors with a measurement 

range from 0 to 500° C. It was mounted above the conveyor platform of the 

oven with an adjustable height frame. The camera features are operable by a 

remote button panel. A Citizen LCD monitor (Model No. M938-1A, Japan CBM 

Corporation) was used to adjust the camera focus. In addition, the captured 

thermograms were transported by a RGB cable to a host Pentium® IV PC 
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platform equipped with a Matrox Meteor II image board. Software Matrox 

Inspector 2.2 (Matrox Electronics Systems Ltd., Quebec, Canada) was installed 

to program the grabbing and analysis processes of the IR images. The PC’s 

operation system was Windows 2000. 

 
Figure 6. The Lincoln Impinger Oven.  

 
Figure 7. The Merlin IR camera. 
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4.2 Laser Range System 

A laser range system, shown in Figure 8, was implemented to determine the 

irregular 3D information of the chicken breast. It contained a red laser line 

projector and a monochromatic CCD camera (TM-6703) from Pulnix Company. 

The red diode laser was used because of its low price and simplicity. 

Additionally, to reduce the noise and avoid ambient light interference, a 650nm 

long-pass filter (LL-650-F) produced by Corion Inc. was incorporated with the 

camera. The camera and the laser line projector were mounted on the same 

stationary frame. The camera was connected to a Matrox Genesis LC board 

hosted in the PC. An electronic encoder was implemented to synchronize the 

conveyor belt with the CCD camera. The 3D images of chicken breasts were 

reconstructed and saved in the PC. 3D images were processed with 8 bits 

resolution using software Matlab 6.1 (The Mathworks Inc., MA, USA). Also, the 

laser light did not interfere with the mid-infrared imaging. 

 

4.3 Internal Temperature Recording 

The actual internal temperatures of the breasts were recorded by twelve 

thermocouples (TCs) during the cooking and cooling processes. A type-T 

thermocouple (TC) was chosen, because its measurement range from -270 to 

400° C matches the food operating temperature. More importantly, the type-T 
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TC is resistant to moisture which usually occurs during food processing. The 

TCs used in the experiment were purchased from Omega Company with 150 

mm probe length and 0.50 mm probe diameter, as shown in Figure 9. The 

length and diameter of the probe made it easy to insert into the chicken breast 

and it also dispersed the surface heat quickly. Before cooking, the thickness of 

each chicken sample was measured by a Dial Height Gauge shown in Figure 10 

to mark the thickest part. Then, a TC was inserted into the center of the thickest 

part. A 16-channel thermocouple/voltage input Omega data acquisition board, 

as shown in Figure 11, automatically recorded the temperatures into the PC 

using DASwizard software (Measurement Computing Corporation, MA, USA). 

The board has screw terminals for each TC channel and a cold junction sensor 

integrated into an isothermal bar. After cooking, the internal temperatures of 

the chicken breasts measured by the embedded TCs were treated as the 

“ground truth” values to compare with the predicted internal temperatures. 
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Figure 8. The laser range system for 3D image reconstruction.  

 

 

Figure 9. T type Thermocouple. 
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Figure 10. The Dial Height Gauge. 

 
 

 

Figure 11. The thermocouple/voltage input Omega data acquisition board. 
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Figure 12 is the illustration of the IR and laser range imaging system. 

Specifically, the imaging system contained the following hardware and 

software components: 

• Hardware 

1) Lincoln Impinger Conveyor Oven (Model series 1100); 

2) Indigo uncooled thermal camera with the spectrum range from 7 

to 14 microns; 

3) Citizen LCD monitor (Model No. M938-1A); 

4) Host Pentium® IV PC; 

5) Matrox Meteor II image board; 

6) Pulnix red laser line projector; 

7) Pulnix monochromatic CCD camera (TM-6703); 

8) 650nm Corion long-pass filter (LL-650-F); 

9) Matrox Genesis LC board; 

10) Twelve T type TCs; 

11) Dial Height Gauge; 

12) 16-channel thermocouple/voltage input Omega data acquisition 

board. 
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• Software 

1) Inspector 2.2 (Matrox Electronics Systems Ltd., Quebec, Canada); 

2) Matlab 6.1 (The Mathworks Inc., MA, USA); 

3) DASwizard (Measurement Computing Corporation, MA, USA).  

 

Figure 12. The IR and laser range imaging system.  
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CHAPTER 5 METHODS 
 

 

To obtain the mapping relationship between the ANN inputs and outputs, 

observation data are needed to train and test the ANN estimator. Figure 13 

shows the system block diagram. After cooking, chicken samples traveled on 

the conveyor belt, and sequential IR images were captured to obtain the surface 

temperature of the chicken breast. Simultaneously, the actual internal 

temperature was recorded by the embedded TCs. Those temperature pairs were 

measured for 5 minutes at 10-second intervals. 3D images of the samples were 

reconstructed by the laser range system to provide thickness and shape 

information. Then, the external temperature and the geometric information of 

the sample were input into the ANN to predict the internal cooking 

temperature. The actual internal cooking temperature acted as a target for the 

ANN training. Following the training process, the actual internal cooking 

temperature was compared with the predicted internal cooking temperature. 

Finally, the system inside the dashed line (see Figure 13) was used to predict 

the internal cooking temperature in chicken breasts. In addition, the internal 

cooking temperature estimation system was evaluated using certain evaluation 

criteria. 
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Figure 13. Non-invasive endpoint temperature estimation system.  

 

Essentially there were six stages in this process summarized below and 

explained in more detail in the following sections.  

1. Preparation of samples.  

2. System component calibration and adjustment, including TCs linearity test, 

cooking time setting, IR camera and laser range system setup and 

calibration. 

3. Internal temperature recording. 

4. Digital images recording and processing. 

A sequence of IR images was grabbed while the internal temperature 

of the chicken breast was measured by the TCs after cooking. 

Meanwhile, 3D images were grabbed using the laser range system. 

The IR and 3D images were registered to locate the thickest region of 

the breast. The surface temperature at that region was obtained from 
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the IR image and the geometric information of the chicken breast was 

extracted from the 3D image. 

5. ANN modeling. 

The modeling had two procedures: training and testing. Model 

parameters (weights and biases of the ANN) were determined by the 

ANN training process; that is, plugging recorded surface and internal 

temperatures and the geometric information into the model to get the 

parameters using the specific learning algorithm. Following training, 

the model was tested; the surface temperature and the geometric 

information were input into the ANN to predict the internal cooking 

temperature in chicken samples. 

6. Discussion of evaluation criteria.  

 

5.1 Preparation of Samples  

Boneless and skinless chicken breasts of varied thicknesses and shapes were 

prepared for this research. The samples were bought directly from major 

poultry companies on the Eastern Shore without adding any additional water, a 

solution of chicken broth, or sodium phosphates. To keep the samples fresh, 

they were refrigerated at 0° C  and processed within several days. 
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The following assumptions were made to simplify the modeling process: 

• The ambient temperature and humidity stay constant;  

• Chicken breast shrinkage is negligible; and 

• The coldest part of the chicken breast is the thickest region. 

 

To reduce the experimental variability, actions were taken as follows: 

• Fatty tissues of the chicken breasts were removed and discarded; 

• Chicken breasts were cooked without any seasoning; 

• The beginning temperature of the chicken breasts was kept constant at 

20° C ; 

• Chicken breasts were placed on the conveyor belt at the same place and 

the same orientation to avoid skew. 

 

 

5.2 System Component Calibration and Adjustment 

5.2.1 TCs Linearity Test 

TCs were used to measure the internal temperature of the chicken breasts in 

this research. The temperature readings from TCs were treated as “ground 

truth” values. They were used in two processes. First, during the ANN training 

process, they were targets to update the ANN parameters. Second, in the 
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evaluation process, they were compared with the ANN outputs, the predicted 

internal cooking temperatures, to see how accurately the model was estimating.  

 

The TCs purchased from Omega Company have already been calibrated with 

an error of ±0.5° C. To test the linearity of the TCs, distilled de-ionized water, a 

container, and a heat plate were used. The de-ionized water was placed inside 

the open container and heated to a boil on the heat plate. All twelve TCs were 

bound together without the probes touching one another. During the cooling 

process, the TCs were put inside the container and immersed in the water 

without touching the wall of the container. Temperatures were read every 

second using the TCs. Each TC reading was the average value within ten 

seconds. The average reading from the twelve TCs was used as a reference. The 

TCs were tested at approximately 23, 71, 80, 90, and 100° C, all temperatures 

within the food processing temperature range.  

 

5.2.2 Cooking Time Setting 

In this project, only a constant cooking procedure (cooking time and cooking 

temperature) was used for comparison among the different input variables to 

the ANN. Under the specific cooking procedure, the endpoint temperature of 

the chicken samples was expected for undercooked, perfectly cooked and 



 47

overcooked samples. Thus, the dynamic range of the model satisfies the 

practical application in industry. To find out the proper cooking time for the 

chicken breast samples, the cooking temperature was set at about 177° C (350° 

F), because it is the most common cooking temperature in the industry. Then, 

the middle size chicken samples were cooked at different categories based on 

their changes with cooking time from 10 to 13 minutes.  

 

5.2.3 IR Camera Setup and Calibration  

5.2.3.1 Setup 

The IR camera was located above the conveyor platform at a height of 863.6 mm. 

That specific height was chosen to make the camera as close as possible to the 

conveyor platform, satisfying the condition that all tested chicken samples were 

inside the camera field of view. To adjust the camera focus, the lens was 

regulated until a fine IR image was shown in the LCD monitor. The camera 

parameter settings are listed in Table 1. The monochrome display mode was 

preferred for its small data size and simple image processing. To keep the same 

scale range for all of the IR images, the Auto Gain Control (AGC) function was 

disabled. Contrast and brightness were set to avoid the saturation of IR images 

that would lead to a loss of information. The value of emissivity was obtained 

from the literature (Ibarra et al., 2000). The background temperature is the 
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ambient temperature of the camera. Here, it was the lab room temperature, 

which was frequently constant. 

Table 1 The specific parameter settings of the IR camera. 

Parameters Value/Status 
Display Mode MONO_G1.0 
AGC Turn off 
Contrast 54 
Brightness 60 
Emissivity .63 
Background Temperature (° C) 25 

 

5.2.3.2 Calibration 

In IR images, a lower intensity means a lower surface temperature. The 

thermograms grabbed by the IR camera only provided intensity information. 

Therefore, before the experiment, the gray levels of the IR images had to be 

correlated to actual temperature values.   

 

When the chicken breasts came out of the oven after cooking, IR images were 

grabbed every second for five minutes. Simultaneously, the TCs in contact with 

the surface of chicken breasts directly measured the surface temperatures. To 

reduce error, the surface temperatures for chicken samples were measured in 

triplicate. The relationship between the intensities of the IR images and the 

actual temperature values was developed using regression analysis. 
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5.2.4 Laser Range System Setup and Calibration 

The setup for the laser range system is shown in Figure 14. The laser line 

projector and the CCD camera were mounted on the same stationary frame. 

The laser projector emitted a red laser line onto the surface of the sample. The 

laser sheet beam was perpendicular to the conveyor belt platform. The CCD 

camera, located at 45° from the conveyor belt plane, captured the shifted laser 

line. When the samples moved with the conveyor belt, the laser line scanned 

over each sample entirely. The image board connected with the camera grabbed 

and processed the images.  

 
Figure 14. Schematic diagram of laser range system. 

 

In this project, the encoder pulse width was 0.8 mm. The image field width both 

in the height and width direction was 6” (152.4 mm). Thus, theoretically, the 

resolutions for the 3D images were: rL = 0.8 mm, rh = 0.8 mm, and rw = 0.2 mm.  
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The sensor adjustment of laser range system was done by Bio-imaging/Machine 

Vision Lab at University of Maryland at College Park (Jing, 2003). For the 

calibration of the system, a known height staircase aluminum block ranged 

from 5 to 50 mm was prepared. The block was made by a CMM machine. The 

block was put on the conveyor and scanned several times in the different place 

on the belt.   

 

5.3 Internal Temperature Recording 

Before cooking, each chicken breast was positioned under the height gauge 

plate. The thickness of each sample was measured by the gauge and a probe 

was used to mark the thickest part through the pinholes in the plate. As shown 

in Figure 15, each TC was bent at a 45° angle and the bending length of the 

probe depended on the thickness of the chicken breast. Based on triangulation, 

the bending length of the TC probe was calculated as following: 

2sin5.0 45 THTH o

TCL ==        (10) 

where LTC is the bending length of a TC probe; TH is the thickness of a chicken 

breast. The internal temperatures were recorded by inserting TCs at the center 

of the thickest part of the chicken breasts. As shown in Figure 16, four chicken 

breasts were cooked at the same time and the internal temperature of each 

chicken breast was measured in triplicate (see Appendix A). To minimize 
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variation, the average of the three readings was used. The samples were 

preheated on the conveyor of the oven. When the internal temperature of the 

samples warmed up to about 20° C, the samples were moved into the oven, and 

cooked inside the oven at the predetermined time and temperature. 

 
Figure 15. The profile of a chicken sample with embedded TC. 

 
 

 

Figure 16. Four chicken breasts before cooking with three TCs inserted into the 
thickest part of each one. 
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5.4 Digital Image Recording and Processing 

5.4.1 IR Images Grabbing and Processing 

The process of grabbing the digital IR images was programmed using the 

software Inspector 2.2 (see Appendix A). The digitizer settings are given in 

Table 2.  

 

Following cooking, sequential IR images were grabbed for five minutes at ten-

second intervals. First, in each image frame, the four chicken breasts were 

segmented. Then for each chicken breast, since the thickest part was most likely 

the coldest area, this part was defined as the region of interest (ROI) in the IR 

image. To smooth out the variations and noises, the intensity of the ROI was 

obtained from the average value of an 11 by 11 pixel area whose center was the 

thickest part. Therefore, the surface temperature of each chicken breast refers to 

the surface temperature of the ROI. 

Table 2 The digitizer control. 

Parameters Value/Status 
Input Channel 0 or RCA 
Input Region 640 x 480 
digitizer 8 bits per channel (4 channels total) 
Grab Mode  Synchronous  
Setting RS-170A Monochrome 

 

 



 53

5.4.2 3D Images Reconstructing and Processing 

3D images of the samples were reconstructed by the laser range system to 

provide thickness and shape (length and width) information. In 3D images, a 

lower intensity means a thinner breast. The intensity of each pixel corresponds 

to the thickness information at that pixel position which can be determined by 

the following equation: 

4
3DITH =           (11a) 

where TH (mm) is the thickness of chicken breast; I3D is the pixel intensity of the 

3D image; and 4 is the scale factor which is used to calculate the real image size 

relative to the image in the computer. The length and width information can 

also be extracted from the 3D image by the following equations: 

3CL =           (11b) 

3RW =           (11c) 

where L (mm) and W (mm) are the length and width of the chicken breast 

respectively; C and R are the number of columns and rows in the 3D image, 

respectively; and 3 is the scale factor. 

 

Each point on the meat surface has a thickness, length and width (see Figure 17), 

which can be extracted from the 3D image. However, in this research, only the 
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thickest region was of interest, the longest length and width. Thus, when 

thickness (TH), length (L) and width (W) are mentioned, they refer to the 

maximum values of these variables. 

 

 
Figure 17. The shape information of a chicken breast. 

 

 

5.4.3 IR and 3D Images Registration 

To obtain the surface temperature of the chicken meat, a ROI was selected in 

the IR image. Nevertheless, the location of the ROI was achieved by examining 

the 3D image. Then the surface temperature of the ROI was obtained from the 

corresponding IR image. The problem was that the IR and 3D images were 

Width2 

Width1

Length
1

Point1 

Point2 

Length
2 



 55

different sizes, which meant that in both images the same coordinates did not 

point to the same position. To identify the location of the ROI in the IR image, 

both the IR and 3D images had to be registered using the same image scale. In 

this project, the 3D image was taken as the target size and the IR image was 

normalized using bicubic interpolation to the same scale as the 3D image. 

Affine transform was used to register 3D and normalized IR images. Following 

are the basic ideas of bicubic interpolation (Sonka et al., 1999) and affine 

transform (Forsyth and Ponce, 2003), respectively: 

• Bicubic interpolation 

In bicubic interpolation, 16 neighboring pixels are used for interpolation. Given 

that the size of an original image is W x L and the size of the normalized image 

(rescaled image) is W’ x L’ (see Figure 18 and 19). Each pixel (i’, j’) in the 

rescaled image corresponds to a position (x, y) in the original image: 

''
''
WWjy
WWix

=
=

          (12) 

[ ]
[ ]yj
xi

=
=

           (13) 

jydy
ixdx

−=
−=

          (14) 
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x, y could be non-integer. For digital images, each pixel coordinates have to be 

integers. So i and j are the integer part of x and y, respectively. The intensity 

value of pixel (i’, j’) in the rescaled image is 

∑∑
−= −=

−−++=
2

1

2

1
)()(),()','(

m n
ndyRdxmRnjmiIjiI      (15) 

The weighting function R(x) is 
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Figure 18. The original image. 
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Figure 19. The normalized image. 

 

• Affine transform 

Affine transform is a linear transformation between two images based on 

following equations: 

fejdij
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         (17) 

or in matrix notation:  
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where (i, j) and (i’, j’) are the coordinates in two images, respectively; a and e are 

scaling factors; b and d are rotation factors; and c and f are translation factors. 

In this research, only scaling and translation need to be considered when IR and 

3D images were registered. Thus the transformation simplified to: 

W’�

L’� 

(i’, j’)

.
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And only two sets of [i’, j’, i, j] are required to solve this equation.  

 

5.5 ANN Modeling 

A 4-10-1 MLP ANN, as shown in Figure 20, was developed to model the 

nonlinear heat transfer process and to predict the internal cooking temperature 

of the chicken breasts. The input variables were external temperature, thickness, 

length, and width of each sample.  External temperature was denoted as ET(0 + 

n∆), (0 ≤n ≤ 29, ∆ = 10 seconds), where n is the lag number. ET(0) revealed the 

surface temperature of the sample immediately out of the oven, while ET(n∆) 

was the temperature after the n∆ time delay. The actual internal temperature 

was the target during the ANN training, that is, the output of the ANN was the 

predicted internal temperature of each sample. To get a better performance of 

the ANN, all of the input variables and targets were normalized by the 

following equation so that they would always fall between 0 and 1: 

VV
VVV norm

minmax

min

−
= −

         (20) 

Where V is the original variable value; Vmin, Vmax and Vnorm are the minimum, 

maximum and normalized values of V, respectively. Thus, the input vector was 
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[ET(0 + n∆)norm, THnorm, Lnorm, Wnorm]’. The transfer function between each layer is 

the log-sigmoid function defined as (Hagan et al., 1995) 

e x−+
=

1
1σ           (21) 

 
Figure 20. The 4-10-1 MLP ANN architecture.  

 

The Gauss-Newton approximation to Bayesian regularization (GNBR) 

algorithm was used to train the network.  The algorithm trains the network by 

minimizing the following performance function (Foresee and Hagan, 1997):  

WE EEF αβ +=          (22) 

Where α and β are coefficients; EE is the sum of squares of the error (SSE); EW is 

the sum of squares of the network weights (SSW). This is an improvement over 

the LM algorithm because its performance function considers not only the SSE, 

but also the associated network weight values (SSW).  This function makes the 
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response of the network smoother (Foresee and Hagan, 1977). Nevertheless, the 

GNBR algorithm still incorporates the LM algorithm to minimize the 

performance function (equation 22).  

 

The LM algorithm uses the following equations to update the weights and 

biases of the network: 
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    (23b) 

Where J is the Jacobian Matrix; N is the number of observations; V(X) is an N x 

1 error vector; X is composed of weights and biases; µ is a constant; I is an 

identity matrix; and ∆Xk is the increasement of weights and biases and k means 

in the kth iteration.  

 

The steps of the LM algorithm are as follows (Hagan et al., 1995): 

1. Initialize the weights, biases and µk of the network; 

2. Input all of the training data into the network and calculate the 

outputs and the SSE; 
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3. Calculate the Jacobian matrix by equation 23b; 

4. Solve the function 23a to obtain ∆Xk; 

5. Recalculate the SSE using Xk + ∆Xk. If the recalculated SSE value 

obtained in this step is less than the original SSE, then µk is divided 

by a constant (usually 10), letting Xk+1 = Xk + ∆Xk. Then training data 

are input again from step 2 with the new Xk+1 value. If the 

recalculated SSE value is greater than the original SSE value then µk is 

multipled by a constant (usually 10) and the process is repeated from 

step 4 again. Reiterate until the performance goal is reached. 

 

The steps of the GNBR algorithm are as follows (Foresee and Hagan, 1997): 

1. Initialize βα ,  and weights and biases; 

2. Input all the training data to the network and calculate the 

outputs and the SSE and SSW; 

3. Use the LM algorithm to minimize the performance function; 

4. Compute the effective number of parameters γ; 

5. Update 
)(2 WEW

γα =  and 
)(2 WE

n

E

γβ −= , where n is the total 

number of observations; 

6. Iterate steps 2 through 5 until convergence is achieved.  
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For more details about the LM and GNBR algorithms, see references (Hagan 

and Menhaj, 1994; Thodberg, 1996). 

 

5.6 Discussion of Evaluation Criteria 

To compare the effect of different lags and different geometric information on 

the ANN performance, the following measurements were used as criteria:  

• Mean square error (MSE)  

( )
N

TCiANN i
MSE

N

i
ITIT∑ −

== 1

2

       (24a) 

• Mean absolute error (MAE) 

N

TCANN
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i
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=

−
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       (24b) 

• Mean absolute percent error (MAPE) 

( )
N

TCTCANN
MAPE

N

i
iii ITITIT∑

=

−
= 1

      (24c) 

Where IT ANNi  is the predicted internal cooking temperature from the ANN 

output; IT TCi  is the actual internal cooking temperature measured by the TCs 

embedded in the chicken breast samples. N is the number of observations.  
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CHAPTER 6 RESULTS AND DISCUSSION 
 

 

In this chapter, the experimental results are reported first. Then, the ANN 

estimator accuracy and the effects of different surface temperature lags and 3D 

information on the ANN performance are discussed. 

 

6.1 System Component Calibration and Adjustment Results 

6.1.1 TCs Linearity 

Twelve TCs were tested within the food processing temperature range. The 

results are shown in Table 3 and Figure 21 illustrates the regression relationship 

between readings of TC #1 and reference values. For TC #2 through TC #12, the 

corresponding regression illustrations are similar to that of TC #1 (see 

Appendix B). The test results show that the TCs proved to be linear within the 

experiment required temperature range. 
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Table 3 Average temperature readings (° C) within ten seconds from each TC. 

Test Points at about 
TC 

23 71 80 90 100 
1 23.02a 71.42 80.28 90.22 100.20 
2 22.84 71.46 80.10 89.94 100.11 
3 23.01 71.31 79.83 89.53 99.27 
4 22.85 71.40 79.99 90.05 100.02 
5 22.78 71.28 79.94 89.81 99.81 
6 23.15 71.04 79.70 89.70 99.51 
7 22.82 71.36 79.90 89.71 99.77 
8 23.01 71.35 79.80 89.72 99.71 
9 22.97 71.57 80.20 90.11 100.05 
10 22.89 71.45 80.10 89.98 99.78 
11 23.07 71.29 79.97 89.85 99.75 
12 22.87 71.46 79.99 89.96 99.93 

Meanb 22.94 71.37 79.98 89.88 99.82 
 
Note: 
a: Each value is the average value of ten temperature readings for 

ten  seconds at 1-second intervals. 
b: The mean is the average of the column values. It is treated as 

reference to compare with values of each TC. 
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Figure 21. Linearity test of TC #1. 
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6.1.2 Cooking Time 

Sixteen mid-size chicken breasts were used to assess the endpoint temperature 

under different cooking times. Four cooking times: 10, 11, 12, and 13 minutes, 

were tested in quadruplicate. The cooking temperature was 177° C. Table 4 

shows the results and the mean value was used as a standard to choose the 

appropriate cooking time. Based on the USDA’s regulation (76.7° C for chicken 

breasts), the mean value for thirteen minutes was the closest to the requirement 

and thirteen minutes was the optimum choice. Thus, in this research, all 

experiments were performed at 177° C cooking temperature and a cooking time 

of 13 minutes. 

Table 4 Internal cooking temperature (° C) for test samples.  

Cooking Time 
(minutes) 

Sample 
1 

Sample 
2 

Sample 
3 

Sample 
4 

Meana 

10 62.8 64.8 64.6 60.6 63.2 
11 73.4 75.8 79.9 62.1 72.8 
12 64.5 76.8 78.3 73.8 73.4 
13 79.7 84.9 74.9 72.0 77.9 

a: The mean is the average of the row values.  
 

6.1.3 IR Camera 

After cooking, the surface temperature of each chicken breast was measured by 

TCs in triplicate. Meanwhile, IR images were grabbed at an interval of one 

second for five minutes. Using regression analysis, the experiment showed that 
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the relationship between the intensity of the IR images and the surface 

temperature is defined as equation 25, and is shown in Figure 22.  

415.461925.0 += I IRET         (25) 

where ET (° C) is the surface temperature; and IIR is the average intensity of the 

ROI in the image. Following the experiment, the surface temperatures were 

calculated from the intensity of the IR images based on this equation. 

ET = 0.1925IIR + 46.415

R2 = 0.987
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Figure 22. The relationship between the intensity of IR images and surface 
temperature in chicken breasts (275 data from 6 sampling points in meats). 

 

6.1.4 Laser Range System 

The calibration of laser range system was done by Bio-imaging/Machine Vision 

Lab at University of Maryland at College Park (Jing, 2003). The known height 

staircase block was scanned several times by using the system in the different 
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place on the conveyor belt. The calibration results are shown in Table 5. From 

Table 5, the calibration precision was enough to produce satisfactory accuracy. 

Table 5 Laser range system calibration result (mm). 

Measured thickness 
Actual thicknessa 

Mean Error Standard deviation 
5 4.84 -0.16 0.03 
10 9.74 -0.26 0.02 
15 14.77 -0.23 0.03 
20 19.97 -0.03 0.04 
25 24.99 -0.01 0.02 
30 30.23 0.23 0.03 
35 35.29 0.29 0.03 
40 40.14 0.14 0.03 
45 45.00 -0.00 0.03 
50 50.01 0.01 0.03 

a: The staircase block was made by a CMM machine with the range from 5 to 50     
mm in 5 mm increments. The tolerance for the actual thickness is ±0.0254 mm 
(±1/1000 inch). 

 
 

6.2 Cooking and Cooling Processes 

Chicken breasts were cooked for 13 minutes at 177° C and cooled down on the 

conveyor belt for five minutes. During the experimental process, the room, and 

internal and external temperatures in chicken breasts were monitored using 

TCs. Figure 23 shows the graph of these temperatures. The room temperature 

was almost constant during the experiment. In the cooking phase, the internal 

temperature of the chicken samples increased gradually, while the surface 

temperature fluctuated as it increased. Heat transfer in chicken meat is non-
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homogeneous. Although all kinds of heat transfer are dependent on a 

temperature gradient, the thermal process is complex in chicken breasts during 

heating. The reason is that during heating, many physical and chemical changes 

occur in the chicken breast. Also, the heating pattern, such as one side or two 

sides heating, affects the heat transfer process. Instead of the heating phase, in 

this research, the internal cooking temperature was estimated during the 

cooling phase.  

 

Figure 24 shows how the internal and external temperatures changed in the 

chicken breasts during the cooling phase. With the specific cooking procedure, 

whether the chicken samples were overcooked, perfectly cooked or 

undercooked, initially the internal temperature increased slightly and then 

decreased gradually, while the external temperature decreased immediately 

and faster than the internal temperature. Generally, if only the internal and 

surface temperatures were considered, there were two different heat transfer 

stages in the cooling phase (see Figure 25). Immediately after cooking, heat still 

propagated from the surface into the center of the meat sample and at the same 

time the meat surface lost heat to the ambient air. In addition, after the chicken 

breast temperature reached thermal equilibrium, heat was transferred from the 

inside to the outside of the chicken and then dispersed into the ambient air. 
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Figure 23. Typical temperature readings in cooking and cooling processes. 

 

 
Figure 24. Typical internal and external temperature readings in cooling process: 
(a) overcooked chicken sample; (b) well-cooked sample; and (c) undercooked 
sample. 
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Figure 25. Schematic diagrams of two heat transfer processes during the cooling 
phase using water flow among the tanks analogous to heat flow in the chicken 
breast: (a) before heat reached equilibrium in chicken breast; and (b) after the 
equilibrium. The horizontal arrow indicates the direction of heat flow and the 
perpendicular arrow indicates the direction of temperature changes. 

 
 

6.3 IR and 3D Images Processing 

Figure 26 shows an IR image of four chicken breasts and a sequence of similar 

images was grabbed each second for five minutes after heating. For one 

segmented chicken breast, the sequential thermal images are shown in Figure 

27a and b. The intensity index (on the left side of Figure 27a) was obtained 

based on equation 25. Figure 28a shows the reconstructed 3D image of the 

chicken breast. In 3D images, a less intense area is a thinner area. The values for 

thickness, length, and width of the chicken breast were extracted from the 3D 

image according to equations 11 a, b, and c. 

 

Since the size of the IR image was smaller than the 3D image, the IR image was 

normalized to the same scale as the corresponding 3D image by using bicubic 

interpolation (see Figure 28b). Furthermore, the ROI was selected in the 3D 
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image and mapped into the corresponding IR image as shown in Figures 28c 

and d. The surface temperature of the ROI was the average value of the 11 by 11 

pixel area (inside the green squares in Figure 28d). Additional 3D and 

normalized IR images are shown in Appendix C.  

 
Figure 26. A typical thermal image of cooked chicken breasts. 
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Figure 27. (a) Sequential IR images of a chicken breast grabbed post cooking in 
the monochrome mode: (1) Immediately; (2) after 10 seconds; and (i) after (i-1) x 
10 seconds. (b) Sequential IR images in pseudo color mode. 
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Figure 28. (a) The 3D image of a chicken breast; (b) the corresponding resized IR 
image; (c) ROI (red region) was located in the 3D image; (d) the ROI was 
mapped into the corresponding IR image. Each green square is an 11 by 11 pixel 
area selected to smooth out noises and variations (1 pixel size = .7 x .7 mm2). 
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6.4 ANN Estimator Accuracy Test 

In this study, 85 boneless chicken breasts of varied thicknesses and shapes were 

cooked. The 85 breasts were split into two sets: a training set and a test set. 

Fifty-nine breasts were used for training the ANN, and the other 26 breasts 

were used for testing.  

 

First, the capacity of the ANN estimator was tested. The external temperature 

with three lags (ET(n∆), (0 ≤ n ≤ 2, ∆ = 10 seconds)) and the geometric 

information of the chicken samples were used as the ANN inputs. The range of 

the ANN input variables are given in Table 6. Following was one example of 

initial weights and biases used in the training process: 
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Following training, the adjusted weights and bias were: 
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Figures 29 and 30 show the ANN estimation results for the training and test 

data sets, respectively. The coordinates of each data point in each diagram 

represent the actual and predicted temperature pairs. A diagonal dotted line (A 

= P) means a perfect match between the predicted and actual internal cooking 

temperatures, which is called line identity. The regression lines are also shown 

in Figures 29 and 30.  

Table 6 The 85 cooked sample properties used in this study for testing the 
performance of the IR and laser range imaging system. 

Parameter Range 
External temperature (° C) 66.6 - 90.6 
Thickness (mm) 9.3 - 19.5 
Length (mm) 54.7 - 130.7 
Width (mm) 37.7 - 90.7 
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Figure 29. Comparison between the measured and predicted internal cooking 
temperature for training set (59 samples).   

 

 
Figure 30. Comparison between the measured and predicted internal cooking 
temperature for test set (26 samples). 
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6.5 Impact of Different Lags on ANN Performance 

In the industry, the speed of the conveyor belt is 2 feet/second (609.6 

mm/second), requiring real-time temperature estimation. As a nonlinear 

mapping process, the ANN needs more data for accuracy. To trade off between 

both factors the ANN performance was studied under different lag inputs.   

 

The surface temperature with n lags, denoted as time series ET(0), ET(1∆), 

ET(2∆), …, ET(n∆), (0 ≤ n ≤ 29, ∆ = 10 seconds), were chosen to predict the 

internal cooking temperature. For instance, n = 0 means that only the instant 

surface temperature was used to predict the endpoint temperature; while n = 1 

means both ET(0) and ET(10) were used to predict the endpoint temperature. 

To find the optimal number of lags for estimating the internal cooking 

temperature, one to four lags were used in the experiment. The test results are 

shown in Table 7. From one to three lags, MAE and MAPE changes were 

considered insignificant, and the MSE dropped consistently. However, with 

four lags, the ANN performance did not improve at all, since with more lags, 

the heat transfer process changed from the first stage to the second stage and 

more heat was lost to the ambient air. Also, more noise was introduced to the 

ANN mapping function. 
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Table 7 Prediction accuracy of the ANN for different lags (26 samples). 

 

 

 

 

According to the testing, the input with three lags was preferred in terms of 

MSE criteria. No significant improvement was found according to other criteria. 

This is probably due to the magnification effect of MSE so that a tiny 

performance difference could be detected. Although it seems reasonable to 

argue that one lag was much faster and more convenient to implement, it only 

provided partial heat transfer information compared with using three lags. 

Three lags were preferred in this estimation system, especially for inspecting 

meats under a changing cooking procedure. Using three lags contained much 

more information about the heat transfer process during the cooling phase. In 

other cases, such as a relatively constant cooking procedure, one lag was a 

better choice. 

 

 

 

 

 1 Lag 
n = 0 

2 Lags 
n = 1 

3 Lags 
n = 2 

4 Lags 
n = 3 

MSE  
MAE  

MAPE 

3.73  
1.56 
2% 

3.14 
1.54 

1.98% 

3.08 
1.54 
2% 

4.58 
1.77 

2.25% 
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6.6 Impact of Different Geometric Information on ANN Performance 

Each input variable of the ANN had its own contribution to predicting the 

endpoint temperature. In this experiment, four categories of input variables 

were compared. They were as follows: 

• ET, the input only included the external temperature with three lags; 

• ET, L and W, the external temperature, and shape information (length 

and width) were added into the inputs; 

• ET and TH, the external temperature and thickness information were 

added into the inputs; 

• ET, TH, L and W, the external temperature, shape and thickness 

information were considered. 

 

The effect on the ANN performance of using different combinations of inputs 

for the test set is shown in Figure 31. The experimental results are labeled on 

top of each bar diagram. If the ET was the only input, the laser range system 

was not required. From this diagram, it can be seen that based on all criteria, 

the estimation error dropped consistently when additional geometric 

information was added. For the experiment with the most geometric 

information, the ANN prediction gave the best performance, and the accuracy 
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improved from 5.72% to 2% for the MAPE and from 24.7 to 3.08 (° C)2 for the 

MSE. On the other hand, thickness information played a more important role 

than the width and length information. However, using thickness alone was 

still not enough to produce satisfactory prediction accuracy (± 1° C). 

 
Figure 31. Effect of geometric information on the ANN performance in test set 
(MSE: mean square error; MAE: mean absolute error; and MAPE: mean 
absolute percent error).   
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CHAPTER 7 CONCLUSIONS 
 

 

A non-invasive internal cooking temperature estimation system was presented 

in this research. The experimental results showed that geometric information 

about the chicken breast played a crucial role in internal cooking temperature 

estimation as well as the surface temperature, which indicated that only relying 

on IR imaging was not sufficient to get a good estimation. It was necessary to 

couple laser range imaging with IR imaging.  

 

Moreover, with 3D information and three surface temperature lags as the ANN 

inputs, the optimal accuracy achieved by this system was 1.54° C for the MAE, 

2% for the MAPE, and 3.08 (° C)2 for the MSE. However, it still has not reached 

the satisfactory prediction accuracy. The acceptable prediction error is ±1° C 

based on USDA’s goal. Finally, in this research, the required time for the 

estimation was significantly shortened to 20 seconds making on-line estimation 

possible. Nevertheless, the temperature estimation system required expensive 

equipment (see Appendix D). 
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The combined IR and laser range imaging system shows great potential for real-

time, non-contact, and non-invasive estimation of the internal cooking 

temperature in meat for enhanced food quality and safety. 
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CHAPTER 8 SUGGESTIONS FOR FURTHER STUDY 
 

 

In this ANN model, only the length and the width of the chicken samples are 

taken into account as the “shape information”. These two parameters are not 

enough to express exactly how the geometric shape changes. If variables such 

as the surface area and the geometrical center of the chicken breast are also 

considered and added into the ANN model, the performance of the ANN may 

improve.  

 

Moreover, this ANN model is based on the assumption that the thickest region 

is the coldest area without considering the location of the thickest region. All 

image processing is focused on a ROI. However, if the ROI is located at the 

edge of the chicken breast, it is possible that it is not the coldest part. In future 

work, the location information should be considered in the model.  

 

Another point that could be improved is the sampling rate (time between lags). 

In this study, one reading per ten seconds was tested. The higher the sampling 

rate, the less the estimation time, but more redundant information is included; 

the lower the sampling rate, the longer the estimation time, and key 
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information could be lost. More research is needed to achieve the optimal 

sample rate and improve the model performance. 

 

Finally, an important point worth mentioning is that the system can be 

extended by adding a decision and control system as shown in Figure 32. The 

estimated data can be used to operate a decision system: to condemn, reprocess, 

or pass the meat. Also, the data can act as a feedback to adjust the cooking 

procedure by the control unit.  

 
Figure 32. The extended non-invasive endpoint temperature estimation system. 
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APPENDIX A: Data Acquiring Environment  

 

 

As shown in Figure A-1, internal temperatures are automatically read into the 

Excel file using DASwizard software. The first column is time log. The 

following every three columns are internal temperature readings in chicken 

breast samples. The temperature readings for four samples are recorded at the 

same time. The last column is a room temperature reading. The highlight row is 

the current readings. Figure A-2 shows the IR image grabbing environment. IR 

images were captured using software Inspector 2.2. 

 
Figure A-1. The internal temperature reading environment.  

Sample 1 Sample 4
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Figure A-2. The IR image grabbing environment. 
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APPENDIX B: TC Linearity Test Results 

 

 

Following figures illustrate linearity test results of TC#2 to #12 (Reference 

temperature: the average reading from the twelve TCs was used as a reference): 
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APPENDIX C: IR and 3D images of Chicken breasts  

 

 

The following are some IR and 3D images of chicken breasts. Images on the left 

are 3D images and on the right are the normalized IR images. The red regions 

are the ROIs.  
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APPENDIX D: Cost of Imaging System 
 

 

The cost of system equipment: 
Components Price ($) 
IR camera 25,000 
Oven 7,900 
CCD camera 1,400 
Laser projector 1,000 
PC 1,200 
Matrox image board 1,000 
Inspector 2.2 1,999 
Total 39,499 
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