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Different proteins and complexes work together at multiple time scales to 

orchestrate the activation and silencing of genes in a process called transcription. 

Understanding transcriptional regulation is of utmost importance to reveal 

mechanisms behind cell homeostasis and pathologies. The transcription 

machinery needs to be perfectly tuned in space and time to control the expression 

of genes to carry out cellular and physiological processes in the noisy and highly 

heterogeneous nuclear microenvironment. Transcription factors (TF), specialized 

proteins that bind to specific DNA sequences to regulate mRNA production, are 

central players in transcriptional regulation. TFs need to navigate the intricate 

nuclear microenvironment to bind to specific regulatory elements with binding 

times critically determining their regulatory functions. Recent advances in super-

resolution microscopy have allowed us to investigate the dynamics of the 

transcriptional machinery at the single molecule level, revealing the essential 

features of transcriptional control. However, how TFs dynamically navigate the 

nuclear microenvironment and interact with chromatin to activate or silence genes 

remains poorly understood. 



 

I used state of the art microscopy and genomic techniques to show that binding 

times of TFs to chromatin are power-law distributed. I proposed a new theoretical 

framework to demonstrate the broad distribution of binding affinity arises from 

heterogeneity in TF-chromatin interactions and the nuclear microenvironment, 

contrary to the current paradigm of well-defined and distinguishable TF binding 

times to specific and non-specific chromatin sites. These studies reconciled 

discrepancies between genomics, gene expression and TF mobility. I used 

statistical modeling to show that TFs exhibit two distinguishable low mobility states 

in the nucleus. One state is related to chromatin binding while the second arises 

due to protein-protein interactions mediated by intrinsically disordered regions of 

the TF and potentially controls the initiation rate of transcription. Finally, I studied 

transcriptional regulation on substrates of different stiffness revealing a connection 

between the physical properties of the cell microenvironment and TF dynamics. I 

demonstrated that substrate stiffness activates the estrogen receptor even in the 

absence of its ligand, with implications for our understanding and treatment of 

breast cancer. The evidence presented here shows that TF binding times are finely 

tuned to regulate gene expression. 
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Chapter 1.  
 
Introduction 

Images in Figures used with permission from the Journals. 

1.1. Overview 

Cellular function, fate, and survival are critically linked to the regulation of gene 

expression, which encompasses the transcription of DNA into RNA and the translation of 

RNA into proteins. Gene expression is strongly affected by environmental cues and its 

dysregulation is tied to many pathological disorders such cancer and diabetes. Despite 

decades of research on transcriptional regulation, and the discovery of the structure of 

DNA by Rosalind Franklin and co-workers, many questions regarding the regulation of 

eukaryotic gene expression remain unanswered and transcription remains a hot topic of 

research. The foundations of our understanding of transcription begin with early studies 

from bacterial models such Escherichia coli and bacteriophage  (J. H. Miller & Reznikoff, 

1980), culminating in more recent studies using advanced genomic methodologies and 

single molecule biophysics in eukaryotic cells (D. S. Johnson, Mortazavi, Myers, & Wold, 

2007; Robb et al., 2013).  

In eukaryotic cells, transcription takes place in the nucleus and is regulated by 

specialized machinery that finely tunes the expression of different genes in the structural 

and physical context of the nucleoplasm. Genomic DNA is highly compacted into 

chromatin which is composed of 146 base pairs of the genome wrapped around an 

octamer of histone proteins called nucleosomes (Kornberg & Thomas, 1974; Luger, 

Rechsteiner, Flaus, Waye, & Richmond, 1997). Chromatin organization remains unclear, 

but it is known that its structure varies across different length scales in cells providing 



2 

different organizational functions to chromatin. The nucleoplasm is divided into regions for 

each chromosome called chromosome territories (Meaburn & Misteli, 2008). 

Chromosomes are self-associated in regions dependent on cohesin mediated looping 

called topologically associated domains (TADs) (Bintu et al., 2018; Lieberman-Aiden et 

al., 2009; Rao et al., 2017). . Interphase chromosomes are organized into topologically 

associated domains (TADs) that are isolated from neighboring regions (Nora et al., 2012; 

Sexton et al., 2012) and exhibit a high frequency of inter-chromatin interactions. Moreover, 

membrane-less organelles whose formation is driven by dynamic protein-protein 

interactions further compartmentalize the nucleus at smaller scales (Klosin & Hyman, 

2017), possibly in a reversible manner. TADs are enriched in chromatin binding proteins 

such remodelers, TFs and posttranslational modifications. Moreover, regions of chromatin 

are classified depending on their function such as enhancer, insulator, promoter, 

accessibility to protein factors (open vs closed chromatin) and compaction that regulates 

silencing or genes (euchromatin vs heterochromatin). Functional characterization of 

chromatin organization has been useful for understanding different regulatory processes 

in the cell, but a physical description of chromatin structure and organization is lacking 

(Figure 1-1).  

 

Figure 1-1 Chromatin Organization Across Length Scales  
Chromatin is temporal and spatially organized at varying scales. Specific regions (Chromosome 
territories) occupied by particular chromosomes. Topologically Associated Domains (TADs) are 
Self-interacting genomic regions where DNA sequences exhibit significantly higher interaction 
frequency with other DNA sequences within a particular domain. Chemical interactions between 
proteins and nucleic acids are able to form membranelles organelles that further 
compartmentalized the nucleoplasm. Locally, transcription factors can stabilize interactions 
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between distant chromatin sequences forming chromatin loop. Adapted from (Hug & Vaquerizas, 
2018; Stadhouders, Filion, & Graf, 2019). 

Transcription factors, specialized proteins that control the transcription of genes by binding 

to specific DNA sequences, navigate this intricate genomic and nuclear landscape to find 

specific targets and regulate gene expression. How transcription factors find specific 

regulatory elements in the vast forest of genomic DNA organized within compartments 

with different biophysical properties and how they regulate transcription is still poorly 

understood. In this thesis, I use advanced microscopy and genomic techniques to explore 

transcription factor dynamics inside the nucleus, their interaction with chromatin and their 

role in gene regulation.  

1.2. Transcriptional Regulation 

Different proteins and complexes work together in the nucleus to regulate different 

genes in eukaryotic cells. How these molecules assemble, disassemble and interact with 

genomic DNA lies at the heart of gene regulation, but their interaction dynamics is still a 

mystery (Dundr et al., 2002; Hager et al., 2000). The temporal dynamics of all these 

different players set the time scales of the constituent processes, ranging from the order 

of seconds (oligomerization of transcriptional complexes, transcription factor binding) to 

transcriptional bursting over several minutes to hours (Chubb et al., 2006; Rodriguez et 

al., 2019) up to longer term patterns such as circadian oscillations (Metivier et al., 2003). 

Recent advances in genome wide techniques and single molecule biophysics are 

promoting a better understanding of transcriptional regulation in vivo.  

TFs are master regulators of transcription; they bind to specific DNA sequences to 

initiate/inhibit and regulate the rate of transcription of particular genes (Figure 1-2). The 

interactions of transcription factors with chromatin are regulated at different levels inside 
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the cell. It is well accepted that the assembly of transcriptional machinery is initiated and 

stabilized by TFs and promoter-enhancer interactions. In order for the transcriptional 

machinery to assemble at specific gene loci, the chromatin must be remodelled and made 

accessible. Chromatin accessibility corresponds to the degree to which nuclear proteins 

are able to physically interact with genomic DNA in the face of different barriers such as 

DNA wrapping around nucleosomes and occupancy by different chromatin binding factors 

that exclude interactions by other macromolecules (Kaplan et al., 2009; Kornberg, 1974).  

Remodeling factors change chromatin accessibility by unwrapping nucleosomes in an 

ATP dependent manner while other factors change the biochemical properties of 

chromatin (post-translational modifications) to promote or inhibit transcription factor 

binding (Figure 1-2 C,B,D). The degree of accessibility is distributed broadly on a 

continuum across the nucleus, ranging from highly compacted and closed chromatin to 

highly dynamic and accessible chromatin (Poirier, Bussiek, Langowski, & Widom, 2008). 

The accessibility landscape is highly dynamic, reflects the regulatory capacity of the cell 

and is critical for transcriptional regulation and cell function. The accessible genome 

comprises approximately 2-3% of the total DNA sequence but it captures 90% of regions 

where TFs can bind (Thurman et al., 2012), providing evidence of elaborate regulatory 

mechanisms inside the cell.  
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Figure 1-2 Transcription Factors and Their Interactions With Chromatin 
Transcription factors exhibit different types of interactions with chromatin which affect their 
regulatory functions. (A) TFs can interact with multiple proteins (Cofactors) forming stable 
regulatory complexes. (B) Certain family of TFs are able to interact with closed chromatin and 
recruit remodeling factors in a dynamic fashion in a process called dynamic assisted loading. This 
process creates transient chromatin open states (ATP dependent) by cycling of TFs binding and 
recruitment of remodelers. (C) Pioneer TFs recruit remodelers at closed chromatin which increase 
chromatin accessibility in a process called wedging (ATP independent) (D) TFs can remain stably 
bound to specific chromatin sequences preventing nucleosome repositioning and facilitating 
binding of other TFs to the stably open site. This is a passive method of enhancer priming. (E) 
Architectural TFs form stable complexes between distant DNA sequences forming loop domains. 
(F) Through chromatin loop formation, enhancer-promoter interaction is facilitated where TFs bind 
at enhancers and cofactors at promoters facilitating transcriptional initiation and regulation. 
Adapted from (Cramer, 2019; Klemm, Shipony, & Greenleaf, 2019; Spitz & Furlong, 2012; Voss et 
al., 2011)  

In addition to the local chromatin environment near the promoters, transcriptional 

regulation is finely tuned by spatiotemporal programs that span large stretches of 

chromatin. Transcriptional enhancers are regulatory DNA sequences with long-range 

interactions with their target-gene promoters spanning several thousands of bases 
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(Figure 1-2F) (Long, Prescott, & Wysocka, 2016; Plank & Dean, 2014). Mutations in 

enhancer sequences or genome rearrangement that disrupt enhancer-promoter 

interactions result in disease susceptibility and malformations (Lettice et al., 2003; 

Lupianez et al., 2015). The number of enhancers in mammalian cells far outnumber the 

number of genes, suggesting that multiple enhancer promoter interactions facilitate the 

transcription of a single gene (Sanyal, Lajoie, Jain, & Dekker, 2012), leading to 

combinatorial, context-dependent control.  Promoters upstream of a transcriptional start 

site recruit transcription factors and RNA polymerase II to initiate transcription in the 

appropriate direction of the gene. Meanwhile, enhancers are bound by tissue specific 

transcription factors and cofactors such as Mediator and BRG1 (Long et al., 2016; Plank 

& Dean, 2014; Pombo & Dillon, 2015). The current hypothesis is that regulatory 

information and protein interactions are encoded in enhancer-promoter interactions to 

direct transcription (Carter, Chakalova, Osborne, Dai, & Fraser, 2002). 

Chromatin Immunoprecipitation sequencing (CHIP-seq) provides the binding 

profile of proteins to chromatin at the population level at near base-pair resolution in cells 

and tissues (D. S. Johnson et al., 2007). Together with other genome-wide approaches 

(RNA-seq and ATAC-seq and HiC), comprehensive maps of regulation of different genes 

and transcription factors have been developed (Stamatoyannopoulos, 2012). However, 

these genome-wide techniques only provide a static snapshot of the highly dynamic 

processes that underlie transcription. Single molecule experiments of transcription factors 

have revealed binding kinetics to chromatin on the order of seconds to minutes and recent 

theoretical work suggests the use of statistical mechanics methods (broken detailed 

balance) to understand the asymmetry between protein-protein interactions during 

transcriptional regulation which has been elusive by genomic methodologies (Biddle, 
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Nguyen, & Gunawardena, 2019). However, transcription factor binding times are still a 

topic of debate. 

1.3. Transcription Factors 

To study the dynamic nature of transcriptional regulation, it is fundamental to 

understand the interactions of transcription factors with chromatin and the crowded 

nuclear microenvironment. Depending on their function, TFs are usually classified into four 

categories: 1) Architectural TFs responsible for chromatin topology through anchoring of 

loops (CTCF, YY1), 2) pioneer factors which remodel chromatin in an ATP independent 

manner, 3) complexes that require multiple TFs binding at different sites to initiate 

transcription and 4) TFs that dynamically interact with chromatin recruiting remodelers to 

reshape chromatin accessibility in an ATP dependent manner in a process called Dynamic 

Assisted Loading (Figure 1-2 A-E) (Goldstein et al., 2017).  

One class of transcription factors that are the primary focus of this thesis are the 

nuclear receptors, which are inducible transcription factors with essential physiological 

functions. Their binding and interaction to chromatin and other cofactors can be modulated 

by external factors which make them a powerful tool to study the role of TFs in 

transcriptional regulation. 

1.3.1. Nuclear Receptors 

The nuclear receptor superfamily corresponds to the largest classification of 

eukaryotic transcription factors. It comprises 48 members in humans with a vast variety of 

biological functions, from controlling basic functions during homeostasis to playing crucial 

roles in pathologies such as cancer, immunosuppression, diabetes, autoimmune 

diseases, neurological disorders, cardiovascular disorders, premature ageing, metabolic 
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disorder, etc. (Hoffmann & Partridge, 2015; Kadmiel & Cidlowski, 2013; Lonai’d & 

O’Malley, 2012; Malek & Lad, 2014; Ranhotra, 2013) Therefore, understanding nuclear 

receptor biology remains of paramount importance in physiology and medicine.  

Even though nuclear receptors have dramatically different functions in the cell, 

their structure is well conserved. They are composed of a highly variable amino-terminal 

domain referred as AF1 (activation function 1), a DNA-binding domain (DBD) and a ligand-

binding domain (LBD)(Evans, 1988). The DBD is responsible for interacting with specific 

DNA sequences in chromatin, the LBD is usually lipophilic in nature and small ligands bind 

to it to change the conformation of the protein. The AF1 domain is responsible for 

interactions with other nuclear cofactors and further regulates the specific function of the 

nuclear receptor (Gustafsson, 2016; Rastinejad, Huang, Chandra, & Khorasanizadeh, 

2013).  

Nuclear receptors are further classified into four subfamilies based on their mode 

of action. Type I receptors, such as the glucocorticoid receptor, androgen receptor and 

progesterone receptor are anchored in the cytoplasm by chaperones (HSP90) in the 

absence of ligand. Upon ligand binding to the LBD, the chaperone is released, the nuclear 

localization signal (NLS) is exposed and the protein translocates to the nucleus, where it 

interacts with coregulators to alter gene expression (Sam et al., 2008). Type II receptors, 

such as the thyroid hormone receptor and the retinoic acid receptor, reside naturally in the 

nucleus in the absence of ligand. Unliganded type II receptors usually exert repressive 

functions through interactions with repressive complexes. Binding of the ligand leads to 

dissociation of corepressors and binding of coactivator complexes that facilitates opening 

of chromatin and promotes activation of target genes. (Glass & Rosenfeld, 2000) Type III 

and IV receptors function in a similar fashion to Type I receptors with the difference that 

type III receptors bind to Hormone Response Elements (HREs) with repeated sequence 
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and type IV receptors bind as monomers to half-site HREs (Mangelsdorf et al., 1995). 

Given the broad range of functions of nuclear receptors, their contribution to numerous 

diseases and their inducible function through small molecules (ligand), they provide 

promising therapeutic targets for engineering novel agonists and antagonists (Burris, 

Busby, & Griffin, 2012). However, a better understanding of their dynamics, functions and 

interactions is needed for future clinical applications.  

1.3.2. Estrogen Receptor  

Estrogens are a class of steroid hormones that regulate the estrogen receptor 

activity (ER  and ER ), with ER  playing a major role throughout the body while ER  

plays a critical role in estrogen signaling in the ovary, prostate, lung and cardiovascular 

systems (Hamilton, Arao, & Korach, 2014). In humans, ER  is encoded by the gene 

ESR1. The estrogen receptor is involved in a wide range of physiological processes such 

as development and maintenance of reproductive organs, regulation of cardiovascular, 

musculoskeletal, immune, central system homeostasis and development of tissue 

malignancies (Gruber, Tschugguel, Schneeberger, & Huber, 2002; Nelson & Bulun, 2001). 

Estrogens are naturally synthesized in the ovaries, adrenal glands and adipose tissue. 

17 -estradiol or estradiol (E2) is the most potent estrogen in humans and is used as a 

medication for menopausal hormone therapy and in hormone sensitive cancers like 

prostate and breast cancer (Yanfang, Hong, & Jing, 2020). Estrogens cross the plasma 

membrane and interact with intracellular ER (Figure 1-3). In the presence of estrogens, 

ER regulates the gene expression of target genes and the reprogramming of the chromatin 

landscape (Figure 1-3) (E.E. Swinstead et al., 2016). Recent studies have shown that ER 

is critical for cancer initiation and metastasis, extracellular matrix (ECM) remodeling and 
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drug resistance (Arpino, Wiechmann, Osborne, & Schiff, 2008; Q. Li, Gao, Yang, Wei, & 

Jiang, 2019; Piperigkou & Karamanos, 2020).  

 

Figure 1-3 Estrogen Receptor Activation  
Estradiol binds to the Estrogen Receptor promoting dimerization, conformational changes and 
binding to Estrogen Response Elements (EREs) to regulate gene expression of ER target genes. 
Estradiol is synthetized from androsterone and testosterone hormones through aromatase 
biosynthesis of androgenic precursors. Adapted from (Johnston & Dowsett, 2003).  

ER  is composed of an amino-terminal domain (NTD) involved in transcription 

transactivation and binding to the target sequence due to the presence of a zinc-finger; a 

DBD that contributes to receptor dimerization and binding to specific sequence called 

estrogen response elements (ERE); and an LBD that binds to chaperones and regulates 

hormone activity (Kumar et al., 2011). ER also interacts with and regulates genes that do 

not contain EREs. This form of ER activity is collectively known as transcriptional crosstalk 

where ER interacts with other transcription factors and coregulators to activate and 

supress genes (Göttlicher, Heck, & Herrlich, 1998). Moreover, ER can induce loading of 

proteins such as FOXA1 to further affect gene expression (E.E. Swinstead et al., 2016). 
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1.3.3. Glucocorticoid Receptor 

The Glucocorticoid receptor (GR) governs various aspect of inflammation, stress 

response, tissue development, metabolism and many other tissue specific processes 

(Galon et al., 2002; John et al., 2008; Z. Wang et al., 2003). GR is encoded by the nuclear 

receptor subfamily 3 group C member 1 gene (NR3C1) localized in the vicinity of its 

paralogues NR3C2, NR3C3 and NR3C4 genes that encode the mineralocorticoid receptor 

(MR), progesterone receptor (PR) and androgen receptor (AR) respectively. The DBD and 

LBD are highly conserved between GR, MR, PR and AR but the N terminus domain differs 

between these four proteins and conveys their specific functions (Figure 1-4A).  

In its inactive form, GR is located in the cytoplasm associated with chaperone 

complexes containing the heat shock protein 90 (HSP90) and HSP70 (Picard et al., 1990) 

(Figure 1-4B). Upon binding of glucocorticoid hormones to the LBD, like cortisol in 

humans and exogenous drugs such as dexamethasone, GR conformation changes 

exposing the nuclear localization signal and it unbinds from chaperones, resulting in the 

nuclear translocation of the receptor (Figure 1-4B). GR activation results in the 

recruitment of coactivators and corepressors through protein-protein interactions and 

modifications of the chromatin landscape, which alter gene expression (Fryer & Archer, 

1998; Muchardt & Yaniv, 1993; Spencer et al., 1997). GR is capable of regulating 

chromatin modifications such as acetylation or methylation and chromatin remodeling 

activities.  
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Figure 1-4 Structure and Action of the Glucocorticoid Receptor 
(A) As a nuclear receptor, GR is composed by a N terminal domain with lacking 3D structure, a 
DNA Binding Domain (DBD) responsible for receptor oligomerization and a Ligand Binding Domain 
(LBD) responsible for chaperone sequestering and ligand dependent remodeling of the receptor. 
(B) In the absence of glucocorticoids (GR activating hormones), GR is in the cytoplasm 
sequestered by chaperone complexes. After binding of the hormone, GR is remodeled and 
translocated into the nucleus where it binds to GR Response Elements (GRE) to regulate 
transcription. Adapted from (Weikum et al., 2017).   

GR binds to specific DNA sequences called glucocorticoid response elements 

(GREs) at promoter or enhancer regions to cause transcriptional induction of target genes. 

GR coregulates a myriad of transcription factors such as activator protein-1 (AP-1) and 

nuclear factor-kappa B (NF-kB) to trans-repress genes (De Bosscher, Vanden Berghe, & 

Haegeman, 2006; Luecke & Yamamoto, 2005; Nissen & Yamamoto, 2000). Recent 

studies have shown that GR is dimeric when unbound from DNA but tetrameric when 

bound to chromatin, and its oligomerization state plays a fundamental role in gene 

regulation (Presman et al., 2016).  

It has been shown that unremodeled chromatin presents a barrier to transcriptional 

initiation by GR. It has been proposed that the chromatin landscape mediates cell and 

tissue specificity in response to GR activation. For instance, GR mediated transcriptional 

regulation is lacking in a pituitary corticotroph cell line with absent hormone inducible and 

constitutive sites (John et al., 2008).  
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It is well accepted that GR dynamics and its dynamical interaction with different 

complexes are of paramount importance to GR activity. However, GR dynamics remains 

poorly understood. GR undergoes rapid exchange at chromatin in a dynamic fashion 

instead of the long-term occupancy at promoter by the formation of multi-factor complexes 

as previously thought (McNally, Mueller, Walker, Wolford, & Hager, 2000). This rapid 

cycling of the GR with chromatin is actively regulated by cofactors disengaging from 

chromatin and ATP dependent chaperone activity (Agresti, Scaffidi, Riva, Caiolfa, & 

Bianchi, 2005; Becker et al., 2002; Elbi et al., 2004; Stavreva, Muller, Hager, Smith, & 

McNally, 2004). Recently, a clear correlation between GR dynamics and transcriptional 

activity at artificial genes has been demonstrated (Stavreva et al., 2019), but further 

experiments are needed for a complete view of the dynamical regulation of GR.   

1.4. Transcription Factors Mobility and its Relation with 
Gene Regulation 

Transcriptional activation is a dynamical process facilitated and regulated by TFs 

binding at regulatory elements on chromatin, changing the rate of gene transcription 

(Figure 1-5) (Shlyueva, Stampfel, & Stark, 2014). TFs binding at enhancers has been 

regarded as the fundamental mechanisms of gene regulation, where enhancer-promoter 

interactions are fundamental for the expression of the vast majority of genes (Levine, 

Cattoglio, & Tjian, 2014). For transcription to occur, many dynamical processes need to 

happen with precise temporal resolution. TFs binding to enhancers initiates the 

recruitment of different complexes, alteration of local chromatin accessibility, stabilization 

of chromatin loops, and initiation of transcription. Even though, genomic studies have 

shown the interplay of these different factors to orchestrate transcriptional activation 

(Barski et al., 2007; Buenrostro, Giresi, Zaba, Chang, & Greenleaf, 2013; Lieberman-

Aiden et al., 2009), many questions remain unanswered. What is the timescale of TF 
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binding to regulatory elements? How are multiple TF recruited and assembled at 

enhancers? What are the dynamics underlying enhancer-promoter communication, etc.? 

(Figure 1-5)  

 

Figure 1-5 Stochasticity in Transcription Factor Dynamics and Gene Regulation 
Transcription is intrinsically stochastic, and it is regulated at different time scales. TFs move across 
the nucleoplasm finding specific binding sites where it associates with chromatin and cofactors in 
the order of seconds to minutes. Interaction of TFs with other proteins promotes or inhibits 
recruitment of the transcriptional machinery which needs to be assemble for productive 
transcription. Every step in gene expression requires the stochastic interaction of proteins and 
molecules resulting in heterogeneity and noise in gene expression. Adapted from (Coulon, Chow, 
Singer, & Larson, 2013). 

Seminal work using FRAP (Fluorescence Recovery After Photobleaching) showed 

that core histones have slow exchange rates on the order of ~1-2h with a small fraction 

exhibiting fast kinetics, implying that there is a population of stable core histones in 

nucleosomes and dynamical histone exchange takes place on the surface of active 

nucleosomes (Kimura & Cook, 2001). Moreover, heterochromatin was shown to display 

remarkably transient residence times (~20 secs) while nuclear receptors such ER and GR 

were shown to have extremely short binding times on the order of seconds (Hager et al., 

2000; McNally et al., 2000; Voss et al., 2011). However, FRAP experiments are highly 

model dependent and these results have been disputed (Mazza, Stasevich, Karpova, & 

McNally, 2012b).  

Understanding the biophysical determinants of the mobility of TFs and their 

interaction with the nuclear microenvironment and assessment of the role of these 

processes in gene regulation needs high-resolution measurements of their dynamics 
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complemented by the development of new theoretical frameworks to account for empirical 

data. Single molecule tracking (SMT) of TFs is a powerful tool to reveal their dynamics 

throughout the intricate nuclear environment since it allows direct visualization of TFs 

dynamics. SMT and super resolution microscopy have changed how we study molecular 

process in fundamental biological questions, from the kinetics of molecular motors to 

enzymatic reactions inside cells (Paakinaho et al., 2017; Sengupta, van Engelenburg, & 

Lippincott-Schwartz, 2014; Wedeking et al., 2015). It continues to change different 

paradigms in biology and physics with profound effects on our understanding of dynamical 

processes needed for homeostasis and cell functioning. Single molecule studies shifted 

the paradigm of TFs mobility and gene regulation. For decades, it was believed that TFs 

bind to genomic loci on the order of minutes to hours and these prolonged time scales 

allowed for protein-protein interactions and complex initiations which are needed for gene 

control (Coulon et al., 2013; Liu et al., 2014; Mueller, Stasevich, Mazza, & McNally, 2013; 

Thanos & Maniatis, 1995). This paradigm was compatible with population assays such as 

chromatin immunoprecipitation (ChIP). On the other hand, single molecule studies have 

shown that TFs are highly mobile, diffusing in the nucleoplasm with transient interactions 

with chromatin characterized by binding times on the order of seconds (Hager, McNally, 

& Misteli, 2009; Paakinaho et al., 2017; Yu, 2016). The latter implies a highly dynamic 

transcriptional initiation program with multiple TFs and cofactors exchanging on the time 

scale of transcriptional output. 

Most dynamical studies of TFs have been studied in simplified model systems or 

in isolation without taking into account their biophysical interactions with the nuclear 

microenvironment. To obtain a fuller picture of eukaryotic gene regulation, TF dynamics 

needs to be studied in the context of their interaction in the complex milieu of the nuclear 
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microenvironment with ongoing chromatin remodeling, protein-protein interactions, 

nuclear compartmentalization and dynamical interactions between complexes.  

1.5. Spatial Compartmentalization of the Nucleus 

Compartmentalization in eukaryotic cells provides spatiotemporal control over 

different cellular processes from signaling pathways to metabolism. For instance, the 

transcriptional machinery is physically separated in the nucleus from other processes such 

as translation. This separation allows to cells increase control in translational output and 

posttranscriptional processes (Corbett, 2018). Studies have focused on 

compartmentalization based on membranes such as lysosomes, vesicles, endoplasmic 

reticulum and others. However, molecules, proteins and DNA can self-organize in 

membrane-less structures, which are sometimes referred as membrane-less organelles. 

Nucleoli, nuclear speckles, stress granules, and Cajal bodies are some examples of 

membrane-less organelles that have been studied for decades (Mitrea & Kriwacki, 2016). 

However, many questions remain in terms of their physicochemical properties, dynamics, 

formation and how these physical properties affect their function. The importance of 

membrane-less organelles in disease is being explored and recent evidence has pointed 

to the roles of these organelles in age-related disorders (Boeynaems et al., 2017).  

Most membrane-less organelles are dynamic, assembling and disassembling over 

a range of time-scales. P granules (perinuclear RNA granules) were shown to have liquid-

like properties and are formed by phase separation (Brangwynne et al., 2009). With this 

discovery, studies to understand phase separation and the formation of membrane-less 

organelles rapidly proliferated.  Phase separation has been studied in physics and polymer 

chemistry for years but its properties and formation in biological materials needs further 

development. Even though liquid-liquid phase separation has been extensively invoked to 
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underlie the formation of cellular membrane-less organelles, these assemblies are not van 

der Waals fluids comprised of spherical particles interacting via isotropic short-range 

potentials. Phase separation in protein-protein, RNA-protein or DNA-protein mixtures 

have distinct physical properties depending on their constituents, interactions and 

concentrations (Feric et al., 2016). The global material properties of these aggregates 

range from liquid, solids and gels. For instance, recent studies showed that network 

elasticity regulated liquid-liquid phase separation in synthetic polymer networks. In 

particular, compressive stresses in a polymer network were shown to inhibit phase 

separation of the solvent (Rosowski et al., 2020; Style et al., 2018).  

1.5.1. Intrinsic Disordered Regions and Liquid-Liquid Phase 
Separation 

It is accepted in the field that the formation of membrane-less organelles is driven 

by multivalent interactions between nucleotides or amino acids (Figure 1-6). A large 

number of proteins contain polypeptide segments that are unfolded and lack well-defined 

tertiary structure (Wright & Dyson, 1999). These polypetide regions adopt an ensemble of 

different conformations and the resulting disordered states are believed to have specific 

biological functions. Such intrinsically disordered regions (IDRs) or low complexity 

domains (LCDs) do not contain sufficient amino acids to mediate cooperative folding. They 

typically contain a high proportion of charged amino acids that facilitates electrostatic 

interaction among other IDRs. Due to the structural flexibility of IDRs, many post-

translational modifications are encoded and decoded in these regions and it is a driving 

factor in the assembly and disassembly of IDR mediated condensates (Figure 1-6). 

Phosphorylation of proteins changes the electrostatic balance of a protein due to the 

negative charges on the phosphate group (Aumiller & Keating, 2016). IDRs mediate 

important regulatory functions in proteins, facilitating interactions between proteins and 
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complexes, regulation of protein half-life by engaging targeted degradation by the 

proteasome and adoption of different conformations when binding to different partners to 

tune the protein function (Babu, Kriwacki, & Pappu, 2012). Recent studies have shown 

that most proteins in mammalian cells contain disordered regions and mutations in these 

segments have been related with human diseases, such as cancer (Babu, van der Lee, 

de Groot, & Gsponer, 2011).  

 

Figure 1-6 Phase Separation Via Intrinsic Disordered Regions 
(A) Intrinsic Disordered Regions (IDRs) of proteins unstructured sequences interact with other IDRs 
through weak multivalent interactions forming phase separated droplets which compartmentalized 
the nucleoplasm. (B) Protein-chromatin stable binding mediates self-aggregation of chromatin 
regions through IDR of proteins and histones tails. Adapted from (Michieletto & Gilbert, 2019). 

In vitro studies have shown that purified IDRs demix or show liquid-liquid phase 

separation in a concentration or temperature dependent manner (Kato et al., 2012). These 

droplets exhibit liquid-like properties like nucleation and surface tension similar to phase 

separated liquids. However, translating these in vitro experiments to biological settings 

have been challenging due to the complex microenvironments inside the cells, which are 

crowded with different molecules, macromolecules and complex structures. The 

properties of liquid condensates in cells have been measured indirectly using fluorescence 

correlation spectroscopy to quantity droplet viscosity and diffusion (M. T. Wei et al., 2017) 

and optogenetic tools are being developed to trigger phase transitions (Shin et al., 2017).  
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1.5.2. Nuclear Hubs for Transcriptional Control 

Functional characterization of chromatin organization has been useful for 

understanding different regulatory processes in the cell, but a physical description of 

chromatin structure and organization is lacking. It has long been recognized that histones 

have disordered tails that are exposed in nucleosomes that are positively charged and 

serve for a myriad of posttranslational modifications (acetylation, methylation and 

phosphorylation). It is predicted that approximately half of the negative charges in DNA 

are neutralized by histones tails conveying an overall charge to nucleosomes (Kornberg 

& Lorch, 1999). Early in vitro experiments showed self-association of chromatin promoted 

by free cations on histone tails (J. C. Hansen, 2002). Moreover, reconstituted chromatin 

in solutions with physiological cation concentrations aggregates into spherical hubs with 

liquid-like properties and chemical simulations suggest compartmentalization of chromatin 

is driven by liquid-liquid phase separation, suggesting new physical models for chromatin 

organization (Falk et al., 2019; Gibson et al., 2019; Maeshima, Ide, Hibino, & Sasai, 2016).  

The interaction between histone tails and DNA drives liquid-liquid phase 

separation (LLPS) in chromatin (Figure 1-6). LLPS is heavily mediated by linker histone 

H1 that is consistent with previous experiments where H1 depletion causes chromatin 

unfolding and in vitro experiments of H1-DNA condensates (Allan et al., 1981; Turner et 

al., 2018). H1 increases the concentration of nucleosomes within chromatin droplets and 

decreases their dynamics. Moreover, histone acetylation causes disassembly of the 

droplets, but highly acetylated chromatin coalesces through multi-bromodomain proteins 

binding such as the transcriptional regulator BRD4. Highly acetylated droplets do not mix 

with non-acetylated chromatin providing a functional compartmentalization mediated by 

LLPS (Gibson et al., 2019).  
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There is increasing evidence that LLPS is a driving force in creating chromatin 

microenvironments that facilitate chromatin function.  It has been shown that RNA 

polymerase II, transcription factor FET and the mediator complex subunit 1 (Med1) form 

clusters in the nucleus reminiscent of LLPS (Figure 1-7) (Boehning et al., 2018; Chong et 

al., 2018; Sabari et al., 2018). These condensates are highly dynamic with selective 

interactions mediated by IDRs of component proteins. Surprisingly, there are families of 

IDRs that interact among each other and work as isolators for other IDRs (Chong et al., 

2018). In terms of transcriptional initiation, recent studies suggest that Pol II CTD (C 

terminal domain) plays a major role in hub formation to selectively associate with 

transcription factors and to initiate transcription (Figure 1-7) (Guo et al., 2019). How TFs 

interact with condensates and their role in chromatin binding dynamics is still unknown. 

Further experiments are needed to understand how protein-protein interactions affect 

transcription factor mobility and binding and their relation to transcriptional control.  

 

Figure 1-7 Phase Separation and Transcriptional Control 
Evidence has emerged in the ability of TFs to self-interact and form hubs of increase TF density. 
These hubs might potentiate transcriptional initiation by increasing the probability of TF-chromatin 
interactions and facilitating TF and cofactor interactions through promoter enhancer action. Pol-II 
forms hubs as precursor of RNA processing facilitating gene expression. Adapted from (Cramer, 
2019). 

1.6. Mechanosensing 

Adapted from: Mechanical regulation of transcription: Recent advances. K. Wagh, 
M. Ishikawa, D.A. Garcia, A. Upadhyaya and G. Hager. Trends in Cell Biology. (Wagh et 
al., 2021)  
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Most studies of the role of TFs in transcriptional regulation have been carried out 

on rigid substrates (glass and plastic) in the laboratory. However, the natural 

microenvironment of cells and tissues in different organs in the body is significantly softer 

and has a wide stiffness range. Stiffness, the extent to which a material resists deformation 

in response to an external force, is an important property of organs with fundamental 

implications in cell fate and homeostasis. Mounting evidence has shown that nuclear 

organization, morphology and transcription are intimately related to the physical properties 

of the environment. To further understand TFs mobility and their role in transcriptional 

regulation, studies must be carried out in substrates with physiologically relevant physical 

properties.  

Cells in the human body are subject to a wide variety of mechanical stimuli acting 

at multiple scales. At the single molecule level, receptors leverage force to strengthen 

bonds with their cognate ligands (C. Zhu, Chen, & Ju, 2019). On the scale of single cells, 

stem cells rely on mechanical cues to guide cell fate decisions (Engler, Sen, Sweeney, & 

Discher, 2006). Finally, collective processes such as wound healing, tumorigenesis, and 

tissue homeostasis are intimately linked with the physical microenvironment (Cox & Erler, 

2011) (Handorf, Zhou, Halanski, & Li, 2015). In order to engage in functional responses 

appropriate to both passive mechanical stimuli, such as stiffness or topographic features 

of the cellular environment, or active ones such as forces generated by cells and tissues, 

cells must be able to sense and measure mechanical perturbations. Different elements of 

the cell act in concert to maintain structural integrity and to coordinate cellular sensing of 

external forces and mechanical stimuli. These stimuli must then be subsequently 

transmitted to the nucleus leading to broad changes in chromatin structure and 

accessibility that is necessary for the induction of functionally appropriate gene expression 

programs (Uhler & Shivashankar, 2017). 
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The nucleus, while being the largest and stiffest organelle in the cell, is not isolated 

from the cytoskeleton and the forces thereof (Figure 1-8). The Linker of Nucleoskeleton 

and Cytoskeleton (LINC) complex, consisting of nesprins, and Sad1 and UNC-84 (SUN) 

proteins, connects the nucleus to the cytoskeleton (Figure 1-8). Nesprins, which contain 

a Klarsicht, ANC-1, Syne Homology (KASH) domain, span the outer nuclear membrane 

(ONM) and interact with the cytoskeleton on the cytoplasmic face of the ONM (Roux et 

al., 2009) (Figure 1-8). On the other side of the ONM, nesprins bind to SUN proteins that 

tether to the inner nuclear membrane and bind to the nuclear lamina. The nuclear lamina 

consists of A and B type lamins, whose expression levels can alter nuclear stiffness, which 

has been shown to scale with ECM stiffness (Swift et al., 2013) and cell geometry 

(Makhija, Jokhun, & Shivashankar, 2016). Forces exerted on the cell surface are 

transmitted to the nucleus through the LINC complex, which in turn, dictates the physical 

properties of the nucleus (Guilluy et al., 2014) as well as transcriptional response to 

mechanical stimuli (Alam et al., 2016). The role of the nuclear membrane-associated 

proteins as intermediaries in force transduction has been recently reviewed in (Agrawal & 

Lele, 2019). 
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Figure 1-8 Cell Mechanosensing and Chromatin 
Chromatin and nucleus is connected through the cytoskeleton to the cell substrate. The LINC 
complex formed by SUN and KASH proteins connect the cytoskeleton with chromatin. 
Microtubules, Actin polymers and intermediate filaments are interconnected with chromatin through 
the LINC complex with potential stress transmission during cytoskeleton remodeling. Cytoplasmic 
stresses might regulate chromatin accessibility by stretching of nucleosomes. Adapted from (Kirby 
& Lammerding, 2018). 

Cells in high stiffness environments likely experiencing increased mechanical 

stress tend to present nuclear YAP/TAZ. Nuclear YAP/TAZ serve as co-regulators for 

several transcription factors leading to cell proliferation, organ growth, and tumorigenesis 

(Panciera, Azzolin, Cordenonsi, & Piccolo, 2017). Focal adhesion kinase (FAK) has been 

implicated in regulating YAP nuclear localization via the FAK-Src-PI3K pathway (N. G. 

Kim & Gumbiner, 2015). YAP/TAZ regulation has been extensively reviewed (Totaro, 

Panciera, & Piccolo, 2018)  and  YAP/TAZ nuclear translocation is now often used as a 

reporter of mechanotransduction. 

Importantly, endocrine signaling pathways have recently been implicated in 

YAP/TAZ signaling. Sorrentino et al., showed that induction of the glucocorticoid receptor 

(GR) leads to increased YAP mRNA levels, and increased nuclear localization and YAP-

luciferase reporter activity (Sorrentino et al., 2017). This is accompanied by increased 
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fibronectin deposition, further implicating the FAK-Src-PI3K axis in regulating YAP. The 

Hippo signaling pathway is also involved in estrogen receptor (ER) and androgen receptor 

(AR) signaling, which are important molecular targets for breast and prostate cancer 

respectively (Lit et al., 2013) (Kuser-Abali, Alptekin, Lewis, Garraway, & Cinar, 2015). 

1.6.1. Mechanical Regulation of Tumorigenesis 

Tumor initiation and progression are accompanied by changes in the ECM and 

cellular organization which develop different responses to mechanical cues (Butcher, 

Alliston, & Weaver, 2009). Understanding the mechanobiology of tumorigenesis is crucial 

to understanding its role in cancer development and metastasis. A ubiquitous process in 

tumorigenesis is ECM stiffening, which is a complex biochemical and biophysical process 

involving various types of cells, structural proteins, enzymes, and physical forces. Tumor 

cells carrying damaged DNA secrete inflammatory cytokines and matrix remodeling 

enzymes which recruit fibroblasts and immune cells to the tumor initiation site (Poltavets, 

Kochetkova, Pitson, & Samuel, 2018). Under physiological conditions, fibroblasts are 

involved in organ development and wound healing by depositing and remodeling ECM 

components. However, cancer associated fibroblasts (CAFs), which are activated by a 

variety of biophysical and biochemical stimuli in the tumor microenvironment, deposit 

excess ECM components, deregulate proliferation of the surrounding cells, and contribute 

to an imbalance in tissue homeostasis (Sahai et al., 2020). Cancer associated immune 

cells induce further inflammatory signaling befitting cancer’s description as “wounds that 

do not heal” (Flier, Underhill, & Dvorak, 1986). The hypoxic environment created due to 

locally elevated cell density and metabolism facilitates lysyl oxidase (LOX) expression, 

which leads to elevated collagen crosslinking, thereby creating a dense ECM (Figure 1-9) 

(Bonnans, Chou, & Werb, 2014). In addition to morphological changes such as loss of 

polarity, cell-cell adhesion and acquisition of mobility, changes in gene expression during 
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EMT trigger deposition of ECM components including fibronectin and fibrillin, thus 

contributing to ECM rigidity (Figure 1-9) (S. C. Wei & Yang, 2016) (Baldwin et al., 2014). 

Actomyosin driven cell contractility can further enhance ECM stiffness leading to 

mechanical feedback between cells and ECM, thus elevating tension in the tissue (Yu 

Long Han et al., 2018) (Hall et al., 2016) (Van Helvert & Friedl, 2016).  

 

Figure 1-9 Stiffening During Breast Tumorigenesis 
Mammary epithelial cells in normal breast tissue are organized in polarized acini structure with the 
capability of producing milk with lactogenic stimuli. During breast tumorigenesis, cells are 
transformed, and the polarized acini is lost. Cellular matrix is remodeled, and invasiveness is 
increased. Cellular transformation is correlated with matrix stiffening. (Cox & Erler, 2011). 

Interestingly, stiffness measurements of human breast biopsies have revealed that 

the periphery of the tumor is stiffer than the core (Plodinec et al., 2012), suggesting that 

the gradual increase of stiffness towards the edge facilitates tumor cell invasion of the 

surrounding tissue (S. C. Wei & Yang, 2016). The collective cell durotaxis model, where 

a sheet of cells migrates towards higher stiffness gradients while maintaining cell-cell 

junctions, implies a systematic invasion of tumor cells into the stiffened ECM (Sunyer et 

al., 2016) (Sunyer & Trepat, 2020). However, different biophysical techniques have 

revealed that individual cancer cells are softer than healthy cultured cells (Guck et al., 

2005; Rosenbluth et al., 2020). Softening of cancer cells is associated with malignant 

transformation and it is related with metastasis (Cross, Jin, Rao, & Gimzewski, 2007).  
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1.6.2. In-vitro Models for ER+ Breast Cancer 

Breast cancer continues to pose a significant threat to women across the globe. 

About 1 in 8 women in the U.S. will develop invasive breast cancer over the course of her 

lifetime (Desantis, Ma, Bryan, & Jemal, 2013). For women in the U.S., breast cancer death 

rates are higher than those of any other cancer besides lung cancer. However, several 

advancements in prevention, screening, and treatment of breast cancer have been 

developed throughout the last decades. Despite the recent advancement in understanding 

breast cancer biology, breast cancer tumorigenesis and treatment are still poorly 

understood. 

The complexity of studying breast cancer lies in its highly heterogeneous 

composition, encompassing a group of genetically and epigenetically distinct diseases 

that exhibit a broad range of clinical features (Riaz et al., 2013). Most research has been 

performed in vivo and in vitro using breast cancer cell lines due to the reproducibility and 

standardization of different models (Lacroix & Leclercq, 2004). However, cell line studies 

have been performed in artificially controlled environments and thus whether these studies 

capture the biological features of tumors remains an important issue to be resolved.  

Hormone receptors are important drivers of breast cancer progression and 

phenotype. Clinically relevant classification of breast tumor is based on the expression 

levels of hormone receptors and human epidermal growth factor receptor-2 (HER2). 

Breast cancer is classified in three categories: hormone receptor positive (HR+), human 

epidermal growth factor receptor-2 amplified/overexpressed (HER2+) and triple negative 

(TN). Hormone receptor positive tumors include progesterone receptor positive (PR+) 

and/or estrogen receptor positive (ER+). HER2+ presents overexpression of HER2 

receptor by dysregulation of the ERBB2 gene and TN breast cancer presents decreases 
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expression of ER, PR and HER2 (Jameson et al., 2018). ER+ breast cancer presents the 

highest incidence of breast cancer diagnosed in females (Nadji, Gomez-Fernandez, 

Ganjei-Azar, & Morales, 2005).  

The number of cell lines widely used in breast cancer studies is small compared 

to the heterogeneity of breast tumors. MCF7, T47D and MDAMB231 account for more 

than 70% of cell lines used in the breast cancer biology studies (Lacroix & Leclercq, 2004). 

MCF-7 is an important breast cancer model in research for ER+ breast cancer, many 

subclones have been stablished representing different tumor phenotypes of varying 

nuclear receptor expression levels (Sweeney, Mcdaniel, Maximov, Fan, & Craig, 2013).  

MCF-7 is ER and PR positive and it belongs to the luminal A subtype, it has low 

metastatic potential and it has produced more practical knowledge that any other breast 

cancer cell line. It is composed by a large number of different phenotypes with different 

gene expression profile, receptor expression and signalling pathway (Burdall, Hanby, 

Lansdown, & Speirs, 2003; Gest et al., 2013; Shirazi, 2011; Sweeney et al., 2013). MCF-

7 cells are an important model in research for ER positive breast cancer biology, in 

particular in the investigations of anti-estrogen drug resistance since they retain ER 

expression even under aggressive drug treatment (Sweeney et al., 2013). 

1.7. Overall Plan of The Thesis 

How TFs move and interact with the complex nuclear microenvironment in different 

physiological contexts is of fundamental importance to understanding transcriptional 

regulation with overarching consequences from fundamental understanding of the 

principles that govern cellular fate to medical applications. I use super resolution 

microscopy and novel analytical methods to elucidate how TFs mobility depends on the 

local nuclear microenvironment, TFs properties and their interaction with other complexes 
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and how the physical properties of the external microenvironment regulate gene regulation 

and TFs dynamics. I found that TFs mobility and gene regulation is deeply affected by the 

nuclear and external microenvironment. Specific and non-specific binding times are 

power-law (PL) distributed with binding times on the order of seconds to minutes due to a 

broad distribution of binding affinities and the heterogeneity of the nuclear 

microenvironment. 

In Chapter 2, I discuss general methods to study TF dynamics and gene regulation. 

Chapter 3 will discuss a new method that I have developed to analyze single molecule 

dynamics of TFs that reveals power-law distributed dwell times which has changed the 

current paradigm of TFs interactions with specific response elements. Chapter 4 will 

illustrate how this new method can be used to illustrate the complexity of the environment 

within the nucleus and how protein-protein interactions of TFs and interacting partners 

lead to a dynamic compartmentalization that alters mobility and gene regulation. In 

Chapter 5 I discuss my studies on the effects of stiffness in gene regulation, TFs mobility, 

nuclear organization and dynamics with fundamental physiological consequences. In 

Chapter 6, I provide general conclusions from my work and future directions.  
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Chapter 2. Techniques 

Images in Figures used with permission from the Journals. 

2.1. Genomic techniques 

Mammalian chromatin is highly condensed in fundamental units called 

nucleosomes, composed of ~146 base pairs (bp) of DNA wrapped around a 

histone octamer (Kornberg, 1974). Nucleosomes are further wrapped into 

chromatin forming chromosomes. This dense chromatin is dynamically regulated 

by different transcription factors, remodelers and complexes. Chromatin is 

remodeled into active euchromatin and inactive heterochromatin (Falk et al., 

2019), which tightly controls gene expression and guides development and 

differentiation (Goldberg, Allis, & Bernstein, 2007). Chromatin packaging 

influences transcription by allowing or preventing interactions of proteins with DNA 

and by modifying nucleosomes to enhance or prevent the recruitment of 

complexes that facilitate transcription. Therefore, understanding the regulation of 

chromatin states and the impact on protein binding to DNA is vital for 

understanding gene regulation.  

With the technological advances of high-throughput sequencing, various 

assays have been developed to map the epigenetic landscape and the 

transcriptome. Techniques such as Assay of Transposase Accessible Chromatin 

sequencing (ATAC-seq) (Buenrostro et al., 2013; Buenrostro, Wu, Chang, & 

Greenleaf, 2015), DNAse I hypersensitive sites sequencing (DNAse-seq) (Song & 

Crawford, 2010) and Formaldehyde-Assisted Isolation of Regulatory Elements 
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sequencing (FAIRE-seq) (Giresi, Kim, McDaniell, Iyer, & Lieb, 2007) have been 

developed to map chromatin accessibility. Chromatin Immuno-Precipitation 

sequencing (ChIP-seq) measures DNA-protein binding (D. S. Johnson et al., 2007) 

while Micrococcal Nuclease sequencing (MNase-eq) detects nucleosome 

positioning and occupancy (Schones et al., 2008). Below, we briefly describe some 

of these genomic techniques we have used in this thesis. 

2.1.1. ATAC-seq (Assay for Transposase-Accessible Chromatin using 
sequencing) 

ATAC-seq has been widely used to study changes in chromatin accessibility 

in different physiological settings, from understanding accessibility differences in 

hematopoiesis and leukemia to mapping different chromatin states in 

schizophrenia patients (Bryois et al., 2018; Corces et al., 2016). The main 

advantage of ATAC-seq over DNAse-seq and FAIRE-seq is that ATAC-seq 

requires significantly fewer cells (~50000) compared to millions of cells for other 

accessibility methods. 

ATAC-seq relies on a genetically engineered hyperactive Tn5 transposase 

that cuts open chromatin at open sites leaving a 9-bp staggered nick. The 

transposase assists a DNA transposon to transfer DNA sequence from one region 

to another (Reznikoff, 2003). DNA transposon requires open chromatin at the 

insertion site and the 9-bp tag left by the transposase is used to construct a library 

for sequencing. During the DNA transposon process, the nick is repaired, leaving 

a 9-bp duplication, and paired-end sequencing is performed to facilitate unique 

alignment rates to the open regions identified by Tn5 cutting (Tsompana & Buck, 
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2014). Briefly, Tn5 transposase assists the transposon process to simultaneously 

fragment and tag open regions of DNA with sequencing adapters (Figure 2-1).  

 

Figure 2-1 Chromatin Accessibility by ATAC-seq 
(A) Chromatin accessibility is variable across the genome. Closed chromatin corresponds to DNA 
sequences tightly wrapped around nucleosomes where TFs and other proteins cannot physically 
interact with chromatin. TFs and protein are able to physically interact with open chromatin to 
initiate transcription. (B) TN5 transposase is able to interact and cut open chromatin. If a TF is 
bound to chromatin or DNA is wrapped in a nucleosome, TN5 is not able to cut the DNA sequences. 
After DNA fragmentation, PCR and size select is performed and fragments are sequenced to map 
the levels of chromatin accessibility. Taken from (Klemm et al., 2019) 

The main steps in ATAC-seq consist of preparation of the nucleus, 

transposition and amplification (Tsompana & Buck, 2014). Cells are homogenized 

into single cells and single nuclei are prepared with catalysis of a lysis buffer. Re-
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suspended nuclei are incubated in a transposition reaction mix containing Tn5 

transposase to produce DNA fragments by the cutting mechanism of Tn5. Finally, 

the transposed DNA fragments are amplified to generate libraries for next 

generation sequencing. Quality control is performed on the ATAC-seq library to 

guarantee appropriate concentration of the library for sequencing. Bioinformatic 

tools are used to filter the sequencing data and assess sequencing quality. The 

adapter sequences and low-quality reads are removed from the data and the 

remaining reads of around 150 nucleotides are processed. A peak calling algorithm 

is used to map the high-quality reads to a reference genome and accessible 

chromatin regions such as enhancers, promoters and insulators are identified 

(Tsompana & Buck, 2014).  

2.1.2. CHIP-seq 

Chromatin immunoprecipitation sequencing (ChIP-seq) is a standard 

technique to identify and characterize protein-DNA interactions genome-wide 

(Kharchenko, Woo, Tolstorukov, Kingston, & Park, 2008; Valouev et al., 2008). 

ChIP-seq allows for the characterization of the genomic locations of bound proteins 

to chromatin such as histones and transcription factors in vivo.  

In a CHIP-seq experiment, DNA fragments associated with a specific 

protein are enriched by immunoprecipitation through specific antibodies. Proteins 

interacting with DNA are crosslinked to DNA with the reversable crosslinker 

formaldehyde. Chromatin is sheared into small fragments using sonication to reach 

a size in the 200-600 bp range. The sonicated chromatin is incubated with a 
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cocktail of specific antibodies against the protein of interest to enrich for the DNA 

fragments that exhibit interactions with the protein. The sonicated chromatin is 

immunoprecipitated, the crosslinks are reversed, and the DNA is purified for next 

generation sequencing (Figure 2-2).  

 

Figure 2-2 CHIP-seq Methodology 
CHIP-seq quantifies the interaction of proteins to chromatin. Cells are chemically fixed; DNA is 
sheared, and immunoprecipitation is performed with a highly specific antibody to the protein of 
interest. Crosslinking is reversed, DNA purified and sent for sequencing. Enriched reads 
correspond to DNA sequences where the protein of interest binds to chromatin. Taken from (P. J. 
Park, 2009) 
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MNase digestion is used without crosslinking to fragment chromatin if 

nucleosome positioning or histone modifications need to be mapped (Voong, Xi, 

Wang, & Wang, 2017). MNase allows for more precise mapping of each 

nucleosome due to the more efficient removal of linker DNA than sonication. ChIP 

with crosslinking is called X-ChIP and without crosslinking N-ChIP (native) (O'Neill 

& Turner, 2003; Orlando, 2000). 

ChIP-seq experiments are limited by the antibody quality. A sensitive and 

high-quality antibody is required to provide specific enrichment with respect to the 

background in order to identify binding events. However, antibody quality is highly 

variable even among batches of the same antibody. Validation of the specificity of 

the antibody needs to be performed prior to ChIP-seq experiments. Enrichment of 

ChIP-seq peaks is prone to several potential artifacts. Shearing of DNA results in 

non-uniform fragmentation of the genome with open chromatin regions more 

enriched than closed regions. Repetitive sequences might be enriched and 

therefore a peak in a ChIP-seq experiment needs to be compared to the same 

region in a control sample to determine the significance of the enrichment. The 

most popular control sample is a portion of DNA removed prior to 

immunoprecipitation, called input DNA.  

After sequencing is performed, the reads are aligned to the reference 

genome and regions of enrichment are identified relative to the control sample. 

Fragments are sequenced from the 5’ end and two symmetric peaks are formed 

around the binding region; a smoothed profile of each strand is constructed, and 

the combined profile is used to identify the enriched region (Valouev et al., 2008). 
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A simple fold ratio is calculated with respect to the control using a Poisson or 

Binomial model for the tag distribution (Boyle, Guinney, Crawford, & Furey, 2008). 

Multiple replicates are used for reproducibility and to remove false positive 

enriched peaks and a q value is assigned to each peak which corresponds to the 

minimum false discovery rate (FDR) (Benjamini & Hochberg, 1995) at which a 

peak is deemed statistically significant. A major difficulty in enrichment analysis is 

the presence of different types of peaks: broad and sharp. Most algorithms are 

designed for sharp peaks which correspond to protein-DNA binding while broad 

peaks are usually associated with histone modifications. Peak calling is usually 

validated by performing ChIP-qPCR of the enriched regions.  

2.1.3. RNA-seq 

RNA-seq is mainly used for analyzing differential gene expression (DGE). 

It consists of extracting RNA from the sample, followed by mRNA enrichment by 

ribosomal RNA depletion, cDNA synthesis and preparation of a sequencing library. 

The library is sequenced to obtained at least 10 million reads per sample on 

different sequencing platforms (Z. Wang, Gerstein, & Snyder, 2009). After 

sequencing, the reads are aligned to a genome of reference and statistical analysis 

is performed to quantify changes in gene expression between different 

experimental groups. 

Careful design of an RNA-seq experiment is needed to recover meaningful 

and reproducible biological data. Enough biological replicates are needed to 

capture the intrinsic stochasticity of biological systems. The robustness of RNA-
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seq analysis is highly dependent on biological replicates even more than the read 

depth (total number of reads per sample) or length (Schurch et al., 2016). 

Biological replicates allow for identification of outlier samples to be removed or 

down-weighted and account for any potential differences due to biological 

variability.  

Different bioinformatic tools and approaches exist to analyze DGE. All these 

methods are broadly divided into three different steps. First, the raw reads are 

mapped to a specific transcriptome. In step 2, the number of reads associated with 

each gene and transcript are calculated, low read transcripts are filtered, and the 

number of reads is normalized to account for technical variability between 

samples. Step 3 involves quantification of DGE by statistical modeling of biological 

replicates and covariates to calculate statistical confidence.  

2.2. Imaging Techniques 

2.2.1. Super-resolution Microscopy and Single Molecule Detection 

In a Single Molecule experiment, individual particles (TFs, enzymes, motors, etc) 

are observed using different microscopy techniques. These observations are tracked over 

space and time to generate trajectories for each single molecule. Even though, these 

trajectories are inherently stochastic, the statistical analysis of an ensemble of trajectories 

reveals global phenomena of the properties of the underlying physical, chemical and 

biological process such as diffusion, binding, protein-protein interactions, trapping, folding-

unfolding dynamics, enzymatic reactions and others (Manzo & Garcia-Parajo, 2015; M. J. 

Saxton, 2008).  
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Other techniques are widely used to analyze protein dynamics such as 

fluorescence correlation spectroscopy (FCS) and fluorescence recovery after 

photobleaching (FRAP)(Reits & Neefjes, 2001; Tian, Martinez, & Pappas, 2011). These 

techniques use the information in fluorescence fluctuations to indirectly characterize the 

dynamics of the molecules of interest. However, FRAP and FCS only reveal average 

information on dynamics and any temporal or spatial heterogeneity is lost and their spatial 

resolutions are diffraction limited which hinders their application for nanoscale processes.  

The development of SMT has been closely related to advances in fluorescent 

tagging of proteins. Tags used in SMT experiments need to be small enough to not 

interfere with the biological function of the protein and they have to be sufficiently bright 

and photostable to allow tracking across different time scales. The invention of self-

labeling protein tags such Halo, SNAP and CLIP-tag have allowed the used of organic 

dyes with improved quantum yield and photostability (Erdmann et al., 2019; Grimm et al., 

2015) opening the doors to higher localization precision and longer temporal resolution in 

SMT experiments. 

The spatial resolution of optical microscopes is naturally limited by the diffraction 

of light where in the limiting case of a point emitter, its image corresponds to a distribution 

of fluorescence intensity called the point spread function (PSF). The diffraction limit is 

given by 𝑑 =
𝜆

2𝑁𝐴
, 𝜆 corresponds to the wavelength of the emitted light and NA the 

numerical aperture of the objective. For a red emitting fluorophore and a high NA objective, 

the diffraction limit is approximately 160nm.  

However, 

 There are two main mathematical approximations that describe a PSF. First, the 

Airy disk PSF that is the most accurate approximation, but it is prohibitory computationally 
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expensive 𝑃𝑆𝐹𝐴𝑖𝑟𝑦𝑥, 𝑦 = [2
𝐽1(𝑘𝑒𝑚𝑁𝐴√𝑥2+𝑦2)

𝑘𝑒𝑚𝑁𝐴√𝑥2+𝑦2
]

2

     ( 1, 𝐽1 

corresponds to the first order Bessel function of the first kind, 𝑘𝑒𝑚 =
2𝜋

𝜆𝑒𝑚
  where 𝜆𝑒𝑚  is 

emission wavelength). Second, the Gaussian PSF which is widely used in the field and it 

is appropriate in most experimental situations (For high NA, a Gaussian PSF with 

background correction is a better approximation than the Airy PSF). It is given by a 

gaussian distribution with standard deviation 𝜎𝑥𝑦 and amplitude A 𝑃𝑆𝐹𝑥,𝑦 = 𝐴𝑒
(−

𝑥2+𝑦2

𝜎𝑥𝑦2
)
 

     ( 2).  

𝑃𝑆𝐹𝐴𝑖𝑟𝑦(𝑥, 𝑦) = [2
𝐽1(𝑘𝑒𝑚𝑁𝐴√𝑥2+𝑦2)

𝑘𝑒𝑚𝑁𝐴√𝑥2+𝑦2
]

2

     ( 1 ) 

𝑃𝑆𝐹(𝑥, 𝑦) = 𝐴𝑒
(−

𝑥2+𝑦2

𝜎𝑥𝑦2
)
      ( 2 ) 

The Gaussian PSF is assumed as an objective function and PSF is usually fitted using 

least square algorithms and maximum likelihood estimation (MLE)(Abraham, Ram, Chao, 

Ward, & Ober, 2009). Machine learning based approaches such as convolutional neural 

networks for the detection of nanometer-scale particles have been developed with 

improved accuracy and reproducibility (Newby, Schaefer, Lee, Forest, & Lai, 2018). 

Combining these new detection approaches with more robust PSF fitting will improve the 

robustness of SMT experiments.  

Another strategy to track single molecules at the super-resolution level is based 

on undirect excitation of the fluorophore. MINFLUX nanoscopy can attain resolutions in 

the order of nanometers (1-3nm) with fewer emitted photons required to reach similar 

resolutions with conventional microscopy and without dependence on NA and wavelength. 

It is based in a movable excitation beam with an intensity minimum (donut), a feedback 
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loop keeps the particle of interest in the center of the beam where it does not get excited. 

Excitation of the fluorophore triggers the feedback mechanism to identify the position of 

the fluorophore and recenter the beam, this microscopy technique dramatically reduces 

photobleaching since it requires a minimum number of photons for localization. Moreover, 

detection and tracking is not needed since it is naturally implemented in the microscope 

functionality (Gwosch et al., 2020).  

2.2.2. HILO Microscopy 

The ability of following single molecules in real time depends directly on the 

fluorescent signal of the particle. The latter is dependent on the signal to noise ratio (SNR, 

fluorescence of particle to background fluorescence) and motion blur due to the mobility 

of the molecule and the exposure time of the camera. Total Internal Reflection 

Fluorescence (TIRF) microscopy uses the mismatch in refractive index between the 

immersion index of the imaging objective and coverslip to generate an evanescent 

excitation wave in an optical phenomenon called total internal reflection (Lights travel from 

a higher refractive index medium to a lower refractive index medium) to illuminate the 

sample up to 200nm depth (Axelrod, 2001). By illuminating a small volume of the sample 

with TIRF, most of background fluorescence is removed and the SNR is drastically 

improved. TIRF has been applied extensively to single molecule tracking in vitro and cells 

(Kudalkar, Davis, & Asbury, 2016). The major drawback is the limited penetration depth 

and conventional TIRF is only applicable to particles closed to the coverslip.  

To overcome the limitations of TIRF, Highly Inclined and laminated optical sheet 

(HILO) microscopy was invented to reduce background fluorescence at longer excitation 

depths (Tokunaga, Imamoto, & Sakata-Sogawa, 2008). Before the excitation laser 

reaches its critical angle (Incidence angle needed for total internal reflection), the light is 
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refracted and a thin optical sheet of length 𝑑𝑧 =
𝑅

tan(𝜃)
, where 𝜃 corresponds to the incident 

angle and R the diameter of the illuminated area of the specimen (taken from (Tokunaga 

et al., 2008), Figure 2-3). The maximum of illumination is formed at the specimen plane 

minimizing the illumination divergence away from the focal plane and therefore 

significantly decreasing out of focus fluorescence and improving SNR. HILO has become 

a powerful and cost-effective approach for single molecule experiments. A major 

drawback is the thick sheet of light (~3-7um) and non-uniform excitation intensity at the 

focal plane.  

 

Figure 2-3 HILO Schematics 
(A) Different illumination modes depending on the laser beam angle incidence with the coverslip. 
In EPI illumination, the laser beam goes through the entire specimen maximizing the background 
fluorescence. In TIRF, an evanescent wave is produced illuminating the surface of the specimen 
and HILO uses an intermediate incident angle to create an inclined sheet of light (B). Taken from 
(Tokunaga et al., 2008). 

2.2.3. Absorbing Boundary Conditions for the Time Domain  

In an SMT experiment, the protein of interest is tagged with a fluorescent probe 

and imaged. Binding events are then associated with stationary particles in the focal plane. 

The final experimental information that can be recovered is the time that a protein can be 

detected in the imaging volume before it bleaches or moves out of the focal plane. From 

these observations, one can calculate a dwell time for transcription factors (TFs) which is 

defined as the time interval between a single molecule transitioning from a diffusive state 

A B 
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to a bound state and its subsequent unbinding from DNA and return to the diffusive state 

(Mazza, Abernathy, Golob, Morisaki, & McNally, 2012a). The dwell time distribution is 

obtained by calculating the ensemble distribution of bound times for a specific TF in 

different cells in the experiment after photobleaching correction. The survival distribution 

is then calculated as 1-CDF, where CDF is the empirical cumulative distribution function 

of dwell times. 

Calculation of dwell time distributions is a first-passage time problem in stochastic 

analysis and these distributions have been widely used to characterize kinetic properties 

of molecular motors and ion channels (Liao, Spudich, Parker, & Delp, 2007). In cases 

involving simple kinetic schemes, the dwell time distributions can be calculated analytically 

but for more complex schemes, a number of methods have been utilized. One particularly 

powerful approach is to assign one or more states to act as an absorbing boundary and 

then solve the associated first-order kinetic equations to obtain dwell time distributions. 

We assume that the diffusive (unbound) state corresponds to an absorbing boundary 

state, since the measurement ends with such transitions, because the particle either 

photobleaches, disappears from the focal plane or begins diffusing; any rebinding of the 

TF is considered as an independent event. This assumption implies that the population of 

particles in the absorbing boundary state increases with time. At the end of every 

experimental measurement, all the observed TFs transition to the absorbing state since 

the experiments are continued until most particles are bleached. 

For a general process, a TF can be found in any state isuch as diffusing around 

the nucleus, confined in a microenvironment, bound to a particular specific or non-specific 

site of the DNA. When a TF transitions to a diffusive state, it cannot be observed 

experimentally, and this state plays the role of an absorbing boundary state. We observe 

the system over a time interval from t′ = 0 to t′ = τ, during which individual TFs may 
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undergo transitions between different states i ∈ {1, … , n}. When a transcription factor is in 

a “bound” state, it can be observed experimentally as a trace as displayed in Figure 2-4a. 

Each TF in any of these bound states will be experimentally recorded from a certain time 

interval 𝑡1 to 𝑡2 with 𝑡2 − 𝑡1 < τ. 𝑡1 corresponds to the time when the transcription factor 

transitions to a “bound” state and 𝑡2 corresponds to the time when the TF enters an 

absorbing state (diffusion in the nucleus). All the traces will be shifted by a time 𝑡1 to a 

new aligned time 𝑡 = 𝑡′ − 𝑡1 so that all the TFs begin in a bound state at 𝑡 = 0 (Figure 

2-4b). During the experimental time τ, a finite number of TFs (N, equal to the number of 

traces) will be observed. When a TF transitions to a diffusive state, it cannot longer be 

observed experimentally, and this state plays the role of an absorbing boundary state. 

 

Figure 2-4 Survival Distribution Calculation 
(A) Experimentally, slow events are seeing as traces in a kymograph. (B) These traces are aligned on a new 

time 𝑡 and the distribution of lengths corresponds to the dwell time distribution 𝑓(𝑡) (C) Shown in red a 
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sample trace before and after time alignment. (D) The CDF of 𝑓(𝑡) corresponds to the normalized 

population of an absorbing boundary state. (E) (1-CDF) corresponds to the survival distribution �̂�. Taken 

from (Garcia et al., 2021b). 

Let 𝑝𝑖(𝑡) correspond to the probability of being in state 𝑖 at time 𝑡.∑ 𝑝𝑖(𝑡)𝑖∈𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠  

corresponds to the population of all absorbing states. To calculate number of unbinding 

events over a certain time interval (𝑓(𝑡) dwell-time distribution, Figure 2-4c - adapted from 

(Liao et al., 2007)), we take the time derivative of this population, 𝑓(𝑡) can be visualized 

as the probability distribution of experimental track lengths of TFs entering a bound state 

and evolving independently from a registered time 𝑡 = 0, until they transition to an 

absorbing boundary state, at which time they leave the bound state(Van Kampen, 1992). 

The cumulative distribution of 𝑓(𝑡) is calculated (𝑓(𝑡) =
𝑑

𝑑𝑡
∑ 𝑝𝑖(𝑡)𝑖∈𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠   

   ( 3), Figure 2-4d) and 1-CDF corresponds to the survival 

distribution (�̂�, Figure 2-4e). 

𝑓(𝑡) =
𝑑

𝑑𝑡
∑ 𝑝𝑖(𝑡)𝑖∈𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠      ( 3 ) 

A double exponential model is widely used in the analysis of SMT of transcription 

factors to describe their binding with chromatin (Darzacq et al., 2009; A. S. Hansen, 

Pustova, Cattoglio, Tjian, & Darzacq, 2017; Paakinaho et al., 2017; E.E. Swinstead et al., 

2016). This model, a TF can bind either to a specific site or a non-specific site in chromatin 

with transitions between specific and non-specific binding forbidden. The biological 

reasoning is based on that TF have a binary binding behavior with well-defined binding 

energies. The survival distribution for a double exponential model is given by:   

�̂� =
1

𝑘1+𝑘2
(𝑘1𝑒

−𝑘1
′𝑡 + 𝑘2𝑒

−𝑘2
′ 𝑡)     ( 4 ) 

The first exponential component corresponds to specific binding to chromatin with 

an average binding time of 
1

𝑘1
 and the second component corresponds to non-specific 

binding to chromatin with an average binding time of 
1

𝑘2
. Non-specific binding has been 
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reported in the order of milliseconds to seconds and specific chromatin binding for 

transcription factors have been reported in the order of seconds (7.25 secs for GR 

activated with Dexamethasone (Paakinaho et al., 2017)).  
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Chapter 3. Power-law Behavior of Transcription 
Factor Dynamics at the Single-Molecule Level Implies 
a Continuum Affinity Model 

This chapter has been adapted from Garcia et al., Nucleic Acid Research, 2021 

(Garcia et al., 2021b). I was primarily responsible for the experimental design, single 

molecule tracking experiments (with help from Diego Presman, Ville Paakinaho and 

Gregory Fettweis), modeling and data analysis. 

 

Figure 3-1 Graphical Summary 
Transcription factors searching on chromatin for specific response elements is depicted as a road 
representing chromatin. TFs interact with a broad distribution of binding affinities which lead to 
power-law distributed dwell times.  
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3.1. Summary 

Single-molecule tracking (SMT) allows the study of transcription factor (TF) 

dynamics in the nucleus, giving important information regarding the diffusion and 

binding behaviour of these proteins in the nuclear environment. Dwell time 

distributions obtained by SMT for most TFs appear to follow bi-exponential 

behavior. This has been ascribed to two discrete populations of TFs - one non-

specifically bound to chromatin and another specifically bound to target sites, as 

implied by decades of biochemical studies. However, emerging studies suggest 

alternate models for dwell-time distributions, indicating the existence of more than 

two populations of TFs (multi-exponential distribution), or even the absence of 

discrete states altogether (power-law distribution). Here, we present an analytical 

pipeline to evaluate which model best explains SMT data. We find that a broad 

spectrum of TFs (including glucocorticoid receptor, estrogen receptor, FOXA1, 

CTCF) follow a power-law distribution of dwell-times, blurring the temporal line 

between non-specific and specific binding, suggesting that productive binding may 

involve longer binding events than previously believed. From these observations, 

we propose a continuum of affinities model to explain TF dynamics, that is 

consistent with complex interactions of TFs with multiple nuclear domains as well 

as binding and searching on the chromatin template. 

3.2. Introduction 

Transcription factors (TFs) are key regulatory proteins responsible for 

turning genes “on” and “off” by binding to enhancer or promoter elements across 
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the genome (Lambert et al., 2018). The current consensus describes TFs as being 

able to transition between three different states: 1) unbound from DNA (diffusing 

in the nucleus), 2) non-specifically bound and 3) specifically bound to chromatin 

(i.e. interacting with specific response elements) (Goldstein et al., 2017). However, 

biochemical studies and live-cell imaging experiments appear to disagree on the 

timescale that eukaryotic TFs can remain bound to chromatin, ranging from 

seconds to several hours or even days (Brouwer & Lenstra, 2019; Coulon et al., 

2013; Gurdon, Javed, Vodnala, & Garrett, 2020; Hager et al., 2009; Lerner et al., 

2020; Stasevich & McNally, 2011).   

Advances in fluorescence microscopy have revolutionized our 

understanding of how TFs search and interact with chromatin (Liu & Tjian, 2018). 

Single-molecule tracking (SMT), which is based on detecting and following through 

time the traces produced by the light emitted from a single fluorophore, allows the 

characterization of protein dynamics in live cells. When applied to the study of TFs, 

important information regarding the search and binding dynamics of these proteins 

can be extracted (Liu & Tjian, 2018). SMT has been applied to over a dozen TFs, 

and has revealed that the time TFs remain bound to chromatin (i.e. residence time) 

is relatively short (seconds) and follows a bi-exponential distribution (reviewed in 

(Goldstein et al., 2017)). The bi-exponential behavior is consistent with decades of 

biochemical studies, indicating that the DNA-bound population of molecules are 

composed of two distinct subpopulations: a short-lived fraction (‘fast stops’) and a 

longer-lived fraction (‘slow stops’). The fast fraction has been interpreted to 

represent non-specific binding to chromatin while the slow fraction is thought to be 
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consistent with specific binding at enhancers or promoters (Ball et al., 2016; Chen 

et al., 2014; Kilic, Bachmann, Bryan, & Fierz, 2015; Morisaki, Muller, Golob, 

Mazza, & McNally, 2014). Experiments wherein TFs were mutated in their DNA-

binding domains seem to confirm this model as the longer binding events were 

reported to be dramatically reduced (Callegari et al., 2019; Chen et al., 2014; 

Morisaki et al., 2014; D. M. Presman et al., 2017; Sugo et al., 2015).  

However, this view is at odds with our current understanding of the nuclear 

environment. Far from being homogenous, the nucleus is highly 

compartmentalized and can impose constraints on the motion of many 

transcription-related molecules (Finn & Misteli, 2019; S. Kim & Shendure, 2019; 

Lerner et al., 2020). For example, the presence of nuclear bodies, liquid-liquid 

condensates and distinct chromosomal architectures can critically affect the 

searching process of TFs for their target sites (Brouwer & Lenstra, 2019; Woringer 

& Darzacq, 2018), implying that TF dynamics should exhibit dynamics beyond the 

bi-exponential model.  

Recently, studies fitting TF dynamics to a three-exponential model have 

found longer residence times for the serum response factor (SRF) (over 4 minutes) 

(Hipp et al., 2019) or CCCTC-binding factor (CTCF) (~15 min) (Agarwal, Reisser, 

Wortmann, & Gebhardt, 2017) than would be expected from a bi-exponential 

model. Moreover, a multi-exponential model was used to explain the dynamics of 

the TF CDX2 (Reisser et al., 2020). Finally, the bacterial proteins, tetracycline 

repressor (TetR) and LacI, with no known endogenous targets in mammalian cells, 

show power-law behavior when heterologously expressed (Caccianini, Normanno, 
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Izeddin, & Dahan, 2015; Normanno et al., 2015). In fact, these non-specific binding 

events could be as long as specific ones (Normanno et al., 2015).  

A random variable t follows a power-law (Newman, 2005) for 𝑡 > 𝑡𝑚𝑖𝑛 if 

𝑓(𝑡) = 𝐴𝑡−𝛽, where A is a constant and  is the exponent or scaling parameter. 

Power-laws are heavy tailed (right-skewed), which makes rare events more likely 

to occur than for exponential distributions; and  is a measure of the skewness. 

Many natural and artificial systems have been found to follow power-law 

distributions (Newman, 2005). For proteins interacting with chromatin, it would 

mean that the frequency of binding events of a given TF will be inversely 

proportional to the residence time of said TF. In fact, binding times orders of 

magnitude longer than the average are likely to be observed. More importantly, for 

mammalian TFs that follow a power-law distribution, assigning discrete residence 

times for specific and non-specific binding would not be feasible. Whether this 

phenomenon occurs for endogenous mammalian TFs remains an open question. 

While these discordant results regarding TF binding dynamics could reflect the 

underlying biology, they may also arise due to the lack of consensus in the field 

regarding tracking algorithms, photobleaching (PB) correction methods, and model 

fitting.   

Here, we revaluated some of the core aspects of the SMT technique, 

focusing on PB correction methods. We then derived theory-based models for TF 

dynamics and a principled method to obtain optimal model parameters from 

empirical residence time distributions, using Bayesian statistics. With these 

methods, we analyzed the dynamics of several TFs, including the glucocorticoid 
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receptor (GR), the estrogen receptor (ER), the “pioneer factor” forkhead box A1 

(FOXA1), the chromatin remodeler BRG1 (SMARCA4) as well as the architectural 

protein CTCF. Our data is consistent with power-law behavior for all tested 

proteins. We further discuss theoretical considerations for how the observed 

power-law distribution can arise from broad effective distributions of binding 

affinities can result in the observed power-law distribution. We suggest that TF 

dynamics is not explained by a simple separation between non-specific and 

specific binding but rather reflects the heterogeneous nature of chromatin structure 

and binding strengths.   

3.3. Results 

3.3.1. Photobleaching correction methods and their effect on survival 
distributions 

When tracking TFs at the single-molecule level, the experimental 

information that is recovered is the time the molecule “remains” visible before it 

bleaches or moves out of the focal plane. Thus, binding events can be observed 

as stationary spots (Figure 3-2A-C). From these observations, one can obtain a 

local dwell time for TFs, which is defined as the time interval between a single 

molecule transitioning from a diffusive state to a bound state and its subsequent 

return to diffusion. The dwell time distribution is generated by integrating the 

ensemble-averaged distribution of bound times (Figure 3-2D and Appendix A 

1.1). Most often, a “survival” distribution, defined as 1-CDF, where CDF is the 

empirical cumulative distribution function of dwell times, is used for further analysis 

[Figure 3-2E, GR dynamics adapted from (Paakinaho et al., 2017)]. This plot 
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represents the probability P that a molecule will last t number of time points, or 

longer. This survival distribution is fit to a bi-exponential distribution [Figure 3-2E 

and reviewed in (Goldstein & Hager, 2018a)], and interpreted as the “three 

population model” (i.e. diffusive, fast bound or non-specific binding, slow bound or 

specific binding) as illustrated in Figure 3-2F. However, as can be seen in Figure 

3-2E, the data shows a distinct departure from the bi-exponential fit, especially at 

longer dwell times. 

 

Figure 3-2 The current SMT pipeline and interpretation of TF dynamics. 
(A) A HiLO set-up is most commonly implemented to increase signal-to-noise ratio. A laser beam 
is tilted and hits the sample creating a thin illumination layer in the focal plane. (B) Several images 
are taken at specific yet variable acquisition and interval time conditions. (C) A tracking algorithm 
is used to follow individual molecules and classify them as either bound or unbound. (D) Histogram 
plotted from the bound population showing the frequency of TF molecules that are bound for a 
specific time (dwell time). Data acquired at 200ms interval for HaloTag-GR activated with its natural 
ligand corticosteron. (E) Fitting of the survival distribution (1-CDF; cumulative distribution function) 
calculated from the data shown in D (circles) is fit to single-exponential (blue line) or bi-exponential 
(red line). Inset shows semi-log plot of the same. (F) Schematic showing the bi-exponential model 
according to which TFs occupy three different states: unbound from the DNA (diffusing in the 
nucleus), specifically bound (slow stops), and non-specifically bound (fast stops). 
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The upper temporal limit in SMT experiments is ultimately determined by 

the intrinsic photostability of the chosen fluorophore (Liu & Tjian, 2018). When the 

affinity of bound TFs results in dwell times longer than those resulting from the 

average photostability of their fluorescent dyes, residence times cannot be 

resolved. Importantly, even when bound molecules have relatively lower affinities, 

they will appear to have shorter experimental dwell times due to photobleaching 

(PB) bias. To illustrate this known phenomenon, we conducted single-molecule 

imaging by transiently transfecting 3617 mouse mammary adenocarcinoma cells 

with the GR, a ligand-dependent transcription factor (Presman & Hager, 2017), 

tagged with HaloTag-Janelia Fluor 549 (JF549) (Paakinaho et al., 2017) and 

stimulated with GR’s natural ligand corticosterone (Cort, 600 nM). When we 

artificially modulated the PB conditions by changing acquisition parameters 

(exposure time, imaging interval, laser power), the resulting kymographs have 

different typical lengths (Figure 3-3) and thus appear to have originated from 

different TFs. Therefore, PB must be properly corrected to prevent artifacts in the 

analysis of SMT data (Mazza, Ganguly, & McNally, 2013). Since PB correction 

methods vary widely among research groups (Callegari et al., 2019; Chen et al., 

2014; Gebhardt et al., 2013; A. S. Hansen et al., 2017; Mazza et al., 2012a; 

Morisaki et al., 2014; Normanno et al., 2015; Teves et al., 2016; Zhen et al., 2016) 

there is no standard approach to overcome the photobleaching bias of SMT 

strategies. Therefore, we decided to test the most common methods and our 

proposed approach by comparing how well they can correct the artifacts generated 

in GR dynamics measured with different acquisition conditions.  
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Figure 3-3 Qualitative illustration of photobleaching artifacts in SMT experiments. 
Single-molecule tracking data of the glucocorticoid receptor (GR) activated with corticosterone 
(Cort). The figure shows representative kymographs of GR molecules taken at different acquisition 
conditions (A-D), as indicated. The figure shows that track lengths are dependent on 
photobleaching kinetics, artificially modifying the apparent dwell time of GR. Without further 
analysis, the kymographs resemble different TFs. 
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First, we tested the approach of estimating PB rates by counting, frame-by-

frame, the number of particles of the TF of interest in the focal plane, then fitting 

the time-dependent decay of the molecule count (which is taken as a proxy for PB) 

to a bi-exponential model (Ball et al., 2016; Loffreda et al., 2017; Mazza et al., 

2012a; Morisaki et al., 2014; Paakinaho et al., 2017). This bi-exponential fit is 

finally used to normalize the survival distribution of the TF of interest, in this case, 

GR (Figure 3-4A-B, method #1). However, this method underestimates PB 

because most of the “counted molecules” are diffusive ones, and as such they are 

exposed to less laser illumination than bound molecules at the focal plane. 

Accordingly, this method fails to correct the apparent differences in GR survival 

distributions obtained from different acquisition conditions (Figure 3-4B).  
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Figure 3-4 Effect of different photobleaching correction methods on the survival 
distribution of GR. 

(A) The  number of particles (normalized to the initial number of particles for each cell at time zero) 
from frame-to-frame as a function of time shown for three different acquisition conditions as 
indicated in the legend (‘e’ denotes exposure time and ‘i' denotes inter-frame interval). In method 
#1, this is taken as a proxy for photobleaching (PB), which is fitted to a bi-exponential function 
(black lines). (B) Effect of method #1 on GR dynamics at different acquisition conditions (e, 
exposure time; i, interval time). The corrected survival is obtained by dividing the observed TF 
survival to the bi-exponential distribution obtained in A. Number of cells/number of tracks are 
67/9374 for GRe10ms/i200ms; 65/23172 for GRe100ms/i200ms; and 34/37953 for 
GRe500ms/i500ms. (C) In methods #2-4, the survival of H2B, taken under the same acquisition 
conditions as the TF, is used as a proxy for PB, which is fitted to either two or three family of 
exponentials. Number of cells/number of tracks are 100/36625 for H2Be10ms/i200ms; 63/40652 
for H2Be100ms/i200ms; and 36/20307 for H2Be500ms/i500ms. (D) Method #2 does not correct 
the entire TF survival distribution but rather uses the slowest rate of the histone survival fitting (k3) 
to correct by subtraction the rate of the TF fitting (ks), thus obtaining the “real” rate (ks(real)). The 
panel shows the residence time (1/ ks) for the three experimental acquisition conditions. (E) Method 
#3 is similar to method #1, except that it uses H2B survival as a proxy for PB correction. The panel 
show GR dynamics at different acquisition conditions. (F) In Method #4, the exponential distribution 
of the slowest component in H2B survival is used as a proxy for PB correction. The panel show GR 
dynamics at different acquisition conditions. See Table 3-2 and Table 3-3 for more data points 
details. 

Another family of methods uses histones as a proxy for obtaining PB rates 

(Figure 3-4C). Histones are a good representation of stably bound proteins 

because, after integration into chromatin, their residence time is much longer than 
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the photostability of any currently available organic fluorophore (Kimura & Cook, 

2001). Therefore, by measuring the residence time of histones, one can obtain, in 

principle, a direct representation of PB for particles in the focal plane, since the 

disappearance of a long-lived particle will most likely represent a PB event. 

Different methodologies have been used under the umbrella of histone PB 

correction, ranging from measuring “bulk” histone levels and fitting the mean 

nuclear fluorescence (Chen et al., 2014), to variants of measuring histone 

dynamics at the single-molecule level (Callegari et al., 2019; A. S. Hansen et al., 

2017; Teves et al., 2016; Zhen et al., 2016). We will focus on the latter methods, 

as they use the same acquisition conditions as the TF of interest. One variant (A. 

S. Hansen et al., 2017; Teves et al., 2016) fits the histone data to an exponential 

family (usually two components). However, instead of using the information of the 

entire histone survival distribution, only the decay rate of the longest component is 

used to correct the residence time of the TF by subtraction (method #2), effectively 

assuming that both TF and photobleaching dynamics follow exponential forms. 

Unfortunately, this method still gives different residence times for different 

acquisition conditions (Figure 3-4D). Another variant (Callegari et al., 2019; Zhen 

et al., 2016) is similar to method #1, but uses the survival distribution from histones 

instead of the number of molecules to normalize the TF data (Figure 3-4E, 

method #3). Although much better than method #1 (and #2), it fails to normalize 

GR distributions obtained with different acquisition conditions (Figure 3-4E) 

because the survival distribution of histones still has a significant population of 

diffusive molecules that are not incorporated into chromatin. 
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We therefore propose a modification to the previous PB correction methods, 

by combining the best of the three methodologies (Figure 3-4F, method #4, see 

methods for details). First, as in method #2 and #3, we fit the histone (HaloTag-

H2B) SMT data, taken under the same imaging conditions as the TF of interest, to 

a family of exponentials. Second, we use the exponential distribution of the longer 

component (the entire exponential distribution rather than just the rate of the 

exponential) to normalize the TF survival data. In this way, we only correct for 

photobleaching by taking into account the bound histone population, without 

making any a priori assumptions about the survival distribution of a TF, as done in 

method #2. Using this modified version of PB correction, we find that GR survival 

time distributions obtained under different imaging conditions fall along the same 

curve as they should (Figure 3-4F). Taken together, our analysis suggests that 

this method more accurately corrects for photobleaching bias, as we obtain similar 

survival distribution of the TF irrespective of the photobleaching kinetics. 

3.3.2. GR dwell time distribution deviates from bi-exponential 
behaviour 

We had previously used method #1 and characterized GR’s survival 

distribution as bi-exponential (D. M. Presman et al., 2017; E. E. Swinstead et al., 

2016). Similarly, other groups have characterized binding times for other TFs as 

bi-exponentially distributed using their own PB correction methods [For example 

(Chen et al., 2014; A. S. Hansen et al., 2017; Lerner et al., 2020; Sugo et al., 2015; 

Zhen et al., 2016)]. Remarkably, when we apply our newly proposed method 

(method #4) of PB correction to the dwell time distribution derived from SMT data 
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of HaloTag-GR activated with corticosterone (Cort, 600 nM), we find that the 

distribution now deviates from a bi-exponential distribution (Figure 3-5A, Table 

3-2 and Table 3-3). The data look strikingly linear on a log-log plot (Figure 3-5B), 

which suggests power-law behavior. The deviation from exponential is not due to 

an artifact of HaloTag, as dynamics of HaloTag-alone remain bi-exponentially 

distributed with no detectable “bound” molecules longer than 20 seconds (Figure 

3-5C). To rule out artifacts from the imaging of exogenously expressed GR, we 

performed SMT on a GR knock-out cell line stably expressing Halo-GR at 

endogenous levels (Paakinaho et al., 2017). The results are indistinguishable from 

the exogenous Halo-GR (Figure 3-5D), validating our transient expression 

strategy. Our data thus far suggests that a bi-exponential function does not 

describe GR dynamics at the single-molecule level, and a power-law might better 

explain the data.  
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Figure 3-5 Impact of photobleaching correction on GR dynamics. 
(A-B) Single-molecule tracking data of GR activated with corticosterone (Cort). Data was acquired 
at 100 ms exposure time with 200ms interval. The survival distribution is shown (black), fit to a bi-
exponential (A) or a power-law (B) function. Dashed lines show 95% confidence intervals (CI). 
Number of cells = 65; number of tracks = 23172. (C) Comparison of survival distributions of 
HaloTag-alone (blue) with a bi-exponential fit and HaloTag-GR (black) with a power-law fit. Data 
was acquired at 100 ms exposure time with 200ms interval. Number of cells = 64; number of tracks 
= 19436. (D) Survival distributions of HaloTag-GR, treated with Dex, either transiently transfected 
in 3617 cells (blue) or stably integrated in a GR knock-out subclone (red), expressed at endogenous 
levels. Data was acquired at 10ms exposure time with 200ms interval. Number of cells = 60; 
number of tracks = 7068 for GR transient. Number of cells = 60; number of tracks =16450 for GR 
stable. Coloured lines show power-law fits. See Table 3-2 and Table 3-3 for details on fits. 

3.3.3. Theoretical models for TFs kinetics to interpret SMT data 

Deviation from bi-exponential behavior and the emergence of power-law 

behavior has been described previously using heterologous expression of 

bacterial proteins (TetR and LacI) into mammalian cell lines (Caccianini et al., 

2015; Normanno et al., 2015). Moreover, a multi-exponential model has recently 

been proposed for the TF CDX2 (Reisser et al., 2020) and SRF (Hipp et al., 2019). 
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To better understand the link between TF binding and the observed residence time 

distributions, we explored different theoretical models that may explain the 

emergence of different behaviors of the survival distribution.  

Calculation of dwell time distributions is a first-passage time problem in 

stochastic analysis and has been widely used to characterize the kinetic properties 

of molecular motors and ion channels (Liao et al., 2007). When simple kinetic 

schemes are involved, dwell time distributions can be calculated analytically. 

However, for more complex systems, other methods must be used. One 

particularly powerful approach is to assign one or more states to “act” as an 

absorbing boundary, and then solve the associated first-order kinetic equations to 

obtain dwell time distributions (Van Kampen, 1992) (Appendix A 1.1). We assume 

that the diffusive state (unbound) corresponds to an absorbing boundary state 

since tracked particles end with such transitions. The single molecule either 

photobleaches, disappears from the focal plane or begins diffusing. Any rebinding 

of the TF is considered an independent event. 

We first examined the widely used bi-exponential model under this 

framework (Figure 3-6A). According to this model, TFs can occupy three different 

states: diffusive, slow and fast. In our analytic framework, the diffusive state plays 

the role of an absorbing boundary state, since particles entering the state are no 

longer tracked. The slow and fast states correspond to the empirically observed 

specific and nonspecific binding, respectively (reviewed in (Goldstein & Hager, 

2018b)). With this assumption of a well separated and narrow distribution of 

affinities, the expected behavior of the survival distribution corresponds to a bi-
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exponential with the exponential parameters determining the average residence 

time of each state, as determined by analytic calculation (see Appendix A1.2) and 

confirmed with stochastic simulations (Figure 3-6B) using the Gillespie algorithm 

(Gillespie, 1977). We note that this model does not allow for transitions between 

fast and slow states, which can be hard to interpret biologically, as searching (fast) 

should lead to specific binding (slow).  

Figure 3-6 Theoretical models for TF kinetics. 
(A) State diagram (left) and schematic (right) of the bi-exponential model. TFs (orange oval) can 
bind to specific sites (blue square) or non-specific sites (grey circles) with rate constants k1 and k2 
or unbind and return to the diffusive state with rate constants, k’1 and k’2  respectively (A). 
Transitions between specific and non-specific sites are forbidden. (B) Numerical simulation 
showing the emergence of bi-exponential behaviour for the model in A. The first and second 
exponential components are also shown as indicated. (C) State diagram (left) and schematic (right) 
of the Kinetic model. In addition to binding/unbinding to/from specific and non-specific sites, TFs 
can transition from specific sites to non-specific sites (with rate constant k3) and vice versa (with 
rate constant k’3). Transitions between non-specific sites are considered indistinguishable 
(denoted by *). (D) Simulation results showing survival distributions arising from the kinetic model. 
(E) State diagram (left) of the continuum of affinities model, showing that transitions from a non-
specific site to any other site occur with rate constant k1 and from a specific to a non-specific site 
with rate constant k2. Transitions to the diffusive state from the specific site occur with rate constant 
k2 and from a non-specific site with rate constant k3. Schematic (right) illustrating that a TF arrives 
at a random site and scans the DNA until it finds a specific site from which it can subsequently 
unbind. (F) Simulation of (E) to calculate the dwell time, which is defined as the time spent on the 
DNA, either bound or sliding, showing the emergence of power-law behaviour (red line, PL 
exponent 0.5, k1=10 a.u, k2=1 a.u, k3=10 a.u). (G) Schematic of the energy landscapes, 
representing the different binding affinities and the local microenvironment denoted as potential 
wells with different depths. (H) Numerical simulation of (G) showing the emergence of power-law 
behaviour (blue line). See also Appendix A for details. 
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We next extended the bi-exponential model to allow for transitions between 

the slow and fast components, which we call the kinetic model (Figure 3-6C). This 

model is a generalization of the bi-exponential model above. We note that due to 

the resolution limit (~30nm), any transitions between specific and non-specific 

bound states cannot be distinguished experimentally. We found that for this 

extended model, the resulting survival distribution again corresponds to a bi-

exponential distribution, with the exponential parameters as the eigenvalues of the 

transition matrix (Appendix A 1.3). Stochastic simulations were performed as 

before, and the resultant distribution, displayed in Figure 3-6D, again clearly 

demonstrates exponential behavior. An implication of the kinetic model is that 

simple interpretations of the exponential parameters as kinetic transition rates in 

either of the exponential models is not straightforward, since each rate constant 

might represent transitions between multiple hidden states and therefore the 

average dwell time may not necessarily represent the characteristic timescale of a 

particular interaction with chromatin.  

Several theoretical studies have posited that TF searching for and “final” 

binding to its cognate site on the DNA involves a combination of bulk diffusion in 

the nucleus, 1D sliding along the DNA, hopping and translocation, and the 

theoretical search times for the TF to find specific sites in this framework have 

been estimated (M. Bauer & Metzler, 2012; Berg & Blomberg, 1976; Marklund et 

al., 2013). In this model, TFs will have a multiplicity of short-lived bound states that 

must be accounted for in the analysis of dwell time data. To do so, we modelled 

TF movement on the DNA as hopping on a circular chain composed of specific 
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and non-specific sites (Figure 3-6E). The main assumption in this model 

(Appendix A 1.4) is that the number of non-specific sites on the DNA is much 

larger than the number of specific sites. This is biologically reasonable as only a 

few to tens of thousands of specific sites are bound by any TF according to genome 

wide studies (J. Wang et al., 2012), while the entire genome contains millions of 

“other” potential chromatin sites. Since the length of time spent bound to the DNA 

depends on the number of non-specific sites visited before binding to and 

dissociating from the specific site, this will manifest itself as a continuum of 

effective binding affinities. An analytical solution can be found for the simplest case 

in which there is a single specific binding site and the TF can only unbind from this 

specific site (Appendix A 1.4.3). Biologically, this situation represents the case in 

which the TF finds the specific site and stays bound or rebinds rapidly upon 

dissociation. This has been hinted at by evidence of asymmetric diffusion prior to 

TFs binding (A. S. Hansen, Amitai, Cattoglio, Tjian, & Darzacq, 2020) and protein-

protein interaction mediated phase separation of different transcription factors 

(Chong et al., 2018). A simulation based on the model gives rise to asymptotic 

power-law behavior at time scales compatible with specific binding, for a number 

of representative parameter values (Figure 3-6F).  

Finally, TFs can bind chromatin regions with varying physical 

microenvironments and motif degeneracy (Brodsky et al., 2020; Schöne et al., 

2016; F. Zhu et al., 2018). These local properties affect the binding affinity of the 

TF. Given the heterogeneities in local organization and nuclear structure, TF 

binding sites on chromatin can be viewed as a collection of traps with a distribution 
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of trap depths (Figure 3-6G), analogous to binding affinities. If the binding affinities 

across different nuclear microenvironments and response elements are broadly 

and continuously distributed (for instance, exponentially distributed binding 

affinities), we can analytically demonstrate that the dwell times will asymptotically 

approach a power-law (Bouchaud & Georges, 1990), as confirmed by simulations 

(Figure 3-6H and Appendix A 1.5). In summary, we present phenomenological 

models that give us a framework to evaluate possible outcomes in SMT data.  

3.3.4. Dwell time distributions of GR and other TFs follow power-law 
behaviour 

Having developed a theoretical framework to evaluate TF dynamic 

behaviour, we next explored which model better explains GR dynamics. We fit the 

survival distributions of GR activated with Corticosterone (GR-Cort, Figure 3-7A), 

or with dexamethasone (Dex, 100 nM), a more potent, synthetic hormone (GR-

Dex, Figure 3-7B) to bi-exponential, kinetic and power-law models. As evident 

from the distributions, the bi-exponential and kinetic models show qualitative 

deviations from the data. We then used metrics based on the Bayesian information 

criterion (BIC) (Schwarz, 1978) test to choose the best predictive model (see 

Methods). Indeed, our statistical analysis confirms that a power-law corresponds 

to the best predictive model based on these metrics over a fit to the bi-exponential 

or kinetic model [Delta-BIC1 is 114423 (1047.3) for GR-cort; 13572 (942.8) for GR-

Dex for the power-law fit compared to kinetic model (bi-exponential model)]. 

Moreover, the power-law fits were also superior to a tri-exponential fit (Agarwal et 

al., 2017; Hipp et al., 2019) (see Table 3-2 and Table 3-3 for all statistical 
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comparisons). The apparent deviation in the tail of the distribution is due to the low 

number of data points, as shown by the increased confidence intervals. 

Surprisingly, we find that GR-Dex has a larger power-law exponent (β) than GR-

Cort (c.f. Figure 3-7A and Figure 3-7B), suggesting longer dwell times for the less 

potent ligand (Cort). This counterintuitive result is nevertheless consistent with a 

previous report correlating residence times with transcriptional bursting, wherein 

longer residence times (GR-Cort) correspond to a larger burst size, while overall 

transcriptional output is greater in GR-Dex due to a higher bound fraction (Stavreva 

et al., 2019).  
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Figure 3-7 Dwell time distribution of GR follows power-law behaviour. 
(A-B) Survival distribution of GR activated with corticosterone (Cort, panel A, acquired with 500ms 
exposure time and 1000ms interval) and dexamethasone (Dex, panel B, acquired with 100ms 
exposure time and 200ms interval) obtained from SMT data. Number of cells/number of tracks are 
30/15732 for GR (Cort); 40/29211 for GR (dex). Red lines show the best fit obtained for the bi-
exponential model (left), the kinetic model (center) and a power-law (right). Dashed lines show the 
95% confidence intervals (CI). (C) Survival distribution of GR activated by Cort (black symbols) or 
following washout of the hormone under a 20 min (red) or a more stringent 4h washout protocol 
(blue). Solid lines show fits to power-law model. Data acquired with 100ms exposure time and 
200ms interval. Number of cells/number of tracks are 65/23172 for GR (Cort); 62/22530 for GR 
(Cort 20 min washout); 61/16611 for GR (Cort 4h washout). (D) Aggregate data for power-law 
exponents of fits to survival distribution of GR following stimulation by Cort, 20 min washout 
following stimulation and 4 h following washout. Errors represent 95% confidence interval. See 
Table 3-2 and Table 3-3 for details on data acquisition and statistical comparisons. 

We found that the power-law model better describes the data independent 

of the acquisition conditions (Figure 3-8A), yielding the same exponent under 

different PB rates (Figure 3-8B). In contrast, a fit to a triple-exponential model 
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showed that the parameters are dependent on acquisition times (Figure 3-8 C-D). 

Further, the survival distributions obtained using a different tracking software 

[uTrack, (Jaqaman et al., 2008)] were very similar to our tracking algorithm, ruling 

out any artifacts due to tracking (Figure 3-8E). Finally, the power-law behavior of 

the survival distribution of GR is conserved even if we use a different tag such as 

SNAP-Tag (Gautier et al., 2008) (Figure 3-8F).  
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Figure 3-8 GR dwell times follow power-law distribution. 
(A) Power-law fits (red line) to the survival distribution of Corticosterone (Cort) activated GR (black 
symbols) from SMT data acquired at the indicated exposure (e) and interval times (i). Number of 
cells/number of tracks are 65/23172 for GRe100ms/i200ms; 34/37953 for GRe500ms/i500ms; and 
30/15732 for GRe500ms/i1000ms. Bottom panel shows independent replicates of Cort-treated GR 
data acquired at 1000ms intervals, exemplifying reproducibility between SMT experiments. (B) 
Power-law exponent of GR-Cort SMT data under different photobleaching rates, generated by 
modulation of acquisition conditions, as indicated. Error bars represent 95% confidence intervals. 
(C) Survival distribution of GR-Cort fit to a triple exponential function. (D) The three exponential 
parameters of the triple exponential fit for different acquisition conditions as indicated shows that 
these parameters depend on acquisition conditions. (E) Survival distribution of GR dynamics 
tracked with uTrack (bue symbols) or TrackRecord (red symbols) software packages. Dashed line 
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shows the power-law fit for uTrack. Number of cells/number of tracks are 65/23172 for 
TrackRecord; 40/11890 for uTrack. (F) Survival distribution of GR either tagged with HaloTag 
(Halo-GR, blue symbols) or SnapTag (SNAP-GR, red symbols) and the corresponding power law 
fits (black line). Number of cells/number of tracks are 67/9374 for Halo-GR; 50/7023 for SNAP-GR. 
See Table S1 for details on data points and statistics. 

Previous work has largely assumed that the dynamics of non-specific 

binding is well described by a single exponential component with a much shorter 

dwell time than specific binding (Chen et al., 2014; A. S. Hansen et al., 2017; 

Mazza et al., 2012a; Morisaki et al., 2014; D. M. Presman et al., 2017). However, 

heterologous proteins have also been reported to show power-law behavior for the 

dwell times (Caccianini et al., 2015; Normanno et al., 2015). To examine the 

dynamics of non-specific binding, we inactivated GR by washing out the hormone 

for 20 minutes, which greatly reduces specific binding as measured by chromatin 

immunoprecipitation (Stavreva et al., 2015). Interestingly, GR still exhibits power-

law behaviour both for brief (20 min) washout, as well as longer washouts (four 

hours) (Figure 3-7C), although with shorter dwell times as indicated by a larger 

power-law exponent (Figure 3-7D).  

To further establish the generality of our observations, we tested the dwell 

time distributions of different proteins previously characterized as bi-exponentially 

distributed by SMT (A. S. Hansen et al., 2017; Paakinaho et al., 2017; E. E. 

Swinstead et al., 2016). As with GR, both ER and FOXA1 exhibit power-law 

distributions (Figure 3-9A), with similar dynamics (β = 0.698  0.005 for ER and 

0.742  0.003 for FOXA1) but slower compared to GR (β = 0.828  0.004). This 

remains consistent with our previous observations wherein GR was more dynamic 

than ER and FOXA1 (E. E. Swinstead et al., 2016). Similarly, one of the major 
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ATPase subunits of the SWI/SNF chromatin remodelling complex, SMARCA4, 

also exhibits a residence time distribution compatible with power-law behavior (β 

= 0.845  0.005, Figure 3-9B). Surprisingly, even the dynamics of the 11-zinc 

finger DNA-binding protein CTCF, involved in genome architecture among other 

functions (A. S. Hansen et al., 2017), is better described by a power-law (β = 0.55 

 0.02, Figure 3-9B). Taken together, our results indicate that the bi-exponential 

model might not properly reflect the dynamics of a wide range of chromatin 

interacting factors, and that it underestimates TF dwell times on chromatin. Thus, 

the power-law distribution emerges as a better descriptor of single-molecule 

dynamics, at least for the proteins tested. 
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Figure 3-9 Dwell time distributions of TFs and other chromatin associated proteins 
show power-law behaviour. 

(A-B) Survival distribution calculated from SMT data of the Halo-Tagged oestrogen receptor (ER, 
activated with oestradiol, E2) (green), FOXA1 (magenta), CTCF (red) and SMARCA4 (cyan). GR 
(activated with dex, black) is shown for comparison in both plots. Data was acquired at 10ms 
exposure time with 200ms interval. Number of cells/number of tracks are 60/17823 for ER; 
41/12864 for FOXA1; 50/7023 for SMARCA4, 40/29211 for GR (dex). CTCF data was acquired 
with a 10 ms exposure time and a 2000ms interval. Number of cells/number of tracks are 48/11606 
for CTCF. Symbols are SMT data and solid lines are power-law fits to the data (see Table 3-2 and 
Table 3-3 for comparison and number of data points). 

In conclusion, our analysis reveals hitherto unobserved features of the 

distribution of mammalian TF residence times (power-law vs. bi-exponential). This, 

in turn, suggests that specific and non-specific binding cannot be identified as two 

distinct populations with discrete (and measurable) residence times. 
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3.4. Discussion 

In the present study, we propose a modified SMT pipeline with an improved 

photobleaching correction method to prevent bias of the dwell time distribution of 

TFs, and test underlying models using different statistical metrics. We are now able 

to reconcile data acquired under different experimental conditions whereas 

previous attempts were not successful (Paakinaho et al., 2017).  

We find that GR, as well as other TFs (ER and FOXA1), the chromatin 

remodeler SMARCA4 (also known as BRG1), and the insulator protein CTCF, all 

appear to exhibit power-law dynamics. It is generally accepted that to confirm this 

distribution, at least two orders of magnitude (both in x and y axes) should behave 

linearly on a log-log plot (Stumpf & Porter, 2012). This would require measuring 

TF binding up to several minutes (> 10 min), which is not currently feasible by 

SMT. Nevertheless, while there is a possibility that the power-law truncates at 

some point for really long binding times, we have enough statistical evidence to 

conclude that the power-law fit is a better predictor than a bi-exponential model 

over the observable experimental timescales. Examining whether more (or all) of 

the TFs originally characterized by bi-exponential behavior are better described by 

a power-law exceeds the scope of this work and needs to be evaluated on a TF-

by-TF basis.  

Our observation of power-law behavior of GR residence times suggests a 

model with a continuum of DNA-bound states rather than discrete non-

specific/specific binding times (Figure 7). Consistent with this model, inactivation 

of GR by washing-out of the hormone revealed that the dwell time distribution also 
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follows a power-law, indicating no apparent dynamical differences between 

specific and non-specific binding, as previously observed for bacterial proteins 

expressed in mammalian systems (Caccianini et al., 2015; Normanno et al., 2015). 

Nevertheless, the overall residence times decrease when the receptor is less 

active, suggesting that a majority of the longer events observed with the fully 

activated receptor are associated with productive transcription as previously 

reported (Callegari et al., 2019; Chen et al., 2014; Mazza et al., 2012a; Morisaki et 

al., 2014; Paakinaho et al., 2017).  

If all binding affinities lie on a smooth continuum, is it possible to distinctly 

define non-specific binding or assign such states to a set of sequences that can 

be bound but are kinetically indistinguishable? TFs can interact non-specifically 

with chromatin through electrostatic interactions with predicted short binding times 

and can also diffuse along DNA in vitro (Dahirel, Paillusson, Jardat, Barbi, & Victor, 

2009). On the other hand, non-specific protein-DNA interactions can be broadly 

distributed with high binding energies at the tail of the distribution due to symmetric 

sequences in DNA that might facilitate long search times on chromatin (Afek, 

Schipper, Horton, Gordân, & Lukatsky, 2014). In an SMT experiment, due to 

resolution limitations and natural thermal fluctuations, the kinetics of diffusion along 

DNA, rapid binding/rebinding to non-specific sites, and transient trapping of a 

protein due to protein-protein interactions may appear indistinguishable from 

specific binding (kinetic model, Figure 3-6C). Therefore, non-specific binding is 

defined by the limits of the measurement, and not necessarily discernible as a 
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different mode of binding. However, any sequence with higher affinity (with long 

dwell times) is likely to be specific.   

An important characteristic of power-law distributions is that for exponents 

lower than or equal to one (as in our case), the mean is not a well-defined quantity 

(Newman, 2005). This implies that the mean can vary enormously from one 

measurement to the next and it is a limited measure of the process. Interestingly, 

the heavy tails of power-law distributions imply that the probability of long-lived 

events is not negligible. This raises the possibility that productive binding events, 

although rare, may have dwell times much longer than previously appreciated, as 

indicated by the right-skewness of the distribution.  We have recently shown a 

temporal correlation between GR dwell times and bound fraction with the length 

and frequency of transcriptional bursting (Stavreva et al., 2019). A similar behavior 

has been observed in yeast with the Gal4/GAL3 model (Donovan et al., 2019). 

However, non-specific binding can also result in TF binding events with long 

residence times, the implications of which are still not known. Critical efforts are 

required to investigate whether the slow(er) stops seen in SMT are matched 

exclusively to specific interactions with chromatin (Lerner et al., 2020). For 

example, GR binding precedes RNA synthesis by ~3 min (Stavreva et al., 2019). 

Alternatively, a sub-population of these “stops” could correspond to microscopic 

regions in the nucleus where diffusion is severely limited, due to transient 

interaction with “clustered” structures such as foci observed for GR (Stortz et al., 

2017), or another hitherto unknown mechanism. 
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The emergence of power-law might reflect the wide distribution of binding 

affinities in the nucleus. This broad distribution of affinities is puzzling but may be 

explained by a diverse set of non-mutually exclusive mechanisms. First, the 

intrinsic affinity of TFs for DNA likely follows the dwell time power-law model, 

ranging smoothly from “non-specific” to the highest affinity. Indeed, it has been 

shown that TF-DNA binding affinities ranges from low-affinity, not necessarily 

detectable by ChIP, to high affinity, corresponding to strong CHIP-seq peaks 

(Rastogi et al., 2018). In addition, microfluidic studies (k-MITOMI) of the mouse TF 

Zif268 reported binding times in the 0.2s-200s range, consistent with our 

observation of in vivo dwell times (Geertz, Shore, & Maerkl, 2012). Moreover, tag 

density in ChIP-seq experiments has been correlated to TF affinity, and are also 

power-law distributed, at least for CTCF and a few TFs (Jothi, Cuddapah, Barski, 

Cui, & Zhao, 2008). While this suggests a potential connection between ChIP-seq 

data, occupancy, and dynamics of TF binding, further experiments are needed to 

demonstrate causation. 

Second, nuclear structure and the chromatin environment is known to be 

highly heterogeneous (Finn & Misteli, 2019; Liu & Tjian, 2018). Thus, TFs will 

encounter a wide variety of chromatin states (compacted fibers, different 

nucleosome modification conditions, etc.). Moreover, affinities for the thousands 

of alternative binding sites in response elements likely vary significantly. 

Furthermore, recent work points to the presence of transcriptional hubs and liquid-

liquid phase separation domains (Chong et al., 2018; Garcia et al., 2021a; Hnisz, 

Shrinivas, Young, Chakraborty, & Sharp, 2017; H. Lu et al., 2018; Sabari et al., 
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2018; Stortz, Pecci, Presman, & Levi, 2020) that contribute to the complexity of 

nuclear organization. If TFs exhibit different dynamical properties in these 

structures, it would not be surprising to find a broad variation in binding affinities. 

Third, power-law distributed dwell time distributions can emerge as a consequence 

of the molecular kinetics of the protein itself, as recently reported in vitro by RNA 

polymerase II in bacteria (Janissen, Eslami-Mossallam, Artsimovitch, Depken, & 

Dekker, 2020). Fourth, the heterogeneity in the searching mechanism of TFs may 

affect the effective affinity constant observed in SMT experiments (M.J. Saxton, 

2020). In support of the latter, while heterologous expression of TetR in 

mammalian cells showed power-law behaviour for non-specific binding, it could 

still be described as an exponential on an artificially (and single) specific DNA 

binding array (Normanno et al., 2015). Thus, the intrinsic nature of the searching 

mechanism of any DNA-binding protein in native chromatin may be governed by 

power-law dynamics. In addition, the heterogeneity of dwell times in the thousands 

of response elements for an endogenous TF could explain why GR can exhibit 

power-law tails as opposed to TetR, which can only bind to one artificial array site. 

Interestingly, a study in yeast (Mehta et al., 2018) reports that both the TF Ace1p 

and the chromatin remodeler RSC binding follow a bi-exponential binding 

distribution in cells containing a natural tandem of ten CUP1 (Ace1p responsive) 

genes. This dynamic and discrete behaviour, in contrast with our GR data, can be 

explained by the particular and homogeneous chromatin environment of a single 

array of specific sites. Consequently, we speculate that a broad distribution of 

binding affinities due to a whole population of different binding sites (thousands in 
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the case of GR) may result in power-law behaviour (Figure 3-10). In this sense, a 

few defined states and the continuum may just be two ends of a spectrum. Thus, 

we might need to revisit the classification of non-specific TF binding solely as static 

interactions with random DNA sequences but rather arising from a dynamical 

process involving biophysical properties of the nuclear microenvironment, 

chromatin, and protein-protein interactions. Consistently, we have recently 

described “binding events” which are independent of chromatin interactions, 

power-law distributed, and depend on intrinsically disordered regions (IDRs) 

(Garcia et al., 2021a). 

 

Figure 3-10 Heterogeneity in binding affinities can lead to a power-law behaviour 
of survival time distributions. 

A) Schematic of the binding affinity distributions for a bi-exponential model. In this model, specific 
sites (blue) and non-specific sites (red) have a well separated and narrow distribution of affinities 
(ΔE, left graph), which results in a bi-exponential behaviour of the overall survival distribution (right 
graph, black curve). (B) Schematic showing a broad distribution of TF affinities (black line) which 
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arises as a superposition of multiple sites with closely spaced affinity distributions (depicted in 
different colours in the left graph). Note that the distributions get progressively wider. This 
distribution of affinities may explain the emergence of power-law behaviour (characterized by the 
exponent, β) in the residence time of TFs (right graph).  

 

While SMT methodology gives us the opportunity to study TF dynamics with 

unprecedented temporal and spatial resolution, it still has some major drawbacks. 

The sparse labelling conditions needed to resolve individual molecules severely 

limit the possibility of following all functional TFs at a time, and therefore may affect 

the implementation of a two-color version where two different proteins interact at 

the single-molecule level. In addition, we still do not have direct measurements of 

the affinity at specific sites which makes it difficult to functionally distinguish 

between specific and non-specific binding. Nevertheless, the current major 

limitation in SMT is the photostability of the fluorophore, which limits the dynamical 

range of experiments and prevents accurate analysis of long TF trajectories that 

sample over different binding and/or diffusive events. Our temporal measurement 

window will improve with better, more stable fluorophores. Until then, our proposed 

pipeline allows us to have better estimates on the dynamics and the residence time 

distribution of TFs.  

In summary, by incorporating an improved PB correction method and 

testing different models, we showed that the survival distribution of GR and other 

TFs dwell times does not follow an exponential model. Ultimately, if there is a way 

to define or distinguish non-specific from specific binding, our results indicate that 

it cannot be based on their global residence times. However, the data is consistent 

with a power-law distribution, which we suggest may arise generically due to 
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heterogeneities in TF interactions with DNA or in the diffusive environment in the 

nucleus. Thus, the slope of the residence time distribution does provide an 

estimate of the overall affinity and can be used to compare TFs and their function 

under different conditions.  

3.5. Methods 

3.5.1. Plasmid constructs  

The pHaloTag–GR has been previously described (Morisaki et al., 2014). 

The construct expresses rat GR fused with HaloTag protein (Promega, Madison, 

WI, USA) in the C-terminal domain under the CMVd1 promoter. The pHaloTag-

H2B has also been previously described (Mazza et al., 2012a). The N-terminus of 

H2B is fused with the HaloTag. pHaloTag-H3 and-H4 were purchased from 

Promega (pFN21AE1298 and pFN21AE0273, respectively). The pHaloTag-ER 

and pHaloTag-FoxA1 has been previously described (E. E. Swinstead et al., 

2016). The pHalo-CTCF expresses the mouse CTCF with HaloTag fused in the C-

Terminal domain. It has been generated by PCR amplification from the pCTCF-

GFP vector (Nakahashi et al., 2013) and sub cloned into the pHalo-GR previously 

cut with PvuI and XhoI restriction enzymes (New England Biolabs). The pHalo-

SMARCA4 was purchased from Promega (pFN21AE0798). The pSNAP and 

pSNAP-GR have been previously described (D. M. Presman et al., 2017).  
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3.5.2. Cell culture and transfection 

The 3617 mouse mammary adenocarcinoma cell line used in this study as 

well as the GR knock-out subclone expressing Halo-GR has been previously 

described (Paakinaho et al., 2017; D. M. Presman et al., 2017). Cells were 

routinely cultured in high glucose DMEM supplemented with 10% fetal bovine 

serum and 2 mM L-glutamine at 37°C in a CO2-controlled humidified incubator. 

The cell line contains a stable integration of the rat GFP–GR under tetracycline 

regulation (Hager et al., 2000). To prevent expression of GFP–GR, the cells were 

grown in the presence of 5 µg/ml tetracycline (Sigma-Aldrich, St. Louis, MO, USA).  

5 million cells were electroporated using BTX T820 Electro Square Porator 

(Harvard Apparatus, Holliston, MA, USA) in 100ul of DPBS with 2.5 ug of plasmid. 

25 ms pulses of 120v were used and cells were resuspended in fresh media. 

Single-molecule imaging experiments were set up as follows: 100,000 

electroporated cells were seeded onto each well of a 2-well Lab-Tek chamber (1.5 

German borosilicate coverglass, Thermo Fisher, Waltham, MA, USA) in high 

glucose DMEM supplemented with 10% FBS (Life Technologies), 2mM L- 

glutamine, 5 µg/ml tetracycline, and cultured overnight. The media was then 

replaced with high glucose DMEM supplemented with 10% charcoal stripped FBS 

(Life Technologies), 2mM L-glutamine, 5 µg/ml tetracycline, and incubated at 37°C 

for at least 24 hours before labeling.  
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3.5.3. Fluorescent labeling of Halo-tagged molecules and hormone 
treatments 

Transfected cells were incubated with 5 nM JF549-HaloTag or 10 nM 

cpSNAP-tag (Grimm et al., 2015) ligand for 20 min at 37°C. Stably integrated Halo-

GR cells were incubated with 0.5 nM JF549-HaloTag for 20 min at 37°C. Free 

ligand was depleted by washing three times with phenol red free DMEM media 

(supplemented with 10% charcoal-stripped FBS and 5 µg/ml tetracycline) in 15 min 

intervals at 37°C. Next, cells were treated with 600 nM Corticosterone (Cort) 

(Sigma-Aldrich) or 100 nM Dexamethasone (Dex) (Sigma-Aldrich), or 100 nM 

estradiol (Sigma-Aldrich) and incubated for 20 min at 37°C before imaging. For 

wash-out experiments, cells were washed with media three times for 4 different 

intervals (every 15 minutes for 1 hour or every hour for 4 hours) after 20 minutes 

of hormone treatment and finally imaged. 

 

3.5.4. Image acquisition for single-molecule tracking and analysis 

A custom Highly Inclined and Laminated Optical sheet (HiLO) microscope 

was used as previously described in detail (D. M. Presman et al., 2017), with an 

objective heater to reduce drifting. Briefly, the custom-built microscope from the 

CCR, LRBGE Optical Microscopy Core facility is controlled by µManager software 

(Open Imaging, Inc., San Francisco, CA.), equipped with an Okolab stage top 

incubator for CO2 (5%) and temperature control (37°C), a 150X 1.45 numerical 

aperture objective (Olympus Scientific Solutions, Waltham, MA), a 561nm laser 

(iFLEX-Mustang, Excelitas Technologies Corp., Waltham, MA), and an acousto-
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optic tunable filter (AOTFnC- 400.650, AA Optoelectronic, Orsay, France). Images 

were collected on an EM-CCD camera (Evolve 512, Photometrics). Tracking was 

performed in MATLAB (version 2016a, The MathWorks, Inc., Natick, MA) with the 

custom software TrackRecord [version 6, originally developed elsewhere (Mazza 

et al., 2013) and updated in-house]. For step-by-step instructions, please refer to 

the User Manual file in the supplemental files. Briefly, in TrackRecord, to analyze 

each time series, data were filtered using top-hat, Wiener, and Gaussian filters, 

then particles were detected, fitted to two dimensional gaussian function for “super 

resolution” and finally tracked using a nearest neighbor algorithm (D. M. Presman 

et al., 2017). Particle trajectories are divided into mobile and immobile. The 

displacements of histones H2B characterize the thermal jiggling of the DNA and 

from it, two parameters are extracted called Rmin and Rmax. Rmin corresponds to the 

maximum displacement of 99% of histones at a time-lag of 2 frames (frame to 

frame displacement) while Rmax corresponds to the maximum displacement of 99% 

of histones at a time-lag of shortest track. The shortest track is calculated using 

the diffusion coefficient of GR (~5 μm2/s) to minimize tracking errors as explained 

elsewhere (Mazza et al., 2012a). The immobile tracks are used to calculate the 

survival distribution using the Kaplan-Meier estimate. The 95% confidence interval 

was estimated using Greenwood’s Formula. All fits performed to the data were 

implemented with the nonlinear least square method using bi-square weights due 

to the noise on the tail of the survival distribution. Parameters used for acquisition 

conditions and analysis are shown in Table 3-1. 
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Exported tracking data was further analyzed in MATLAB by a custom-made 

script (see User Manual for details). For comparison and control purposes, we also 

performed tracking using u-Tack (Jaqaman et al., 2008). Briefly, we used the 

“Gaussian Mixture-Model Fitting” under default parameters for particle detection 

and localization. The tracking was then performed with the following values: 

Problem dimensionality = 2; Maximum Gap to close = 2; Minimum Length of Track 

Segment from the First Step = 4; Do segment merging = checked; Do segment 

splitting = checked. Finally, we chose the “Cost functions” and “Kalman Filter 

functions” to the “Brownian + Directed motion” model.  

3.5.5. Photobleaching correction 

The modified correction method is based on histone data as a proxy for the 

fluorophore stability as originally performed elsewhere (Callegari et al., 2019; A. S. 

Hansen et al., 2017; Teves et al., 2016; Zhen et al., 2016). One caveat still 

common to all methods described and applied here is the assumption of 

homogenous illumination, which unfortunately does not occur in HiLO set ups, as 

the laser hits the sample at an inclined angle [discussed elsewhere (D. M. Presman 

et al., 2017)]. A first step involves SMT of histones under the same conditions that 

the TF of interest will be imaged, as previously described (Callegari et al., 2019; 

A. S. Hansen et al., 2017; Teves et al., 2016; Zhen et al., 2016). We tracked 

individual H2B, H3 or H4 molecules using HiLO by sub-optimal transient 

transfection of HaloTag-fused histones, labeled with JF549 HaloTag ligand. The 

three histone variants we tested presented statistically similar dynamics (Figure 

3-11A). We continued with H2B for all further experiments. Histone genes are 
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primarily transcribed upon entry into S-phase of the cell cycle (Ewen, 2000). Due 

to our transient transfection approach, HaloTag-H2B proteins will be translated 

during interphase and therefore some histones will not be incorporated into 

chromatin at the time of acquisition. Hence, the survival distribution of H2B will be 

composed of PB kinetics and a diffusive/transient binding component. To account 

for this behavior and assuming PB kinetics at the single-molecule level are 

exponentially distributed, the survival distribution of H2B is fit to an exponential 

family with three components (Figure 3-11B). This constitutes the second step in 

the protocol, which only differs thus far from previous work in the fitting to three 

exponential rather than two-exponentials (Callegari et al., 2019; A. S. Hansen et 

al., 2017; Teves et al., 2016); or fitting to two exponential with an offset (Zhen et 

al., 2016). The faster components characterize the dynamics of histones that have 

not been stably incorporated into chromatin, while the third (slower) component 

describes the PB kinetics of the fluorophore. The invariance of the first two 

components to photobleaching conditions strongly suggest they are indeed due to 

the dynamics of unincorporated histones, tracking errors and shortest track 

selection (Figure 3-11C). To confirm that the third component quantifies PB 

kinetics and not the intrinsic dynamics of H2B, we calculated PB lifetimes using 

histones H3 and H4 with the same statistical results (Figure 3-11D). Finally, the 

third step for corrects the binding dynamics of the TF by using the experimental 

(observed) TF distribution and the PB dynamics. It is the ideal measurement where 

neither photobleaching nor sample drift occur. The novelty of our approach is that 

we use the third exponential distribution of H2B as a proxy for photobleaching, 
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while other methods use the entire H2B distribution (Callegari et al., 2019). In this 

sense, no assumption regarding the survival distribution of the TF is made, and 

the empirical survival distribution is corrected by the third exponential component 

of the H2B survival distribution.  

 

Figure 3-11 Histone dynamics as a proxy for photobleaching correction. 
(A) Survival distribution of histones H2B, H3 and H4 acquired under the same acquisition 
parameters as indicated (e, exposure time, i, interval). Number of cells/number of tracks are 
100/36625 for H2B; 59/11708 for H3; 43/15601 for H4. (B) Fit of H2B survival distribution to a 
double exponential and triple exponential. A triple exponential better represents the experimental 
data where the slower component corresponds to the photobleaching rate in the focal plane. CI is 
the confidence interval. (C) Fitting the H2B data from two different exposure conditions (10ms and 
100ms) to a triple exponential model gives the exponents k1, k2, k3. The bar graph shows the 
mean +/- 95% confidence interval. (D) Mean fluorescence lifetime calculated as 1/ k3 where k3 is 
the slowest rate of the triple exponential. H2B (12.73 +/- 0.46 s), H3 (12.84 +/- 0.35 s) and H4 
(12.30 +/- 0.55 s). Errors represent 95% confidence interval. (E) Survival distribution of H2B 
dynamics (black) corrected with our previous correction method (yellow), or the upgraded one 
(green). Note that after correction with method #1, H2B still has a finite dwell time. However, after 
correction with method #4, H2B presents two different regimes: stably incorporated histones that 
have very long residence times (plateau) and a dynamic regime representing unincorporated 
histones nonspecifically interacting in the nucleus. (F) Representative intensity profile of a histone 
particle selected from the tail of the distribution, with a cumulative probability of less than 1%. These 
very long events (outliers) usually present multiple photobleaching steps, indicating multiple 
particles at the same point-spread function. This might explain the deviations in the long tail of the 
H2B distribution after photobleaching correction. See Table 3-2 and Table 3-3 for data points 
details 
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More formally, let  𝑃(𝜏𝑇𝐹 ≥ 𝑡),  𝑃(𝜏𝑝 ≥ 𝑡),  𝑃(𝜏𝑇𝐹𝑟𝑒𝑎𝑙 ≥ 𝑡)  be the survival 

distribution of an experimental particle, photobleached particle and a dynamic 

particle, respectively. The survival distribution of an experimental particle is the 

one typically measured in a SMT experiment; the survival distribution of a dynamic 

particle corresponds to the ideal measurement where neither photobleaching nor 

sample drift occur. We are interested in 𝑃(𝜏𝑇𝐹𝑟𝑒𝑎𝑙 ≥ 𝑡) 

𝑃(𝜏𝑇𝐹 ≥ 𝑡) = 𝑃(𝜏𝑝 ≥ 𝑡;𝜏𝑇𝐹𝑟𝑒𝑎𝑙 ≥ 𝑡)    (eq. 1) 

If a molecule is observed to live longer than 𝑡 then it neither photobleached 

nor unbound from the DNA. These two processes are independent: 

𝑃(𝜏𝑇𝐹 ≥ 𝑡) = 𝑃(𝜏𝑝 ≥ 𝑡)𝑃(𝜏𝑇𝐹𝑟𝑒𝑎𝑙 ≥ 𝑡) → 𝑃(𝜏𝑇𝐹𝑟𝑒𝑎𝑙 ≥ 𝑡) =
𝑃(𝜏𝑇𝐹≥𝑡)

𝑃(𝜏𝑝≥𝑡)
     (eq. 2) 

If the empirical survival distribution of photobleaching at the focal plane is 

available, then the dynamic survival distribution can be extracted from the 

microscopy data. 

𝑃(𝜏𝑝 ≥ 𝑡) is estimated by fitting the survival distribution of H2B by a triple 

exponential function of the form: 

𝑃(𝜏ℎ𝑖𝑠 ≥ 𝑡) = 𝑓1𝑒
−𝛾1𝑡 +𝑓2𝑒

−𝛾2𝑡 +𝑓3𝑒
−𝛾3𝑡      (eq. 3)       

where 𝛾3 corresponds to the photobleaching and 𝛾1; 𝛾2 the parameters of 

the dynamics of diffusive and/or unincorporated histones. The survival distributions 

are normalized with respect to the shortest track, for a shortest track of 6 frames 

and an acquisition interval of 200ms, the survival distribution is set up to 𝑃(𝜏 ≥

1.2𝑠) = 1. 
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Finally, assuming that the third component of 𝑃(𝜏ℎ𝑖𝑠 ≥ 𝑡)  corresponds to 

photobleaching:   

𝑃(𝜏𝑝 ≥ 𝑡) = 𝑒−𝛾3𝑡      (eq. 4) 

𝑃(𝜏𝑇𝐹𝑟𝑒𝑎𝑙 ≥ 𝑡) =
𝑃(𝜏𝑇𝐹≥𝑡)

𝑒−𝛾3𝑡
      (eq. 5) 

If we correct the H2B survival distribution with this method, we observe a 

predictable upward shift of the distribution (Figure 3-11E), in contrast to our 

previous methodology (Paakinaho et al., 2017), wherein H2B data still artifactually 

resembles the dynamics of a TF. The high fluctuations at the tail of the distribution 

are likely due to noise in the data and the appearance of multiple particles within 

the point spread function, as illustrated in Figure 3-11F.   

 

3.5.6. Quantification and statistical analysis 

For statistical analysis, all the parameters are reported by the ensemble 

average, standard deviation (s.d.) and number of observations. At least three 

biological replicates of SMT experiments were performed per condition. Two 

sample K-S test on the survival distribution were performed between replicates to 

confirm statistical reproducibility. Between 10 and 20 cells were imaged per SMT 

replicate. Each condition has at least 15000 tracks after analysis of SMT 

experiments. For survival distribution analysis, a statistical threshold of 5 tracks 

were implemented for visualization purposes only. Any point in the survival 

distribution with less than 5 cumulative tracks was not displayed in the figure. Data 

was not removed for fitting purposes. Fitting was done using non-linear least 
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squares, initially a best local fit was found and then 50 iterations were run to find a 

global solution.  

Simulations were written in MATLAB to numerically verify the different 

models of TF using the Gillespie algorithm (Gillespie, 1977). Graphical inspection 

was used to qualitatively determine if a straight line was observed for multiple 

decades in the case of a power-law fit in a log-log plot. Two different metrics were 

used to determine the difference between exponential models and power-law 

models. The first metric corresponds to Bayesian information criterion (BIC) using 

the probability distribution function (PDF) corrected for photobleaching as the 

likelihood function. BIC is a criterion for model selection that penalizes for model 

complexity (number of free parameters in the model). The PDF of TF dwell times 

was normalized between the minimum and maximum observation range (BIC1). 

BIC1 is given by (James, Witten, Hastie, & Tibshirani, 2017): 

𝐵𝐼𝐶1(𝑀) = 𝑘𝑙𝑛(𝑛) − 2𝑙𝑛(𝑃(𝐷|�̂�,𝑀))    (eq. 6) 

where M corresponds to the model (power-law, bi-exponential or triple-

exponential), k corresponds to the number of parameters of the model, �̂� 

corresponds to the model parameters found by fitting, D the observed data and n 

the number of observations. 𝑃(𝑥|�̂�, 𝑀) corresponds to the realization probability of 

𝑥 given the model PDF with parameters �̂�. For SMT, D is the set of independent 

and identically distributed discrete experimental events and 𝑃(𝐷|�̂�,𝑀) is 

calculated as follows: 

𝑃(𝐷|�̂�,𝑀) = ∏ ∫ 𝑝(𝑥|�̂�,𝑀)
𝑥+

𝛿𝑡

2

𝑥−
𝛿𝑡

2

𝑑𝑥𝑥∈𝐷     (eq. 7) 
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Where 𝑝(𝑥|�̂�, 𝑀) corresponds to the PDF of the model after photobleaching 

correction. For instance, the bi-exponential PDF is given by: 

𝑝(𝑥|�̂� = (𝛼, 𝛽),𝑀𝐷𝐸) = 𝐶(𝑓1𝛾𝛼𝑒
−(𝛾+𝛼)𝑡 + (1 − 𝑓1)𝛾𝛼𝑒

−(𝛾+𝛽)𝑡)  (eq. 8) 

where 𝛼, 𝛽 are the exponential parameters, 𝛾 the photobleaching rate and 

C a normalization constant.  

The second metric, the evidence, in decibels (dB), for a particular model 

given the observed data and priors, was calculated to compare the alternative 

models explored. The evidence measures the probability of a particular model 

being the best predicting model in comparison with another model. For instance, 

for the power-law model (𝑀𝑃𝐿) the evidence versus the bi-exponential model (𝑀𝐷𝐸) 

and the triple exponential model (𝑀𝑇𝐸) is given by (Jaynes & Bretthorst, 2019): 

𝐸(𝑀𝑃𝐿|𝐷, �̂�, 𝐴) = 𝐸(𝑀𝑃𝐿|𝐴) + 10𝑙𝑜𝑔10 [
𝑃(𝐷|𝑀𝑃𝐿,�̂�)

𝑃(𝐷|𝑀,�̂�)
]    (eq. 9) 

Where 𝑀 = 𝑀𝐷𝐸 ∪ 𝑀𝑇𝐸 

𝐸(𝑀𝑃𝐿|𝐴) = 10𝑙𝑜𝑔10
𝑃(𝑀𝑃𝐿|,𝐴)

𝑃(𝑀|𝐴)
           (eq. 10) 

𝑃(𝐷|𝑀, �̂�) =
𝑃(𝐷|𝑀𝐷𝐸 , �̂�)𝑃(𝑀𝐷𝐸|, 𝐴)+𝑃(𝐷|𝑀𝑇𝐸 , �̂�)𝑃(𝑀𝑇𝐸|, 𝐴)

𝑃(𝑀𝑇𝐸|, 𝐴)+𝑃(𝑀𝐷𝐸|, 𝐴)
        (eq. 11) 

where A corresponds to the priors; P, D and �̂� as defined for BIC1. Uniform 

priors were used for all model comparisons. For instance, an evidence of 30 dB 

corresponds to a probability higher than 0.999 that the power-law model better 

describes the data in comparison with an alternative model tested. In general, a 

positive value of the evidence indicates that the corresponding model is a better 



91 

predictor of the data in comparison to the other tested models. If the evidence was 

not high enough to reach a conclusion about the comparison between the different 

models, more data was acquired until the evidence reached a satisfactory value.  

Refer to Table 3-2 and Table 3-3 for all statistical results. Table 3-2 and 

Table 3-3 lists the evidence in dB for the models, the difference of BIC1 (denoted 

as Delta-BIC1) between the power-law model and bi/triple exponential models. A 

positive value of the difference in BIC1 implies a preference for the power-law 

model over the bi- or triple-exponential models.  

Model Selection was performed in the following manner: Graphical 

inspection for linearity of the survival distribution on a Log-Log plot for at least 1.5 

decades for power-law model consideration, the model with an evidence higher 

than 30 dB and a difference of BIC1 in accordance with the model (a positive value 

for power-law as a better model, negative value for bi/triple exponential models) 

was chosen. Evidence does not take into account model complexity and therefore 

the model selection is done jointly with BIC1.   

3.5.7. Availability 

Tracking was performed in MATLAB (version 2016a) with the custom 

software TrackRecord (version 6). The latest version of this software is freely 

available in: 

https://github.com/davidalejogarcia/PL_HagerLab 

https://github.com/davidalejogarcia/PL_HagerLab
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Exported tracking data was further analyzed in MATLAB by a custom-made 

script also available at the provided link. For step-by-step instructions, please refer 

to the User Manual (Appendix B). 

3.5.8. Tables 

Interval 

(ms) 

Exposure 

(ms) 

Laser 

power 

(mW) 

Frame 

Number 

Maximum 

(Pixels) 

Shortest 

track 

(frames) 

Gap 

(frames) 

Rmin 

(µm) 

Rmax 

(µm) 

200 10 0.96 600 4 4 2 0.23 0.31 

200 100 0.29 900 4 4 2 0.21 0.29 

500 500 0.16 800 4 2 2 0.23 0.29 

1000 500 0.16 800 4 2 1 0.29 0.33 

Table 3-1 Parameters used for each acquisition condition, and analysis of SMT 
data. 

 

Table 3-2 Data acquisition and statistical results TFs. 
Table shows for the indicated TF: the acquisition interval (in ms), exposure time (in ms), number of 
tracks, the evidence for the models (in dB), and the difference of BIC1 (denoted as Delta-BIC1) 
between the power-law model and bi/triple exponential models. Since the kinetic model is a special 
case of the bi-exponential model, model comparison was limited to the power-law, bi-exponential 
and triple-exponential models.  

 

Table 3-3 Data acquisition and statistical results Histones 
Table shows the same information as Table 3-2 for H2B, H3, and H4 data. For histones, model 
comparisons were done between the bi-exponential and triple exponential models only. 

Acquisition Interval (ms) Exposure (ms) Number of Tracks Number of Cells Bi-exponential Power-Law Triple-exponential Bi-exponential Triple-exponential

Halo-GR (Cort) 200 10 9374 67 -119.2 65.7 -69.2 62.78 55.62

Halo-GR (Cort) 200 100 23172 65 -996.1 76.0 -79.5 466.9 62.9

Halo-GR (Cort) 500 500 37953 34 -2255.1 2251.6 -6428.3 1047.3 2988.3

Halo-GR (Cort) 1000 500 15732 30 -701.7 698.1 -1049.0 331.1 508.5

Halo-GR (dex) 200 100 29211 40 -2028.5 2005.6 -2009.1 942.8 952.6

Halo-GR (Cort Wash 20 min) 200 100 22530 62 -601.4 597.9 -8662.1 285.0 4014.8

Halo-GR (Cort Wash 4h) 200 100 16611 61 -503.3 374.2 -377.8 239.5 198.7

Snap-GR (Cort) 200 10 9630 50 -316.4 190.4 -193.9 153.8 115.2

Halo Alone 200 10 19436 64 62.0 -65.5 -213.6 -21.5 91.8

Halo-ER 200 10 17823 60 -1455.1 1451.5 -1497.2 678.6 716.5

Halo-FOXA1 200 10 12864 41 -615.8 57.4 -60.9 291.9 54.7

Halo-SMARCA4 200 10 7023 50 -374.7 371.1 -679.8 180.0 337.0

Halo-CTCF 2000 10 11606 48 -47.8 38.7 -43.6 29.8 45.1

Halo-GR (dex, stable) 200 10 16450 60 -1107.1 1103.6 -11671 518.4 5402.2

Halo-GR (dex, transient) 200 10 7068 60 -408.8 405.3 -4211.3 195.9 1963.8

Halo-GR (Cort) uTrack 100 200 11890 40 -817.9 349.8 -353.3 384.9 186.9

Evidence Delta-BIC1

Acquisition Interval (ms) Exposure (ms) Number of Tracks Number of Cells Evidence Delta-BIC1

Triple-exponential Triple-exponential

Halo-H2B 200 10 36625 100 936.7 411.710824

Halo-H2B 200 100 40652 63 1451.2 648.223959

Halo-H2B 500 500 20307 36 1993.8 898.953197

Halo-H2B 1000 500 15823 20 4372.2 1994.155983

Halo-H2B 2000 10 11047 66 0.1 -18.204499

Halo-H3 200 10 11708 59 594.7 256.287697

Halo-H4 200 10 15601 43 496.5 210.797995
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Chapter 4. An Intrinsically Disordered Region 
Mediated Confinement State Contributes to the 
Dynamics and Functions of Transcription Factors 

This chapter has been adapted from Garcia et al., Molecular Cell, 2021 (Garcia et 

al., 2021a). I was primarily responsible for the experimental design, single molecule 

tracking experiments (with help from Diego Presman, Gregory Fettweis and Ville 

Paakinaho), super resolution microscopy, cloning and genomics (with help from Thomas 

Johnson), data analysis and modeling. 

4.1. Summary 

 

 

Figure 4-1 Graphical Abstract 
We use a systems-level approach to analyze single-molecule tracks of the glucocorticoid receptor. 
In addition to the known chromatin-bound state, the authors characterized an IDR-mediated, long-
lived confined state consistent with liquid condensates that can amplify transcriptional output by 
increasing the local concentration of TFs at enhancer sites.   
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Transcription factors (TFs) regulate gene expression by binding to specific 

consensus motifs within the local chromatin context. The mechanisms by which TFs 

navigate the nuclear environment as they search for binding sites remain unclear. Here, 

we used single-molecule tracking and machine-learning based classification to directly 

measure the nuclear mobility of the glucocorticoid receptor (GR) in live cells. We revealed 

two distinct and dynamic low-mobility populations. One accounts for specific binding to 

chromatin, while the other represents a confinement state that requires an intrinsically 

disordered region (IDR), implicated in liquid-liquid condensate subdomains. Further 

analysis showed that the dwell times of both subpopulations follow a power-law 

distribution, consistent with a broad distribution of affinities on the GR cistrome and 

interactome. Altogether, our data link IDRs with a confinement state that is functionally 

distinct from specific chromatin binding and modulates the transcriptional output by 

increasing the local concentration of TFs at specific sites. 

4.2. Introduction 

The specific binding of transcription factors (TFs) to regulatory sites embedded 

within promoter-proximal elements and enhancers guides the assembly of the 

transcription apparatus and ensures the expression of target genes (Lazar, 2017). 

Fluorescent imaging of TFs and coactivators in living cells has revealed that they are 

dynamic and only transiently interact with chromatin targets (Hager et al., 2009).  

Single-molecule tracking (SMT) has made it possible to observe individual TF 

molecules in live cells (Brouwer & Lenstra, 2019). A number of studies have used SMT to 

explore the kinetics of mammalian TFs [reviewed in (Liu & Tjian, 2018)] and their 

interactions with nuclear structures and the nuclear architecture as they search for specific 

binding sites on the genome (Benichou, Chevalier, Meyer, & Voituriez, 2011; Izeddin et 
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al., 2014; Kent et al., 2020; Normanno et al., 2015; Reingruber & Holcman, 2011). More 

recent work has revealed that in addition to diffusion, TF kinetics are indicative of complex 

interactions beyond specific and nonspecific binding to DNA (Garcia et al., 2021b; A. S. 

Hansen et al., 2020; Hipp et al., 2019; Lerner et al., 2020; Reisser et al., 2020; Stavreva 

et al., 2019). When traveling through the crowded nucleus, TFs are likely to interact with 

other proteins and coregulators, chromatin, diverse RNA species, and may also be 

sequestered in various nuclear compartments. Indeed, previous experiments in 

mammalian cells have pointed to a plethora of possible interactions in the nucleus 

(Grünwald, Spottke, Buschmann, & Kubitscheck, 2006; Normanno et al., 2015) but their 

role in transcription remains unclear.  

Nuclear receptors (NRs) are ligand-regulated TFs that recognize and bind their 

cognate regulatory sites throughout the genome upon activation. Interactions of all NRs 

are mediated by well-structured DNA-binding domains (DBD) and one or more activation 

function domains (ADs), which bind to coactivators and corepressors via protein-protein 

interactions to regulate gene expression (Dasgupta, Lonard, & O'Malley, 2014). The ADs 

of the NRs frequently contain intrinsically disordered regions (IDRs) of low-complexity 

amino acid sequences that assume multiple different conformations (Kumar & Litwack, 

2009). The glucocorticoid receptor (GR) is a typical member of the NR family harboring 

an IDR (Voss & Hager, 2014). While the structures of the GR’s DBD and ligand binding 

domain (LBD) have been elucidated by X-ray crystallography (Bledsoe et al., 2002; Luisi 

et al., 1991), the structure of its N-terminal domain activation function 1 (AF1) is not well 

understood, despite being a major region for control of GR’s transcriptional activity (Khan 

et al., 2012; Simons & Kumar, 2013). The fact that ADs of NRs and other TFs are so poorly 

characterized, limits our understanding of their interactions with the Mediator complex and 

coactivators (Allen & Taatjes, 2015; Reiter, Wienerroither, & Stark, 2017).  
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It was recently demonstrated that the ADs of diverse TFs, including the estrogen 

receptor, can form heterotypic condensates with the IDR of the MED1 subunit of the 

Mediator complex in vitro, and this process requires the TFs’ IDRs (Boija et al., 2018). 

These IDR-IDR interactions can result in the formation of phase-separated condensates 

(Alberti, 2017; Banani, Lee, Hyman, & Rosen, 2017; Hyman, Weber, & Jülicher, 2014; 

Shin et al., 2017). Such condensates are membrane-less micron-scale compartments 

organized through liquid-liquid phase separation driven by multivalent macromolecular 

interactions. These compartments are prevalent in eukaryotic cells and are implicated in 

many biological processes (summarized by (Banani et al., 2017)).  

The recruitment of the transcription machinery at genomic sites is also driven by 

liquid-liquid phase separation (LLPS) (Boehning et al., 2018; Chong et al., 2018; Hnisz et 

al., 2017; H. Lu et al., 2018; Sabari et al., 2018). Many TFs (e.g., FET family TFs, OCT4, 

SP1, including GR), co-activators (e.g., Mediator and BRD4), and RNAPII contain IDRs, 

which can drive their phase separation, leading to formation of discrete nuclear foci in 

mammalian cells sensitive to short-chain aliphatic alcohols, which can dissolve these 

membrane-less structures (Boehning et al., 2018; Cho et al., 2018; Chong et al., 2018; H. 

Lu et al., 2018; Sabari et al., 2018; Stortz et al., 2020). Despite sustained interest in the 

role of IDRs in the formation of macromolecular condensates, their influence on TF 

diffusion and the consequent impact on transcription are unclear. Moreover, whether the 

kinetics of an IDR-containing and IDR-less TF are qualitatively different remains to be 

explored.  

Advances in imaging and statistical analysis of TF dynamics are required to 

distinguish between the diverse diffusive properties of single molecules and link their 

kinetics to the underlying function(s). Here, we used a machine learning based method 

called perturbation expectation-maximization [pEM, (Koo, Weitzman, Sabanaygam, van 
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Golen, & Mochrie, 2015)] to classify individual trajectories of TFs tracked using SMT. Our 

analysis uncovered two distinct states with limited mobility. One of these low-mobility 

states accounts for the expected specific GR binding to chromatin, while the other 

represents a novel confined state, mediated by the IDR regions of the receptor. The dwell 

times of both chromatin-bound and confined states follow a power-law distribution. In the 

case of the chromatin-bound population, the power-law emerges as a result of the 

heterogeneity of binding to response elements with different motif strength. On the other 

hand, the power-law in the confined state likely emerges as a consequence of the broad 

distribution of effective binding affinities due to IDR-mediated protein-protein interactions. 

We propose that the confined state can amplify transcriptional output by increasing the 

local concentration of TFs at specific sites, thus providing a functional link between 

confinement and gene regulation.   

 

4.3. Results 

4.3.1. The glucocorticoid receptor exhibits four distinct populations 
within the nucleus  

Imaging studies have revealed a high degree of heterogeneity in nuclear 

architecture (Finn & Misteli, 2019; Lerner et al., 2020). How the diversity of interactions 

between TFs and the nuclear environment influences the dynamics of TFs within the 

nucleus and its subsequent effect on transcription is unclear. 

 The glucocorticoid receptor (GR) is a ligand-regulated transcription factor. In the 

absence of ligand, the GR remains inactive and only after ligand binding does the receptor 

bind chromatin and regulate gene expression (D. M. Presman et al., 2017), providing a 

platform to test the behavior of a physiologically relevant TF. We performed SMT 
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experiments under Highly Inclined and Laminated Optical sheet (HiLO) illumination 

(Tokunaga et al., 2008) on HaloTag-fused wild type GR (GRwt-Halo) (Paakinaho et al., 

2017) conjugated with the photo-activatable PA-JF549 fluorophore (Grimm et al., 2016) and 

activated with dexamethasone (Dex), a synthetic glucocorticoid agonist. We imaged 

continuously using 12 ms exposure times for an optimal balance between fast acquisition, 

a good signal-to-noise ratio, and minimization of localization noise. The trajectories of 

localized particles from a representative cell are shown in Figure 4-2A.  

 

Figure 4-2 pEM based MSD analysis reveals four types of GR movement within the 
nucleus. 

(A) Representative temporal projection image of an SMT experiment via HiLO imaging (top) with 
superimposed particle trajectories sampled over 84 ms with continuous acquisition (12 ms 
exposure, GRwt-Halo) (bottom). (B) Representative examples of particle trajectories of the 
observed populations classified by pEM. (C) MSD versus lag time for the four families of trajectories 
exhibited by GRwt-Halo conjugated with PA-JF549 and treated with 100 nM Dex (15-120 minutes 
prior to imaging). Right panel shows a zoomed in section of the same plot. The noise floor was 
calculated by imaging GRwt-Halo in fixed cells (GR-fixed, black dotted line). MSDs are calculated 
from 7-frame tracks. Number of cells/ tracks are 109/33,377. Error bars denote standard error 
measure (SEM).  

For any particle trajectory, the Mean Squared Displacement (MSD) is a measure 

of the movement of the particle (in our case a single TF molecule) over time and can be 

used to elucidate the type of motion that the particle undergoes (Levi & Gratton, 2007). 
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When the MSD of an ensemble of particles is proportional to time [MSD(τ) ≡ 〈|r(t + τ) −

r(t)|2〉 = 2nDτ + c; where n is the dimensionality, D the diffusion coefficient and c a 

constant, Einstein Relation], the particles are said to follow Brownian motion (i.e. simple 

diffusion). When the MSD is non-linear (MSD(τ) ∝ τ𝑏) and scales faster (𝑏 > 1) or slower 

(𝑏 < 1) with time, the particles are said to undergo super-diffusion or sub-diffusion, 

respectively. Super-diffusion may indicate directed motion while sub-diffusion implies 

restrictions to movement such as binding or confinement (Ben-Avraham & Havlin, 2000; 

Metzler, Jeon, Cherstvy, & Barkai, 2014). 

To classify the single-molecule trajectories based on their diffusive properties, we 

applied a systems-level algorithm, perturbation-Expectation Maximization [pEM (Koo & 

Mochrie, 2016)], which uses unsupervised machine learning together with Bayesian 

Inference Criterion (BIC) (Schwarz, 1978). We first segmented the tracks into 7 frame 

intervals to remove length effect artifacts and decrease the probability of transitions 

between diffusive states (See Figure 4-3A-D and methods). This analysis revealed that 

activated GRwt exhibits four different types of diffusive motion (Figure 4-2B-C). Particle 

tracks that explore the most space are consistent with diffusive behavior (Figure 4-2B, 

GR high mobility states). Indeed, both states resemble 2D Brownian motion based on the 

linear behavior of their MSD (Figure 4-2C), with diffusion coefficients of 0.73 ± 0.02 μm2/s 

and 2.11 ± 0.05 μm2/s for the high mobility states 1 and 2, respectively. Although these 

estimates fall within the range previously reported by other methods (Mikuni, Tamura, & 

Kinjo, 2007; Mikuni, Yamamoto, Horio, & Kinjo, 2017; Stasevich et al., 2010), it is 

surprising to find two distinct diffusive populations. However, as tracking TFs only in two 

dimensions (i.e. in a single focal plane) poses a limitation for accurate classification of 

faster diffusion modes since tracks may disappear from the focal plane faster than the 

tracking rate, we will not investigate these populations further in this work. The two 
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rightmost panels in Figure 4-2B show trajectories that explore significantly restricted 

regions of space. MSD analyses revealed that these correspond to two distinct low 

mobility states that appear sub-diffusive (Figure 4-2C, red/green lines), which we will 

explore further. Both states are distinguishable from GR fixed data under identical 

acquisition conditions (dashed black line), which represent the sensitivity threshold of the 

technique. We obtained similar results when tracks are segmented at 15 frames (Figure 

4-3E).  

 

Figure 4-3 Workflow for MSD analyses of tracks. 
(A) Tracks are collected in a single focal plane by single molecule tracking using HiLO illumination. 
(B) Tracks are segmented into 7-frame intervals. The last segment may resample frames from a 
previous track to include 7 frames. (C) Track segments are classified using pEM into different 
diffusive states. (D) The ensemble MSD for each diffusive state is calculated using MATLAB 
custom scripts (see methods) from the 7-frame tracks. (E) MSD versus lag time for the four families 
of trajectories exhibited by GR-halo conjugated with PA-JF549 and treated with 100 nM Dex (15-
120 minutes prior to imaging). Right panel shows a zoomed in section of the same plot. Plot is 
obtained from 15-frame tracks with continuous acquisition (12 ms exposure). #cells/#tracks are 
109/33,377. In all cases error bars denote SEM.  
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4.3.2. Specific chromatin binding accounts for the first GR low 
mobility state 

We next analyzed the properties of the two low mobility states and correlated the 

MSD analyses to the activity of GR. To confirm the existence of both states over a wider 

temporal window, we repeated the SMT experiments on GRwt-Halo conjugated with the 

JF549 fluorophore with a longer acquisition interval (200ms) but similar exposure time 

(10ms). As with the continuous 12 ms acquisition conditions, pEM analysis of tracks 

segmented at 7 frame intervals confirmed two low mobility populations but only one higher 

mobility population (Figure 4-5A). The inability to discern the two high mobility states 

observed with the fast imaging is expected, as the sampling time of 200 ms is too slow to 

resolve them. Accordingly, the observed higher mobility state (blue curve in Figure 4-5A) 

represents only a small proportion of the tracks (Figure 4-5B) and will not be further 

explored. The two low mobility populations show qualitatively different degrees of 

restricted mobility (Figure 4-4A), consistent with the quantification by MSD plots (Figure 

4-4B).  
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Figure 4-4 Chromatin binding accounts for one of the GR’s low-mobility states. 
(A) Randomly selected particle trajectories of the two low-mobility states of GRwt-Halo conjugated 
with JF549 and treated with 100 nM Dex (15-120 minutes prior to imaging) found by pEM analysis 
of 7-frame track segments, with 200 ms acquisition interval, 10 ms exposure. (B) MSD versus lag 
time of GRwt-Halo (solid lines, #cells/#tracks are 70/21,535) and GR-C428G (dashed lines, 
#cells/#tracks are 52/20,354). MSDs are calculated from 7-frame track segments, with 200 ms 
acquisition interval, 10 ms exposure. (C) Schematic of GR structural domains and location of the 
C428G mutation (arrow). (D) Heat map representation of ChIP-seq from the indicated cell lines, +/- 
100 nM Dex for 1h. Binding intensity is noted below on a linear scale. Heat maps are sorted based 
on GRwt binding intensity and normalized for read depth and local tag density. (E) MSD versus lag 
time as described in B with Dex-treated GRwt-Halo (solid lines, #cells/#tracks are 70/21,535) and 
4h Cort washout (dashed lines, #cells/#tracks are 60/32593). (F) Representative projection image 
of Halo-GRwt. GFP-NF1 serves as a marker for the tandem array. ROI, region of interest. Scale 
bar 5 µm. (G) MSD versus lag time as described in B for the nucleoplasm (#cells/#tracks are 
82/7689) or the array (#cells/#tracks are 82/1866), with 252 ms acquisition interval, 10 ms 
exposure. (H) Proportions of two low-mobility states from panel G showing the relative fractions of 
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tracks obtained from the nucleoplasm vs the array. (I) Weighted MSD versus lag time for GRwt-
Dex (solid lines, #cells/#tracks are 70/21,535), HaloTag-alone (blue dashed line, #cells/#tracks are 
64/16,819), GR-vehicle (black dashed line, #cells/#tracks are 47/6236). The noise floor was 
calculated as in Figure 4-2C. In all cases error bars denote SEM.  

 

Figure 4-5 Chromatin binding accounts for one of the GR’s low-mobility states. 
(A) MSD versus time of GRwt-Halo (solid lines, #cells/#tracks are 70/21,535) conjugated with 
JF549 and treated with 100nM Dex (15-120 minutes prior to imaging). Plot is obtained from the 
MSD of 7-frame tracks, 200 ms acquisition interval, 10 ms exposure. (B) Proportions of diffusive 
and low-mobility states on the indicated GR isoforms from 200 ms acquisition interval data. Tracks 
that exhibit transitions between multiple diffusive states and a small fraction of anomalous tracks 
are classified in the “other” category (see methods for details). (C-H) MSD versus time of GRwt-
Halo compared to the indicated mutants/treatments for 7-frame or 30-frame segmented tracks, as 
indicated; 200 ms acquisition interval, 10 ms exposure. (I) Cumulative distribution function (CDF) 
of the instantaneous velocity for the sub-diffusive state in HaloTag-alone or GR-vehicle compared 
to GRwt(Dex) low-mobility state 2 (see methods for details). A two-sample Komogorov-Smirnov 
(KS) test was performed: GRwt(Dex) vs GR-Veh p-value=1.8e-19; HaloTag-alone vs GRwt-Dex p-
value: 1.8e-40; GR-Veh vs HaloTag-alone  p-value: 0.79 (non-significant, n.s.). In all cases error 
bars denote SEM. 
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We reasoned that the apparent sub-diffusive (low mobility) populations may arise 

from the binding of GR to its cognate binding sites on the DNA. To test this, we first took 

advantage of the mouse C428G (C440G in rat) GR mutation, in which the first zinc finger 

is disrupted by replacing one of the four key cysteine residues. This mutation produces a 

drastic conformational change in the receptor’s DBD (Figure 4-4C), and this mutant is 

unable to bind DNA in vitro (Hollenberg & Evans, 1988). We confirmed this result in vivo 

by performing global chromatin immunoprecipitation (ChIP-seq) in a GRKO cell line 

(Paakinaho, Johnson, Presman, & Hager, 2019a) stably expressing the GR-C428G 

mutant (see methods). While we were able to detect thousands of binding sites in GRwt 

(+Dex), peak calling methods found no ligand dependent peaks in GR-C428G expressing 

cells (Figure 4-4D).  

MSD analysis of liganded GR-C428G revealed that the low mobility state 1 found 

in GRwt was lost, suggesting that this state corresponds to specific chromatin binding 

(Figure 4-4B). Consistent with this observation, the mouse GR-A465T/I634A monomeric 

mutant (GRmon) (Presman et al., 2014), which has almost no chromatin binding genome-

wide (unpublished results), also lacks this “bound” sub-diffusive population (Figure 4-5C). 

Due to statistical limitations, if a small number of tracks (less than 5%) exhibit bound 

dynamics they will not be observed with the implemented classification. To rule out any 

artifacts of track segmentation, we analyzed tracks segmented at 30 frame intervals and 

found similar results (Figure 4-5D-E).  

To further confirm the identity of GR low-mobility state 1, we analyzed the effect of 

inactivating GRwt by hormone withdrawal. We first activated the receptor with its natural 

ligand, corticosterone (Cort), and then inactivated it by culturing the cells with hormone-

free media for several hours before imaging. Under these conditions, the receptor remains 

in the nucleus, but is mostly inactive (Stavreva et al., 2015; Stavreva et al., 2009). While 
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GR activated with Cort shows a similar MSD profile as the GR-Dex complex (Figure 4-5F-

G), washing out the hormone from the GRwt removes the “bound” population (Figure 

4-4E, Figure 4-5H).  

The cell line used in these experiments harbors a tandem gene array that contains 

∼200 copies of a GR-responsive promoter structure (Stavreva et al., 2009), thus providing 

many specific sites for GR to bind at a discrete region of the nucleus. This array can be 

visualized using GFP-NF1 (Nuclear Factor 1) in live cells while GR dynamics are tracked 

at the single-molecule level (Figure 4-4F). We defined a region of interest around the 

array using the GFP-NF1 fluorescence. We then assigned Halo-GRwt tracks that either 

originated in or visited this region as “array tracks”. Tracks were terminated when the 

particle left the array. We applied our MSD analysis to the array tracks and compared 

these with tracks of Halo-GRwt particles throughout the rest of the nucleoplasm. We found 

that while tracks from both the nucleoplasm and the array exhibited similar mobility states, 

the low-mobility state 1 (Figure 4-4G-H) was significantly enriched at the latter region. 

This observation supports our hypothesis that the low mobility state 1 represents 

chromatin binding. 

To further link GR low-mobility state 1 to specific chromatin binding, we performed 

two additional controls. As unliganded GR constantly shuttles between nucleus and 

cytoplasm (Vandevyver et al., 2012), the (small) nuclear population of unliganded GR 

molecules serves as the vehicle control (GR-Veh). Analysis of the posterior-weighted MSD 

(see methods) shows that, as expected from its lack of DNA binding ability (GR-Veh in 

Figure 4-4I), unliganded GRwt lacks the GR “bound” state as does a control HaloTag 

(Figure 4-4I). In any SMT experiment, there will be a proportion of freely diffusive 

molecules that will appear as sub-diffusive because of the broad distribution of single 

molecule mobility and the anisotropy of the nucleoplasm (Banaz, Mäkelä, & Uphoff, 2019; 
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Mazza et al., 2012a). Accordingly, for both the HaloTag-alone and the nuclear population 

of untreated GR, we detected a sub-diffusive population, but with a larger effective mobility 

compared to the low mobility state 2 for activated GR (Figure 4-4I, c.f. red line vs blue 

and black). In fact, by calculating the instantaneous velocity distribution for this state 

across the three different conditions (Figure 4-5I, see methods), we find significant 

differences between GRwt-Dex and HaloTag alone and between GRwt-Dex and GR-Veh, 

but no differences between HaloTag alone and GR-Veh.  

Thus far, our data indicates that GR exhibits two distinct sub-diffusive states. The 

most restricted state (termed the chromatin-binding state henceforth) is associated with 

specific binding of GR to chromatin. Accordingly, cellular conditions that preclude specific 

binding of GR exhibit only the sub-diffusive state with the larger mobility. 

4.3.3. Intrinsic disordered regions account for the second GR low-
mobility state 

Recent studies have shown that protein-protein interactions mediated by IDRs 

form high density aggregates, likely phase separated liquid-liquid droplets, in living cells 

(Cho et al., 2018; Chong et al., 2018; Sabari et al., 2018; Shin et al., 2017). In the nucleus, 

these aggregates (also referred to as nuclear foci) might form through interactions with 

chromatin and have been linked to transcription (Boija et al., 2018; Y. Lu et al., 2020). 

GRwt, upon ligand binding, distributes nonhomogeneously throughout the nucleus, 

forming regions with a higher concentration of receptor molecules that are compatible with 

liquid condensates (Stortz et al., 2020). Using live cell confocal microscopy, we also 

observed fusion events between these structures, suggestive of an LLPS process (Figure 

4-6A-B). We thus hypothesized that IDR interactions between GR molecules and other 

interacting proteins within the nucleus can create a local region of constrained motion or 
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“confinement” where GR kinetics will be different from the rest of nucleus and may explain 

our observations of the low-mobility state 2 for GR.  

 

Figure 4-6 IDRs mediate confinement. 

(A) Representative confocal microscopy (Airyscan) live cell image of liganded GFP-GRwt. Scale 
bar 2 µm. (B) Time-course of live cell imaging of two GFP-GR foci merging into one (30s intervals). 
Scale bar 500nm. (C) MSD versus time of GRwt-Halo (#cells/#tracks are 70/21,535) and GR407C-
Halo (#cells/#tracks are 60/37,662) treated with 100nM Dex (15-120 minutes prior to imaging). 
Tracks segmented at 30-frames; 200 ms acquisition interval, 10 ms exposure time. Error bars 
denote SEM. (D) Proportions of diffusive and low-mobility states. Tracks that exhibit transitions 
between multiple diffusive states and a small fraction of anomalous tracks are classified in the 
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“other” category. (E) Example genome browser tracks of ChIP-seq data for GRwt (blue), GR407C 
(green) and GR-C428G (red). The closest RefSeq gene is noted below each track and the relative 
peak height scale of tracks is noted (right side of +Dex tracks). All genome browser tracks are 
normalized by reads per genomic content. (F) Representative confocal microscopy (Airyscan) live 
cell image of liganded HaloTag-PPARα (JF549). (G) MSD versus time of PPARα (#cells/#tracks 
are 60/12,237) treated with 10 µM WY-14643 (15-120 minutes prior to imaging). Tracks segmented 
at 30-frames; 200 ms acquisition interval, 10 ms exposure time. Error bars denote SEM. 
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Figure 4-7 Interactions mediated by IDRs lead to confined diffusion of single TF 
molecules. 

(A,G) Plot of inherent protein disorder probability due to a lack of intrachain interactions as 
predicted by IUPred2A (blue) and ANCHOR (red) models for GR (A) and PPARα (G). y-axis 
denotes probability (0-1) and x-axis denotes amino acid position. Regions that have a score 
exceeding 0.5 (dashed line) are classified as disordered regions. (B,H) MSD versus lag times of 
GRwt-Halo (solid lines, #cells/#tracks are 70/21,535), GR-407C (B, #cells/#tracks are 60/37,662) 

or PPARα (H, #cells/#tracks are 60/12,237, respectively) treated with 100 nM Dex or 10 M WY-

14643 (15-120 minutes prior to imaging). Plot shows MSD of 7-frame tracks; 200-ms acquisition 
interval, 10 ms exposure. Error bars denote SEM. (C) ChIP-seq heat maps (top) and aggregate 
plots (bottom) of GFP-tagged GRwt and GR407C stably expressed in GRKO cells, +/- 100 nM Dex 
for 1h. Heat maps are sorted by GRwt binding intensity and clustered by GRwt-specific peaks and 
GRwt/GR407C-shared peaks, noted on the left. Heat map binding intensity is noted to the right on 
a linear scale. (D) ATAC-seq heat map (left) and the same +Dex ChIP-Seq data as shown in C 
(right) re-sorted within each cluster by No-Dex ATAC signal intensity. ATAC signal intensity is noted 
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at left of heat map on a linear scale. (E) Motif analyses of each GR binding cluster at shared sites 
(blue) as compared to GRwt-specific sites (green). Position weight matrix (PWM) of the motifs are 
shown below. (F) Distribution of Log-odds of a GRE motif at shared sites (blue) and GRwt-specific 
sites (green). CDF, cumulative distribution function. X-axis represent bins of Log-odds. 
Comparisons using the two sample KS test (p<0.01).  

To test this hypothesis, we removed the entire N-terminal domain (NTD) of GR, 

which is enriched in IDRs (Figure 4-7A). This deletion mutant is referred to hereafter as 

GR407C, as it only has the last 407 C-terminal amino acids (Meijsing, Elbi, Luecke, Hager, 

& Yamamoto, 2007).  MSD analyses on the SMT data collected from this mutant revealed 

a complete loss of the second low-mobility state (henceforth termed “confinement”) while 

retaining low-mobility state 1, associated with chromatin binding (Figure 4-7B, Figure 

4-6C-D). This observation suggests that “confinement” may be a result of the protein-

protein interactions associated with IDRs.  

ChIP-seq analyses of the GR407C mutant in the presence of Dex shows a 

significant reduction in binding compared to GRwt (Figure 4-7C, 898 vs. 4410 peaks, 

respectively). Representative genome browser track examples are shown in Figure 4-6E. 

This loss of chromatin occupancy together with the loss of the confined sub-diffusive state 

suggests that IDR-mediated confinement may facilitate GR binding and contribute to its 

activity. Interestingly, the GR407C mutant is able to bind both closed and pre-accessible 

chromatin based on ATAC-seq data from GRwt (Figure 4-7D), suggesting that the mutant 

receptor can still recruit remodeling factors (Fan, Trotter, Archer, & Kingston, 2005; John 

et al., 2008), possibly through its LBD. Moreover, de novo motif analysis shows that the 

IDR-less GR mutant binds preferentially to more restrictive Glucocorticoid Response 

Elements (GREs) motif sequences compared to the wild type receptor (Figure 4-7E). In 

fact, the overall distribution of log-odds motif scores for GR407C is narrower compared to 

GRwt (Figure 4-7F), suggesting that GR407C binds a more homogenous population of 

GREs in relation to its consensus sequence.  
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To further test the proposed relationship between IDRs and the “confinement” 

population, we analyzed peroxisome proliferator-activated receptor alpha (PPARα), 

another member of the nuclear receptor superfamily (Zhao, Zhou, & Gustafsson, 2019). 

This protein naturally has a short IDR region (Figure 4-7G) and does not form foci (Figure 

4-6F). Consistent with our IDR-mediated confinement hypothesis, diffusive state analysis 

on the SMT data collected with HaloTag-PPARα stimulated with the agonist WY-14643, 

only shows the chromatin-bound population and an absence of the confinement 

population (Figure 4-7H, Figure 4-6G). 

Taken together, our data suggest that IDRs, which have been implicated in the 

formation of condensates that further compartmentalize the nucleoplasm (Shin & 

Brangwynne, 2017), also lead to sub-diffusive behavior of GR in the nucleus 

(confinement), which is not directly related to specific chromatin binding. 

4.3.4. Histone H2B also exhibits both confinement and chromatin-
bound populations 

It has been proposed that chromatin itself exhibits LLPS (Gibson et al., 2019; 

Sanulli et al., 2019). In fact, core histones are disordered proteins and histone tails that 

are exposed in nucleosomes are classified as IDRs (Peng, Mizianty, Xue, Kurgan, & 

Uversky, 2012), suggesting that histones may also exhibit similar diffusive dynamics. 

Hence, we examined the dynamics of H2B using SMT. The MSD analysis of H2B (Figure 

4-8A) shows two low mobility states which are almost indistinguishable from the GR 

confinement and chromatin-bound states. 



112 

 

Figure 4-8 Histones exhibit both confined and chromatin-bound populations. 
(A-B) MSD versus lag time of GRwt-Halo treated with 100 nM Dex (15-120 minutes prior to imaging) 
(solid lines, #cells/#tracks are 70/21,535) and untreated HaloTag-H2B (dashed lines, #cells/#tracks 
are 70/27,218, respectively). Plots obtained from 7-frame (A) or 30-frame (B) track segmentation, 
200 ms acquisition interval, 10 ms exposure. Error bars denote SEM (C) Pie charts showing 
percentage of the different diffusive states for GRwt (Dex), GRwt (Cort) and H2B. For 12ms 
acquisition, #cells/#tracks are 100/20,000 for H2B; 109/33,377 for GRwt-Dex, and 101/22,182 for 
GRwt-Cort. For 200 ms acquisition, #cells/#tracks are 70/27,218 for H2B; 70/21,535 for GRwt-Dex, 
and 65/35,103 for GRwt-Cort. 

The lowest sub-diffusive state of H2B is remarkably similar to the state of the GR 

subpopulation arising from chromatin binding (Figure 4-8A). This is to be expected, as 

the dynamics of H2B incorporated into nucleosomes (i.e. chromatin) should mirror the 

dynamics of proteins directly bound to them. Furthermore, the second low-mobility state 

of H2B (Figure 4-8A, red line) is compatible with the sub-population of GR that showed 

IDR mediated confinement. We obtained similar results with tracks segmented at 30 frame 

intervals (Figure 4-8B).  

Using the population fraction estimates of the different diffusive states, we can 

calculate the relative proportions of tracks corresponding to confinement, chromatin 

binding, and diffusion (Figure 4-9 and methods). Fast acquisition SMT data (12 ms) can 

be used to estimate the relative proportions between the high mobility (diffusive and likely 

unbound) and the low mobility or “all bound” trajectories (Koo & Mochrie, 2016). We note 

that these estimates will be influenced by the diffusion coefficient of the particle and the 

fraction of faster diffusing proteins will likely be underestimated, especially due to tracking 

only in two dimensions (z-plane ~300nm). Furthermore, most diffusive particles will remain 
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in the focal plane for less than 7 frames and therefore the diffusion population is 

significantly underestimated. Despite these intrinsic limitations, for H2B, the immobile 

state dominates the dynamics as expected, in stark contrast with GRwt, which exhibits a 

larger diffusive population (Figure 4-8C). Longer acquisition interval SMT data (200 ms) 

provides the most reliable way to calculate the relative proportions between chromatin 

binding and confinement (Figure 4-9B-C). We therefore used the 200 ms data to estimate 

the relative proportions of confined and chromatin-bound population for the “all bound” 

fractions identified in the fast acquisition data (Figure 4-9D). Using the proportions 

between bound/unbound and confinement/chromatin binding, we calculated the 

proportion estimates for the three different states – diffusive, confined and chromatin-

bound (Figure 4-9C-D). As expected, H2B and GRwt-Dex have different fractions of 

chromatin-bound populations (Figure 4-8C, 69% and 16%, respectively), but surprisingly 

similar confined proportions (23% and 17%, respectively). GRwt-Cort shows a reduction 

in the chromatin-bound population compared to GRwt-Dex (Figure 4-8C, 10% vs. 16%, 

respectively), consistent with previous results (Stavreva et al., 2019). 

 Overall, our data support the idea that histones can exhibit constrained motion 

due to confinement in addition to their incorporation into chromatin itself.  
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Figure 4-9 Schematic pipeline for calculation of proportions. 
(A) The 12ms trajectories are classified into diffusive (high mobility) or bound (low mobility) states 
using pEM and the classification is used to estimate the proportion of low and high mobility 
trajectories (pie chart). (B) The 200 ms trajectories are classified into different diffusive states using 
pEM and the proportion of the two low mobility states (confinement and chromatin binding) is 
obtained. These proportions are then used in conjunction with the fraction of diffusive tracks 
identified from the 12 ms trajectories to calculate the final proportions (C). (D) Every track is 
segmented into 7-frame subtracks and classified into different diffusive states. After classification 
(middle panel), a posterior probability is assigned to each subtrack and a total posterior probability 
is constructed for the whole track (right panel). The posterior probability is used to estimate the 
proportions of the different states. 
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4.3.5. Dissecting the origins of the power-law distribution in SMT 
dynamics 

 

Figure 4-10 IDR-mediated interactions affect the distribution of dwell times. 
(A-E) Survival distribution fit to a power-law for GRwt (Dex) (A, #cells/#tracks are 70/21,535), GR-
C428G (B, #cells/#tracks are 52/20,354) and GRmon (Dex) (C, #cells/#tracks are 87/19,822). 
Survival distribution for PPARα (D, #cells/#tracks are 60/12,237) and GR-407C (E, #cells/#tracks 
are 60/37,662) fit to a bi-exponential. Fits are shown in red, 95% CI of the empirical survival 
distributions are indicated with dashed lines and data points are shown as solid circles. (F) 
Schematic pipeline for splitting chromatin-bound and confined tracks. Tracks are classified based 
on the posterior probability to belong to a particular state, which is then used to calculate the 
weighted dwell time distribution for each binding state. (G) GRwt (Dex) survival distribution for 
trajectories belonging to confinement (red) and chromatin binding (green) states fit to power laws 
(solid lines, #cells/#tracks are 70/21,535). (H) Survival distributions of the confined population for 
GRwt (Dex) (red) and GRmon (Dex) (blue) fit to power laws (solid lines, #cells/#tracks are 
87/19,822).  (I) Survival distributions of the confined (red) and chromatin-bound (green) population 
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of GRwt (Dex) and confined (blue) and chromatin-bound population (bright green) of GRdim (Dex, 
#cells/#tracks are 80/30,794). Solid lines show power law fits. In all cases error bars denote SEM.  

In addition to providing information on diffusive properties, SMT experiments allow 

us to calculate dwell time distributions, which represent the time that a protein stays 

“bound” (Paakinaho et al., 2017; D. M. Presman et al., 2017). Most TFs have been 

described to exhibit a bi-exponential survival distribution, with the longer time constants 

representing specific binding [reviewed in (Goldstein & Hager, 2018b)]. However, 

alternative multi-exponential models (Hipp et al., 2019; Reisser et al., 2020) or power-law 

may better describe survival distributions (Garcia et al., 2021b; Normanno et al., 2015; 

Stavreva et al., 2019).  

To determine how the different types of trajectories from TFs contribute to the dwell 

time distribution, we performed long exposure SMT experiments. We imaged HaloTag-

GRwt, -GR-C428G, -GR407C, and -PPARα with 500ms exposure/acquisition time (see 

methods for details), using HaloTag-H2B as a reference for photobleaching correction and 

Bayesian inference criteria (BIC) for model fitting (Garcia et al., 2021b) (see methods). 

Upon either Dex (Figure 4-10A) or Cort (Figure 4-11A) stimulation, the dwell time 

distribution of GRwt is better explained by power-law behavior compared to bi-exponential 

or multi-exponential models (see Table 4-1 for statistics). Interestingly, the survival 

distributions of GR-C428G (Figure 4-10B), GRmon (Figure 4-10C) or GRwt after washing 

out the hormone (Figure 4-11B) also show a power-law, indicating that specific chromatin 

binding is not fully responsible for this type of distribution.  

Strikingly, the absence of IDRs, either from PPARα (Figure 4-10D) or the IDR 

deletion mutant GR407C (Figure 4-10E, Figure 4-11C), results in a change in survival 

distributions to a bi-exponential behavior. The average residence times for the slowest 

component (Figure 4-11D) are similar to those previously reported by 3D orbital tracking 
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(Stavreva et al., 2019). Hence, it appears that IDRs might be responsible for the power-

law distribution. To test this hypothesis, we took advantage of our MSD analysis to split 

tracks into chromatin-bound and confined tracks (Figure 4-10F, see methods), allowing 

us to independently analyze the dwell-time distribution of each low-mobility state. 

If confinement were solely responsible for power-law behavior, then the chromatin-

bound population should exhibit exponentially distributed dwell times consistent with 

chromatin binding (Garcia et al., 2021b). However, contrary to our original hypothesis, 

both confinement and chromatin binding remain power-law distributed (Figure 4-10G), 

with the confined population exhibiting overall longer dwell times than chromatin binding 

for GRwt. We also found that the confined population of GRmon and GRwt have different 

survival distributions (Figure 4-10H), with GRwt exhibiting longer dwell times, likely 

reflecting the different interacting partners inside the confined region.  

Overall, it appears that some properties of GRwt-chromatin interactions must 

account for the power-law behavior in contrast to the bi-exponential distribution seen for 

PPARα and GR407C. One plausible explanation could rely on the differences in 

heterogeneity of binding affinities between GRwt and PPARα/GR407C. The GR407C 

mutant binds to a narrower array of GRE motif sequences as illustrated by the distribution 

of log-odds motif scores as compared to GRwt (Figure 4-7F), suggesting that GR407C 

binds to less heterogenous GREs. In the case of PPARα, it has been reported that it binds 

to relatively fewer sites compared to GRwt (Ratman et al., 2016), which might be indicative 

of less heterogeneity in binding. Taken together, our data suggest that when the 

heterogeneity in binding affinity is low, chromatin binding will follow a bi-exponential 

distribution. 
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Finally, we wondered if we could correlate our findings with transcriptional activity. 

The GRA465T mutant (GRdim) (Presman et al., 2016) is an extremely poor transcriptional 

activator, even though it binds to ~85% of GRwt’s cistrome (Lim et al., 2015). Like GRwt, 

the GRdim SMT data shows both confined and chromatin-bound populations (Figure 

4-11E-F). By analyzing the dwell time distributions, we discovered that while confinement 

dynamics are almost identical for GRwt and GRdim, there is a difference in their 

chromatin-bound populations (Figure 4-10I). Specifically, our observations show that 

GRwt has longer binding events than GRdim, which could explain why the mutant receptor 

is not a good transcriptional activator.   

 

Figure 4-11 IDRs effect on survival distribution models 
Survival distribution of dwell time fits to power-law for GRwt-Cort (A, #cells/#tracks are 65/35,103) 
and GRwt-Cort-wash (B, #cells/#tracks are 60/32,593). Power law fit in red (solid line), 95% CI in 
blue (dashed lines). Dwell time is exponentially distributed for GR407C (C, #cells/#tracks are 
60/37,662, respectively). (D) Average residence time (slowest component) for proteins that exhibit 
exponentially distributed dwell times: GR407 Cort, Dex and PPARα. (E-F) GRdim (dashed lines) 
presents similar chromatin binding and confinement population based on MSD analysis compared 
to GRwt (Dex) (Solid Lines). 7-frames segmentation (E, #cells/#tracks for GRdim are 80/30,794) 
or 30 frames segmentation (F). Error bars denote SEM. 
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4.4. Discussion 

Studying TF dynamics at the single-molecule level inside living cells is a sensitive 

approach that can unravel complex diffusion and binding kinetics of TFs as they locate 

and bind to their genomic targets. By analyzing single-molecule trajectories of TF using a 

machine learning (ML) based method and classifying their residence times based on their 

kinetic profiles, we show that TF “binding” is composed of at least two distinct 

subpopulations, one reflecting chromatin binding, and a newly identified subpopulation 

that arises from IDR-IDR interactions and appears transiently confined. 

In support of the notion that the most restricted sub-diffusive population arises from 

chromatin binding of TFs we showed: 1) loss of this population in GR mutants that do not 

bind to chromatin (Figure 4-4B,Figure 4-5C), 2) its disappearance upon inactivation of 

the wild type receptor by hormone withdrawal (Figure 4-4E), 3) an increase of this 

population at the tandem array that is expected to show enhanced binding (Figure 4-4H), 

and 4) the identical constrained behavior of the single H2B molecules likely incorporated 

into nucleosomes (Figure 4-8A-B).  

The ML based analysis identified a second novel population of trajectories that 

exhibits constrained but higher mobility when compared to chromatin binding (Figure 4-2, 

Figure 4-4). Surprisingly, we observe that this apparent confinement is sustained for 

longer time intervals than previous observations of transient confinement (A. S. Hansen 

et al., 2020).     We showed that this confinement behavior is mediated by interactions 

between intrinsically disordered regions on the TFs. In support of this, confinement is lost 

when the IDR is removed as in the GR407C mutant (Figure 4-7B). Additionally, TFs such 

as PPARα that naturally presents smaller IDR regions, but would otherwise have a full 

complement of motif preferences, do not show this confined state (Figure 4-7H). 
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Furthermore, TFs that are not capable of binding their specific recognition sequences (GR-

C428G and GRmon), still display a confined state. Finally, tracks within the MMTV array 

have a significantly higher fraction of the lowest mobility (bound) state. Taken together, 

these observations suggest that IDR-IDR interactions between GR molecules and GR with 

other nuclear proteins can create local regions where the receptor exhibits altered 

diffusivity resulting in the detection of a less constrained sub-diffusive state. Our data 

suggest that IDR-mediated condensates [i.e. nuclear foci (Stortz et al., 2020)] are a good 

“microscopic” representation of this subpopulation. Whether IDR-IDR interactions are the 

only mechanism behind foci formation and/or confinement dynamics, or whether the foci 

are a functional homogenous entity, remains to be proven. 

 SMT also enables the measurement of TF dwell times which are indicative of their 

binding kinetics. We have recently reported that the dwell time distributions of GRwt and 

many other TFs exhibit power-law behavior rather than bi-exponential, suggesting that 

non-specific and specific binding cannot be simply classified according to their residence 

times (Garcia et al., 2021b). In fact, deviations from the bi-exponential model has been 

reported elsewhere (Hipp et al., 2019; Normanno et al., 2015; Reisser et al., 2020). Our 

ML-based techniques allowed us to classify the trajectories of bound proteins into 

chromatin-bound or confined sates and independently calculate their dwell time 

distributions. We discovered that the dwell times of both these populations exhibit power-

law behavior (Figure 4-10G). Theoretical considerations suggest that such distributions 

can emerge due to a broad distribution of effective binding affinities (Garcia et al., 2021b), 

or from polymer models of chromatin with rapid rebinding of proteins (Amitai, 2018). 

Moreover, both models predict trapping of transcription factors in regions of the nucleus, 

consistent with the confinement population found in this study.  
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In the case of confinement, the broad distribution of effective binding affinities can 

originate from the heterogeneity in protein-protein IDR interactions. Equally plausible, TFs 

with IDRs could adopt a broad distribution of conformations due to the diversity of protein 

folding (Simons, Edwards, & Kumar, 2014), hence accounting for a broad distribution of 

binding affinities (Brodsky et al., 2020). Alternatively, but not mutually exclusive, the 

heavily tailed size distribution of foci (Berry, Weber, Vaidya, Haataja, & Brangwynne, 

2015; Onuki, 2007; Ratke & Voorhees, 2011; Shakya, Park, Rana, & King, 2020) would 

produce effective binding energies consistent with power-law distributed dwell times 

(Garcia et al., 2021b).  

 

Figure 4-12 Proposed model for the modulation of gene expression by 
confinement and the emergence of power-law dwell-time 
distributions. 

(A) Transcription factors (TF, red spots) navigate the nucleoplasm until they find their targets. They 
can be freely diffusing in the nucleoplasm (isolated red spots), confined in high density IDR-
dependent hubs (shaded areas), or interacting with chromatin either specifically or non-
specifically. koff, dissociation rate from chromatin; k, dissociation rate from the confined region. 
(B) Confined regions concentrate TFs, reducing the search time (i.e. greater kon, thicker arrow). 
Hence, transcriptional activity is potentiated compared to a gene whose enhancer element is not 
located in a confined region. (C) Broadly distributed binding affinities of a TF (dashed line) are 
composed of binding distributions arising from different chromatin environments and/or motifs (solid 
lines, top graph). Similarly, a confined transcription factor can exhibit a broad distribution of effective 
binding affinities related to the time that it takes to escape the confinement region, which depends 
on the size and physical properties of the hub (solid lines, bottom graph). (D) For a heavy tailed 
distribution of binding affinities and confinement, the dwell time distribution is expected to follow a 
power-law. In the case of GR, the confinement dwell times are longer than for chromatin binding 
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(as depicted). However, other TFs might present the opposite behavior if they have larger binding 
affinities. 

In the case of chromatin binding, the power-law behavior likely emerges as a 

consequence of the broad affinity distribution of the koff among the TF’s cistrome due to 

the heterogeneity of binding to response elements (Figure 4-12). This could explain why 

heterologous expression of the tetracycline receptor (TetR) in mammalian cells, where it 

does not bind specifically anywhere, follows power-law throughout the genome but on an 

artificial array of single-response elements follows a single exponential (Normanno et al., 

2015). In support of this model, GR407C, which does not have a population of confined 

trajectories and binds less variable response elements (Figure 4-7F), behaves bi-

exponentially (Figure 4-10E).  

The dwell time distributions of the confined populations of GR mutants can either 

be similar to (GRdim, Figure 4-10I) or different (GRmon, Figure 4-10H) from the GRwt. 

More importantly, the survival distribution of the chromatin-bound population is 

significantly different between GRwt and GRdim (Figure 4-10I), which might explain the 

difference in their transcriptional activities (Jewell, Scoltock, Hamel, Yudt, & Cidlowski, 

2012; Lim et al., 2015; Presman et al., 2014; Rogatsky et al., 2003). The approach used 

here thus provides a powerful means to correlate binding affinities of proteins to specific 

interactions within the cell nucleus.  

We also found that H2B exhibits both confinement and chromatin-bound 

populations. Since free non-nucleosomal histones may electrostatically interact with 

different IDR mediated liquid-liquid phase separated aggregates (Peng et al., 2012), a free 

histone that has not yet been incorporated into nucleosomes can have two different types 

of kinetics, normal diffusion, or confinement as described above. The kinetics under 

confinement will be determined by the diffusive properties of the histone in these high 
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density/high viscosity regions, which in general will display larger MSD values than the 

incorporated histones due to the elastic properties of chromatin (Everaers & Schiessel, 

2015; Koslover, Fuller, Straight, & Spakowitz, 2010). The kinetics of a histone incorporated 

into the nucleosome will be dominated by the physical properties of chromatin (e.g. 

elasticity and thermodynamic properties) and thus set the scale for the mobility of the 

chromatin-bound fraction.  

Our observations suggest that the subpopulation of TFs directly bound to 

chromatin could serve as “nucleators” for IDR-mediated condensates, consistent with a 

recent report (Stortz et al., 2020). While these nucleator molecules will exhibit a typical 

chromatin-bound behavior, their IDR-interacting partners will exhibit confined behavior 

(Figure 4-12). Considering the growing evidence for a role of phase separated 

condensates in transcription (Boehning et al., 2018; Chong et al., 2018; Hnisz et al., 2017; 

H. Lu et al., 2018; Sabari et al., 2018), the confined population herein described might be 

critical for efficient transcription-initiation. Higher concentration of TF molecules found in 

these condensates should increase the on-rates (kon) for the TF binding to chromatin 

(Figure 4-12B), therefore improving the chances of successful activation of RNA 

polymerase II resulting in a more frequent RNA bursting (Brouwer & Lenstra, 2019; 

Donovan et al., 2019; Stavreva et al., 2019). A prediction of this hypothesis is that if one 

could measure TF binding at a single site within a confined region, then only the kon, and 

not the off-rate (koff) (i.e. residence time) of the TF should change with respect to that in a 

non-confined region. In other words, confinement can only modulate the kon of TFs, not 

their residence times, which may ultimately be a combination of the nature of the TF, the 

choice of ligand, the strength of the TF motif, and the chromatin landscape in which a 

response element is located (Coons, Burkholder, Hewitt, McDonnell, & Korach, 2019; T. 

A. Johnson et al., 2018; Syed, Greulich, Ansari, & Uhlenhaut, 2020).  
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 Taken together, our data suggest that IDR-mediated confinement is a natural 

mechanism that many TFs can use to regulate gene expression more efficiently (Figure 

4-12). This is achieved by providing a higher local concentration of TFs at specific genomic 

sites (i.e. increasing kon) while also effectively decreasing the exploration area within the 

complex nuclear environment. Although not essential for all TFs, dysregulated phase 

separation has been implicated in a number of disease conditions (Basu et al., 2020; 

Darling & Uversky, 2017; Innis et al., 2004; Muragaki, Mundlos, Upton, & Olsen, 1996; 

Nakamura et al., 2001). Our results suggest that the modulation of TF mobility by IDR-

mediated interactions and the formation of condensates likely contributes to regulation of 

transcriptional efficiency.  

4.5. Limitations of this study 

Even though we found four distinct populations of GR within the nucleus, our 

implementation of HiLO only allows us to recover the dynamics of the population of 

particles with lower mobility. This is because rapidly diffusing, i.e. free TF molecules can 

quickly move away from the focal plane precluding accurate tracking and recovery of MSD 

information. While these populations might have some useful information regarding the 

properties of the nuclear environment, our implementation of HiLO does not allow us to 

report those. 3D tracking of TFs at very high frame rates is needed to better understand 

the behavior of the two freely diffusing populations found in this study.  

A second limitation is that we do not consider possible transitions between the 

diffusive states within a single trajectory. This may lead to some tracks not being classified 

into one of the diffusive states described here (Figure 4-5B and Figure 4-6D). Thus, it is 

possible that several biologically meaningful states with low probability of occurrence 

remain hidden to the classification implemented in this work. A more robust classification 
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algorithm using Bayesian non-parametrics might reveal these potential transitions and 

hidden states.  

We have speculated that the confinement population described in this work is 

mediated by protein-protein interactions that could exhibit LLPS compartmentalization 

(Boehning et al., 2018; Chong et al., 2018; Hnisz et al., 2017; H. Lu et al., 2018; Sabari et 

al., 2018). However, a rigorous link between them has not been yet established and needs 

further investigation. 

Finally, fluorophore stability is a limiting factor in all SMT experiments. To better 

quantify the dwell time distribution of TFs in different diffusive states, experiments must 

be performed at low exposure/high laser power for optimal localization precision. 

However, these conditions limit the fluorescent lifetime of fluorophores to the order of 

seconds, which is not enough to reliably quantify long binding times in the tail of power-

law distributed dwell times.  
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4.7. Methods 

4.7.1. Plasmids and cell lines  

The pHaloTag-GR expresses rat GR with HaloTag (Promega, Madison, WI, USA) fused 

in the C-terminal domain under the CMVd1 promoter (Morisaki et al., 2014). The pHalo-

GRA477T (GRdim), pHalo-GRA477T/I646A, and pHalo-GRC440G (C428G in mouse) 

were generated by using a QuikChange II XL Site Directed Mutagenesis Kit according to 

the manufacturer’s instructions (Stratagene, La Jolla, CA, USA), as previously described 

(Paakinaho et al., 2017). The pHaloTag-H2B expresses histone H2B fused with the 

HaloTag through its N-terminal end (Mazza et al., 2012b). The pHalo-PPARα was 

purchased from Promega (Cat# pfn21ab9549) and expresses the human PPARα fused 

with the HaloTag through its N-terminal end. The pHalo-GR407C was generated by 1) 

PCR amplification of rGR’s coding amino acids 407-794 from the pHaloTag-GR template 

using the Herculase II fusion DNA polymerase system (Agilent Technologies, Santa Clara, 

CA, USA), introducing XhoI and PvuI restriction sites; and 2) swapping the PCR product 

into the pHaloTag-GR using the same restriction enzymes. The pGFP-NF1 expresses 

Nuclear factor-1 fused to GFP (D. M. Presman et al., 2017). The mouse GFP-GR407C 

plasmid was generated by circular PCR with high-fidelity polymerase from the GFP-GRwt 

plasmid (Paakinaho et al., 2019a) using primers to exclude the N-terminus and sequence 

verified prior to use in making the cell line. The GFP-GRC428G plasmid was generated 
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with the same PCR/verification methods as above using primers to incorporate a point 

mutation at residue 428 of mouse GR. 

The 3617 mouse mammary adenocarcinoma cell line and its derivatives were routinely 

cultured in high glucose DMEM supplemented with 10% fetal bovine serum and 2 mM L-

glutamine at 37°C in a CO2-controlled humidified incubator. The GRKO cell lines with 

stably integrated forms of GFP-GR has been described previously (Paakinaho et al., 

2019a). Briefly, they were generated by integrating the designated form of GR into the 

GT(Rosa)26Sor locus. GFP-GR integrated cells were selected with puromycin and FACS 

sorted for similar levels of GFP expression and size uniformity. A GR knock-out subclone 

expressing Halo-GR was also used in this study and described elsewhere (Paakinaho et 

al., 2017).  

For transfections, 5 million cells were electroporated using BTX T820 Electro 

Square Porator (Harvard Apparatus, Holliston, MA, USA) in 100 l of DPBS with 2.5 g of 

plasmid. 25 ms pulses of 120 V were used and cells were resuspended in fresh media. 

Single-molecule imaging experiments were set up as follows: 100,000 electroporated cells 

were seeded onto each well of a 2-well Lab-Tek chamber (1.5 German borosilicate 

coverglass, Thermo Fisher, Waltham, MA, USA) in high glucose DMEM supplemented 

with 10% FBS (Life Technologies), 2mM L- glutamine, 5 µg/ml tetracycline, and cultured 

overnight. The media was then replaced with high glucose DMEM supplemented with 10% 

charcoal stripped FBS (Life Technologies), 2mM L- glutamine, 5 µg/ml tetracycline, and 

incubated at 37°C O.N. before labeling.  
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4.7.2. Fluorescent labeling of Halo-tagged molecules and hormone 
treatments  

Transfected cells were incubated with 5 nM JF549-HaloTag (Grimm et al., 2015) or 

50 nM photo-activatable PA-JF549-HaloTag (Grimm et al., 2016) ligand for 20 min 

at 37°C. PA-JF549 was used for the fast acquisition SMT experiments (12ms) by 

stroboscopic activation of the fluorophore by a 473nm laser. Free ligand was 

depleted by washing three times with phenol red free DMEM media (supplemented 

with 10% charcoal stripped FBS and 5 µg/ml tetracycline) in 15 min intervals at 

37°C. Next, cells were treated with 600 nM Corticosterone (Cort) (Sigma-Aldrich) 

or 100 nM Dexamethasone (Dex) (Sigma-Aldrich), and incubated for 20 min at 

37°C before imaging. For “noise” control in Figure 4-2C and Figure 4-4F, after 

activating GR for 30 min with 100 nM dexamethasone, the cells were fixed with 

4% (wt/vol) paraformaldehyde (Electron Microscopy Sciences) and 0.2% (wt/vol) 

glutaraldehyde (Electron Microscopy Sciences) for 35 min at room temperature. 

After fixation, cells were incubated with ProLong Gold Antifade Mountant for 24 

hours. Cells treated with 10 µM WY-14643 (PPARα activation) were incubated for 

1 hour at 37°C before imaging. For wash-out experiments, cells were washed with 

media three times for 4 different intervals (every 15 minutes for 1 hour or every 

hour for 4 hours) after 20 minutes of hormone treatment and finally imaged. 

METHOD DETAILS 

4.7.3. Image acquisition for single-molecule tracking 

A custom HiLO microscope was used as previously described in detail 

elsewhere (D. M. Presman et al., 2017), with an objective heater to reduce drift. 
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Briefly, the custom-built microscope from the CCR, LRBGE Optical Microscopy 

Core facility is controlled by µManager software (Open Imaging, Inc., San 

Francisco, CA.), equipped with an Okolab state top incubator for CO2 (5%) and 

temperature control (37°C), a 150X 1.45 numerical aperture objective (Olympus 

Scientific Solutions, Waltham, MA), a 561nm and 473nm lasers (iFLEX-Mustang, 

Excelitas Technologies Corp., Waltham, MA), and an acousto-optic tunable filter 

(AOTFnC- 400.650, AA Optoelectronic, Orsay, France). Images were collected on 

an EM-CCD camera (Evolve 512, Photometrics). The imaging conditions were as 

follow: 12ms exposure and 12ms acquisition time for fast acquisition SMT data 

with a laser power of 0.96 mW, 10ms exposure and 200ms acquisition time with a 

laser power of 0.96 mW for confinement and chromatin binding analysis and 

500ms exposure and 500ms acquisition time with laser power of 0.16 mW for 

survival distribution analysis. For the array experiments (Figure 4-4F-H), the 

imaging conditions were 10ms exposure with sequential acquisition of GFP (for 

NF-1) and JF549 (for GR-halo) channels, giving a 252ms acquisition time due to 

limitations in the speed of the AOTF. 

4.7.4. Image acquisition by Airyscan 

Single plane images were acquired on a Zeiss LSM 880 point scanning confocal 

microscope using the Airyscan detector, a 100x Plan-Apochromat 1.4NA DIC oil 

immersion objective (Zeiss) and 488 nm and 561 nm laser lines. The Zeiss Zen 

2.3 (black edition) software was used to control the microscope, adjust spectral 

detection for the emission of EGFP and JF549-HaloTag fluorophores and for 
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processing of the Airyscan raw images. Zeiss Definite Focus was used at each 

time point for time-lapse imaging.  

4.7.5. Single-molecule tracking analysis 

We used the custom-made software TrackRecord (Mazza et al., 2013) in 

MATLAB (The MathWorks, Inc., Natick, MA). Briefly, to analyze each time series, 

data were filtered using top-hat, Wiener, and Gaussian filters. A region of interest 

(ROI) was defined to encompass the nucleus (and the array using the GFP-NF1 

fluorescence when necessary), then particles were detected, fitted to two 

dimensional gaussian function for subpixel localization, and finally tracked using a 

nearest neighbor algorithm (D. M. Presman et al., 2017). The tracking parameters 

were as follows: window size for particle detection 7 pixels, maximum frame to 

frame displacement of 6 pixels, shortest track 2 frames, and gaps to close 1.  

The average single molecule localization precision (SMLP) was estimated as 

𝜎𝑆𝑀𝐿𝑃 = 〈
𝜎𝑃𝑆𝐹

√𝑁𝑃ℎ𝑜𝑡𝑜𝑛𝑠
〉,  where 𝜎𝑃𝑆𝐹 corresponds to the standard deviation of the 2D 

Gaussian used for particle localization, 𝑁𝑃ℎ𝑜𝑡𝑜𝑛𝑠 the number of photons and   indicates 

the ensemble average over all the detected particles in an experiment. The number of 

photons were estimated by converting the gray values (camera offset corrected) to 

electrons by using the conversion gain of the camera adjusted and quantum efficiency 

(QE) for digital gain as indicated by the manufacturer. The average localization precision 

for 12ms exposure – 12ms interval experiments is 23.8 nm and for 10ms exposure – 

200ms interval experiments is 31.7 nm. The higher localization precision in the 12ms 

experiments is due to significantly higher laser power used.  
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Tracks were classified into distinct diffusive states using perturbation-

Expectation Maximization [pEM v2, (Koo & Mochrie, 2016)]. Prior assumptions on 

the type of diffusion of the tracked particles are not needed with pEM and the 

number of diffusive states can be deduced from the analysis. pEM analysis 

requires all analyzed tracks to be of the same length. Tracks were split into 7 frame 

segments and the pEM classification analysis was performed on the set of all these 

track segments. For instance, a track of length 30 is segmented into 4 subtracks 

of length 7. Short tracks minimize the probability of transitions between diffusive 

states on the same tracks. To confirm the results, pEM analysis was also 

performed on tracks split into 15 or 30 frame segments. The minimum number of 

states for the system to converge to was set at 2 and the maximum at 7. If the 

optimal number of states that the analysis converged to was 7, the algorithm was 

rerun with a higher number of maximum states. The number of reinitializations was 

set to 30 with 50 perturbation trials. The maximum number of iterations was 10000 

with a convergence criterion for the change of log-likelihood of 10−7. The number 

of features for the covariance matrix was set to 5 for tracks of length 7 or 15 and 3 

for tracks of length 30. Motion blur coefficient was calculated as 
1

6

∆𝑒

∆𝑡
, where ∆𝑒 

corresponds to the exposure time and ∆𝑡 the acquisition interval.  

4.7.6. Mean Squared Displacement calculation (MSD) 

Ensemble MSD was calculated using custom scripts and routines 

previously published (Tarantino et al., 2014). All the calculations assume that the 

stochastic process of TFs diffusing in the nucleus or interacting with chromatin is 
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wide sense stationary. SMT experiments provide us with tracks that can be 

described as a series of positions {𝑟𝑖(𝑡)}, acquired every Δt sec. For any stationary 

stochastic process, the MSD of a trajectory i at time lag  can be calculated as:  

𝑀𝑆𝐷𝑖(𝜏) =
1

𝑁
∑[𝑟𝑖(𝑛∆𝑡 + 𝜏) − 𝑟𝑖(𝑛∆𝑡)]2

𝑛

 

After pEM classification, states with a population fraction less than 5% are 

removed. For a particular state i, let us define the set 𝐼 ≡ {𝑘|𝑃𝑘(𝑖) ≥ 0.6} where k 

is a track of length 7 and 𝑃𝑘(𝑖) corresponds to the probability of k to belong to the 

state i. If the population of a set 𝐼 (i.e. the ratio of the number of tracks assigned to 

state 𝐼 to the total number of tracks) is less than 0.05, the set 𝐼 is removed. The 

ensemble average MSD for a particular state i is given by: 

𝑒𝑀𝑆𝐷𝑖(𝜏) =
∑ 𝑀𝑆𝐷𝑗(𝜏)𝑗∈𝐼

|𝐼|
 

where |𝐼| is the number of tracks assigned to state 𝐼. In other words, after tracks 

of length 7 (or 15) are classified into different diffusive states, the ensemble 

average MSD is calculated for each particular diffusive state from tracks of length 

7 (or 15) that have a posterior probability higher than 0.6 of belonging to that 

particular state.   

 Alternately, we can also calculate the weighted ensemble averaged MSD 

for a particular state by using the posterior probability of a track to belong to a state 

𝐼 as the weight function: 
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𝑊𝑀𝑆𝐷𝑖(𝜏) = 
∑ 𝑃𝑗(𝑖).𝑀𝑆𝐷𝑗(𝜏)
𝑁
𝑗=1

𝑁
 

Where 𝑊𝑀𝑆𝐷𝑖(𝜏)  is the weighted ensemble average MSD for state i, and 

N is the total number of tracks. 

Standard error was calculated as 
𝜎𝑤

√𝑁𝑓
, where 𝜎𝑤 corresponds to the 

weighted standard deviation and 𝑁𝑓 the number of degrees of freedom in the 

weighted mean.  Weights correspond to the number of points averaged to generate 

the mean square displacement value at the given time lag. 

Sample tracks for illustration were selected as follows: sets composed of all 

tracks from the different diffusive states with a posterior probability larger than 0.9 

were generated. For low-mobility tracks, tracks were selected randomly in a 2 µm 

X 2 µm window for illustration. For high-mobility states, a 4.8 µm X 4.8 µm window 

was selected instead. 

Diffusion coefficients were estimated from tracks with a posterior probability 

larger than 0.6 to belong to the particular diffusive state for the 12ms acquisition 

interval experiments. The estimation was done from the variance of the 

instantaneous velocity vector 𝑣 by 〈𝑣2〉 =
4𝐷

∆𝑡
, D corresponds to the diffusion 

coefficient and ∆𝑡 the acquisition interval (Qian, Sheetz, & Elson, 1991). 

4.7.7. Survival distribution calculation 

Survival distributions were calculated from particle tracks as in (Garcia et al., 

2021b) using the Kaplan-Meier estimate. The 95% confidence interval was estimated 

using Greenwood’s Formula. HaloTag-H2B data was acquired with identical imaging 
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conditions as the transcription factors for the different acquisition conditions. The survival 

distribution of this was fitted to a double and triple exponential model to extract the 

photobleaching rate, and model selection was used to determine the best predictive model 

(See Fitting and model selection). The survival distribution of the different transcription 

factors was corrected for photobleaching as follows (𝑆(𝑡) = 𝑒𝛾𝑡𝑆𝐸(𝑡), where S(t) 

corresponds to the survival distribution after photobleaching correction, 𝑆𝐸(𝑡) the empirical 

survival distribution and 𝛾 the photobleaching rate). 

4.7.8. Weighted survival distribution calculation 

For the diffusivity analysis, we divide every track into subtracks of length 7 frames. 

These subtracks are then classified into different diffusive states using pEM and states 

that are not representative are removed as explained above. Suppose a track k is divided 

into n subtracks of length 7. After the pEM analysis, each subtrack i is assigned a posterior 

probability 𝑃𝑘
𝑖(𝑗) to belong to a diffusive state j. Here, 𝑖 ∈ {1,2,… , 𝑛}, 𝑗 ∈ {1,2,… ,𝑚}, where 

m is the number of diffusive states to which pEM converges. From this state assignment, 

we would like to calculate the survival distribution of a particular diffusive state. To do so, 

we first calculate a posterior probability for the reconstructed track k:  

𝑃𝑘(𝑗) =
∑ 𝑃𝑘

𝑖 (𝑗)𝑖

∑ 𝑃𝑘
𝑖 (𝑗)𝑖,𝑗

 

We will use these probabilities to calculate a weight function for each bin of the dwell time 

histogram. All the dwell times can be distributed into N bins such that each bin Ω𝑖 contains 

𝑛𝑖 tracks. Mathematically, Ω𝑖 ≡{𝑡 ∈ ℝ|(𝑖 − 1)∆𝑡 ≤ 𝑡 < 𝑖∆𝑡}, where ∆𝑡 is the acquisition 

interval. 

We can define a weight function 𝑊𝑖
𝑗
  for each of the bins i, per state j as 
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𝑊𝑖
𝑗 = ∑𝑃𝑘(𝑗)

𝑛𝑖

𝑘=1

 

Previously survival distributions were calculated by assigning a unit weight to each 

observed bound track. Instead, we can define the statistic 

�̂�𝑖
𝑗 =

𝑊𝑖
𝑗

𝑛
 

as the unbiased estimator (i.e. 𝐸[𝑝𝑖
𝑗
] = �̂�𝑖

𝑗
) of the weighted survival distribution.  

Let 𝑃𝑘(𝑗)  be the probability assigned to a track k as defined previously. The 

proportion (𝑀(𝑖)) of a particular diffusive state i is given by: 

𝑀(𝑖) =
∑ 𝑃𝑘(𝑖)𝑘

∑ ∑ 𝑃𝑘(𝑖)𝑘𝑖
 

4.7.9. Fitting and model selection 

 All fits performed to the data were implemented with the nonlinear least square 

method using bisquare weights due to the noise on the tail of the survival distribution.  

Graphical inspection was used to qualitatively determine if a straight line was observed 

for multiple decades in the case of a power-law fit in a log-log plot. Three different metrics 

were used to determine the difference between exponential models and power-law 

models. The first metric corresponds to Bayesian information criterion (BIC) using the 

probability distribution function (PDF) corrected for photobleaching as the likelihood 

function. The PDF was normalized between the minimum and maximum observation 

range of TFs dwell time (BIC1). BIC is a criterion for model selection that penalizes for 
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model complexity (number of free parameters in the model). BIC1 is given by (James et 

al., 2017): 

𝐵𝐼𝐶1(𝑀) = 𝑘𝑙𝑛(𝑛) − 2𝑙𝑛(𝑃(𝐷|𝜃,𝑀)) 

where M corresponds to the model (Power Law, Double Exponential and Triple 

Exponential), k corresponds to the number of parameters of the model, 𝜃 corresponds to 

the model parameters found by fitting, D the observed data and n the number of 

observations. 𝑃(𝑥|𝜃, 𝑀) corresponds to the realization probability of 𝑥 given the model 

PDF with parameters 𝜃. For SMT, D is the set of independent and identically distributed 

discrete experimental events and 𝑃(𝐷|𝜃,𝑀) is calculated as follows: 

𝑃(𝐷|𝜃,𝑀) =∏∫ 𝑝(𝑥|𝜃, 𝑀)
𝑥+

𝛿𝑡
2

𝑥−
𝛿𝑡
2

𝑑𝑥

𝑥∈𝐷

 

Where 𝑝(𝑥|𝜃, 𝑀) corresponds to the PDF of the model after photobleaching 

correction. For instance, the double exponential PDF is given by: 

𝑝(𝑥|𝜃 = (𝛼, 𝛽),𝑀𝐷𝐸) = 𝐶(𝑓1𝛾𝛼𝑒
−(𝛾+𝛼)𝑡 + (1 − 𝑓1)𝛾𝛼𝑒

−(𝛾+𝛽)𝑡) 

where 𝛼, 𝛽 are the exponential parameters, 𝛾 the photobleaching rate and C a 

normalization constant.  

The second metric, the evidence in decibels (Db) for a particular model given the 

observed data and priors, was calculated to compare the alternative models explored. The 

evidence measures the probability of a particular model being the best predicting model 

in comparison with all the other models. For instance, for the power law model (𝑀𝑃𝐿) the 

evidence versus the double exponential model (𝑀𝐷𝐸)is given by (Jaynes & Bretthorst, 

2019): 
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𝐸(𝑀𝑃𝐿|𝐷, 𝜃, 𝐴) = 𝐸(𝑀𝑃𝐿|𝐴) + 10𝑙𝑜𝑔10 [
𝑃(𝐷|𝑀𝑃𝐿 , 𝜃)

𝑃(𝐷|𝑀𝐷𝐸 , 𝜃)
] 

𝐸(𝑀𝑃𝐿|𝐴) =
𝑃(𝑀𝑃𝐿|, 𝐴)

𝑃(𝑀𝐷𝐸|𝐴)
 

where A corresponds to the priors; P,D and 𝜃 as defined for BIC1. Uniform priors were 

used throughout the model comparison and therefore 𝐸(𝑀𝑃𝐿|𝐴) is set to 0. For instance, 

an evidence of 30 Db corresponds to a probability higher than 0.999 that the power law 

model better describes the data in comparison with the alternative models tested. If the 

evidence was not high enough to reach a conclusion between the different models, more 

data was acquired until the evidence reached a satisfactory value.  

A final metric using BIC and the residual sum of squares (RSS) as a likelihood 

function was used (BIC2). For each functional model f, BIC2 was calculated as: 

𝐵𝐼𝐶2(𝑀) = 𝑘𝑙𝑜𝑔(𝑁) + 𝑁𝑙𝑜𝑔 (
𝑅𝑆𝑆

𝑁
) 

where k corresponds to the number of parameters estimated and N the number of 

observations in the survival distribution (James et al., 2017).  

Delta-BIC1 (Delta-BIC2) is defined as the difference between BIC1 (BIC2) calculated for 

double exponential and power-law (DeltaBIC1=BIC1(DE)-BIC1(PL)). A negative value 

indicates that the double exponential model is a better model for the data in comparison 

to the power-law model, while a positive value indicates that a power-law better describes 

the data. A negative value of evidence (as calculated above) corresponds to a higher 

probability for a double exponential model being the best model for the data compared to 

the power-law model. Table 4-1 shows the values of the evidence and Delta-BIC1 and 
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Delta-BIC2 for fitting comparison between the power law and double-exponential models 

for all the different experimental conditions.    

4.7.10. GR chromatin immunoprecipitation (ChIP) and ChIP-seq.  

GFP-GR wild type and mutant expressing cells were left untreated or treated with 

100 nM of Dex (Sigma) for 1 h. For ChIP, after cross-linking with 1% paraformaldehyde (5 

min) and cell collection the chromatin was sonicated (Bioruptor, Diagenode) to an average 

DNA length of 200–500 bp. For immunoprecipitation, 600 g of chromatin was incubated 

with anti-GFP antibody (Abcam #ab290) coupled onto Protein A/G magnetic beads 

(Millipore) with rotation overnight at 4°C. After stringent washes, the antibody-bound 

chromatin fragments’ cross-linking was reversed, and the remaining proteins digested. 

Immunoprecipitated DNA was extracted from the samples with phenol-chloroform-isoamyl 

alcohol and ethanol precipitation. ChIP-seq libraries were generated using Illumina 

TruSeq Chip Sample Prep Kit (Illumina # IP-202-1012) according to manufacturer’s 

instructions. 

4.7.11. ChIP-sequencing data analyses 

Two biological duplicate ChIP samples each for GRC428G and GR407C cell lines 

were sequenced using Illumina NextSeq 500 with single-end reads. The data were aligned 

to the mouse reference mm10 genome using Bowtie2 (Langmead & Salzberg, 2012). 

Subsequent downstream analysis was performed using HOMER (Heinz et al., 2010). 

Replicate data sets were merged and peaks in each dataset were called using findPeaks 

with style factor for TF, FDR 0.001, 4-fold enrichment of normalized reads to the control 

and 4-fold enrichment over local background; however, individual replicates correlated 

well with each other for all called peaks. The mergepeaks command was used to 

determine the shared/unique peaks from the GRwt and GR407C. Data matrices for 
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heatmaps/aggregate plots for the ChIP-seq and the ATAC-seq (Paakinaho, Swinstead, 

Presman, Grontved, & Hager, 2019b) were generated using the annotatePeaks.pl 

command with a 20bp sampling window. 

4.7.12. Quantification and Statistical Analysis 

For statistical analysis, all measured quantities are reported as ensemble averages 

with standard error and number of observations. At least three biological replicates of SMT 

experiments were performed for each condition. Two sample K-S tests on the survival 

distribution were performed between replicates to confirm statistical reproducibility. At 

least 20 cells were imaged per SMT replicate for each condition for slow acquisition 

intervals (200 ms and 500 ms) and 60-100 cells were imaged for fast acquisition intervals 

(12 ms). The exact number of tracks and cells are specified in figure legends.  

4.7.13. Data and Code Availability 

The GRC428G and GR407C ChIP-seq datasets are submitted to the NCBI Gene 

Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) database, accession 

code: GSE154771. The previously published GFP-GRwt ChIP and ATAC datasets are 

archived under GEO accession number GSE108634. 

Tracking was performed in MATLAB (version 2016a) with custom scripts. The code 

for pEM analysis is freely available at the following link: https://github.com/p-koo/pEMv2 

Other relevant data and materials that are not explicitly included in this article will 

be made available by the lead contact upon reasonable request. 

https://github.com/p-koo/pEMv2
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4.7.14. Tables 

Protein Evidence Delta-BIC1 Delta-BIC2 

PPARα -22.73 -5.23 -54 

GR407C-Dex -23.39 -4376 -1.37 

GR407C-Cort -46.35 -20.12 -46.35 

GRwt-Dex 2118 985 204 

GRwt-Cort 3003 1677 834 

GRwt-Cortwash 800 417 106 

GR-C428G-Dex 127 65 53 

GRmon-Dex 1596 744 174 

GRwt-Dex 

confinement 

NA NA 107 

GRwt-Dex 

chromatin binding 

NA NA 215 

Table 4-1 Fitting parameters for model selection 
Values of the evidence and Delta-BIC1 and Delta-BIC2 for fitting comparison between the power 
law and double-exponential models for all the different experimental conditions. NA, not applicable. 
Negative value indicates that the double exponential model is a better model for the data in 
comparison to the power-law model, while a positive value indicates the contrary. 
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Chapter 5. Estrogen Receptor Mobility and Action 
is Regulated by Substrate Stiffness 

5.1. Summary 

Tumors exhibit altered tissue-level and cell mechanics, including 

extracellular matrix (ECM) remodeling and stiffening, elevated interstitial pressure 

and altered mass transport. Experimental models demonstrate that enhancing 

ECM stiffness promotes malignancy and, conversely, inhibiting matrix stiffening 

reduces tumor incidence and improves treatment. Consequently, the molecular 

and biophysical mechanisms by which mechanics influence cell behavior to 

modulate malignancy are under sustained investigation. In the context of breast 

tumorigenesis, changes to the stiffness of the cellular microenvironment have been 

observed. Independently, reprogramming of the estrogen receptor has been 

reported during breast cancer progression. 

The focus of this chapter is to study the role of the physical properties of the 

matrix microenvironment in the regulation of transcription factor dynamics in single 

cells and uncover the links between stiffness, chromatin accessibility, transcription 

factor mobility and transcriptional regulation in the MCF-7 breast cancer model. 

We observe significant changes to the cell’s transcriptome due to changes in 

matrix stiffness, accompanied by pharmacological resistance to tamoxifen. 

Genomic studies of the Estrogen Receptor (ER) reveal optimal regulatory functions 

of the receptor under physiological stiffness, with enhanced chromatin binding 

times correlated with levels of induction and repression of ER dependent genes. 

We report a novel crosstalk between substrate stiffness and unliganded ER activity 
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wherein the unliganded receptor binds to chromatin and regulate gene expression 

in a stiffness depending manner. Here, we propose mechanical regulation of gene 

expression mediated by changes in transcription factor mobility independent to 

changes in chromatin accessibility as previously reported in the field. 

5.2. Introduction 

Organs throughout the human body exhibit a broad range of stiffness 

(Figure 5-1A). The compliance of tissue and matrix microenvironments 

encountered by cells within these organs modulates their function, and plays a 

crucial role in tissue differentiation and disease (Y.L. Han et al., 2020; J. Park et 

al., 2012).  For instance, normal breast tissue has a stiffness of ~1 kPa while during 

tumorigenesis breast tumors reach stiffnesses on the order of ~12 kPa (Plodinec 

et al., 2012). More generally, tumors exhibit altered tissue-level and cell 

mechanics, including extracellular matrix (ECM) remodeling and stiffening, 

elevated interstitial pressure and altered mass transport (Heldin, Rubin, Pietras, & 

Östman, 2004; Huang, Wang, Bates, & Zhuang, 2008; Winkler, Abisoye-

Ogunniyan, Metcalf, & Werb, 2020). Enhancing ECM stiffness promotes 

malignancy and, conversely, inhibiting matrix stiffening reduces tumor incidence 

and improves treatment (Paszek et al., 2005). Therefore, the molecular and 

biophysical mechanisms by which mechanics influence gene expression to 

modulate malignancy are under sustained investigation. A consensus view that 

has emerged is that forces generated by the cytoskeleton as the cell adjusts to 

external perturbations such as substrate stretching, fluid flow, or alterations in 

substrate rigidity or topography are transmitted to the nucleus and chromatin via 
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physical links on the nuclear envelope and the lamin meshwork (Shumaker, 

Kuczmarski, & Goldman, 2003). Aberration in nuclear mechanics and deformability 

have been linked to metastatic progression (Shumaker et al., 2003). Additionally, 

changes in chromatin structure have been closely associated with tumor growth 

and cancer susceptibility (Morgan & Shilatifard, 2015; Zane, Sharma, & Misteli, 

2014) by promoting genomic instability, stimulating cell proliferation, and 

facilitating cellular transformation.  
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Figure 5-1 Stiffness Affects Cell Phenotype 
(A) Schematic showing the broad range of stiffness of organs in the human body, ranging in the 
order of a few pascals in the Kidney and Brain to giga Pascals in bones and tendons. Young’s 
modulus on the Y-axis in log scale, different organs on the X-axis. (B) Maximum intensity projection 
of fixed MCF-7 cells on polyacrylamide gels of different stiffness (0.8KPa, 12KPa, 100KPa and 
Glass) in a confocal microscope. F-actin (sir-actin) in magenta and nuclei staining in blue (DAPI). 
(C) Lateral view of 3D reconstruction of confocal imaging of fixed MCF-7 nuclei (DAPI) on 
substrates of different stiffness. 

Understanding the role of mechanobiology in tumorigenesis and cell biology 

is pivotal in revealing its connection with metastasis, prognosis and therapeutic 
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treatments. Studies of mouse mammary glands revealed stiffening of breast 

tumors in comparison with normal tissue due to stiffening of the tumor stroma 

(Butcher et al., 2009; Sinkus et al., 2000). Recent nanomechanical measurements 

of human breast biopsies revealed unique mechanical markers that accompany 

different breast cancer stages with potential prognostic qualities (Plodinec & Lim, 

2015). Besides changes in the mechanical properties of the tumor 

microenvironment due to increase in matrix deposition and crosslinking (Levental 

et al., 2009; Paszek et al., 2005), biophysical techniques have shown that 

alterations in cytoskeletal architecture are associated with malignant 

transformation (Guck et al., 2005).  

The estrogen receptor (ER) is a key regulator of mammary development, 

differentiation and a dominant target in therapies for ER+ breast cancers (Howell, 

2008; Jensen & Jordan, 2003). Moreover, ER has been shown to be an oncogenic 

driver of breast cancers but its role in tumorigenesis is still poorly understood. 

Understanding the role of ER at different stages of breast cancer progression is 

paramount for the development of specific targeting therapeutics. ER 

transcriptional activity has been shown to be altered between normal mammary 

epithelium and breast cancer cells driven by differences in the active ER cistrome 

(Chi et al., 2019), suggesting important changes in ER signaling during breast 

cancer progression. However, no clear connection between the changes in 

genomic landscape induced by mechanical stimuli and ER-dependent gene 

expression has been established.  
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Several recent studies have directly probed the effect of mechanical stimuli 

on chromatin modifications using next-generation sequencing approaches 

(Stowers et al., Ning wang 2020). A clear implication of these studies is that 

mechanical stimuli can alter the mobility and interaction dynamics of transcription 

factors.  Our new analysis of single molecule dynamics of TFs (Chapter 3) has 

revealed that the residence time of TFs exhibits a power law distribution. Such 

power law distributions suggest that the chromatin environment encountered by 

transcription factors in the nucleus is complex, with binding sites having a broad 

distribution of affinities and local confinement of TFs due to protein-protein 

interactions (Chapter 4). However, the dependence of TF mobility on the physical 

properties of the local cellular microenvironment has not been studied and it is not 

known whether TF kinetics are dependent on substrate stiffness. The latter is even 

more important in the context of breast cancer where ER dynamics and chromatin 

interactions play a critical role in cell phenotype, prognosis and treatment.  

Here, we examine how mechanical properties of the cell microenvironment 

regulate ER transcriptional activity, nuclear mobility, chromatin binding and its 

accessibility in MCF-7 cells.  We show that ER binding kinetics are modulated by 

substrate stiffness with binding times significantly longer on physiological stiffness 

than previously reported on glass. These changes in ER kinetics induced by the 

mechanical properties of the cell microenvironment in turn modulate ER action and 

gene regulation. Using next-generation sequencing and high-throughput 

genomics, we demonstrate a novel modulation of unliganded ER by substrate 

stiffness that has antagonistic effects on liganded ER and significant gene 
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regulatory functions. Substrate stiffness appears to be a master regulator of 

transcription factor binding, mobility and gene regulation. 

5.3. Results 

5.3.1. Cell Phenotype and Nuclear Morphology are Determined by 
Mechanical Cues 

To evaluate the role of substrate stiffness on cell phenotype and 

transcriptional regulation and dynamics in the context of breast cancer and TF 

dynamics, MCF-7 cells were grown on polyacrylamide gels of different stiffness 

(0.8 kPa, 12 kPa, 100 kPa) or glass, (see methods) for 48 hours. Confocal imaging 

revealed a clear dependence of cell phenotype on substrate stiffness. At 

physiological stiffness (0.8 kPa and 12 kPa), cells form acinar structures or 

spheroids similar to the in vivo phenotype (M.J. Bissell & Radisky, 2001). On stiffer 

substrates (glass and 100 kPa), cells formed monolayers with higher aggregation 

of cells in 100 kPa gels and decreased spread area as compared to glass (Figure 

5-1B). In addition to morphological changes in cells, nuclear shape was strongly 

affected by substrate stiffness. We found that cells on physiological stiffness 

qualitatively display spherical nuclei in contrast to flat nuclei on stiffer substrates 

(Figure 5-1C). Several studies have shown that nuclear morphology has a 

profound impact on cellular function, gene expression and many pathologies 

(Biedzinski et al., 2020; Dahl, Ribeiro, & Lammerding, 2008; Lee, Stowers, & 

Chaudhuri, 2019; Skinner & Johnson, 2017). Changes in substrate stiffness are 

accompanied by changes in the cell transcriptome, phenotype and behavior (M. J. 

Bissell, Radisky, Rizki, Weaver, & Petersen, 2002). These remarkable changes in 
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cell phenotype and nuclear morphology we observed prompted us to characterize 

changes in transcriptional regulation in the context of the estrogen receptor and 

breast tumorigenesis.  

5.3.2. MCF-7 Transcriptome is Significantly Altered at Physiological 
Stiffness 

To characterize the differences in gene expression induced by changes in 

substrate stiffness, we performed RNA-seq on cells grown on surfaces of different 

stiffness in charcoal-stripped serum (CSS) medium to prevent confounding effects 

of hormones typically present in fetal bovine serum. Unsupervised clustering 

analysis revealed remarkable changes in the transcriptome as a function of 

stiffness (Figure 5-2A). Cells grown in gels show a remarkably different 

transcriptional profile than cells grown in glass. Noticeably, cells grown on 

substrates with physiological stiffness (0.8 and 12 kPa) exhibit similar 

transcriptional profiles (i.e. they clustered together) (Figure 5-2A). Polyacrylamide 

gels have been used extensively to grow cells under different physical 

environments without toxic effects (Caliari & Burdick, 2016). We found that cells 

on glass and 0.8 kPa gels exhibit significant differences at the transcriptional level 

with 1037 genes differentially expressed between them (Figure 5-2B, left panel) 

whereas 0.8 kPa and 12 kPa exhibit similar transcriptional profiles with only 80 

genes differentially expressed between them (Figure 5-2B, right panel). In order 

to rule out changes to the transcriptome due to effects of polyacrylamide, we 

compared 100 kPa and glass transcriptional profiles. Differential expression 

analysis showed a smaller difference in expressed genes compared to 0.8KPa 
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(Figure 5-2C). This implies a strong dependence of transcriptional activity on 

substrate stiffness, with transcriptional responses naturally divided into stiff and 

soft (physiological) substrates (0.8 kPa and 12KPa).  

 

Figure 5-2 Transcriptome is determined by mechanical stimuli 
(A) Hierarchical clustering of MCF-7 cells RNA-seq growth for 48 hours on substrates of different 
stiffness in CCS media. Transcriptome for soft substrates (0.8KPa and 12KPa) clustered together 
while Glass and 100KPa clustered in their own hierarchical group. (B) Log2-fold change v/s 
adjusted P-value for differential gene expression analysis between Glass and 0.8KPa (Left Panel) 
and 12kPA and 0.8KPa (Right Panel). Significance level set to adjusted p-value of 0.01 and fold 
induction of 2. (C) Log2-fold change and adjusted P-value for differential gene expression analysis 
between Glass and 100KPa. Significance level set to adjusted p-value of 0.01 and fold induction of 
2. 

Gene Set Enrichment Analysis (GSEA) of this dataset showed statistically 

significant enrichment of downregulated and upregulated genes detected in MCF-

7 derived cells that are resistant to tamoxifen or inhibitors of aromatase (Masri et 
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al., 2008). Tamoxifen has been used in the management of ER+ breast cancer in 

the last 30 years with high degree of efficacy (Jordan, 2003; Shagufta & Ahmad, 

2018). It is cytotoxic to cancer cells (Lippman & Bolan, 1975) and acts as an ER 

antagonist in breast tissue by inhibiting transcriptional activation of ER responsive 

genes (D. Y. Wang, Fulthorpe, Liss, & Edwards, 2004). Accordingly, the analysis 

predicts higher tamoxifen resistance in MCF-7 cells grown on softer substrates 

compared to glass (Figure 5-3A). To test this, we performed a cell survival assay 

(CellTiter-Glo 2.0) under different tamoxifen concentrations (see methods). We 

find that cells on stiffer substrates (Glass and 100 kPa) are more sensitive to 

tamoxifen treatment compare to cells on soft substrates (0.8 kPa). In particular, at 

a tamoxifen concentration of 25nM complete cellular death is observed on glass, 

40% survival on 100 kPa and 80% survival on 0.8 kPa (Figure 5-3B-C).  
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Figure 5-3 Substrate stiffness regulates tamoxifen resistance 
(A) Downregulated (Left) and Upregulated (Right) genes in 0.8KPa compared to glass that are 
related to tamoxifen resistance in MCF-7 cells. Red represents upregulation, blue represents 
downregulation. Biological replicates are shown. (B) ATP survival assay for different concentrations 
of Tamoxifen (X-axis) of MCF-7 cells on substrates of different stiffness. Error bars represent 
standard error. (C) GSEA enrichment analysis results for MASRI resistance to tamoxifen and 
aromatase inhibitors. Upregulated genes involved in drug resistance are shown in the top panel 
and downregulated genes in the bottom panel. Class A corresponds to vehicle treatment on 0.8KPa 
gels and Class B corresponds to vehicle treatment on glass. Enrichment p-value of less than 0.01, 
normalized enrichment scores higher than 1.5 for upregulation and less than -1.5 for 
downregulation. 

5.3.3. Liganded ER Gene Regulatory Functions are Optimized on 
Substrates of Physiological Stiffness 

Given the remarkable changes in overall transcriptional behavior of MCF-7 

cells induced by soft substrates, we next explored whether transcriptional activity 

of ER could be modulated by substrate stiffness. To this end, we performed RNA-

seq following 2 hours of 100nM estradiol (E2) treatment on MCF-7 cells grown on 
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substrates with different stiffness. We found that liganded ER action was drastically 

affected by stiffness (Figure 5-4A), with a group of genes that are commonly 

upregulated in cells grown on physiological stiffness (0.8 kPa and 12 kPa), but are 

observed to be downregulated in cells grown on stiffer substrates (100 kPa and 

glass) and vice versa. Transcriptional profiles after E2 treatment were naturally 

clustered differentially in soft (0.8 and 12 kPa) and stiff (100 kPa and glass) 

substrates implying changes in transcriptional regulation of ER due to substrate 

stiffness. We found that while over 100 common genes undergo differential 

regulation on soft (0.8 and 12 kPa) substrates, only 13 common genes exhibited 

differential regulation on both soft and stiff substrates (Figure 5-4B-C). This 

implies that the expression of ER regulated genes is dependent on substrate 

stiffness, with unique sets of genes differentially expressed on soft versus stiff 

substrates. A number of induced/repressed genes are affected by stiffness with 

highest transcriptional regulation at 12 kPa and 0.8 kPa (Figure 5-4B-D), which 

indicates optimality of ER activity under physiological stiffness, since the receptor 

induces higher transcriptional activity on soft substrates seen by an increased 

number of differentially regulated genes (size of Venn diagram) and by the overall 

induction of the union of upregulated genes (Figure 5-4E).   
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Figure 5-4 Estradiol response is potentiated at physiological stiffness 
(A) Hierarchical clustering of MCF-7 cells RNA-seq grown for 48 hours on substrates of different 
stiffness in CCS media and 2 hours 100nM E2 treatment. Soft substrates (0.8KPa and 12KPa) 
transcriptome clustered together while the transcriptomes for cells on stiff substrates (100KPa and 
Glass) clustered in another hierarchical group. Two main gene sets with different response to E2 
and stiffness is observed. Cluster 1 (light blue) corresponds to genes with higher expression on 
soft substrates while Cluster 3 (green) corresponds to genes with higher expression on stiff 
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substrates. (B) Venn diagram of differentially expressed genes (upregulated) in MCF-7 cells on 
substrates with different stiffness upon E2 treatment. Common upregulated genes correspond to 
the intersections in the Venn Diagrams. Differentially expressed genes corresponds to genes with 
adjusted p-value < 0.01 and Log2Fold induction of 0.5. (C) Venn diagram of differentially expressed 
genes (downregulated) of MCF-7 cells upon E2 treatment on substrates of different stiffness. 
Common downregulated genes correspond to the intersections in the Venn Diagrams. Differentially 
expressed genes correspond to genes with adjusted p-value < 0.01 and Log2-fold induction of 0.5. 
(D) Volcano plot for RNA-seq of MCF-7 cells after 2 hours 100nM E2 treatment on substrates with 
different stiffness. Black dots correspond to genes with a p-value higher than 0.01 while red dots 
correspond to genes with a p-value lower than 0.01. Adjusted p-value calculated with biological 
triplicates. X-axis corresponds to the mean normalized count of a particular gene and y-axis the 
Log2-fold induction with respect to vehicle. (E) Boxplot of the log2-fold induction for the union of 
upregulated genes after E2 treatments on surface of different stiffness. The level of upregulation is 
similar between 0.8KPa and 12KPa (p-value higher than 0.01) and similar between Glass and 100 
KPa (p-value higher than 0.01). Statistically significant difference between 0.8KP and 100KPa, 
Glass (p-value lower than 0.01) in the level of upregulation. 

To further understand the dependence of ER activity on stiffness, 

differentially expressed genes between Glass-veh and 0.8 kPa-veh were 

compared to differentially expressed genes between 0.8 kPa-E2 and 0.8 kPa-veh. 

If ER activity is independent of substrate stiffness, no correlation would be 

expected between differentially expressed genes in the vehicle conditions and E2 

treatment. However, this analysis revealed a strong correlation between ER and 

stiffness regulated genes (Figure 5-5A and Figure 5-4E) indicating ER 

transcriptional activity and stiffness-related transcriptional regulation. Upregulated 

(downregulated) genes due to stiffening of the substrates (yellow circles, Figure 

5-5A) corresponds to upregulated (downregulated) genes by estradiol treatment 

(Blue circles, Figure 5-5A). Anticorrelation of differentially expressed genes 

between Veh 0.8 kPa/Veh Glass and 0.8KPa E2/0.8 kPa Veh (Figure 5-5B-C) 

implies antagonistic effect of E2 treatment and substrate stiffness, wherein E2 

treatment works as an opposite force in terms of transcriptional changes due to 

stiffness (Figure 5-5B-C). This observation suggests the existence of a novel 

crosstalk between mechanical regulation of gene expression and ER activity.  
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Figure 5-5 Antagonistic effects of ER gene regulation and stiffness. 
(A) Log2-Fold change of the intersection of the set of differentially expressed genes between Glass-
Veh/0.8KPa-Veh (yellow) and 0.8KPa E2/0.8KPa Veh (black) ordered from highest upregulated 
gene in 0.8KPa-E2 to lowest. Differentially expressed genes correspond to genes with adjusted p-
value < 0.01 and Log2Fold induction of 0.5. Example genes are listed. (B) Log2-fold change of the 
intersection of the set of differentially expressed genes between 0.8KPa-Veh/Glass-Veh (Orange) 
and 0.8KPa E2/0.8KPa Veh (Blue) ordered from highest upregulated gene in 0.8KPa-E2 to lowest. 
(C) Histogram (Upper) and scatter plot (Lower) of the correlation in Log2 fold change between the 
genes in (B). Correlation coefficient of -0.76. 

5.3.4. Unliganded ER Chromatin Binding and Transcriptional Activity 
is Modulated by the Mechanical Properties of the Cell 
Microenvironment 

Changes in transcriptional activity of ER due to stiffness might be caused 

by modulation of ER dynamics, binding and/or chromatin accessibility. Moreover, 

it has been suggested that the receptor might have regulatory functions in the 

absence of hormone, but this is still under debate (Caizzi et al., 2014b). We thus 

performed ER CHIP-seq to characterize changes in binding of ER as a function of 
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changes in substrate stiffness. ER binding to genomic regions upon hormone 

treatment is comparable across different substrates but unliganded ER binding is 

strongly dependent on stiffness (Figure 5-6A) with minimal unliganded ER binding 

on glass (upper peaks). Surprisingly, in the absence of hormone, 30671 peaks 

were detected on 0.8 kPa stiffness gels, in contrast to 5180 peaks observed on 

glass. Unliganded ER binding and transcriptional activity is clearly modulated by 

stiffness and these observations are consistent with increased unliganded ER 

binding during tumorigenesis in breast cancer patients (Chi et al., 2019; T. W. 

Miller et al., 2011). Strikingly, 100 kPa shows a significant amount of unliganded 

ER binding but poor transcriptional response observed with RNA-seq, implying that 

binding is not a sole predictor of gene regulation and the dynamics of the receptor 

must be studied as a function of substrate stiffness. Moreover, unliganded ER 

binding is potentiated at lower stiffness (Figure 5-6A) further supporting the 

evidence for unliganded ER transcriptional activity and its antagonistic effect as 

observed in the RNA-seq data.  
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Figure 5-6 Unliganded ER binding is dependent on substrate stiffness 
(A) Heatmap of the union of ER CHIP-seq of MCF-7 cells on different stiffness after 48 hours in 
CSS and 2 hours of 100nM E2 treatment. ER peaks are divided into group 1 with peaks observed 
in Glass-veh and group 2 corresponds to gained peaks. Aggregate plot for the heatmap is plot for 
each condition (Red). 

To further explore the antagonistic action of liganded and unliganded ER, a 

new MCF-7 derived cell line was developed by depriving the cells from hormone 

for 6 months (see methods). Since MCF-7 cells are normally estrogen-dependent 

(Clarke et al., 1989), this long selection method allows us to isolate the small 

population of cells that are estrogen-independent, which we called MCF7-LTED 

(Long Term Estrogen Deprivation). As expected, LTED cells can grow in a 

hormone independent manner (Figure 5-7A) and ER levels are significantly 

reduced (Figure 5-7B-C). Thus, this cell line allows us to discriminate between 

unliganded ER action and ER deprivation. Using MCF7-LTED as a baseline, 

transcriptional effects of unliganded ER can be characterized by comparing RNA-

seq datasets upon 48 hours hormone deprivation in wild type MCF-7 with MCF7-
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LTED (Figure 5-7D). Most of the genes found are ER regulated genes (Figure 

5-7E-F). The level of induction of these genes was then compared to the 

differentially expressed genes between E2 and CSS treatment on glass in MCF-7 

(liganded ER gene regulation) confirming an antagonistic effect of liganded and 

unliganded ER transcriptional regulation (Figure 5-8A) with a negative correlation 

of 0.89 between the two groups (Figure 5-8B). These results are consistent with 

antagonistic effects of hormone treatment and hormone deprivation on 

transcription in breast tumors from patients (Chi et al., 2019) and suggest that the 

antagonistic effects of unliganded ER on MCF-7 are potentiated at physiological 

stiffness (Caizzi et al., 2014a).  
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Figure 5-7 Unliganded ER exhibits transcriptional regulatory functions 
(A) Cell survival assay for MCF-7 WT and LTED in terms of E2 concentration normalized to cell 
number in full media. MCF-7 LTED growth is independent of E2 concentration as expected from 
the downregulation of ESR1. (B) Immunostaining of ER (Green) in MCF7-LTED (Bottom) and 

MCF7-WT (Top). DAPI in Blue. (C) Western blot for ER  between MCF7-LTED after 3 months of 

hormone deprivation and MCF-7 LTED. Tubulin as control. Bottom panel, q-PCR relative 
expression of ESR1 with respect to estrogen deprivation time. (D) Log2-fold change and adjusted 
P-value for differential gene expression analysis between MCF7-LTED Veh and MCF7-wt Veh. 
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Significance level set to adjusted p-value of 0.01 and fold induction of 2.  (E) GSEA enrichment 
analysis results for DUTERTE Estradiol response 24 hours (Left panel) and 6 hours (Right panel). 
Class A corresponds to MCF-7-LTED and Class B corresponds to MCF-7 WT on glass. Enrichment 
p-value of less than 0.01, normalized enrichment scores higher than 1.5 for upregulation and less 
than -1.5 for downregulation. (F) Rightmost panel corresponds to the heatmap of ER upregulated 
genes in MCF7-LTED and MCF-7 wt. 

 

Figure 5-8 Uliganded ER presents antagonistic gene regulatory functions 
compared to liganded ER 

(A) Log2-fold change of the intersection of the set of differentially expressed genes between MCF7-
Veh/MCF-7-LTED (blue) and MCF-7 E2/MCF-7 Veh (red) ordered from highest upregulated gene 
in MCF7-Veh to lowest.  (B) Histogram (Upper) and scatter plot (Lower) of the correlation in Log2 
fold change between the genes in (A). Correlation coefficient of -0.89.  

5.3.5. Chromatin Accessibility is Weakly Affected by Substrate 
Stiffness  

Several prior studies have suggested that chromatin accessibility is one of 

the main factors affected by the mechanical environment, with increased chromatin 

accessibility on softer substrates (Kirby & Lammerding, 2018; Stowers et al., 

2019). To further study whether the effects of substrate stiffness on gene 

regulation and ER action similarly arise from changes in accessibility, we 

performed ATAC-seq on MCF-7 cells on different stiffness. In the absence of 

hormone, the differences in accessibility profiles across different substrates were 

small, with the vast majority of ATAC-seq peaks shared among conditions (Figure 
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5-9A-B-C). Comparison between extreme stiffness conditions (0.8 kPa and glass) 

reveals small differences in chromatin accessibility in the absence of estradiol 

(Figure 5-9A-B-C). Upon addition of estradiol, chromatin accessibility increased 

independent of stiffness, consistent with previous results (Figure 5-9D-E). 

However, analysis of ATAC signal at ER binding sites by ChIP revealed significant 

changes in chromatin accessibility induced by ER binding in a stiffness dependent 

manner (Figure 5-9F). In particular, E2 treatment increased chromatin 

accessibility in ~20% of ER binding sites with an ATAC-peak across different 

stiffness. On the other hand, chromatin accessibility was significantly decreased in 

the remaining 80% of ER binding sites at physiological stiffness (Figure 5-9F). 

Interestingly, this reduction in chromatin accessibility corresponds to higher levels 

of chromatin accessibility in the absence of hormone at 0.8 kPa compared to glass 

at unliganded ER binding sites. The latter implies a potential novel chromatin 

remodeling action of unliganded ER.  
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Figure 5-9 Chromatin accessibility is weakly affected by substrate stiffness 
(A) Heatmap of the union ATAC-peaks between 0.8KPa-Veh, 12KPa-Veh and 100KPa-Veh, Glass-
Veh around 500bp from the peak center. Aggregate plot for the ATAC-peaks is shown on top of 
the heatmap. (B) Venn Diagram for ATAC-seq between vehicle conditions and different substrate 
stiffness. Most ATAC peaks are shared across cells from different stiffness. (C) Venn Diagram for 
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ATAC-seq between 1-hour 100nM E2 treatment conditions and different substrate stiffness. 
Accessibility increases after E2 treatment for different stiffness conditions. (D) Heatmap of the 
union ATAC-peaks between Glass-Veh (Left) and Glass E2 (Right) divided into Vehicle (Control) 
unique peaks, common peaks between conditions and E2 treatment unique peaks. Heatmap 
around 2000bp from the peak center. Aggregate plot for the ATAC-peaks is shown on top of the 
heatmap. (E) Venn Diagram for ATAC-seq between 1-hour 100nM E2 treatment conditions and 
vehicle for different substrate stiffness. Accessibility increases after E2 treatment for different 
stiffness conditions. (F) Heatmap of gained and lost ATAC peaks after E2 treatment. ATAC peaks 
are aligned to ER CHIP peaks and sorted based on ER CHIP peak intensity. Stronger changes in 
chromatin accessibility are observed in 0.8KPa (right panel) compared to glass (left panel). 

5.3.6. ER Binds in the Order of Minutes to Chromatin under 
Physiological Stiffness  

Transcriptional regulation of ER as a function of stiffness is partially 

explained by changes in ER binding and its effect on chromatin accessibility but 

the higher transcriptional regulation on soft substrates and the increased ER 

binding at 100 kPa remains unexplained. In order to determine whether the 

observed alterations in transcriptional profiles induced by substrate stiffness are 

related to changes in ER mobility, we used single molecule tracking (SMT) 

experiments of Halo-tagged ER in MCF-7 cells under different stimulation 

conditions. We found that on substrates of physiological stiffness, fluorescent 

single molecule traces of ER persist in the imaging volume for several minutes, 

indicative of extremely long binding events (Figure 5-10A). This is contrary to 

previous reports of binding events on the order of seconds on glass (E.E. 

Swinstead et al., 2016). H2B-Halo serves as a good reporter for photobleaching 

since FRAP and other mobility experiments have shown significantly slower 

recovery of H2B compared to our experimental observation times (Kimura & Cook, 

2001). Comparison of H2B-Halo and ER-Halo (after E2 treatment) reveals that ER 

dwell times are indistinguishable from H2B dwell times at physiological stiffness 

(Figure 5-10B-C) but are smaller than H2B dwell times on stiffer substrates 
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(Figure 5-10B-D). The photobleaching rate on 0.8 kPa substrates is 1.7 minutes 

(Figure 5-10E) and due to the exponential nature of photobleaching, events as 

long as 8 minutes can be observed, implying that ER binding times are much 

longer than previously thought at physiological stiffness. These longer binding 

times are consistent with the transcriptional efficiency of E2 treatment on 

physiological stiffness compared to stiffer substrates (Figure 5-4B).  

 

Figure 5-10 ER mobility is modulated by mechanical cues 
(A) Sample ER tracks imaged by SMT after E2 treatment of MCF-7 cells on 0.8kPa substrate (top) 
after 12 minutes of imaging (500ms exposure and 1000ms acquisition interval). Sample kymograph 
showing a long ER binding event in the order of 10 minutes (bottom). (B) Semi-log plot of the dwell 
time distribution between ER (E2 treatment, Black) and H2B (Red) on 0.8KPa substrates. 95% 
Confidence Intervals (CI) are plotted in dashed lines. (C) Semi-log plot of the dwell time distribution 
of SMT tracks for ER (E2 treatment, red) and H2B (blue) on 12KPa substrates. 95% Confidence 
Intervals (CI) are plotted in dashed lines. ER binding events are as long as H2B photobleaching or 
disappearance from the focal plane. (D) Semi-log plot of the dwell time distribution of SMT tracks 
for ER (E2 treatment, red) and H2B (blue) on 100KPa substrates. ER binding events are shorter 
than H2B photobleaching or disappearance from the focal plane. (E) log-log plot of the dwell time 
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distribution of H2B (blue) in 0.8KPa and a triple exponential fit (red) characterizing photobleaching 
kinetics. 

In Chapter 4, we showed that TF binding events result from a combination 

of direct interactions with chromatin as well as protein-protein interactions due to 

protein self-aggregation and LLPS (which we term as “confinement”) (Garcia et al., 

2021a). To determine the relative contributions of chromatin binding and 

confinement to single molecule trajectories of ER, we used pEM (perturbation 

Expectation Maximization, (Koo & Mochrie, 2016)) to classify ER (E2 treatment) 

trajectories into these two states (Figure 5-11A-B). Mean Square Displacement 

(MSD) of the tracks classified as chromatin bound was independent of substrate 

stiffness, which is consistent with the motion expected due to the elastic properties 

of the chromatin polymer (Shukron & Holcman, 2017). On the other hand, we found 

that the MSDs for trajectories classified as confined were dependent on stiffness, 

with lowest MSDs on the softest substrates (Figure 5-11A-B). We next analyzed 

the dwell time distributions of the tracks classified as chromatin-bound or confined. 

The photobleaching corrected dwell time distributions showed significantly longer 

dwell times on 0.8 kPa gels for both confined and chromatin bound populations 

compared to those on stiffer substrates (Figure 5-11C-D) (Garcia et al., 2021b). 

Furthermore, trajectories classified as confined also showed significantly longer 

binding times across different stiffness compared to chromatin binding. The dwell 

times of these confined tracks were comparable to the timescales of H2B 

photobleaching on physiological stiffness (Figure 5-11E). These changes in the 

mobility and chromatin binding of liganded ER induced by substrate stiffness 

correlate with the observed changes in transcriptional activity, suggesting that 
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changes in ER mobility may be responsible for changes in the transcriptional 

response of hormones due to stiffness. 

 

Figure 5-11 Liganded ER chromatin binding and confinement are modulated by 
mechanical stimuli. 

(A) MSD for chromatin binding (bottom) and confined populations of SMT tracks (top) for 0.8KPa 
ER-E2 (red dashed lines) and Glass ER-E2 (solid blue lines). (B) MSD for chromatin binding 
(Bottom) and confined population (Top) of SMT tracks for 0.8KPa ER-E2 (red dashed lines) and 
12KPa ER-E2 (solid blue lines), (left panel) and for 0.8KPa ER-E2 (red dashed lines) and 100KPa 
ER-E2 (solid blue lines), (right panel). Identical chromatin binding is observed between different 
stiffness while small changes in the confined population are observed. (C) log-log plot of the dwell 
time distribution for the confined and chromatin binding population between Glass ER-E2 (Red) 
and 0.8KPa ER-E2 (Blue). (D) log-log plot of the dwell time distribution for chromatin binding and 
confinement population of SMT tracks for 12KPa ER-E2 (red) and 0.8KPa ER-E2 (blue), (left panel) 
and for 100KPa ER-E2 (red) and 0.8KPa ER-E2 (blue) (right panel). Liganded ER binds longer on 
12KPa than 0.8KPa as seen by the plateau in the tail of the distribution. Liganded ER binds longer 
on 0.8KPa than 100KPa. (E) log-log plot of the dwell time distribution for the confinement population 
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of SMT tracks for 0.8KPa ER-E2 (blue) and H2B (red). Liganded ER confinement dwell time are as 
long as photobleaching kinetics of the experiment. 

Since ChIP-seq and RNA-seq analysis showed that substrate stiffness 

modulated unliganded ER binding and its transcriptional activation, we next 

performed SMT on unliganded ER to characterize the changes in unliganded ER 

mobility and its relation to gene regulation. We found that the mean-squared 

displacement of trajectories for the confined and chromatin bound states were 

similar between liganded and unliganded ER across substrates of different 

stiffness (Figure 5-12A and Figure 5-11B). However, analysis of the survival 

distributions showed that both the confined and chromatin bound states for E2 

stimulation were longer lived than those for unliganded ER (Figure 5-12B-C).  

Since our whole genome and transcriptome analysis showed that even unliganded 

ER had significant transcriptional activity in cells on physiological substrates, we 

next compared unliganded ER binding dwell times at 0.8KPa and liganded ER 

binding dwell times on glass. Remarkably, we found that the distribution of binding 

times for the chromatin bound populations for unliganded ER on 0.8 kPa and 

liganded ER binding dwell times on glass were very similar (Figure 5-12E). 

Accordingly, we observed significantly shorter binding times of unliganded ER on 

100 kPa substrates compared to physiological stiffness which correlates with the 

poor transcriptional activity of unliganded ER on 100KPa despite potentiated 

binding observed using CHIP-seq (Figure 5-12D). Further analysis showed that 

on softer substrates, the chromatin binding and confinement dwell times for vehicle 

treatment were not well separated (Figure 5-12F). In contrast, on stiffer substrates, 

the dwell time distributions were clearly separable. This separation in transcription 
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factor mobility is consistent with the natural transcriptome clustering between soft 

and stiff substrates by RNA-seq (Figure 5-12G).  

 

Figure 5-12 Unliganded ER chromatin binding and confinement are modulated by 
mechanical stimuli. 

(A) MSD for chromatin binding (bottom) and confined populations of SMT tracks (top) for 0.8KPa 
ER-E2 (red dashed lines) and 0.8 ER-E2 (solid blue lines). MSD of the two population is unaltered 
by hormone binding to the receptor. (B) log-log plot of the dwell time distribution for the confined 
and chromatin binding populations for 0.8KPa ER-E2 (blue) and 0.8KPa ER-Veh (light blue and 
green). (C) log-log plot of the dwell time distribution for chromatin binding and confinement 
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population of SM tracks for unliganded ER (red) and liganded ER (blue) on substrates of different 
stiffness. Binding times are reduced in the unliganded version of the receptor. (D) log-log plot of 
the dwell time distribution for chromatin binding and confinement populations of SMT tracks for 
Glass ER-Veh (orange, top panel), 100KPa ER-Veh (orange, lower panel) and 0.8KPa ER-Veh 
(blue). Chromatin binding of the unliganded receptor is similar between Glass and 0.8KPa but faster 
in 100KPa. (E) log-log plot of the dwell time distribution for chromatin binding populations of SMT 
tracks for glass ER-E2 (red) and 0.8KPa ER-Veh (green). (F) log-log plot of the dwell time 
distribution for chromatin binding and confinement populations of SMT tracks for 12KPa ER-Veh 
(blue) and 0.8KPa ER-Veh (green and light blue). (G) log-log plot of the dwell time distribution for 
chromatin binding and confinement populations of SMT tracks for Glass ER-Veh (blue) and 100KPa 
ER-Veh (red). 

The dramatic changes in nuclear morphologies (Figure 5-1C) and H2B 

dynamics (Figure 5-13A) in response to substrate stiffness suggest that these 

arise as a result of global changes in chromatin mobility (Zidovska, Weitz, & 

Mitchison, 2013). To investigate this possibility, we measured the dynamics of 

H2B-Halo fluorescence intensity and quantified chromatin displacements and 

speed (See methods). Single plane confocal images were acquired on substrates 

of different stiffness and the velocity vectors calculated using Particle Image 

Velocimetry (Figure 5-13B). We found that substrate stiffness had a strong effect 

on the speed distribution with chromatin mobility being largest at physiological 

stiffness compared to stiffer substrates (Figure 5-13C).  

 

Figure 5-13 Chromatin mobility is potentiated on physiological stiffness 
(A) log-log plot of the dwell time distribution of SMT tracks for H2B on 0.8KPa (red) and 100KPa 
(blue). Photobleaching is slower at 100kPa than 0.8KPa. (B) Example speed vector map of 
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chromatin motion on glass. (C) Chromatin speed probability density on substrates of different 
stiffness. Ensemble average from three biological replicates. 

5.4. Discussion 

This work demonstrates that alterations in ECM stiffness can alter 

chromatin state, global nuclear dynamics and transcription factor mobility and 

binding, which in turn regulates phenotypic changes. Prior work has shown the 

importance of the physical properties of the environment, in particular stiffness, to 

cell fate and behavior (Engler et al., 2006; Stowers et al., 2019) with profound 

changes in chromatin accessibility and gene expression. However, transcription 

factor action and cell response to external stimuli in substrates of different stiffness 

has not been carefully explored. Our findings highlight a previously undescribed 

effect of substrate stiffness on cellular response to external stimuli. Even though 

stiffness is accepted as an important stimulus that regulates cellular phenotype, 

most studies on the regulation of gene expression by hormonal stimulation 

performed on rigid surfaces like glass and. Here, we explore how substrate 

stiffness affects chromatin accessibility, transcription, transcription factor mobility, 

action and binding as well nuclear mobility. We find that changes in substrate 

stiffness induce significant phenotypic changes with clearly differentiated 

transcriptomes between rigid and physiological soft substrates. Moreover, breast 

cancer MCF-7 cells grown on physiological stiffness exhibit higher levels of 

tamoxifen resistance, further highlighting the importance of studying 

pharmacological processes in substrates of similar stiffness as in vivo. 

Our RNA-seq and ATAC-seq analysis reveal that ER retains significant 

transcriptional activity and chromatin remodeling capacities on soft substrates 
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even in the absence of its ligand, while losing genomic activity on stiff substrates. 

In addition to the potentiation of its binding ability at physiological stiffness, 

chromatin binding times of unliganded ER on physiological stiffness are 

comparable to liganded ER on rigid substrates. Finally, we find that unliganded ER 

exhibits significant antagonistic transcriptional action at physiological stiffness to 

liganded ER which is consistent with clinical studies of estrogen deprivation, ER 

binding and transcriptional regulation (Chi et al., 2019; T. W. Miller et al., 2011)  

and potential unliganded ER activity on glass (Caizzi et al., 2014a; Welboren et 

al., 2009). Taken together, our results suggest a relevant role for unliganded ER 

in hormone resistance in breast cancer and the importance of studying breast 

cancer biology on physiologically relevant substrates.  

We discovered a remarkable dependence of liganded ER dynamics and 

transcriptional regulation on substrate stiffness. We found that liganded ER activity 

is potentiated at physiological stiffness compared to rigid substrates with higher 

transcriptional activation, repression and longer binding times to chromatin. Single 

molecule tracking studies show that ER binding time to chromatin and protein-

protein interaction is modulated by substrate mechanics with liganded ER binding 

on the order of minutes, much longer than previous binding times reported on glass 

(on the order of seconds) (E.E. Swinstead et al., 2016). Moreover, transcriptional 

regulation of liganded ER shows distinct differences in response to substrate 

stiffness with one group of genes upregulated on soft substrates (0.8KPa and 

12KPa) while being downregulated on stiff substrates (100KPa and Glass) and 

vice versa for a second group of genes (Figure 5-4A). These results are consistent 
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with previous work on RNA-seq analysis of tumorigenesis where a group of E2-

responsive genes are induced in normal breast were downregulated in breast 

tumor and vice-versa (Chi et al., 2019) and this serves as further evidence of the 

importance of microenvironment stiffening in tumorigenesis (J. Bauer et al., 2020; 

Broders-Bondon, Ho-Bouldoires, Fernandez-Sanchez, & Farge, 2018; Kalli & 

Stylianopoulos, 2018).  

To the best of our knowledge, this is the first time that experiments on TF 

dynamics have been performed on physiological stiffness. SMT of liganded and 

unliganded ER reveals a remarkable dependence of ER binding and protein-

protein interaction on substrate stiffness. Similar to changes in gene expression, 

ER dynamics in the nucleus show distinctly different binding times depending on 

substrate stiffness, with significantly longer binding times on physiological 

stiffness. In addition to changes in TF mobility, substrate stiffness significantly 

alters nuclear dynamics and in particular increased global chromatin mobility on 

soft substrates, emphasizing the importance of studying transcriptional regulation 

at the dynamical level due to the rapid changes in the nuclear environment.  

By analyzing transcription, chromatin accessibility, chromatin mobility and 

ER dynamics and binding, we revealed the intricate connection between substrate 

stiffness and transcription factor action with important connections to the 

understanding of ER biology with far reaching consequences for breast cancer 

biology. We emphasize the importance of studying biological processes, as basic 

as transcriptional regulation, in substrates with similar mechanical properties in 

vivo. Further experiments on acquired drug resistance in vitro and tumorigenesis 
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will benefit tremendously from using compliant matrices such polyacrylamide gels. 

Overall, stiffness modulates transcriptional regulation in terms of chromatin 

accessibility, transcription factor binding, mobility and action with profound 

consequences in cancer biology such tumorigenesis and drug resistance. 

5.5. Methods 

5.5.1. Plasmids and cell lines  

The pHaloTag-ER expresses human ER with HaloTag (Promega, Madison, 

WI, USA) fused in the C-terminal domain under the CMVd1 promoter. The 

pHaloTag-H2B expresses histone H2B fused with the HaloTag through its N-

terminal end (Mazza et al., 2012a).  

MCF7 cells were obtained from ATCC and cultured in 5% CO2 at 37°C. 

MCF7 cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) with 

4.5g/l of D-glucose (Thermo Fisher Scientific), and supplemented with 10% FBS, 

2 mM L-glutamine, 1 mM sodium pyruvate. MCF7 LTED cells were established by 

culturing MCF7 cells in phenol red-free DMEM with 4.5g/l of D-glucose (Thermo 

Fisher Scientific), and supplemented with 10% charcoal- stropped FBS, 2 mM L-

glutamine, 1 mM sodium pyruvate for > 3 months. 

For transfections, 5 million cells were electroporated using BTX T820 

Electro Square Porator (Harvard Apparatus, Holliston, MA, USA) in 100 l of DPBS 

with 2.5 g of plasmid. 25 ms pulses of 120 V were used and cells were 

resuspended in fresh media. Single-molecule imaging experiments were set up as 

follows: 500,000 electroporated cells were seeded onto a 35 mm circular glass 
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bottom dish (1.5 German borosilicate coverglass, Cellvis, Mountain View, CA, 

USA) in high glucose DMEM supplemented with 10% FBS (Life Technologies), 

2mM L- glutamine, 5 µg/ml tetracycline, and cultured overnight. The media was 

then replaced with high glucose DMEM supplemented with 10% charcoal stripped 

FBS (Life Technologies), 2mM L- glutamine, 5 µg/ml tetracycline, and incubated 

at 37°C for 24 hours before labeling.  

5.5.2. Endogenous H2B gene tagging using CRISPR-Cas9 

For C terminal tagging of H2B family member G gene (HIST1H2BG, 

NM_003518) with a Halo tag we used a donor plasmid consisting of an upstream 

homology arm (~800 bp long), 48 bp of TEV linker and a Halo sequence with a 

stop codon followed by a downstream homology arm (~800 bp long). MCF7 cells 

grown to ~70% confluence were trypsinized and 5x106 cells were resuspended in 

100 µl of growth media (DMEM) without serum or antibiotic and electroporated with 

the donor plasmid and two guide RNA plasmids to increase knock-in efficiency at 

a ratio of 2:1:1 (total 12 µg).  The guide RNAs were cloned into the Addgene 

lentiCRISPR v2 plasmid (Plasmid#52961) that contains the inserts Cas9 and 

Puromycin resistance. As the cells transfected with the guide RNA plasmids 

acquire a temporal resistance to Puromycin, the electroporated cells were grown 

with 1 µg/ml Puromycin for 2 days and the surviving cells were washed 3X with 

PBS and regrown without antibiotic to ~10x106 cells. For the isolation of Halo-

tagged clones, cells were incubated with 5nM of HaloTag® TMR Ligand for 20 

minutes, at 37oC washed 3x with warm media and left to recover for additional 20 

minutes at 37oC. The cells were further trypsinized, pelleted in DMEM, washed 
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with PBS and resuspended in PBS before FACS sorting and plating of the 

individual positive cells in 96 well plate. The expression of the H2B-Halo was 

further verified by microscopy and 3 individual single cell clones were selected and 

expanded further.   

5.5.3. Polyacrylamide Gel Fabrication 

35 mm circular glass bottom dish (#1.5, Cellvis) bottom glass dishes and 

rectangular glass slides (178x127 mm) are incubated for 15 minutes in 5% 3-

aminopropyltrimethoxysilane in ddH2O (v/v) and then washed three times for 10 

minutes in ddH2O. Dishes and glass slides are incubated for 15 minutes in 5% 

glutaraldehyde in ddH2O(v/v) and then washed three times for 10 minutes in 

ddH2O, dishes and glass slides are dried overnight at RT. An aliquot of the 

acrylamide and bis-acrylamide working solution (Table 5-1) is degassed for 20 

minutes, 5ul of 10% APS and 1.5ul of TEMED (Biorad) are added per 994.5ul of 

working solution; 10 ul of solution are added to the circular glass bottom dish and 

a Rainx treated 15mm coverslip is added on top (2 ml of solution is added to the 

rectangular glass slides and a rainx treated glass slide of same size is added on 

top). The solution is left to polymerize at RT for the time in Table 5-1.  

Polymerized gels are incubated in hydrazine hydrate (78-82% iodometric, 

Sigma-Aldrich) over night at RT. Gels are washed several times with ddH2O and 

incubated in 5% glacial acetic acid in ddH2O (w/w) for one hour. Gels are coated 

with Collage IV from Human Placenta (Sigma) through EDC carbodiimide 

crosslinking. Gels are incubated for 24 hours with 4 exchanges of MES buffer (pH 
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5). After 24 hours, gels are incubated in 200ul (2 ml for rectangular glass slide gels) 

of coupling solution (1mg/ml Collagen IV from Human Placenta, 1mM NHS and 

1mM EDC in MES buffer) O.N at RT. Gels are washed extensively with DPBS and 

they are ready for cell culture.  

5.5.4. Fluorescent labeling of Halo-tagged molecules and hormone 
treatments  

Transfected cells were incubated with 5 nM JF646-HaloTag or 250nM JF549-

HaloTag (For chromatin mobility experiments) (Grimm et al., 2015) ligand for 20 

min at 37°C. Free ligand was depleted by washing three times with phenol red free 

DMEM media (supplemented with 10% charcoal stripped FBS and 5 µg/ml 

tetracycline) in 15 min intervals at 37°C. Next, cells were treated with 100 nM 

Estradiol (E2) (Sigma-Aldrich) or left untreated and incubated for 20 min at 37°C 

before imaging. For confocal imaging in Figure 1B-C, Cells were fixed with 4% 

(wt/vol) paraformaldehyde (Electron Microscopy Sciences) and 0.2% (wt/vol) 

glutaraldehyde (Electron Microscopy Sciences) for 35 min at room temperature. 

After fixation, cells were incubated with ProLong Gold Antifade Mountant for 24 

hours.  

5.5.5. Image acquisition for single-molecule tracking 

A custom HiLO microscope was used as previously described in detail 

elsewhere (D.M. Presman et al., 2017), with an objective heater to reduce drift. 

Briefly, the custom-built microscope from the CCR, LRBGE Optical Microscopy 

Core facility is controlled by µManager software (Open Imaging, Inc., San 
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Francisco, CA.), equipped with an Okolab state top incubator for CO2 (5%) and 

temperature control (37°C), a 100X 1.35 numerical aperture silicone immersion 

objective (Olympus Scientific Solutions, Waltham, MA), a 561nm and 473nm 

lasers (iFLEX-Mustang, Excelitas Technologies Corp., Waltham, MA), and an 

acousto-optic tunable filter (AOTFnC- 400.650, AA Optoelectronic, Orsay, 

France). Images were collected on an EM-CCD camera (Evolve 512, 

Photometrics). The imaging conditions were as follow: 500ms exposure and 

1000ms acquisition time with a laser power of 0.16 mW.  

5.5.6. Image acquisition by Airyscan 

Single plane images were acquired on a Zeiss LSM 880 point scanning 

confocal microscope using the Airyscan detector, a 40X/1.2 NA water immersion 

objective (Zeiss) and 561 nm laser line. The Zeiss Zen 2.3 (black edition) software 

was used to control the microscope, adjust spectral detection for the emission of 

JF549-HaloTag fluorophores and for processing of the Airyscan raw images. Zeiss 

Definite Focus was used at each time point for time-lapse imaging. The 

microscope was set to line scanning mode with the pinhole set at 1 Airy Unit. The 

detector gain was set to 600. 120 images were acquired every 5 seconds for a 

total acquisition time of 5 minutes.  

Images were converted to 16-bit TIFF stacks using Fiji. Drift correction was 

performed using the Correct 3D drift plugin (Parslow, Cardona, & Bryson-

Richardson, 2014) within Fiji. After drift correction, flows were quantified using 

Particle Image Velocimetry (PIV) using the MatPIV implementation in MATLAB 
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(https://www.mn.uio.no/math/english/people/aca/jks/matpiv/). 16x16 pixel 

interrogation windows with 75% overlap were used to calculate the PIV flow fields. 

The raw velocity fields were filtered using snrfilt, pkhfilt, and globfilt. Jitter and 

remaining drift were corrected using the displacements of the centroid of the 

nucleus to account for measurement noise. 

5.5.7. ATP Survivability Assay 

MCF7 was plated on acrylamide-based hydrogel covered with human 

placenta derived collagen type IV (Sigma Aldrich) in a 24-well black plate with clear 

bottom at 1x105 per well. The cell was cultured overnight in the regular growth 

media then treated with Tamoxifen (Sigma Aldrich) at final concentration of 50, 25, 

12.5, 6.25, and 3.125 uM for 24 hours in the regular growth media. The normalized 

number of viable cells were estimated by ATP-based cell viability test CellTiter-Glo 

2.0 (Promega) according to the manufacturer’s protocol. The resulting luminescent 

signal was measured by VictorX plate reader (PerkinElmer) and normalized by the 

tamoxifen free vehicle control group. The experiment was done in biological 

triplicates.       

5.5.8. RNA seq for (MCF7 and MCF7LTED)  

Cells were trypsinized with phenol red free trypsin and total RNA was 

extracted from cultured cells with Nucleospin RNA kit (Macherey Nagel) in 

biological triplicates. Samples were sequenced on HISeq3000/4000 using Illumina 

TruSeq Stranded Total RNA Library Prep and paired-end sequencing. The reads 

of the samples were trimmed for adapters and low-quality bases using 
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Trimmomatic software before alignment with the reference genome (hg19) and the 

annotated transcripts using STAR. Differential expression analysis on RNA-seq 

was performed by using DESeq2. 

5.5.9. ATAC seq 

ATAC was performed according to OPTI-ATAC (PMID:30679562). Briefly 

cells were trypsinized from cell culture. 50,000 cells were harvested and lysed in 

lysis buffer (10 mM PIPES pH 6.8, 100 mM NaCl, 300 mM sucrose, 3 mM MgCl2, 

0.1% TritonX-100) for 5 min incubation on ice and 5 min spin. Nuclei were 

resuspended in 15ul water, 25ul TD buffer and 10ul TDE1 enzyme from the 

Nextera DNA Prep kit (Illumina) and incubated for 30min at 37°C in a shaker at 

1000rpm. Fragmented DNA was extracted with MinElute PCR Purification kit 

(Qiagen) and amplified by using NEBNext High-Fidelity 2X PCR Master Mix (New 

England BioLabs) and primers published in (Buenrostro et al., 2013). Size 

selection was performed using SPRIselect (Beckman Coulter) to remove <150-bp 

and >1000-bp fragments according to the manufacturer’s instructions and was 

verified by Agilent TapeStation system (Agilent Technologies). 

The samples were subjected to paired-end sequencing using 2x75-bp 

reads by the Illumina NextSeq High V2 at the National Cancer Institute Sequencing 

Facility, (Frederick, MD) or the Illumina HiSeq X at the Psomagen Inc. (Rockville, 

MD). The reads were trimmed in silico to remove adapter sequences, low-quality 

reads, and 50 bp length using Trimmomatic 0.30 software. The reads were aligned 
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to human reference genome hg38 using Bowtie2 alignment tool. Mitochondrial 

reads were filtered for the subsequent analyses. 

5.5.10. ChIP and ATAC peak calling and heatmaps 

 Peak calling was performed using HOMER (Heinz et al., 2010). Peaks in 

each data set were called using findPeaks with style factor for transcription factors. 

The mergepeaks command was used to find common/specific peaks between 

conditions. Heatmaps and aggregate plots were generated with the deepTools 

computeMatrix (reference-point, +/- 500 bp around the peak center), and 

plotHeatmap using the normalized bigWig files. The bigWig files were generated 

by deepTools using the above described bam files and normalized for reads per 

genomic content per bin (5kb) (1x normalization scaled to the average coverage 

across the genome). 

Venn diagrams were generated to demonstrate the numbers of peaks 

shared by 2- or 3- conditions using the venneuler package of the statistical 

software R. For the replicates, we obtained the merged peak sets from pooled data 

as well as the sets of peaks from each individual replicate. We retained those 

peaks from pooled data that have at least 50% overlap in each replicate. The 

number of overlapped or unique peaks was determined using the software 

BEDtools suite. 

5.5.11. Immunofluorescence 

Cells were fixed with 4% paraformaldehyde in PBS for 10 mins at room 

temperature, washed three times with PBS, then permeabilized with PBS 
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containing 0.5% TritonX-100 for 10 min at room temperature. Cells were washed 

three times with PBS, then incubated at room temperature with PBS with 3% BSA 

for 20 min, followed by incubation with rabbit polyclonal anti-human ER α (Santa 

Cruz Biotechnology, sc-543,1: 300) in 3% BSA-0.05% TritonX-100 in PBS for 

60min at room temperature. Cells were incubated with Alexa Fluor 488 goat anti-

rabbit IgG (Invitrogen, 1:500) for 30 min at room temperature. DNA was 

counterstained with DAPI, then washed with PBS three times. Images were 

captured in CellVoyager CV7000 (Yokogawa Electric Corp). 

5.5.12. qRT-PCR 

Total RNA was extracted from cultured cells with RNeasy Plus Mini kit 

(Qiagen) and reverse transcription was carried out with iScript cDNA Synthesis Kit 

(BioRad). PCR was performed with iQ SYBR Green Supermix (BioRad) by BioRad 

CFX96 Real Time PCR Thermal Cycler (BioRad). Values were normalized to 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA expression before 

calculating relative fold changes. Primer sequences are listed in Table 5-2. 

5.5.13. ER chromatin immunoprecipitation (ChIP) and ChIP-seq.  

MCF-7 cells were left untreated or treated with 100 nM of E2 (Sigma) for 1 

h. Cells were trypsinized with phenol red free trypsin and cross-linked in 

suspension with 1% paraformaldehyde (5 min), the chromatin was sonicated 

(Bioruptor, Diagenode) to an average DNA length of 200–500 bp. For 

immunoprecipitation, 600 g of chromatin was incubated with anti-ER antibody 

(Abcam #ab108398) coupled onto Protein A/G magnetic beads (Millipore) with 
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rotation overnight at 4°C. After stringent washes, the antibody-bound chromatin 

fragments’ cross-linking was reversed, and the remaining proteins digested. 

Immunoprecipitated DNA was extracted from the samples with phenol-chloroform-

isoamyl alcohol and ethanol precipitation. ChIP-seq libraries were generated using 

Illumina TruSeq Chip Sample Prep Kit (Illumina # IP-202-1012) according to 

manufacturer’s instructions. 

5.5.14. Single-molecule tracking analysis 

We used the custom-made software TrackRecord (Mazza et al., 2013) in 

MATLAB (The MathWorks, Inc., Natick, MA). Briefly, to analyze each time series, 

data were filtered using top-hat, Wiener, and Gaussian filters. A region of interest 

(ROI) was defined to encompass the nucleus (and the array using the GFP-NF1 

fluorescence when necessary), then particles were detected, fitted to two 

dimensional gaussian function for subpixel localization, and finally tracked using a 

nearest neighbor algorithm (D.M. Presman et al., 2017). The tracking parameters 

were as follows: window size for particle detection 7 pixels, maximum frame to 

frame displacement of 2 pixels, shortest track 2 frames, and gaps to close 1.  

Tracks were classified into distinct diffusive states using perturbation-

Expectation Maximization [pEM v2, (Koo & Mochrie, 2016)]. Tracks were split into 

7 frame segments and the pEM classification analysis was performed on the set 

of all these track segments. The minimum number of states for the system to 

converge to was set at 2 and the maximum at 7. If the optimal number of states 

that the analysis converged to was 7, the algorithm was rerun with a higher number 
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of maximum states. The number of reinitializations was set to 30 with 50 

perturbation trials. The maximum number of iterations was 10000 with a 

convergence criterion for the change of log-likelihood of 10−7. The number of 

features for the covariance matrix was set to 5. Motion blur coefficient was 

calculated as 
1

6

∆𝑒

∆𝑡
, where ∆𝑒 corresponds to the exposure time and ∆𝑡 the 

acquisition interval.  

5.5.15. Mean Squared Displacement calculation (MSD) 

 We calculate the weighted ensemble averaged MSD for a particular 

state by using the posterior probability of a track to belong to a state 𝐼 as the weight 

function: 

𝑊𝑀𝑆𝐷𝑖(𝜏) = 
∑ 𝑃𝑗(𝑖).𝑀𝑆𝐷𝑗(𝜏)
𝑁
𝑗=1

𝑁
 

Where 𝑊𝑀𝑆𝐷𝑖(𝜏)  is the weighted ensemble average MSD for state i, and 

N is the total number of tracks. 

Standard error was calculated as 
𝜎𝑤

√𝑁𝑓
, where 𝜎𝑤 corresponds to the 

weighted standard deviation and 𝑁𝑓 the number of degrees of freedom in the 

weighted mean.  Weights correspond to the number of points averaged to generate 

the mean square displacement value at the given time lag. 

Survival distribution calculation 

Survival distributions were calculated from particle tracks as in (Garcia et 

al., 2021b) using the Kaplan-Meier estimate. The 95% confidence interval was 
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estimated using Greenwood’s Formula. HaloTag-H2B data was acquired with 

identical imaging conditions as the transcription factors for the different acquisition 

conditions. The survival distribution of this was fitted to a double and triple 

exponential model to extract the photobleaching rate, and model selection was 

used to determine the best predictive model (See Fitting and model selection). The 

survival distribution of the different transcription factors was corrected for 

photobleaching as follows (𝑆(𝑡) = 𝑒𝛾𝑡𝑆𝐸(𝑡), where S(t) corresponds to the survival 

distribution after photobleaching correction, 𝑆𝐸(𝑡) the empirical survival distribution 

and 𝛾 the photobleaching rate). 

5.5.16. Weighted survival distribution calculation 

After pEMV analysis, subtracks are classified into different diffusive states 

using pEM and states that are not representative are removed as explained above. 

Suppose a track k is divided into n subtracks of length 7. After the pEM analysis, 

each subtrack i is assigned a posterior probability 𝑃𝑘
𝑖 (𝑗) to belong to a diffusive 

state j. Here, 𝑖 ∈ {1,2,… , 𝑛}, 𝑗 ∈ {1,2,… ,𝑚}, where m is the number of diffusive 

states to which pEM converges. From this state assignment, we would like to 

calculate the survival distribution of a particular diffusive state. To do so, we first 

calculate a posterior probability for the reconstructed track k:  

𝑃𝑘(𝑗) =
∑ 𝑃𝑘

𝑖 (𝑗)𝑖

∑ 𝑃𝑘
𝑖(𝑗)𝑖,𝑗

 

We will use these probabilities to calculate a weight function for each bin of 

the dwell time histogram. All the dwell times can be distributed into N bins such 
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that each bin Ω𝑖 contains 𝑛𝑖 tracks. Mathematically, Ω𝑖 ≡ {𝑡 ∈ ℝ|(𝑖 − 1)∆𝑡 ≤ 𝑡 <

𝑖∆𝑡}, where ∆𝑡 is the acquisition interval. 

We can define a weight function 𝑊𝑖
𝑗
  for each of the bins i, per state j as 

𝑊𝑖
𝑗
= ∑𝑃𝑘(𝑗)

𝑛𝑖

𝑘=1

 

Previously survival distributions were calculated by assigning a unit weight 

to each observed bound track. Instead, we can define the statistic 

�̂�𝑖
𝑗
=
𝑊𝑖

𝑗

𝑛
 

as the unbiased estimator (i.e. 𝐸[𝑝𝑖
𝑗
] = �̂�𝑖

𝑗
) of the weighted survival 

distribution.  

Let 𝑃𝑘(𝑗)  be the probability assigned to a track k as defined previously. The 

proportion (𝑀(𝑖)) of a particular diffusive state i is given by: 

𝑀(𝑖) =
∑ 𝑃𝑘(𝑖)𝑘

∑ ∑ 𝑃𝑘(𝑖)𝑘𝑖
 

All fits performed to the data were implemented with the nonlinear least 

square method using bisquare weights due to the noise on the tail of the survival 

distribution.  

5.5.17. Quantification and Statistical Analysis 

For statistical analysis, all measured quantities are reported as ensemble averages 

with standard error and number of observations. At least three biological replicates of SMT 
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experiments were performed for each condition. Two sample K-S tests on the survival 

distribution were performed between replicates to confirm statistical reproducibility. At 

least 20 cells were imaged per SMT replicate for each condition.   

5.6. Tables 

 

Table 5-1 Polyacrylamide Fabrication 
Chemical concentration for polyacrylamide gel fabrication of three different stiffness (0.8KPa, 
12KPa and 100KPa). 

 

Name   Sequence 

GAPDH forward ACACCCACTCCTCCACCTTT 

GAPDH reverse TAGCCAAATTCGTTGTCATACC 

ESR1 forward TATGTGTCCAGCCACCAACC 

ESR1 reverse TCGGTCTTTTCGTATCCCACC 

Table 5-2 Primers Sequence 
Primers used for RT-qPCR.  

 

Stiffness (KPA) Acrylamide 40% (ul) BIS-Acrylamide 2% (ul) 10% APS TEMED HEPES(ul) Polymerization Time (min)

0.8 56.25 50 5 1.5 887.25 50

12 187 100 5 1.5 707 20

100 300 300 5 1.5 393.5 10
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Chapter 6. Conclusions and Future Directions 

6.1. Conclusions 

Transcriptional regulation is fundamental to all cellular processes, and 

dysregulation of transcriptional control underlies developmental disorders and 

diseases such as cancer and Alzheimer’s. Owing to its importance, transcription is 

exquisitely controlled by the collective action of multiple proteins that work together 

in the complex nuclear microenvironment. The key initial step is the binding of 

sequence-specific TFs to the promoter of a gene or enhancer sequences thereby 

tuning transcriptional output, chromatin topology and phenotype. Understanding 

how TFs interact with chromatin, other proteins and among themselves is essential 

our basic understanding of biology and the development of targeted therapeutics. 

In this thesis, we were able to advance the knowledge of TF dynamics and 

transcriptional regulation with far reaching implications for our understanding of 

molecular biology and physiology.  

The current paradigm of TF binding to chromatin assumes discrete and 

distinguishable binding times for interactions with specific and non-specific sites. 

In Chapter 3, we developed phenomenological models of TF binding, in which the 

interactions of TFs with chromatin have a broad distribution of binding affinities. An 

implication of this model is that the resulting dwell times (i.e. measurements of TF-

chromatin interactions) will be power-law distributed. This model is compatible with 

current genomic and in-vitro data of TF binding to the rich repertoire of binding 

sequences and the complex properties of the nuclear microenvironment. We 
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imaged multiple families of TFs (nuclear receptors, pioneer factors, chromatin 

remodelers and architectural proteins) at the single molecule level as they moved 

in the nucleus and bound to chromatin. We developed a new pipeline to analyze 

SMT binding times which reveals a power-law distribution of binding times of TFs. 

Using this pipeline, we showed that a large number of TFs show power law 

distributed interaction times with chromatin, implying that the current view of 

biexponential binding times is incomplete  

Motivated by our observations of power law distributed TF-chromatin 

interactions, in Chapter 4 we explored TF mobility and how this is modulated by 

their interactions with chromatin and the local nuclear microenvironment. 

Characterization of single molecule trajectories revealed that TFs can either freely 

diffuse within the nucleus, bind to chromatin or are confined within nuclear hubs 

due to protein-protein interactions. In agreement with the models introduced in 

Chapter 3, mutants and native TFs with a narrower distribution of binding motifs, 

as assessed by CHIP-seq experiments, exhibit exponentially distributed chromatin 

binding times. Intriguingly, the dwell times of confined TFs were also power-law 

distributed with confinement times significantly longer than chromatin binding 

times.  We proposed a model in which TF-TF interactions mediated by intrinsically 

disordered regions locally increase protein concentrations in the vicinity of 

chromatin, thereby decreasing the “search time” for TFs to find their target binding 

sites and promoting transcription.   

With our robust analysis for TF dynamics in Chapter 3 and 4, we explored 

TF mobility and transcriptional regulation in the context of breast cancer 
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progression in Chapter 5. We discovered a novel unliganded ER regulatory 

function dependent on microenvironment stiffness. On substrates of physiological 

stiffness (0.8KPa and 12KPa) liganded estrogen receptor has significantly stronger 

transcriptional regulatory activity in comparison with stiffer substrates, which is 

correlated with tamoxifen resistance. Surprisingly, in soft substrates, unliganded 

ER binds broadly to chromatin and acts antagonistic to transcriptional regulation 

by liganded ER. Our findings put to rest the debate on whether unliganded ER has 

transcriptional activity. The relatively modest changes in chromatin accessibility in 

response to substrate stiffness argues for other regulatory mechanisms of 

mechanosensing in the context of breast cancer. 

In addition to controlling the transcriptional activity of ER, substrate stiffness 

also affects its mobility and binding to chromatin. SMT experiments revealed that 

ER has binding times on the order of minutes in cells grown on substrates of 

physiological stiffness compared to the shorter binding times observed in cells 

grown on stiffer substrates (100 KPa and Glass). This finding implies that current 

models of rapid TF-chromatin interactions must be revised. We also showed that 

changes in ER binding and mobility are accompanied by changes in chromatin 

mobility with highest mobility at lower stiffness which correlates with increased cell 

stemness. The studies detailed in Chapter 5 revealed novel ER reprogramming 

due to substrate stiffness with potential applications in targeted treatments of ER-

positive breast cancer.  



190 

6.2. Future Directions 

6.2.1. 1. In search for specific response elements 

In Chapter 4, we showed that GR exhibits two fast diffusing states in the 

nucleus, with one state characterized by a different diffusion coefficient than 

observed for GR in vitro. We hypothesize this diffusion state is related to one 

dimensional diffusion and hoping on chromatin, which has been postulated to 

serve as a search mechanism for TFs to find and bind to specific response 

elements. Theoretical studies have shown that 3D diffusion alone is incompatible 

with rates of transcription found in vivo and different mechanisms of facilitated 

diffusion have been suggested, but experimental evidence for these is lacking 

(Benichou et al., 2011; Kampmann, 2005). SMT experiments with higher temporal 

and spatial resolution coupled with improved photostable dyes will allow us to 

probe the search mechanism of TFs in eukaryotic cells.  

One technique that could be useful in this regard is minflux nanoscopy, 

which allows for nm resolution microscopy with significant reduction in photons 

needed for localization (Gwosch et al., 2020). Moreover, the complexity of 3D 

tracking and tracking errors are reduced since tracking is built in the design of the 

microscope. This type of microscopy coupled with Bayesian non-parametric 

methods (Hjort, 2010; Sgouralis & Presse, 2017) to discern different types of TF 

mobility could be capable of revealing the search mechanisms  utilized by TFs. 



191 

6.2.2. 2. Confinement, binding and transcriptional bursting 

We showed in Chapter 4 that TFs are confined in nuclear hubs through 

protein-protein interactions. We proposed a model in which these hubs increase 

the local concentration of TFs thereby facilitating binding and promoting 

transcription, but experiments are needed to validate this. Recent experiments 

have shown that different complexes involved in transcription are in hubs formed 

by LLPS but the mechanisms that dictate their formation and their role in 

transcriptional regulation remain unknown (Alberti, Gladfelter, & Mittag, 2019; 

Hyman et al., 2014). Our proposed model predicts an increase in transcriptional 

bursting frequency of genes associated with transcriptional hubs due to the 

decreased searching times of transcription factors and transcriptional complexes. 

Other outstanding question correspond to the formation and dynamics of these 

protein hubs - How and when are they nucleated? What is their lifetime? Do they 

coalesce with other proteins involved in transcription and chromatin remodeling?  

Different experimental techniques could be used to probe the formation and 

role of protein hubs in transcriptional control. A recent study used orbital tracking 

to correlate transcriptional bursting of a reporter gene and showed that longer TF 

binding times were correlated with longer ON times (Stavreva et al., 2019). Using 

a similar approach but labeling endogenous genes and real time PALM of TFs 

(Cho et al., 2016) might allow us to characterize the role of protein hubs in 

transcriptional regulation. Another approach is to use pair correlation PALM to 

explore the formation of GR hubs and PolII recruitment followed by transcriptional 
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activation. This will provide information about the dynamic signature of hub 

formation and their role in transcriptional regulation (Cho et al., 2018).  

6.2.3. 3. Dynamic Assisted Loading 

The dogma of TFs binding to chromatin has evolved rapidly in the past 

several years. The static view of TFs binding proposes continuous binding on the 

order of minutes to hours from activation to the completion of transcription (Spitz 

& Furlong, 2012). Recent advances in microscopy have allowed the observation 

of real time dynamics of transcriptional bursting and TF binding, shifting the dogma 

to a dynamic view where TFs bind transiently to chromatin and transcription 

happens in bursts on the order of minutes (Tunnacliffe & Chubb, 2020). TFs 

binding time was accepted to be on the order of seconds (Mazza et al., 2013) 

leading to the concept of “Dynamic Assisted Loading” (Voss et al., 2011) where 

TFs rapidly exchange at enhancers with other proteins that promote binding 

instead of competition even though they bind to the same genomic site.  

However, in Chapters 3, 4 and 5 we showed that for different TFs and 

different experimental conditions, TF binding times are broadly distributed in the 

order of seconds to minutes. The latter implies an urgent need to characterize the 

dynamics of TFs interactions to reassess assisted loading or to define a new model 

of TFs interaction that includes the complexity of the nuclear microenvironment, 

chromatin topology and the broad distribution of TFs dwell times. In the dynamic 

assisted loading model, TFs interact transiently with closed chromatin recruiting 

remodeling factors which facilitate transient open chromatin states. Studying the 
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thermodynamic properties between these states will provide insightful information 

in the properties of the dynamics. In particular, for a system in thermal equilibrium, 

the transition rates of realizable microstates are balanced. In other words, they 

obey detailed balance where the rate out of and into pairwise microstates is zero 

(Van Kampen, 1992). Searching for signatures of broken detailed balance in TF 

binding adjusted for power-law distributed dwell times (Biddle et al., 2019) allows 

for identification of the asymmetry in protein binding that potentiates pairwise TFs 

binding. Another approach is to use orbital tracking or pair correlation PALM 

between pairs of TFs and Pol II loading to characterize the kinetics of interactions 

and transcriptional initiation. These experiments need to be done at different 

endogenous sites with diverse chromatin microenvironments to characterize the 

role of the nuclear microenvironment and TF interactions in gene regulation. 

4. LINC-king mechanical information  

There is mounting evidence that transcriptional regulation of cell fate in 

many contexts is influenced by the mechanical properties of the cell 

microenvironment (Engler et al., 2006; Handorf et al., 2015). In Chapter 5, we 

found that TF mobility, binding and action is altered by the stiffness of the 

substrate. This alteration of TF dynamics is accompanied by changes in cellular 

and nuclear shape, chromatin mobility and to a lesser extent, chromatin 

accessibility. However, how mechanical stimuli are transmitted to the nucleus and 

affect transcriptional regulation is not fully understood. Another outstanding 

question in the field is the amount of information in bits that cells can process about 
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the stiffness of the environment (Gregor, Tank, Wieschaus, & Bialek, 2007; 

Walczak, Tkacik, & Bialek, 2010). 

In Chapter 5, we identified sets of genes that are influenced by the stiffness 

of the environment and dependent on ER signaling. Using smRNA-FISH or 

Hybridization Chain Reaction (HCR) (Dirks & Pierce, 2004) as a readout of gene 

expression of cells on different stiffness, the upper bound of the mutual information 

between gene expression and stiffness can be calculated to quantify information 

transmission of mechanical stimuli. The latter, coupled with degron systems (S. Li, 

Prasanna, Salo, Vattulainen, & Ikonen, 2019) targeting members of the LINC 

complex and transcriptional coactivators such YAP and TAZ that are involved in 

mechanotransduction (Bouzid et al., 2019), might provide direct evidence of the 

mechanism involved in the mechanical regulation of gene expression.  

6.2.4. 5. Antagonizing liganded Estrogen Receptor 

There has long been a debate about the transcriptional activity and clinical 

relevance of unliganded Estrogen Receptor and its mode of action (Stellato et al., 

2016). Different experiments have pointed to changes in ER phosphorylation and 

cofactor interactions as regulators of unliganded ER activity (Caizzi et al., 2014b; 

de Leeuw, Neefjes, & Michalides, 2011), but these experiments have been carried 

out with conditional knockdowns or pharmacological treatments with unknown off-

target effects. In Chapter 5, we showed antagonistic action of unliganded ER with 

respect to liganded ER and its dependence on substrate stiffness. This provides a 
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physiologically relevant framework to study unliganded ER biology and its role in 

breast cancer progression.  

Follow up experiments to quantify changes of phosphorylation in ER AF-1 

domain (ligand independent activity) on substrates of different stiffness to correlate 

unliganded ER activity with the changes in the transcriptome will shed light on 

these questions. Immunoprecipitation of ER followed by shotgun spectrometry 

(Zhang, Fonslow, Shan, Baek, & Yates, 2013) of cells on substrates with different 

stiffness will allow the characterization of changes in interacting partners of 

unliganded ER that are involved in potentiating binding and mechanical response. 

Identification of such partners followed by genomic and cell biological studies to 

quantify assisted loading will allow for the development of specific targeted 

strategies in the treatment of ER+ breast cancer.  

6.2.5. 6. Mechanical regulation of GR activity in chromatin 
accessibility 

In Chapter 5, we carried out extensive studies of the changes in ER activity 

due to substrate stiffness. ER reprogramming is coupled to the ability of the 

receptor to bind to chromatin in its unliganded form. Other hormone receptors such 

as GR might have a different response to stiffness since GR is bound to 

chaperones in the cytoplasm in the absence of ligand and after hormone treatment, 

the receptor translocates into the nucleus. Similar techniques used in Chapter 5 

can be applied to understand the biology of GR in the context of different cellular 

microenvironments. This can potentially help to reveal mechanisms of TF 

regulation in physiological settings.  
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We performed preliminary studies on GR action on accessibility by 

performing ATAC-seq after 100 nM Dex treatment on substrates of different 

stiffness (0.8KP, 12KPa, 100KPa and Glass). Surprisingly, we found dramatic 

changes in GR’s ability to remodel chromatin in a stiffness dependent manner 

(Figure 6-1). GR plays a repressive role on soft substrates (decreased chromatin 

accessibility) compared to an activating role on stiffer substrates (increased 

chromatin accessibility). Interestingly, GR activity on glass has been widely 

reported to be activated by increasing chromatin accessibility genome-wide after 

hormone treatment. Further experiments are needed to assess these changes in 

GR remodeling action on chromatin. If confirmed, this will have important clinical 

consequences due to the importance of GR in inflammation and disease 

(Baschant, Culemann, & Tuckermann, 2013; Baschant et al., 2011).  

 

Figure 6-1 GR Chromatin Accessibility Effects are Modulated by Substrate 
Stiffness 

Venn Diagram for ATAC-seq between 1-hour 100nM Dex treatment conditions and vehicle for 
different substrate stiffness. Accessibility increases after Dex treatment in a stiffness dependent 
manner. 
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I expect the work presented in this thesis to serve as a cornerstone in future 

studies of the biophysics properties of transcription factor mobility, their 

interactions with chromatin and the role of molecular dynamics in gene expression. 

The different analysis developed and presented here can be applied to study 

biophysical properties of single molecules in different systems. In this thesis, 

different models of TF mobility and gene regulation have emerged with far reaching 

consequences in our basic understanding of biology and with important therapeutic 

implications.  
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Appendix A. 
 
Theoretical Models for TF Survival Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 Theoretical models for TF survival distribution
In an SMT experiment, the protein of interest is tagged with a fluorescent probe and imaged. Binding
events are then associated with stationary particles in the focal plane. The final experimental
information that can be recovered is the time that a protein can be detected in the imaging volume
before it bleaches, or moves out of the focal plane. From these observations, one can calculate a dwell
time for transcription factors (TFs) which is defined as the time interval between a single molecule
transitioning from a diffusive state to a bound state and its subsequent unbinding from DNA and
return to the diffusive state. The dwell time distribution is obtained by calculating the ensemble
distribution of bound times for a specific TF in different cells in the experiment after photobleaching
correction (see Methods).The survival distribution is then calculated as 1-CDF, where CDF is the
empirical cumulative distribution function of dwell times.

1.1 Absorbing Boundary State Method
Calculation of dwell time distributions is a first-passage time problem in stochastic analysis and
these distributions have been widely used to characterize kinetic properties of molecular motors
and ion channels (1). In cases involving simple kinetic schemes, the dwell time distributions can
be calculated analytically but for more complex schemes, a number of methods have been utilized.
One particularly powerful approach is to assign one or more states to act as an absorbing boundary
and then solve the associated first-order kinetic equations to obtain dwell time distributions. We
assume that the diffusive (unbound) state corresponds to an absorbing boundary state, since the
measurement ends with such transitions, because the particle either photobleaches, disappears from
the focal plane or begins diffusing; any rebinding of the TF is considered as an independent event.
This assumption implies that the population of particles in the absorbing boundary state increases
with time. At the end of every experimental measurement, all the observed TFs transition to the
absorbing state since the experiments are continued until most particles are bleached.

For a general process, a TF can be found in any state i such as diffusing around the nucleus,
confined in a microenvironment, bound to a particular specific or non specific site of the DNA.
When a TF transitions to a diffusive state, it cannot be observed experimentally and this state
plays the role of an absorbing boundary state. We observe the system over a time interval from
t0 = 0 to t0 = ⌧ , during which individual TFs may undergo transitions between different states
i 2 {1, ..., n}. When a transcription factor is in a “bound” state, it can be observed experimentally
as a trace as displayed in Supplementary Note Fig. 1a. Each TF in any of these bound states will
be experimentally recorded from a certain time interval t1 to t2 with t2 � t1 < ⌧ . t1 corresponds
to the time when the transcription factor transitions to a “bound” state and t2 corresponds to the
time when the TF enters an absorbing state (diffusion in the nucleus). All the traces will be shifted
by a time t1 to a new aligned time t = t0 � t1 so that all the TFs begin in a bound state at t = 0
(Supplementary Note Fig. 1b). During the experimental time ⌧ , a finite number of TFs (N , equal
to the number of traces) will be observed. When a TF transitions to a diffusive state, it cannot
longer be observed experimentally and this state plays the role of an absorbing boundary state.

Let pi(t) correspond to the probability of being in state i at time t.
P

i2boundaries pi(t) corresponds
to the population of all absorbing states. To calculate the number of unbinding events over a certain
time interval (f(t) dwell-time distribution, Supplementary Note Fig. 1c - adapted from (1)), we take
the time derivative of this population,

f(t) =
d

dt

X

i2boundaries

pi(t) (1)

f(t) can be visualized as the probability distribution of experimental track lengths of TFs entering
a bound state and evolving independently from a registered time t = 0, until they transition to an
absorbing boundary state, at which time they leave the bound state (2). The cumulative distribution

199



Supplementary Note Fig. 1: Survival distribution calculation. (a) Experimentally, slow
events are seeing as traces in a kymograph. (b) These traces are aligned on a new time t and
the distribution of lengths corresponds to the dwell time distribution f(t) (c) . Shown in red a
sample trace before and after time alignment. (d) The CDF of f(t) corresponds to the normalized
population of an absorbing boundary state. (e) (1-CDF) corresponds to the survival distribution D̂.

of f(t) is calculated (Supplementary Note Fig. 1d) and 1 � CDF corresponds to the survival
distribution (D̂, Supplementary Note Fig. 1e) .

1.2 Revised Bi-Exponential Model
We consider an idealized system containing a fixed total number of TFs, each of which can be found
in one of three states: Slow (s), Fast (f) and Diffusive (d) (Supplementary Note Fig. 2a) In this
model, transitions between s and f states are forbidden. When a transcription factor is either in
state s or f, it can be observed experimentally as a trace. When a TF transitions to the state d, its
experimental observation will stop and this state plays the role of an absorbing boundary state.

Let S(t) and F (t) denote the number of TFs in the state s and f at the aligned time t, respectively.
These functions will decrease monotonically to 0 from the initial values S0 and F0, S0 + F0 = N ,
which correspond to the total number of TFs in the s and f state during the experiment, respectively.
To obtain the survival distribution, the probability that a particle stayed bound (either in state s or
f) for a time t or longer, the population of absorbing boundary states needs to be calculated. The
latter (population of absorbing boundary states), corresponds to transitions from s to d or from f to
d, which denotes the following events:

s
k0
1
�! d f

k0
2
�! d (2)

Let D(t) denote the number of experimentally observed transcription factors that transitioned
from any bound state (s or f) to the diffusive state up to an aligned time t, with D(0) = 0. This
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Supplementary Note Fig. 2: Double Exponential and Kinetic Models. (a) Schematic
representation of the double exponential model. Transitions between specific (s) and non-specific
binding (f) are forbidden. (b) Kinetic model allows for transitions between non-specific and specific
binding.

population accumulates over time and the dwell time distribution corresponds to the time derivative
of this population. Thus,

dS

dt
= �k01S

dF

dt
= �k02F (3)

dD

dt
= k01S + k02F (4)

Then,

S = S0e
�k0

1t, F = F0e
�k0

2t (5)

dD

dt
= S0k

0
1e

�k0
1t + F0k

0
2e

�k0
2t (6)

where 1
N

dD
dt corresponds to the dwell time distribution (f(t)). The dwell time distribution depends

on the initial populations of S and F . These correspond to the relative populations entering a cycle
in the dwell time (D ! S or D ! F ), the proportion of traces either in state s or f. Traces in state
s or f are born randomly with proportions k1

k1+k2
and k2

k1+k2
respectively (Supplementary Note Fig

2A).
Then, S0 = Nk1

k1+k2
and F0 = Nk2

k1+k2
which corresponds to the initial values of S(t) and F (t).

Finally, the dwell time distribution is given by (Supplementary Note Fig 1c):

f(t) =
1

N

dD

dt
=

1

k1 + k2

⇣
k1k

0
1e

�k0
1t + k2k

0
2e

�k0
2t
⌘

(7)

The Survival distribution (D̂ =
R1
t

dD
du du) is given by (Supplementary Note Fig 1e):

D̂ =
1

k1 + k2

⇣
k1e

�k0
1t + k2e

�k0
2t
⌘

(8)

1
k0
1

and 1
k0
2

correspond to the expected residence time of the slow and fast component respectively.
After calculating the survival distribution, we are interested in finding the proportions of TFs in state
s and f in steady state.

At steady state, the slow and fast component populations (S̄ and F̄ ) are calculated as follows
(Supplementary Note Fig 2a):
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dS̄

dt0
= k1D̄ � k01S̄ = 0! S̄ =

k1
k01

D̄ (9)

dF̄

dt0
= k2D̄ � k02F̄ = 0! F̄ =

k2
k20

D̄ (10)

The slow and fast component proportions (Ŝ and F̂ ) are given by:

Ŝ =
k1k02

k1k02 + k01k2
; F̂ =

k01k2
k1k02 + k01k2

(11)

Previously (3–7), the survival distribution was phenomenologically fitted to D̂ =
⇣
f1e�k0

1t + (1� f1)e�k0
2t
⌘

and f1, (1�f1) were interpreted as the slow and fast component proportions at steady state contrary
as the values found in equation 11. The derivation of the survival distribution shows that f1 = k1

k1+k2

represents the proportion of traces in the s state during the experimental observation and not their
steady state populations.

1.3 Kinetic Model
We next extended the bi-exponential model so that transitions between the slow and fast components
are allowed but indistinguishable. S, F and D defined as in 1.2 (Supplementary Note Fig. 2b). If a
TF is in a non-specific bound state (f, diffusing or hopping on the DNA), and it binds to a specific site
(s), this transition cannot be observed due to the spatial resolution limit (⇠30nm, ⇠3 nucleosomes).
The particle will appear bound regardless of the number of transitions between the fast and the slow
component inside the resolution limited volume. The diffusive state corresponds to an absorbing
boundary state (Supplementary Note Fig. 2b), as before. Then, the dwell time distribution dD

dt can
be calculated as follows:

d
k0
1
 � s

k3⌦
k0
3

f
k0
2
�! d (12)

dS

dt
= �(k01 + k3)S + k03F

dF

dt
= �(k03 + k02)F + k3S (13)

dD

dt
= k01S + k02F (14)

This can be solved in matrix form as:
✓

dS
dt
dF
dt

◆
=

✓
�(k01 + k3) k03

k3 �(k03 + k02)

◆✓
S
F

◆
(15)

The solution will be given by:
✓

S
F

◆
= C1

✓
↵1

�1

◆
e�1t + C2

✓
↵2

�2

◆
e�2t (16)

Where �i are the eigenvalues and
✓

↵i

�i

◆
the corresponding eigenvectors of the matrix in equa-

tion 15. C1 and C2 are calculated from the initial populations of the state s and f. These populations
are given by Nk2

k1+k2
and Nk1

k1+k2
for states f and s respectively which corresponds to the number of

TFs that entered a bound state through state s or f respectively. Then, the dwell time distribution
is given by:
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f(t) = k02F (t) + k01S(t) . (17)

The survival distribution is calculated as:

D̂ =

Z 1

t
f(u)du

with S, F as defined in equation 16. The survival distribution corresponds then to a sum of two
exponentials similar to the double exponential model but with exponential parameters (�1 and
�2) that depend on the rate constants of the process. Therefore, double exponential fits to the
experimental data cannot be directly used to extract the kinetic rates of the underlying process.

1.4 Diffusion and binding on a chain
A number of theoretical studies have posited that the process of TF binding to its cognate site on
DNA involves a combination of bulk diffusion in the nucleus, 1-d sliding along the DNA, hopping
and translocation, and have derived the search time subject to various conditions. In this extension
of our basic model and to account for a multiplicity of fast bound states, we can model TF searching
for a specific site on the DNA by assuming the DNA to be a circular chain composed of specific sites
and non-specific sites (Supplementary Note Fig. 3a). The assumption in the following derivation
is that the number of non-specific sites on the DNA is much larger than specific sites. This is a
biologically reasonable assumption as only a few tens of thousands specific sites are bound by any
TF according to genome wide studies (8, 9), while the entire genome contains millions of “other”
potential chromatin binding sites. A TF binds stochastically to any site on the DNA and diffuses
around the chain with a certain probability of unbinding from any state. The hopping rate from a
non-specific site to another site (specific or non-specific), is given by k1, the rate of hopping from a
specific site to a non-specific or dissociation to the bulk is given by k2 and the rate of dissociation
from a non-specific site into the bulk is given by k3.

Thus the empirically observed transitions of TF dissociations can result from two possibilities:
(i) a TF begins at a random location in the chain and diffuses along the DNA on non-specific sites
and unbinds to the bulk diffusive state (d) before finding the specific site; (ii) a TF diffuses along
the DNA until reaches a specific site, and it unbinds from the DNA from either a specific site or a
non-specific site.

1.4.1 A TF does not find a target

The case when a TF does not find a target is dynamically equivalent to a TF binding to a non-
specific site with the possibility of diffusing to yet another non-specific site (Supplementary Note
Fig. 3b). Due to the self-similarity of the chain, all non-specific sites are indistinguishable. Here, we
assume that it is equally probable for a TF to jump between non-specific sites and unbind from a
non-specific site, i.e k1 = k3. Applying the absorbing boundary method, the dwell time distribution
can be easily found:

dD

dt
= k1 (P1 + P2) (18)

where P1(t) and P2(t) correspond to the number of traces at time t that started in state 1 or 2
respectively.

dP1

dt
= �2k1P1 + k1P2,

dP2

dt
= �2k1P2 + k1P1 (19)

!

✓
dP1
dt
dP2
dt

◆
= k1

✓
�2 1
1 �2

◆✓
P1

P2

◆
(20)
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Supplementary Note Fig. 3: Diffusion and binding along a chain leads to power law
behaviour of dwell times. (a) Schematic of TF diffusion on DNA represented as a circular chain
that contains either non-specific sites (empty circles) or specific sites (crossed circle). (b) Equivalent
state diagram for the condition when a TF does not find a specific site. The rates for diffusing
along the chain and dissociating from the chain are set to k1. (c) Equivalent state diagram for
the case when the TF finds a specific site and unbinds from this site to the bulk. (d) Survival
distribution of TF calculated using stochastic simulations. TFs bind uniformly around 20 sites away
from the specific site. The simulations show different power law decays depending on different choice
of parameters. For power-law of 0.45, k1 = 1, k2 = 0.1 and k3 = 1; for power-law of 0.54, k1 = 10,
k2 = 0.1 and k3 = 1; for power-law of 0.8, k1 = 10 k2 = 0.01 and k3 = 0.01; for power-law of 1,
k1 = 10 k2 = 0.01 and k3 = 0.0001.; for power-law 1.5, k1 = 1 k2 = 0.01 and k3 = 0.001
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!

✓
P1

P2

◆
= C1

✓
1
1

◆
e�k1t + C2

✓
�1
1

◆
e�3k1t (21)

After applying initial conditions for P1 and P2 (each non specific site is equally probable, C1 = 1
2

and C2 = 0), we find that the normalized dwell time distribution is given by:

dD̃

dt
= k1e

�k1t , (22)

as expected for a Poisson process. The exponential term due to the dissociation of the TF from
non-specific sites along the DNA dominates the internal diffusion of the TF along the chain.

1.4.2 A TF does find its target

Let Pn(t) denote the probability of being in state n at time t. We will consider (without loss of
generality) that k1 = 0.5 and k2

k1
= ↵; k1 will impose the time scale of the processes shown in

Supplementary Note Fig. 3c. We are considering an infinite linear chain since a TF factor after
finding its specific site will either move to a non-specific site to the right or left with equal probability
and since we are considering a long chain, the right-side chain will be the reflection of the left-side
chain. To solve this case analytically we are considering the special case where unbinding is only
possible from a specific site. The master equation associated with this process is given by:

@P1(t)

@t
= P2(t)� 1.5↵P1(t) for n = 1 (23)

@P2(t)

@t
= ↵P1(t) + P3(t)� 2P2(t) for n = 2 (24)

@Pn(t)

@t
= Pn�1(t) + Pn+1(t)� 2Pn(t) for n > 2 (25)

Site 1 corresponds to the specific site and the initial condition is such that Pn(0) = �n,1.
Using the property of the Modified Bessel functions of first kind, @In(t)

@t = 1
2 (In�1(t) + In+1(t)).

It is easy to see that Pn(t) = e�2tIn+m(2t) are solutions for 25, with m 2 N. Let’s consider the
linear combination of these particular solutions:

Pn(t) =
1X

m=0

An
me�2tIm(2t) (26)

Applying the general differential equation for n > 2 (25), we get the following conditions on the
coefficients:

An
2 + 2An

0 = An+1
1 +An�1

1 (27)

An
m+1 +An

m�1 = An�1
m +An+1

m m 6= 1 (28)

Without loss of generality, we can set A4
1 = 0. This implies that:

An
m+1 = An�1

m ; An
m�1 = An+1

m (29)

Applying the initial condition that Pn(0) = �n1, the solution is given by:
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Pn(t) = e�2t

8
<

:An
n�1In�1(2t) +

X

m 6=n�1

An
mIm(2t)

9
=

; (30)

with A1
0 = 1, An

0 = 0, n > 1. Using this solution as ansatz for 24:

P1(t) = e�2t

(
I0(2t) +

X

m=1

A1
mIm(2t)

)
(31)

P2(t) = e�2t

(
A2

1I1(2t) +
X

m=1

A2
m+1Im+1(2t)

)
(32)

@P2(t)

@t
= ↵P1(t) + P3(t)� 2P2(t) (33)

for simplicity the notation Im(2t) ⌘ Im is used from now on. Then,

I0
�
A2

1 � ↵
�
� I1

�
↵A1

1 +A3
1 �A2

2

�
(34)

=
X

m=3

Im
�
A3

m + ↵A1
m �A2

m�1 �A2
m+1

�
+ I2

�
A3

2 + ↵A1
2 �A2

1 �A2
3

�

This implies:

A2
1 = ↵; A3

1 = A2
2 � ↵A1

1 (35)

Applying An
m+1 = An�1

m :

A2
3 = ↵A1

2 (36)

A2
m+1 = ↵A1

m m > 2 (37)

Applying the ansatz to 24, we find:

(1.5↵� 2 +A1
1)I0 + (2�A2

1)I1 =
X

m=1

Im
�
A2

m � 1.5↵A1
m �A1

m+1 �A1
m�1 + 2A1

m

�
(38)

applying A2
m+1 = ↵A1

m , A2
1 = ↵, A2

2 = A3
1 + ↵A1

1, A2
3 = ↵A1

2 and setting without loss of generality
A3

1 = 0,

) (1.5↵�2+A1
1)I0+I1(2�↵�A

1
1(2�1.5↵)+A1

2) =
X

m=4

Im
�
(2� 1.5↵)A1

m �A1
m+1 + (↵� 1)A1

m�1

�

(39)

+I2
�
A2

2 � 1.5↵A1
2 �A1

3 �A1
1 + 2A1

2

�
+ I3

�
A2

3 � 1.5↵A1
3 �A1

4 �A1
2 + 2A1

3

�

Then,

A1
4 = (↵� 1)A1

2 + (2� 1.5↵)A1
3 (40)

A1
3 = A3

1 +A1
1(↵� 1) +A1

2(2� 1.5↵) (41)

206



A1
1 = 2� 1.5↵; A1

2 = ↵� 2 +A1
1(2� 1.5↵); A1

m+2 = (2� 1.5↵)A1
m+1 + (↵� 1)A1

m (42)

Finally,

P1(t) = e�2t

(
I0(2t) + (2� 1.5↵)I1(2t) +

⇥
↵� 2 +A1

1(2� 1.5↵)
⇤
I2(2t) +

1X

m=1

A1
m+2Im+2(2t)

)

(43)
In the limit when t� 1, we can apply the following approximation (10):

In(2t) ⇡ (4⇡t)�1/2 e2t
"
1�

(4n2
� 1)

16t
+

�
4n2
� 1

� �
4n2
� 9

�

2! (16t)2
+ ...

#
(44)

We want to derive the asymptotic behaviour of the solution for P1(t). For this, we need to
calculate the leading terms of the expansion for In(2t). First, we are going to calculate the behavior
of the leading order of P1(t), terms of the form (4⇡t)�1/2. Assuming that ↵ 6= 1:

P1(t) ⇡ (4⇡t)�1/2
1X

m=0

Am +O(t�3/2)

1X

m=0

Am = A0 +A1 +A2 +A3 +A4 +
1X

m=3

Am+2 (45)

Using 42,

1X

m=0

Am = A0 +A1 +A2 +A3 +A4 +
1X

m=4

(2� 1.5↵)A1
m +

1X

m=3

(↵� 1)A1
m (46)

) 0.5↵
1X

m=0

Am = 0.5↵(A0 +A1 +A2) +A3(1.5↵� 1) +A4 (47)

Replacing the values for A0, A1, A2, A3 and A4; it is easy to see that:

)

1X

m=0

Am = 0 (48)

Which implies that terms of order t�1/2 vanish for the solution of P1(t).We need to calculate
the behaviour of the second leading term of the form (4⇡t)�1/2

16t (terms of the order t�3/2) which will
dominate the asymptotic behaviour of P1(t). It is easy to see in a similar way that for

P1
m=0 Am,

that

0 <
1X

m=0

Am
(4m2

� 1)

16
<1 (49)

This implies that the asymptotic behavior of P1(t) will be dominated by a term of the form
(4⇡t)�1/2

16t :

P1(t) / t�3/2 (50)
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Finally, the dwell time distribution D̃ is given by:

dD̃

dt
= 0.5↵P1(t) / 0.5↵t�3/2 (51)

The survival distribution D̂ in the limit t� 1:

D̂(t) / 0.5↵t�1/2 , (52)

The survival distribution for such a chain will be the sum of an exponential term due to non-
specific binding with a fast dwell time and a term of the form t�1/2 as described above (t � 1).
The asymptotic behavior for longer times compared to diffusion along the DNA (random walk along
non-specific sites) will therefore show power-law behavior. This suggests that the phenomenological
fits of survival time distributions by a mixture of exponentials may have to be modified depending
on TF affinity and dynamics.

This analytical result can be applied to transcription factors that undergo multiple conforma-
tional changes or interact with multiple protein complexes before unbinding from a specific site.
Such a process will produce asymptotically power-law distributed dwell times for specific binding.

Conceptually, our calculation shows that diffusion on the DNA as illustrated in Section 1.4
produces asymptotic power-law behavior for the survival distribution of TFs. This diffusion on the
DNA may be seen as a broad distribution of effective affinities depending on how many non-specific
targets the TF visited prior to binding to a specific site with each specific binding event having a
distinct effective binding affinity.

The next section will explore computationally a more general process where unbinding is allowed
from non-specific sites.

1.4.3 Simulating a Complete Model

We used the Gillespie algorithm (11) to simulate the residence time of a TF binding to a specific
target in the background of multiple non-specific sites.We modeled the chromatin environment as
a circular chain of 2000 sites, with 1999 non-specific and a single specific site (Supplementary Note
Fig. 3). TFs were initially allowed to bind at a randomly chosen non-specific site at most 20 sites
away from the specific site, since TFs bound farther away contribute negligibly to the final residence
time distribution due to the low probability of finding the specific site before unbinding. TFs were
allowed to diffuse to a neighboring site with the rate constants as shown in Supplementary Note Fig.
3a or dissociate from the specific site at a rate k2 or from a nonspecific site at a rate k3. The dwell
time for an iteration corresponds to the time interval between the initial condition of binding at a
random site and unbinding of the TF. The simulation was terminated when 1000 specific binding
events occurred (multiple specific binding for the same TF in a single iteration were counted as a
single binding event) or after 1 ⇥ 107 time points (a.u.). The survival distribution was calculated
using the Kaplan-Meier estimate for the empirical cumulative distribution function. We find that the
survival time distribution clearly shows a power law dependence for different combinations of k1, k2
and k3 when k2 < k1 (Supplementary Note Fig. 3d). Unbinding from a non-specific site was allowed
after a TF binds to a specific site. The power-law exponent is largely determined by the search
time or the effective diffusion on the DNA, before finding the specific site based on exploration of
different parameters through simulations. Conceptually, our simulation implies that since a TF can
visit multiple non-specific sites before binding to the specific site and subsequently unbinding, the
effective survival distribution resembles the situation in which the TF encounters sites with a broad
distribution of affinities. This suggests that the phenomenological fits of survival time distributions
by a mixture of exponentials may have to be modified depending on TF affinity and dynamics.
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1.5 Broad distribution of Binding Affinities
Independent of diffusion along the DNA, the affinity landscape in the nucleus may be highly hetero-
geneous resulting in a broad distribution of binding affinities contrary to the assumption that TF
dynamics on chromatin results from well-separated and narrow distributions of specific and non-
specific binding (Fig. 5). Given the heterogeneity in local organization and nuclear structure, TF
binding sites on chromatin can be viewed as a collection of traps with a distribution of trap depths
(analogous to binding affinities, Figure 4H). Each trap can be viewed as a potential energy well of
depth �E, which is related to the affinity as k(T ) = k0e��E/kBT , where k0 is the bare transition
rate (Arrhenius equation). The dwell time distribution of a TF in a particular well of depth �E
is given by f�E(t) = k(T )e�k(T )t. If the energy landscape across the nucleus is described by a
distribution P (�E), then the overall dwell time distribution observed in an experiment across all
different sites (f(t)) will take the form:

f(t) =

Z
k0e

��E/kBT e�k0e
��E/kBT tP (�E)d�E (53)

Under very general conditions, Bouchaud et al. have shown that for such finite disordered
systems, there exist a family of energy distributions P (�E), for which the distribution of dwell times
asymptotically approaches a power law (12, 13). As an example, the well-known Random Energy
model and the Sherrington-Kirkpatrick model of spin glasses from physics have energy landscape in
which the distribution of deep traps (large �E) is given by:

P (�E) =
f0
kBT

e�x�E/kBT (54)

where x is a temperature dependent parameter between 0 to 1. For the case of TF binding, this
parameter x can be seen as the interaction strength of different types of TFs to a specific site
described by a well with energy depth �E. Using this distribution for the energy landscape, the
dwell time distribution can be calculated:

f(t) =
f0k0
kBT

Z 1

0
e��E/kBT (1+x)e�k0e

��E/kBT td�E (55)

let’s u = e��E/kBT and t0 = k0t:

f(t) = f0k0

Z t0

0
uxe�eut0du (56)

setting ut0 = v,

f(t) = f0k0

Z t0

0

⇣ v

t0

⌘x
e�v dv

t0
(57)

) f(t) =
f0k0
t0(1+x)

Z t0

0
vxe�vdv (58)

Using the definition for the incomplete gamma function (�(a, x) ⌘
R1
x ta�1e�tdt)and using

t0 = k0t

f(t) = t�(1+x)k�x
0 f0 [�(x+ 1, k0t)� �(x+ 1, 0)] (59)

We are interested in the asymptotic behavior of f(t). For t� 1:

f(t) ⇡ �t�(1+x)k�x
0 f0�(x+ 1, 0) (60)
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Let C(x) = k�x
0 f0�(x+ 1, 0) which is a time independent quantity (C(x) < 0),

f(t) ⇡ �C(x)t�(1+x) (61)

Finally, the asymptotic behavior of the survival distribution D̂(t) (t� 1:) is given by:

D̂(t) / t�x (62)

Thus, the survival distribution exhibits asymptotic power-law behavior over a range of parameters
that are experimentally plausible.

1.5.1 Simulation

To simulate a broad distribution of binding affinities, the chromatin was modeled as a chain of
10000 sites. The depth of potential well for each site was randomly chosen from an exponential
distribution with a mean of x

kBT (x was set up to 0.5). The affinity distribution for the site then
becomes k = k0e��E/kBT and the resulting dwell time distribution for any particular well was
randomly generated from an exponential distribution with mean 1/k. The Survival distribution was
then calculated using the Kaplan-Meier estimator.
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Appendix B. 
 
Instructions for Using Single Molecule Tracking 
Routines Implemented in MATLAB 

To follow this guide, you will need: 

- MATLAB R2015b or newer, with the following tools installed 

 - Curve Fitting Toolbox   

 - Image Processing Toolbox 

 - Optimization Toolbox     

- Statistics and Machine Learning Toolbox    

- Global Optimization Toolbox 

 - Basic knowledge of MATLAB (no coding expertise necessary) 

- A spreadsheet software such as Excel 

 
Installation: 

1 - Unpack the zipped folders “MatlabTrack_v6”and “Analysis_scripts” from 

https://github.com/davidalejogarcia/PL_HagerLab into your MATLAB files folder 

(example (C:\Matlab Files\)) 

2 - Open MATLAB 

3 - Add the directory to the MATLAB path. To do this, select “Set Path” from 

the MATLAB “File” menu, click on “Add with Subfolders” and select the folder 

https://github.com/davidalejogarcia/PL_HagerLab
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“MatlabTrack_v6” and “Analysis_scripts”). Select “Save” in the Set Path panel to 

have MATLAB memorize the location of the newly installed routines. 

Running the MatlabTrack routines: 

TRACKING 

1 – From MATLAB, in the command window type integratedTrackGui and 

press “Enter”. The main graphical user interface (GUI) for the track analysis should 

open up (it should look like below). 

 

 

 You will notice a series of buttons and some menus at the top. The menus 

are used to perform some basic actions (load previously tracked data, save the 

tracked data, set the parameters of data acquisition and analysis) and some more 

sophisticated analysis (single molecule colocalization, and global analysis of 
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multiple tracked movies). The main window enables performing the whole 

framework of the single molecule analysis. 

2 – The first step in analyzing a single molecule movie is to load the movie 

by pressing the big button Load Stack at the top of the GUI. The movie needs to 

be in “.tif” format and it is preferable to have the files stored locally (not on some 

remote drive) for better performance. Once you select the movie to analyze it 

should appear in the GUI (in the big white area on the left). Make sure to inspect 

the movie to ensure it is appropriate for analysis. If not (too many particles, blurred, 

lost focus etc.) proceed to the next movie by clicking on the “Load Stack” button 

again. 

3 – Set the acquisition parameters by clicking on the menu “Set parameters 

> Set Acquisition Parameters” at the top. A dialog box will appear, requiring as 

input the time interval between images (Frame Time which is the inverse of the 

acquisition rate) and the pixel size in micrometers. These parameters can be 

stored as default so that they are saved for the next time the software is opened. 

However, it is good practice to double check that the right parameters are being 

used. 

4 – The next step in particle detection is to filter out some of the noise with 

a bandpass filter. The bandpass filter smoothens the image by “discarding” 

features smaller than a certain threshold and larger than another threshold. You 

can change these thresholds by entering lower and higher limits in the 

corresponding boxes (top of the center column of the GUI). For our system, we 

find that a “lower limit” equal to 1 and a “higher limit” equal to 5 works well. Then, 



214 

press the button “Filter Stack”. This applies a top-hat, Wiener, and Gaussian filter. 

You can switch between the original stack and the filtered stack by selecting the 

proper entry in the pop-up menu below the image window. NOTE: changing this 

entry will only affect what is visualized but NOT how the data analysis is performed. 

Tracking will always be done on the “Original images”. 

5 – Once the stack has been processed, you can choose to analyze only 

the molecules found in a particular region of interest (ROI) by clicking on the 

“Define ROI” button in the center column. At this point, if desired, it is possible to 

open a reference image to define a particular area of the cells [for example a 

brightfield image of the same field of view as the ROI (such as the nucleus)]. 

Otherwise the GUI will prompt you to generate a “Sum” or “Maximum” projection 

image from the stack. Just draw the region of interest around the feature you are 

interested in. You will also have a choice to adjust the brightness of the generated 

Sum/Maximum image to help you select the ROI.  Additionally, a new pop-up 

window will ask whether you want to add a second ROI that could be analyzed 

independently.  

6 – The next step in tracking molecules is to identify the peaks 

corresponding to single molecules. To do so, we need to set two parameters. First, 

select a “Threshold” that discards all the dim peaks that are likely to be noise.  This 

threshold will depend on the brightness of the particles and the background 

intensity. Select the threshold so that most of the peaks which are likely to 

correspond to particles are detected, while keeping the number of “false positive” 

particles low. Next, select a “window size” (in pixels). This sets the minimum 
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distance between two particles to be recognized as separated particles (it is set by 

default to 7, which is our recommended value). Then, click on the “Find Particles” 

button. The identified particles will be circled in blue. Visually inspect the movie to 

check if you agree with the results of the particle identification procedure and 

change the threshold value accordingly (too many particles: increase the 

threshold; too few particles:  decrease the threshold). Before proceeding to the 

next step, select the “Fit PSF to the particles” option1 and hit “Find Particles again” 

2. This procedure is much slower but identifies the position of the particles much 

more precisely. 

7 – Once the particles have been identified, the different positions obtained 

at different frames of the tracks need to be linked. This is a very critical step, as 

incorrect tracking might result in nonsensical results. There are a number of 

options for tracking, as outlined below.  

First, set the maximum jump (in pixels) allowed between contiguous frames. 

The value of this parameter depends on the mobility of the molecule. To track 

bound molecules, set the “maximum jump” relatively low (4 pixels, depending on 

the acquisition interval). Otherwise, set it higher to track all particles. Keep in mind 

that if a large number of particles are identified, the routine might link the particle 

 

1 Point spread function (PSF) is fitted with a 2D gaussian with a width of 3 pixels independent of 
numerical aperture (NA) and wavelength 

2 Another way to know if the threshold is ok, you can do a “mock” tracking, without the “fit PSF….” 
Function. Just track the particles and press the “Preprocess Tracks” button (read and understand 
steps 7-9).  A new window will pop-up. You can now see a qualitative estimation of the signal-to-
noise (SNR) ratio in the form of a histogram. If the SNR is low (blue and red histograms overlaps 
too much) you should increase the threshold and try again. If the SNR is still poor no matter how 
high the threshold has been set up, then you should consider eliminating this cell. A more 
quantitative approach is taken on step 10. 
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positions between subsequent time frames incorrectly, especially if the “maximum 

jump” setting is too high. Therefore, in order to track molecules moving over long 

distances, it is optimal to acquire movies with a low number of particles (less 

expression level, less fluorescent labeling ratio, etc.). 

Next, in order to discard tracks that are too short, set the minimal track 

length. It is recommended to keep this value low (2-4 frames).  

Finally, you can select the “close gap” option. This is useful when particles 

blink, so that if “gaps” are found in the tracks they will be “filled”. A good starting 

value is gap = 2.  

Once these parameters have been wisely selected, click on the “Track” 

button. The algorithm might be challenged by two opposing situations (in both 

cases an error message will appear): (i) Too many particles, you need to either 

increase the threshold to find the particles or set a lower “maximum jump” allowed; 

ii) Too few particles, here the solution is to decrease the shortest track value. 

8 – Before proceeding with the analysis it is important to pre-process the 

tracks. Click on the button “Preprocess Tracks” in the main GUI3. A new pop-up 

window will give you information on the background and signal intensity levels, as 

well as the decay in the number of particles over time. Press “DONE”. This process 

converts the measured tracks to microns, calculates the number of particles 

 

3 Make sure that the acquisition parameters are set correctly (in the menu “Set acquisition 
parameters”) before preprocessing the tracks 
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detected per frame and quantifies the intensity of the particles over the 

background. After preprocessing, remember to save the MATLAB track file.  

9 – After processing all movies (repeat steps 1-9 for all your data), run the 

script “SNRParticlesCells.mat” located in the “Analysis_scripts” folder by opening 

it from the HOME tab > OPEN. This script is used to calculate the SNR (Signal to 

Noise Ratio) of the tracks. It will produce a vector file “SNR” that corresponds to 

the SNR for each track. This can be used to measure the quality of your data.  

 9a- Open the script and manually change the required values in the 

editor window for your set up (W1, wavelength used; NA, numerical aperture used; 

pixel size used) 

 9b- It is important that all the .mat files to be analyzed are in the same 

folder and the current folder in the MATLAB console corresponds to it. Run the 

script. Select all the .mat files you wish to analyze. 

 9c - Calculate the fraction of tracks that have an SNR smaller than 2 

(you can use the command “length(find(SNR<=2))/length(SNR)”. We put our 

quality standard at <0.05. If the fraction of tracks with low SNR is higher, consider 

increasing the thresholding before tracking.4 

 9d – For visualization purposes, you can generate a plot using the 

command “histogram(SNR,'Normalization','pdf')” 

 

4 There is a possibility to change the threshold of all files at the same time, however, it will apply 
the same thresholding value to all.  Under Tools, select “Retrack Batch” and change the 
corresponding parameter. The system will re-track, pre-process and automatically saved a copy 
of all files. This step may take a while depending on the number of files and processing power. 
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CALCULATION OF RMIN AND RMAX USING HISTONES 

Rmin (the minimum frame to frame displacement that a molecule may exhibit 

to be considered bound) and Rmax (maximum displacement in a shortest track 

number of frames that a molecule may exhibit to be considered bound) are 

essential to define when a molecule is bound and when it is not. We calculate Rmin 

and Rmax using histone data. This should be done for each acquisition condition 

and cell line used. 

1- Under the “Further Analysis” menu, select “Merge and analyze jump 

histograms”. Then, select the preprocessed MATLAB files generated during 

tracking histones from different experiments. Select the properties of the histogram 

in the pop-up window (you can use the default ones). Make sure the right frame 

time is selected. Then, enter ‘yes’ for photobleaching correction and ‘yes’ for 

normalization of the jump histogram to 1 to make the displacement a normalized 

distribution.  

2- Click on the “Copy 2D hist of displacements” button and paste the results 

on a spreadsheet such as Excel. The table is the probability for a given 

displacement (in micrometers) at different time intervals. An example is shown 

below. 
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 2a- For Rmin, calculate from the row corresponding to your frame 

time, the displacement which corresponds to the cumulative probability less than 

or equal to 0.99 (i.e. sum all probabilities until you reach 0.99). The corresponding 

distance is Rmin. 

 2b – For Rmax, use the row corresponding to the value of the Shortest 

Track (in seconds). Calculate the displacement that corresponds to the cumulative 

probability less or equal to 0.99. Care must be taken for determining Rmax.  Because 

Rmax is not normalized, you need to use the 99% value from the sum of all rows 

(i.e. the command: sum(row)*0.99). 

 

ANALYSIS OF THE RESIDENCE TIME HISTOGRAM OF BOUND MOLECULES 

1 – In the “Further Analysis” menu select “Merge and analyze residence 

time distribution”. Then, select the individual preprocessed MATLAB files 

generated during tracking that you want to analyze. A pop-up window will ask to 

Rmin and Rmax calculation example. The figure shows an example of the output table generated from 

the “Copy 2D hist of displacements” function. Please note the actual table will be longer. The top row (in 

grey) displays the displacements in microns. The left column (in blue) displays the time intervals (in 

seconds). Each cell displays the probability of the particle’s displacements. In this example, the interval 

time is 200ms (you can deduce it from the time increments 0.2, 0.4, 0.6, etc) and the Shortest Track (ST) 

was set to 4 during tracking. To calculate Rmin, you must choose the row corresponding to the interval 

time used (in this case 0.2s, yellow) and SUM all the probabilities until you reach 0.99. In this case, the 

displacement is 0.23. This is Rmin. To calculate Rmax, you must choose the row that corresponds to the ST 

time interval (In this case ST=4, so 4*0.2s = 0.8s; highlighted in green). Because this row is not 

normalized, first you must SUM all the probabilities in the row (in this case this is 0.8873) and second, 

calculate 99% of this value (in this case 0.874). Finally, you must SUM all the probabilities until you reach 

0.8873; in this case Rmax is 0.29. 
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select either “Residence time histogram” or “Survival Time Distribution”. Choose 

the latter. Enter the “maximum jump between consecutive frames” (Rmin) and 

“Maximum end to end distance” (Rmax) as calculated in the previous step. 

“Minimum length of bound tracks” (or Nmin) corresponds to the least number of 

frames of a track to be considered bound. It should mirror the shortest tracks (ST) 

previously selected. For long acquisition intervals (e.g. 500 ms) we suggest ST=2 

frames and for short acquisition intervals (e.g. 200 ms) we suggest ST =4 frames. 

The frame time and the maximum number of frames to be analyzed need to be 

entered as well in the pop-up window. 

2 – Once these parameters are set, run the analysis of the bound molecules 

by clicking on the “ok” button. Upon completion of the computation (it may take a 

few minutes), a pop-up window will emerge with a bi-exponential analysis (old 

methodology). Please close this window and ignore it. The MATLAB command 

window will display the execution time and a MATLAB file will be saved in the 

current folder called “DwellTimehistogram.mat”, containing the histogram of track 

lengths.  

 

ESTIMATION OF PHOTOBLEACHING RATE USING HISTONES (H2B, H3 or H4) 

This can only be done after generating the “DwellTimehistogram.mat” file 

for the bound tracks. However, if you wish to use another tracking software to 

generate the tracks, you can continue with the analysis if and only if the generated 

tracks are saved with the current format: an excel file with two columns, column A 

with the experimental time points in seconds and column B with the number of 
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particles with a lived time of column A (see sample file 

“Sample_ResTimeHist.xlsx”). Run the script “ImportData” and select the excel file. 

The script will generate a file with the name of said excel file that can be further 

analyzed.  

NOTE. If you use uTrack to generate your tracks, we have generated a 

script to make your dataset compatible with the following analysis. Create a folder 

with the tracking data from utrack for all the experiments of interest (files in 

“TrackingPackage/tracks”). Run the script “Utrack_ResTimeHist” modifying the 

lane 3 with the acquisition time of the experiment in seconds. The script will 

generate a file called “UtrackMergedData” that can be used for further analysis.  

1 – Making sure that the pathname of the file to be analyzed is current in 

the MATLAB console, access the “PhotobleachingFit” file (located in the Analysis 

scripts folder) by opening it from the HOME tab > OPEN. Modify line 6 (“period”) 

with the acquisition rate in seconds and line 7 (“st”) with the shortest track value in 

frames. Load the “DwellTimehistogram.mat” file and run the script. Two plots and 

two fits will be generated. The figures correspond to fitting the curve with a triple 

exponential (Figure1) or double exponential (Figure2) with dashed lines showing 

the 99% CI in the survival distribution. In the console, a message will display the 

evidence in decibels (Db) for the triple exponential model in comparison with the 

double exponential mode.  If the evidence is larger than 30, then the triple 

exponential model is a better predictor of the data. The program also prints 

BIC1, corresponding to the Bayesian Inference Criterion. The minimum value 

corresponds to the best predictive model. Alternatively, visual inspection of the 
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graphs should also give you the best fit (the one that closely resembles the raw 

data inside the CI). Typing “Parameter1” will display the exponential parameters 

for the triple exponential fit5 and “CI_Parameter1” the corresponding 95% 

Confidence Interval. The photobleaching rate corresponds to the smallest 

exponential parameter. Typing “Parameter2” will display the fitting parameters 

for the double exponential fit6 and “CI_Parameter2” the corresponding 95% 

Confidence Interval. Make note of the smallest exponential parameter for the best 

fit. Type in command “clear all” before uploading/analyzing new files.  

2 – Multiple biological replicates taken on different days can be combined 

to obtain a better estimate of the photobleaching rate7. Open the 

“MergeExperiments” script. Put all files to be merged in the same folder and make 

sure that the pathname is current in the MATLAB console. Run the script to 

generate a MATLAB file “Merged.mat”. The photobleaching analysis can be run 

using the new “Merged.mat” file as in the above step. Make note of the smallest 

exponential parameter from the best fit (i.e. photobleaching rate).  

SURVIVAL DISTRIBUTION FITS 

 
5 For the triple exponential case, the equation to fit is: 𝑓(𝑡|𝑓1, 𝑓2, 𝑓3, 𝛽, 𝛾, 𝜂) = 𝑓1𝑒

−𝛽𝑡 + 𝑓2𝑒
−𝛾𝑡 +

𝑓3𝑒
−𝜂𝑡. The parameters are displayed in the following order: 𝑓1, 𝑓2, 𝑓3, 𝛽, 𝛾, 𝜂 

6 For the double exponential case, the equation to fit is: 𝑓(𝑡|𝑓1, 𝑓2, 𝑓3, 𝛽, 𝛾, 𝜂) = 𝑓1𝑒
−𝛾𝑡 + 𝑓2𝑒

−𝜂𝑡. The 

parameters are displayed in the following order: 𝑓1, 𝑓2, 𝑓3, 𝛾, 𝜂 

7 While you should finally use this “merged” value, it is recommended to run all individual 
experiments (step1) in case one of them deviates too much from the rest and therefore should be 
discarded 
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After estimating the photobleaching rate, we are ready to obtain the fits to 

the survival distribution of our protein of interest. Once again, if you wish to use 

another tracking software to generate the tracks, please refer to the previous 

section.  

1 – Open the “SurvivalFit.m” file and modify line 6 (“period”) with the time 

interval of acquisition in seconds, line 7 (“st”) with the shortest track value in frames 

and line 8 with the photobleaching rate (PB) calculated from histone data. Select 

the part of data that you want to include in the analysis (sometimes the tail is really 

noisy, and it ought to be removed). Change the value of line 11 (“final”) for the 

minimum number of cumulative tracks in the tail to be analyzed (Default 30, the 

portion of the Survival distribution with less than 30 tracks will be censored in the 

analysis) or 1 otherwise which will include the tail of the distribution. Load the 

“DwellTimehistogram.mat” file of your protein of interest and run the script. This 

will generate three plots with 99% CI as dashed lines and three fits: 

The first plot corresponds to a double exponential fit; type “Parameter1” in 

the MATLAB console to display the fitting parameters8 and “CI_Parameter1” for 

their respective 95 CI.  

 
8 For the double exponential model, the equation to fit is:𝑓(𝑡|𝑓1, 𝛾, 𝜂, 𝐴) = 𝐴(𝑓1𝑒

−𝛾𝑡 +

(1 − 𝑓1)𝑒
−𝜂𝑡).The parameters are displayed in the following order: 𝑓1, 𝛾, 𝜂, 𝐴 
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The second plot corresponds to a Power Law fit; type “Parameter 2” in the 

MATLAB console to display the fitting parameters9 and “CI_Parameter2” for their 

respective 95 CI.   

The third plot corresponds to the triple exponential model10; type 

“Parameter3” in the MATLAB console to display the fitting parameters. 

In the console, a message with the evidence for all models in decibels (Db) 

is displayed. If the evidence is larger than 30 for any model, then said model is a 

better predictor of the data. The program also prints BIC1, corresponding to the 

Bayesian Inference Criterion. The minimum value corresponds to the best 

predictive model. This is a simplified model selection. It is important to note that 

when you are performing model selection, you need to graphically inspect the 

plots, understand that there is biological and statistical variability in the data, and 

these are models that must be seen from a biological perspective. The results may 

not be conclusive due to low range in the experimental observations of dwell times. 

For instance, if the photobleaching rate is too high that events longer that 20 s are 

not observable, then a distinction between power law and exponential models 

become inaccurate. This may indicate that experiments with longer acquisition 

times and lower photobleaching are required.  

 
9 For the Power Law model, the equation to fit is: 𝑓(𝑡|𝐴, 𝑏) = 𝐴𝑡−𝑏. The parameters are displayed 

in the following order: 𝐴, 𝑏 

10 For the triple exponential model, the equation to fit is:𝑓(𝑡|𝑓1, 𝛾, 𝜂, 𝐴) = 𝐴(𝑓1𝑒
−𝛾𝑡 + 𝑓2𝑒

−𝜂𝑡 +

𝑓3𝑒
−𝛽𝑡).The parameters are displayed in the following order: 𝑓1, 𝑓2, 𝑓3, 𝛾, 𝜂, 𝛽, 𝐴 
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2 – Multiple biological replicates performed on different days may be 

combined to obtain a better estimate of the survival distribution11. Open the 

“MergeExperiments” script. Select the portion of data that you want to include in 

the survival distribution analysis. As mentioned before, the tail can be noisy. This 

script will generate a file called “Merged.mat”. 

3 – Load the file “Merged.mat” and run the script “SurvivalFit.mat” as above. 

The best fit and the corresponding parameters should be used to characterize your 

protein of interest. 

 
11 While you should finally use this “merged” value, it is recommended to run all individual 
experiments (step1) in case one of them deviates too much from the rest. 
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