A Period Graph Throughput Estimator for
Multiprocessor Systenlls

Neal K. Bambha and Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, and
Institute for Advanced Computer Studies
University of Maryland, College Park

Abstract

A critical challenge in synthesis techniques for iterative applications is the efficient analysis of performance in
the presence of communication resource contention. To address this challenge, we introduce the concept of the period
graph. The period graph is constructed from the output of a simulation of the system, with idle states included in the
graph, and its maximum cycle mean is used to estimate overall system throughput. As an example of the utility of the
period graph, we demonstrate its use in a joint power/performance optimization solution that uses either a nested
genetic algorithm, or a simulated annealing algorithm. We analyze the fidelity of this estimator, and quantify the

speedup and optimization accuracy obtained compared to simulation.

1 Introduction

In many practical multiprocessor systems, there is contention for one or more shared communication resources.
One example of this is a shared bus. A processor must first gain access to the bus before it can execute an interproces-
sor communicationlPC) operation. One consequence of this contention is that under self-timed, iterative execution,
there is no known method for deriving an analytical expression for the throughput of the system [19], and thus, simu-
lation is required to get a clear picture of application performance. However, simulation is computationally very
expensive, and it is highly undesirable to perform simulation inside the innermost optimization loop during synthesis.
To avoid such a simulation, an accurate and efficient estimator for throughput is required. This paper presents an effi-
cient estimator for the throughput of these systems. Our work is in the context of self-timed execution of iterative
dataflow specifications, which is an efficient and popular design methodology in the domain of digital signal process-
ing (DSP) [13]. An iterative dataflow specification consists of a dataflow representation of the body of a loop that is

to be iterated a large or indefinite number of times (e.g., across a vast stream of speech samples). In self-timed execu-

1. Technical Report UMIACS-TR-2000-49, Institute for Advanced Computer Studies, University of Mary-
land at College Park, 2000. This research was sponsored in part by the US National Science Foundation under
Grant #9734273, and the US Army Research Laboratory under Contract #DAAL01-98-K-0075 and the MI-
CRA program.

tion, the assignment of tasks (dataflow graph nodes) to processors, and the execution ordering of tasks on each processor are
determined at compile-time, and at run-time, processors synchronize with one another only based on inter-processor com-
munication requirements, and do not necessarily synchronize at the end of each loop iteration.

In this paper, we assume that a deterministic protocol is used to arbitrate contention for communication resources. We
assume that a schedule has already been computed so the order of the tasks on the processors is known, and that we ar
adjusting some task parameters that vary the task execution times in order to perform an optimization of the system. We
assume that reasonably accurate estimates are available for the task execution times, and for the variation of execution times
with parameter changes. Later in the paper, we specifically address the problem of finding an optimum set of supply volt-

ages for the processors in order to reduce power while satisfying a throughput constraint.

2 Previous work

The estimates for task execution times can be obtained through several methods. The most straightforward is for the
programmer to provide them while developing a library of primitive blocks, as is done in the Ptolemy system [3]. Analytical
techniques also exist. Li and Malik [14] have proposed algorithms for estimating the execution time of embedded software
in an efficient manner. Much work has been done on scheduling and binding methods for high level synthesis [16][8][9][7].
These techniques attempt to optimize the schadalespanwhich is a suitable performance metric for non-iterative appli-
cations or fully-static implementations, but is not ideally suited to the iterative, self-timed context that we address in this
paper. Supply voltage reduction has been used for some time in memories and consumer electronics [15]. Chandrakasan et
al. [5][6] have presented a method based on reduced voltage level operation combined with architectural-level parallelism,
showing that the throughput can be maintained while reducing power. Tiwari et al. [21] presented a technigue for estimating
the power given a set of software instructions. This technique can be used in conjunction with the approaches proposed in
this paper to obtain more accurate or automated estimates for the power consumption of the tasks in period graph model.

The period graph model is inspired by gachronization grapimodel [19] for self-time multiprocessor systems.
The synchronization graph has proven useful for a variety of techniques for minimizing synchronization overhead, allocat-
ing interprocessor communication buffers, and scheduling communication operations [11, 19]. The period graph concept
differs from the synchronization graph model in that it explicitly models steady-state behavior under communication
resource contention, which is not accounted for in synchronization graphs.

A preliminary, partial summary of this paper has been published in [2].

3 Period Graph

If contention is resolved deterministically, and execution times are constant, then self-timed evolution may lead to an
initial transient state, but the execution will eventually become periodic. This holds because the multiprocessor may be mod-
eled as a finite-state system, and thus, aperiodic behavior — which implies the presence of infinitely many distinct states —
cannot hold. In DSP systems, although execution times are not always constant, or known precisely, they typically adhere
closely to their respective estimates with high frequency. Under such conditions, the periodic execution pattern obtained

from the estimated execution times provides an estimate of overall system throughput based on the task-level estimates. Due

to the largely deterministic nature of DSP applications, such system-level performance analysis, and optimization based on
task-level estimates is common practice in the DSP design community [13].

For self-timed systems, when we apply execution time estimates to estimate overall throughput, it is necessary to sim-
ulate (using the execution time estimates) past the transient state until a periodic execution pattern (steady state) emerges.
Unfortunately, the duration of the transient may be exponential in the size of the application specification [19], and this
makes simulation-intensive, iterative synthesis approaches highly unattractive.

The objective in this paper is to greatly reduce the rate at which simulation must be carried out during iterative synthe-
sis through the use of a noydriod graphmodel. Given an assignment of task execution times, and a self-timed sched-
ule, the associated period graph is constructed from the periodic, steady-state pattern of the resulting simulation. The
maximum cycle meanMCM) of the period graph (with certain adjustments) is then used as a computationally-efficient
means of estimating the iteration period (the reciprocal of the throughput) as changes are explored within a neighborhood of
v . In this context, the MCM is the maximum over all directed cycles of the sum of the task execution times divided by the
sum of the edge delays. The MCM can be computed in low polynomial time [12].

The first step in the construction of the period graph is the identification of the period from the simulator output. This
can be performed by tracing backward through the simulation and searching for the latest intermediate tintg instant at
which thesystem state&S(t,) equals the stat§({) obtained at the end of the simulation ¢here, denotes the simulation
time limit). If no match is found, then the end of the first period excgéeds , and thus, the simulation needs to be extended
beyondt, . Otherwise, the region (Gantt chart) that spans the inf¢qvgl constitutes a (minimal) period of the simulated
steady state.

Here, the system staft) contains the execution state of each processor, which is either “idle” or representable by an
ordered paif(A, 1) , wherd s the task being executed attime tand denotes the time remaining until the current invo-
cation of A is completed. The sta® f) also contains the current buffer sizes of all IPC buffers, as well as any information
(e.g., request queue status) that is used by the protocol for resolution of communication contention. Our approach to effi-

ciently determining this period is as follows:

* Perform a simulation of the schedule for some tifgg, . Define a corBtant , which is an initial estimate for the num-
ber of complete cycles (invocations) of the graph that must be simulated in order to find a period. This constant repre-
sents the length of the initial transient, before the output becomes periodic. If this initial estimate is too low, it will be

increased during the algorithm. LEt be the number of processors, E[‘Ij1d let be the number of tasks scheduled on pro-

cessolj , wher@ 0[1,N] . Tasks include IPC tasks as well as computational tasks. Label thesﬁ l\;§§jksvnj . We
consider the case where the system executes these tasks infinitehwddeion numbeof a task is defined as the

number of times a given task has executed, and is denoted with a superscript. For é\x‘%’ﬁglﬁ, dénotes the
invocation of taska on processpr . Define a simulation array for each pI’O&%'B’lf[]'ﬂ iwt{&rmj] Mj and is

the number of tasks on procesgor that were output by the simulator. The elements of the simulation array are the tasks,

and are ordered by reverse start time, so $tat{ Sir’rj1[i]) > Starf Sir'rj1[i +1])

Create twddle vectorsof length n; for each processor spanning one invocation. Label the first idle WHetblq[k]
wherek O [1,n] . Label the second idle vectdrezlj[k]

Examine thdPC buffer vectoat some fixed point of each idle vector. The IPC buffer vector consists of the numbers of
tokens queued on all the IPC edges of the graph enumerated in some order. The IPC buffer vector must be output by the
simulator at least once every graph iteration. For example, the simulator could output an IPC buffer vector for each pro-
cessor every time the processor executes the first task scheduled on it. In this way, each idle vector would be associated
with one IPC buffer vector. Label these vecttFPﬁ:BufJ]-[q] B?ﬁBuf%[q] wheéid 1, E] Eand is the number

of edges in the IPC graph. The IPC buffer vector represents the state of the communication buffers in the system. Let
Tokenge, t) be the number of data tokens on edge at time TaekNun}(t) be the number of the node that is exe-

cuting on processqgr attinte . Pseudo-code for constructing the period is shown in Figure 2:

Our experience suggests that in practice, most graphs have periods spanning only a few invocations, so the above procedure

for finding the period is efficient. For a system with a period that spans invocations and with &t most tasks per proces-

sor, this method requirdsN(N+ 1) comparisons.

Figure 1(a) illustrates aapplication graph(a dataflow specification of an application) along with a self-timed sched-
(@) Proc 4 Execution Times
Proc 1 @\ A C.HF:2
@”@““»@ B, E :3
¥ G, I 14
«—@4—@ (b)

Proc 2 @ Proc 3
Al E |A E
B | F] B |F
(c) [G c G
| H] | H |
- >
14

Figure 1An illustration of the period graph model.

Procedure CalculatePeriod

estimate initial integer C and initial simulation time T,
int minc=0
while (minc< C)

Increment T,

Simulate for T,

minc = minimum over all quJE

"
endwhile
t=20
for (t = 0;t<Tg,;t++)
for(j = 1...N)

a = TaskNun}(t)
invocatioq[a]++
b. = invocation[a]
if (TaskNurT}(t) > TaskN_un?(t -1))
Slm]][l] = Vb(J)a(j)
endif
endfor
endfor

span= 0

Repeat
span++
for (k = 1...span*n)
for(j = 1...N)
if(span*nj >M.)
error(*Increase C and start over”)
endif
Idlejl[k] = Finish(Sim[k]) — Star(Sim(k + 1)
Idlejz[k] = Finish(Sirr][span*hj + Kk]) — Star{(Sir‘r}[span*hj +1+K])

endfor

for(q = 1...E)
IPCBufl[q] = Tokengq, Stari Sim[1]))
IPCBufZq] = Tokengg,Star{(Sim[span’, + 1]))

endfor

endfor
Until ([(Idle; = Idle) = 1) and (IPCBuf1 = IPCBuf2
i

Figure 2. Pseudocode specification for period calculation.

ule; Figure 1(c) shows the periodic steady state that results from the schedule of Figure 1(a) and the execution time estimates
shown in Figure 1(b); and Figure 1(d) shows the resulting period graph. The nodes in Figure 1(d) that contain diagonal
stripes correspond to idle time ranges in the period, and solid black circles on edges represent delays, which model inter-iter
ation dependencies. Note that the steady state period may span multiple graph iterations (2 in this example), and in the
period graph, this translates to multiple instances of each application graph task.

For clarity in this illustration, we have assumed negligible latency associated with IPC. As described below, non-negli-
gible IPC costs can easily be accommodated in the period graph model by intredundiagdreceivetasks at appropriate
points.

As illustrated in Figure 1, the period graph consists of all the tasks comprising the period that was detected, with the
idle time ranges between tasks (including those that are caused by communication contention) also treated as nodes in the
graph. The nodes are connected by edges in the order that they appear in the period. An edge is placed from the last node in
the period for each processor to the first node in the period. This edge is given a delay value of one (to model the associated
transition between period iterations), while all of the other intraprocessor edges have delay values of zero. This is done for
all the processors in the system. Our model utilessdand receivenodes for IPC. For each IPC point, a send node is
placed on the processor that is sending data, and a corresponding receive node is placed on the processor that will receive the

data. The period graph is completed by adding an edge from each send node to its corresponding receive node.

4 Fidelity of the estimator

We calculate the fidelity of the period graph estimator as the task execution times are varied. Here, we use the example
of varying the processor voltages in order to change the task execution times. When the voltage on a processor is varied, the

execution time of a computational task varies according to

V
delay = kD—-———g—d——-2. 1)
(Vaa=Vo)
whereV,, is the supply voltag®, s the threshold voltage,kand is a constant [6]. We use a Oz8ueltd for the

threshold voltage. The execution time, of each of these states in the original (non-scaled) period graph is referenced to a

voltageV, . . The change in execution time of each computation node is found by taking the derivative:

8, [8
V
_ sc sc 0
Apg = pe; v. | “1o @
0 ref 1_______1_ 0
O V O

ref
whereV,_. is the new voltage. It is not obvious, however, how one should adjust the idle times in the period graph. We sep-

arate the idle nodes into two setentention idleanddata idles When a node has the necessary data to execute (the neces-

sary data has already been produced), but is idle waiting for access to the bus, the associated idle node is classified as a
contention idle. When a node is idle waiting for its predecessors’ data, the associated idle node is classified as Bydata idle.
experimenting with a large number of application graphs, we found that we could capture the effects of contention and

obtain the best fidelity by zeroing out the data idles and leaving the contention idles constant as the computation idles are

scaled. Using these rules, the fidelity is calculated as follows:

* Given an application graph, construct a valid schedule. We used the dynamic level scheduling algorithm given in [17].
Next, construct the period graph as discussed earlier. GemMerate voltage vectors (assignments of voltages to the proces-
sors in the target architecture). For each voltage vector, perform a simulation to determine the throughput, with the exe-
cution times of the tasks on each processor given by (1) according to the voltage on the processor. Also, obtain an
estimate for the throughput by calculating the MCM of the voltage-scaled period graph, in which the execution times of

the computation nodes are given by (1), and the execution times of the idle nodes are as explained above.

* Calculate the fidelity according to:

o » o' Y o
Fidelity = ml]z y fijIZI , €©)

1=1j=i+1 .

where
fij = El T oion(§-9) = ?ign(M_Mj): (4)
O 0 otherwise
5{—1) if (x<0)

sign(® = g 0if (x=0) ; (5)

5 1if (x>0)

the S s denote the simulated throughput values; andithe s are the corresponding estimates from the period graph.

Figure 3 plotsFidelity for a six-processor system in which the voltage on the individual processors can vary between
plus or minus five percent. The x-axis represents the sum of the absolute values of the voltage changes over all processors.
Each point on the graph is a fidelity calculation for= 100 voltage vectors. A value of one is a “perfect” fidelity. It can be
seen that in the range shown, the fidelity is always greater than 0.65. It is also important that the estimator haveoa small er
at each point. Figure 4 plots

N

Y [(§-Mp)/s]. (6)

i=1
It can be seen that the error increases as the voltage vector moves away from the reference point, and that the estimate is
slightly biased. For the range shown in the graphs, where each processor voltage is changed by a maximum of fifteen per-

cent, the error is less than four percent.

5 Using the Period Graph in a Joint Power/Performance Algorithm

An effective way to reduce power consumption of a processor core in CMOS technology is to lower the supply voltage
level, which exploits the quadratic dependence of power on voltage [6]. Reducing the supply voltage also has the effect of

decreasing the clock speed and increasing circuit delay. The circuit delay can be modeled by (). The power consumption is

Fidelity - 6 processors each changing at most 15%

1 T T T T T T T T T

Fidelity

0.65 L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

Sum of Absolute Value of % Change in Voltage on all Processors

Figure 3. Plot of fidelity (equation 3) for six processor system vs. magnitude of voltage
change on all processors

6 processors each changing by at most 15%
004 T T T T T T T T T

0.035

0.03

0.025

0.02

0.015

Mean Error

0.01

0.005

-0.005

_001 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Sum of Absolute Value of % Change in Voltage on all Processors

Figure 4. Plot of average error vs. voltage change on processors.

given by
P = aC V3,f, @)

wheref is the clock frequencg, s the load capacitancepand s the switching activity [6]. To accommodate the
possibility of putting processors in states of lower switching activity during idle periods, our model includes a param-

etera,y . for the idle states, and a parametgr. _qe for the computational tasks,ayfgrea LA

non-idle
more detailed power analysis could assign a diffeeent for each computational task if that data were available. A dif-
ferent power optimization technique, which can be used in conjunction with the voltage scaling technique presented
here, utilizes a nearly complete processor shutdown during the idle periods [10][20]. In our model, this would corre-
spond toa; ;. = 0 . Our model for the power is the average energy consumption per graph iteration period. This cor-
responds in a typical DSP system to the average energy required to process one sample. Here, the energy of each node
equals its power times its execution time.

In a system consisting of multiple processors, one has the ability to choose, within a certain range, the (fixed)
operating voltage on each processor. This opens up an additional degree of freedom that can be exploited to minimize
the system power consumption. By choosing a lower voltage of a processor that is executing tasks that are not on the
critical path, the throughput can remain unchanged while the overall power consumption is reduced. In general, a
combination of raising voltages on some processors while lowering others can yield the most attractive power/perfor-
mance solution.

When applying voltage scaling to a multiprocessor system, the valid solution space is typically much too large
to search by brute-force methods. In addition, since there is no general analytical formula for calculating the through-
put of these systems in the presence of communication resource contention, each candidate solution must either be

simulated or estimated using some heuristic.

6 Genetic algorithm formulation

To demonstrate the general utility of the period graph based performance estimation approach, we incorporated
it into two significantly different probabilistic search techniques to derive two different algorithms for systematic
voltage scaling. The first algorithm presented utilizes the framework of genetic algorithms (GAs) [1]. The specific
GA explored here consists of an inner GA nested within an outer GA. The inner GA performs a local search around a
point from the population of the outer GA, using the MCM of the period graph in its objective function as an estimate
for the throughput. A period constraif, IS given as an input to the optimization problem, where the period
is the reciprocal of the throughput. The objective function calculates the power consumption associated with each
solution by calculating the total energy per period, as discussed earlier. If the period associated with a solution vio-
lates the period constrairfl >T
exp(100(T T

In the outer loop, a population &f

, the power consumption is multiplied by a large penalty factor

solution constrain)

). The GA attempts to minimize this objective function.

solution™ constrain)

outer VOItage vectors is generated. A simulation is run and a period graph

constructed for each of these outer loop voltage vectors. For each of the outer loop voltage vectors, a new inner loop

population is generated such trjaa!buteri —Vinneri| <g far Nproc , whblbqoc is the number of processors,

Vouter, is the voltage on processbr in the outer populadénner, is the voltage on pracessor in the inner pop-
ulation, ande is a user-defined threshold. The inner population shg, is . The inner GA then performs a local
search using this population for a number of generat@srserations, ., in an attempt to find a locally optimal volt-

age vector. The inner GA uses the MCM of the period graph in its objective function. After an invocation of the inner
GA is finished, one simulation is performed using the resulting voltage vector, and the actual throughput for this point
is used to compute its fitness. The outer loop voltage vector is then replaced with this locally-optimized voltage vec-

tor for use in the next outer loop generation. The outer loop is run for a number of genédatienations, .,

7 Simulated annealing algorithm

Simulated annealing is another well-known method for searching large design spaces. Using a standard simu-
lated annealing package [4], we have implemented an alternative version of period-graph-based voltage scaling opti-
mization. The objective function here is the same as for the genetic algorithm. The system is first simulated with an
initial voltage vectorV; = LSVj , and the period graph is built. In order to insure that the period graph will be a good
enough estimator, sesimulation thresholdl' is maintained. The difference between the current itﬂ)tﬁt to the
objective function, and the voltage veclxﬁvj corresponding to the simulation used to compute the current period

graph, is calculated. If

N
1 |Vi-Lsv,
= 4 1I>T, 8
N2 |"Tsv ‘ ®)
i=1 I
the graph is resimulated usin(ig/j . The period graph is rebuiItCMJnd» LSVj T. Eob , the graph will be res-

imulated every time, and the period graph will offer no speed advantage. The larger the Value of , the less often the
graph will be resimulated, and the faster the optimization algorithm will perform. However,when is too large, the
fidelity of the period graph estimate will be unacceptably low and the quality of the final result will suffer. Based on
our experiments with a number of graphs, the optimal valu€ of is highly application-dependent, but a value of

T = 0.1 (10%) generally gives good results.

8 Results

Figure 5 shows an example of the reduction in power resulting from the genetic optimization algorithm on the
FFT3 application graph (Figure 10). The parameters of the GAMNgre, = N, o, = 50 Generationg., = 10 ,
Generations ., = 20. The local search voltages were constrained to be within five percent of the corresponding
outer loop voltages. The period constraint was calculated by simulating the system with all six processors operating at
voltageV,; . For this example, the system power consumption was reduced by 43%, while maintaining the original
throughput. To evaluate the advantage of the period graph approach over using brute-force simulation, a second
nested GA was implemented. This algorithm was identical to the algorithm discussed above, except that the inner
loop did not use the period graph estimate for the throughput. Instead, each voltage vector was evaluated by simula-
tion. This algorithm consumed 26 times more CPU time, and produced similar results, as shown in Figure 6.

Figure 7 summarizes the power reduction results for the simulated annealing algorithm applied to a fast Fourier

Genetic algo. fft3 (fixed throughput constraint) using period graph
08 T T T T T T

PIPO ——

P/PO

055 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

Iteration Number(1000 generation/iteration) (6 minutes cputime/iteration)

Figure 5. Plot of (optimized power)l(initial power) vs. genetic algorithm iteration using the
period graph estimator.

Genetic algo. fft3 (fixed throughput constraint) using simulation only
08 T T T T T T

PIPO ——

P/PO

0.55 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

Iteration Number (1000 generations/iteration) (126 minutes cputime/iteration)

Figure 6. Plot of (optimized power)l(initial power) vs. genetic algorithm iteration using simu-
lation only.

transform (FFT3) application graph, for different values of the resimulation threshold . It can be seemthat as is
increased, the algorithm progresses more quickly. The simulated annealing algorithm begins with a ‘melting’ routine,
where the temperature is increased until a phase change is detected. The initial flat part of the curves corresponds to
the time spent in the melting routine. We have found that for valué@s of above 20%, the period graph is not a good

enough estimator and the algorithm does not converge.

Table 1 summarizes the power reduction for the simulated annealing algorithm for several additional applica-

simulated annealing FFT3

1.3
‘ resimulatibn threshold %
0
| g o
12} [SJEEETer 1
: 6
i 10 ----
11+ \ i
i
\
AT
i i
e y .
L \ 0%
o i '
T | i 5 | | i
c i 2%
i g | \
I " \\
i N \
0.8 | L : 5 %]
i N e
6%
0.7 ! T N e
i
10%
06 | o Ve e 1
05 | | \ 77777777777777777777777777777 -
0 500 1000 1500 2000
time

Figure 7. Plot of (optimized power)/(initial power) vs. time for simulated annealing algorithm
on FFT3 application.

application 0 2% 5% 10% 25%

fft1 (28) 096 0095 065 0.6 1
fft2 (28) 097 09 071 097 1
fft3(28) 1 077 059 059 1

mus (20) 089 0.71 0.67 0.82 1

meas (12) 0.77 073 081 0.82

gmf (14) 0.84 065 0.67 0.73 1

randl (30) 091 0.77 053 0.65 1

rand2 (100) 1 0.85 0.77 0.73 1

rand3 (200) 1 1 1 0.94 1
Table 1. power reduction for fixed computation time.

tions using different values of the resimulation threshold. At the start of the optimization, all processor voltages were
set at 5 volts. The throughput at this point was used as the throughput constraint. In the table, the first three rows cor-
respond to three different FFT implementatiansisrefers to a music synthesis algorithgmfrefers to a quadrature

mirror filter bank,measis a measurement application, and the last three rows correspond to graphs that were gener-
ated using Sih’s algorithm for randomly generating application graphs [18]. The numbers in parentheses give the
numbers of nodes in these applications. The optimization was performefiXed imeof 30 minutes in each case.

The optimum resimulation threshold was between 2% and 10% in all casés.&@.25 , the period graph is not a
good estimator and none of the results returned during the optimization algorithm satisfied the throughput constraint.
For the largest graph, the fixed simulation time was not long enough to make much improvement, but the best result
occurred forT = 0.1 , where the simulations are less frequent. Table 2 summarizes the power reduction for the

genetic algorithm with and without using the period graph, with a fixed compile time of one hour.

9 Conclusion

This paper has exploredpariod graphmodel that enables efficient voltage scaling optimization for self-timed
implementations of iterative applications. The period graph can be used as a computationally efficient estimator for
the throughput in multiprocessor systems in which communication contention renders exact analysis too time-con-
suming. This model is especially useful in iterative synthesis techniques, such as those based on probabilistic search.
Our paper has demonstrated effective voltage scaling techniques based on incorporating the period graph into genetic
algorithm and simulated annealing formulations. Other optimizations, such as exploiting memory/speed trade-offs of
the individual tasks, are also possible. These may be more appropriate to the genetic algorithm and simulated anneal-
ing framework, as a larger set of independent moves is available during optimization. Other useful directions for fur-
ther work include integrating the period graph model into the scheduling phase, rather than restricting its use to
voltage scaling of fixed schedules, and the investigation of adaptive methods for dynamically adjusting the frequency

of resimulation. The application graphs are shown in figures 8, 9, 10, 11, 12, 13, 14, and 15,.

10 References

[1] T. Back, U. Hammel, and H. Schwefel. “Evolutionary computation: Comments on the history and current state.”

IEEE Transactions on Evolutionary Computatiépril, 1997.

[2] N. K. Bambha and S. S. Bhattacharyya. A joint power/performance optimization technique for multiprocessor sys-
tems using a period graph constructPitoceedings of the International Symposium on Systems Syntfiadisd,

Spain, September 2000. To appear.

[3] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A framework for simulating and prototyping het-

erogeneous systeniaternational Journal of Computer Simulatiofanuary 1994.

[4] Carter, Everett, Taygeta Scientific Inc. http://www.taygeta.com/annealing/simanneal.html

[5] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R. Brodersen, “Optimizing power using transforma-
tions,” IEEE Trans. Computer-Aided Desigml. 14, no. 1, 1995.

[6] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. “Low-power CMOS digital d&skfa.Journal of Solid-

Figure 8. FFT2 application graph.

Figure 9. FFT1 application graph.

Figure 10. FFT3 application graph

application USIS?aT)inOd nc;rp;;;]od

fftl 0.54 0.74
fft2 0.69 0.86
fft3 0.57 0.78
mus 0.68 0.90
meas 0.70 0.82
gmf 0.64 0.84
rand1(30) 0.55 0.78
rand2(100) 0.70 1

rand3(200) 0.87 1

Table 2. Genetic algorithm (optimized power)/(initial power) for fixed
compile time

Figure 11. Karplus Strong music (mus) application graph.

Figure 12. Meas application graph.

Figure 14. rand2 (100 nodes) application graph

State Circuits27(4):473—484, 1992.

[7] 3. M. Chang and M. Pedram, “Register allocation and binding for low po®esign Automation ConfJune,

1995.

[8] A. Dasgupta and R. Karri, “Simultaneous scheduling and binding for power minimization during microarchitecture
synthesis,” inProc. Intl. Symp. Low Power Desighpr. 1995.

[9] L. Goodby, A. Orailoglu, and P. M. Chau, “Microarchitectural synthesis of performance-constrained low-power
VLSI designs,” inProc. Int. Conf. Computer DesigBct. 1994.

[10] C. Hwang and A.C.-H. Wu. “A predictive system shutdown method for energy saving of event-driven computa-
tion.” International Conference on Computer-Aided Desit®97.

[11] M. Khandelia and S. S. Bhattacharyya. Contention-conscious transaction ordering in embedded multiprocessors.
In Proceedings of the International Conference on Application Specific Systems, Architectures, and Prpegssors
276-285, Boston, Massachusetts, July 2000.

[12] E. L. Lawler.Combinatorial OptimizationHolt, Rinehart and Winston. 1976.

[13] E. A. Lee and S. Ha. Scheduling strategies for multiprocessor real timed@fl Telecommunications Con-
ference November 1989.

[14] Y. S. Li and S. Malik. Performance analysis of embedded software using implicit path enumer&tiooebd-

ings of the Design Automation Conferent895.

= "@g‘;ﬁr’&%ﬁ!\'

Figure 15. rand3 (200 nodes) application graph.

[15] P. Macken, M. Degrauwe, M. Van Paemel, and G. Oguey, “A voltage reduction technique for digital systems,”
in Proc. IEEE Intl. Solid-State Circuits Con1990.

[16] A. Raghunathan and N. K. Jha, “Behavioral synthesis for low powed?ybin Intl. Conf. Computer Desig@ct.

1994.

[17] G. C. Sih and E. A. Lee. A compile-time scheduling heuristic for interconnection-constrained heterogeneous pro-
cessor architecturelEEE Transactions on Parallel and Distributed Syste#{2):75-87, February 1993.

[18] G. C. Sih, “Multiprocessor Scheduling to Account for Interprocessor Communication”, Ph.D. thesis, Dept. of
EECS, U. C. Berkeley, 1991.

[19] S. Sriram, and S. S. Bhattacharygabedded Multiprocessors: Scheduling and Synchronizadlarcel Dekker,

Inc., 2000

[20] M. Srivastava, A. P. Chandrakasan, and R.W. Brodersen. “Predictive system shutdown and other architectural
techniques for energy efficient programmable computati®EE Transactions on VLSI Systemhgl): 42—55, 1996

[21] V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of Embedded Software: A First Step Towards Software Pow-
er Minimization”, IEEE Trans. VLSIDecember 1994.

	A Period Graph Throughput Estimator for Multiprocessor Systems
	Neal K. Bambha and Shuvra S. Bhattacharyya
	Department of Electrical and Computer Engineering, and
	Institute for Advanced Computer Studies
	University of Maryland, College Park
	Abstract
	1 Introduction
	2 Previous work
	3 Period Graph
	Figure 2. Pseudocode specification for period calculation.
	Figure 1 An illustration of the period graph model.

	4 Fidelity of the estimator
	. (1)
	, (2)
	, (3)
	; (4)
	; (5)
	Figure 3. Plot of fidelity (equation 3) for six processor system vs. magnitude of voltage change ...
	Figure 4. Plot of average error vs. voltage change on processors.

	. (6)

	5 Using the Period Graph in a Joint Power/Performance Algorithm
	, (7)

	6 Genetic algorithm formulation
	7 Simulated annealing algorithm
	, (8)

	8 Results
	Figure 5. Plot of power reduction vs. algorithm iteration using period graph estimator.
	Figure 6. Plot of power reduction vs. algorithm iteration using simulation only .
	Figure 7. Plot of (optimized power)/(initial power) vs. time for simulated annealing algorithm on...
	Table 1. power reduction for fixed computation time.

	9 Conclusion
	Figure 9. FFT1 application graph.
	Figure 8. FFT2 application graph.
	Table 2. Genetic algorithm (optimized power)/(initial power) for fixed compile time
	Figure 10. FFT3 application graph
	Figure 11. Karplus Strong music (mus) application graph.
	Figure 12. Meas application graph.
	Figure 13. rand1 (30 nodes) application graph.
	Figure 14. rand2 (100 nodes) application graph
	Figure 15. rand3 (200 nodes) application graph.

	10 References
	[1] T. Back, U. Hammel, and H. Schwefel. “Evolutionary computation: Comments on the history and c...
	[2] N. K. Bambha and S. S. Bhattacharyya. A joint power/performance optimization technique for mu...
	[3] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A framework for simulating an...
	[4] Carter, Everett, Taygeta Scientific Inc. http://www.taygeta.com/annealing/simanneal.html
	[5] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R. Brodersen, “Optimizing power us...
	[6] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. “Low-power CMOS digital design.” IEEE Jour...
	[7] J. M. Chang and M. Pedram, “Register allocation and binding for low power,” Design Automation...
	[8] A. Dasgupta and R. Karri, “Simultaneous scheduling and binding for power minimization during ...
	[9] L. Goodby, A. Orailoglu, and P. M. Chau, “Microarchitectural synthesis of performance-constra...
	[10] C. Hwang and A.C.-H. Wu. “A predictive system shutdown method for energy saving of event-dri...
	[11] M. Khandelia and S. S. Bhattacharyya. Contention-conscious transaction ordering in embedded ...
	[12] E. L. Lawler. Combinatorial Optimization. Holt, Rinehart and Winston. 1976.
	[13] E. A. Lee and S. Ha. Scheduling strategies for multiprocessor real time DSP. Global Telecomm...
	[14] Y. S. Li and S. Malik. Performance analysis of embedded software using implicit path enumera...
	[15] P. Macken, M. Degrauwe, M. Van Paemel, and G. Oguey, “A voltage reduction technique for digi...
	[16] A. Raghunathan and N. K. Jha, “Behavioral synthesis for low power,” in Proc. Intl. Conf. Com...
	[17] G. C. Sih and E. A. Lee. A compile-time scheduling heuristic for interconnection-constrained...
	[18] G. C. Sih, “Multiprocessor Scheduling to Account for Interprocessor Communication”, Ph.D. th...
	[19] S. Sriram, and S. S. Bhattacharyya, Embedded Multiprocessors: Scheduling and Synchronization...
	[20] M. Srivastava, A. P. Chandrakasan, and R.W. Brodersen. “Predictive system shutdown and other...
	[21] V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of Embedded Software: A First Step Toward...

