
nce in

e period

d in the

ity of the

 nested

ify the

sources.

terproces-

ution,

, simu-

y very

thesis.

s an effi-

erative

ocess-

 that is

d execu-

-
nder
I-
A Period Graph Throughput Estimator for 

Multiprocessor Systems1

Neal K. Bambha and Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, and 
Institute for Advanced Computer Studies
University of Maryland, College Park

Abstract

A critical challenge in synthesis techniques for iterative applications is the efficient analysis of performa

the presence of communication resource contention. To address this challenge, we introduce the concept of th

graph. The period graph is constructed from the output of a simulation of the system, with idle states include

graph, and its maximum cycle mean is used to estimate overall system throughput. As an example of the util

period graph, we demonstrate its use in a joint power/performance optimization solution that uses either a

genetic algorithm, or a simulated annealing algorithm. We analyze the fidelity of this estimator, and quant

speedup and optimization accuracy obtained compared to simulation.

1  Introduction

In many practical multiprocessor systems, there is contention for one or more shared communication re

One example of this is a shared bus. A processor must first gain access to the bus before it can execute an in

sor communication (IPC) operation. One consequence of this contention is that under self-timed, iterative exec

there is no known method for deriving an analytical expression for the throughput of the system [19], and thus

lation is required to get a clear picture of application performance. However, simulation is computationall

expensive, and it is highly undesirable to perform simulation inside the innermost optimization loop during syn

To avoid such a simulation, an accurate and efficient estimator for throughput is required. This paper present

cient estimator for the throughput of these systems. Our work is in the context of self-timed execution of it

dataflow specifications, which is an efficient and popular design methodology in the domain of digital signal pr

ing (DSP) [13]. An iterative dataflow specification consists of a dataflow representation of the body of a loop

to be iterated a large or indefinite number of times (e.g., across a vast stream of speech samples). In self-time

1. Technical Report UMIACS-TR-2000-49, Institute for Advanced Computer Studies, University of Mary
land at College Park, 2000. This research was sponsored in part by the US National Science Foundation u
Grant #9734273, and the US Army Research Laboratory under Contract #DAAL01-98-K-0075 and the M
CRA program.



cessor are

sor com-

rces. We

that we are

tem. We

tion times

ply volt-

is for the

lytical

oftware

][9][7].

li-

 in this

akasan et

allelism,

timating

posed in

model. 

.

allocat-

concept

ication

d to an

be mod-

tates —

y adhere

btained

ates. Due
tion, the assignment of tasks (dataflow graph nodes) to processors, and the execution ordering of tasks on each pro

determined at compile-time, and at run-time, processors synchronize with one another only based on inter-proces

munication requirements, and do not necessarily synchronize at the end of each loop iteration. 

In this paper, we assume that a deterministic protocol is used to arbitrate contention for communication resou

assume that a schedule has already been computed so the order of the tasks on the processors is known, and 

adjusting some task parameters that vary the task execution times in order to perform an optimization of the sys

assume that reasonably accurate estimates are available for the task execution times, and for the variation of execu

with parameter changes. Later in the paper, we specifically address the problem of finding an optimum set of sup

ages for the processors in order to reduce power while satisfying a throughput constraint.

2  Previous work

The estimates for task execution times can be obtained through several methods. The most straightforward 

programmer to provide them while developing a library of primitive blocks, as is done in the Ptolemy system [3]. Ana

techniques also exist. Li and Malik [14] have proposed algorithms for estimating the execution time of embedded s

in an efficient manner. Much work has been done on scheduling and binding methods for high level synthesis [16][8

These techniques attempt to optimize the schedule makespan, which is a suitable performance metric for non-iterative app

cations or fully-static implementations, but is not ideally suited to the iterative, self-timed context that we address

paper. Supply voltage reduction has been used for some time in memories and consumer electronics [15]. Chandr

al. [5][6] have presented a method based on reduced voltage level operation combined with architectural-level par

showing that the throughput can be maintained while reducing power. Tiwari et al. [21] presented a technique for es

the power given a set of software instructions. This technique can be used in conjunction with the approaches pro

this paper to obtain more accurate or automated estimates for the power consumption of the tasks in period graph 

 The period graph model is inspired by the synchronization graph model [19] for self-time multiprocessor systems

The synchronization graph has proven useful for a variety of techniques for minimizing synchronization overhead, 

ing interprocessor communication buffers, and scheduling communication operations [11, 19]. The period graph 

differs from the synchronization graph model in that it explicitly models steady-state behavior under commun

resource contention, which is not accounted for in synchronization graphs.

A preliminary, partial summary of this paper has been published in [2]. 

3  Period Graph

If contention is resolved deterministically, and execution times are constant, then self-timed evolution may lea

initial transient state, but the execution will eventually become periodic. This holds because the multiprocessor may 

eled as a finite-state system, and thus, aperiodic behavior — which implies the presence of infinitely many distinct s

cannot hold. In DSP systems, although execution times are not always constant, or known precisely, they typicall

closely to their respective estimates with high frequency. Under such conditions, the periodic execution pattern o

from the estimated execution times provides an estimate of overall system throughput based on the task-level estim



ased on

y to sim-

 emerges.

nd this

synthe-

hed-

ion. The

icient

rhood of

 by the

t. This

nt  at

ulation

xtended

mulated

ble by an

nt invo-

rmation

h to effi-

e num-

epre-

l be 

d on pro-

. We 

e  

 is 

he tasks, 
to the largely deterministic nature of DSP applications, such system-level performance analysis, and optimization b

task-level estimates is common practice in the DSP design community [13].

For self-timed systems, when we apply execution time estimates to estimate overall throughput, it is necessar

ulate (using the execution time estimates) past the transient state until a periodic execution pattern (steady state)

Unfortunately, the duration of the transient may be exponential in the size of the application specification [19], a

makes simulation-intensive, iterative synthesis approaches highly unattractive. 

The objective in this paper is to greatly reduce the rate at which simulation must be carried out during iterative 

sis through the use of a novel period graph model. Given an assignment  of task execution times, and a self-timed sc

ule, the associated period graph is constructed from the periodic, steady-state pattern of the resulting simulat

maximum cycle mean (MCM) of the period graph (with certain adjustments) is then used as a computationally-eff

means of estimating the iteration period (the reciprocal of the throughput) as changes are explored within a neighbo

. In this context, the MCM is the maximum over all directed cycles of the sum of the task execution times divided

sum of the edge delays. The MCM can be computed in low polynomial time [12].

The first step in the construction of the period graph is the identification of the period from the simulator outpu

can be performed by tracing backward through the simulation and searching for the latest intermediate time insta

which the system state  equals the state  obtained at the end of the simulation (here,  denotes the sim

time limit). If no match is found, then the end of the first period exceeds , and thus, the simulation needs to be e

beyond . Otherwise, the region (Gantt chart) that spans the interval  constitutes a (minimal) period of the si

steady state. 

Here, the system state  contains the execution state of each processor, which is either “idle” or representa

ordered pair , where  is the task being executed at time , and  denotes the time remaining until the curre

cation of  is completed. The state  also contains the current buffer sizes of all IPC buffers, as well as any info

(e.g., request queue status) that is used by the protocol for resolution of communication contention. Our approac

ciently determining this period is as follows:

• Perform a simulation of the schedule for some time . Define a constant , which is an initial estimate for th

ber of complete cycles (invocations) of the graph that must be simulated in order to find a period. This constant r

sents the length of the initial transient, before the output becomes periodic. If this initial estimate is too low, it wil

increased during the algorithm. Let  be the number of processors, and let  be the number of tasks schedule

cessor , where . Tasks include IPC tasks as well as computational tasks. Label these tasks 

consider the case where the system executes these tasks infinitely. The invocation number of a task is defined as the 

number of times a given task has executed, and is denoted with a superscript. For example,  denotes th

invocation of task  on processor . Define a simulation array for each processor  where  and 

the number of tasks on processor  that were output by the simulator. The elements of the simulation array are t

and are ordered by reverse start time, so that . 

ν

ν

ta

S ta( ) S tf( ) tf

tf

tf ta tf,[ ]

S t( )

A τ,( ) A t τ

A S t( )

Tsim C

N nj

j j 1 N[ , ]∈ V1j
V2j

…Vnj
,

Vb j( )
a j( ) bth

a j Simj i[ ] i 1 Mj[ , ]∈ Mj

j

Start Simj i[ ]( ) Start Simj i 1+[ ]( )>



 

rs of 

ut by the 

ch pro-

sociated 

ber 

. Let 

 is exe-

procedure 

 proces-

ed-
• Create two idle vectors of length  for each processor spanning one invocation. Label the first idle vector 

where . Label the second idle vector .

• Examine the IPC buffer vector at some fixed point of each idle vector. The IPC buffer vector consists of the numbe

tokens queued on all the IPC edges of the graph enumerated in some order. The IPC buffer vector must be outp

simulator at least once every graph iteration. For example, the simulator could output an IPC buffer vector for ea

cessor every time the processor executes the first task scheduled on it. In this way, each idle vector would be as

with one IPC buffer vector. Label these vectors  and  where  and  is the num

of edges in the IPC graph. The IPC buffer vector represents the state of the communication buffers in the system

 be the number of data tokens on edge  at time . Let  be the number of the node that

cuting on processor  at time . Pseudo-code for constructing the period is shown in Figure 2:

Our experience suggests that in practice, most graphs have periods spanning only a few invocations, so the above 

for finding the period is efficient. For a system with a period that spans  invocations and with at most  tasks per

sor, this method requires  comparisons. 

Figure 1(a) illustrates an application graph (a dataflow specification of an application) along with a self-timed sch

nj Idle1
1
j k[ ]

k 1 nj[ , ]∈ Idle2
1

j k[ ]

IPCBuf1j q[ ] IPCBuf2j q[ ] q 1 E[ , ]∈ E

Tokens e t,( ) e t TaskNumj t( )

j t

N L

LN N 1+( )

Figure 1An illustration of the period graph model.

A

B

E

F

H

I

CG

Proc 1
Proc 4

Proc 3
Proc 2

(a) Execution Times

A, C, H, F

B, E

G, I

: 3
: 4

: 2

A
B F

C G

E A

I H
C
B F

E

G
I H

14

(c) 

A E A E

B BF F

C

C

G

G

I

H

I

H

(d) 

(b) 



Procedure CalculatePeriod

estimate initial integer C and initial simulation time 
int = 0
while ( )

Increment  
Simulate for 

endwhile

for ( ; ; )
for ( )

if ( )

endif
endfor

endfor

Repeat

for ( )
for( )

if( )
error(“Increase C and start over”)

endif

endfor
for ( )

endfor
endfor

Until ( ) and ( )

Tsim
minc

minc C<
Tsim

Tsim

minc minimum over all j 
Mj

nj

------ 
 =

t 0=
t 0= t Tsim< t++

j 1…N=
aj TaskNumj t( )=
invocationj a[ ]++
bj invocationj a[ ]=

TaskNumj t( ) TaskNumj t 1–( )>
Sim1j i[ ] Vb j( )

a j( )=

span 0=

span++
k 1…span*n1=

j 1…N=
span*nj Mj>

Idlej
1 k[ ] Finish Simj k[ ]( ) Start Simj k 1+[ ]( )–=

Idlej
2 k[ ] Finish Simj span*nj k+[ ]( ) Start Simj span*nj 1 k+ +[ ]( )–=

q 1…E=
IPCBuf1 q[ ] Tokens q Start Sim1 1[ ]( ),( )=
IPCBuf2 q[ ] Tokensq Start Sim1 span*n1 1+[ ]( )( , )=

Idlej
1

Idlej
2≡( )

j
∏ 1= IPCBuf1 IPCBuf2=

Figure 2. Pseudocode specification for period calculation.



estimates

iagonal

inter-iter

nd in the

-negli-

with the

des in the

st node in

ssociated

done for

 is

receive the

 example

aried, the

 for the

nced to a

We sep-

eces-

sified as a

a idle.

ion and

idles are
ule; Figure 1(c) shows the periodic steady state that results from the schedule of Figure 1(a) and the execution time 

shown in Figure 1(b); and Figure 1(d) shows the resulting period graph. The nodes in Figure 1(d) that contain d

stripes correspond to idle time ranges in the period, and solid black circles on edges represent delays, which model -

ation dependencies. Note that the steady state period may span multiple graph iterations (2 in this example), a

period graph, this translates to multiple instances of each application graph task.

For clarity in this illustration, we have assumed negligible latency associated with IPC. As described below, non

gible IPC costs can easily be accommodated in the period graph model by introducing send and receive tasks at appropriate

points.

As illustrated in Figure 1, the period graph consists of all the tasks comprising the period that was detected, 

idle time ranges between tasks (including those that are caused by communication contention) also treated as no

graph. The nodes are connected by edges in the order that they appear in the period. An edge is placed from the la

the period for each processor to the first node in the period. This edge is given a delay value of one (to model the a

transition between period iterations), while all of the other intraprocessor edges have delay values of zero. This is 

all the processors in the system. Our model utilizes send and receive nodes for IPC. For each IPC point, a send node

placed on the processor that is sending data, and a corresponding receive node is placed on the processor that will 

data. The period graph is completed by adding an edge from each send node to its corresponding receive node.

4  Fidelity of the estimator

We calculate the fidelity of the period graph estimator as the task execution times are varied. Here, we use the

of varying the processor voltages in order to change the task execution times. When the voltage on a processor is v

execution time of a computational task varies according to

. (1)

where  is the supply voltage,  is the threshold voltage, and  is a constant [6]. We use a value of 

threshold voltage. The execution time  of each of these states in the original (non-scaled) period graph is refere

voltage . The change in execution time of each computation node is found by taking the derivative:

, (2)

where  is the new voltage. It is not obvious, however, how one should adjust the idle times in the period graph. 

arate the idle nodes into two sets: contention idles and data idles. When a node has the necessary data to execute (the n

sary data has already been produced), but is idle waiting for access to the bus, the associated idle node is clas

contention idle. When a node is idle waiting for its predecessors’ data, the associated idle node is classified as a dat By

experimenting with a large number of application graphs, we found that we could capture the effects of content

obtain the best fidelity by zeroing out the data idles and leaving the contention idles constant as the computation 

delay k
Vdd

Vdd Vt–( )2
---------------------------⋅=

Vdd Vt k 0.8volts

pei

Vref

∆pei pei

Vsc

Vref

---------

1
Vt

Vsc

--------–

1
Vt

Vref
---------–

-------------------

2

1–

 
 
 
 
 
 

=

Vsc



 in [17].

e proces-

the exe-

btain an

imes of

h.

etween

rocessors.

an be

mall er

stimate is

teen per-

voltage

effect of

ption is
scaled. Using these rules, the fidelity is calculated as follows:

• Given an application graph, construct a valid schedule. We used the dynamic level scheduling algorithm given

Next, construct the period graph as discussed earlier. Generate  voltage vectors (assignments of voltages to th

sors in the target architecture). For each voltage vector, perform a simulation to determine the throughput, with 

cution times of the tasks on each processor given by (1) according to the voltage on the processor. Also, o

estimate for the throughput by calculating the MCM of the voltage-scaled period graph, in which the execution t

the computation nodes are given by (1), and the execution times of the idle nodes are as explained above.

• Calculate the fidelity according to: 

, (3)

where 

; (4)

; (5)

the s denote the simulated throughput values; and the s are the corresponding estimates from the period grap

Figure 3 plots  for a six-processor system in which the voltage on the individual processors can vary b

plus or minus five percent. The x-axis represents the sum of the absolute values of the voltage changes over all p

Each point on the graph is a fidelity calculation for  voltage vectors. A value of one is a “perfect” fidelity. It c

seen that in the range shown, the fidelity is always greater than 0.65. It is also important that the estimator have a sror

at each point. Figure 4 plots

. (6)

It can be seen that the error increases as the voltage vector moves away from the reference point, and that the e

slightly biased. For the range shown in the graphs, where each processor voltage is changed by a maximum of fif

cent, the error is less than four percent.

5  Using the Period Graph in a Joint Power/Performance Algorithm

An effective way to reduce power consumption of a processor core in CMOS technology is to lower the supply 

level, which exploits the quadratic dependence of power on voltage [6]. Reducing the supply voltage also has the 

decreasing the clock speed and increasing circuit delay. The circuit delay can be modeled by (). The power consum

N

Fidelity
2

N N 1–( )
---------------------- fi j

j i 1+=

N

∑
i 1=

N 1–

∑
 
 
 

  =

fi j
1  if  sign Si Sj–( ) sign Mi Mj–( )=

0  otherwise



=

sign x( )
1–( ) if x 0<( )

0 if x 0=( )
1 if x 0>( )






=

Si Mi

Fidelity

N 100=

Si Mi–( ) Si⁄[ ]
i 1=

N

∑



Figure 3. Plot of fidelity (equation 3) for six processor system vs. magnitude of voltage
change on all processors

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25 30 35 40 45 50

F
id

el
ity

Sum of Absolute Value of % Change in Voltage on all Processors

Fidelity - 6 processors each changing at most 15%

Figure 4. Plot of average error vs. voltage change on processors.

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 5 10 15 20 25 30 35 40 45 50

M
e

a
n

 E
rr

o
r

Sum of Absolute Value of % Change in Voltage on all Processors

6 processors each changing by at most 15%



ate the

aram-

. A

e. A dif-

esented

 corre-

his cor-

 each node

 (fixed)

minimize

ot on the

neral, a

r/perfor-

o large

hrough-

 either be

porated

atic

ecific

round a

timate

eriod

th each

ion vio-

actor

 graph

ner loop

sors,
given by 

, (7)

where  is the clock frequency,  is the load capacitance, and  is the switching activity [6]. To accommod

possibility of putting processors in states of lower switching activity during idle periods, our model includes a p

eter  for the idle states, and a parameter  for the computational tasks, where 

more detailed power analysis could assign a different  for each computational task if that data were availabl

ferent power optimization technique, which can be used in conjunction with the voltage scaling technique pr

here, utilizes a nearly complete processor shutdown during the idle periods [10][20]. In our model, this would

spond to . Our model for the power is the average energy consumption per graph iteration period. T

responds in a typical DSP system to the average energy required to process one sample. Here, the energy of

equals its power times its execution time.

In a system consisting of multiple processors, one has the ability to choose, within a certain range, the

operating voltage on each processor. This opens up an additional degree of freedom that can be exploited to 

the system power consumption. By choosing a lower voltage of a processor that is executing tasks that are n

critical path, the throughput can remain unchanged while the overall power consumption is reduced. In ge

combination of raising voltages on some processors while lowering others can yield the most attractive powe

mance solution. 

When applying voltage scaling to a multiprocessor system, the valid solution space is typically much to

to search by brute-force methods. In addition, since there is no general analytical formula for calculating the t

put of these systems in the presence of communication resource contention, each candidate solution must

simulated or estimated using some heuristic. 

6  Genetic algorithm formulation

To demonstrate the general utility of the period graph based performance estimation approach, we incor

it into two significantly different probabilistic search techniques to derive two different algorithms for system

voltage scaling. The first algorithm presented utilizes the framework of genetic algorithms (GAs) [1]. The sp

GA explored here consists of an inner GA nested within an outer GA. The inner GA performs a local search a

point from the population of the outer GA, using the MCM of the period graph in its objective function as an es

for the throughput. A period constraint  is given as an input to the optimization problem, where the p

is the reciprocal of the throughput. The objective function calculates the power consumption associated wi

solution by calculating the total energy per period, as discussed earlier. If the period associated with a solut

lates the period constraint , the power consumption is multiplied by a large penalty f

. The GA attempts to minimize this objective function. 

In the outer loop, a population of  voltage vectors is generated. A simulation is run and a period

constructed for each of these outer loop voltage vectors. For each of the outer loop voltage vectors, a new in

population is generated such that  for , where  is the number of proces

P αCLVdd
2 f=

f CL α

αidle αnon idle– αidle αnon idle–≤

α

αidle 0=

Tconstraint

Tsolution Tconstraint>( )

100 Tsolution Tconstraint–( )( )exp

Nouter

Vouteri Vinneri– ε< i Nproc∈ Nproc



er pop-

 a local

l volt-

 inner

is point

ge vec-

. 

rd simu-

ling opti-

 with an

 good

the

t period

e res-

ften the

e, the

ed on

alue of

on the

,

nding

rating at

original

 second

he inner

y simula-

 Fourier
 is the voltage on processor  in the outer population,  is the voltage on processor  in the inn

ulation, and  is a user-defined threshold. The inner population size is . The inner GA then performs

search using this population for a number of generations  in an attempt to find a locally optima

age vector. The inner GA uses the MCM of the period graph in its objective function. After an invocation of the

GA is finished, one simulation is performed using the resulting voltage vector, and the actual throughput for th

is used to compute its fitness. The outer loop voltage vector is then replaced with this locally-optimized volta

tor for use in the next outer loop generation. The outer loop is run for a number of generations 

7  Simulated annealing algorithm

Simulated annealing is another well-known method for searching large design spaces. Using a standa

lated annealing package [4], we have implemented an alternative version of period-graph-based voltage sca

mization. The objective function here is the same as for the genetic algorithm. The system is first simulated

initial voltage vector , and the period graph is built. In order to insure that the period graph will be a

enough estimator, a resimulation threshold  is maintained. The difference between the current input  to 

objective function, and the voltage vector  corresponding to the simulation used to compute the curren

graph, is calculated. If

, (8)

the graph is resimulated using . The period graph is rebuilt, and . For , the graph will b

imulated every time, and the period graph will offer no speed advantage. The larger the value of , the less o

graph will be resimulated, and the faster the optimization algorithm will perform. However, when  is too larg

fidelity of the period graph estimate will be unacceptably low and the quality of the final result will suffer. Bas

our experiments with a number of graphs, the optimal value of  is highly application-dependent, but a v

 (10%) generally gives good results.

8  Results

Figure 5 shows an example of the reduction in power resulting from the genetic optimization algorithm 

FFT3 application graph (Figure 10). The parameters of the GA were , 

. The local search voltages were constrained to be within five percent of the correspo

outer loop voltages. The period constraint was calculated by simulating the system with all six processors ope

voltage . For this example, the system power consumption was reduced by 43%, while maintaining the 

throughput. To evaluate the advantage of the period graph approach over using brute-force simulation, a

nested GA was implemented. This algorithm was identical to the algorithm discussed above, except that t

loop did not use the period graph estimate for the throughput. Instead, each voltage vector was evaluated b

tion. This algorithm consumed 26 times more CPU time, and produced similar results, as shown in Figure 6. 

Figure 7 summarizes the power reduction results for the simulated annealing algorithm applied to a fast

Vouteri i Vinneri i

ε Ninner

Generationsinner

Generationsouter

V j LSVj=

T CVj

LSVj

1
N
----

Vi LSV i–

LSV i

------------------------
i 1=

N

∑ T>

CV j CVj LSV j→ T 0=

T

T

T

T 0.1=

Nouter Ninner 50= = Generationsouter 10=

Generationsinner 20=

Vref



Figure 5. Plot of (optimized power)/(initial power) vs. genetic algorithm iteration using the
period graph estimator.

0.55

0.6

0.65

0.7

0.75

0.8

1 2 3 4 5 6 7 8 9 10

P
/P

0

Iteration Number(1000 generation/iteration) (6 minutes cputime/iteration)

Genetic algo. fft3 (fixed throughput constraint) using period graph

P/P0

Figure 6. Plot of (optimized power)/(initial power) vs. genetic algorithm iteration using simu-
lation only.

0.55

0.6

0.65

0.7

0.75

0.8

1 2 3 4 5 6 7 8 9 10

P
/P

0

Iteration Number (1000 generations/iteration) (126 minutes cputime/iteration)

Genetic algo. fft3 (fixed throughput constraint) using simulation only

P/P0



as  is

outine,

ponds to

 a good

pplica-
transform (FFT3) application graph, for different values of the resimulation threshold . It can be seen that 

increased, the algorithm progresses more quickly. The simulated annealing algorithm begins with a ‘melting’ r

where the temperature is increased until a phase change is detected. The initial flat part of the curves corres

the time spent in the melting routine. We have found that for values of  above 20%, the period graph is not

enough estimator and the algorithm does not converge. 

Table 1 summarizes the power reduction for the simulated annealing algorithm for several additional a

T T

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 500 1000 1500 2000

P
/P

0

time

simulated annealing FFT3

resimulation threshold %
0
2
5
6

10

Figure 7. Plot of (optimized power)/(initial power) vs. time for simulated annealing algorithm
on FFT3 application.

0%
2%

5%
6%

10%

T

application 0 2% 5% 10% 25%

fft1 (28) 0.96 0.95 0.65 0.6 1

fft2 (28) 0.97 0.9 0.71 0.97 1

fft3(28) 1 0.77 0.59 0.59 1

mus (20) 0.89 0.71 0.67 0.82 1

meas (12) 0.77 0.73 0.81 0.82 1

qmf (14) 0.84 0.65 0.67 0.73 1

rand1 (30) 0.91 0.77 0.53 0.65 1

rand2 (100) 1 0.85 0.77 0.73 1

rand3 (200) 1 1 1 0.94 1

Table 1. power reduction for fixed computation time.



s were

ows cor-

 gener-

ive the

.

is not a

nstraint.

st result

 for the

ed

ator for

e-con-

c search.

o genetic

-offs of

d anneal-

 for fur-

 use to

quency

state.”

or sys-

g het-

sforma-
tions using different values of the resimulation threshold. At the start of the optimization, all processor voltage

set at 5 volts. The throughput at this point was used as the throughput constraint. In the table, the first three r

respond to three different FFT implementations, mus refers to a music synthesis algorithm, qmf refers to a quadrature

mirror filter bank, meas is a measurement application, and the last three rows correspond to graphs that were

ated using Sih’s algorithm for randomly generating application graphs [18]. The numbers in parentheses g

numbers of nodes in these applications. The optimization was performed for a fixed time of 30 minutes in each case

The optimum resimulation threshold was between 2% and 10% in all cases. For , the period graph 

good estimator and none of the results returned during the optimization algorithm satisfied the throughput co

For the largest graph, the fixed simulation time was not long enough to make much improvement, but the be

occurred for , where the simulations are less frequent. Table 2 summarizes the power reduction

genetic algorithm with and without using the period graph, with a fixed compile time of one hour.

9  Conclusion

This paper has explored a period graph model that enables efficient voltage scaling optimization for self-tim

implementations of iterative applications. The period graph can be used as a computationally efficient estim

the throughput in multiprocessor systems in which communication contention renders exact analysis too tim

suming. This model is especially useful in iterative synthesis techniques, such as those based on probabilisti

Our paper has demonstrated effective voltage scaling techniques based on incorporating the period graph int

algorithm and simulated annealing formulations. Other optimizations, such as exploiting memory/speed trade

the individual tasks, are also possible. These may be more appropriate to the genetic algorithm and simulate

ing framework, as a larger set of independent moves is available during optimization. Other useful directions

ther work include integrating the period graph model into the scheduling phase, rather than restricting its

voltage scaling of fixed schedules, and the investigation of adaptive methods for dynamically adjusting the fre

of resimulation. The application graphs are shown in figures 8, 9, 10, 11, 12, 13, 14, and 15,. 

10  References

[1] T. Back, U. Hammel, and H. Schwefel. “Evolutionary computation: Comments on the history and current 

IEEE Transactions on Evolutionary Computation, April, 1997.

[2] N. K. Bambha and S. S. Bhattacharyya. A joint power/performance optimization technique for multiprocess

tems using a period graph construct. In Proceedings of the International Symposium on Systems Synthesis, Madrid,

Spain, September 2000. To appear.

[3] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A framework for simulating and prototypin

erogeneous systems. International Journal of Computer Simulation, January 1994.

[4] Carter, Everett, Taygeta Scientific Inc. http://www.taygeta.com/annealing/simanneal.html

[5] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R. Brodersen, “Optimizing power using tran

tions,” IEEE Trans. Computer-Aided Design, vol. 14, no. 1, 1995.

[6] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. “Low-power CMOS digital design.” IEEE Journal of Solid-

T 0.25=

T 0.1=



0

8

12

1 2

9

13

34

10

14 15

5 6

11

7

16 17 18 19

20 21 22 23 24 25 26 27

Figure 9.  FFT1 application graph.

0

8

12 13

1 2

9

3 4

10

14 15

5 6

11

7

16 17 18 19

20 21 22 23 24 25 26 27

Figure 8. FFT2 application graph.



.

application
using period 

graph
no period 

graph

fft1 0.54 0.74

fft2 0.69 0.86

fft3 0.57 0.78

mus 0.68 0.90

meas 0.70 0.82

qmf 0.64 0.84

rand1(30) 0.55 0.78

rand2(100) 0.70 1

rand3(200) 0.87 1

Table 2. Genetic algorithm (optimized power)/(initial power) for fixed 
compile time

Figure 10. FFT3 application graph

0

8

12 13

1 2

9

3 4

10

14 15

5 6

11

7

16 17 18 19

20 21 22 23 24 25 26 27



0

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15

16 17

19

18

20

Figure 11. Karplus Strong music (mus) application graph.

0

1

2 3

4

5

6 7

8 9

10 11

Figure 12. Meas application graph.



Figure 13. rand1 (30 nodes) application graph.

n0

n1

n2 n3n4 n5 n6 n7

n13

n29

n12n11 n10 n9 n8

n14

n15n16 n17 n18 n19 n20 n21

n28n27 n26 n25 n24 n23 n22

n0

n1

n2 n3

n99

n4n5

n45

n100

n6

n7

n8

n39

n9 n10n11 n12 n13n14 n15

n46

n44

n40 n36n32 n28 n24n20 n16

n47

n48

n41 n37n33 n29 n25n21 n17

n18

n19

n22

n23

n26

n27

n30

n31

n34

n35

n38

n71

n87

n42

n43

n49

n50

n51

n52

n53

n54n72 n73n74

n95

n96n97

n98

n92 n93

n55n56n57 n58 n59n83 n79n75

n94

n68n66n64 n62 n60

n69n67n65 n63 n61

n70

n88 n84 n80n76

n77

n78

n91

n81

n82

n85

n86

n89

n90

Figure 14. rand2 (100 nodes) application graph



cture

ower

puta-

essors.

s

State Circuits, 27(4):473—484, 1992.

[7] J. M. Chang and M. Pedram, “Register allocation and binding for low power,” Design Automation Conf., June,

1995.

[8] A. Dasgupta and R. Karri, “Simultaneous scheduling and binding for power minimization during microarchite

synthesis,” in Proc. Intl. Symp. Low Power Design, Apr. 1995.

[9] L. Goodby, A. Orailoglu, and P. M. Chau, “Microarchitectural synthesis of performance-constrained low-p

VLSI designs,” in Proc. Int. Conf. Computer Design, Oct. 1994.

[10] C. Hwang and A.C.-H. Wu. “A predictive system shutdown method for energy saving of event-driven com

tion.” International Conference on Computer-Aided Design, 1997.

[11] M. Khandelia and S. S. Bhattacharyya. Contention-conscious transaction ordering in embedded multiproc

In Proceedings of the International Conference on Application Specific Systems, Architectures, and Processor, pages

276-285, Boston, Massachusetts, July 2000. 

[12] E. L. Lawler. Combinatorial Optimization. Holt, Rinehart and Winston. 1976.

[13] E. A. Lee and S. Ha. Scheduling strategies for multiprocessor real time DSP. Global Telecommunications Con-

ference, November 1989.

[14] Y. S. Li and S. Malik. Performance analysis of embedded software using implicit path enumeration. In Proceed-

ings of the Design Automation Conference, 1995.

n0

n1n2n3

n10

n190

n7

n111

n148

n4

n112

n11

n113

n8

n114

n5

n122

n174n175 n176

n6

n124

n131n135 n136n137

n138

n13

n14

n168

n9

n177

n186

n178

n183

n179

n180

n12

n115 n116

n15 n16 n17 n18

n19

n20

n117

n21

n118 n119 n120n121

n128n129 n130 n132 n133n134

n38

n147

n110

n22 n23n24 n25 n26 n27

n28

n169 n170n171 n172

n161n162 n163n164

n145

n141n142

n143

n144

n29

n30n31 n32 n33n34 n35n36

n140

n77

n156

n39

n40 n41 n42n43n44

n139

n64n65n66 n46

n47

n37

n191n192 n193

n146

n48n49n50

n74n75 n76

n173

n78n45 n71n69n67

n166 n167n125

n126n127

n97 n98 n99n100 n101n102 n103

n157

n165n158

n159 n160

n57 n149 n150 n151

n154

n59

n153

n55

n152

n51

n155

n95 n89

n90

n91 n92n93 n94n104 n105 n106 n107 n108n109

n194

n195 n196n197 n198

n60n56n52 n187

n53

n184

n54

n181

n63

n182

n79 n80n81

n189n58

n185 n61 n188

n62

n199

n86 n84n82n123

n72n70n68

n73

n96

n87 n85n83

n88

Figure 15. rand3 (200 nodes) application graph.



tems,”

us pro-

pt. of

itectural

Pow-
[15] P. Macken, M. Degrauwe, M. Van Paemel, and G. Oguey, “A voltage reduction technique for digital sys

in Proc. IEEE Intl. Solid-State Circuits Conf., 1990.

[16] A. Raghunathan and N. K. Jha, “Behavioral synthesis for low power,” in Proc. Intl. Conf. Computer Design, Oct.

1994.

[17] G. C. Sih and E. A. Lee. A compile-time scheduling heuristic for interconnection-constrained heterogeneo

cessor architectures. IEEE Transactions on Parallel and Distributed Systems, 4(2):75-87, February 1993.

[18] G. C. Sih, “Multiprocessor Scheduling to Account for Interprocessor Communication”, Ph.D. thesis, De

EECS, U. C. Berkeley, 1991.

[19] S. Sriram, and S. S. Bhattacharyya, Embedded Multiprocessors: Scheduling and Synchronization. Marcel Dekker,

Inc., 2000

[20] M. Srivastava, A. P. Chandrakasan, and R.W. Brodersen. “Predictive system shutdown and other arch

techniques for energy efficient programmable computation.” IEEE Transactions on VLSI Systems, 4(1): 42—55, 1996

[21] V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of Embedded Software: A First Step Towards Software 

er Minimization”, IEEE Trans. VLSI, December 1994.


	A Period Graph Throughput Estimator for Multiprocessor Systems
	Neal K. Bambha and Shuvra S. Bhattacharyya
	Department of Electrical and Computer Engineering, and
	Institute for Advanced Computer Studies
	University of Maryland, College Park
	Abstract
	1 Introduction
	2 Previous work
	3 Period Graph
	Figure 2. Pseudocode specification for period calculation.
	Figure 1 An illustration of the period graph model.

	4 Fidelity of the estimator
	. (1)
	, (2)
	, (3)
	; (4)
	; (5)
	Figure 3. Plot of fidelity (equation 3) for six processor system vs. magnitude of voltage change ...
	Figure 4. Plot of average error vs. voltage change on processors.

	. (6)

	5 Using the Period Graph in a Joint Power/Performance Algorithm
	, (7)

	6 Genetic algorithm formulation
	7 Simulated annealing algorithm
	, (8)

	8 Results
	Figure 5. Plot of power reduction vs. algorithm iteration using period graph estimator.
	Figure 6. Plot of power reduction vs. algorithm iteration using simulation only .
	Figure 7. Plot of (optimized power)/(initial power) vs. time for simulated annealing algorithm on...
	Table 1. power reduction for fixed computation time.

	9 Conclusion
	Figure 9. FFT1 application graph.
	Figure 8. FFT2 application graph.
	Table 2. Genetic algorithm (optimized power)/(initial power) for fixed compile time
	Figure 10. FFT3 application graph
	Figure 11. Karplus Strong music (mus) application graph.
	Figure 12. Meas application graph.
	Figure 13. rand1 (30 nodes) application graph.
	Figure 14. rand2 (100 nodes) application graph
	Figure 15. rand3 (200 nodes) application graph.

	10 References
	[1] T. Back, U. Hammel, and H. Schwefel. “Evolutionary computation: Comments on the history and c...
	[2] N. K. Bambha and S. S. Bhattacharyya. A joint power/performance optimization technique for mu...
	[3] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A framework for simulating an...
	[4] Carter, Everett, Taygeta Scientific Inc. http://www.taygeta.com/annealing/simanneal.html
	[5] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R. Brodersen, “Optimizing power us...
	[6] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. “Low-power CMOS digital design.” IEEE Jour...
	[7] J. M. Chang and M. Pedram, “Register allocation and binding for low power,” Design Automation...
	[8] A. Dasgupta and R. Karri, “Simultaneous scheduling and binding for power minimization during ...
	[9] L. Goodby, A. Orailoglu, and P. M. Chau, “Microarchitectural synthesis of performance-constra...
	[10] C. Hwang and A.C.-H. Wu. “A predictive system shutdown method for energy saving of event-dri...
	[11] M. Khandelia and S. S. Bhattacharyya. Contention-conscious transaction ordering in embedded ...
	[12] E. L. Lawler. Combinatorial Optimization. Holt, Rinehart and Winston. 1976.
	[13] E. A. Lee and S. Ha. Scheduling strategies for multiprocessor real time DSP. Global Telecomm...
	[14] Y. S. Li and S. Malik. Performance analysis of embedded software using implicit path enumera...
	[15] P. Macken, M. Degrauwe, M. Van Paemel, and G. Oguey, “A voltage reduction technique for digi...
	[16] A. Raghunathan and N. K. Jha, “Behavioral synthesis for low power,” in Proc. Intl. Conf. Com...
	[17] G. C. Sih and E. A. Lee. A compile-time scheduling heuristic for interconnection-constrained...
	[18] G. C. Sih, “Multiprocessor Scheduling to Account for Interprocessor Communication”, Ph.D. th...
	[19] S. Sriram, and S. S. Bhattacharyya, Embedded Multiprocessors: Scheduling and Synchronization...
	[20] M. Srivastava, A. P. Chandrakasan, and R.W. Brodersen. “Predictive system shutdown and other...
	[21] V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of Embedded Software: A First Step Toward...





